WO2019132635A1 - Method for dyeing fibres derived from aramid using the sol-gel method - Google Patents

Method for dyeing fibres derived from aramid using the sol-gel method Download PDF

Info

Publication number
WO2019132635A1
WO2019132635A1 PCT/MA2018/000010 MA2018000010W WO2019132635A1 WO 2019132635 A1 WO2019132635 A1 WO 2019132635A1 MA 2018000010 W MA2018000010 W MA 2018000010W WO 2019132635 A1 WO2019132635 A1 WO 2019132635A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
dyeing
sol
aramid
functionalizing
Prior art date
Application number
PCT/MA2018/000010
Other languages
French (fr)
Inventor
Aicha BOUKHRISS
Mohamed LAHLOU
Adnane ESSAMMAR
Omar Cherkaoui
Original Assignee
Ecole Supérieure Des Industries Du Textile Et De L'habillement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Supérieure Des Industries Du Textile Et De L'habillement filed Critical Ecole Supérieure Des Industries Du Textile Et De L'habillement
Publication of WO2019132635A1 publication Critical patent/WO2019132635A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0004General aspects of dyeing
    • D06P1/0016Dye baths containing a dyeing agent in a special form such as for instance in melted or solid form, as a floating film or gel, spray or aerosol, or atomised dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/06Disazo dyes from a coupling component "C" containing a directive hydroxyl group
    • C09B31/068Naphthols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/06Disazo dyes from a coupling component "C" containing a directive hydroxyl group
    • C09B31/068Naphthols
    • C09B31/072Naphthols containing acid groups, e.g. —CO2H, —SO3H, —PO3H2, —OSO3H, —OPO2H2; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/02General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using azo dyes
    • D06P1/04General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using azo dyes not containing metal
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/02General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using azo dyes
    • D06P1/04General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using azo dyes not containing metal
    • D06P1/06General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using azo dyes not containing metal containing acid groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5264Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds
    • D06P1/5292Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds containing Si-atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/62General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds with sulfate, sulfonate, sulfenic or sulfinic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes

Definitions

  • the present invention relates to aramid fibers. More specifically, it relates to a process for dyeing and functionalizing aramid-derived fibers having a better stain-fastness on the fiber.
  • Aramid has excellent thermal stability, more important than fiberglass. The aramid does not ignite in a normal rate of oxygen and remains very little fuel.
  • Aramid fiber withstands high temperatures very well.
  • Aramid fiber is very stable with an elongation at break of 3.5%. Aramid fiber has very little elongation and shrinkage under normal conditions of use. It is intermediate between fiberglass and carbon.
  • the aramid has a good tensile strength. But it is difficult to cut, machine. It is 2 times stronger than polyester.
  • Aramid fiber has excellent properties
  • dielectrics It is a non-conductive material.
  • the aramid fiber is of synthetic origin, retains moisture.
  • Aramid fiber has poor compression characteristics.
  • the multiplicity of industrial applications of aramid fiber generates a huge interest in the process of dyeing this fiber.
  • Different techniques are used: dyeing during the process of manufacturing the fiber, and dyeing according to the usual process of dyeing fabrics (bath). The latter has the advantage of its industrial flexibility and relatively cheaper cost.
  • Patent EP1978152 discloses an aramid fiber dyeing method based in a first step (a) on lowering the glass transition temperature Tg to another lower Tg1 value (eg from 200 to 120 ° C) by the use of certain solvents. And in a second step (b) of contacting treated aramid fibers with a solution containing nanoparticles at a temperature greater than or equal to Tg1.
  • the solution as presented by this patent has two major flaws.
  • the first concerns the use of nanoparticles that may release the dye and thus reduce the strength of the dye.
  • a second aspect relates to the cost of the process in part to the use of the nanoparticles.
  • the present invention aims to present a method of dyeing and functionalizing aramid fibers having the advantage of using the usual techniques of dyeing (bath) while obtaining remarkable results in terms of solidity of the dye washing and abrasion, the flexibility of the fabric and a reasonable cost of treatment.
  • Another advantage of the process of the invention is that it does not act directly on the fiber. No modification of the fiber, on the surface or at depth, is applied.
  • the method of the invention is based on the sol-gel method.
  • the sol-gel (or solution-gelling) process in the context of the present invention makes it possible to deposit a thin film on a textile surface to functionalize or dye at room temperature.
  • the process consists of a continuous operation by impregnating the tissues in a soil followed by drying and a possible heat treatment.
  • the impregnation is generally carried out by means of a scarf.
  • the drying and heat treatment operations are carried out, in ream or in an oven.
  • the scarf is a simple machine that consists of two rollers that are pressed against each other by a mechanical or hydraulic pneumatic system.
  • the bath is in a bowl called bacholle.
  • the uses of the scarf are multiple, because with a scarf we can dye, prepare, functionalize, etc.
  • the process according to the invention comprises the following steps:
  • the process is based on the sol-gel method. This step consists in preparing soils based on organosilicon precursors.
  • the dye solution (the bath) has a colorant of your choice. Said dye is mixed with a precursor derived from silane in the presence of ethanol as solvent and HCl as catalyst.
  • the choice of the dye is conditioned by the presence of an alcohol and / or triazine function, R-OH, C 3 H 3 N 3 .
  • This function is capable of reacting with the OH group of the silicon alkoxide (bi or tri-alkoxysilane) released during the hydrolysis step of the sol-gel process.
  • the reaction of the alkoxide with the dye ensures the good fastness of the dyeing.
  • Silicon alkoxides react very slowly with water and are very stable in the absence of water. This is why the synthesis of silica gels requires a hydrolysis step to activate the reactivity of these alkoxides. This step was carried out using ethanol as solvent and adding a small volume of hydrochloric acid which also acts as a catalyst. Indeed, the alkoxyl groups (-OR) react rapidly with water during the hydrolysis reaction in the presence of HCl to form hydroxyl groups (-OH). During the condensation reaction, these (-OH) groups react to form Si-O-Si siloxane linkages. This type of reaction can be continued to build a three-dimensional polysiloxane network by inorganic polymerization. During the drying and baking operations, the hybrid material polymerizes on the textile surface. The Si-OH groups formed during the hydrolysis reaction may also react with the dye. This leads to the formation of Covalent bonds of the Si-O-dye type.
  • This precursor comprises both hydrolysable functions (Si-OR) which generate the silicate network and organic functions (-Si-C) which remain grafted to the mineral skeleton via a Si-C bond insensitive to hydrolysis.
  • These organic modifying chains are not polymerizable. They are therefore likely to give the hybrid film organo-mineral better homogeneity and flexibility (flexibility).
  • Step 2 Sol-gel coating of the aramid fabrics. The number of layers deposited depends on the desired shade.
  • the application of the soils synthesized on textiles is carried out by the "paddry- cure” method.
  • This method consists of impregnating the textile in the prepared soil, which is then padded until reaching an 80% pick-up, dried at 80 ° C and baked at 120 ° C for one hour, the speed of the scarf is 5m / min and the applied pressure is 4 bar.
  • the hybrid material polymerizes on the textile surface.
  • Step 3 Dry at 80 ° C and bake at 120 ° C.
  • Step 4 Cold wash and heat for 15 min to remove the unreacted dye.
  • Scheme (III) relates to the grafting of the dye on the coating film by means of an OH function.
  • the process according to the invention provides another function for aramid fibers, in particular the "antibacterial”, “flame retardant” and “hydrophobic” functions.
  • antibacterial function is obtained by the grafting of antibacterial agent chosen from ⁇ 1-methyl-3- (3- (triethoxysilyl) -I Himidazol-3-ium chloride), PF6 chloride, or any another anion, 1- (3- (triethoxysilyl) propyl) pyridin-1-lithium) on the precursor.
  • antibacterial agent chosen from ⁇ 1-methyl-3- (3- (triethoxysilyl) -I Himidazol-3-ium chloride), PF6 chloride, or any another anion, 1- (3- (triethoxysilyl) propyl) pyridin-1-lithium) on the precursor.
  • the hydrophobicity function is obtained by using the silane precursor combined with anions chosen from PF6, BF4, or any other hydrophobic anion.
  • Figure 1 is a diagram of the method of application of the dye on the fabric. Or (1) is a fabric, (2) is the dye bath and (3) is a squeeze roll.
  • Example 1 Grafting of the Sirius Blue K-CFN dye with isocyanate:
  • the structure of the Sirius Blue K-CFN dye is as follows:
  • the dye bath The sol-gel molar ratio of the final mixture (sol-gel dye) between the product obtained in maniple 1 or maniple 2, HCl, ethanol and water is 5 / 0.008 / 60 / 55.
  • the quality of the process is tested by the washing fastness test according to standard NF EN ISO 105-C06: 2010.
  • Table 1 presents the results of the washing fastness test according to standard NF EN ISO 105-C06: 2010 for samples A and B.
  • Example 2 Direct dyeing without grafting with isocyanate:
  • CPTS 3-chloropropyl triethoxysilane
  • dye distilled water
  • EtOFI 99%
  • HCl HCl
  • the dyes used are: 4-chloroaniline:
  • Table 2 below presents the results of the washing fastness test according to standard NF EN ISO 105-C06: 2010
  • Shades obtained by different dyes are the results of mixing between two colors: the first is yellow due to the nature of the fiber and the second and that of the dye. Other nuance are possible by playing on the trichromie.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Coloring (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The invention relates to aramid fibres. More particularly, the invention relates to a method for dyeing and functionalising fibres derived from aramid, providing improved fastness of the dye on the fibre, using the sol-gel method. The method for dyeing and functionalising fibres derived frrom aramid according to the invention is characterised in that a sol is prepared using a colorant of a formula having an alcohol or triazine function that can react with the OH group of silicon alkoxide released during the step of hydrolysis of the sol-gel method, said colorant is mixed with a precursor derived from silane in the presence of ethanol as a solvent and HCl as a catalyst, and the reaction of the alkoxide with the colorant ensures the good fastness of the dye.

Description

Procédé de teinture de fibres dérivées d’aramide par le procédé sol-gel.  Process for dyeing aramid-derived fibers by the sol-gel process
Domaine de l’invention Field of the invention
La présente invention se rapporte aux fibres d’aramide. Plus précisément elle concerne un procédé de teinture et de fonctionnalisation de fibres dérivées d’aramide présentant une meilleure solidité de la teinture sur la fibre. The present invention relates to aramid fibers. More specifically, it relates to a process for dyeing and functionalizing aramid-derived fibers having a better stain-fastness on the fiber.
Art antérieur : L’aramide, de l’anglais « aromatic polyamie », est une fibre synthétique possédant de grandes qualités thermiques et isolantes. PRIOR ART Aramid, of the English term "aromatic polyamie", is a synthetic fiber having high thermal and insulating qualities.
- Résistance à la chaleur : L’aramide possède une excellente stabilité thermique, plus importante que la fibre de verre. L’aramide ne s’enflamme pas dans un taux normal d’oxygène et reste très peu combustible. - Heat resistance: Aramid has excellent thermal stability, more important than fiberglass. The aramid does not ignite in a normal rate of oxygen and remains very little fuel.
- Isolation thermique : La fibre d’aramide résiste très bien aux températures élevées.- Thermal insulation: Aramid fiber withstands high temperatures very well.
Avec un point de fusion à 500°C. With a melting point at 500 ° C.
- Stabilité dimensionnelle : la fibre d’aramide est très stable avec un allongement à la rupture de 3.5%. La fibre d’aramide connaît très peu d’allongement et de retrait dans les conditions normales d’utilisation. Elle est intermédiaire entre la fibre de verre et de carbone.  - Dimensional stability: Aramid fiber is very stable with an elongation at break of 3.5%. Aramid fiber has very little elongation and shrinkage under normal conditions of use. It is intermediate between fiberglass and carbon.
- Résistance à la rupture : L’aramide a une bonne résistance à la traction. Mais elle est difficile à couper, usiner. Elle est 2 fois plus résistante que le polyester.  - Resistance to fracture: The aramid has a good tensile strength. But it is difficult to cut, machine. It is 2 times stronger than polyester.
- Isolation électrique : La fibre d’aramide possède d’excellentes propriétés  - Electrical insulation: Aramid fiber has excellent properties
diélectriques. C’est un matériau non conductible. dielectrics. It is a non-conductive material.
- Forte absorption de l’humidité : La fibre d’aramide étant d’origine synthétique, retient l’humidité. - Strong absorption of moisture: The aramid fiber is of synthetic origin, retains moisture.
- Sensibilité aux UV : sensible.  - Sensitivity to UV: sensitive.
- Résistance à la compression : La fibre d’aramide possède des caractéristiques médiocres en compression. La multiplicité des applications industrielle de la fibre d’aramide engendre un énorme intérêt au procédé de teinture de cette fibre. Différente technique sont utilisées : la teinture pendant le processus de fabrication de la fibre, et la teinture selon le procédé usuel de la teinture des tissus (bain). Ce dernier présente l’avantage de sa souplesse industrielle et son coût relativement moins cher. - Compressive strength: Aramid fiber has poor compression characteristics. The multiplicity of industrial applications of aramid fiber generates a huge interest in the process of dyeing this fiber. Different techniques are used: dyeing during the process of manufacturing the fiber, and dyeing according to the usual process of dyeing fabrics (bath). The latter has the advantage of its industrial flexibility and relatively cheaper cost.
Toutefois, l’application d’une teinture sur la fibre d’aramide présente le défi de sa solidité. Un phénomène lié à la nature de la fibre d’aramide qui n’est pas une structure poreuse pour permettre la fixation de la teinture au niveau de la surface de la fibre. Plusieurs solutions ont été divulguées dans l’art antérieur traitant de ce problème. Le brevet EP1978152 divulgue une méthode de teinture de fibre d’aramide en se basant dans une première étape (a) sur l’abaissement de la température de transition vitreuse Tg vers une autre valeur Tg1 plus basse ( ex de 200 à 120 °C) par l’utilisation de certains solvants. Et dans une deuxième étape (b) de la mise en contact de fibres aramides traitées avec une solution contenant des nanoparticules à une température supérieure ou égale à Tg1. However, the application of a dye on aramid fiber presents the challenge of its strength. A phenomenon related to the nature of aramid fiber which is not a porous structure to allow the fixation of the dye at the surface of the fiber. Several solutions have been disclosed in the prior art dealing with this problem. Patent EP1978152 discloses an aramid fiber dyeing method based in a first step (a) on lowering the glass transition temperature Tg to another lower Tg1 value (eg from 200 to 120 ° C) by the use of certain solvents. And in a second step (b) of contacting treated aramid fibers with a solution containing nanoparticles at a temperature greater than or equal to Tg1.
La solution telle que présentée par ce brevet comporte deux défauts majeurs. Le premier concerne l’utilisation des nanoparticules qui risquent de larguer le colorant et ainsi réduire la solidité de la teinture. Un deuxième aspect concerne le coût du procédé du en partie à l’utilisation des nanoparticules. The solution as presented by this patent has two major flaws. The first concerns the use of nanoparticles that may release the dye and thus reduce the strength of the dye. A second aspect relates to the cost of the process in part to the use of the nanoparticles.
La présente invention a pour objectif de présenter un procédé de teinture et de fonctionnalisation des fibres d’aramide présentant l’avantage d’utiliser les techniques usuelles de teinture (bain) tout en obtenant des résultats remarquables en terme de solidité de la teinture au lavage et à l’abrasion, la souplesse du tissu et un coût de traitement raisonnable. The present invention aims to present a method of dyeing and functionalizing aramid fibers having the advantage of using the usual techniques of dyeing (bath) while obtaining remarkable results in terms of solidity of the dye washing and abrasion, the flexibility of the fabric and a reasonable cost of treatment.
Un autre avantage du procédé de l’invention est qu’il n’agit pas directement sur la fibre. Aucune modification de la fibre, en surface ou en profondeur, n’est appliquée. Another advantage of the process of the invention is that it does not act directly on the fiber. No modification of the fiber, on the surface or at depth, is applied.
Description de l’invention : Description of the invention
Le procédé de l’invention est basé sur la méthode sol-gel. Le procédé sol- gel (ou solution-gélification) dans le cadre de la présente invention permet le dépôt d’un film mince sur une surface textile pour la fonctionnaliser ou la teindre à température ambiante. Le procédé consiste en une opération continue par imprégnation des tissus dans un sol suivie d’un séchage et d’un éventuel traitement thermique. L’imprégnation s’effectue généralement au moyen d’un foulard. Les opérations de séchage et de traitement thermique sont réalisées, en rame ou dans une étuve. The method of the invention is based on the sol-gel method. The sol-gel (or solution-gelling) process in the context of the present invention makes it possible to deposit a thin film on a textile surface to functionalize or dye at room temperature. The process consists of a continuous operation by impregnating the tissues in a soil followed by drying and a possible heat treatment. The impregnation is generally carried out by means of a scarf. The drying and heat treatment operations are carried out, in ream or in an oven.
Le foulard est une machine simple qui se compose de deux rouleaux qui sont pressés l’un contre l’autre par un système pneumatique mécanique ou hydraulique. Le bain se trouve dans une cuvette appelée bacholle. Les utilisations du foulard sont multiples, car avec un foulard nous pouvons teindre, apprêter, fonctionnaliser, ...etc The scarf is a simple machine that consists of two rollers that are pressed against each other by a mechanical or hydraulic pneumatic system. The bath is in a bowl called bacholle. The uses of the scarf are multiple, because with a scarf we can dye, prepare, functionalize, etc.
Le procédé selon l’invention comporte les étapes suivantes : The process according to the invention comprises the following steps:
Etapel : préparation des sols Etapel: soil preparation
Le procédé est basé sur la méthode sol-gel. Cette étape consiste à préparer des sols à base de précurseurs organosiliciés. La solution de teinture (le bain) comporte un colorant au choix. Ledit colorant est mélangé avec un précurseur dérivé de silane en présence de l’éthanol comme solvant et de l’HCI comme catalyseur. The process is based on the sol-gel method. This step consists in preparing soils based on organosilicon precursors. The dye solution (the bath) has a colorant of your choice. Said dye is mixed with a precursor derived from silane in the presence of ethanol as solvent and HCl as catalyst.
Le choix du colorant est conditionné par la présence d’une fonction alcool et/ou triazine, R-OH, C3H3N3. Cette fonction est Susceptible de réagir avec le groupement OH de l’alcoxyde de silicium (bi ou tri-alcoxysilane) libéré pendant l’étape de l’hydrolyse du procédé sol-gel. La réaction de l’alcoxyde avec le colorant assure la bonne solidité de la teinture. The choice of the dye is conditioned by the presence of an alcohol and / or triazine function, R-OH, C 3 H 3 N 3 . This function is capable of reacting with the OH group of the silicon alkoxide (bi or tri-alkoxysilane) released during the hydrolysis step of the sol-gel process. The reaction of the alkoxide with the dye ensures the good fastness of the dyeing.
Les alcoxydes de silicium réagissent très lentement avec l’eau et sont d’ailleurs très stables en l’absence de ce dernier. C’est pourquoi la synthèse de gels de silice requiert une étape d’hydrolyse pour activer la réactivité de ces alcoxydes. Cette étape a été effectuée en utilisant comme solvant l'éthanol et en ajoutant un petit volume d'acide chlorhydrique qui joue également le rôle de catalyseur. En effet, les groupements alcoxyles (-OR) réagissent rapidement avec l’eau pendant la réaction d’hydrolyse en présence de l’HCI pour former des groupements hydroxyle (-OH). Au cours de la réaction de condensation, ces groupements (-OH) réagissent pour former des liaisons siloxanes Si-O-Si. Ce type de réaction peut se poursuivre pour construire un réseau polysiloxane tridimensionnel par polymérisation inorganique. Pendant les opérations de séchage et de cuisson, le matériau hybride polymérise sur la surface textile. Les groupements Si-OH formés pendant la réaction d’hydrolyse peuvent aussi réagir avec le colorant. Ceci conduit à la formation des liaisons Covalentes de type Si-O-colorant. Silicon alkoxides react very slowly with water and are very stable in the absence of water. This is why the synthesis of silica gels requires a hydrolysis step to activate the reactivity of these alkoxides. This step was carried out using ethanol as solvent and adding a small volume of hydrochloric acid which also acts as a catalyst. Indeed, the alkoxyl groups (-OR) react rapidly with water during the hydrolysis reaction in the presence of HCl to form hydroxyl groups (-OH). During the condensation reaction, these (-OH) groups react to form Si-O-Si siloxane linkages. This type of reaction can be continued to build a three-dimensional polysiloxane network by inorganic polymerization. During the drying and baking operations, the hybrid material polymerizes on the textile surface. The Si-OH groups formed during the hydrolysis reaction may also react with the dye. This leads to the formation of Covalent bonds of the Si-O-dye type.
La réalisation des dépôts sur les surfaces textiles à partir de sols contenant du TEOS a été largement rapportée dans la littérature. Toutefois la présence de la silice seule peut mener à des revêtements non homogènes avec de faibles propriétés mécaniques ce qui peut affecter l’aspect final du textile aussi que l’efficacité de la fonctionnalisation. Pour comprendre ceci, il est important d’expliquer l’évolution de la structure du film pendant le processus sol-gel. En effet, pendant les réactions d’hydrolyse du TEOS, des tétraèdres de l’acide silicique sont formés (Si(OH) 4) tel que illustré sur le schéma (I) ci-dessous : Making deposits on textile surfaces from soils containing TEOS has been widely reported in the literature. However, the presence of silica alone can lead to inhomogeneous coatings with low mechanical properties which can affect the final appearance of the textile as well as the efficiency of the functionalization. To understand this, it is important to explain the evolution of the film structure during the sol-gel process. Indeed, during the hydrolysis reactions of TEOS, silicic acid tetrahedra are formed (Si (OH) 4) as shown in scheme (I) below:
Figure imgf000005_0001
Figure imgf000005_0001
Ces fonctions minérales vont réagir et polycondenser en éliminant des petites molécules d’eau ou d’alcool pour donner naissance à la composante minérale formée d’enchaînements de tétraèdres via des liaisons Silicium-Oxygène-Silicium. Ces enchaînements de tétraèdres sont les mêmes que ceux que l’on trouve dans les structures de verres inorganiques qui sont des matériaux rigides et cassants. II est connu dans la littérature que la présence de composantes organiques au sein d’un réseau minéral permet d’accéder à une nouvelle classe de matériaux et de modifier notamment ses propriétés mécaniques. La flexibilité de la composante organique Si-C diminue la densité du réseau inorganique (liaisons non hydrolysables) et par suite améliore la ténacité du revêtement aussi bien que sa flexibilité. Pour notre part, nous avons réalisé des dépôts à base d’un trialcoxysilane (par exemple : CPTS / PCPTS) dans le but d’avoir des films hybrides sur la surface des fils. These mineral functions will react and polycondense by eliminating small molecules of water or alcohol to give rise to the mineral component formed by sequences of tetrahedra via Silicon-Oxygen-Silicon bonds. These sequences of tetrahedra are the same as those found in inorganic glass structures which are rigid and brittle materials. It is known in the literature that the presence of organic components within a mineral network makes it possible to access a new class of materials and to modify, in particular, its mechanical properties. The flexibility of the Si-C organic component decreases the density of the inorganic network (non-hydrolyzable bonds) and subsequently improves the toughness of the coating as well as its flexibility. For our part, we have made deposits based on a trialkoxysilane (for example: CPTS / PCPTS) in order to have hybrid films on the surface of the wires.
Ce précurseur composé à la fois des fonctions hydrolysables (Si-OR) qui génèrent le réseau silicaté et des fonctions organiques (-Si-C) qui restent greffées au squelette minéral via une liaison Si-C insensible à l’hydrolyse. Ces chaînons organiques modificateurs ne sont pas polymérisables. Ils sont donc susceptibles de conférer au film hybride organo-minérale une meilleur homogénéité et une bonne flexibilité (souplesse). This precursor comprises both hydrolysable functions (Si-OR) which generate the silicate network and organic functions (-Si-C) which remain grafted to the mineral skeleton via a Si-C bond insensitive to hydrolysis. These organic modifying chains are not polymerizable. They are therefore likely to give the hybrid film organo-mineral better homogeneity and flexibility (flexibility).
Etape 2 : revêtement sol-gel des tissus en aramide. Le nombre des couches déposées dépend de la nuance souhaitée. Step 2: Sol-gel coating of the aramid fabrics. The number of layers deposited depends on the desired shade.
L’application des sols synthétisés sur les textiles est réalisée par la méthode « paddry- cure ». Cette méthode consiste à imprégner le textile dans le sol préparé, ce dernier est ensuite foulardé jusqu’à atteindre un pick-up de 80%, séché à 80 °C et cuit à 120 °C pendant une heure, la vitesse du foulard est de 5m/min et la pression appliquée est de 4 bar. Pendant les opérations de séchage et de cuisson, le matériau hybride polymérise sur la surface textile. The application of the soils synthesized on textiles is carried out by the "paddry- cure" method. This method consists of impregnating the textile in the prepared soil, which is then padded until reaching an 80% pick-up, dried at 80 ° C and baked at 120 ° C for one hour, the speed of the scarf is 5m / min and the applied pressure is 4 bar. During the drying and baking operations, the hybrid material polymerizes on the textile surface.
Etape 3 : Séchage à 80 °C et cuisson à 120 °C. Etape 4 : lavage à froid et à chaud pendant 15 min pour éliminer le colorant non réagit. Step 3: Dry at 80 ° C and bake at 120 ° C. Step 4: Cold wash and heat for 15 min to remove the unreacted dye.
Le procédé, tel que décrit ci-dessus par les étapes 1 à 4, trouve son avantage majeur dans le choix du colorant présentant la fonction (OH et/ou triazine) . Parmi les colorants présentant une telle fonction nous avons testé « Sirius Blue K-CFN », « 4- chloroaniline » et « 2-méthoxy-5-methylaniline ». Le greffage du colorant sur le film peut se faire moyennant une fonction hydroxyle ou iso-cyanate selon les schémas ci-dessous : Le schéma (II) concerne le greffage du colorant sur le film de revêtement moyennant une fonction iso-cyanate : The process, as described above by steps 1 to 4, finds its major advantage in the choice of the dye having the function (OH and / or triazine). Among the dyes with such a function we tested "Sirius Blue K-CFN", "4-chloroaniline" and "2-methoxy-5-methylaniline". The grafting of the dye on the film can be done with a hydroxyl or isocyanate function according to the diagrams below: Scheme (II) relates to the grafting of the dye on the coating film by means of an iso-cyanate function:
Figure imgf000007_0001
Figure imgf000007_0001
Le schéma (III) concerne le greffage du colorant sur le film de revêtement moyennant une fonction OH. Scheme (III) relates to the grafting of the dye on the coating film by means of an OH function.
Figure imgf000007_0002
Figure imgf000007_0002
Selon un aspect particulier de l’invention, le procédé selon l’invention apporte d’autre fonction aux fibres d’aramides en particulier les fonctions « antibactérien », « ignifuge » et « hydrophobe ». According to a particular aspect of the invention, the process according to the invention provides another function for aramid fibers, in particular the "antibacterial", "flame retardant" and "hydrophobic" functions.
En effet, la fonction « antibactérien » est obtenue par le greffage d’agent antibactérien choisi parmi { le chlorure du 1 -méthyl-3- (3- (triéthoxysilyl) -I Himidazol- 3-ium), PF6, chlorure, ou tout autre anion, 1 -(3-(triéthoxysilyl)propyl)pyridin-1 -ium) } sur le précurseur. La fonction d’hydrophobie est obtenue par l’utilisation du précurseur silane combiné à des anions choisis parmi PF6, BF4, ou tout autre anion à caractère hydrophobe. Indeed, the "antibacterial" function is obtained by the grafting of antibacterial agent chosen from {1-methyl-3- (3- (triethoxysilyl) -I Himidazol-3-ium chloride), PF6 chloride, or any another anion, 1- (3- (triethoxysilyl) propyl) pyridin-1-lithium) on the precursor. The hydrophobicity function is obtained by using the silane precursor combined with anions chosen from PF6, BF4, or any other hydrophobic anion.
Brève description des figures : Les figures jointes à la présente invention représentent une illustration des résultats du procédé selon l’invention et ne constituent en aucun cas une sorte de limitation dudit procédé. BRIEF DESCRIPTION OF THE FIGURES The figures attached to the present invention represent an illustration of the results of the process according to the invention and do not constitute in any way a kind of limitation of said process.
Figure 1 : est un schéma du procédé d’application de la teinture sur le tissu. Ou le (1 ) est un tissu, le (2) est le bain de teinture et (3) sont des rouleaux exprimeurs. Figure 1: is a diagram of the method of application of the dye on the fabric. Or (1) is a fabric, (2) is the dye bath and (3) is a squeeze roll.
Exemples de Résultats obtenus : Examples of results obtained:
Exemple 1 : Greffage du colorant Sirius Blue K-CFN avec isocyanate : Example 1: Grafting of the Sirius Blue K-CFN dye with isocyanate:
La Structure du colorant Sirius Blue K-CFN se présente comme suit:  The structure of the Sirius Blue K-CFN dye is as follows:
Figure imgf000008_0001
Figure imgf000008_0001
Mode opératoire : Dans un ballon surmonté d’un réfrigérant, sous argon, x éq du 3- (triethoxysilyl)propyl isocyanate (iso) et x éq du colorant ont été mélangé sous agitation à 75 °C pendant 24 heures. Le produit obtenu a été utilisé sans aucune purification. Procedure: In a flask surmounted by a refrigerant, under argon, x eq of 3- (triethoxysilyl) propyl isocyanate (iso) and x eq of the dye were mixed with stirring at 75 ° C for 24 hours. The product obtained was used without any purification.
Manipe 1 : x= 1 éq (iso) pour x= 1 éq (colorant) (Echantillon A) Manipe 2 : x= 2.1 éq (iso) pour x= 1 éq (colorant) (Echantillon B) Le bain de teinture : Le rapport molaire sol-gel du mélange final (teinture sol-gel) entre le produit obtenu en manipe 1 ou manipe 2, l’HCI, l’éthanol et l’eau est de 5/0.008/60/55. Maniple 1: x = 1 eq (iso) for x = 1 eq (dye) (Sample A) Maniple 2: x = 2.1 eq (iso) for x = 1 eq (dye) (Sample B) The dye bath: The sol-gel molar ratio of the final mixture (sol-gel dye) between the product obtained in maniple 1 or maniple 2, HCl, ethanol and water is 5 / 0.008 / 60 / 55.
La qualité du procédé est testée par le test de solidité aux lavages selon la norme NF EN ISO 105-C06 : 2010. The quality of the process is tested by the washing fastness test according to standard NF EN ISO 105-C06: 2010.
Tableau 1 : présente les résultats du test de solidité aux lavages selon la norme NF EN ISO 105-C06 : 2010 pour les échantillons A et B. Table 1: presents the results of the washing fastness test according to standard NF EN ISO 105-C06: 2010 for samples A and B.
Figure imgf000009_0002
Exemple 2 : Teinture directe sans greffage avec l’isocyanate :
Figure imgf000009_0002
Example 2: Direct dyeing without grafting with isocyanate:
Mode opératoire : Operating mode:
Nous avons mélangé dans un ballon surmonté d’un réfrigérant le 3-chloropropyl triethoxysilane (CPTS) , colorant, l’eau distillée, EtOFI (99%) et HCI (37%) sous agitation pendant 3h à 70 °C. Le rapport molaire CPTS /HCI/EtOH/H20 est de 5/0,008/60/55. La masse du colorant est de 50 mg. 3-chloropropyl triethoxysilane (CPTS), dye, distilled water, EtOFI (99%) and HCl (37%) were mixed in a flask surmounted by a coolant with stirring for 3 h at 70 ° C. The CPTS / HCl / EtOH / H 2 molar ratio is 5 / 0.008 / 60/55. The mass of the dye is 50 mg.
Les colorants utilisés sont: 4-chloroaniline : The dyes used are: 4-chloroaniline:
Figure imgf000009_0001
2-méthoxy5methylaniline
Figure imgf000009_0001
2-méthoxy5methylaniline
Figure imgf000010_0001
Figure imgf000010_0001
Le tableau 2 ci-dessous présente les résultats du test de solidité aux lavages selon la norme NF EN ISO 105-C06 : 2010 Table 2 below presents the results of the washing fastness test according to standard NF EN ISO 105-C06: 2010
Figure imgf000010_0002
Figure imgf000010_0002
Nuances obtenues par différentes teintures : Les nuances obtenues par les différents colorants sont les résultats de mélange entre deux couleurs : la première est jaune du à la nature de la fibre et la deuxième et celle du colorant. D’autre nuance sont possibles en jouant sur la trichromie. Shades obtained by different dyes: The shades obtained by the different dyes are the results of mixing between two colors: the first is yellow due to the nature of the fiber and the second and that of the dye. Other nuance are possible by playing on the trichromie.

Claims

Revendications : Claims:
1. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide par la méthode sol-gel présentant une bonne solidité de la teinture caractérisé en ce qu’il comporte les étapes suivantes : 1. A process for dyeing and functionalizing aramid-derived fibers by the sol-gel method having a good fastness of the dye characterized in that it comprises the following steps:
- Préparation d’un sol en utilisant un colorant ayant une formule présentant une fonction alcool ou triazine susceptible de réagir avec le groupement OH de l’alcoxyde de silicium libéré pendant l’étape de l’hydrolyse du procédé sol-gel, ledit colorant est mélangé avec un précurseur dérivé de silane en présence de l’éthanol comme solvant et de l’HCI comme catalyseur, la réaction de l’alcoxyde avec le colorant assure la bonne solidité de la teinture. - Preparation of a sol using a dye having a formula having an alcohol or triazine function capable of reacting with the OH group of the silicon alkoxide released during the step of the hydrolysis of the sol-gel process, said dye is mixed with a precursor derived from silane in the presence of ethanol as solvent and HCl as catalyst, the reaction of the alkoxide with the dye ensures the good fastness of the dyeing.
- revêtement sol-gel des tissus en aramide avec un nombre de couches déposées en fonction de la nuance souhaitée. - sol-gel coating of aramid fabrics with a number of layers deposited according to the desired shade.
- Séchage à 80 °C et cuisson à 120 °C. - Drying at 80 ° C and baking at 120 ° C.
- lavage à froid et à chaud pendant 15 min pour éliminer le colorant non réagit. - Cold wash and hot for 15 min to remove the unreacted dye.
2. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide selon la revendication 1 caractérisé en ce que le colorant est choisi parmi {« Sirius Blue K-CFN », « 4-chloroaniline » et « 2-méthoxy-5-methylaniline »}. 2. A process for dyeing and functionalizing the aramid fibers according to claim 1 characterized in that the dye is chosen from {"Sirius Blue K-CFN", "4-chloroaniline" and "2-methoxy-5-methylaniline" "}.
3. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide selon les revendications 1 et 2, caractérisé en ce que le précurseur dérivé de silane est un trialcoxysilane choisi parmi {CPTS, PCPTS} dans le but d’avoir des films hybrides sur la surface des fils composant le tissu. 3. Process for dyeing and functionalizing the aramid fibers according to claims 1 and 2, characterized in that the silane-derived precursor is a trialkoxysilane chosen from (CPTS, PCPTS) for the purpose of having hybrid films on the surface of the yarns composing the fabric.
4. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide selon les revendications 1 à 3, caractérisé en ce que le rapport molaire sol- gel du mélange final constitué du produit obtenu en mélangeant le colorant avec le précurseur, l’HCI, l’éthanol et l’eau est de 5/0.008/60/55. 4. Process for dyeing and functionalizing the aramid fibers according to claims 1 to 3, characterized in that the sol-gel molar ratio of the final mixture consisting of the product obtained by mixing the dye with the precursor, HCl, ethanol and water is 5 / 0.008 / 60/55.
5. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide selon les revendications 1 à 4, caractérisé en ce que l’application des sols synthétisés sur les textiles est réalisée par la méthode « paddry- cure » qui consiste à imprégner le textile dans le sol préparé, ce dernier est ensuite foulardé jusqu’à atteindre un pick-up de 80%, séché à 80 °C et cuit à 120 °C pendant une heure, la vitesse du foulard est de 5m/min et la pression appliquée est de 4 bar. 5. Process for dyeing and functionalizing the aramid fibers according to claims 1 to 4, characterized in that the application of the synthesized soils to the textiles is carried out by the "paddrycure" method which consists in impregnating the textile in the prepared soil, the latter is then padded until reaching an 80% pick-up, dried at 80 ° C and baked at 120 ° C for one hour, the headgear speed is 5m / min and the applied pressure is 4 bar.
6. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide selon les revendications 1 à 5, caractérisé en ce que la fonction6. Process for dyeing and functionalizing the aramid fibers according to claims 1 to 5, characterized in that the function
« antibactérien » est obtenue par le greffage d’agent antibactérien choisi parmi { le chlorure du 1 -méthyl-3- (3- (triéthoxysilyl) -1 Himidazol-3-ium), PF6, chlorure, ou tout autre anion, 1 -(3-(triéthoxysilyl)propyl)pyridin-1 -ium) } sur le précurseur. "Antibacterial" is obtained by the grafting of antibacterial agent chosen from {1-methyl-3- (3- (triethoxysilyl) -1 Himidazol-3-ium chloride), PF6, chloride, or any other anion, 1 - (3- (triethoxysilyl) propyl) pyridin-1-lithium) on the precursor.
7. Procédé de teinture et de fonctionnalisation des fibres dérivés d’aramide selon les revendications 1 à 6, caractérisé en ce que la fonction d’hydrophobie est obtenue par l’utilisation du précurseur silane combiné à des anions choisis parmi PF6, BF4, ou tout autre anion à caractère hydrophobe . 7. A process for dyeing and functionalizing the aramid fibers according to claims 1 to 6, characterized in that the hydrophobicity function is obtained by using the silane precursor combined with anions selected from PF6, BF4, or any other hydrophobic anion.
PCT/MA2018/000010 2017-12-26 2018-07-17 Method for dyeing fibres derived from aramid using the sol-gel method WO2019132635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA41728A MA41728B1 (en) 2017-12-26 2017-12-26 Process for dyeing fibers derived from aramid by the sol-gel process
MA41728 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019132635A1 true WO2019132635A1 (en) 2019-07-04

Family

ID=63667976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2018/000010 WO2019132635A1 (en) 2017-12-26 2018-07-17 Method for dyeing fibres derived from aramid using the sol-gel method

Country Status (2)

Country Link
MA (1) MA41728B1 (en)
WO (1) WO2019132635A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031910A (en) * 2021-11-18 2022-02-11 润华(江苏)新材料有限公司 TLCP-para-aramid powder blended resin and preparation method thereof
CN115948925A (en) * 2023-01-17 2023-04-11 武汉纺织大学 Method for treating dyed textiles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544159A (en) * 1991-08-05 1993-02-23 Nagase Sangyo Kk Coloring of fiber
EP1978152A1 (en) 2007-04-03 2008-10-08 Commissariat A L'energie Atomique Method of modifying aramid fibres and method of dyeing these fibres
RO125316B1 (en) * 2008-09-11 2011-03-30 Institutul Naţional De Cercetare-Dezvoltare Pentru Chimie Şi Petrochimie-Icechim Process for applying on textile fibres organic-inorganic hybrids with non-ionic chromogens in the sol-gel systems
WO2014158042A1 (en) * 2013-03-27 2014-10-02 Universidade Do Minho Reactive silica nanoparticles containing immobilized dye for permanent colouration of fibres
WO2015099520A1 (en) * 2013-12-18 2015-07-02 Ecole Superieure Des Industries De Textile Et De L'habillement Grafting of ionic liquids onto textile materials by a sol/gel method for the development of special-purpose fabrics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544159A (en) * 1991-08-05 1993-02-23 Nagase Sangyo Kk Coloring of fiber
EP1978152A1 (en) 2007-04-03 2008-10-08 Commissariat A L'energie Atomique Method of modifying aramid fibres and method of dyeing these fibres
RO125316B1 (en) * 2008-09-11 2011-03-30 Institutul Naţional De Cercetare-Dezvoltare Pentru Chimie Şi Petrochimie-Icechim Process for applying on textile fibres organic-inorganic hybrids with non-ionic chromogens in the sol-gel systems
WO2014158042A1 (en) * 2013-03-27 2014-10-02 Universidade Do Minho Reactive silica nanoparticles containing immobilized dye for permanent colouration of fibres
WO2015099520A1 (en) * 2013-12-18 2015-07-02 Ecole Superieure Des Industries De Textile Et De L'habillement Grafting of ionic liquids onto textile materials by a sol/gel method for the development of special-purpose fabrics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199313, Derwent World Patents Index; AN 1993-104747, XP002786616 *
MING-SHIEN YEN ET AL: "Characterisation of sol-gel-based hybrid silicon dioxide/heteroarylthiazole dyes on polyamide fabric", COLORATION TECHNOLOGY, WILEY, vol. 128, no. 4, 26 April 2012 (2012-04-26), pages 276 - 282, XP001597165, ISSN: 1472-3581, DOI: 10.1111/J.1478-4408.2012.00375.X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031910A (en) * 2021-11-18 2022-02-11 润华(江苏)新材料有限公司 TLCP-para-aramid powder blended resin and preparation method thereof
CN114031910B (en) * 2021-11-18 2023-02-28 润华(江苏)新材料有限公司 TLCP-para-aramid powder blended resin and preparation method thereof
CN115948925A (en) * 2023-01-17 2023-04-11 武汉纺织大学 Method for treating dyed textiles

Also Published As

Publication number Publication date
MA41728B1 (en) 2019-12-31
MA41728A1 (en) 2019-08-30

Similar Documents

Publication Publication Date Title
Jiang et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane
Rachini et al. Chemical modification of hemp fibers by silane coupling agents
WO2019132635A1 (en) Method for dyeing fibres derived from aramid using the sol-gel method
HUE028923T2 (en) A release liner composition, a base material and a method of producing a base material, and a surface treating agent for a base material and a use of a surface treating agent
Liu et al. Synthesis of P–N–Si synergistic flame retardant based on a cyclodiphosphazane derivative for use on cotton fabric
FR2984343A1 (en) PROCESS FOR THE SOL-GEL PRODUCTION OF A SUSTAINABLE FUNCTIONAL COATING FOR SUBSTRATES, ESPECIALLY TEXTILE, AND COATING THUS OBTAINED
EP3071746B1 (en) Metallized textiles and process of production
FR2914656A1 (en) PROCESS FOR MODIFYING ARAMID FIBERS AND METHOD FOR DYING THESE FIBERS
EP1025291B1 (en) Method for preparing a regenerated cellulose fibre or yarn
Schramm et al. Dyeing and DP treatment of sol-gel pre-treated cotton fabrics
WO2004013241A2 (en) Composition of crosslinkable elastomer silicone oils for treatment by impregnation of fibrous materials
Zhang et al. Cotton fabrics modified with Si@ hyperbranched poly (amidoamine): their salt-free dyeing properties and thermal behaviors
Fang et al. A Facile Method for Preparing Superhydrophobic and Flame‐Retardant Fabrics Materials
Raditoiu et al. Coloured silica hybrids for functionalizing cellulose materials
EP1259665B1 (en) Carbonization of cellulosic fibrous materials in the presence of an organosilicon compound
Zhou et al. Flame retardancy and mechanism of cotton fabric finished by phosphorus containing SiO 2 hybrid sol
EP2099810A1 (en) Silanes containing methylol groups
Raditoiu et al. Disperse azo dyes-silica hybrids for modifying cellulose fabrics by sol-gel processes
EP2134727A1 (en) Siloxanes containing methylol groups
CN111286983A (en) Preparation process of self-cleaning waterproof fabric for western-style clothes
EP1332174A1 (en) Crosslinkable liquid silicone composition comprising a low viscosifying filler based on zirconium, use of same as fire-resistant coating
Raditoiu et al. Silica-based hybrid coatings containing a non-ionic dye as colouring materials for cellulosic fabrics
CN111118893A (en) Flame-retardant method for cotton fabric
FR2544302A1 (en) METHOD FOR DYING GLASS SUBSTRATES
EP4086386A1 (en) Finishing composition for textile, method for coating a textile and coated textile obtained by said method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18773650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18773650

Country of ref document: EP

Kind code of ref document: A1