WO2019132707A1 - Implant destiné à réparer les défauts osseux trabéculaires - Google Patents

Implant destiné à réparer les défauts osseux trabéculaires Download PDF

Info

Publication number
WO2019132707A1
WO2019132707A1 PCT/RU2017/001015 RU2017001015W WO2019132707A1 WO 2019132707 A1 WO2019132707 A1 WO 2019132707A1 RU 2017001015 W RU2017001015 W RU 2017001015W WO 2019132707 A1 WO2019132707 A1 WO 2019132707A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
ellipsoid
along
bone
repairing
Prior art date
Application number
PCT/RU2017/001015
Other languages
English (en)
Russian (ru)
Inventor
Юрий Николаевич ЛОГИНОВ
Артемий Александрович ПОПОВ
Сергей Владимирович БЕЛИКОВ
Степан Игоревич СТЕПАНОВ
Михаил Васильевич ГИЛЕВ
Елена Александровна ВОЛОКИТИНА
Федор Николаевич ЗВЕРЕВ
Original Assignee
Акционерное Общество "Наука И Инновации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Наука И Инновации" filed Critical Акционерное Общество "Наука И Инновации"
Priority to RU2018101751A priority Critical patent/RU2726253C2/ru
Priority to PCT/RU2017/001015 priority patent/WO2019132707A1/fr
Priority to EA201800026A priority patent/EA201800026A1/ru
Publication of WO2019132707A1 publication Critical patent/WO2019132707A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys

Definitions

  • the present invention relates to the field of medicine, namely to operative traumatology and orthopedics, and can be used to replace bone defects of the trabecular bone in the epimetaphysial region.
  • titanium casting or rolling is a solid (non-porous) metal obtained by casting in vacuum arc remelting furnaces and subsequent pressure treatment, including pressing, forging and rolling, and, if necessary, hot-die forging.
  • the disadvantage of the mentioned structures of implants is the lack of pores that can perform several functions.
  • the presence of pores reduces the mass of the implant, bringing it closer to the mass of bone material.
  • a specific pore location architecture allows for improved bone compatibility due to osseointegration into the pore space.
  • porous structures provide a more acceptable level of physical and mechanical properties for implants: elasticity, damping, etc.
  • Known porous titanium implant according to patent RU 160822, which is a three-dimensional figure made of pressed titanium wire, surrounded by a frame around the perimeter, the three-dimensional implant figure is made in the form of a parallelepiped; the frame is made in the form frame, while on the frame there are technological holes.
  • the disadvantage of such a parallelepiped implant is the incompatibility of its shape with the shape of the trabecular bone. That is why such an implant is recommended for replacement of the vertebrae and intervertebral discs.
  • Known implant for replacing bone defects in the form of a cylindrical or prismatic block according to patent RU 88954, the base of which is made of a composite material containing a multi-directional reinforcing frame made of rods molded from carbon fibers arranged along the axis of said rods, and a carbon matrix, characterized by that the implant base is covered with a hydroxyapatite layer with a content of 0.05 ... 1 g of hydroxyapatite per 1 cm 2 of the base surface.
  • the disadvantage of the proposed implant is its definite constant form in the form of a cylinder or a prism, which in many respects excludes the possibility of precision personalized replacement of a bone defect. It is also worth noting that the implant is a monolithic structure, which also reduces its osseointegration capabilities.
  • Known closest analogue of the proposed technical solution for the patent of the Russian Federation X ° 171824 made of a porous material in the form of a body of revolution.
  • the material is a carbon-carbon composition containing a pyrocarbon matrix and a reinforcing framework made of carbon fibers.
  • the body of rotation of the well-known analogue (figure 1) consists of three coaxial cylinders, the diameter of the middle cylinder D is 10 ... 30 mm, and the diameters d of the outer cylinders are the same, smaller than the diameter of the middle cylinder and are 5 ... 15 mm, while the total length H of the implant is 20 ... 140 mm * and the length of the outermost cylinder h is 5 ... 20 mm.
  • the cylinder as a geometric figure is formed by rotating a rectangle around one of the axes of symmetry.
  • the formed defect is replaced by an implant.
  • the extreme cylinders of the implant tightly implant into the bone marrow canal of the bone before the bone contacts the surface of the middle cylinder.
  • the disadvantage of the known implant is its monolithic structure, which excludes the possibility of osteoconductive effect and the ingrowth of newly formed bone tissue into the implant. Also an obvious disadvantage of an implant is the inconsistency of its shape, which is encountered in the practice of operative traumatology and orthopedics with the dimensional features of a specific bone defect. In addition, it should be noted that the carbon implant is X-ray negative, which largely eliminates the correct postoperative interpretation of the results.
  • the technical problem solved by the present invention is the best adaptability of the shape of the implant to the dimensional features of a particular bone defect. Along the way, the tasks of improving the visibility of the implant during radiography and increasing the osteoconductive effect are solved.
  • the proposed implant for the replacement of bone trabecular defects made in the form of a body of rotation. It differs in that the body of rotation is made of a porous material and bounded by the surface of the ellipsoid.
  • the contour of the ellipsoid can be obtained by rotating the ellipse around the axis of symmetry.
  • an ellipsoid is a closed second-order central surface.
  • FIG. 2 A view of the ellipsoid from the y-axis is shown in FIG. 2, and on the z-axis side, in FIG. 3
  • the shape of the ellipsoid in contrast to the shape of three articulated cylinders, does not contain steps, the transition between them creates an additional level of mechanical stresses.
  • the shape of the ellipsoid implies the presence of smooth outlines of the implant without the presence of stress concentrators and dangerous sections. The presence of a narrowing part of the ellipsoid allows centering it relative to the bone-marrow channel of the bone.
  • the porous material in the proposed implant design for replacing bone trabecular defects can be porous titanium.
  • titanium is a well-proven material in surgical practice.
  • Porosity in titanium can be achieved in various ways: by compacting titanium powder or even titanium sponge, by sintering titanium powder or by using additive 3 D printing methods.
  • the implant is made of titanium alloy, for example, 3.5 - 5.3 V, 5.3 - 6.8 A1, the rest is titanium.
  • the ellipsoid should have dimensions on three orthogonal axes in the range of 5–30 mm. At smaller sizes, the ellipsoid loses its support and is fully embedded in the bone marrow canal, while larger sizes cause excessive overlap compact bone. The assignment of specific sizes depends on the features of the structure and size of the bone of a particular patient.
  • an implant in the form of an ellipsoid should have a size of 5-10 mm along one of the orthogonal axes, 10-20 mm along the second orthogonal axis, 20-30 mm along the third orthogonal axis.
  • FIG. 1 shows an implant according to a known technical solution.
  • a view of the proposed implant design from the y-axis is shown in FIG. 2, and from the axis a in FIG. 3
  • the implant for replacing bone trabecular defects (Fig. 2) is bounded by the surface of the ellipsoid 1 and is made in the form of a body of rotation based on a material having pores 2.
  • the length of the axis of the ellipsoid is A
  • the length the axis of the ellipsoid is the value of C.
  • the length of the ellipsoid axis is the value of B.
  • the most efficient way to manufacture an implant is an additive 3D printing method. This is due to the fact that the product has a rather complex shape, which is difficult to obtain when using traditional methods of metal processing, for example, milling.
  • the implant pore architecture can be programmatically defined.
  • the proof of the feasibility of applying the additive method of 3D printing in this case is the creation of complex cellular structures described in patents US2017252165 and RU2S76610. Below is the procedure for the operation with the use of an implant.
  • preoperative planning is carried out, in which the optimal spatial shape of the implant and its degree of porosity are selected on the basis of computed tomography data.
  • the optimal spatial shape of the implant and its degree of porosity are selected on the basis of computed tomography data.
  • access is made to the articular end of the bone in question, where there is a bone impression defect.
  • Carry out a resection of the pathological focus cleansing from fibroplastic scar tissue and modeling the latter to restore the correct congruence of the articular surfaces.
  • the replacement of the bone defect with a porous titanium implant is combined with plate osteosynthesis with a plate.
  • the technical problem solved by the present invention can be performed. It also shows the best adaptability of the implant shape to the dimensional features of a specific bone defect.
  • the ellipsoid shape of the implant allows precise augment of the defect of the trabecular bone and reduce the metal intensity of the structure. Since the implant is made of a metallic material, its visibility is improved when performing radiography. Due to its manufacture from a porous material, the osteoconductive effect increases.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Neurology (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

L'invention porte sur le domaine de la médecine et notamment de la traumatologie et de l'orthopédie opératoire et peut utilisé pour réparer les défauts osseux de l'os trabéculaire dans la région épimétaphysaire. L'invention porte sur un implant destiné à réparer les défauts osseux trabéculaires qui se présente comme un solide de révolution. Elle se distingue en ce que le corps de révolution est fait d'un matériau poreux et est limité par la surface de l'ellipsoïde. Le matériau poreux se présente comme du titane poreux ou comme un alliage de titane. L'ellipsoïde a des dimensions suivant trois axes orthogonaux dans une gamme de 530 mm. L'ellipsoïde a une dimension suivant un des axes orthogonaux de 5-10 mm, un deuxième axe orthogonal 1020 mm, un troisième axe orthogonal 20-30 mm. Le résultat technique consiste en une meilleure capacité d'adaptation de la forme d'implant à des particularités dimensionnelles d'un défaut osseux concret. Comme l'implant est fait d'un matériau métallique, cela permet d'en améliorer la visibilité lors d'une radiographie. La fabrication de l'implant à partir d'un matériau poreux permet d'augmenter l'effet ostéoconducteur.
PCT/RU2017/001015 2017-12-29 2017-12-29 Implant destiné à réparer les défauts osseux trabéculaires WO2019132707A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2018101751A RU2726253C2 (ru) 2017-12-29 2017-12-29 Имплантат для замещения костных трабекулярных дефектов
PCT/RU2017/001015 WO2019132707A1 (fr) 2017-12-29 2017-12-29 Implant destiné à réparer les défauts osseux trabéculaires
EA201800026A EA201800026A1 (ru) 2017-12-29 2017-12-29 Имплантат для замещения костных трабекулярных дефектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2017/001015 WO2019132707A1 (fr) 2017-12-29 2017-12-29 Implant destiné à réparer les défauts osseux trabéculaires

Publications (1)

Publication Number Publication Date
WO2019132707A1 true WO2019132707A1 (fr) 2019-07-04

Family

ID=67067878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2017/001015 WO2019132707A1 (fr) 2017-12-29 2017-12-29 Implant destiné à réparer les défauts osseux trabéculaires

Country Status (3)

Country Link
EA (1) EA201800026A1 (fr)
RU (1) RU2726253C2 (fr)
WO (1) WO2019132707A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94004854A (ru) * 1994-02-08 1996-08-10 В.К. Шолег Внутрикостный зубной имплантат и способ его изготовления
RU144672U1 (ru) * 2014-03-24 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Внутрикостный имплантат с биосовместимым покрытием
WO2014139635A1 (fr) * 2013-03-11 2014-09-18 Johnson & Johnson Medical Gmbh Implant chirurgical
RU2589510C2 (ru) * 2009-08-19 2016-07-10 Смит Энд Нефью, Инк. Пористые структуры имплантатов
RU169013U1 (ru) * 2016-03-28 2017-03-01 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Плоское жесткое опорное кольцо митрального клапана

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2565743C2 (ru) * 2013-06-24 2015-10-20 Общество с ограниченной ответственностью "НЭВЗ-Н" Имплантат для устранения дефектов костной ткани

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94004854A (ru) * 1994-02-08 1996-08-10 В.К. Шолег Внутрикостный зубной имплантат и способ его изготовления
RU2589510C2 (ru) * 2009-08-19 2016-07-10 Смит Энд Нефью, Инк. Пористые структуры имплантатов
WO2014139635A1 (fr) * 2013-03-11 2014-09-18 Johnson & Johnson Medical Gmbh Implant chirurgical
RU144672U1 (ru) * 2014-03-24 2014-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Внутрикостный имплантат с биосовместимым покрытием
RU169013U1 (ru) * 2016-03-28 2017-03-01 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Плоское жесткое опорное кольцо митрального клапана

Also Published As

Publication number Publication date
EA201800026A1 (ru) 2019-07-31
RU2018101751A3 (fr) 2019-10-16
RU2726253C2 (ru) 2020-07-10
RU2018101751A (ru) 2019-07-17

Similar Documents

Publication Publication Date Title
US11744716B2 (en) Intervertebral implants
US9205176B2 (en) Anisotropic porous scaffolds
US20160256279A1 (en) Patient-Specific Implant for Bone Defects and Methods for Designing and Fabricating Such Implants
EP2772230B1 (fr) Prothèse de fusion pour l'axis
JPS58185152A (ja) 内蔵式義肢
AU2019393104B2 (en) Bone trabecula structure and prosthesis using same and manufacturing method therefor
EP3141221A1 (fr) Implant et procédé de fabrication d'un tel implant
Fogel et al. Choice of spinal interbody fusion cage material and design influences subsidence and osseointegration performance
US11324497B2 (en) Step staple for fracture fixation
RU2726253C2 (ru) Имплантат для замещения костных трабекулярных дефектов
CN214017997U (zh) 一种用于松质骨重建可扩张假体
CN211750283U (zh) 生物学仿生多孔假体
CN215839715U (zh) 一种具有多孔芯的全距骨假体
CN211561236U (zh) 一种骨缺损修复支架
Parthasarathy of Medical Devices
RU2695271C1 (ru) Эндопротез тазобедренного сустава
EP4241738A1 (fr) Structure poreuse non polygonale
CN215019767U (zh) 一种金属微孔干骺端假体
Eldesouky et al. Design and prototyping of a novel low stiffness cementless hip stem
US20230210564A1 (en) Cylindrical granule made of biocompatible metal material for vertebroplasty
CN214017991U (zh) 一种松质骨重建多孔圈状假体
CN215960468U (zh) 一种修复髋臼骨缺损的种植式生物学金属棒
CN109481092B (zh) 骨小梁结构和应用其的假体
RU210802U1 (ru) Эндопротез вертлужного компонента тазобедренного сустава
US11826265B2 (en) Bellows shaped spinal implant having gyroid lattice structures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201800026

Country of ref document: EA

Ref document number: 2018101751

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936104

Country of ref document: EP

Kind code of ref document: A1