WO2019132323A1 - 연관식 보일러 - Google Patents

연관식 보일러 Download PDF

Info

Publication number
WO2019132323A1
WO2019132323A1 PCT/KR2018/015661 KR2018015661W WO2019132323A1 WO 2019132323 A1 WO2019132323 A1 WO 2019132323A1 KR 2018015661 W KR2018015661 W KR 2018015661W WO 2019132323 A1 WO2019132323 A1 WO 2019132323A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
turbulator
combustion
plate
gas
Prior art date
Application number
PCT/KR2018/015661
Other languages
English (en)
French (fr)
Inventor
박준규
조성철
정인철
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP18896857.2A priority Critical patent/EP3734182B1/en
Priority to US16/770,020 priority patent/US20200355396A1/en
Priority to CA3085893A priority patent/CA3085893A1/en
Priority to CN201880076553.1A priority patent/CN111406187B/zh
Publication of WO2019132323A1 publication Critical patent/WO2019132323A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/006Means for removing condensate from the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/287Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with the fire tubes arranged in line with the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/34Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side
    • F24H1/36Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side the water chamber including one or more fire tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • F24H9/0031Guiding means in combustion gas channels with means for changing or adapting the path of the flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/0036Dispositions against condensation of combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates

Definitions

  • the present invention relates to an associated boiler, and more particularly, to an associated boiler which can reduce the height of the boiler and improve the heat exchange efficiency and prevent deformation and breakage even in a high water pressure environment.
  • the boiler has a heat exchanger that exchanges heat between the combustion gas and the heat medium by combustion of the fuel, thereby performing heating or supplying hot water using the heated heat medium.
  • the boiler may include a heat exchanger having a heat exchanger therein, a burner to be assembled to the upper portion of the heat exchanger, and a combustion chamber in which combustion gas and air are supplied to the inside of the burner and the heat exchanger.
  • 1 is a schematic view showing the construction of a conventional associated boiler.
  • the conventional associative boiler includes a blower 10 for supplying combustion gas and air, a cylindrical burner 20 for burning a mixture of combustion gas and air, and a burner 20 for burning the mixture by the burner 20
  • an ignition rod 60 installed through the heat insulating material 50 and igniting the mixer.
  • the heat exchanger 40 includes an outer tube 41, a plurality of tubes 42 provided therein and through which the combustion gas generated in the combustion chamber 30 passes, and a heating medium And a water tank 43 accommodated therein.
  • the boiler can not be manufactured compactly, .
  • the conventional associative boiler is provided with a heat insulating material 50 for preventing heat conduction to the ignition bar when the ignition bar 60 is installed through the combustion chamber cover 12 provided between the blower 10 and the cylindrical burner 20, ) Were applied.
  • the heat insulating material 50 is cracked due to heat during combustion or is broken into small granules, which causes problems such as blocking the tube 42 which is the combustion gas passage of the heat exchanger 40, There is a problem that the heat insulating material 50 is inevitably damaged when the mix chamber 11 including the burner 12 and the cylindrical burner 20 is disassembled.
  • a heat chamber is formed between the mix chamber and the heat exchanger by coupling the mix chamber with the flat burner and the heat exchanger at one side of the mix chamber .
  • the igniter assembly is coupled to the mix chamber through the one side thereof, there is a possibility that the mixed gas in the unburned state leaks to the outside through the gap between the mix chamber and the igniter assembly.
  • a unburned gas biological gas
  • the sealing means for preventing leakage of such a mixed gas since the high-temperature heat of the combustion chamber is transmitted to the sealing means, the sealing means can be easily broken by deterioration, There is a problem that it is not easy.
  • the associated type heat exchanger disclosed in European Patent Publication No. EP 2508834 and European Patent Publication No. EP 2437022 has a plurality of tubes through which combustion gas generated by the burning of the burner flows, and a heat medium And the heat exchange is performed between the combustion gas and the heat medium.
  • the method of increasing the embossing quantity in the latent heat part is not possible to manufacture over a certain quantity due to the shape and size of the embossing, and even if applied, the manufacturing process becomes complicated and the manufacturing cost is increased.
  • an outer tube for providing a water tank in which the heating medium is accommodated is provided outside the tube in the associative heat exchanger.
  • a correlation plate for supporting the upper end of the outer tube is formed.
  • the lower plate of the tube is connected to a lower tube supporting the lower end of the outer tube.
  • the lower pipe plate provided in the conventional associative heat exchanger has a problem in that the structure capable of dispersing the water pressure is insufficient and durability is poor.
  • the related art boiler has a structure in which a condensed water receiver is provided below the lower pipe and a sealing member is provided between the rim of the lower pipe and the rim of the condensed water receiver to prevent leakage of condensed water , And the sealing member is configured to support the lower end of the side portion of the lower tube plate.
  • a turn-down ratio (TDR) of the burner is set in a gas combustion apparatus such as a gas boiler or a gas water heater.
  • TDR refers to the ratio of the maximum gas consumption to the minimum gas consumption in a gas-fired device in which the amount of gas is controlled in a variable manner. For example, when the maximum gas consumption is 30,000 kcal / h and the minimum gas consumption is 6,000 kcal / h, the turnaround rate (TDR) becomes 5: 1.
  • Turnaround (TDR) is limited by how low the minimum gas consumption can be adjusted to maintain a stable flame.
  • TDR turnaround time
  • Patent No. 10-0805630 discloses an air conditioner comprising a blower for supplying air required for combustion, a proportional control valve for regulating the supply flow rate of the gas, a control valve connected to the proportional control valve, A mixing chamber in which a plurality of nozzles are connected in parallel, a mixing chamber in which air supplied from the blower and a gas passing through the nozzle are mixed and supplied to the burner surface, a mixing chamber in which the proportional control valve and the auxiliary valve are opened And controlling the number of revolutions of the blower to supply only the amount of air necessary for the combustion.
  • nozzle portion to which the gas is supplied is arranged in multiple stages in parallel and the opening and closing of each nozzle portion is controlled in accordance with the output of the burner to improve the turnaround time (TDR) .
  • the premixing chamber of the conventional combustion apparatus has a single venturi structure and the TDR is limited to 5: 1 or less, the combustion efficiency of the burner is reduced due to frequent on / off of the burner The performance of the combustion apparatus is deteriorated.
  • an associated boiler comprising: a mixing chamber in which a combustion gas and air are mixed; a mix chamber body having a flat shape; and a flat burner disposed horizontally above the combustion chamber A mix chamber; A plurality of tubes each having a flat shape for allowing heat exchange with a heating medium flowing along the inside and a combustion gas generated in the combustion chamber flowing through the outer tube, the tube having an outer wall constituting an outer wall of a water tank into which a heating medium is introduced and discharged and a heating medium is accommodated; A turbulator coupled to an inner side of the tube to induce generation of turbulence in the flow of the combustion gas; a multi-stage diaphragm provided between the outer cylinder and the tube for inducing alternating rotation of the heat medium inward and outward radially And a heat exchanger.
  • a condensed water receiver for collecting condensed water generated in the lower pipe and guiding the condensed water to a side of a condensed water outlet formed on one side and guiding a combustion gas passing through the tube to an exhaust duct side connected to the upper side of the condensed water outlet, .
  • An ignition spindle assembly assembled through one side of the mix chamber and extending below the flat burner across the top of the combustion chamber, and a mix of the mixing spaces through a gap between the mix chamber and the spark bar assembly, And sealing means for blocking the gas and the exhaust gas of the combustion chamber from leaking to the outside.
  • a mix chamber flange and a burner flange are provided on one side of the mix chamber to seal the mixing space and the ignition bar assembly passes through the mix chamber flange and the burner flange at a position spaced apart from the mixing space, .
  • the sealing means may include a first sealing member provided at a portion where the mix chamber flange and the burner flange are in contact with each other to prevent leakage of the mixed gas.
  • the first sealing member may be made of a graphite material.
  • the ignition bar assembly includes an ignition rod and a flame detection rod, an ignition rod coupling plate through which the ignition rod is inserted and coupled, and a flame detection rod coupling plate through which the flame detection rod penetrates and is coupled to an upper portion of one side of the mix chamber.
  • the sealing means may include a second sealing member provided between an upper portion of one side of the mix chamber and the ignition bar coupling plate and a second sealing member provided between the upper portion of one side of the mix chamber and the flame detection rod coupling plate. 3 sealing member.
  • the second sealing member and the third sealing member may be made of a rubber material.
  • a plurality of protrusions formed on the outer surface of the second sealing member and the outer surface of the third sealing member may be formed at a predetermined interval.
  • the spaced space between the bottom surface of the mix chamber body and the top surface of the flat plate type burner may be formed in a flat disc shape.
  • An ignition bar assembly assembled through one side of the mix chamber and extending below an upper portion of the combustion chamber and below the flat burner, and a combustion heat generated in the combustion chamber sealing the gap between the mix chamber and the ignition bar assembly And cooling means for shutting off the heat transfer to the sealing means.
  • the cooling means may include an air cooling type cooling step and a water cooling type cooling means.
  • mix chamber flange and the burner flange abut one side of the mix chamber to seal the mixing space and the ignition bar assembly is assembled through the mix chamber flange and the burner flange, And the mix chamber flange and the burner flange are cooled by the mixed gas introduced into the mixing space.
  • a correlation plate flange formed on an upper end of the correlation plate contacting with the heating medium of the water tank may be configured to be in surface contact with the burner flange so as to cool the burner flange.
  • a plurality of heat-radiating fins may be provided along the circumference of the igniter assembly on one side of the mix chamber in which the igniter assembly is assembled.
  • a round portion for supporting the water pressure of the heat medium stored in the water tank may be formed on the upper portion of the correlation plate.
  • the correlation plate flange protrudes outward from the upper end of the round portion, and the diameter difference ratio between the outer diameter of the correlation plate flange and the inner diameter of the lower end of the round portion may be 20% or less.
  • the height between the bottom surface of the flat plate type burner inserted into the correlation plate and the bottom surface of the correlation plate is set such that the end of the flame generated in the flat plate type burner is spaced a certain distance from the bottom surface of the correlation plate, And can be set to a height of about 80 mm.
  • the electrode assembly may be provided at one side of a mixer inlet through which the mixer is supplied to the mix chamber.
  • the electrode assembly may be provided on a side opposite to a mixer inlet through which the mixer is supplied to the mix chamber.
  • the turbulator includes an upper turbulator coupled to the upper portion of the tube adjacent to the combustion chamber so as to be in surface contact with the tube to increase thermal conductivity and induce the generation of turbulence in the flow of the combustion gas, And a lower turbulator coupled to the inside of the tube to the lower side of the reactor to induce generation of turbulence in the flow of the combustion gas.
  • the upper turbulator includes a first portion having a shape corresponding to one side of the tube and including a first tube contact surface in surface contact with an inner side surface of one side portion of the tube and a second portion having a shape corresponding to the other side portion of the tube And a second portion including a second tube contact surface which is in surface contact with an inner surface of the other side portion of the tube.
  • the upper turbulator includes a first pressure support portion bent partly of the first incision portion cut from the first tube contact surface and protruding toward the second tube contact surface, and a second incision portion formed on the second tube contact surface, A second pressure supporting portion protruding toward the first tube contacting surface is formed by bending a part of the part, the protruding end of the first pressure supporting portion is in contact with the second tube contacting surface, the protrusion of the second pressure supporting portion And an end portion of the tube may be configured to penetrate through the first incision portion and to contact the inner surface of the tube.
  • the first pressure supporting portion and the second pressure supporting portion are spaced apart from each other in the front-rear direction and the vertical direction.
  • the first pressure supporting portion located on the upper side and the first pressure supporting portion located on the lower side are located at positions
  • the second pressure supporting portion located on the upper side and the second pressure supporting portion located on the lower side may be provided at positions that do not overlap in the vertical direction.
  • the first pressure supporting portion and the second pressure supporting portion may be formed in a plate shape and both side surfaces having a large area may be arranged in parallel to the flow direction of the combustion gas.
  • the turbulators are provided with a flat portion which is divided in the longitudinal direction of the tube by dividing the inner space of the tube into two sides and a plurality of first guide pieces spaced apart from each other in the longitudinal direction and alternately inclinedly protruding from both sides of the flat portion, And a second guide piece.
  • the first guide piece may be inclined to one side of one side of the plane portion
  • the second guide piece may be inclined to the other side of the other side surface of the plane portion
  • the heating medium, which is introduced into the first guide piece and the second guide piece May be configured to sequentially take over the second guide piece and the first guide piece, which are disposed adjacent to the opposite side of the plane part, respectively, so that the two side spaces of the plane part alternately flow.
  • the inlet end of the first guide member is connected to one end of the flat surface portion by a first connecting piece, and a fluid passage communicating with one side of the flat surface portion and the first connecting piece and the first guide piece
  • the inlet end of the second guide member is connected to the other end of the flat portion by a second connecting piece, and between the other end of the flat portion and the second connecting piece and the second guide piece, And a second communication port through which fluid communication is performed.
  • first guide piece and the second guide piece are each formed by cutting a part of the flat surface part to be bent toward both sides of the flat surface part and connecting the first and second guide pieces to the both side spaces of the flat surface part through the cut- As shown in FIG.
  • the turbulator comprises an upper turbulator provided on the inflow side of the combustion gas and a lower turbulator provided on the exhaust side of the combustion gas, wherein the plurality of first guide pieces and the second guide pieces formed on the lower turbulator
  • the gap spaced up and down can be arranged at a more densely spaced interval than the spacing between the first and second guide pieces formed on the upper turbulator.
  • the turbulator is composed of an upper turbulator provided on the inflow side of the combustion gas and a lower turbulator provided on the discharge side of the combustion gas, wherein a flow path area between the lower turbulator and the inner surface of the tube, May be smaller than the flow area between the upper turbulator and the inner surface of the tube.
  • the lower turbulator may have a larger area in contact with the heating medium at the inner side of the tube than the upper turbulator.
  • the turbulators may be formed with supporting portions spaced apart from each other so as to abut against both sides of the tube and projecting forward and backward and spaced apart from each other.
  • the pressure supporter may include a support protruding outward from both side surfaces of the turbulator and abutting against opposite inner surfaces of the tube.
  • the support may be formed by cutting a part of the surface of the turbulator and bending the both sides of the turbulator.
  • the plurality of tubes may be arranged in a vertical direction so that the combustion gas generated in the combustion chamber flows downward, but may be radially spaced apart in the circumferential direction.
  • the plurality of tubes are inserted into and supported by the multi-stage diaphragm, and the multi-stage diaphragm can be supported by the support.
  • the multi-stage diaphragm comprises a plate-shaped upper diaphragm, an intermediate diaphragm, and a lower diaphragm, wherein the upper diaphragm and the lower diaphragm have openings for flowing a heat medium at a central portion thereof, And the heat medium flows through the tube inserting opening formed at the outer surface of the tube and the clearance.
  • the lower tube plate supports a lower end of the tube and has a horizontal part forming a bottom surface of the water tub, a vertical part coupled to a lower end part of the outer tube, and a convex part connecting the outer end of the horizontal part and the lower end part of the vertical part, And a round portion that is formed in a curved shape and disperses the water pressure of the heating medium.
  • a water leakage prevention member interposed between a rim of the lower pipe and a rim of the condensate receiver to prevent leakage of condensed water.
  • the water leakage preventing member is provided to surround the round portion and the vertical portion of the lower pipe plate so that the condensed water formed in the horizontal portion of the lower pipe plate is blocked by the water leakage preventing member so that the movement in the lateral direction is blocked, Lt; / RTI >
  • the inner surface of the water leakage preventing member may be provided with a contact protrusion protruding in a direction toward the outer side surface of the lower plate.
  • the contact protrusions may be spaced apart from the inner surface of the water leakage preventing member to be formed in plural.
  • a first flange portion for supporting the sealing member is provided at a rim of the condensate receiver, and a fastening protrusion and a fastening groove, which are fastened to each other at corresponding positions, may be formed in the leakage preventing member and the first flange portion.
  • the edge portion of the condensate receiver is provided with an extension portion extending upward from the outer end of the first flange portion and closely contacting the outer surface of the leakage preventing member and a second flange portion extending outward from the end of the extension portion And an upper portion of the leakage preventing member and the second flange portion may be provided with fitting protrusions and fitting grooves which are fitted to each other at corresponding positions.
  • the exhaust guide may include a plurality of holes formed therein to uniformly distribute the combustion gas passing through the heat exchanger to the entire area of the condensed water receiver.
  • a stepped portion for guiding the combustion gas passing through the exhaust guide to flow toward the condensed water discharge port is formed on the bottom surface of the condensed water receiver so that the discharge of the condensed water and the flow of the combustion gas in the condensed water receiver are directed in the same direction .
  • the premixing chamber is provided with a premixing chamber in which a space for premixing the combustion air and the gas to be supplied to the mix chamber is provided, wherein a space in which the air and the gas are premixed is partitioned into a multi- And the flow direction of the gas supplied into the premixing chamber may be parallel to the flow direction of air supplied into the premixing chamber.
  • a mixer controller for controlling the supply flow rate of the mixer by opening and closing a flow path of air and gas passing through the premixing chamber.
  • the first passage is provided with a first gas distribution member for distributing gas supplied from the first gas supply port to the throat section of the first passage and supplying the gas to the throttle section of the first passage, And a second gas distribution member for distributing and supplying the gas to the throat portion of the second passage may be combined.
  • the mixer control unit includes a first opening and closing member for opening and closing a flow passage of air passing through the second passage and a second opening and closing member for opening and closing a flow passage of gas connected to the second passage,
  • the opening and closing operations of the opening and closing member and the second opening and closing member may be configured to be performed simultaneously and in an interlocked manner.
  • the first opening and closing member includes a body coupled to a rotation axis of the driving unit and disposed in a lateral direction of the second passage, and a wing portion coupled to the outer side of the body and sized to correspond to the second passage And the second opening and closing member may be reciprocally moved in the lateral direction in conjunction with rotation of the first opening and closing member.
  • the body of the first opening and closing member is formed with a first pointed portion protruding toward the second opening and closing member and a first bottom portion recessed in the opposite direction alternately along the circumferential direction, And a second inclined portion is formed in a portion between the first inclined portion and the second inclined portion, and the body of the second openable and closable member has a second pointed portion, a second bottomed portion, and a second inclined portion having a shape corresponding to the first pointed portion, And the second opening and closing member may be elastically supported so as to be pressed toward the first opening and closing member by an elastic member.
  • the second opening and closing member may further include a guide member for guiding the body of the second opening and closing member to be reciprocated, and a guide groove and a guide rib may be formed at a position corresponding to the body of the second opening and closing member and the guide member. have.
  • the wing portion of the first opening and closing member is arranged in a direction parallel to the transverse section of the second passage so that the air flow of the second passage is blocked and the second opening and closing member is moved to one side,
  • the gas flow in the second passage is blocked by being in close contact with the communication hole provided in the flow path, and when the first tip end portion of the first opening and closing member and the second tip end portion of the second opening and closing member come into contact with each other,
  • the wing portion of the opening and closing member is disposed in a direction perpendicular to the transverse section of the second passage so that the second passage is opened and the second opening and closing member is moved to the opposite side to be separated from the communication opening to be connected to the second passage Gas flow It may be configured to be in the open.
  • an associated boiler comprising: a mix chamber body having a flat shape; and a flat plate type burner, wherein a correlation plate formed of a hard plate structure is lowered to a minimum height at which the mixture can be completely burned, The height of the boiler can be lowered compared to the existing boiler, thereby providing a highly efficient and compact boiler.
  • a sealing means is provided in the ignition rod assembly through the one side of the mix chamber to prevent leakage of the mixed gas and exhaust gas .
  • the use of the heat insulating material in the mix chamber is eliminated, thereby preventing a problem such as clogging of the tube due to the use of the heat insulating material.
  • the correlation plate and the lower pipe plate constituting the heat exchanger are made of a hard plate structure, the water pressure is dispersed even in an environment of high water pressure, so that deformation and breakage can be prevented, and a heat exchanger can be used not only in boilers but also in water heaters with high water pressure .
  • the turbulator inside the tube, the turbulence in the flow of the combustion gas can be promoted and the heat exchange efficiency can be improved.
  • the upper turbulator which is closely attached to the tube to increase the thermal conductivity is provided at the upper part of the tube positioned close to the combustion chamber, thereby preventing high temperature oxidation and burning due to the combustion heat,
  • the heat exchanging efficiency between the combustion gas and the heat medium can be improved by providing the lower turbulator for inducing the generation of heat.
  • the turbulator is provided with pressure supporting means capable of being implemented in various forms, deformation and breakage of the tube can be prevented even in a high water pressure environment.
  • a water heater working pressure: 10 kg / ) Products.
  • the flow path of the heat medium is lengthened to improve the heat exchange efficiency and increase the flow velocity of the heat medium, It is possible to prevent occurrence of boiling noise and deterioration in thermal efficiency caused by overheating of the phosphorus and the solidification and deposition of the foreign substances contained in the heating medium.
  • the leakage preventing member includes a round portion and a vertical portion of the lower pipe plate so as to surround the vertical portion.
  • the inner surface of the leakage preventing member is provided with a waterproofing member for preventing leakage of condensed water between the lower pipe plate and the condensed water receiver, By providing a plurality of contact protrusions, it is possible to prevent corrosion of the lower pipe plate due to the accumulation of condensed water and to reliably prevent leakage of the condensed water.
  • the discharge direction of the exhaust gas and the discharge direction of the condensed water inside the condenser receiver are guided so as to be the same direction toward the condensed water discharge port side, so that the condensed water can be discharged smoothly.
  • the premixing chamber into a multi-stage venturi structure and allowing the gas to be ejected in the same direction as the air flow direction, it is possible to realize a turn-over ratio of 10: 1 or more, Not only can the combustion state be stably realized, but also the mixing amount of the air and the gas is minimized at the time of adjusting the flow rate of the mixer, thereby improving the combustion efficiency and minimizing the generation of pollutants.
  • the flow rate of the air and the gas mixture can be proportionally adjusted corresponding to the output size of the burner.
  • Figure 1 is a schematic representation of the configuration of a conventional associated boiler
  • FIG 2 is an external perspective view of an associated boiler according to the present invention
  • FIG. 5 is an exploded perspective view showing a structure in which an ignition rod and a flame detection rod are coupled to a mix chamber
  • FIG. 7 is a partial cross-sectional perspective view taken along line A-A of FIG. 6,
  • FIG. 8 is a partial cross-sectional view taken along line A-A of Fig. 6,
  • FIG. 9 is a cross-sectional view showing a coupling structure of a correlation plate and a burner
  • FIG. 10 is a perspective view of a heat exchanger
  • Figure 12 is a front view of the tube assembly and multi-
  • Fig. 13 is a plan view of Fig. 12, Fig. 12 is a sectional view taken along line B-B of Fig. 12, Fig. 13 is a sectional view taken along line C-
  • FIG. 15 is a cross-sectional perspective view taken along the line D-D in Fig. 14,
  • FIG. 16 is a perspective view of a tube assembly according to a first embodiment of the present invention.
  • FIG. 17 is an exploded perspective view of a tube assembly according to the first embodiment of the present invention.
  • FIG. 18 is a front view of an upper turbulator and a lower turbulator according to the first embodiment of the present invention
  • FIG. 19 is an enlarged perspective view of the upper turbulator shown in Fig. 17, Fig.
  • Fig. 20 is a plan view of Fig. 19,
  • FIG. 21 is a sectional view taken along the line E-E of FIG. 20, (b) is a sectional perspective view,
  • Fig. 22 is a left side view of Fig. 19,
  • FIG. 23 is a perspective view of a tube assembly according to a second embodiment of the present invention.
  • FIG. 24 is a front view of the turbulator according to the second embodiment of the present invention.
  • FIG. 25 is a front view of a turbulator according to a third embodiment of the present invention, Fig.
  • 26 is a cross-sectional view illustrating various embodiments of the support structure of the tube.
  • FIG. 27 is a perspective view of an associated boiler according to the present invention.
  • FIG. 30 is a sectional view showing a sealing structure and a condensed water discharge structure of an associated boiler according to the present invention
  • 31 is a perspective view of the premixing chamber and the mixer control section
  • Fig. 32 is an exploded perspective view of Fig. 31,
  • 33 is a side view (a) of the pre-mixing chamber body, (b) a cross-sectional view taken along line G-G,
  • 35 is a plan view of the premixing chamber and the mixer control unit when using a low calorie amount
  • FIG. 36 is a sectional view taken along the line H-H in FIG. 35,
  • the related boiler 1 is characterized in that it has a structure in which the entire height of the boiler is lowered to effect a cam effect.
  • a mixing space S in which combustion gas and air are mixed,
  • a mix chamber 100 having a mix chamber body 110 of a combustion chamber C and a flat burner 130 arranged horizontally above the combustion chamber C;
  • An outer tube 210 constituting an outer wall of a water tank B into which a heating medium is introduced and discharged and a heating medium is accommodated and a flattening plate 210 for allowing the combustion gas generated in the combustion chamber C to heat-
  • a heat exchanger 200 having a multi-stage diaphragm 261, 262, 263 for inducing the flow direction of the heat medium to be alternately switched radially inwardly and outwardly.
  • the condensed water CW generated in the lower pipe plate 270 is collected and guided to the condensed water outlet 310 formed at one side and the combustion gas passing through the tube 230 is discharged to the upper side of the condensed water outlet 310 And a condensed water receiver 300 connected to the outer duct 210 to guide the condensed water to the exhaust duct 400 provided at one side of the outer tube 210.
  • the present invention is characterized in that the premixing chamber 500 in which the combustion air supplied to the mix chamber 100 and the gas are premixed, and the air-gas flow passage passing through the premixing chamber 500 And a mixer controller 600 for controlling the supply flow rate of the mixer.
  • the mix chamber 100 includes a mix chamber body 110 which is convex upwardly and has a flat shape, and is assembled through one side of the mix chamber body 110, And an ignition coil assembly 140 which extends across the upper portion of the mixing chamber 100 and extends below the flat burner 130 and a gap between the mixing chamber 100 and the igniter assembly 140, (160, 170, 180) for blocking the mixture gas of the combustion gas (S) and the exhaust gas of the combustion chamber (C) from leaking to the outside.
  • a mix chamber body 110 which is convex upwardly and has a flat shape, and is assembled through one side of the mix chamber body 110
  • an ignition coil assembly 140 which extends across the upper portion of the mixing chamber 100 and extends below the flat burner 130 and a gap between the mixing chamber 100 and the igniter assembly 140, (160, 170, 180) for blocking the mixture gas of the combustion gas (S) and the exhaust gas of the combustion chamber (C) from leaking to the outside.
  • the burner to be used in the present invention is a flat plate type burner 130 and is composed of a flat plate shaped plate 131 having a plurality of air holes 131a formed therein and a metal fiber 132 coupled to the salt plate 131 .
  • the spaced mixing space S between the bottom surface of the mix chamber body 110 and the top surface of the flat burner 130 is formed in a flat disc shape so that the height of the mix chamber 100 can be reduced.
  • the flat burner 130 is provided over the entire area of the mixing space S, so that the gas and the air flowing into the flat burner 130 are supplied to the top of the flat burner 130 (160, 170, 180), the air-cooled cooling of the sealing means (160, 170, 180) by the gas and the air can be performed and the load per unit area can be reduced by expanding the combustion region, And the combustion performance can be improved.
  • the ignition bar assembly 140 assembled through one side of the mix chamber 100 includes an ignition rod 141 and a flame detection rod 142.
  • the ignition rod 141 is connected to the first ignition rod 141- 1) and the second ignition rods 141-2.
  • Insulators 141a and 142a are coupled to the outer surfaces of the ignition rods 141 and the flame detection rods 142.
  • Bushings 141b and 141b are formed on outer surfaces of the insulators 141a and 142a, 142b.
  • the ignition rod 141 and the insulator 141a and the bushing 141b are fixed to the ignition rod coupling plate 143.
  • the flame sensing rod 142 and the insulator 142a and the bushing 142b are fixed to the ignition rod coupling plate 143, And is fixed to the plate 144.
  • the insulators 141a and 142a are insulation means for preventing the generation of sparks due to energization during ignition and the bushings 141b and 142b are formed on the outer surfaces of the insulators 141a and 142a, And sealing the gap between the flame detection rod coupling plates 144.
  • an ignition coil assembly coupling unit 150 for assembling the ignition coil assembly 140 is provided.
  • the firing rod assembly coupling portion 150 includes a second sealing member seating portion 151 formed in a groove shape to receive the ignition rod coupling plate 143 and a second sealing member 170 coupled to the lower side thereof, And a third sealing member seating part 152 formed in a groove shape so that the flame detection rod coupling plate 144 and the third sealing member 180 coupled to the lower side thereof are seated.
  • a plurality of heat-radiating fins 153 for radiating the heat of combustion are provided around the firing rod assembly coupling part 150.
  • a mix chamber flange 111 and a burner flange 133 which is connected to the edge of the flat burner 130, are connected to one side of the mix chamber body 110 And the ignition bar assembly 140 is assembled through the mix chamber flange 111 and the burner flange 133 at a position spaced apart from the mixing space S.
  • the sealing means may include a first sealing member 160 provided at a portion where the mix chamber flange 111 and the burner flange 133 are in contact with each other to prevent the mixed gas flowing into the mixing space S from leaking to the outside, And the first sealing member 160 may be made of a heat resistant graphite material.
  • the sealing means may include a second sealing member 170 provided between the mix chamber flange 111 and the ignition bar coupling plate 143 to prevent the exhaust gas generated in the combustion chamber C from leaking to the outside, And a third sealing member 180 provided between the mix chamber flange 111 and the flame detecting rod coupling plate 144 to prevent the exhaust gas generated in the combustion chamber C from leaking to the outside.
  • the second sealing member 170 and the third sealing member 180 may be made of a rubber material so that the second sealing member 170 and the third sealing member 180 Are separately fabricated and assembled into separate parts.
  • the outer surface of the second sealing member 170 and the outer surface of the third sealing member 180 may have a plurality of contact protrusions 171 protruding outwardly at predetermined intervals, 171 are in close contact with the bottom surface of the ignition bar coupling plate 143 and the top surface of the second sealing member 170 and the bottom surface of the flame detection ball coupling plate 144 and the top surface of the third sealing member 180, Can be further improved.
  • the bushings 141b and 142b are coupled to the outer surfaces of the insulators 141a and 142a of the ignition coil assembly 140 so that the mixture gas and the mixed gas leak out of the mix chamber 100 again Can be blocked.
  • the cooling means is configured to block the heat transmitted from the combustion chamber C to the sealing means for preventing leakage of the heat generated in the combustion chamber C through the gap between the mix chamber 100 and the ignition bar assembly 140, And may include a stage and a water-cooled cooling means.
  • the mix chamber flange 111 and the burner flange 133 abut on one side of the mix chamber 100 to seal the mixing space S, Chamber cooling fan is formed by passing through the mix chamber flange 111 and the burner flange 133.
  • the air cooling type cooling means cools the mix chamber flange 111 and the burner flange 133 by the mixed gas introduced into the mixing space S And may be configured to be cooled by a convection method.
  • the heat exchanger 200 may be an associated type heat exchanger and includes an outer tube 210, a correlation plate 220 forming a top surface of the heat exchanger 200 and a bottom surface of the combustion chamber C, A plurality of tubes 230 through which an upper end portion is inserted and inserted into a tube insertion port 221a formed in the plate 220 and through which the combustion gas flows, And a water tank (B) in which the heating medium is accommodated.
  • the heating medium may be heating water or hot water used for heating or hot water.
  • the water cooling type cooling means includes a correlation plate flange 223 that is in contact with the heating medium of the heat exchanger 200 provided below the combustion chamber C so as to be in surface contact with the burner flange 133, ) And the sealing means (160, 170, 180) are cooled by conduction from the heating medium stored in the water tank (B).
  • a plurality of heat dissipating fins 153 are provided on one side of the mix chamber body 110 in which the ignition coil assembly 140 is assembled along the circumference of the ignition coil assembly 140, And functions as a means.
  • the mix chamber 100 has a flat mix chamber body 110 and a flat plate type burner 130, the height of the mix chamber 100 Can be greatly reduced.
  • the mixing chamber body 110 having the flat plate type burner 130 is provided with the sealing means and the cooling means in the assembly of the ignition bar assembly 140 through the one side portion of the mixing chamber body 110, It is possible to prevent the sealing means from being thermally damaged by the heat of combustion. Therefore, by not using the heat insulating material in the mix chamber 100 provided with the flat plate type burner 130, the ignition coil assembly 140 can be safely assembled and the thermal damage of the sealing means can be prevented, Lt; / RTI >
  • the correlation plate 200 includes a bottom portion 221 forming a bottom surface of the combustion chamber C, a side wall portion 222 forming a side wall of the combustion chamber C, A round portion 224 for connecting the upper end of the side wall portion 222 and the inner end of the correlation plate flange 133 and a bottom portion 221 And a round portion 225 connecting the outer end of the side wall portion 222 and the lower end of the side wall portion 222.
  • the round portions 224 and 225 in the correlation plate 200 By including the round portions 224 and 225 in the correlation plate 200 as described above, it is possible to improve the durability of the correlation plate 200 by dispersing the water pressure of the heat medium stored in the water tray B. It is preferable that the diameter difference ratio between the outer diameter d1 of the correlation plate flange 223 and the inner diameter d2 of the lower end of the round portion 224 is 20% or less. When the diameter ratio is set to such a ratio, the flow rate and the temperature of the water contained in the water tank B can be uniformly controlled.
  • the height h between the bottom surface of the flat plate type burner 130 inserted into the correlation plate 220 and the bottom surface of the correlation plate 220 is set such that the end of the flame generated in the flat plate type burner 130 And the height h is set to be about 80 mm in consideration of the length of the flame of the flat plate type burner 130.
  • the end of the flame is set to be spaced apart from the bottom surface of the correlation plate 220 by a predetermined distance between the end of the flame generated in the flat burner 130 and the bottom surface of the correlation plate 220, This is because, when the space is secured, a condition in which nitrogen oxides (NOx) and carbon monoxide (CO) are experimentally minimized can be secured.
  • the height h of the correlation plate 220 is low, the height of the combustion chamber C can be lowered and the overall height of the associated boiler 1 can be lowered. That is, in the case of applying the conventional cylindrical burner, the height between the bottom surface of the burner and the bottom surface of the correlation plate is about 190 mm, whereas in the present invention, the height can be reduced to about 80 mm, Can be reduced by 40%.
  • the electrode assembly 140 is formed at a position adjacent to one side of the mixer inlet 120 connected to the blower 700 to which the mixer is supplied to the mix chamber 100 in the present embodiment. In this case, the operator can easily access the electrode assembly 140 through the mixer inlet 120, thereby improving the convenience of maintenance.
  • the electrode assembly 140 may be provided on the side opposite to the mixer inlet 120. In this case, since the mixer supplied from the blower 700 is directly supplied to the electrode assembly 140, delayed ignition can be prevented.
  • the heat exchanger 200 includes an outer tube 210 having a heating medium inlet 211 and a heating medium outlet 212 formed therein to allow a heating medium to flow in and out, A correlation plate 220 coupled to the inside of the outer cylinder 210 so as to form a flow path of a heating medium and having a flat plate type burner 130 mounted thereon to form a combustion chamber C, A plurality of tubes 230 having a flat shape that flows along the inside and heat exchange with the heating medium, and a plurality of tubes 230 coupled to the inside of the tube 230 to induce the generation of turbulence in the flow of the combustion gas, (1000-1, 1000-2, 1000-3) having turbulators (240, 250, 280, 290) supporting the tube assemblies (1000-1, 1000-2, 1000-3) (Not shown).
  • the construction and operation of the embodiments of the tube assemblies 1000-1, 1000-2, and 1000-3 will be described later.
  • a plurality of diaphragms 261, 262, 263 for guiding the flow of the heating medium are vertically spaced apart from each other on the outer surface of the tube 230 so that the flow direction of the heating medium is alternately switched radially inwardly and outwardly.
  • 261, 262, 263) are fixedly supported by a support table (264).
  • the plurality of tubes 230 are arranged in a vertical direction so that the combustion gas generated in the combustion chamber C flows downward, and are radially spaced apart in the circumferential direction.
  • the multi-stage diaphragm is composed of a plate-shaped upper diaphragm 261, an intermediate diaphragm 262, and a lower diaphragm 263.
  • the upper diaphragm 261 is formed with a tube insertion port 261a through which the tube 230 is inserted and an opening 261b through which the heat medium passes.
  • a tube insertion port 262b is formed in the middle secondary diaphragm 262 with a clearance from the outer surface of the tube 230 to form the tube insertion hole 262b and the tube 230 Through the clearance, the heat medium flows.
  • the middle portion 262b of the middle secondary diaphragm 262 is of a clogged structure.
  • the tube insertion port 262b may have two tubes 230 separated from each other.
  • the lower diaphragm 263 has a tube insertion hole 263a having the same structure as the upper diaphragm 261 and an opening 263b at the center.
  • the heat medium flowing into the interior of the outer cylinder 210 through the heat medium inlet 211 flows into the lower portion of the lower diaphragm 263 at the center of the lower diaphragm 263
  • the heat medium flowing in the radially inward direction toward the formed opening 263b and flowing to the upper side of the lower diaphragm 263 through the opening 263b passes through the tube insertion hole 262b formed radially in the middle diaphragm 262
  • the heat medium flowing through the tube insertion port 262b and flowing to the upper side of the middle secondary diaphragm 262 flows radially toward the opening 261b formed in the center of the upper diaphragm 261, And is then discharged through the opening portion 261b and the heating medium outlet 212 formed on the upper side of the outer cylinder 210.
  • the heat exchanging efficiency of the heat exchanger 200 can be improved by increasing the flow distance of the heat medium, and even if the height is lower than that of the conventional heat exchanger, The heat exchanging performance can be obtained, and the height of the heat exchanger 200 can be reduced.
  • the tube assembly 1000-1 according to the first embodiment of the present invention is configured such that the combustion gas generated in the combustion chamber C flows along the inside thereof and is heat-exchanged with a heat medium flowing outside And the tube 230 is connected to the tube 230 in an upper portion of the tube 230 in the vicinity of the combustion chamber so as to increase the thermal conductivity of the tube 230.
  • a lower turbulator 240 coupled to the inside of the tube 230 below the upper turbulator 240 to induce generation of turbulence in the flow of the combustion gas, .
  • the upper turbulator 240 includes tube contact surfaces 241a and 241b and 241 that are in close contact with the inner surface of the tube 230 and cut portions 243a and 243b of the tube contact surfaces 241a and 241b, And pressure supporting portions 242a, 242b, and 242 bent and formed in the upper and lower portions.
  • the tube contact surface 241 includes a first tube contact surface 241a that is in surface contact with the inner side surface of one side of the tube 230 and a second tube contact surface 241b that is in surface contact with the inner side surface of the other side of the tube 230 ) Is constituted by a symmetrical structure.
  • the pressure support portion 242 is configured to prevent deformation and breakage of the tube 230 due to the hydraulic pressure of the heating medium.
  • the pressure support portion 242 is formed by bending a part of the first cut- A first pressure support portion 242a protruding toward the tube contact surface 241b and a second pressure support portion 242b protruding toward the first tube contact surface 241a such that a part of the second cutout portion 243b of the second tube contact surface 241b is bent And the second pressure supporting portion 242b.
  • the cut-away area of the first incision 243a is formed to be larger than the incised area of the second incision 243b, and the protruding end of the first pressure support 242a is formed on the second tube contact surface 241b The protruding end portion of the second pressure supporting portion 242b passes through the first cutout portion 243a and is inserted into the inner side surface of the tube 230 .
  • the first pressure support portion 242a supports the first tube contact surface 241a and the second tube contact surface 241b to firmly maintain the shape of the first tube support surface 242b when the water pressure acts, Is more firmly supporting the tube 230 supported by the first tube contact surface 241a and the second tube contact surface 241b.
  • the first pressure supporting portion 242a and the second pressure supporting portion 242b are spaced apart from each other in the front-rear direction and the vertical direction, and a plurality of first pressure supporting portions 242a And the first pressure supporting portion 242a "located at the lower side are provided at positions not overlapping with each other in the vertical direction, and the second pressure supporting portion 242b 'positioned on the upper side and the second pressure supporting portion 242b & ") Are also provided at positions that do not overlap in the vertical direction.
  • the first and second pressure supporting portions 242a and 242b are formed in a staggered shape in the front, back, and up and down directions over the entire area of the upper turbulator 240, It is possible to effectively prevent the tube 230 from being deformed and damaged.
  • the first pressure supporting portion 242a and the second pressure supporting portion 242b are formed in a plate shape so that both side surfaces of the first pressure supporting portion 242a and the second pressure supporting portion 242b are arranged in a direction parallel to the flow direction of the combustion gas. the flow resistance can be minimized in the process of passing the combustion gas through the first pressure supporting portion 242a and the second pressure supporting portion 242b when the combustion gas flows as indicated by an arrow in a).
  • the lower turbulator 250 includes a planar portion 251 that is divided in the inner space of the tube 230 and disposed in the longitudinal direction of the tube 230,
  • the first guide piece 252 and the second guide piece 253 may be formed on opposite sides of the first guide piece 252 and the second guide piece 253, respectively.
  • the first guide piece 252 is inclined to one side of one side of the plane portion 251 and the second guide piece 253 is inclined to the other side of the other side surface of the plane portion 251. Therefore, the heat medium flowing into the first guide piece 252 and the second guide piece 253 is guided by the second guide piece 253 and the second guide piece 253 which are disposed adjacent to the opposite side of the plane part 251, (252) so as to alternately flow on both sides of the plane portion (251).
  • the heating medium inlet end of the first guide piece 252 is connected to one end of the plane portion 251 by a first connecting piece 252a and is connected to one end of the plane portion 251 and the first connecting piece 252a, A first communication hole 252b is provided between the first guide pieces 252 to fluidly communicate with both side spaces of the plane portion 251.
  • the heating medium inlet end of the second guide piece 253 is connected to the other end of the plane portion 251 by the second connecting piece 253a and the other end of the plane portion 251 is connected to the second connecting piece 253a, A second communication hole 253b is provided between the second guide pieces 253 for fluid communication with both side spaces of the plane portion 251.
  • the first guide piece 252 and the second guide piece 253 are formed by cutting a part of the flat surface part 251 and bending to both sides of the flat surface part 251, So that fluid communication can be established between the two side surfaces of the flat surface portion 251.
  • supporters 253a, 253b, and 253 protruding outwardly and abutting against the opposite inner surfaces of the tube 230 are formed on both side surfaces of the lower turbulator 250.
  • the upper and lower portions of the lower turbulator 250 may include a first supporting portion 255 and a second supporting portion 255 vertically spaced apart from each other so as to abut the both sides of the tube 230 and protrude forward and rearward, 256 are formed.
  • the tube assembly 1000-2 according to the second embodiment of the present invention includes a tube having a flat shape for allowing the combustion gas to flow along the inside thereof and to exchange heat with the heat medium flowing outside A turbulator 280 coupled to the inner side of the tube 230 to induce the generation of turbulence in the flow of the combustion gas and a turbulator 280 formed inside the tube 230, And a pressure supporting portion for supporting an external pressure acting on both opposite sides.
  • the pressure supporting portion is formed by a plurality of pairs of dimples 231 protruding from both sides of the tube 230 to face the inner space of the tube 230 and spaced up and down.
  • the dimples 231 are formed by pressing the outer surface of the tube 230 toward the inside of the tube 230 after the turbulator 280 is inserted into the tube 230.
  • the turbulators 280 are formed with a plurality of holes 288 through which the pair of dimples 231 can penetrate when the external pressure rises.
  • the pressure supporting part can be realized without adding any additional parts, Can be reduced.
  • the upper and lower ends of the turbulator 280 are provided with first supporting pieces 286a and 286b, which are vertically spaced apart from each other so as to be in contact with the front and rear surfaces of the tube 230 and protrude forward and rearward, 286 and second support pieces 287a, 287b, 287 are formed, respectively.
  • reference numeral 281 denotes a flat portion
  • 282 denotes a first guide piece
  • 282a denotes a first connecting piece
  • 282b denotes a first communicating port
  • 283 denotes a second guide piece
  • 283a denotes a second connecting piece
  • 283b denotes a second communicating portion
  • Reference numeral 284 denotes a first support portion
  • reference numeral 285 denotes a second support portion, and has the same function as that of the corresponding names in the above-described embodiment.
  • the turbulator 290 constituting the tube assembly 1000-3 includes an upper turbulator 290a provided on the inflow side of the combustion gas,
  • the area of the flow path between the lower turbulator 290b and the inner surface of the tube 230 is larger than that of the upper turbulator 290a and the tube 230,
  • the area of the lower turbulator 290b that is in contact with the heating medium at the inner side of the tube 230 may be larger than that of the upper turbulator 290a.
  • the spacing L2 between the first guide pieces 292 and the second guide pieces 293 formed in the lower turbulator 290b may be larger than a distance formed between the upper turbulator 290a and the lower turbulator 290b,
  • the first guide piece 292 and the second guide piece 293 may be arranged at an interval that is denser than the interval L1 between the first guide piece 292 and the second guide piece 293.
  • the intervals between the upper and lower portions of the first guide pieces 292 and the second guide pieces 293 formed on the turbulators 290 are spaced apart from the inflow side of the combustion gas toward the exhaust side of the combustion gas Can be formed to be gradually narrowed.
  • the flow passage area of the combustion gas passing through the upper portion of the tube 230 in a high temperature state is made large so that sufficient heat exchange can be achieved while reducing the flow resistance of the combustion gas,
  • the area of the flow path of the combustion gas passing through the lower portion of the inner tube 230 is relatively small, and the heat exchange efficiency can be improved by increasing the residence time of the combustion gas.
  • reference numeral 291 denotes a flat portion
  • 292a denotes a first connecting piece
  • 292b denotes a first communicating portion
  • 293a denotes a second connecting piece
  • 293b denotes a second communicating portion
  • 294 denotes a first supporting portion
  • 295 denotes a second supporting portion
  • 295 and 297 denote support pieces, respectively, and have the same functions as those of the corresponding names in the above-described embodiment.
  • a support for supporting the hydraulic pressure of the heating medium may further be provided inside the tube 230.
  • the support portion includes a linear support 232 having both ends fixed to the inner surface of the tube 230, and both ends of the support portion 232 as shown in FIGS. 26 (b) and 26 (c) And a support 233 that is bent and fixed to the inner surface of the tube 230.
  • one end of the support bars 232 and 233 is welded to the base material on which the tube 230 is to be formed and the base material is welded to the tube 230 when the tube 230 is manufactured.
  • the ends of the base material and the other ends of the supports 232 and 233 are respectively welded and the turbulators 290 are inserted into both sides of the supports 232 and 233 to be coupled to each other.
  • the support portion may include an embossed portion 234 protruding from the corresponding opposite side surfaces of the tube 230 toward the inside of the tube 230. As shown in FIG. According to this construction, when a high hydraulic pressure acts on the outside of the tube 230, the embossed portion 234 formed at the corresponding position abuts against the tube 230, thereby preventing the tube 230 from being deformed.
  • the tube 230 coupled with the support portions 232, 233, and 234 can be applied to various combustion devices in addition to a boiler or a water heater.
  • an associated boiler 1 includes a condensate receiver 210, which is a condensate receiver that collects and discharges condensed water generated by condensing steam contained in combustion gas, which passes through a heat exchanger 200, And a water leakage prevention member 320 coupled to a connection portion between the lower pipe plate 270 of the heat exchanger 200 and the condensate water receiver 300 to prevent leakage of condensed water.
  • a plurality of tube insertion holes 271a through which the lower end of the tube 230 passes are formed in the lower tube plate 270 to support the lower end of the tube 230,
  • a rounded portion 273 having a convexly curved shape and dispersing the water pressure of the heating medium.
  • the water pressure of the heating medium can be dispersed by forming the rounded portion 273 having a convexly curved shape at the corner connecting the horizontal portion 271 and the vertical portion 272 of the lower plate 270 as described above
  • the durability can be improved by minimizing the deformation of the lower plate 270 by improving the water pressure resistance of the lower plate 270.
  • the coupling structure of the condenser receiver 300 and the leakage preventing member 320 will be described below.
  • the water leakage preventing member 320 is interposed between the rim of the lower pipe plate 270 and the rim of the condensate water receiver 300 to prevent leakage of condensed water.
  • the body 321 of the waterproofing member 320 is provided to surround the lower portion of the round portion 273 and the vertical portion 272 of the lower pipe plate 270.
  • the horizontal portion 271 Is blocked by the bottom portion 233 extending from the lower portion of the body 321 to one side so that the movement in the lateral direction is blocked and the condensed water CW can be dropped downward.
  • a protrusion 322 protruding in the direction toward the outer surface of the lower plate may be formed.
  • the contact protrusions 322 may be formed as a plurality of contact protrusions 322a, 322b, 322c, 322d, 322e, 322f at positions spaced vertically from the inner surface 321a of the waterproofing member 320.
  • the contact protrusion 322 of the water leakage preventing member 320 protruding in the direction opposite to the direction in which the water pressure acts in the action of the water pressure is in close contact with the outer surface of the lower pipe plate 270 So that the phenomenon that the condensed water CW penetrates into the gap between the lower pipe plate 270 and the water leakage preventing member 320 and is leaked can be effectively prevented. Further, when a plurality of the contact protrusions 322 are formed at positions spaced apart from each other in the vertical direction, leakage of the condensed water (CW) can be more reliably prevented.
  • the condensed water receiver 300 includes a first flange portion 301 for supporting the leakage preventing member 320 and a second flange portion 301 for supporting the water leakage preventing member 320 and the first flange portion 301, A fastening protrusion 301a and a fastening groove 323a are formed.
  • An extension portion 302 extending upward from the outer end of the first flange portion 301 and closely contacting the outer surface of the leakage preventing member 320 is formed at the rim of the condenser receiver 300, And a second flange portion (303) extending outward from an end of the extension portion (302), wherein an upper portion of the leakage preventing member (320) and the second flange portion (303)
  • the fitting protrusion 324a and the fitting groove 324b are formed. According to this structure, the leakage of the condensed water (CW) can be blocked and the position of the leakage preventing member 320 can be firmly fixed.
  • a plurality of holes 331a, 332b are formed in the condenser receiver 300 so as to uniformly distribute the combustion gas passing through the heat exchanger 200 to the entire area of the condenser receiver 300, 331b and 331b are formed on the outer circumferential surface thereof.
  • the size of the perforations 331 may be different from each other in consideration of the flow direction of the combustion gas.
  • the bottom surface of the condensate receiver 300 is provided with a plurality of holes 331 for guiding the combustion gas passing through the perforations 331 of the exhaust guide 330 to flow toward the condensed water outlet 310 formed at one side of the lower portion of the condensate receiver 300
  • the stepped portion 304 is formed so that the discharge of the condensed water and the flow of the combustion gas in the condensed water receiver 300 are the same as shown by the dotted arrow in the discharge direction of the condensed water and the solid line arrow in the direction of the combustion gas flow in FIG. Direction.
  • the condensed water is guided in the direction in which the exhaust gas flows, thereby preventing the corrosion of the lower plate 270 due to the phenomenon of condensation water rushing, as well as guiding the condensed water to the condensed water discharge port 310 side, .
  • the associated boiler 1 of the present invention includes a pre-mixing chamber 100 in which a space for premixing gas and combustion air supplied to the mix chamber 100 is provided, And a mixer controller 600 for controlling the supply flow rate of the mixer by opening and closing a flow passage for air and gas passing through the premixing chamber 500.
  • a space where the air and gas are premixed is partitioned into a venturi structure, and a flow direction of gas supplied into the premixing chamber 500 is supplied to the premixing chamber And the air flow direction of the air.
  • the first passage 510 and the second passage 520 are formed on both sides of the partitioning member 501 so that the first passage 510 and the second passage 520 are formed on both sides of the partitioning member 501,
  • the air and gas flow passages connected to the second passageway 520 are configured to be opened and closed by the mixer controller 600.
  • a first gas supply port 530 is provided at an upper portion of one side of the premixing chamber 500, and a gas supplied to the first gas supply port 530 flows into the first space 531 And is supplied to the first passage 510 through the first gas outlet 532.
  • the gas supplied to the second gas supply port 540 flows through the second space 541 and the communication port 542 and the second gas supply port 540.
  • the second space 541 and the third space 543 are spatially separated from each other so that the second space 541 and the third space 543 are mutually communicated when the communication hole 542 is opened. And is sealed by the fixing plate 502.
  • the communication port 542 is opened and closed by a second opening and closing member 650 of a mixer controller 600 described later.
  • An air inlet (800) is connected to the first passage (510) and the second passage (520).
  • a first gas distribution member 550 is connected to the first passage 510 to distribute the gas supplied from the first gas supply port 530 to the throat portion of the first passage 510,
  • a second gas distribution member 560 for distributing the gas supplied from the second gas supply port 540 to the throttle portion of the second passage 520 is connected to the second passage 520.
  • a plurality of first distribution ports 551 for distributing and supplying the gas to the first passage 510 in a direction parallel to the flow of air are formed in the lower portion of the first gas distribution member 550
  • the second gas distribution member 560 is provided at a lower portion thereof with a plurality of second distribution ports 560 for distributing and supplying the gas to the second passage 520 in a direction parallel to the flow direction of the air, 561 are spaced along the circumferential direction.
  • the first gas distribution member 550 is coupled to the inner side surface of the first passage 510 with a predetermined first clearance space S1, and the first gas discharge port 532 Is supplied to the first space 510 via the first distribution port 551 after passing through the first clearance space S1.
  • the second gas distribution member 560 is coupled to the inner surface of the second passage 510 with a predetermined second clearance space S2 and the gas discharged through the second gas discharge port 544 is connected to the 2 air space S2 and then into the second space 520 through the second distribution port 561.
  • the mixer controller 600 includes a first opening and closing member 640 for opening and closing a flow path of air passing through the second passage 520, and a second opening / closing member 640 connected to the second passage 520 And a second opening and closing member 650 for opening and closing the communication hole 542 which is a flow path of gas to be supplied to the first opening and closing member 640.
  • the opening and closing operations of the first opening and closing member 640 and the second opening and closing member 650 are concurrently performed .
  • the first opening and closing member 640 includes a body 641 coupled to a rotation axis 612 of a motor 611 as a driving unit and disposed laterally in the second passage 520, And a wing portion 643 formed to have a size corresponding to the cross-sectional area of the second passage 520.
  • the driving unit 610 is fixedly coupled to the first bracket 620 and the first opening and closing member 640 is fixedly coupled to a second bracket 630 assembled to one side of the pre- .
  • the body 641 of the first opening and closing member 640 is provided with a first pointed portion 642a protruding toward the second opening and closing member 650 and a second pointed portion 642a recessed in the opposite direction and formed alternately along the circumferential direction And a first cam-shaped portion 642 formed of a first inclined portion 642c formed between the first tip portion 642a and the first bottom portion 642b.
  • first opening and closing member 640 and the second opening and closing member 650 are also viewed from different directions.
  • the second opening and closing member 650 is provided with a second pointed portion 652a having a shape corresponding to the first pointed portion 642a, the first bottomed portion 642b and the first inclined portion 642c, And a second cam-shaped portion 652 composed of a second inclined portion 652b and a second inclined portion 652c.
  • a shaft 651 is coupled to the center of the second cam-shaped portion 652 and a hermetic member 654 for opening and closing the communication hole 542 is coupled to one end of the shaft 651,
  • One side of the elastic member 655 is supported on one side of the member 654.
  • the other end of the elastic member 655 is supported on the inner surface of the pre-mixing chamber 500 facing the communication hole 542. Accordingly, the second opening / closing member 650 is elastically supported by the elastic member 655 so as to be pressed toward the first opening / closing member 640 side.
  • the second opening and closing member 650 further includes a guide member 653 for guiding the body in which the second cam-shaped portion 652 is formed to reciprocate.
  • the body of the second opening and closing member 650, A guide groove 652d and a guide rib 653a are formed in the member 653 at corresponding positions.
  • FIG. 35 the operation of the mixer controller 600 will be described with reference to FIGS. 35 to 38.
  • FIG. 35 the operation of the mixer controller 600 will be described with reference to FIGS. 35 to 38.
  • the second bottom portion 652b of the second opening and closing member 650 contacts with the first bottom portion 642b of the first opening and closing member 640 and the second top portion 652a of the second opening and closing member 650
  • the wing portion 643 of the first opening and closing member 640 is disposed in a direction parallel to the transverse section of the second passage 520 so that the air flow of the second passage 520 is blocked
  • the hermetic member 654 of the second opening and closing member 650 is moved to one side (right side in FIG. 36) by the elastic force of the elastic member 655 and is brought into close contact with the communication hole 542, Is shut off. In such a low output state, air and gas are supplied only through the first passage 510.
  • the first tip end portion 642a of the first opening and closing member 640 is driven by the driving unit 610,
  • the wing portion 643 of the first opening and closing member 640 contacts the second proximal end portion 652a of the second opening and closing member 652 in a direction perpendicular to the transverse section of the second passage 520
  • the airtight member 654 of the second opening and closing member 650 is moved to the opposite side (left side in FIG. 38) while compressing the elastic member 655, And the gas flow passage connected to the second passage 520 is opened by being separated from the opening 542.
  • air and gas are supplied not only through the first passage 510 but also through the second passage 520.
  • the supply flow rate of the air and gas flowing into the first passage 510 and the second passage 520 is proportional to the set heating or hot water load and the number of revolutions of the blower 700 and the number of gas supply valves And may be configured to be controlled in accordance with the amount of metering.
  • the first passage 510 and the second passage 520 of the pre-mixing chamber 600 are formed so that the direction of flow of the air passing through the first passage 510 and the direction of spraying the gas are the same,
  • the gas supplied to the two passages 520 is not influenced by the air flow, and it is possible to obtain a mixer of the correct flow rate having the set air and gas ratio.
  • the pre-mixing chamber 500 is formed by the dual structure of the first passage 510 and the second passage 520 having the venturi structure, and the low-
  • the first passageway 510 and the second passageway 520 are configured such that premixing is performed only in the first passage 510 and premixing is stopped in the second passage 520.
  • TDR turnaround time
  • the combustion state can be stabilized
  • the combustion efficiency can be improved by the complete combustion and the emission amount of the pollutant can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gas Burners (AREA)

Abstract

본 발명은 연관식 보일러에 관한 것으로서, 연소용 가스와 공기가 혼합되는 혼합공간과, 납작한 형상의 믹스챔버 몸체, 및 연소실의 상측에 수평방향으로 배치된 평판형 버너를 구비한 믹스챔버; 열매체가 유입 및 배출되고 열매체가 수용되는 수조의 외벽을 이루는 외통과, 상기 연소실에서 발생하는 연소가스가 내부를 따라 유동하며 외부를 유동하는 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 복수의 튜브와, 상기 튜브의 내측에 결합되어 상기 연소가스의 유동에 난류 발생을 유도하는 터뷸레이터와, 상기 외통과 상기 튜브 사이에 구비되어 열매체의 유동 방향이 반경방향 내측과 외측으로 교대로 전환되도록 유도하는 다단의 격막을 구비한 열교환기;를 포함한다.

Description

연관식 보일러
본 발명은 연관식 보일러에 관한 것으로서, 더욱 상세하게는 기존 보일러 대비 높이를 줄이고 열교환 효율을 향상시킴과 아울러 수압이 높은 환경에서도 변형 및 파손을 방지할 수 있는 연관식 보일러에 관한 것이다.
일반적으로 보일러는 연료의 연소에 의한 연소가스와 열매체 간에 열교환이 이루어지는 열교환기를 구비함으로써 가열된 열매체를 이용하여 난방을 수행하거나 온수를 공급하게 된다. 이러한 보일러는, 열교환기가 내부에 구비된 열교환부와, 열교환부의 상부에 조립되는 버너, 버너와 열교환기 사이 내부에는 연소용 가스와 공기가 공급되어 연소가 이루어지는 연소실로 구성될 수 있다.
도 1은 종래 연관식 보일러의 구성을 개략적으로 나타낸 도면이다.
종래의 연관식 보일러는, 연소용 가스와 공기를 공급하는 송풍기(10)와, 연소용 가스와 공기의 혼합기를 연소시키는 원통형 버너(20)와, 상기 버너(20)에 의한 혼합기의 연소가 이루어지는 연소실(30)과, 연소실(30)에서 발생한 연소가스와 열매체 간에 열교환이 이루어지는 열교환기(40)와, 연소실(30)에서 발생된 열이 원통형 버너(20) 주변의 상측으로 전달되는 것을 방지하기 위한 단열재(50), 및 상기 단열재(50)를 관통하여 설치되며 상기 혼합기를 점화하는 점화봉(60)을 포함하여 구성된다.
상기 열교환기(40)는 외통(41)과, 그 내부에 구비되어 연소실(30)에서 발생된 연소가스가 내부를 통과하는 다수개의 튜브(42)와, 상기 튜브(42)의 외측으로 열매체가 수용되는 수조(43)를 포함하여 구성될 수 있다.
이와 같은 종래의 연관식 보일러의 구성에 의하면, 상하로 긴 형태의 원통형 버너(20)를 구비함에 따라서 보일러 전체의 높이가 크게 상승하여 보일러를 컴팩트하게 제작할 수 없어 설치공간에 제약이 따르는 문제점이 있다.
또한, 종래의 연관식 보일러는, 송풍기(10)와 원통형 버너(20) 사이에 마련되는 연소실 커버(12)를 관통하여 점화봉(60)을 설치할 경우 점화봉에 대한 열전도를 막기 위해 단열재(50)를 적용하였다.
그러나, 상기 단열재(50)는 연소 중 열로 인한 크랙 발생 또는 작은 알갱이 형태로 부스러져 열교환기(40)의 연소가스 통로인 튜브(42)를 막는 등의 문제를 야기시키고, 유지보수를 위해 연소실 커버(12)와 원통형 버너(20)를 포함하는 믹스챔버(11)를 분해하는 경우 단열재(50)의 손상이 불가피한 문제점이 있다.
한편, 점화봉(60)을 열교환기(40) 측에 설치할 경우에는 불필요한 공정 및 부품 추가로 인해 제조 공정이 증가하며, 열매체 누설의 위험이 따르는 문제점이 있다.
상기와 같이 연소실 커버에 점화봉을 조립하는 구조와 관련된 선행기술은, 등록특허 제10-0575187호, 등록특허 제10-0581580호에 개시되어 있다.
또한, 원통형 버너(20)에 비해 연소성능이 우수한 평판형 버너를 적용하는 경우, 평판형 버너가 결합된 믹스 챔버와 믹스 챔버의 일측에 열교환기가 결합되어 믹스 챔버와 열교환기 사이에 연소실이 형성된다. 이때, 믹스 챔버에는 일측부를 관통하여 점화봉 조립체가 결합되는 경우, 믹스 챔버와 점화봉 조립체 사이의 틈새를 통해 미연소 상태의 혼합가스가 외부로 누설되는 문제가 발생할 수 있다. 이와 같은 미연소 상태의 혼합가스(생가스)가 외부로 누설될 경우에는 인체에 치명적인 위험을 초래하게 되는 문제점이 있다.
이와 같은 혼합가스의 누설을 방지하기 위한 실링수단을 설치할 경우, 연소실의 고온의 열이 실링수단에 전달되므로 실링수단이 열화에 의해 쉽게 파손될 수 있어, 실링수단을 열화에 의한 파손을 방지하면서 설치하기가 용이하지 않은 문제점이 있다.
한편, 유럽 공개특허공보 EP 2508834호, 유럽 공개특허공보 EP2437022호에 개시된 연관식 열교환기는, 버너의 연소에 의해 발생된 연소가스가 내부를 유동하는 복수의 튜브를 구비하고, 튜브의 외측에는 열매체를 유동시켜 연소가스와 열매체 간에 열교환이 이루어지는 구조로 이루어져 있다.
종래 열교환기에 적용된 납작한 형태 및 엠보가 적용된 연관(튜브)의 경우, 저압용 보일러에는 적용이 가능하지만, 온수기 및 상업용 제품, 대용량 보일러와 같이 사용환경의 압력이 높은 기기에는 연관의 변형 및 파손 발생 가능성이 높아 적용이 불가능한 단점이 있다. 이를 해결하기 위해서는 적용 소재의 두께를 키워야 하며, 이로 인하여 재료비가 크게 상승하게 된다.
또한, 단위 질량당 체적이 큰 고온의 연소가스가 흐르는 통로인 연관 상부와 열교환 후 저온이 된 연소가스가 흐르는 연관 하부의 연관 구조가 동일하기 때문에 열교환 효율을 높이기 위해 엠보의 적용 수량을 늘릴 경우, 연관 상부에 유동 저항이 크게 발생하게 되며, 이를 해결하기 위해 엠보의 적용 수량을 줄일 경우, 콘덴싱 효과가 발생되는 잠열부의 열교환 효율이 크게 떨어지는 단점이 있다.
잠열부에 엠보 수량을 늘리는 방안은 엠보의 형상 및 사이즈로 인해 일정한 수량 이상으로는 제작이 불가능하며, 설령 적용하더라도 제작 공정이 복잡해져서 제작 비용이 상승하게 된다.
또한, 종래 열교환기에 적용된 납작한 형태가 적용된 연관의 경우, 저압용 보일러(사용압력 : 6 kg/㎠ 이하)에는 적용이 가능하지만, 온수기 및 상업용 제품, 대용량 보일러와 같이 사용환경의 압력이 높은 기기에는 연관의 변형 및 파손 발생 가능성이 높아 적용이 불가능한 단점이 있다. 이를 해결하기 위해서는 적용 소재의 두께를 키워야 하며, 이로 인하여 열교환 능력이 저하되고, 가공 난이도의 상승에 따라 제조성이 저하되며, 원가 상승의 문제점이 있다.
한편, 연관식 열교환기에서 튜브의 외측에는 열매체가 수용되는 수조를 마련하기 위한 외통이 구비된다. 상기 튜브의 상단부에는 수조의 상면을 이루며 외통의 상단부를 지지하는 상관판이 결합되고, 상기 튜브의 하단부에는 수조의 바닥면을 이루며 외통의 하단부를 지지하는 하관판이 결합된다.
이와 같이 구성된 연관식 열교환기의 경우, 수조에 수용된 열매체는 하관판에 큰 수압을 작용하게 되므로, 상기 하관판의 내구성을 유지하기 위해서는 높은 수압에 견딜 수 있는 내수압 성능이 요구된다.
그러나, 종래의 연관식 열교환기에 구비되는 하관판은, 수압을 분산시킬 수 있는 구성이 미비하여 내구성이 취약한 문제점이 있다.
또한, 종래의 연관식 보일러는, 상기 하관판의 하측으로 응축수받이가 구비되고, 하관판의 테두리부와 응축수받이의 테두리부 사이에 응축수의 누수를 방지하기 위한 실링부재가 구비된 구조로 이루어지고, 상기 실링부재는 하관판의 측면부의 하단부를 지지하도록 구성되어 있다.
그러나, 이와 같은 하관판과 응축수받이 간에 실링부재의 결합구조에 의할 경우, 연관식 열교환기에서 발생하는 응축수가 하관판의 측면부의 하단부와 실링부재 사이에 고이게 되어 하관판의 부식을 초래하는 문제점이 있었으며, 실링부재가 일반적으로 공지된 형태로 구성될 경우에는 응축수의 누수 현상을 확실하게 차단시킬 수 없는 한계가 있다. 종래 응축수받이의 실링구조와 관련된 선행기술은 공개특허 제10-2005-0036152호 등에 개시되어 있다.
한편, 가스 보일러 또는 가스 온수기와 같은 가스 연소장치에는 버너의 턴다운비(Turn-Down Ratio; TDR)가 설정된다. 턴다운비(TDR)란 가스의 양이 가변 조절되는 가스 연소장치에 있어서 '최대가스소비량 대 최소가스소비량의 비'를 말한다. 예를 들면 최대가스소비량이 30,000kcal/h이고 최소가스소비량이 6,000kcal/h인 경우 턴다운비(TDR)는 5:1이 된다. 턴다운비(TDR)는 안정된 화염을 유지하기 위한 최소가스소비량을 얼마나 낮게 조절할 수 있는지 여부에 따라 제한된다.
가스 연소장치의 경우 턴다운비(TDR)가 클수록 난방 및 온수 사용시의 편리성이 증대된다. 즉, 연소 초기에는 빠른 시간내에 목표로 하는 난방온도에 도달하기 위해 최대한의 화력으로 연소를 수행하지만, 목표로 하는 난방온도에 가까이 도달하게 되면 점차 버너에 공급하는 가스량을 줄여 연소를 수행한다. 이 경우 최소가스소비량이 높아 턴다운비(TDR)가 작은 경우에는 버너의 출력을 줄이기 위해 가스량을 감소시켜 제어하기가 어려워진다.
특히, 난방 및 온수의 부하가 작은 영역에서 버너가 작동되는 경우에는 연소장치의 온/오프(On/Off)가 잦아지게 되어 연소상태가 불안정해져 온도 제어시의 편차가 커지고, 기기의 내구성이 저하된다. 따라서 연소장치에 적용되는 버너의 턴다운비(TDR)를 향상시키는 방법이 제시되어 왔다.
이와 관련된 선행기술로, 등록특허 제10-0805630호에는, 연소에 필요한 공기를 공급하기 위한 송풍기, 가스의 공급유량을 조절하는 비례제어밸브, 상기 비례제어밸브에 연결되어 보조밸브의 개폐에 의해 가스의 공급이 이루어지고, 복수개의 노즐이 병렬로 연결된 노즐부, 상기 송풍기로부터 공급된 공기와 상기 노즐부를 통과한 가스를 혼합시켜 버너 표면으로 공급하는 믹싱챔버, 상기 비례제어밸브 및 보조밸브의 개폐에 따라 송풍기의 회전수를 제어하여 연소에 필요한 공기량만을 공급하도록 하는 제어부를 포함하여 이루어진 가스보일러의 연소장치가 개시되어 있다.
이러한 구성에 의하면, 가스가 공급되는 노즐부를 병렬로 다단 배치하고 버너의 출력에 대응하여 각 노즐부의 개폐를 제어함으로써 턴다운비(TDR)를 향상시켜 낮은 출력 영역에서 연소 안정성을 높일 수 있는 이점이 있다.
그러나, 상기 선행기술을 포함하여 종래의 연소장치에서는 믹싱챔버(예혼합실) 내부에서 공기와 가스의 혼합시에 공기와 가스의 흐름 방향과 연소 효율의 관련성에 대해서는 고려된 바 없으며, 종래 연소장치에서는 예혼합실 내부에서 공기의 흐름 방향과 가스의 분출 방향이 서로 다른 방향이 되도록 하여 공기와 가스가 혼합되도록 구성되어 있어, 공기의 흐름 방향과 다른 방향으로 가스를 분출하여 혼합시키는 경우에는 공기의 흐름에 의해 가스의 분출이 영향을 받게 되어 원하는 공기/가스비를 얻을 수 없게 되며, 이로 인해 연소가 불안정해지고 연소 효율이 낮아지는 요인으로 작용하는 문제점이 있다.
또한 종래 연소장치의 예혼합실은 단일의 벤츄리 구조로 이루어져 턴다운비(TDR)가 5:1 이하로 제한됨에 따라서 낮은 출력 영역의 연소시에는 버너의 잦은 온/오프(On/Off)로 인하여 연소 효율이 낮아져 연소장치의 성능이 저하되는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 기존 보일러 대비 보일러의 높이를 줄이고 열교환 효율을 향상시킴과 아울러 수압이 높은 환경에서도 변형 및 파손을 방지할 수 있으며, 응축수의 누수 및 맺힘 현상을 방지하고 응축수의 원활한 배출이 가능하고, 버너의 턴다운비를 향상시켜 낮은 부하 영역에서도 연소상태를 안정적으로 구현할 수 있는 연관식 보일러를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 연관식 보일러는, 연소용 가스와 공기가 혼합되는 혼합공간과, 납작한 형상의 믹스챔버 몸체, 및 연소실의 상측에 수평방향으로 배치된 평판형 버너를 구비한 믹스챔버; 열매체가 유입 및 배출되고 열매체가 수용되는 수조의 외벽을 이루는 외통과, 상기 연소실에서 발생하는 연소가스가 내부를 따라 유동하며 외부를 유동하는 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 복수의 튜브와, 상기 튜브의 내측에 결합되어 상기 연소가스의 유동에 난류 발생을 유도하는 터뷸레이터와, 상기 외통과 상기 튜브 사이에 구비되어 열매체의 유동 방향이 반경방향 내측과 외측으로 교대로 전환되도록 유도하는 다단의 격막을 구비한 열교환기;를 포함하여 구성된다.
상기 외통과의 사이에 열매체 유로가 형성되도록 상기 외통의 내측에 결합되고 상기 연소실을 형성하는 경판 구조의 상관판과, 상기 튜브의 하단부를 지지함과 아울러 상기 수조의 바닥면을 이루는 경판 구조의 하관판을 더 포함하여 구성될 수 있다.
상기 하관판에서 발생하는 응축수를 집수하여 일측에 형성된 응축수 배출구 측으로 유도하고, 상기 튜브를 통과한 연소가스를 상기 응축수 배출구의 상측으로 연결되어 상기 외통의 일측에 구비되는 배기덕트 측으로 유도하는 응축수받이를 포함하여 구성된다.
상기 믹스챔버의 일측부를 관통하여 조립되고, 상기 연소실의 상부를 가로질러 상기 평판형 버너의 하측으로 연장되는 점화봉 조립체, 및 상기 믹스챔버와 상기 점화봉 조립체 사이의 틈새를 통하여 상기 혼합공간의 혼합가스와 상기 연소실의 배기가스가 외부로 누설되지 않도록 차단하기 위한 실링수단을 포함하여 구성될 수 있다.
상기 믹스챔버의 일측부에는 믹스챔버 플랜지와 버너 플랜지가 맞닿도록 구비되어 상기 혼합공간을 밀폐하고, 상기 점화봉 조립체는 상기 혼합공간과 이격된 위치에서 상기 믹스챔버 플랜지와 버너 플랜지를 관통하여 조립될 수 있다.
상기 실링수단은, 상기 믹스챔버 플랜지와 상기 버너 플랜지가 맞닿는 부분에 구비되어 상기 혼합가스의 누설을 방지하기 위한 제1실링부재를 포함할 수 있다. 상기 제1실링부재는 그라파이트 재질로 이루어질 수 있다.
상기 점화봉 조립체는, 점화봉과 화염 감지봉을 포함하고, 상기 믹스챔버 일측부의 상부에는, 상기 점화봉이 관통되며 결합되는 점화봉 결합판과, 상기 화염 감지봉이 관통되며 결합되는 화염 감지봉 결합판이 구비되며, 상기 실링수단은, 상기 믹스챔버 일측부의 상부와 상기 점화봉 결합판 사이에 구비된 제2실링부재와, 상기 믹스챔버 일측부의 상부와 상기 화염 감지봉 결합판 사이에 구비된 제3실링부재를 포함하여 구성될 수 있다. 상기 제2실링부재와 상기 제3실링부재는 고무 재질로 이루어질 수 있다.
상기 제2실링부재의 외측면과 상기 제3실링부재의 외측면에는 돌출 형성된 다수개의 밀착돌기가 일정 간격을 두고 형성될 수 있다.
상기 믹스챔버 몸체의 저면과 상기 평판형 버너의 상면 사이의 이격된 공간은 납작한 원반형으로 형성될 수 있다.
상기 믹스챔버의 일측부를 관통하여 조립되고, 상기 연소실의 상부를 가로질러 상기 평판형 버너의 하측으로 연장되는 점화봉 조립체, 및 상기 연소실에서 발생한 연소열이 상기 믹스챔버와 점화봉 조립체 사이의 틈새를 밀봉하기 위한 실링수단으로 열전달되는 것을 차단하기 위한 냉각수단을 포함하여 구성될 수 있다.
상기 냉각수단은 공냉식 냉각수단과 수냉식 냉각수단을 포함할 수 있다.
상기 믹스챔버의 일측부에는 믹스챔버 플랜지와 버너 플랜지가 맞닿도록 구비되어 상기 혼합공간을 밀폐하고, 상기 점화봉 조립체는 상기 믹스챔버 플랜지와 상기 버너 플랜지를 관통하여 조립되며, 상기 공냉식 냉각수단은, 상기 혼합공간으로 유입된 혼합가스에 의해 상기 믹스챔버 플랜지와 상기 버너 플랜지가 냉각되도록 구성될 수 있다.
상기 믹스챔버의 일측부에는 믹스챔버 플랜지와 버너 플랜지가 맞닿도록 구비되어 상기 혼합공간을 밀폐하고, 상기 점화봉 조립체는 상기 믹스챔버 플랜지와 상기 버너 플랜지를 관통하여 조립되며, 상기 수냉식 냉각수단은, 상기 수조의 열매체에 접촉되는 상기 상관판의 상단에 형성된 상관판 플랜지가 상기 버너 플랜지와 면접촉되도록 구비되어 상기 버너 플랜지가 냉각되도록 구성될 수 있다.
상기 점화봉 조립체가 조립되는 상기 믹스챔버의 일측부에는 상기 점화봉 조립체의 둘레를 따라 다수개의 방열핀이 구비될 수 있다.
상기 상관판의 상부에는 상기 수조에 저장된 열매체의 수압을 지지하기 위한 라운드부가 형성될 수 있다.
상기 상관판 플랜지는 상기 라운드부의 상단에서 외측으로 돌출 형성되고, 상기 상관판 플랜지의 외경과, 상기 라운드부 하단의 내경 간의 직경차 비율은 20% 이하인 것으로 구성될 수 있다.
상기 상관판에 삽입되는 상기 평판형 버너의 저면과 상기 상관판의 바닥면 사이의 높이는, 상기 평판형 버너에서 발생하는 화염의 끝단이 상기 상관판 바닥면에서 일정거리 이격되도록 설정되며, 바람직하게는 80mm 내외의 높이로 설정될 수 있다.
상기 전극봉 조립체는 상기 믹스챔버에 혼합기가 공급되는 혼합기 유입구의 일측에 구비될 수 있다.
상기 전극봉 조립체는 상기 믹스챔버에 혼합기가 공급되는 혼합기 유입구와 대향된 측에 구비될 수 있다.
상기 터뷸레이터는, 상기 연소실에 근접한 상기 튜브의 상부 내측에 상기 튜브와 면접촉되도록 결합되어 열전도도를 증대시킴과 아울러 상기 연소가스의 유동에 난류의 발생을 유도하는 상부 터뷸레이터, 및 상기 상부 터뷸레이터의 하측으로 상기 튜브의 내측에 결합되어 상기 연소가스의 유동에 난류의 발생을 유도하는 하부 터뷸레이터로 구성될 수 있다.
상기 상부 터뷸레이터는, 상기 튜브의 일측부와 대응되는 형상으로 이루어져 상기 튜브의 일측부의 내측면에 면접촉되는 제1 튜브 접촉면을 포함하는 제1부분과, 상기 튜브의 타측부와 대응되는 형상으로 이루어져 상기 튜브의 타측부의 내측면에 면접촉되는 제2 튜브 접촉면을 포함하는 제2부분으로 구성될 수 있다.
상기 상부 터뷸레이터에는, 상기 제1 튜브 접촉면에서 절개된 제1절개부 중 일부가 절곡되어 상기 제2 튜브 접촉면을 향하도록 돌출된 제1 압력지지부와, 상기 제2 튜브 접촉면에서 절개된 제2절개부 중 일부가 절곡되어 상기 제1 튜브 접촉면을 향하도록 돌출된 제2 압력지지부가 형성되고, 상기 제1 압력지지부의 돌출된 단부는 상기 제2 튜브 접촉면에 접촉되고, 상기 제2 압력지지부의 돌출된 단부는 상기 제1절개부를 관통하여 상기 튜브의 내측면에 접촉되는 것으로 구성될 수 있다.
상기 제1 압력지지부와 상기 제2 압력지지부는 전후 방향 및 상하 방향으로 이격되어 복수로 구비되되, 상측에 위치하는 제1 압력지지부와 하측에 위치하는 제1 압력지지부는 상하 방향으로 중첩되지 않는 위치에 구비되고, 상측에 위치하는 제2 압력지지부와 하측에 위치하는 제2 압력지지부는 상하 방향으로 중첩되지 않는 위치에 구비될 수 있다.
상기 제1 압력지지부와 상기 제2 압력지지부는, 플레이트 형상으로 이루어지되 면적이 넓은 양측면이 연소가스의 유동방향과 나란하게 배치될 수 있다.
상기 터뷸레이터에는, 상기 튜브의 내부공간을 양측으로 분할하며 상기 튜브의 길이방향으로 배치된 평면부와, 상기 평면부의 양측면에 길이방향을 따라 이격되어 교대로 경사지게 돌출 형성된 복수의 제1가이드편과 제2가이드편을 포함하여 구성될 수 있다.
상기 제1가이드편은 상기 평면부의 일측면에 일측으로 경사지게 배치되고, 상기 제2가이드편은 상기 평면부의 타측면에 타측으로 경사지게 배치되며, 상기 제1가이드편과 제2가이드편으로 유입된 열매체는, 각각 상기 평면부의 반대측면에 근접하게 배치된 제2가이드편과 제1가이드편에 순차로 인계되어 상기 평면부의 양측 공간을 교대로 유동하도록 구성될 수 있다.
상기 제1가이드편의 열매체 유입단은 제1연결편에 의해 상기 평면부의 일측단에 연결되는 동시에 상기 평면부의 일측단과 제1연결편 및 제1가이드편 사이에 상기 평면부의 양측 공간으로 유체 소통이 이루어지는 제1소통구가 마련되고, 상기 제2가이드편의 열매체 유입단은 제2연결편에 의해 상기 평면부의 타측단에 연결되는 동시에 상기 평면부의 타측단과 제2연결편 및 제2가이드편 사이에 상기 평면부의 양측 공간으로 유체 소통이 이루어지는 제2소통구가 마련된 것으로 구성될 수 있다.
상기 제1가이드편과 제2가이드편은 상기 평면부의 일부가 절개되어 각각 상기 평면부의 양측으로 절곡되고, 상기 제1가이드편과 제2가이드편의 절개된 부분을 통해 상기 평면부의 양측 공간으로 유체 소통이 이루어지도록 구성될 수 있다.
상기 터뷸레이터는, 연소가스의 유입측에 구비되는 상부 터뷸레이터와, 연소가스의 배출측에 구비되는 하부 터뷸레이터로 이루어지되, 상기 하부 터뷸레이터에 형성된 복수의 제1가이드편과 제2가이드편이 상하로 이격된 간격은, 상부 터뷸레이터에 형성된 복수의 제1가이드편과 제2가이드편이 상하로 이격된 간격에 비해 보다 조밀한 간격으로 배치될 수 있다.
상기 터뷸레이터는, 연소가스의 유입측에 구비되는 상부 터뷸레이터와, 연소가스의 배출측에 구비되는 하부 터뷸레이터로 이루어지되, 상기 하부 터뷸레이터와 상기 튜브의 내측면 사이의 유로 면적은, 상기 상부 터뷸레이터와 상기 튜브의 내측면 사이의 유로 면적보다 작게 형성될 수 있다.
상기 하부 터뷸레이터는 상기 상부 터뷸레이터에 비해 상기 튜브의 내측에서 열매체와 접촉하는 면적이 더 크게 형성될 수 있다.
상기 터뷸레이터에는 상기 튜브의 양측면에 맞닿도록 상하로 이격되어 전방과 후방으로 돌출되며 상하로 이격되어 위치하는 지지부가 각각 형성될 수 있다.
상기 튜브의 내측에 형성되어, 상기 튜브의 대향하는 양측면에 작용하는 외부 압력을 지지하기 위한 압력지지부를 더 포함하여 구성될 수 있다.
상기 압력지지부는, 상기 터뷸레이터의 양측면에서 각각 외측 방향으로 돌출되어 상기 튜브의 대향하는 내측면에 맞닿는 지지대로 구성될 수 있다.
상기 지지대는 상기 터뷸레이터의 면의 일부가 절개되어 각각 양측으로 절곡됨으로써 형성될 수 있다.
상기 복수의 튜브는 상기 연소실에서 발생된 연소가스가 하방향으로 유동하도록 수직 방향으로 설치되되, 원주방향으로 이격되며 방사상으로 배치될 수 있다.
상기 복수의 튜브는 상기 다단의 격막에 삽입되어 지지되고, 상기 다단의 격막은 지지대에 의해 지지될 수 있다.
상기 다단의 격막은, 플레이트 형상의 상부 격막과 중간부 격막 및 하부 격막으로 이루어지되, 상기 상부 격막과 하부 격막에는 중앙부에 열매체의 유동을 위한 개구부가 형성되고, 상기 중간부 격막에는 튜브 삽입구가 상기 튜브의 외측면과 유격을 두고 형성되어 상기 튜브 삽입구를 통해 열매체가 유동하는 것으로 구성될 수 있다.
상기 하관판은 상기 튜브의 하단부를 지지함과 아울러 상기 수조의 바닥면을 이루는 수평부와, 상기 외통의 하단부에 결합되는 수직부와, 상기 수평부의 외측단과 상기 수직부의 하단부를 연결하며 외측으로 볼록하게 만곡된 형상으로 이루어져 상기 열매체의 수압을 분산시키는 라운드부로 구성될 수 있다.
상기 하관판의 테두리부와 상기 응축수받이의 테두리부 사이에 개재되어 응축수의 누수를 방지하기 위한 누수방지부재를 포함하여 구성될 수 있다.
상기 누수방지부재는 상기 하관판의 라운드부와 수직부를 감싸는 형태로 구비되어, 상기 하관판의 수평부에 맺힌 응축수는 상기 누수방지부재에 의해 가로막혀 측방향으로의 이동이 차단되며 하측으로 낙하되도록 구성될 수 있다.
상기 누수방지부재의 내측면에는 상기 하관판의 외측면을 향하는 방향으로 돌출된 밀착돌기가 형성될 수 있다. 상기 밀착돌기는 상기 누수방지부재의 내측면에 이격되어 복수로 형성될 수 있다.
상기 응축수받이의 테두리부에는 상기 실링부재를 지지하는 제1플랜지부가 구비되고, 상기 누수방지부재와 상기 제1플랜지부에는 대응되는 위치에 상호 체결되는 체결돌기와 체결홈이 형성될 수 있다.
상기 응축수받이의 테두리부에는, 상기 제1플랜지부의 외측단에서 상측으로 연장되며 상기 누수방지부재의 외측면에 밀착되는 연장부와, 상기 연장부의 끝단에서 외측으로 연장되는 제2플랜지부를 더 포함하고, 상기 누수방지부재의 상부와 상기 제2플랜지부에는, 대응되는 위치에 상호 끼움되는 끼움돌기와 끼움홈이 형성될 수 있다.
상기 응축수받이의 내부에는 상기 열교환기를 통과한 연소가스가 상기 응축수받이의 전체 영역에 균일하게 분배되어 배출되도록 다수개의 타공이 형성된 배기 가이드가 구비될 수 있다.
상기 응축수받이의 바닥면에는 상기 배기 가이드를 통과한 연소가스가 상기 응축수 배출구 측으로 유동하도록 유도하기 위한 계단부가 형성되어, 상기 응축수받이 내부에서 상기 응축수의 배출과 상기 연소가스의 유동이 동일한 방향을 향하도록 형성될 수 있다.
상기 믹스챔버에 공급되는 연소용 공기와 가스가 예혼합되는 공간이 내부에 마련된 예혼합실을 더 포함하되, 상기 예혼합실의 내부는 상기 공기와 가스가 예혼합되는 공간이 벤츄리 구조로 다단 구획되고, 상기 예혼합실 내부로 공급되는 가스의 흐름 방향은 상기 예혼합실 내부로 공급되는 공기의 흐름 방향과 나란하게 형성될 수 있다.
상기 예혼합실을 통과하는 공기와 가스의 흐름 통로를 개폐하여 혼합기의 공급 유량을 조절하는 혼합기 조절부를 더 포함하여 구성될 수 있다.
상기 제1통로에는 제1가스공급구로부터 공급되는 가스를 상기 제1통로의 스로트부에 분배시켜 공급하는 제1가스분배부재가 결합되고, 상기 제2통로에는 제2가스공급구로부터 공급되는 가스를 상기 제2통로의 스로트부에 분배시켜 공급하는 제2가스분배부재가 결합될 수 있다.
상기 혼합기 조절부는, 상기 제2통로를 통과하는 공기의 흐름 통로를 개폐하는 제1개폐부재와, 상기 제2통로에 연결되는 가스의 흐름 통로를 개폐하는 제2개폐부재를 포함하고, 상기 제1개폐부재와 제2개폐부재의 개폐동작은 연동하여 동시에 이루어지도록 구성될 수 있다.
상기 제1개폐부재는, 구동부의 회전축에 결합되어 상기 제2통로에 횡방향으로 배치된 몸체와, 상기 몸체의 외측면에 대향되도록 결합되며 상기 제2통로에 대응되는 크기로 형성된 날개부를 포함하고, 상기 제2개폐부재는 상기 제1개폐부재의 회전에 연동하여 횡방향으로 왕복이동되는 것으로 구성될 수 있다.
상기 제1개폐부재의 몸체에는 상기 제2개폐부재를 향하여 돌출된 제1첨단부와 그 반대방향으로 함몰된 제1바닥부가 원주방향을 따라 교대로 형성되고, 상기 제1첨단부와 제1바닥부 사이 구간에는 제1경사부가 형성되며, 상기 제2개폐부재의 몸체에는 상기 제1첨단부와 제1바닥부 및 제1경사부에 대응되는 형상의 제2첨단부와 제2바닥부 및 제2경사부가 형성되고, 상기 제2개폐부재는 탄성부재에 의해 상기 제1개폐부재 측으로 가압되도록 탄성지지된 것으로 구성될 수 있다.
상기 제2개폐부재는 상기 제2개폐부재의 몸체가 왕복 이동되도록 안내하는 가이드부재를 더 포함하고, 상기 제2개폐부재의 몸체와 상기 가이드부재에는 대응되는 위치에 가이드홈과 가이드리브가 형성될 수 있다.
상기 제1개폐부재의 제1첨단부와 상기 제2개폐부재의 제2바닥부 간의 접촉, 및 상기 제1개폐부재의 제1바닥부와 제2개폐부재의 제2첨단부 간의 접촉시에는, 상기 제1개폐부재의 날개부는 상기 제2통로의 횡단면과 나란한 방향으로 배치되어 상기 제2통로의 공기 흐름이 차단됨과 동시에, 상기 제2개폐부재는 일측으로 이동되어 상기 제2통로에 연결되는 가스 흐름 통로에 구비되는 연통구에 밀착됨으로써 상기 제2통로의 가스 흐름이 차단되고, 상기 제1개폐부재의 제1첨단부와 상기 제2개폐부재의 제2첨단부 간의 접촉시에는, 상기 제1개폐부재의 날개부는 상기 제2통로의 횡단면과 수직한 방향으로 배치되어 상기 제2통로가 개방됨과 동시에, 상기 제2개폐부재는 반대측으로 이동되어 상기 연통구로부터 이격됨으로써 상기 제2통로에 연결되는 가스 흐름 통로가 개방되는 것으로 구성될 수 있다.
본 발명에 따른 연관식 보일러에 의하면, 납작한 형상의 믹스챔버 몸체와 평판형 버너를 구비하고, 경판 구조로 형성된 상관판을 혼합기의 완전연소가 가능한 최저의 높이로 낮춤과 아울러 열교환기의 열교환 효율을 높임으로써, 기존 보일러와 대비하여 보일러의 높이를 낮출 수 있어 고효율의 컴팩트한 보일러를 제공할 수 있는 효과가 있다.
또한, 원통형 버너에 비해 제조가 용이하고 생산성이 뛰어난 평판형 버너를 적용하기 위해 믹스챔버의 일측부를 관통하여 점화봉 조립체를 설치함에 있어서 실링수단을 구비함으로써, 혼합가스와 배기가스의 누설을 방지할 수 있다. 또한, 종래기술과 달리 믹스챔버에 단열재의 사용을 배제함으로써 단열재의 사용에 따른 튜브 막힘 현상 등의 문제 발생을 원천적으로 방지할 수 있다.
또한, 믹스챔버의 일측부를 관통하여 결합되는 점화봉 조립체 및 점화봉 조립체 인근의 실링수단에 대한 냉각수단으로서, 공냉식과 수냉식 냉각수단을 구비함으로써, 실링수단의 열화에 의한 손상을 방지하여 내구성을 향상시킬 수 있다.
또한, 열교환기를 구성하는 상관판과 하관판을 경판 구조로 형성함으로써 수압이 높은 환경에서도 수압이 분산되어 변형 및 파손을 방지할 수 있어, 보일러 뿐만 아니라 수압이 높은 온수기에도 열교환기를 공용으로 사용할 수 있다.
또한, 튜브의 내측에 터뷸레이터를 구비함으로써 연소가스의 흐름에 난류를 촉진시켜 열교환 효율을 향상시킬 수 있다.
또한, 연소실에 근접하게 위치하는 튜브의 상부에는 튜브에 밀착되어 열전도도를 증대시킨 상부 터뷸레이터를 구비함으로써 연소열에 의한 고온산화 및 소손을 방지하고, 상부 터뷸레이터의 하측에는 연소가스의 유동에 난류 발생을 유도하는 하부 터뷸레이터를 구비함으로써, 연소가스와 열매체 간의 열교환 효율을 향상시킬 수 있다.
또한, 터뷸레이터에는 다양한 형태로 구현 가능한 압력지지수단을 구비함으로써, 수압이 높은 환경에서도 튜브의 변형 및 파손을 방지할 수 있어, 보일러 외에도 온수기(사용압력 : 10 kg/㎠ 이상)와 상업용(대용량) 제품 등에 확대 적용할 수 있다.
또한 열매체의 유로 상에 다단 구조의 격막을 배치하여 열매체의 유동방향을 전환시킴으써, 열매체의 유동 경로가 길어져 열교환 효율을 향상시킴과 아울러 열매체의 유속을 증가시켜 열매체의 정체시 초래될 수 있는 국부적인 과열 및 이로 인해 열매체 내에 포함된 이물질이 고형화 및 침적됨으로써 유발되는 비등 소음 발생 및 열효율 저하를 방지할 수 있다.
또한, 경판 구조의 하관판과 응축수받이 사이에서 응축수의 누수 방지를 위한 누수방지부재를 구비하되, 누수방지부재는 하관판의 라운드부와 수직부를 감싸는 형태로 구비되고, 누수방지부재의 내측면에는 복수의 밀착돌기를 구비함으로써, 하관판에 응축수의 고임에 의한 부식을 방지함과 아울러 응축수의 누수를 확실하게 차단할 수 있다.
또한, 응축수받이 내부에서 배기가스의 유동방향과 응축수의 배출방향이 응축수 배출구 측을 향하는 동일한 방향이 되도록 유도함으로써, 응축수의 원활한 배출이 가능하다.
또한, 예혼합실 내부를 다단의 벤츄리 구조로 구획함과 아울러 가스의 분출 방향이 공기의 흐름 방향과 같은 방향이 되도록 함으로써 10:1 이상의 턴다운비의 구현이 가능해져 난방 또는 온수 부하가 작은 영역에서도 연소상태를 안정적으로 구현할 수 있을 뿐만 아니라 혼합기의 유량 조절 시에 공기와 가스의 혼합 변화량을 최소화함으로써 연소 효율을 향상시키고 공해 물질의 발생을 최소화할 수 있다.
또한, 혼합기 조절부에 의해 예혼합실의 일부 영역을 개폐하여 공기와 가스의 혼합기 유량을 버너의 출력 크기에 대응하여 비례적으로 조절할 수 있다.
도 1은 종래 연관식 보일러의 구성을 개략적으로 나타낸 도면,
도 2는 본 발명에 따른 연관식 보일러의 외관 사시도,
도 3은 믹스챔버의 사시도,
도 4는 믹스챔버의 저면측 사시도,
도 5는 믹스챔버에 점화봉과 화염감지봉이 결합되는 구조를 보여주는 분해 사시도,
도 6은 믹스챔버와 열교환기의 평면도,
도 7은 도 6의 A-A 선을 따르는 부분 단면 사시도,
도 8은 도 6의 A-A 선을 따르는 부분 단면도,
도 9는 상관판과 버너의 결합구조를 보여주는 단면도,
도 10은 열교환기의 투시 사시도,
도 11은 열교환기의 분해 사시도,
도 12는 튜브 조립체와 다단 격막이 결합된 모습의 정면도,
도 13은 (a) 도 12의 평면도, (b) 도 12의 B-B 선을 따르는 단면도, (c) 도 12의 C-C 선을 따르는 단면도,
도 14는 열교환기의 평면도,
도 15는 도 14의 D-D 선을 따르는 단면 사시도,
도 16은 본 발명의 제1실시예에 따른 튜브 조립체의 투시 사시도,
도 17은 본 발명의 제1실시예에 따른 튜브 조립체의 분해 사시도,
도 18은 본 발명의 제1실시예에 따른 상부 터뷸레이터와 하부 터뷸레이터의 정면도,
도 19는 도 17에 도시된 상부 터뷸레이터의 확대 사시도,
도 20는 도 19의 평면도,
도 21은 도 20의 E-E 선을 따르는 (a) 단면도와, (b) 단면 사시도,
도 22는 도 19의 좌측면도,
도 23은 본 발명의 제2실시예에 따른 튜브 조립체의 투시 사시도,
도 24는 본 발명의 제2실시예에 따른 터뷸레이터의 정면도,
도 25는 본 발명의 제3실시예에 따른 터뷸레이터의 정면도,
도 26은 튜브의 지지구조의 다양한 실시예들을 나타낸 단면도,
도 27은 본 발명에 따른 연관식 보일러의 투시 사시도,
도 28은 본 발명에 따른 연관식 보일러의 분해 사시도,
도 29는 (a) 누수방지부재의 평면도와, (b) F-F 선을 따르는 단면도 및 확대도,
도 30은 본 발명에 따른 연관식 보일러의 실링구조 및 응축수 배출구조를 보여주는 단면도,
도 31은 예혼합실과 혼합기 조절부의 사시도,
도 32는 도 31의 분해 사시도,
도 33은 예혼합실 몸체의 (a) 측면도와, (b) G-G 선을 따르는 단면도,
도 34는 제1혼합실 가이드부재와 제2혼합실 가이드부재의 평면도,
도 35는 저열량 사용시 예혼합실과 혼합기 조절부의 평면도,
도 36은 도 35의 H-H 선을 따르는 단면도,
도 37은 고열량 사용시 예혼합실과 혼합기 조절부의 평면도,
도 38은 도 37의 I-I 선을 따르는 단면도.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
본 발명의 연관식 보일러(1)는, 보일러의 전체 높이를 낮추어 캠팩트한 구조로 이루어진 것을 특징으로 하며, 이를 위한 구성으로, 연소용 가스와 공기가 혼합되는 혼합공간(S)과, 납작한 형상의 믹스챔버 몸체(110), 및 연소실(C)의 상측에 수평방향으로 배치된 평판형 버너(130)를 구비한 믹스챔버(100); 열매체가 유입 및 배출되고 열매체가 수용되는 수조(B)의 외벽을 이루는 외통(210)과, 상기 연소실(C)에서 발생하는 연소가스가 내부를 따라 유동하며 외부를 유동하는 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 복수의 튜브(230)와, 상기 튜브(230)의 내측에 결합되어 상기 연소가스의 유동에 난류 발생을 유도하는 터뷸레이터(240,250,280,290)와, 상기 외통(210)과 상기 튜브(230) 사이에 구비되어 열매체의 유동 방향이 반경방향 내측과 외측으로 교대로 전환되도록 유도하는 다단의 격막(261,262,263)을 구비한 열교환기(200)를 포함한다.
또한, 상기 외통(210)과의 사이에 열매체 유로가 형성되도록 상기 외통(210)의 내측에 결합되고 상기 연소실(C)을 형성하는 경판 구조의 상관판(220)과, 상기 튜브(230)의 하단부를 지지함과 아울러 상기 수조(B)의 바닥면을 이루는 경판 구조의 하관판(270)을 더 포함하여 구성된다.
또한, 상기 하관판(270)에서 발생하는 응축수(CW)를 집수하여 일측에 형성된 응축수 배출구(310) 측으로 유도하고, 상기 튜브(230)를 통과한 연소가스를 상기 응축수 배출구(310)의 상측으로 연결되어 상기 외통(210)의 일측에 구비되는 배기덕트(400) 측으로 유도하는 응축수받이(300)를 포함하여 구성된다.
또한, 본 발명은 상기 믹스챔버(100)에 공급되는 연소용 공기와 가스가 예혼합되는 예혼합실(500)과, 상기 예혼합실(500)을 통과하는 공기와 가스의 흐름 통로를 개폐하여 혼합기의 공급 유량을 조절하는 혼합기 조절부(600)를 더 포함한다.
도 2 내지 도 8을 참조하면, 상기 믹스챔버(100)는, 상측으로 볼록하되 납작한 형상으로 이루어진 믹스챔버 몸체(110)와, 상기 믹스챔버 몸체(110)의 일측부를 관통하여 조립되고, 상기 연소실(C)의 상부를 가로질러 상기 평판형 버너(130)의 하측으로 연장되는 점화봉 조립체(140), 및 상기 믹스챔버(100)와 상기 점화봉 조립체(140) 사이의 틈새를 통하여 상기 혼합공간(S)의 혼합가스와 상기 연소실(C)의 배기가스가 외부로 누설되지 않도록 차단하기 위한 실링수단(160,170,180)을 포함한다.
본 발명에 적용되는 버너는 평판형 버너(130)로서, 다수개의 염공(131a)이 형성된 평판 형상의 염공판(131)과, 상기 염공판(131)에 결합된 메탈 파이버(132)로 구성된다. 상기 믹스챔버 몸체(110)의 저면과 상기 평판형 버너(130)의 상면 사이의 이격된 혼합공간(S)은 납작한 원반형으로 형성되어, 믹스챔버(100)의 높이를 낮게 형성할 수 있다.
또한, 종래 원통형 버너와 달리, 상기 평판형 버너(130)는 혼합공간(S)의 전체 영역에 걸쳐서 구비되어 평판형 버너(130)로 유입되는 가스와 공기는 평판형 버너(130)의 가장지리부, 즉 실링수단(160,170,180)이 구비된 위치와 근접한 위치까지 공급되므로 상기 가스와 공기에 의한 실링수단(160,170,180)의 공냉식 냉각이 가능하고, 연소 영역을 확장시켜 단위 면적당 부하를 감소시킴으로써 CO, NOx와 같은 오염물질의 배출을 감소시켜 연소 성능을 개선할 수 있다.
상기 믹스챔버(100)의 일측부를 관통하여 조립되는 점화봉 조립체(140)는 점화봉(141)과 화염감지봉(142)을 포함하고, 상기 점화봉(141)은 제1점화봉(141-1)과 제2점화봉(141-2)으로 구성될 수 있다. 상기 점화봉(141)과 화염감지봉(142)의 외측면에는 절연물질로 이루어진 애자(141a,142a)가 결합되고, 상기 애자(141a,142a)의 외측면에는 기밀유지를 위한 부싱(141b,142b)이 결합된다.
상기 점화봉(141)과 애자(141a) 및 부싱(141b)은 점화봉 결합판(143)에 고정되고, 상기 화염 감지봉(142)과 애자(142a) 및 부싱(142b)은 화염 감지봉 결합판(144)에 고정된다. 상기 애자(141a,142a)는 점화시 통전에 의한 스파크의 발생을 방지하기 위한 절연수단이고, 상기 부싱(141b,142b)은 애자(141a,142a)의 외측면과 점화봉 결합판(143) 및 화염 감지봉 결합판(144) 사이의 틈새를 밀봉하기 위한 구성이다.
도 5를 참조하면, 상기 믹스챔버(100)의 일측부에는 점화봉 조립체(140)를 조립하기 위한 점화봉 조립체 결합부(150)가 구비된다. 상기 점화봉 조립체 결합부(150)는, 상기 점화봉 결합판(143)과 그 하측에 결합되는 제2실링부재(170)가 안착되도록 홈 형태로 이루어진 제2실링부재 안착부(151)와, 상기 화염 감지봉 결합판(144)과 그 하측에 결합되는 제3실링부재(180)가 안착되도록 홈 형태로 이루어진 제3실링부재 안착부(152)를 포함한다. 그리고, 상기 점화봉 조립체 결합부(150)의 둘레에는 연소열을 방열하기 위한 다수개의 방열핀(153)이 구비된다.
도 6 내지 도 8을 참조하면, 상기 믹스챔버 몸체(110)의 일측부에는 믹스챔버 플랜지(111)와, 평판형 버너(130)의 가장자리부를 지지하며 연결되는 버너 플랜지(133)가 맞닿도록 구비되어 상기 혼합공간(S)을 밀폐하고, 상기 점화봉 조립체(140)는 상기 혼합공간(S)과 이격된 위치에서 믹스챔버 플랜지(111)와 버너 플랜지(133)를 관통하여 조립된다.
상기 실링수단은, 믹스챔버 플랜지(111)와 버너 플랜지(133)가 맞닿는 부분에 구비되어 상기 혼합공간(S)으로 유입되는 혼합가스가 외부로 누설되는 것을 방지하기 위한 제1실링부재(160)를 포함하며, 상기 제1실링부재(160)는 내열성 그라파이트 재질로 이루어질 수 있다.
또한, 상기 실링수단은, 믹스챔버 플랜지(111)와 점화봉 결합판(143) 사이에 구비되어 연소실(C)에서 발생하는 배기가스가 외부로 누설되는 것을 방지하기 위한 제2실링부재(170)와, 믹스챔버 플랜지(111)와 화염 감지봉 결합판(144) 사이에 구비되어 연소실(C)에서 발생하는 배기가스가 외부로 누설되는 것을 방지하기 위한 제3실링부재(180)를 포함한다. 상기 제2실링부재(170)와 제3실링부재(180)는 고무 재질로 이루어질 수 있으며, 고온에 의한 고무 재질의 변형을 최소화 할 수 있도록 제2실링부재(170)와 제3실링부재(180)는 별개의 부품으로 분리 제작되어 조립된다.
또한, 상기 제2실링부재(170)의 외측면과 제3실링부재(180)의 외측면에는 외측으로 돌출 형성된 다수개의 밀착돌기(171)가 일정 간격을 두고 형성될 수 있으며, 상기 밀착돌기(171)는 점화봉 결합판(143)의 저면과 제2실링부재(170)의 상면과, 화염 감지볼 결합판(144)의 저면과 제3실링부재(180)의 상면에 밀착되어 밀봉성을 더욱 향상시킬 수 있다.
또한, 전술한 바와 같이 상기 점화봉 조립체(140)에는 애자(141a,142a)의 외측면에 부싱(141b,142b)이 결합됨으로써 혼합가스와 혼합가스가 믹스챔버(100) 밖으로 누설되는 것을 다시 한번 차단시킬 수 있다.
이하, 도 7과 도 8을 참조하여, 상기 실링수단에 연소열이 전달되는 것을 차단하고 방열하기 위한 냉각수단의 구성 및 작용을 설명한다.
상기 냉각수단은 연소실(C)에서 발생한 연소열이 상기 믹스챔버(100)와 점화봉 조립체(140) 사이의 틈새를 통하여 누설되는 것을 방지하기 위한 실링수단으로 열전달되는 것을 차단하기 위한 구성으로서, 공냉식 냉각수단과 수냉식 냉각수단을 포함할 수 있다.
전술한 바와 같이 상기 믹스챔버(100)의 일측부에는 믹스챔버 플랜지(111)와 버너 플랜지(133)가 맞닿도록 구비되어 상기 혼합공간(S)을 밀폐하고, 상기 점화봉 조립체(140)는 상기 믹스챔버 플랜지(111)와 버너 플랜지(133)를 관통하여 조립되며, 상기 공냉식 냉각수단은 상기 혼합공간(S)으로 유입된 혼합가스에 의해 상기 믹스챔버 플랜지(111)와 버너 플랜지(133)가 대류방식에 의해 냉각되는 것으로 구성될 수 있다.
한편, 상기 열교환기(200)는 연관식 열교환기로 구성될 수 있으며, 외통(210)과, 연소실(C)의 바닥면과 열교환기(200)의 상면을 이루는 상관판(220)과, 상기 상관판(220)에 형성된 튜브 삽입구(221a)에 상단부가 관통되며 결합되며 연소가스가 내부를 통과하여 유동하는 다수개의 튜브(230)와, 상기 튜브(230)의 외측으로 외통(210)의 내부에 열매체가 수용되는 수조(B)를 포함하여 구성될 수 있다. 상기 열매체는 난방용 또는 온수용으로 사용되는 난방수 또는 온수일 수 있다.
상기 수냉식 냉각수단은, 상기 연소실(C)의 하측에 구비된 열교환기(200)의 열매체에 접촉되는 상관판 플랜지(223)가 상기 버너 플랜지(133)와 면접촉되도록 구비되어 상기 버너 플랜지(133) 및 실링수단(160,170,180)이 수조(B)에 저장된 열매체로부터 전도방식에 의해 냉각되는 것으로 구성될 수 있다.
또한, 전술한 바와 같이 상기 점화봉 조립체(140)가 조립되는 믹스챔버 몸체(110)의 일측부에는 상기 점화봉 조립체(140)의 둘레를 따라 다수개의 방열핀(153)이 구비되며, 이 또한 냉각수단으로서 기능하게 된다.
상기와 같이 본 발명에 의하면, 믹스챔버(100)를 납작한 형상의 믹스챔버 몸체(110)와 평판형 버너(130)를 구비함으로써 종래 원통형 버너를 구비한 구조와 비교하여 믹스챔버(100)의 높이를 대폭 낮출 수 있다.
또한, 평판형 버너(130)를 구비한 믹스챔버 몸체(110)의 일측부에 점화봉 조립체(140)을 관통시켜 조립함에 있어서 실링수단과 냉각수단을 구비함으로써, 혼합가스 및 배기가스의 누설을 차단시킴과 아울러 실링수단이 연소열에 의해 열손상되는 것을 방지할 수 있다. 따라서, 평판형 버너(130)를 구비한 믹스챔버(100)에 단열재를 사용하지 않음으로써 점화봉 조립체(140)를 안전하게 조립할 수 있고, 실링수단의 열적 손상을 방지하여 혼합가스 및 배기가스의 누설을 차단할 수 있다.
한편, 도 9를 참조하면, 상관판(200)은, 연소실(C)의 저면을 형성하는 바닥부(221)와, 연소실(C)의 측벽을 형성하는 측벽부(222)와, 상기 버너 플랜지(133)가 안착되는 상관판 플랜지(133)를 포함하고, 상기 측벽부(222)의 상단과 상기 상관판 플랜지(133)의 내측단을 연결하는 라운드부(224)와, 상기 바닥부(221)의 외측단과 상기 측벽부(222)의 하단을 연결하는 라운드부(225)를 포함하여 구성된다.
이와 같이 상관판(200)에 라운드부(224,225)를 포함하여 구성함으로써, 수조(B)에 저장된 열매체의 수압을 분산시켜 상관판(200)의 내구성을 향상시킬 수 있다. 상기 상관판 플랜지(223)의 외경(d1)과, 상기 라운드부(224) 하단의 내경(d2) 간의 직경차 비율은 20% 이하가 되도록 구성함이 바람직하다. 이와 같은 직경차 비율로 구성할 경우, 수조(B) 내부에 수용되는 물의 유량과 온도를 균일하게 제어할 수 있다.
또한, 상기 상관판(220)에 삽입되는 평판형 버너(130)의 저면과 상관판(220)의 바닥면 사이의 높이(h)는, 상기 평판형 버너(130)에서 발생하는 화염의 끝단이 상기 상관판(220)의 바닥면에서 일정거리 이격되도록 설정되고, 상기 높이(h)는 평판형 버너(130)의 화염의 길이를 고려할 때 80mm 내외의 치수로 설정됨이 바람직하다. 이와 같이 화염의 끝단이 상기 상관판(220)의 바닥면에서 일정거리 이격되도록 설정되는 이유는, 상기 평판형 버너(130)에서 발생하는 화염의 끝단과 상관판(220)의 바닥면 사이에 일정공간이 확보되어야 질소산화물(NOx)과 일산화탄소(CO)가 실험적으로 최소화 되는 조건이 확보될 수 있기 때문이다.
또한, 이와 같이 상관판(220)의 높이(h)를 낮게 설계함으로써 연소실(C)의 높이가 낮아져 연관식 보일러(1)의 전체 높이를 낮출 수 있는 효과가 있다. 즉, 종래 원통형 버너를 적용한 경우에는 버너의 저면과 상관판의 바닥면 사이의 높이가 190mm 정도임에 반하여, 본 발명의 경우에는 그 높이를 80mm 내외의 치수로 줄일 수 있어, 종래기술 대비 그 높이를 40% 가량 줄일 수 있는 장점이 있다.
한편, 본 실시예에서 상기 전극봉 조립체(140)는 믹스챔버(100)에 혼합기가 공급되는 송풍기(700)에 연결되는 혼합기 유입구(120)의 일측으로 근접한 위치에 형성된다. 이 경우, 작업자가 혼합기 유입구(120)를 통하여 전극봉 조립체(140)에 접근하기가 용이해져 유지보수의 편의성을 향상시킬 수 있다.
다른 실시예로, 상기 전극봉 조립체(140)는 상기 혼합기 유입구(120)와 대향된 측에 구비될 수도 있다. 이 경우, 송풍기(700)로부터 공급되는 혼합기가 전극봉 조립체(140)에 직접적으로 공급되므로 지연 착화를 방지할 수 있는 효과가 있다.
도 10 내지 도 15를 참조하면, 상기 열교환기(200)는, 열매체 유입구(211)와 열매체 배출구(212)가 형성되어 열매체가 유입 및 배출되는 외통(210), 상기 외통(210)과의 사이에 열매체의 유로가 형성되도록 상기 외통(210)의 내측에 결합되고, 평판형 버너(130)가 안착되어 연소실(C)을 형성하는 상관판(220), 상기 연소실(C)에서 발생된 연소가스가 내부를 따라 유동하며 상기 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 복수의 튜브(230) 및 상기 튜브(230)의 내측에 결합되어 상기 연소가스의 유동에 난류의 발생을 유도함과 아울러 튜브(230)를 지지하는 터뷸레이터(240,250,280,290)를 구비한 튜브 조립체(1000-1,1000-2,1000-3), 상기 튜브 조립체(1000-1,1000-2,1000-3)를 지지하며 응축수받이(300)에 결합되는 하관판(270)을 포함하여 구성된다. 상기 튜브 조립체(1000-1,1000-2,1000-3)의 실시예들의 구성 및 작용은 후술하기로 한다.
상기 튜브(230)의 외측면에는 열매체의 유동 방향이 반경방향 내측과 외측으로 교대로 전환되도록 열매체의 유동을 안내하기 위한 다단의 격막(261,262,263)이 상하로 이격되어 구비되며, 상기 다단의 격막(261,262,263)은 지지대(264)에 의해 고정 지지된다. 상기 복수의 튜브(230)는 상기 연소실(C)에서 발생된 연소가스가 하방향으로 유동하도록 수직 방향으로 설치되되, 원주방향으로 이격되며 방사상으로 배치된다.
본 실시예에서, 상기 다단의 격막은, 플레이트 형상의 상부 격막(261)과 중간부 격막(262) 및 하부 격막(263)으로 구성된다. 도 13의 (a)를 참조하면, 상기 상부 격막(261)에는 튜브(230)가 삽입되는 튜브 삽입구(261a)와, 중앙에 열매체가 통과하는 개구부(261b)가 형성된다. 도 13의 (b)를 참조하면, 상기 중간부 격막(262)에는 튜브 삽입구(262b)가 튜브(230)의 외측면과 유격을 두고 형성되어 상기 튜브 삽입구(262b)와 튜브(230)에 형성된 유격을 통해 열매체가 유동하게 된다. 중간부 격막(262)의 중앙부(262b)는 막힌 구조로 이루어져 있다. 일실시예로, 상기 튜브 삽입구(262b)에는 두 개의 튜브(230)가 양측으로 이격되어 삽입된 구조로 구성될 수 있다. 도 13의 (c)를 참조하면, 상기 하부 격막(263)은 상부 격막(261)과 동일한 구조의 튜브 삽입구(263a)와 중앙에 개구부(263b)가 형성되어 있다.
이와 같은 다단 격막(261,262,263) 구조에 의하면, 도 14와 도 15에서 화살표로 나타낸 바와 같이, 열매체 유입구(211)를 통해 외통(210)의 내부로 유입된 열매체는, 하부 격막(263)의 중앙부에 형성된 개구부(263b)를 향하여 반경방향 내측으로 유동하고, 상기 개구부(263b)를 통과하여 하부 격막(263)의 상측으로 유동하는 열매체는 중간부 격막(262)에 방사상으로 형성된 튜브 삽입구(262b)의 유격 공간으로 분산되어 반경방향 외측으로 유동하며, 상기 튜브 삽입구(262b)를 통과하여 중간부 격막(262)의 상측으로 유동하는 열매체는 상부 격막(261)의 중앙에 형성된 개구부(261b)를 향하여 반경방향 내측으로 유동한 후에, 상기 개구부(261b)를 통과하여 외통(210)의 상부 일측에 형성된 열매체 배출구(212)를 통하여 배출된다.
이와 같이 열매체의 유동 방향이 반경방향의 내측과 외측으로 교대로 전환되므로, 열매체의 유동 거리가 길어져 열교환기(200)의 열교환 효율을 향상시킬 수 있으며, 종래의 열교환기에 비하여 높이를 낮추더라도 고효율의 열교환 성능을 얻을 수 있어, 열교환기(200)의 높이를 낮출 수 있는 효과가 있다. 또한, 열매체의 유속을 증가시켜 열매체의 정체시 초래될 수 있는 국부적인 과열로 인한 비등 현상을 방지할 수 있다.
이하, 도 16 내지 도 26을 참조하여, 튜브 조립체(1000-1,1000-2,1000-3)의 실시예들을 설명한다.
도 16 내지 도 22를 참조하면, 본 발명의 제1실시예에 따른 튜브 조립체(1000-1)는, 연소실(C)에서 발생하는 연소가스가 내부를 따라 유동하며 외부를 유동하는 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 튜브(230)와, 상기 연소실에 근접한 상기 튜브(230)의 상부 내측에 상기 튜브(230)와 면접촉되도록 결합되어 열전도도를 증대시킴과 아울러 상기 연소가스의 유동에 난류의 발생을 유도하는 상부 터뷸레이터(240), 및 상기 상부 터뷸레이터(240)의 하측으로 상기 튜브(230)의 내측에 결합되어 상기 연소가스의 유동에 난류의 발생을 유도하는 하부 터뷸레이터(240)를 포함하여 구성된다.
상부 터뷸레이터(240)는, 튜브(230)의 내측면에 밀착되는 튜브 접촉면(241a,241b ;241)과, 상기 튜브 접촉면(241a,241b ;241)의 절개된 부분(243a,243b ;243)에서 절곡되어 형성된 압력지지부(242a,242b ;242)를 포함하여 구성된다.
상기 튜브 접촉면(241)은 튜브(230)의 일측부의 내측면에 면접촉되는 제1 튜브 접촉면(241a)과, 튜브(230)의 타측부의 내측면에 면접촉되는 제2 튜브 접촉면(241b)이 대칭된 구조로 구성된다.
상기 압력지지부(242)는, 열매체의 수압에 의한 튜브(230)의 변형 및 파손을 방지하기 위한 구성으로서, 제1 튜브 접촉면(241a)의 제1절개부(243a) 중 일부가 절곡되어 제2 튜브 접촉면(241b)을 향하도록 돌출된 제1 압력지지부(242a)와, 제2 튜브 접촉면(241b)의 제2절개부(243b) 중 일부가 절곡되어 제1 튜브 접촉면(241a)을 향하도록 돌출된 제2 압력지지부(242b)로 구성된다.
상기 제1절개부(243a)의 절개된 면적은 제2절개부(243b)의 절개된 면적보다 크게 형성되고, 상기 제1 압력지지부(242a)의 돌출된 단부는 제2 튜브 접촉면(241b)에 접촉되고, 압력지지부(242)를 튜브(230)의 내측에 삽입하면 상기 제2 압력지지부(242b)의 돌출된 단부는 상기 제1절개부(243a)를 관통하여 튜브(230)의 내측면에 접촉되도록 구비된다.
이러한 구성에 의하면, 상기 제1 압력지지부(242a)는 수압의 작용시 제1 튜브 접촉면(241a)과 제2 튜브 접촉면(241b)의 형태를 견고하게 유지하도록 지지하고, 상기 제2 압력지지부(242b)는 제1 튜브 접촉면(241a)과 제2 튜브 접촉면(241b)에 의해 지지되는 튜브(230)를 한층 더 견고하게 지지하게 된다.
그리고, 도 22에 도시된 바와 같이, 상기 제1 압력지지부(242a)와 제2 압력지지부(242b)는 전후 방향 및 상하 방향으로 이격되어 복수로 구비되되, 상측에 위치하는 제1 압력지지부(242a')와 하측에 위치하는 제1 압력지지부(242a")는 상하 방향으로 중첩되지 않는 위치에 구비되고, 상측에 위치하는 제2 압력지지부(242b')와 하측에 위치하는 제2 압력지지부(242b") 또한 상하 방향으로 중첩되지 않는 위치에 구비된다. 이러한 구성에 의하면, 상부 터뷸레이터(240)의 전체 면적에 걸쳐서 전후 및 상하 방향으로 지그재그 형태를 이루며 구비된 제1 압력지지부(242a)와 제2 압력지지부(242b)에 의해 튜브(230)에 작용하는 수압이 고르게 분산되어 튜브(230)의 변형 및 파손을 효과적으로 방지할 수 있다.
또한, 상기 제1 압력지지부(242a)와 제2 압력지지부(242b)는, 플레이트 형상으로 이루어지되 면적이 넓은 양측면이 연소가스의 유동방향과 나란한 방향을 이루도록 배치된 구조로 이루어져, 도 21의 (a)에서 화살표로 나타낸 바와 같이 연소가스의 유동시 연소가스가 제1 압력지지부(242a)와 제2 압력지지부(242b)를 통과하는 과정에서 유동 저항을 최소화 할 수 있다.
도 18을 참조하면, 상기 하부 터뷸레이터(250)는, 튜브(230)의 내부공간을 양측으로 분할하며 상기 튜브(230)의 길이방향으로 배치된 평면부(251)와, 상기 평면부(251)의 양측면에 길이방향을 따라 이격되어 교대로 경사지게 돌출 형성된 제1가이드편(252)과 제2가이드편(253)을 포함하여 구성될 수 있다.
상기 제1가이드편(252)은 상기 평면부(251)의 일측면에 일측으로 경사지게 배치되고, 상기 제2가이드편(253)은 상기 평면부(251)의 타측면에 타측으로 경사지게 배치된다. 따라서, 상기 제1가이드편(252)과 제2가이드편(253)으로 유입된 열매체는, 각각 상기 평면부(251)의 반대측면에 인접하게 배치된 제2가이드편(253)과 제1가이드편(252)에 순차로 인계되어 상기 평면부(251)의 양측 공간을 교대로 유동하게 된다.
상기 제1가이드편(252)의 열매체 유입단은 제1연결편(252a)에 의해 상기 평면부(251)의 일측단에 연결되는 동시에 상기 평면부(251)의 일측단과 제1연결편(252a) 및 제1가이드편(252) 사이에 평면부(251)의 양측 공간으로 유체 소통이 이루어지는 제1소통구(252b)가 마련된다.
상기 제2가이드편(253)의 열매체 유입단은 제2연결편(253a)에 의해 상기 평면부(251)의 타측단에 연결되는 동시에 상기 평면부(251)의 타측단과 제2연결편(253a) 및 제2가이드편(253) 사이에 평면부(251)의 양측 공간으로 유체 소통이 이루어지는 제2소통구(253b)가 마련된다.
상기 제1가이드편(252)과 제2가이드편(253)은 상기 평면부(251)의 일부가 절개되어 각각 상기 평면부(251)의 양측으로 절곡되고, 상기 평면부(251)의 절개된 부분을 통해 상기 평면부(251)의 양측 공간으로 유체 소통이 이루어지도록 구성될 수 있다. 또한, 하부 터뷸레이터(250)의 양측면에는 각각 외측 방향으로 돌출되어 상기 튜브(230)의 대향하는 내측면에 맞닿는 지지대(253a,253b ;253)가 형성된다. 또한, 하부 터뷸레이터(250)의 상단부와 하단부에는 상기 튜브(230)의 양측면에 맞닿도록 상하로 이격되어 전방과 후방으로 돌출되며 상하로 이격되어 위치하는 제1지지부(255)와 제2지지부(256)가 각각 형성되어 있다.
도 23과 도 24를 참조하면, 본 발명의 제2실시예에 따른 튜브 조립체(1000-2)는, 연소가스가 내부를 따라 유동하며 외부를 유동하는 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 튜브(230)와, 상기 튜브(230)의 내측에 결합되어 상기 연소가스의 유동에 난류의 발생을 유도하는 터뷸레이터(280), 및 상기 튜브(230)의 내측에 형성되어, 상기 튜브(230)의 대향하는 양측면에 작용하는 외부 압력을 지지하기 위한 압력지지부를 포함하여 구성된다.
상기 압력지지부는, 상기 튜브(230)의 양측면에서 각각 상기 튜브(230)의 내측 공간으로 돌출되어 대면하는 한 쌍의 딤플(231)이 상하로 이격되어 복수로 형성된 것으로 구성된다.
상기 딤플(231)은, 튜브(230)의 내측에 상기 터뷸레이터(280)가 삽입된 후에, 튜브(230)의 외측면을 상기 튜브(230)의 내측을 향해 가압하는 공정에 의해 형성된다. 그리고, 상기 터뷸레이터(280)에는 외부 압력의 상승 시 상기 한 쌍의 딤플(231)이 관통되어 맞닿을 수 있도록 하는 복수의 홀(288)이 형성되어 있다.
이와 같이 터뷸레이터(280)가 삽입된 튜브(230)의 외측면에 딤플(231)을 형성하여 압력지지부를 구현함으로써, 별도 부품의 추가 없이도 압력지지부를 구현할 수 있게 되므로, 내압 성능이 우수한 튜브 조립체의 제작 비용을 절감할 수 있다.
그리고, 상기 터뷸레이터(280)의 상단부와 하단부에는 상기 튜브(230)의 전면과 후면에 맞닿도록 상하로 이격되어 전방과 후방으로 돌출되며 상하로 이격되어 위치하는 제1지지편(286a,286b ;286)과 제2지지편(287a,287b ;287)이 각각 형성되어 있다.
도 24에서 미설명부호 281은 평면부, 282는 제1가이드편, 282a는 제1연결편, 282b는 제1소통구, 283는 제2가이드편, 283a는 제2연결편, 283b는 제2소통구, 284는 제1지지부, 285는 제2지지부를 나타낸 것으로, 전술한 실시예에서 대응되는 명칭의 구성과 동일한 기능을 한다.
도 25를 참조하면, 본 발명의 제3실시예에 따른 튜브 조립체(1000-3)를 구성하는 터뷸레이터(290)는, 연소가스의 유입측에 구비되는 상부 터뷸레이터(290a)와, 연소가스의 배출측에 구비되는 하부 터뷸레이터(190b)가 일체형 구조로 이루어지되, 하부 터뷸레이터(290b)와 튜브(230)의 내측면 사이의 유로 면적은, 상부 터뷸레이터(290a)와 튜브(230)의 내측면 사이의 유로 면적보다 작게 형성되도록 하부 터뷸레이터(290b)는 상부 터뷸레이터(290a)에 비해 상기 튜브(230)의 내측에서 열매체와 접촉하는 면적이 더 크게 형성될 수 있다.
일실시예로, 하부 터뷸레이터(290b)에 형성된 복수의 제1가이드편(292)과 제2가이드편(293)이 상하로 이격된 간격(L2)은, 상부 터뷸레이터(290a)에 형성된 복수의 제1가이드편(292)과 제2가이드편(293)이 상하로 이격된 간격(L1)에 비해 보다 조밀한 간격으로 배치되도록 구성할 수 있다.
이 경우, 상기 터뷸레이터(290)에 형성된 복수의 제1가이드편(292)과 제2가이드편(293)의 상하로 이격된 간격은 연소가스의 유입측에서 연소가스의 배출측으로 갈수록 이격되는 간격이 점차 좁아지도록 형성될 수 있다.
이와 같은 구성에 의하면, 고온 상태인 튜브(230)의 상부를 통과하는 연소가스의 유로 면적을 크게 구성하여 연소가스의 유동저항을 줄이면서도 충분한 열교환이 이루어지도록 하고, 열교환을 거치면서 상대적으로 저온 상태인 튜브(230)의 하부를 통과하는 연소가스의 유로 면적은 상대적으로 작게 구성하여 연소가스가 체류하는 시간을 증대시킴으로써, 열교환 효율을 향상시킬 수 있다.
도 25에서 미설명부호 291은 평면부, 292a는 제1연결편, 292b는 제1소통구, 293a는 제2연결편, 293b는 제2소통구, 294는 제1지지부, 295는 제2지지부, 295와 296 및 297은 지지편을 각각 나타낸 것으로, 전술한 실시예에서 대응되는 명칭의 구성과 동일한 기능을 한다.
도 26을 참조하면, 튜브(230)의 내측에는 열매체의 수압을 지지하기 위한 지지부가 추가로 구비될 수 있다.
상기 지지부는, 도 26의 (a)에 도시된 바와 같이 양단이 튜브(230)의 내측면에 고정되는 일자형 지지대(232), 도 26의 (b)와 (c)에 도시된 바와 같이 양단이 절곡되어 튜브(230)의 내측면에 고정되는 지지대(233)로 구성할 수 있다.
도 26의 (a)와 (b)에 도시된 구조의 경우, 튜브(230)의 제작시 지지대(232,233)의 일측단은 튜브(230)가 형성될 모재에 용접하고, 모재를 튜브(230)의 형상으로 말아 가공한 후에 모재의 양측 끝단부와 지지대(232,233)의 타측단을 각각 용접하고, 지지대(232,233)의 양측으로 터뷸레이터(290)를 각각 삽입하여 결합하게 된다.
도 26의 (c)에 도시된 구조의 경우, 튜브(230)의 제작시 지지대(233)와 터뷸레이터(290)를 먼저 결합하고, 지지대(233)와 터뷸레이터(290)의 결합체를 튜브(230)의 내측에 압입하여 결합할 수 있다.
다른 실시예로, 상기 지지부는 도 26의 (d)에 도시된 바와 같이, 튜브(230)의 대응되는 양측면에서 튜브(230)의 내측을 향하여 돌출 형성된 엠보(234)로 구성할 수 있다. 이러한 구성에 의하면, 튜브(230)의 외부에서 높은 수압이 작용하는 경우 상기 대응되는 위치에 형성된 엠보(234)가 맞닿게 되어 튜브(230)의 변형을 방지할 수 있다.
이와 같이 튜브(230)의 내측에 지지부(232,233,234)가 결합됨에 따라 튜브(230)의 외측면에 열매체의 수압이 크게 작용하는 경우에도 튜브(230)의 변형을 방지할 수 있다. 따라서, 상기 지지부(232,233,234)와 결합된 튜브(230)는 보일러나 온수기 외에도 다양한 용도의 연소기기에 적용이 가능하다.
한편, 도 27 내지 도 30을 참조하면, 본 발명에 따른 연관식 보일러(1)는, 열교환기(200)를 통과하며 연소가스에 포함된 수증기가 응축되어 발생하는 응축수가 집수되어 배출되는 응축수받이(300)와, 상기 열교환기(200)의 하관판(270)과 응축수받이(300)의 연결부에 결합되어 응축수의 누수를 방지하기 위한 누수방지부재(320)를 포함하여 구성된다.
도 11을 함께 참조하면, 상기 하관판(270)은, 상기 튜브(230)의 하단부가 관통되는 복수의 튜브 삽입공(271a)이 형성되어 튜브(230)의 하단부를 지지함과 아울러 수조(B)의 바닥면을 이루는 수평부(271)와, 상기 외통(210)의 하단부에 결합되는 수직부(272)와, 상기 수평부(271)의 외측단과 상기 수직부(272)의 하단부를 연결하며 외측으로 볼록하게 만곡된 형상으로 이루어져 상기 열매체의 수압을 분산시키는 라운드부(273)을 포함하여 경판 구조로 이루어진다.
상기와 같이 하관판(270)의 수평부(271)와 수직부(272)를 연결하는 코너에는 외측으로 볼록하게 만곡된 형상의 라운드부(273)를 형성함으로써, 열매체의 수압을 분산시킬 수 있어 하관판(270)의 내수압 성능을 향상시켜 하관판(270)의 변형을 최소화함으로써 내구성을 향상시킬 수 있다.
이하, 응축수받이(300) 및 누수방지부재(320)의 결합 구조를 설명한다.
도 29와 도 30을 참조하면, 상기 누수방지부재(320)는 하관판(270)의 테두리부와 응축수받이(300)의 테두리부 사이에 개재되어 응축수의 누수를 방지하는 기능을 한다. 상기 누수방지부재(320)의 몸체(321)는 하관판(270)의 라운드부(273)와 수직부(272)의 하부를 감싸는 형태로 구비되어, 상기 하관판(270)의 수평부(271)에 맺힌 응축수(CW)는 상기 몸체(321)의 하부에서 일측으로 연장 형성된 바닥부(233)에 의해 가로막혀 측방향으로의 이동이 차단되며 하측으로 낙하될 수 있다.
한편, 상기 누수방지부재(320)의 내측면(321a)에는 하관판(270)의 외측면을 향하는 방향으로 돌출된 밀착돌기(322)가 형성될 수 있다. 상기 밀착돌기(322)는 상기 누수방지부재(320)의 내측면(321a)에 상하로 이격된 위치에 복수의 밀착돌기(322a,322b,322c,322d,322e,322f)로 형성될 수 있다.
이와 같은 밀착돌기(322)의 구성에 의하면, 수압의 작용시 수압이 작용하는 방향과 반대방향으로 돌출된 누수방지부재(320)의 밀착돌기(322)가 하관판(270)의 외측면에 밀착되어 응축수(CW)가 하관판(270)과 누수방지부재(320) 사이의 틈새로 침투되어 누수되는 현상을 효과적으로 방지할 수 있다. 또한 밀착돌기(322)를 상하로 이격된 위치에 복수로 형성할 경우, 응축수(CW)의 누수를 보다 확실하게 방지할 수 있다.
상기 응축수받이(300)의 테두리부에는 상기 누수방지부재(320)를 지지하는 제1플랜지부(301)가 구비되고, 상기 누수방지부재(320)와 상기 제1플랜지부(301)에는 대응되는 위치에 상호 체결되는 체결돌기(301a)와 체결홈(323a)이 형성된다. 또한, 상기 응축수받이(300)의 테두리부에는, 상기 제1플랜지부(301)의 외측단에서 상측으로 연장되며 상기 누수방지부재(320)의 외측면에 밀착되는 연장부(302)와, 상기 연장부(302)의 끝단에서 외측으로 연장되는 제2플랜지부(303)를 더 포함하고, 상기 누수방지부재(320)의 상부와 상기 제2플랜지부(303)에는, 대응되는 위치에 상호 끼움되는 끼움돌기(324a)와 끼움홈(324b)이 형성된다. 이와 같은 구성에 의하면, 응축수(CW)의 누수를 차단함과 동시에 누수방지부재(320)의 위치를 견고하게 고정시킬 수 있다.
한편, 도 28을 참조하면, 상기 응축수받이(300)의 내부에는 열교환기(200)를 통과한 연소가스가 상기 응축수받이(300)의 전체 영역에 균일하게 분배되어 배출되도록 다수개의 타공(331a,331b ;331)이 형성된 배기 가이드(330)가 구비된다. 상기 타공(331)의 크기는 연소가스의 유동방향을 고려하여 서로 다른 크기로 형성할 수 있다.
또한, 상기 응축수받이(300)의 바닥면에는 상기 배기 가이드(330)의 타공(331)을 통과한 연소가스가 응축수받이(300)의 일측 하부에 형성된 응축수 배출구(310) 측으로 유동하도록 유도하기 위한 계단부(304)가 형성되어, 도 30에서 응축수의 배출방향인 점선 화살표와 연소가스 유동방향인 실선 화살표로 나타낸 바와 같이 응축수받이(300) 내부에서 상기 응축수의 배출과 상기 연소가스의 유동이 동일한 방향을 향하도록 형성된다. 이러한 구성에 의하면, 배기가스가 유동하는 방향으로 응축수가 유도되어 응축수의 고임 현상에 의한 하관판(270)의 부식을 방지함과 아울러 응축수를 응축수 배출구(310) 측으로 유도하여 원활하게 배출할 수 있다.
한편, 도 31 내지 도 38에 도시된 바와 같이, 본 발명의 연관식 보일러(1)는, 상기 믹스챔버(100)에 공급되는 연소용 공기와 가스가 예혼합되는 공간이 내부에 마련된 예혼합실(500)과, 상기 예혼합실(500)을 통과하는 공기와 가스의 흐름 통로를 개폐하여 혼합기의 공급 유량을 조절하는 혼합기 조절부(600)를 더 포함하여 구성된다. 상기 예혼합실(500)의 내부는 상기 공기와 가스가 예혼합되는 공간이 벤츄리 구조로 다단 구획되고, 상기 예혼합실(500) 내부로 공급되는 가스의 흐름 방향은 상기 예혼합실 내부로 공급되는 공기의 흐름 방향과 나란하게 형성된다.
일실시예로, 상기 예혼합실(500)은 칸막이부재(501)를 사이에 두고 제1통로(510)와 제2통로(520)가 양측으로 분할 형성되고, 상기 제1통로(510)에 연결되는 공기 및 가스의 흐름 통로는 상시 개방 상태에 있고, 상기 제2통로(520)에 연결되는 공기 및 가스의 흐름 통로는 상기 혼합기 조절부(600)에 의해 개폐되도록 구성된다.
도 33을 참조하면, 상기 예혼합실(500)의 일측 상부에는 제1가스공급구(530)가 구비되고, 상기 제1가스공급구(530)로 공급된 가스는 제1공간(531)과 제1가스배출구(532)를 통하여 제1통로(510)에 공급된다. 상기 예혼합실(500)의 일측 하부에는 제2가스공급구(540)가 구비되고, 상기 제2가스공급구(540)로 공급된 가스는 제2공간(541)과 연통구(542)와 제3공간(543) 및 제2가스배출구(544)를 통하여 제2통로(520)에 공급된다. 상기 제2공간(541)과 제3공간(543)은 공간적으로 분리되어 상기 연통구(542)의 개방시 상호 연통되며, 상기 제2공간(541)과 제3공간(543)의 일측면은 고정판(502)에 의해 밀폐된다. 상기 연통구(542)는 후술되는 혼합기 조절부(600)의 제2개폐부재(650)에 의해 개폐된다.
상기 제1통로(510)와 제2통로(520)에는 공기유입구(800)가 연결된다.
상기 제1통로(510)에는 제1가스공급구(530)로부터 공급되는 가스를 상기 제1통로(510)의 스로트부에 분배시켜 공급하는 제1가스분배부재(550)가 결합되고, 상기 제2통로(520)에는 제2가스공급구(540)로부터 공급되는 가스를 상기 제2통로(520)의 스로트부에 분배시켜 공급하는 제2가스분배부재(560)가 결합된다.
도 34를 참조하면, 상기 제1가스분배부재(550)의 하부에는 제1통로(510)에 공기의 유동방향과 나란한 방향으로 가스를 분배하여 공급하기 위한 다수개의 제1분배구(551)가 둘레방향을 따라 이격되어 형성되고, 상기 제2가스분배부재(560)의 하부에는 제2통로(520)에 공기의 유동방향과 나란한 방향으로 가스를 분배하여 공급하기 위한 다수개의 제2분배구(561)가 둘레방향을 따라 이격되어 형성된다.
도 34 내지 도 38을 참조하면, 상기 제1가스분배부재(550)는 제1통로(510)의 내측면과 소정의 제1유격 공간(S1)을 두고 결합되고, 상기 제1가스배출구(532)를 통해 배출된 가스는 상기 제1유격 공간(S1)을 경유한 후에 상기 제1분배구(551)를 통하여 제1공간(510)으로 공급된다. 상기 제2가스분배부재(560)는 제2통로(510)의 내측면과 소정의 제2유격 공간(S2)을 두고 결합되고, 상기 제2가스배출구(544)를 통해 배출된 가스는 상기 제2유격 공간(S2)을 경유한 후에 상기 제2분배구(561)를 통하여 제2공간(520)으로 공급된다.
도 32를 참조하면, 상기 혼합기 조절부(600)는, 상기 제2통로(520)를 통과하는 공기의 흐름 통로를 개폐하는 제1개폐부재(640)와, 상기 제2통로(520)에 연결되는 가스의 흐름 통로인 상기 연통구(542)를 개폐하는 제2개폐부재(650)를 포함하고, 상기 제1개폐부재(640)와 제2개폐부재(650)의 개폐동작은 연동하여 동시에 이루어지도록 구성된다.
상기 제1개폐부재(640)는, 구동부(610)인 모터(611)의 회전축(612)에 결합되어 상기 제2통로(520)에 횡방향으로 배치된 몸체(641)와, 상기 몸체(641)의 외측면에 대향되도록 결합되며 상기 제2통로(520) 횡단면적에 대응되는 크기로 형성된 날개부(643)를 포함한다. 상기 구동부(610)는 제1브라켓(620)에 결합되어 고정되고, 상기 제1개폐부재(640)는 예혼합실(500)의 일측면에 조립되는 제2브라켓(630)에 결합되어 고정된다.
상기 제1개폐부재(640)의 몸체(641)에는, 상기 제2개폐부재(650)를 향하여 돌출된 제1첨단부(642a)와, 그 반대방향으로 함몰되어 원주방향을 따라 교대로 형성된 제1바닥부(642b)와, 상기 제1첨단부(642a)와 제1바닥부(642b) 사이 구간에는 형성된 제1경사부(642c)로 이루어진 제1캠 형상부(642)가 구비된다. 도 32에는 설명의 편의를 위하여 제1개폐부재(640)와 제2개폐부재(650)를 서로 다른 방향에서 바라본 모습을 함께 도시하였다.
상기 제2개폐부재(650)에는 상기 제1첨단부(642a)와 제1바닥부(642b) 및 제1경사부(642c)에 대응되는 형상의 제2첨단부(652a)와 제2바닥부(652b) 및 제2경사부(652c)로 이루어진 제2캠 형상부(652)가 구비된다. 상기 제2캠 형상부(652)의 중앙에는 샤프트(651)가 결합되고, 상기 샤프트(651)의 일측단에는 상기 연통구(542)를 개폐하기 위한 기밀부재(654)가 결합되며, 상기 기밀부재(654)의 일측면에는 탄성부재(655)의 일측단이 지지된다. 상기 탄성부재(655)의 타측단은 상기 연통구(542)와 대향되는 예혼합실(500)의 내측면에 지지된다. 따라서, 상기 제2개폐부재(650)는 탄성부재(655)에 의해 상기 제1개폐부재(640) 측으로 가압되도록 탄성지지된다.
상기 제2개폐부재(650)는 상기 제2캠 형상부(652)가 형성된 몸체가 왕복 이동되도록 안내하는 가이드부재(653)를 더 포함하고, 상기 제2개폐부재(650)의 몸체와 상기 가이드부재(653)에는 대응되는 위치에 가이드홈(652d)과 가이드리브(653a)가 형성되어 있다.
이하, 도 35 내지 도 38을 참조하여 혼합기 조절부(600)의 작용을 설명한다.
도 35와 도 36에 도시된 바와 같이, 연관식 보일러(1)에 설정된 부하가 저출력 상태인 경우, 구동부(610)의 구동에 의해 제1개폐부재(640)의 제1첨단부(642a)와 제2개폐부재(650)의 제2바닥부(652b)가 서로 접촉되는 동시에 제1개폐부재(640)의 제1바닥부(642b)와 제2개폐부재(650)의 제2첨단부(652a)가 서로 접촉되고, 이때 상기 제1개폐부재(640)의 날개부(643)는 제2통로(520)의 횡단면과 나란한 방향으로 배치되어 상기 제2통로(520)의 공기 흐름이 차단됨과 동시에, 상기 제2개폐부재(650)의 기밀부재(654)는 탄성부재(655)의 탄성력에 의해 일측(도 36에서 우측)으로 이동되어 상기 연통구(542)에 밀착됨으로써 상기 제2통로(520)의 가스 흐름이 차단된다. 이와 같이 저출력 상태인 경우에는 제1통로(510)를 통해서만 공기와 가스가 공급된다.
도 37과 도 38에 도시된 바와 같이, 연관식 보일러(1)에 설정된 부하가 고출력 상태인 경우, 구동부(610)의 구동에 의해 상기 제1개폐부재(640)의 제1첨단부(642a)와 상기 제2개폐부재(652)의 제2첨단부(652a)가 서로 접촉되고, 이때 상기 제1개폐부재(640)의 날개부(643)는 제2통로(520)의 횡단면과 수직한 방향으로 배치되어 상기 제2통로(520)가 개방됨과 동시에, 상기 제2개폐부재(650)의 기밀부재(654)는 탄성부재(655)를 압축하면서 반대측(도 38에서 좌측)으로 이동되어 상기 연통구(542)로부터 이격됨으로써 상기 제2통로(520)에 연결되는 가스 흐름 통로가 개방된다. 이와 같이 고출력 상태인 경우에는 제1통로(510) 뿐만 아니라 제2통로(520)를 통해서도 공기와 가스가 공급된다.
상기 제1통로(510)와 제2통로(520)로 유입되는 공기와 가스의 공급 유량은 설정된 난방 또는 온수 부하에 비례하여 송풍기(700)의 회전수와 가스공급밸브(미도시됨)의 개도량에 따라 조절되는 것으로 구성될 수 있다.
상기와 같이 예혼합실(600)의 제1통로(510)와 제2통로(520)를 통과하는 공기의 흐름 방향과 가스의 분출 방향이 동일한 방향이 되도록 구성함으로써 제1통로(510)와 제2통로(520)로 공급되는 가스는 공기흐름의 영향을 받지 않고 설정된 공기와 가스비를 갖는 정확한 유량의 혼합기를 얻을 수 있게 된다.
상기와 같이 본 발명에서는 예혼합실(500)을 벤츄리 구조를 갖는 제1통로(510)와 제2통로(520)의 이중 구조로 형성하고, 난방 또는 온수 부하의 크기를 고려하여, 상대적으로 저출력 영역인 경우에는 제1통로(510)에서만 예혼합이 이루어지고 제2통로(520)에서는 예혼합이 중단되도록 구성하고, 상대적으로 고출력 영역인 경우에는 제1통로(510)와 제2통로(520) 모두에서 예혼합이 이루어지도록 함으로써 턴다운비(TDR)를 높일 수 있게 된다.
또한, 본 발명에서는 공기의 흐름 방향과 가스의 흐름 방향을 일치시켜 제2통로(520)를 개폐하는 과정에서 공기와 가스의 혼합 변화량이 최소화되도록 구성함으로써, 저부하 영역에서도 연소상태를 안정화시킬 수 있으며, 이에 따라 완전 연소에 의해 연소 효율을 향상시키고 공해물질의 배출량을 줄일 수 있게 된다.
이상 설명한 바와 같이, 본 발명은 상술한 실시예에 한정되지 아니하며, 청구범위에서 청구되는 본 발명의 기술적 사상에 벗어남 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 자명한 변형실시가 가능하며, 이러한 변형실시는 본 발명의 범위에 속한다.

Claims (18)

  1. 연소용 가스와 공기가 혼합되는 혼합공간과, 납작한 형상의 믹스챔버 몸체, 및 연소실의 상측에 수평방향으로 배치된 평판형 버너를 구비한 믹스챔버;
    열매체가 유입 및 배출되고 열매체가 수용되는 수조의 외벽을 이루는 외통과, 상기 연소실에서 발생하는 연소가스가 내부를 따라 유동하며 외부를 유동하는 열매체와 열교환되도록 하는 납작한 형상으로 이루어진 복수의 튜브와, 상기 튜브의 내측에 결합되어 상기 연소가스의 유동에 난류 발생을 유도하는 터뷸레이터와, 상기 외통과 상기 튜브 사이에 구비되어 열매체의 유동 방향이 반경방향 내측과 외측으로 교대로 전환되도록 유도하는 다단의 격막을 구비한 열교환기;
    를 포함하는 연관식 보일러.
  2. 제1항에 있어서,
    상기 외통과의 사이에 열매체 유로가 형성되도록 상기 외통의 내측에 결합되고 상기 연소실을 형성하는 경판 구조의 상관판과,
    상기 튜브의 하단부를 지지함과 아울러 상기 수조의 바닥면을 이루는 경판 구조의 하관판을 더 포함하는 연관식 보일러.
  3. 제1항에 있어서,
    상기 믹스챔버 몸체의 저면과 상기 평판형 버너의 상면 사이의 이격된 공간은 납작한 원반형으로 형성된 것을 특징으로 하는 연관식 보일러.
  4. 제1항에 있어서,
    상기 상관판의 상부에는 상기 수조에 저장된 열매체의 수압을 지지하기 위한 라운드부가 형성된 것을 특징으로 하는 연관식 보일러.
  5. 제2항에 있어서,
    상기 상관판에 삽입되는 상기 평판형 버너의 저면과 상기 상관판의 바닥면 사이의 높이는, 상기 평판형 버너에서 발생하는 화염의 끝단이 상기 상관판 바닥면에서 일정거리 이격되도록 설정되는 것을 특징으로 하는 연관식 보일러.
  6. 제2항에 있어서,
    상기 하관판은, 상기 튜브의 하단부를 지지함과 아울러 상기 수조의 바닥면을 이루는 수평부와, 상기 외통의 하단부의 외측면에 결합되는 수직부와, 상기 수평부의 외측단과 상기 수직부의 하단부를 연결하며 외측으로 볼록하게 만곡된 형상으로 이루어져 상기 열매체의 수압을 분산시키는 라운드부로 이루어진 것을 특징으로 하는 연관식 보일러.
  7. 제6항에 있어서,
    상기 하관판의 하측에 구비되어 상기 하관판에서 발생하는 응축수를 집수하는 응축수받이; 및
    상기 하관판의 테두리부와 상기 응축수받이의 테두리부 사이에 개재되어 응축수의 누수를 방지하기 위한 누수방지부재;
    를 포함하는 연관식 보일러.
  8. 제7항에 있어서,
    상기 누수방지부재는 상기 하관판의 라운드부와 수직부의 하부를 감싸는 형태로 구비되어,
    상기 하관판의 수평부에 맺힌 응축수는 상기 누수방지부재에 의해 가로막혀 측방향으로의 이동이 차단되며 하측으로 낙하되는 것을 특징으로 하는 연관식 보일러.
  9. 제1항에 있어서,
    상기 터뷸레이터는,
    상기 연소실에 근접한 상기 튜브의 상부 내측에 상기 튜브와 면접촉되도록 결합되어 열전도도를 증대시킴과 아울러 상기 연소가스의 유동에 난류의 발생을 유도하는 상부 터뷸레이터; 및
    상기 상부 터뷸레이터의 하측으로 상기 튜브의 내측에 결합되어 상기 연소가스의 유동에 난류의 발생을 유도하는 하부 터뷸레이터;
    로 이루어진 것을 특징으로 하는 연관식 보일러.
  10. 제9항에 있어서,
    상기 상부 터뷸레이터는,
    상기 튜브의 일측부와 대응되는 형상으로 이루어져 상기 튜브의 일측부의 내측면에 면접촉되는 제1 튜브 접촉면을 포함하는 제1부분과, 상기 튜브의 타측부와 대응되는 형상으로 이루어져 상기 튜브의 타측부의 내측면에 면접촉되는 제2 튜브 접촉면을 포함하는 제2부분으로 이루어진 것을 특징으로 하는 연관식 보일러.
  11. 제10항에 있어서,
    상기 상부 터뷸레이터에는,
    상기 제1 튜브 접촉면에서 절개된 제1절개부 중 일부가 절곡되어 상기 제2 튜브 접촉면을 향하도록 돌출된 제1 압력지지부와, 상기 제2 튜브 접촉면에서 절개된 제2절개부 중 일부가 절곡되어 상기 제1 튜브 접촉면을 향하도록 돌출된 제2 압력지지부가 형성되고,
    상기 제1 압력지지부의 돌출된 단부는 상기 제2 튜브 접촉면에 접촉되고, 상기 제2 압력지지부의 돌출된 단부는 상기 제1절개부를 관통하여 상기 튜브의 내측면에 접촉되는 것을 특징으로 하는 연관식 보일러.
  12. 제1항에 있어서,
    상기 터뷸레이터에는, 상기 튜브의 내부공간을 양측으로 분할하며 상기 튜브의 길이방향으로 배치된 평면부와, 상기 평면부의 양측면에 길이방향을 따라 이격되어 교대로 경사지게 돌출 형성된 복수의 제1가이드편과 제2가이드편을 포함하는 연관식 보일러.
  13. 제12항에 있어서,
    상기 제1가이드편은 상기 평면부의 일측면에 일측으로 경사지게 배치되고,
    상기 제2가이드편은 상기 평면부의 타측면에 타측으로 경사지게 배치되며,
    상기 제1가이드편과 제2가이드편으로 유입된 열매체는, 각각 상기 평면부의 반대측면에 근접하게 배치된 제2가이드편과 제1가이드편에 순차로 인계되어 상기 평면부의 양측 공간을 교대로 유동하는 것을 특징으로 하는 연관식 보일러.
  14. 제1항에 있어서,
    상기 터뷸레이터는, 연소가스의 유입측에 구비되는 상부 터뷸레이터와, 연소가스의 배출측에 구비되는 하부 터뷸레이터로 이루어지되,
    상기 하부 터뷸레이터에 형성된 복수의 제1가이드편과 제2가이드편이 상하로 이격된 간격은, 상부 터뷸레이터에 형성된 복수의 제1가이드편과 제2가이드편이 상하로 이격된 간격에 비해 보다 조밀한 간격으로 배치된 것을 특징으로 하는 연관식 보일러.
  15. 제1항에 있어서,
    상기 터뷸레이터에는 상기 튜브의 양측면에 맞닿도록 상하로 이격되어 전방과 후방으로 돌출되며 상하로 이격되어 위치하는 지지부가 각각 형성된 것을 특징으로 하는 연관식 보일러.
  16. 제1항에 있어서,
    상기 튜브의 내측에 형성되어, 상기 튜브의 대향하는 양측면에 작용하는 외부 압력을 지지하기 위한 압력지지부를 더 포함하는 연관식 보일러.
  17. 제1항에 있어서,
    상기 복수의 튜브는 상기 연소실에서 발생된 연소가스가 하방향으로 유동하도록 수직 방향으로 설치되되, 원주방향으로 이격되며 방사상으로 배치된 것을 특징으로 하는 연관식 보일러.
  18. 제17항에 있어서,
    상기 다단의 격막은, 플레이트 형상의 상부 격막과 중간부 격막 및 하부 격막으로 이루어지되,
    상기 상부 격막과 하부 격막에는 중앙부에 열매체의 유동을 위한 개구부가 형성되고, 상기 중간부 격막에는 튜브 삽입구가 상기 튜브의 외측면과 유격을 두고 형성되어 상기 튜브 삽입구를 통해 열매체가 유동하는 것을 특징으로 하는 연관식 보일러.
PCT/KR2018/015661 2017-12-29 2018-12-11 연관식 보일러 WO2019132323A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18896857.2A EP3734182B1 (en) 2017-12-29 2018-12-11 Smoke tube boiler
US16/770,020 US20200355396A1 (en) 2017-12-29 2018-12-11 Smoke tube boiler
CA3085893A CA3085893A1 (en) 2017-12-29 2018-12-11 Smoke tube boiler
CN201880076553.1A CN111406187B (zh) 2017-12-29 2018-12-11 烟管式锅炉

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170183572A KR102364011B1 (ko) 2017-12-29 2017-12-29 연관식 보일러
KR10-2017-0183572 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019132323A1 true WO2019132323A1 (ko) 2019-07-04

Family

ID=67063912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015661 WO2019132323A1 (ko) 2017-12-29 2018-12-11 연관식 보일러

Country Status (6)

Country Link
US (1) US20200355396A1 (ko)
EP (1) EP3734182B1 (ko)
KR (1) KR102364011B1 (ko)
CN (1) CN111406187B (ko)
CA (1) CA3085893A1 (ko)
WO (1) WO2019132323A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399003B1 (ko) * 2020-12-23 2022-05-18 폴리텍 주식회사 휴대용 보일러
WO2022157796A1 (en) * 2021-01-23 2022-07-28 Jhaveri Devang A method of chemical reaction in a heat exchanger reactor.
CN113390186B (zh) * 2021-07-16 2022-06-17 廊坊劲华锅炉有限公司 一体式承压冷凝锅炉
KR20230095738A (ko) 2021-12-22 2023-06-29 박태진 반려견 헬스케어 수트

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588544U (ja) * 1991-03-08 1993-12-03 憲 大島 生薬用乾留装置
KR20050036152A (ko) 2003-10-15 2005-04-20 린나이코리아 주식회사 콘덴싱 보일러의 응축수받이와 배기덕트 조립구조
JP2006038304A (ja) * 2004-07-23 2006-02-09 Usui Kokusai Sangyo Kaisha Ltd 流体攪拌用フィンおよびその製造方法並びに該フィンを内装した伝熱管および熱交換器または熱交換型ガス冷却装置
KR100575187B1 (ko) 2004-06-30 2006-05-03 주식회사 롯데기공 콘덴싱 가스보일러용 열교환기의 도어
KR100581580B1 (ko) 2004-06-30 2006-05-22 주식회사 롯데기공 보일러용 열교환기의 고압애자 결합구조
KR100805630B1 (ko) 2006-12-01 2008-02-20 주식회사 경동나비엔 가스보일러의 연소장치
EP2437022A2 (en) 2010-10-01 2012-04-04 Aic S.A. Gas-to-liquid pipe heat exchanger, in particular for domestic boiler
EP2508834A2 (en) 2011-04-07 2012-10-10 Aic S.A. Heat exchanger
KR20140084599A (ko) * 2012-12-27 2014-07-07 주식회사 경동나비엔 버너 플랜지의 과열이 방지되는 가스 보일러
KR101438350B1 (ko) * 2013-04-24 2014-09-04 주식회사 경동나비엔 열교환기 튜브에 삽입되는 개선된 난류 촉진 구조물
KR20170113501A (ko) * 2017-09-08 2017-10-12 주식회사 경동나비엔 관체형 열교환기

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852042A (en) * 1951-04-07 1958-09-16 Garrett Corp Turbulator
US3942765A (en) * 1974-09-03 1976-03-09 Hazen Research, Inc. Static mixing apparatus
GB1578663A (en) * 1978-01-24 1980-11-05 Stelrad Group Ltd Boiler unit
US4336838A (en) * 1981-06-19 1982-06-29 Ely Richard J Heat exchange turbulator
US4577681A (en) * 1984-10-18 1986-03-25 A. O. Smith Corporation Heat exchanger having a turbulator construction
DE3533863A1 (de) * 1985-09-23 1987-04-02 Buderus Ag Gasbefeuerter zentralheizungskessel
US4981112A (en) * 1989-12-06 1991-01-01 Pvi Industries, Inc. Potable hot water storage vessel and method of manufacture
GB9503065D0 (en) * 1995-02-16 1995-04-05 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
US7117686B2 (en) * 2003-12-11 2006-10-10 Utc Power, Llc High-efficiency turbulators for high-stage generator of absorption chiller/heater
US8286594B2 (en) * 2008-10-16 2012-10-16 Lochinvar, Llc Gas fired modulating water heating appliance with dual combustion air premix blowers
KR101504394B1 (ko) * 2012-01-19 2015-03-19 최성환 다단 구조를 갖는 저탕식 콘덴싱 보일러
US10281173B2 (en) * 2012-06-28 2019-05-07 Purpose Co., Ltd. Burner, combustion apparatus, method for combustion, method for controlling combustion, recording medium, and water heater
KR101606264B1 (ko) * 2014-04-22 2016-03-24 최영환 순환 가이드를 구비한 열교환기
KR101620208B1 (ko) * 2014-10-21 2016-05-12 최영환 타원형 열교환관을 포함한 저탕식 열교환기
DE202014105238U1 (de) * 2014-10-31 2014-11-12 Lasco Heutechnik Gmbh Mobile Festbrennstofffeuerungsanlage
US10036570B2 (en) * 2015-01-14 2018-07-31 Rheem Manufacturing Company Heat transfer baffle arrangement for fuel-burning water heater
KR101938398B1 (ko) * 2016-03-28 2019-01-15 주식회사 경동나비엔 관체형 열교환기

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588544U (ja) * 1991-03-08 1993-12-03 憲 大島 生薬用乾留装置
KR20050036152A (ko) 2003-10-15 2005-04-20 린나이코리아 주식회사 콘덴싱 보일러의 응축수받이와 배기덕트 조립구조
KR100575187B1 (ko) 2004-06-30 2006-05-03 주식회사 롯데기공 콘덴싱 가스보일러용 열교환기의 도어
KR100581580B1 (ko) 2004-06-30 2006-05-22 주식회사 롯데기공 보일러용 열교환기의 고압애자 결합구조
JP2006038304A (ja) * 2004-07-23 2006-02-09 Usui Kokusai Sangyo Kaisha Ltd 流体攪拌用フィンおよびその製造方法並びに該フィンを内装した伝熱管および熱交換器または熱交換型ガス冷却装置
KR100805630B1 (ko) 2006-12-01 2008-02-20 주식회사 경동나비엔 가스보일러의 연소장치
EP2437022A2 (en) 2010-10-01 2012-04-04 Aic S.A. Gas-to-liquid pipe heat exchanger, in particular for domestic boiler
EP2508834A2 (en) 2011-04-07 2012-10-10 Aic S.A. Heat exchanger
KR20140084599A (ko) * 2012-12-27 2014-07-07 주식회사 경동나비엔 버너 플랜지의 과열이 방지되는 가스 보일러
KR101438350B1 (ko) * 2013-04-24 2014-09-04 주식회사 경동나비엔 열교환기 튜브에 삽입되는 개선된 난류 촉진 구조물
KR20170113501A (ko) * 2017-09-08 2017-10-12 주식회사 경동나비엔 관체형 열교환기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734182A4

Also Published As

Publication number Publication date
EP3734182A4 (en) 2021-10-06
KR20190081207A (ko) 2019-07-09
CA3085893A1 (en) 2019-07-04
CN111406187B (zh) 2021-12-28
CN111406187A (zh) 2020-07-10
KR102364011B1 (ko) 2022-02-17
EP3734182B1 (en) 2024-05-01
EP3734182A1 (en) 2020-11-04
US20200355396A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019132323A1 (ko) 연관식 보일러
WO2019132324A1 (ko) 연관식 보일러
WO2017065540A1 (en) Gas burner apparatus and cooking apparatus including the same
CN112682788B (zh) 燃烧器及燃气热水器
US5509403A (en) Gas fires cooking assembly with plate conductive to heat radiation
RU2068154C1 (ru) Горелка с предварительным перемешиванием
US8105076B2 (en) High efficiency radiant heater
KR20180079205A (ko) 연관식 보일러
US4304549A (en) Recuperator burner for industrial furnaces
US4210411A (en) Self-recuperative burner
US5344310A (en) Burner for an industrial furnace
PL128772B1 (en) Industrial burner with air preheating
WO2019235780A1 (ko) 열교환기 유닛 및 이를 이용한 콘덴싱 보일러
WO2018124824A1 (ko) 연관식 보일러
US20090145419A1 (en) Furnace heat exchanger
WO2018048226A1 (ko) 관체형 열교환기용 튜브 조립체 및 이를 포함하는 관체형 열교환기
SK7532000A3 (en) Ceramic burner for gases and regenerative heat generator provided with the said burner
KR20120136019A (ko) 연소실 냉각 구조를 갖는 연소장치
WO2012144766A2 (ko) 연소실 냉각장치 및 연소실 냉각 구조를 갖는 연소장치
WO2021015456A1 (ko) 열교환기
CN110553258B (zh) 一种燃烧器、应用该燃烧器的燃气热水器以及控制方法
EP0655579A1 (en) Burner appliance
KR20100136755A (ko) 소둔로용 가열장치
KR100466203B1 (ko) 라디안트튜브 버너의 연소장치
KR200260897Y1 (ko) 공기조절변을 갖춘 화염직진형 3단 연소버너

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3085893

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896857

Country of ref document: EP

Effective date: 20200729