WO2019132290A1 - Battery module having improved cooling structure - Google Patents

Battery module having improved cooling structure Download PDF

Info

Publication number
WO2019132290A1
WO2019132290A1 PCT/KR2018/015340 KR2018015340W WO2019132290A1 WO 2019132290 A1 WO2019132290 A1 WO 2019132290A1 KR 2018015340 W KR2018015340 W KR 2018015340W WO 2019132290 A1 WO2019132290 A1 WO 2019132290A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
cell stack
base plate
battery
battery module
Prior art date
Application number
PCT/KR2018/015340
Other languages
French (fr)
Korean (ko)
Inventor
서성원
강달모
문정오
이윤구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18897735.9A priority Critical patent/EP3671946B1/en
Priority to JP2019568612A priority patent/JP7045605B2/en
Priority to US16/618,534 priority patent/US11264668B2/en
Priority to CN201880040567.8A priority patent/CN110770965B/en
Priority to PL18897735.9T priority patent/PL3671946T3/en
Priority to ES18897735T priority patent/ES2946145T3/en
Publication of WO2019132290A1 publication Critical patent/WO2019132290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module having an improved cooling structure, and more particularly, to a battery module using an insulating oil for cooling, wherein the insulating oil has a cooling structure that can be in direct contact with the battery cell, To a battery module having the battery module.
  • the secondary rechargeable batteries are nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries.
  • lithium secondary batteries have almost no memory effect compared to nickel- It is very popular because of its low self-discharge rate and high energy density.
  • the lithium secondary batteries mainly use a lithium-based oxide and a carbonaceous material as a cathode active material and an anode active material, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate each coated with such a positive electrode active material and a negative electrode active material are disposed with a separator interposed therebetween, and an outer casing, that is, a battery case, for sealingly storing the electrode assembly together with the electrolyte solution.
  • a lithium secondary battery can be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can, and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the casing.
  • secondary batteries are widely used not only in small-sized devices such as portable electronic devices, but also in medium to large-sized devices such as automobiles and electric power storage devices.
  • a large number of secondary batteries are electrically connected to increase capacity and output.
  • the pouch-type cells are often used because of the advantage that the middle and large-sized apparatuses are easy to be stacked.
  • the pouch type cell is generally packed in a battery case of a laminate sheet of aluminum and a polymer resin, the mechanical rigidity is not so large. Therefore, when constructing the battery module including a plurality of pouch type cells, a frame is often used in order to protect the secondary battery from external impact, prevent the flow thereof, and facilitate stacking.
  • the frame can be replaced with various other terms such as a cartridge.
  • the frame is formed in the shape of a square plate having an empty central portion. In this case, four side portions surround the outer periphery of the pouch type cell.
  • These frames are used to form a battery module, and the pouch-type cells can be located in an empty space formed when the frames are stacked.
  • a conventional battery module structure is shown.
  • the conventional battery module structure has a plate-like shape on the outer surface of each pair of pouch type cells 1 By applying the cooling fin 3, the cooling efficiency is increased.
  • the secondary battery may be used in a high temperature environment such as in the summer, and the secondary battery itself may also generate heat.
  • the temperature of the secondary battery may be further increased. If the temperature is higher than the proper temperature, the performance of the secondary battery may deteriorate, and there is a risk of explosion or ignition in severe cases. Therefore, by applying the cooling fin 3 so as to come into contact with the surface of the pouch type cell 1 when constructing the battery module and bringing the cooling fin 3 into contact with the cooling plate 4 located at the lower portion thereof, A configuration in which the overall temperature rise is prevented is often used.
  • the battery module is constructed by interposing between the pouch type cells 1 facing the cooling fins 3, which are typically made of a metal material, the surface of the cooling fins 3 and the surface of the learning cell 1
  • the cooling fins 3 which are typically made of a metal material
  • the surface of the cooling fins 3 and the surface of the learning cell 1 There is a problem that sufficient cooling can not be achieved in a situation where a large amount of heat is generated only by a cooling method that depends on the conductivity of the metal.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a battery module to which a cooling structure capable of direct contact between a cooling medium for cooling and a battery cell is applied, So that the cooling can be efficiently performed.
  • a battery module comprising: a cell stack body formed by stacking a plurality of battery cells; And a module housing configured to house the cell stack body and configured to include a lower housing, a pair of side housings, a pair of front and rear housings, and an upper housing that cover a lower portion, both sides, front and rear, and an upper portion of the cell stacked body
  • the lower housing comprises: a base plate which covers the entire lower surface of the cell stack body; And a spacer interposed between the cell laminate and the base plate and partially covering the lower surface of the cell laminate to form a void space between the cell laminate and the base plate; A supply pipe connected to the spacer to supply the cooling medium to the empty space through the inside of the spacer; And a discharge pipe connected to the spacer and discharging the cooling medium flowing through the hollow space and the inside of the spacer to the outside; .
  • An adhesive may be interposed between the cell stack and the spacer so that the cooling medium does not leak between the cell stack and the spacer.
  • the base plate has a coupling portion formed with coupling grooves on both sides of the base plate.
  • a coupling protrusion protruded downward is provided on the lower end of the side housing. The coupling protrusion is inserted and fixed in the coupling groove, Can be fixed to the plate.
  • the coupling portion has a protrusion protruding toward the inside of the battery module, and the protrusion is abutted against a battery cell disposed at an outermost position of the cell stack to prevent leakage between the base plate and the cell stack As shown in FIG.
  • the spacer includes: a first spacer provided on one side of the base plate in the longitudinal direction; A second spacer provided on the other side in the longitudinal direction of the base plate; And a third spacer spaced apart from and spaced apart from the first spacer and the second spacer; . ≪ / RTI >
  • the supply pipe may be connected to a first spacer flow path formed through the inside of the first spacer, and the discharge pipe may be connected to a second spacer flow path formed through the inside of the second spacer.
  • the third spacer may include a third spacer flow path formed so as to penetrate the cooling medium supplied through the first spacer to flow toward the second spacer.
  • a battery pack according to an embodiment of the present invention may be realized by connecting a plurality of battery modules according to an embodiment of the present invention, and the automobile according to an embodiment of the present invention may further include: And a battery pack according to an embodiment.
  • a battery module to which a cooling structure capable of direct contact between a cooling medium for cooling and a battery cell is applied, thereby efficiently cooling the battery module even when the amount of heat generated by application of the battery module of high capacity and / So that not only the performance of the battery module can be improved but also safety accidents such as ignition / explosion of the battery cell due to a rise in temperature can be prevented.
  • FIG. 1 is a view showing a cooling structure employed in a conventional battery module.
  • FIG. 2 is a completed perspective view showing the appearance of a battery module according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 4 is a view showing a state where a cooling medium flows on a base plate constituting a battery module according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a section taken along the line A-A 'and B-B' in Fig. 2.
  • Fig. 6 is an enlarged view of the shape of one end of Fig. 5;
  • FIG. 7 is a cross-sectional view taken along line C-C 'of FIG. 2;
  • Fig. 8 is an enlarged view of the shape of one end of Fig. 7;
  • FIG. 9 is a view showing an embodiment of a supply pipe and a spacer different from the supply pipe and the spacer shown in Fig.
  • FIG. 1 components of the battery module 10 according to an embodiment of the present invention will be schematically described with reference to FIGS. 2 and 3.
  • FIG. 1 components of the battery module 10 according to an embodiment of the present invention will be schematically described with reference to FIGS. 2 and 3.
  • FIG. 2 is a perspective view illustrating a battery module according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • a battery module 10 according to an embodiment of the present invention is implemented in a form including a cell stack 100 and a module housing 20 accommodating the same.
  • the module housing 20 also includes a lower housing 200, a pair of side housings 300, a pair of front and rear housings 400 and an upper housing 500.
  • the cell stack 100 is obtained by laminating a plurality of battery cells 110.
  • the battery cell 110 used herein is not particularly limited as long as it is a rechargeable secondary battery.
  • a pouch type battery Cells can be applied.
  • Each of the battery cells 110 may include a pair of electrode leads 111 extending to one side and the other side.
  • the electrode leads 111 include a positive electrode lead and a negative electrode lead.
  • a cooling medium such as insulating oil contacting the lower portion of the cell stack body 100 forms a space between the battery cells 110 constituting the cell stack body 100 between the stacked battery cells 110 It is preferable that it is firmly fixed / sealed by an adhesive or the like so that it can not penetrate through the upper part.
  • the electrode leads 111 may be arranged / connected such that the battery cells 110 constituting the cell stack 100 are connected in series, parallel, or a combination of serial and parallel.
  • the lower housing 200 includes a base plate 210 that covers the entire lower surface of the cell stack 100, a spacer 220 that partially covers the lower surface of the cell stack 100, A supply pipe 230 for supplying a cooling medium such as insulating oil for cooling the battery module 10 and a discharge pipe 240 connected to the spacer 220 for discharging the cooling medium to the outside .
  • a cooling medium such as insulating oil for cooling the battery module 10
  • a discharge pipe 240 connected to the spacer 220 for discharging the cooling medium to the outside .
  • the spacer 220 is interposed between the cell stack 100 and the base plate 210 so as to cover only the lower surface of the cell stack 100 so that the gap between the cell stack 100 and the base plate 210 Thereby forming an empty space. That is, the empty space corresponds to a closed space surrounded by the cell stack 100, the spacer 220, and the base plate 210.
  • the supply pipe 230 is connected to the spacer 220 from the front of the battery module 10 to supply the cooling medium to the inside of the spacer 220.
  • the cooling medium supplied to the spacer 220 is supplied to the empty space between the cell stack 100 and the base plate 210 through the flow path formed inside the spacer 220.
  • the discharge pipe 240 is connected to the spacer 220 from the rear of the battery module 10 to discharge the cooling medium flowing through the empty space and the spacer 220 to the outside.
  • Each of the pair of side housings 300 is a part that covers both sides of the cell stack 100.
  • the pair of side housings 300 is a part of the battery cell 110 constituting the cell stack 100, Facing the wide face of the body 110.
  • Such a pair of side housings 300 can also function to prevent the generation of voids between the battery cells 110 constituting the cell stack 100 by pressing the cell stack 100 on both sides .
  • the pair of front and rear housings 400 may be embodied as including a bus bar frame 410, an insulating cover 420, and front and rear plates 430, respectively.
  • the bus bar frame 410 is coupled to the cell stack 100 from the front or rear of the cell stack 100.
  • the electrode leads 111 are inserted into the bus bar frame 410, The bending operation of the electrode lead 111 for the electrical connection between the electrodes is facilitated. That is, the electrode leads 111 are inserted through the insertion slits formed in the bus bar frame 410, and then bent. Thus, the electrode leads 111 are connected to each other by welding or the like.
  • the insulating cover 420 is inserted / bent into the bus bar frame 410 to prevent contact between the electrode leads 111 which are not in contact with each other among the electrode leads 111 coupled to each other And is coupled onto the bus bar frame 410 to prevent a short due to an external factor.
  • the front and rear plates 430 are parts to be coupled onto the insulating cover 420 and serve to protect internal components such as the cell stack 100, the bus bar frame 410 and the insulating cover 420.
  • the upper housing 500 includes a sensing electrode 510 electrically connected to the electrode leads 111 inserted and bent through the bus bar frame 410 disposed above the cell stack 100, And a top plate 520 coupled to an upper portion of the sensing unit 510 to form an outermost layer of the upper housing 500.
  • FIG. 4 is a view showing a state where a cooling medium flows on a base plate constituting a battery module according to an embodiment of the present invention
  • FIG. 5 is a sectional view taken along AA 'and B-B' And Fig. 6 is an enlarged view of the shape of one end of Fig. 7 is a cross-sectional view taken along line C-C 'of Fig. 2
  • Fig. 8 is an enlarged view of a shape of one end of Fig.
  • a coupling portion 211 having an engagement groove G formed at a predetermined depth from an upper portion to a lower portion is formed at both side ends of the base plate 210 Respectively.
  • the side housing 300 includes a coupling protrusion 310 protruding downward and a coupling protrusion 310 inserted into the coupling groove G to fix the side housing 300 to the base plate 300. [ 210).
  • the protruding portion P has a gap between the base plate 210 and the cell stack 100 so that the cooling medium is leaked to the outside of the cell stack 100.
  • the protruding portion P protrudes toward the inside of the battery module, And has a shape extending to abut the battery cell 110 disposed at the outermost portion of the cell stack 100 so as to prevent leakage.
  • An adhesive is interposed between the cell stack 100 and the spacer 220 so as to prevent leakage of a cooling medium such as an insulating oil between the cell stack 100 and the spacer 220.
  • the spacers 220 may include a plurality of unit spacers spaced apart from each other.
  • the spacer 220 may include a first spacer 221 provided at one longitudinal end of the base plate 210, a second spacer (not shown) provided at the other longitudinal end of the base plate 210 222 and a third spacer 223 spaced apart from and spaced apart from the first spacer 221 and the second spacer 222.
  • unit spacers are not limited to three illustrated in the drawings of the present invention, and it is also possible that more units are provided. That is, it is possible for one or more unit spacers to be spaced apart from each other between the first spacer 221 and the second spacer 222.
  • one or more unit spacers will be given taking as an example the case where three unit spacers are provided.
  • the supply pipe 230 is connected to the first spacer 221 from the front of the battery module 10 to supply the cooling medium for cooling to the battery module 10.
  • the discharge pipe 240 may be connected to the second spacer 222 from the rear side of the battery module 10 to cool the battery module 10, and to discharge the cooling medium having the increased temperature to the outside.
  • the supply pipe 230 is connected to a plurality of first spacer flow paths 221a passing through the inside of the first spacer 221 to supply the cooling medium. That is, the supply pipe 230 extends along the extending direction of the first spacer 221 disposed across the width of the base plate 210, that is, the longitudinal direction of the first spacer 221, and the first spacer 221
  • the first spacer flow path 221a is connected to each of the plurality of first spacer flow paths 221a, and the cooling medium is supplied to all the first spacer flow paths 221a.
  • the discharge pipe 240 is also connected to a plurality of second spacer flow paths 222a passing through the interior of the second spacer 222 to discharge the cooling medium in the same manner as the supply pipe 230 described above . That is, the discharge tube 240 extends along the extending direction of the second spacer 222 disposed across the width of the base plate 210, that is, the longitudinal direction of the second spacer 222, and the second spacer 222 are individually connected to a plurality of second spacer flow paths 222a that are exposed to the outside of the first and second spacer flow paths 222, 222 to discharge the cooling medium flowing through all the second spacer flow paths 222a.
  • the third spacer 223 may be formed in order to allow the cooling medium flowing into the internal space S1 of the battery module 10 to pass through the first spacer 221 to the second spacer 222, And a plurality of third spacer flow paths 223a formed through the inside of the third spacer 223.
  • the third spacer 223a is exposed to the outside of the third spacer 223 so that the space S1 between the first spacer 221 and the third spacer 223 and the space between the third spacer 223 and the second spacer 223 222 to communicate with the inner space of the third spacer 223.
  • the cooling medium supplied to the battery module 10 through the supply pipe 230 flows through the supply pipe 230, the first spacer 221, the space S1, the third spacer 223, the space S2, the second spacer 222, and a discharge pipe 240, and is discharged to the outside of the battery module 10.
  • FIG. 9 is a view showing an embodiment of a supply pipe and a spacer different from the supply pipe and the spacer shown in Fig.
  • the battery module according to another embodiment of the present invention has a slight difference in the connection relationship between the supply pipe 250 and the first spacer 224 and the specific structure of the first spacer 224 as compared with the battery module described above ,
  • the other components are substantially the same. Therefore, in describing the battery module according to another embodiment of the present invention, portions different from those of the previous embodiment will be mainly described, and a detailed description of parts overlapping with those of the previous embodiment will be omitted .
  • the battery module according to another embodiment of the present invention may be configured such that the supply pipe 250 and the first spacer 224 are not connected at a plurality of points but connected at one location and connected to the supply pipe 250
  • the flow path (not shown) of the first spacer 224 has a structure communicating with a plurality of flow paths for discharging the cooling medium.
  • the battery module 10 is configured such that the spacers 220 are partially applied between the cell stack 100 and the base plate 210,
  • the cooling medium can be supplied to the empty spaces S1 and S2 formed between the plates 210 so that the cell stack 100 can be in direct contact with the cooling medium, have.
  • the battery module 10 according to the present invention can be sealed (sealed) in order to solve problems of leakage / leakage which may occur when a liquid cooling medium such as cooling water insulating oil and the battery cell 110 are in direct contact with each other.
  • a liquid cooling medium such as cooling water insulating oil and the battery cell 110 are in direct contact with each other.
  • a battery pack according to an embodiment of the present invention, which is implemented by electrically connecting a plurality of the battery modules described above, and an automobile having such a battery pack, .

Abstract

A battery module, according to one embodiment of the present invention, comprises: a cell stack formed by stacking a plurality of battery cells; a base plate, which receives the cell stack, comprising a module housing composed of a lower housing for covering each of a lower portion, both side portions, front and rear portions, and an upper portion of the cell stack, a pair of side housings, a pair of front and rear housings, and an upper housing, wherein the lower housing completely covers a lower surface of the cell stack; a spacer, which is interposed between the cell stack and the base plate, for partially covering the lower surface of the cell stack to form an empty space between the cell stack and the base plate; a supply pipe which is connected to the spacer to supply a cooling medium to the empty space through the interior of the spacer; and a discharge pipe which is coupled to the spacer to discharge, to the outside, the cooling medium flowing through the empty space and the interior of the spacer.

Description

개선된 냉각 구조를 갖는 배터리 모듈Battery module with improved cooling structure
본 발명은, 개선된 냉각 구조를 갖는 배터리 모듈에 관한 것으로서, 좀 더 구체적으로는, 냉각을 위한 절연유를 이용하되, 이러한 절연유가 배터리 셀과 직접 접촉될 수 있는 냉각 구조를 가짐으로써 향상된 냉각 효율을 갖는 배터리 모듈에 관한 것이다.The present invention relates to a battery module having an improved cooling structure, and more particularly, to a battery module using an insulating oil for cooling, wherein the insulating oil has a cooling structure that can be in direct contact with the battery cell, To a battery module having the battery module.
본 출원은 2017년 12월 27일 자로 출원된 한국 특허출원번호 제 10-2017-0180560호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application claims priority from Korean Patent Application No. 10-2017-0180560, filed on December 27, 2017, the contents of which are incorporated herein by reference.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.The secondary rechargeable batteries are nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel- It is very popular because of its low self-discharge rate and high energy density.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.These lithium secondary batteries mainly use a lithium-based oxide and a carbonaceous material as a cathode active material and an anode active material, respectively. The lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate each coated with such a positive electrode active material and a negative electrode active material are disposed with a separator interposed therebetween, and an outer casing, that is, a battery case, for sealingly storing the electrode assembly together with the electrolyte solution.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.Generally, a lithium secondary battery can be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can, and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the casing.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 이러한 중대형 장치에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차전지가 전기적으로 연결된다. 특히, 이러한 중대형 장치에는 적층이 용이하다는 장점으로 인해 파우치 타입의 셀이 많이 이용된다.In recent years, secondary batteries are widely used not only in small-sized devices such as portable electronic devices, but also in medium to large-sized devices such as automobiles and electric power storage devices. When used in such a medium to large-sized apparatus, a large number of secondary batteries are electrically connected to increase capacity and output. Particularly, the pouch-type cells are often used because of the advantage that the middle and large-sized apparatuses are easy to be stacked.
하지만, 파우치 타입 셀은, 일반적으로 알루미늄과 폴리머 수지의 라미네이트 시트의 전지 케이스로 포장되어 있으므로 기계적 강성이 크지 않다. 따라서, 다수의 파우치 타입 셀을 포함하여 배터리 모듈을 구성할 때, 이차 전지를 외부의 충격 등으로부터 보호하고, 그 유동을 방지하며, 적층이 용이하도록 하기 위해, 프레임을 이용하는 경우가 많다.However, since the pouch type cell is generally packed in a battery case of a laminate sheet of aluminum and a polymer resin, the mechanical rigidity is not so large. Therefore, when constructing the battery module including a plurality of pouch type cells, a frame is often used in order to protect the secondary battery from external impact, prevent the flow thereof, and facilitate stacking.
프레임은 카트리지 등 다른 다양한 용어로 대체될 수 있는데, 보통 중앙 부분이 비어 있는 사각 플레이트 형태로 구성되는 경우가 많으며, 이때 4개의 변 부분이 파우치 타입 셀의 외주부를 감싸도록 구성된다. 그리고, 이러한 프레임은 배터리 모듈을 구성하기 위해 다수가 적층된 형태로 이용되며, 파우치 타입 셀은 프레임이 적층되었을 때 생기는 내부의 빈 공간에 위치할 수 있다.The frame can be replaced with various other terms such as a cartridge. In many cases, the frame is formed in the shape of a square plate having an empty central portion. In this case, four side portions surround the outer periphery of the pouch type cell. These frames are used to form a battery module, and the pouch-type cells can be located in an empty space formed when the frames are stacked.
한편, 도 1을 참조하면, 종래의 배터리 모듈 구조가 나타나 있다. 이와 같은 종래의 배터리 모듈 구조는, 다수의 프레임(2)을 이용하여 다수의 파우치 타입 셀(1)이 적층되도록 하는 경우, 한 쌍의 파우치 타입 셀(1) 각각의 외측면 상에 플레이트 형태의 냉각 핀(3)을 적용함으로써 냉각 효율을 높인다.Referring to FIG. 1, a conventional battery module structure is shown. When the plurality of pouch type cells 1 are stacked by using the plurality of frames 2, the conventional battery module structure has a plate-like shape on the outer surface of each pair of pouch type cells 1 By applying the cooling fin 3, the cooling efficiency is increased.
이차 전지는 여름과 같이 고온 환경에서 사용되는 경우가 있을 수 있으며, 또한 이차 전지 자체적으로도 열이 발생할 수 있다. 이때, 다수의 이차 전지가 서로 적층되어 있는 경우, 이차 전지의 온도는 더욱 높아질 수 있는데, 이 온도가 적정 온도보다 높아지면 이차 전지의 성능이 저하될 수 있고, 심한 경우 폭발이나 발화의 위험도 있다. 따라서, 배터리 모듈을 구성할 때 파우치 타입 셀(1)의 면과 접촉하도록 냉각 핀(3)을 적용하고 이러한 냉각 핀(3)이 그 하부에 위치한 냉각 플레이트(4)와 접촉하도록 함으로써 배터리 모듈의 전체적인 온도 상승이 방지되도록 하는 구성이 많이 이용된다.The secondary battery may be used in a high temperature environment such as in the summer, and the secondary battery itself may also generate heat. In this case, when the plurality of secondary batteries are laminated to each other, the temperature of the secondary battery may be further increased. If the temperature is higher than the proper temperature, the performance of the secondary battery may deteriorate, and there is a risk of explosion or ignition in severe cases. Therefore, by applying the cooling fin 3 so as to come into contact with the surface of the pouch type cell 1 when constructing the battery module and bringing the cooling fin 3 into contact with the cooling plate 4 located at the lower portion thereof, A configuration in which the overall temperature rise is prevented is often used.
그러나, 통상적으로 금속 재질로 구성되는 이러한 냉각 핀(3)을 대면하는 파우치 타입 셀(1)들 사이에 개재시켜 배터리 모듈을 구성하는 경우, 냉각 핀(3)과 배우치 셀(1)의 표면 사이의 재질 차이로 인한 접촉 열 저항이 매우 클 수 밖에 없고, 또한 이처럼 단순히 금속의 전도성에 의존하는 냉각 방식만으로는 큰 발열이 발생하는 상황에서 충분한 냉각이 이루어지기 어려울 수도 있다는 문제가 있다.However, when the battery module is constructed by interposing between the pouch type cells 1 facing the cooling fins 3, which are typically made of a metal material, the surface of the cooling fins 3 and the surface of the learning cell 1 There is a problem that sufficient cooling can not be achieved in a situation where a large amount of heat is generated only by a cooling method that depends on the conductivity of the metal.
따라서, 이러한 접촉 열 저항을 감소시키고 또한 단순한 열 전도방식 이 외에 좀 더 효율적으로 열을 방출할 수 있도록 하는 냉각 방식이 적용된 배터리 모듈 구조에 대한 개발이 절실히 요구되는 실정이다.Accordingly, there is an urgent need to develop a battery module structure using a cooling method that reduces contact thermal resistance and allows heat to be emitted more efficiently than a simple thermal conduction method.
본 발명은 상술한 문제점을 고려하여 창안된 것으로서, 냉각을 위한 냉각 매체와 배터리 셀 간의 직접 접촉이 가능한 냉각 구조가 적용된 배터리 모듈을 제공함으로써 고용량 및/또는 고출력의 배터리 모듈의 적용에 따른 발열량 증가에도 효율적으로 냉각이 이루어질 수 있도록 하는 것을 일 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a battery module to which a cooling structure capable of direct contact between a cooling medium for cooling and a battery cell is applied, So that the cooling can be efficiently performed.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.It is to be understood, however, that the technical subject matter of the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the description of the invention described below.
상술한 과제를 해결하기 위한, 본 발명의 일 실시예에 따른 배터리 모듈은, 복수의 배터리 셀이 적층되어 형성된 셀 적층체; 및 상기 셀 적층체를 수용하며, 상기 셀 적층체의 하부, 양 측부, 전후방 및 상부를 각각 커버하는 하부 하우징, 한 쌍의 측부 하우징, 한 쌍의 전후방 하우징 및 상부 하우징으로 구성되는 모듈 하우징을 포함하며, 상기 하부 하우징은, 상기 셀 적층체의 하면을 전체적으로 커버하는 베이스 플레이트; 및 상기 셀 적층체와 상기 베이스 플레이트의 사이에 개재되며 상기 셀 적층체의 하면을 부분적으로 커버하여 상기 셀 적층체와 상기 베이스 플레이트 사이에 빈 공간을 형성시키는 스페이서; 상기 스페이서에 연결되어 상기 스페이서의 내부를 통해 상기 빈 공간으로 냉각 매체를 공급하는 공급관; 및 상기 스페이서에 연결되어 상기 빈 공간 및 상기 스페이서의 내부를 통해 흐르는 냉각 매체를 외부로 배출시키는 배출관; 을 포함한다.According to an aspect of the present invention, there is provided a battery module comprising: a cell stack body formed by stacking a plurality of battery cells; And a module housing configured to house the cell stack body and configured to include a lower housing, a pair of side housings, a pair of front and rear housings, and an upper housing that cover a lower portion, both sides, front and rear, and an upper portion of the cell stacked body Wherein the lower housing comprises: a base plate which covers the entire lower surface of the cell stack body; And a spacer interposed between the cell laminate and the base plate and partially covering the lower surface of the cell laminate to form a void space between the cell laminate and the base plate; A supply pipe connected to the spacer to supply the cooling medium to the empty space through the inside of the spacer; And a discharge pipe connected to the spacer and discharging the cooling medium flowing through the hollow space and the inside of the spacer to the outside; .
상기 셀 적층체와 스페이서 사이에는 상기 셀 적층체와 스페이서 사이로 냉각 매체가 누수되지 않도록 접착제가 개재될 수 있다.An adhesive may be interposed between the cell stack and the spacer so that the cooling medium does not leak between the cell stack and the spacer.
상기 베이스 플레이트의 양 측 단부에는 결합 홈이 형성된 결합부가 구비되고, 상기 측부 하우징의 하단부에는 하방으로 돌출되어 형성된 결합 돌기가 구비되며, 상기 결합 홈에 결합 돌기가 삽입 고정됨으로써 상기 측부 하우징이 상기 베이스 플레이트에 고정될 수 있다.The base plate has a coupling portion formed with coupling grooves on both sides of the base plate. A coupling protrusion protruded downward is provided on the lower end of the side housing. The coupling protrusion is inserted and fixed in the coupling groove, Can be fixed to the plate.
상기 결합부는 상기 배터리 모듈의 내측을 향해 돌출된 돌출부를 구비하며, 상기 돌출부는 상기 베이스 플레이트와 셀 적층체 사이를 통한 누수를 방지할 수 있도록 상기 셀 적층체의 최 외각에 배치된 배터리 셀과 맞닿도록 연장된 형태를 가질 수 있다.The coupling portion has a protrusion protruding toward the inside of the battery module, and the protrusion is abutted against a battery cell disposed at an outermost position of the cell stack to prevent leakage between the base plate and the cell stack As shown in FIG.
상기 스페이서는, 상기 베이스 플레이트의 길이 방향 일 측에 구비되는 제1 스페이서; 상기 베이스 플레이트의 길이 방향 타 측에 구비되는 제2 스페이서; 및 상기 제1 스페이서 및 제2 스페이서와 이격되어 그 사이에 구비되는 제3 스페이서; 를 포함할 수 있다.The spacer includes: a first spacer provided on one side of the base plate in the longitudinal direction; A second spacer provided on the other side in the longitudinal direction of the base plate; And a third spacer spaced apart from and spaced apart from the first spacer and the second spacer; . ≪ / RTI >
상기 공급관은 상기 제1 스페이서의 내부를 관통하여 형성되는 제1 스페이서 유로와 연결되며, 상기 배출관은 상기 제2 스페이서의 내부를 관통하여 형성되는 제2 스페이서 유로와 연결될 수 있다.The supply pipe may be connected to a first spacer flow path formed through the inside of the first spacer, and the discharge pipe may be connected to a second spacer flow path formed through the inside of the second spacer.
상기 제3 스페이서는, 상기 제1 스페이서를 통해 공급된 냉각 매체가 상기 제2 스페이서쪽으로 흘러 들어갈 수 있도록 내부를 관통하여 형성되는 제3 스페이서 유로를 구비할 수 있다.The third spacer may include a third spacer flow path formed so as to penetrate the cooling medium supplied through the first spacer to flow toward the second spacer.
한편, 본 발명의 일 실시예에 따른 배터리 팩은, 상술한 본 발명의 일 실시예에 따른 배터리 모듈이 복수개 연결되어 구현되며, 또한 본 발명의 일 실시예에 따른 자동차는, 상술한 본 발명의 일 실시예에 따른 배터리 팩을 구비한다.Meanwhile, a battery pack according to an embodiment of the present invention may be realized by connecting a plurality of battery modules according to an embodiment of the present invention, and the automobile according to an embodiment of the present invention may further include: And a battery pack according to an embodiment.
본 발명의 일 측면에 따르면, 냉각을 위한 냉각 매체와 배터리 셀 간의 직접 접촉이 가능한 냉각 구조가 적용된 배터리 모듈이 제공됨으로써 고용량 및/또는 고출력의 배터리 모듈의 적용에 따른 발열량 증가에도 효율적으로 냉각이 이루어질 수 있게 되어 배터리 모듈의 성능 향상을 가져올 수 있을 뿐만 아니라, 온도 상승에 따른 배터리 셀의 발화/폭발 등의 안전사고를 예방하는 효과 역시 가져올 수 있게 된다.According to an aspect of the present invention, there is provided a battery module to which a cooling structure capable of direct contact between a cooling medium for cooling and a battery cell is applied, thereby efficiently cooling the battery module even when the amount of heat generated by application of the battery module of high capacity and / So that not only the performance of the battery module can be improved but also safety accidents such as ignition / explosion of the battery cell due to a rise in temperature can be prevented.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention and, together with the description of the invention given below, serve to further the understanding of the technical idea of the invention. And should not be construed as limiting.
도 1은 종래의 배터리 모듈에 채용된 냉각 구조를 나타내는 도면이다.1 is a view showing a cooling structure employed in a conventional battery module.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 외관을 나타내는 완성 사시도이다.2 is a completed perspective view showing the appearance of a battery module according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈의 분해 사시도이다.3 is an exploded perspective view of a battery module according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 배터리 모듈을 구성하는 베이스 플레이트 상에서 냉각 매체가 흐르는 모습을 나타내는 도면이다.4 is a view showing a state where a cooling medium flows on a base plate constituting a battery module according to an embodiment of the present invention.
도 5는 도 2의 A-A' 및 B-B'을 따라 절단한 단면을 나타내는 단면도이다.5 is a cross-sectional view showing a section taken along the line A-A 'and B-B' in Fig. 2.
도 6은 도 5의 일측 단부의 형상에 대한 확대도이다.Fig. 6 is an enlarged view of the shape of one end of Fig. 5;
도 7은 도 2의 C-C'을 따라 절단한 단면을 나타내는 단면도이다.7 is a cross-sectional view taken along line C-C 'of FIG. 2;
도 8은 도 7의 일측 단부의 형상에 대한 확대도이다.Fig. 8 is an enlarged view of the shape of one end of Fig. 7;
도 9는 도 4에 도시된 공급관 및 스페이서와는 다른 형태의 공급관 및 스페이서의 구현 형태를 나타내는 도면이다.9 is a view showing an embodiment of a supply pipe and a spacer different from the supply pipe and the spacer shown in Fig.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only some of the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
먼저, 도 2 및 도 3을 참조하여, 본 발명의 일 실시예에 따른 배터리 모듈(10)을 이루는 구성요소들을 개략적으로 설명하기로 한다.First, components of the battery module 10 according to an embodiment of the present invention will be schematically described with reference to FIGS. 2 and 3. FIG.
도 2는 본 발명의 일 실시예에 따른 배터리 모듈의 외관을 나타내는 완성 사시도이고, 도 3은 본 발명의 일 실시예에 따른 배터리 모듈의 분해 사시도이다.FIG. 2 is a perspective view illustrating a battery module according to an embodiment of the present invention, and FIG. 3 is an exploded perspective view of a battery module according to an embodiment of the present invention.
도 2 및 도 3을 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈(10)은, 셀 적층체(100) 및 이를 수용하는 모듈 하우징(20)을 포함하는 형태로 구현된다. 또한, 상기 모듈 하우징(20)은, 하부 하우징(200), 한 쌍의 측부 하우징(300), 한 쌍의 전후방 하우징(400) 및 상부 하우징(500)을 포함한다.2 and 3, a battery module 10 according to an embodiment of the present invention is implemented in a form including a cell stack 100 and a module housing 20 accommodating the same. The module housing 20 also includes a lower housing 200, a pair of side housings 300, a pair of front and rear housings 400 and an upper housing 500.
상기 셀 적층체(100)는, 복수의 배터리 셀(110)을 적층시켜 얻어지는 것으로서, 여기서 이용되는 배터리 셀(110)은 충방전이 가능한 이차전지라면 특별히 제한되는 것은 아니며, 예를 들어 파우치 타입 배터리 셀이 적용될 수 있다.The cell stack 100 is obtained by laminating a plurality of battery cells 110. The battery cell 110 used herein is not particularly limited as long as it is a rechargeable secondary battery. For example, a pouch type battery Cells can be applied.
상기 배터리 셀(110) 각각은 일측 및 타측으로 연장되는 한 쌍의 전극 리드(111)를 구비할 수 있으며, 이러한 전극 리드(111)는 양극 리드 및 음극 리드를 포함한다. 적층된 각각의 배터리 셀(110) 사이는 후술할 바와 같이 셀 적층체(100)의 하부에 접촉되는 절연유 등의 냉각 매체가 셀 적층체(100)를 이루는 배터리 셀(110)들 사이의 공간을 통해 상부로 침투할 수 없도록 접착제 등에 의해 단단히 고정/밀폐되는 것이 바람직하다.Each of the battery cells 110 may include a pair of electrode leads 111 extending to one side and the other side. The electrode leads 111 include a positive electrode lead and a negative electrode lead. As will be described later, a cooling medium such as insulating oil contacting the lower portion of the cell stack body 100 forms a space between the battery cells 110 constituting the cell stack body 100 between the stacked battery cells 110 It is preferable that it is firmly fixed / sealed by an adhesive or the like so that it can not penetrate through the upper part.
또한, 상기 전극 리드(111)들은, 셀 적층체(100)를 이루는 배터리 셀(110)들이 서로 직렬 연결, 병렬 연결 또는 직렬과 병렬이 혼합된 방식의 연결을 이루도록 배치/연결 될 수 있다.In addition, the electrode leads 111 may be arranged / connected such that the battery cells 110 constituting the cell stack 100 are connected in series, parallel, or a combination of serial and parallel.
상기 하부 하우징(200)은, 셀 적층체(100)의 하면을 전체적으로 커버하는 베이스 플레이트(210), 셀 적층체(100)의 하면을 부분적으로 커버하는 스페이서(220), 스페이서(220)에 연결되어 배터리 모듈(10)을 냉각시키기 위한 절연유 등의 냉각 매체를 공급하는 공급관(230) 및 스페이서(220)에 연결되어 냉각 매체를 외부로 배출시키는 배출관(240)을 포함하는 형태로 구현될 수 있다.The lower housing 200 includes a base plate 210 that covers the entire lower surface of the cell stack 100, a spacer 220 that partially covers the lower surface of the cell stack 100, A supply pipe 230 for supplying a cooling medium such as insulating oil for cooling the battery module 10 and a discharge pipe 240 connected to the spacer 220 for discharging the cooling medium to the outside .
상기 스페이서(220)는 셀 적층체(100)와 베이스 플레이트(210) 사이에 개재되되, 셀 적층체(100)의 하면을 부분적으로만 커버함으로써 셀 적층체(100)와 베이스 플레이트(210) 사이에 빈 공간을 형성시킨다. 즉, 상기 빈 공간은 셀 적층체(100), 스페이서(220) 및 베이스 플레이트(210)로 둘러싸인 폐쇄된 공간에 해당하는 것이다.The spacer 220 is interposed between the cell stack 100 and the base plate 210 so as to cover only the lower surface of the cell stack 100 so that the gap between the cell stack 100 and the base plate 210 Thereby forming an empty space. That is, the empty space corresponds to a closed space surrounded by the cell stack 100, the spacer 220, and the base plate 210.
상기 공급관(230)은, 배터리 모듈(10)의 전방으로부터 스페이서(220)에 연결되어 스페이서(220)의 내부에 냉각 매체를 공급한다. 이처럼 스페이서(220)에 공급된 냉각 매체는 스페이서(220)의 내부에 형성된 유로를 통해 셀 적층체(100)와 베이스 플레이트(210) 사이의 빈 공간으로 공급된다.The supply pipe 230 is connected to the spacer 220 from the front of the battery module 10 to supply the cooling medium to the inside of the spacer 220. The cooling medium supplied to the spacer 220 is supplied to the empty space between the cell stack 100 and the base plate 210 through the flow path formed inside the spacer 220.
상기 배출관(240)은, 배터리 모듈(10)의 후방으로부터 스페이서(220)에 연결되어 상기 빈 공간 및 스페이서(220)의 내부를 통해 흐르는 냉각 매체를 외부로 배출시킨다.The discharge pipe 240 is connected to the spacer 220 from the rear of the battery module 10 to discharge the cooling medium flowing through the empty space and the spacer 220 to the outside.
상기 한 쌍의 측부 하우징(300)은 각각 셀 적층체(100)의 양 측부를 커버하는 부품으로서, 셀 적층체(100)를 이루는 배터리 셀(110)들 중 양 측 최 외각에 배치되는 배터리 셀(110)의 넓은 면과 대면한다. 이러한 한 쌍의 측부 하우징(300)은 셀 적층체(100)를 양쪽에서 가압함으로써 셀 적층체(100)를 이루는 배터리 셀(110)들 사이에 빈공간이 발생되지 않도록 하는 기능 또한 수행할 수 있다.Each of the pair of side housings 300 is a part that covers both sides of the cell stack 100. The pair of side housings 300 is a part of the battery cell 110 constituting the cell stack 100, Facing the wide face of the body 110. Such a pair of side housings 300 can also function to prevent the generation of voids between the battery cells 110 constituting the cell stack 100 by pressing the cell stack 100 on both sides .
상기 한 쌍의 전후방 하우징(400)는, 각각 버스바 프레임(410), 절연 커버(420) 및 전후방 플레이트(430)를 포함하는 형태로 구현될 수 있다.The pair of front and rear housings 400 may be embodied as including a bus bar frame 410, an insulating cover 420, and front and rear plates 430, respectively.
상기 버스바 프레임(410)은 셀 적층체(100)의 전방 또는 후방으로부터 셀 적층체(100)에 결합되는 것으로서, 이러한 버스바 프레임(410)에는 전극 리드(111)들이 삽입되어 배터리 셀(110)들 상호 간의 전기적 연결을 위한 전극 리드(111)의 벤딩 작업을 용이하게 한다. 즉, 상기 전극 리드(111)들은 버스바 프레임(410)에 형성된 삽입 슬릿들을 통해 삽입된 후 절곡되어 인접한 전극 리드(111) 상호 간에 용접 등에 의한 결합을 이룬다.The bus bar frame 410 is coupled to the cell stack 100 from the front or rear of the cell stack 100. The electrode leads 111 are inserted into the bus bar frame 410, The bending operation of the electrode lead 111 for the electrical connection between the electrodes is facilitated. That is, the electrode leads 111 are inserted through the insertion slits formed in the bus bar frame 410, and then bent. Thus, the electrode leads 111 are connected to each other by welding or the like.
상기 절연 커버(420)는 버스바 프레임(410)에 삽입/벤딩되어 서로 결합을 이룬 전극 리드(111)들 중 서로 접촉되어서는 안되는 관계에 있는 전극 리드(111)들 간에 접촉이 발생되는 것을 방지하기 위해 적용되는 부품으로서, 버스바 프레임(410) 상에 결합되어 외부의 요인에 의해 쇼트(short)가 발생되는 것을 방지한다.The insulating cover 420 is inserted / bent into the bus bar frame 410 to prevent contact between the electrode leads 111 which are not in contact with each other among the electrode leads 111 coupled to each other And is coupled onto the bus bar frame 410 to prevent a short due to an external factor.
상기 전후방 플레이트(430)는 절연 커버(420) 상에 결합되는 부품으로서, 셀 적층체(100), 버스바 프레임(410) 및 절연 커버(420) 등의 내부 부품들을 보호하는 기능을 수행한다.The front and rear plates 430 are parts to be coupled onto the insulating cover 420 and serve to protect internal components such as the cell stack 100, the bus bar frame 410 and the insulating cover 420.
상기 상부 하우징(500)은, 셀 적층체(100)의 상부에 배치되되 앞서 설명한 버스바 프레임(410)을 통해 삽입/밴딩된 전극 리드(111)들과 전기적으로 연결되는 센싱 아세이(510) 및 센싱 아세이(510)의 상부에 결합되어 상부 하우징(500)의 최 외층을 이루는 탑 플레이트(520)를 포함하는 형태로 구현될 수 있다.The upper housing 500 includes a sensing electrode 510 electrically connected to the electrode leads 111 inserted and bent through the bus bar frame 410 disposed above the cell stack 100, And a top plate 520 coupled to an upper portion of the sensing unit 510 to form an outermost layer of the upper housing 500.
다음은, 도 2 및 도 3과 함께, 도 4 내지 도 8을 참조하여, 본 발명의 일 실시예에 따른 배터리 모듈의 구체적인 냉각 구조에 대해서 설명하기로 한다.Next, a specific cooling structure of the battery module according to an embodiment of the present invention will be described with reference to FIGS. 4 to 8 together with FIG. 2 and FIG.
도 4는 본 발명의 일 실시예에 따른 배터리 모듈을 구성하는 베이스 플레이트 상에서 냉각 매체가 흐르는 모습을 나타내는 도면이고, 도 5는 도 2의 A-A' 및 B-B'을 따라 절단한 단면을 나타내는 단면도이며, 도 6은 도 5의 일측 단부의 형상에 대한 확대도이다. 또한, 도 7은 도 2의 C-C'을 따라 절단한 단면을 나타내는 단면도이고, 도 8은 도 7의 일측 단부의 형상에 대한 확대도이다.FIG. 4 is a view showing a state where a cooling medium flows on a base plate constituting a battery module according to an embodiment of the present invention, and FIG. 5 is a sectional view taken along AA 'and B-B' And Fig. 6 is an enlarged view of the shape of one end of Fig. 7 is a cross-sectional view taken along line C-C 'of Fig. 2, and Fig. 8 is an enlarged view of a shape of one end of Fig.
도 2 및 도 3과 함께, 도 4 내지 도 8을 참조하면, 상기 베이스 플레이트(210)의 양 측 단부에는 상부로부터 하부를 향해 소정의 깊이로 결합 홈(G)이 형성된 결합부(211)가 구비된다. 한편, 상기 측부 하우징(300)의 하단부에는 하방으로 돌출되어 형성된 결합 돌기(310)가 구비되며, 결합 홈(G)에 결합 돌기(310)가 삽입/고정됨으로써 측부 하우징(300)이 베이스 플레이트(210)에 고정된다.4 to 8, a coupling portion 211 having an engagement groove G formed at a predetermined depth from an upper portion to a lower portion is formed at both side ends of the base plate 210 Respectively. The side housing 300 includes a coupling protrusion 310 protruding downward and a coupling protrusion 310 inserted into the coupling groove G to fix the side housing 300 to the base plate 300. [ 210).
상기 결합부(211)는 배터리 모듈의 내측을 향해 돌출된 돌출부(P)를 구비하며, 돌출부(P)는 베이스 플레이트(210)와 셀 적층체(100) 사이에 빈틈이 생겨 냉각 매체가 누수/누유되는 것을 방지할 수 있도록 셀 적층체(100)의 최 외각에 배치된 배터리 셀(110)과 맞닿도록 연장된 형태를 가진다.The protruding portion P has a gap between the base plate 210 and the cell stack 100 so that the cooling medium is leaked to the outside of the cell stack 100. The protruding portion P protrudes toward the inside of the battery module, And has a shape extending to abut the battery cell 110 disposed at the outermost portion of the cell stack 100 so as to prevent leakage.
또한, 상기 셀 적층체(100)와 스페이서(220) 사이에는 셀 적층체(100)와 스페이서(220) 사이로 절연유 등의 냉각 매체가 누수되지 않도록 접착제가 개재되며, 이러한 접착제는 셀 적층체(100)와 스페이서(220) 사이를 결합/고정시킬 뿐만 아니라 가스켓으로서의 기능 또한 수행하게 된다.An adhesive is interposed between the cell stack 100 and the spacer 220 so as to prevent leakage of a cooling medium such as an insulating oil between the cell stack 100 and the spacer 220. The cell stack 100 And the spacer 220 as well as a function as a gasket.
한편, 상기 스페이서(220)는 서로 분리된 형태로 이격되어 배치되는 복수의 단위 스페이서들로 이루어질 수 있다. 예를 들어, 상기 스페이서(220)는, 베이스 플레이트(210)의 길이 방향 일 측 단부에 구비되는 제1 스페이서(221), 베이스 플레이트(210)의 길이 방향 타 측 단부에 구비되는 제2 스페이서(222) 및 제1 스페이서(221) 및 제2 스페이서(222)와 이격되어 그 사이에 구비되는 제3 스페이서(223)를 포함할 수 있다. Meanwhile, the spacers 220 may include a plurality of unit spacers spaced apart from each other. For example, the spacer 220 may include a first spacer 221 provided at one longitudinal end of the base plate 210, a second spacer (not shown) provided at the other longitudinal end of the base plate 210 222 and a third spacer 223 spaced apart from and spaced apart from the first spacer 221 and the second spacer 222.
다만, 이러한 단위 스페이서의 개수는 본 발명의 도면에 예시된 3개로 국한되지 않으며, 그 이상의 개수가 구비되는 것도 가능하다. 즉, 제1 스페이서(221)와 제2 스페이서(222) 사이에는 하나 또는 그 이상의 단위 스페이서들이 서로 이격되어 배치되는 것이 가능하다. 다만, 이하에서는 설명의 편의를 위해 단위 스페이서가 세 개인 경우를 예로 들어 설명을 하기로 한다.However, the number of such unit spacers is not limited to three illustrated in the drawings of the present invention, and it is also possible that more units are provided. That is, it is possible for one or more unit spacers to be spaced apart from each other between the first spacer 221 and the second spacer 222. Hereinafter, for the sake of convenience of description, description will be given taking as an example the case where three unit spacers are provided.
상기 공급관(230)은 배터리 모듈(10)의 전방으로부터 제1 스페이서(221)에 연결되어 배터리 모듈(10)에 냉각을 위한 냉각 매체를 공급할 수 있다. 마찬가지로, 상기 배출관(240)은 배터리 모듈(10)의 후바으로부터 제2 스페이서(222)에 연결되어 배터리 모듈(10)을 냉각시키고 이에 따라 온도가 상승된 냉각 매체를 외부로 배출할 수 있다.The supply pipe 230 is connected to the first spacer 221 from the front of the battery module 10 to supply the cooling medium for cooling to the battery module 10. [ Similarly, the discharge pipe 240 may be connected to the second spacer 222 from the rear side of the battery module 10 to cool the battery module 10, and to discharge the cooling medium having the increased temperature to the outside.
즉, 상기 공급관(230)은 제1 스페이서(221)의 내부를 관통하는 복수의 제1 스페이서 유로(221a)들과 연결되어 냉각 매체를 공급하는 형태로 제공된다. 즉, 상기 공급관(230)은 베이스 플레이트(210)의 폭을 가로질러 배치되는 제1 스페이서(221)의 연장 방향, 즉 제1 스페이서(221)의 길이 방향을 따라 연장되며, 제1 스페이서(221)의 외측으로 노출되는 복수의 제1 스페이서 유로(221a)들 각각과 개별적으로 연결되어 모든 제1 스페이서 유로(221a)에 냉각 매체를 공급하는 형태로 구현된다.That is, the supply pipe 230 is connected to a plurality of first spacer flow paths 221a passing through the inside of the first spacer 221 to supply the cooling medium. That is, the supply pipe 230 extends along the extending direction of the first spacer 221 disposed across the width of the base plate 210, that is, the longitudinal direction of the first spacer 221, and the first spacer 221 The first spacer flow path 221a is connected to each of the plurality of first spacer flow paths 221a, and the cooling medium is supplied to all the first spacer flow paths 221a.
한편, 상기 배출관(240) 역시 상술한 공급관(230)과 마찬가지로, 제2 스페이서(222)의 내부를 관통하는 복수의 제2 스페이서 유로(222a)들과 연결되어 냉각 매체를 배출하는 형태로 제공된다. 즉, 상기 배출관(240)은, 베이스 플레이트(210)의 폭을 가로질러 배치되는 제2 스페이서(222)의 연장 방향, 즉 제2 스페이서(222)의 길이 방향을 따라 연장되며, 제2 스페이서(222)의 외측으로 노출되는 복수의 제2 스페이서 유로(222a)들 각각과 개별적으로 연결되어 모든 제2 스페이서 유로(222a)를 통해 흘러 들어온 냉각 매체를 배출시키는 형태로 구현된다.The discharge pipe 240 is also connected to a plurality of second spacer flow paths 222a passing through the interior of the second spacer 222 to discharge the cooling medium in the same manner as the supply pipe 230 described above . That is, the discharge tube 240 extends along the extending direction of the second spacer 222 disposed across the width of the base plate 210, that is, the longitudinal direction of the second spacer 222, and the second spacer 222 are individually connected to a plurality of second spacer flow paths 222a that are exposed to the outside of the first and second spacer flow paths 222, 222 to discharge the cooling medium flowing through all the second spacer flow paths 222a.
한편, 상기 제3 스페이서(223)는, 제1 스페이서(221)를 통해 배터리 모듈(10)의 내부공간(S1)으로 흘러 들어온 냉각 매체를 제2 스페이서(222)쪽으로 통과시킬 수 있도록 하기 위해서, 제3 스페이서(223)의 내부를 관통하여 형성되는 복수이 제3 스페이서 유로(223a)를 구비하는 형태로 제공될 수 있다.The third spacer 223 may be formed in order to allow the cooling medium flowing into the internal space S1 of the battery module 10 to pass through the first spacer 221 to the second spacer 222, And a plurality of third spacer flow paths 223a formed through the inside of the third spacer 223.
이러한 제3 스페이서(223a)는 제3 스페이서(223)의 외부로 노출되어 제1 스페이서(221)와 제3 스페이서(223) 사이의 공간(S1) 및 제3 스페이서(223)와 제2 스페이서(222) 사이의 공간(S2)이 제3 스페이서(223)의 내부 공간과 연통되도록 한다. The third spacer 223a is exposed to the outside of the third spacer 223 so that the space S1 between the first spacer 221 and the third spacer 223 and the space between the third spacer 223 and the second spacer 223 222 to communicate with the inner space of the third spacer 223.
즉, 상기 공급관(230)을 통해 배터리 모듈(10)에 공급된 냉각 매체는, 공급관(230), 제1 스페이서(221), 공간 S1, 제3 스페이서(223), 공간 S2, 제2 스페이서(222), 배출관(240)의 순서로 이동하여 배터리 모듈(10)의 외부로 배출된다.That is, the cooling medium supplied to the battery module 10 through the supply pipe 230 flows through the supply pipe 230, the first spacer 221, the space S1, the third spacer 223, the space S2, the second spacer 222, and a discharge pipe 240, and is discharged to the outside of the battery module 10.
다음은, 도 9를 참조하여 본 발명의 다른 실시예에 따른 배터리 모듈에 대해서 설명하기로 한다.Next, a battery module according to another embodiment of the present invention will be described with reference to FIG.
도 9는 도 4에 도시된 공급관 및 스페이서와는 다른 형태의 공급관 및 스페이서의 구현 형태를 나타내는 도면이다.9 is a view showing an embodiment of a supply pipe and a spacer different from the supply pipe and the spacer shown in Fig.
본 발명의 다른 실시예에 따른 배터리 모듈은 앞서 설명한 배터리 모듈과 비교하여 공급관(250)과 제1 스페이서(224)의 연결관계 및 제1 스페이서(224)의 구체적인 구조에 있어서 약간의 차이가 있을 뿐, 다른 구성요소들은 실질적으로 동일하다. 따라서, 본 발명의 다른 실시예에 따른 배터리 모듈을 설명함에 있어서는 앞선 실시예와 다른 부분에 대해서 중점적으로 설명하기로 하며, 앞선 실시예에 대한 설명과 중복되는 부분에 대해서는 상세한 설명을 생략하기로 한다.The battery module according to another embodiment of the present invention has a slight difference in the connection relationship between the supply pipe 250 and the first spacer 224 and the specific structure of the first spacer 224 as compared with the battery module described above , The other components are substantially the same. Therefore, in describing the battery module according to another embodiment of the present invention, portions different from those of the previous embodiment will be mainly described, and a detailed description of parts overlapping with those of the previous embodiment will be omitted .
도 9를 참조하면, 본 발명의 다른 실시예에 따른 배터리 모듈은, 공급관(250)과 제1 스페이서(224)가 복수 개소에서 연결되는 것이 아니라, 한군데에서 연결이 되고, 공급관(250)과 연결된 제1 스페이서(224)의 유로(미도시)는 냉각 매체의 배출을 위한 복수의 유로들과 연통되는 구조를 갖는다.9, the battery module according to another embodiment of the present invention may be configured such that the supply pipe 250 and the first spacer 224 are not connected at a plurality of points but connected at one location and connected to the supply pipe 250 The flow path (not shown) of the first spacer 224 has a structure communicating with a plurality of flow paths for discharging the cooling medium.
상술한 바와 같이, 본 발명에 따른 배터리 모듈(10)은, 셀 적층체(100)와 베이스 플레이트(210) 사이에 부분적으로 스페이서(220)를 적용하고, 이를 통해 셀 적층체(100)와 베이스 플레이트(210) 사이에 형성되는 빈 공간(S1, S2)에 냉각 매체가 공급될 수 있도록 하고, 이로써 셀 적층체(100)가 냉각 매체와 직접 접촉할 수 있도록 함으로써, 냉각의 효율을 극대화시킬 수 있다.As described above, the battery module 10 according to the present invention is configured such that the spacers 220 are partially applied between the cell stack 100 and the base plate 210, The cooling medium can be supplied to the empty spaces S1 and S2 formed between the plates 210 so that the cell stack 100 can be in direct contact with the cooling medium, have.
또한, 본 발명에 따른 배터리 모듈(10)은, 이처럼 냉각수 절연유 등의 액상의 냉각 매체와 배터리 셀(110)이 직접 접촉하는 구조를 취할 경우 발생될 수 있는 누수/누유의 문제점을 해결할 수 있도록 밀봉성을 강화한 구조를 적용함으로써 제품의 신뢰성을 높일 수 있다.Also, the battery module 10 according to the present invention can be sealed (sealed) in order to solve problems of leakage / leakage which may occur when a liquid cooling medium such as cooling water insulating oil and the battery cell 110 are in direct contact with each other. By applying a reinforced structure, the reliability of the product can be increased.
또한, 상술한 배터리 모듈을 복수개 전기적으로 연결시켜 구현되는 본 발명의 일 실시예에 따른 배터리 팩 및 이러한 배터리 팩을 구비하는 자동차의 경우 역시, 이러한 배터리 모듈의 장점을 그대로 가져 우수한 성능을 나타낼 수 있게 되는 것이다.Also, in the case of a battery pack according to an embodiment of the present invention, which is implemented by electrically connecting a plurality of the battery modules described above, and an automobile having such a battery pack, .
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not to be limited to the details thereof and that various changes and modifications will be apparent to those skilled in the art. And various modifications and variations are possible within the scope of the appended claims.

Claims (9)

  1. 복수의 배터리 셀이 적층되어 형성된 셀 적층체; 및 A cell stack formed by stacking a plurality of battery cells; And
    상기 셀 적층체를 수용하며, 상기 셀 적층체의 하부, 양 측부, 전후방 및 상부를 각각 커버하는 하부 하우징, 한 쌍의 측부 하우징, 한 쌍의 전후방 하우징 및 상부 하우징으로 구성되는 모듈 하우징을 포함하며,And a module housing configured to house the cell stack body and configured to include a lower housing, a pair of side housings, a pair of front and rear housings, and an upper housing that cover a lower portion, both sides, front and rear, ,
    상기 하부 하우징은,The lower housing comprises:
    상기 셀 적층체의 하면을 전체적으로 커버하는 베이스 플레이트; 및A base plate which covers the entire lower surface of the cell stack body; And
    상기 셀 적층체와 상기 베이스 플레이트의 사이에 개재되며 상기 셀 적층체의 하면을 부분적으로 커버하여 상기 셀 적층체와 상기 베이스 플레이트 사이에 빈 공간을 형성시키는 스페이서;A spacer interposed between the cell stacked body and the base plate and partially covering the lower surface of the cell stacked body to form a void space between the cell stacked body and the base plate;
    상기 스페이서에 연결되어 상기 스페이서의 내부를 통해 상기 빈 공간으로 냉각 매체를 공급하는 공급관; 및A supply pipe connected to the spacer to supply the cooling medium to the empty space through the inside of the spacer; And
    상기 스페이서에 연결되어 상기 빈 공간 및 상기 스페이서의 내부를 통해 흐르는 냉각 매체를 외부로 배출시키는 배출관;A discharge pipe connected to the spacer and discharging the cooling medium flowing through the hollow space and the inside of the spacer to the outside;
    을 포함하는 배터리 모듈..
  2. 제1항에 있어서,The method according to claim 1,
    상기 셀 적층체와 스페이서 사이에는 상기 셀 적층체와 스페이서 사이로 냉각 매체가 누수되지 않도록 접착제가 개재되는 것을 특징으로 하는 배터리 모듈.And an adhesive is interposed between the cell stack and the spacer so as to prevent leakage of the cooling medium between the cell stack and the spacer.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 베이스 플레이트의 양 측 단부에는 결합 홈이 형성된 결합부가 구비되고, 상기 측부 하우징의 하단부에는 하방으로 돌출되어 형성된 결합 돌기가 구비되며, 상기 결합 홈에 결합 돌기가 삽입 고정됨으로써 상기 측부 하우징이 상기 베이스 플레이트에 고정되는 것을 특징으로 하는 배터리 모듈.The base plate has a coupling portion formed with coupling grooves on both sides of the base plate. A coupling protrusion protruded downward is provided on the lower end of the side housing. The coupling protrusion is inserted and fixed in the coupling groove, And is fixed to the plate.
  4. 제3항에 있어서,The method of claim 3,
    상기 결합부는 상기 배터리 모듈의 내측을 향해 돌출된 돌출부를 구비하며, 상기 돌출부는 상기 베이스 플레이트와 셀 적층체 사이를 통한 누수를 방지할 수 있도록 상기 셀 적층체의 최 외각에 배치된 배터리 셀과 맞닿도록 연장된 형태를 갖는 것을 특징으로 하는 배터리 모듈.The coupling portion has a protrusion protruding toward the inside of the battery module, and the protrusion is abutted against a battery cell disposed at an outermost position of the cell stack to prevent leakage between the base plate and the cell stack Wherein the battery module has an elongated shape.
  5. 제1항에 있어서,The method according to claim 1,
    상기 스페이서는,The spacer
    상기 베이스 플레이트의 길이 방향 일 측에 구비되는 제1 스페이서;A first spacer provided on one side in the longitudinal direction of the base plate;
    상기 베이스 플레이트의 길이 방향 타 측에 구비되는 제2 스페이서; 및A second spacer provided on the other side in the longitudinal direction of the base plate; And
    상기 제1 스페이서 및 제2 스페이서와 이격되어 그 사이에 구비되는 제3 스페이서;A third spacer spaced apart from and spaced apart from the first spacer and the second spacer;
    를 포함하는 것을 특징으로 하는 배터리 모듈.The battery module comprising:
  6. 제5항에 있어서,6. The method of claim 5,
    상기 공급관은 상기 제1 스페이서의 내부를 관통하여 형성되는 제1 스페이서 유로와 연결되며, The supply pipe is connected to a first spacer flow path formed through the inside of the first spacer,
    상기 배출관은 상기 제2 스페이서의 내부를 관통하여 형성되는 제2 스페이서 유로와 연결되는 것을 특징으로 하는 배터리 모듈.And the discharge pipe is connected to a second spacer flow path formed through the inside of the second spacer.
  7. 제6항에 있어서,The method according to claim 6,
    상기 제3 스페이서는,Wherein the third spacer comprises:
    상기 제1 스페이서를 통해 공급된 냉각 매체가 상기 제2 스페이서쪽으로 흘러 들어갈 수 있도록 내부를 관통하여 형성되는 제3 스페이서 유로를 구비하는 것을 특징으로 하는 배터리 모듈.And a third spacer flow path formed inside the first spacer so that the cooling medium supplied through the first spacer flows into the second spacer.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 배터리 모듈이 복수개 연결되어 구현되는 배터리 팩.A battery pack in which a plurality of battery modules according to any one of claims 1 to 7 are connected and implemented.
  9. 제8항에 따른 배터리 팩을 구비하는 자동차.An automobile having the battery pack according to claim 8.
PCT/KR2018/015340 2017-12-27 2018-12-05 Battery module having improved cooling structure WO2019132290A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18897735.9A EP3671946B1 (en) 2017-12-27 2018-12-05 Battery module having improved cooling structure
JP2019568612A JP7045605B2 (en) 2017-12-27 2018-12-05 Battery module with improved cooling structure
US16/618,534 US11264668B2 (en) 2017-12-27 2018-12-05 Battery module having improved cooling structure
CN201880040567.8A CN110770965B (en) 2017-12-27 2018-12-05 Battery module with improved cooling structure
PL18897735.9T PL3671946T3 (en) 2017-12-27 2018-12-05 Battery module having improved cooling structure
ES18897735T ES2946145T3 (en) 2017-12-27 2018-12-05 Battery module featuring an improved cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170180560A KR102273195B1 (en) 2017-12-27 2017-12-27 Battery module with improved cooling structure
KR10-2017-0180560 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019132290A1 true WO2019132290A1 (en) 2019-07-04

Family

ID=67067816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015340 WO2019132290A1 (en) 2017-12-27 2018-12-05 Battery module having improved cooling structure

Country Status (9)

Country Link
US (1) US11264668B2 (en)
EP (1) EP3671946B1 (en)
JP (1) JP7045605B2 (en)
KR (1) KR102273195B1 (en)
CN (1) CN110770965B (en)
ES (1) ES2946145T3 (en)
HU (1) HUE062188T2 (en)
PL (1) PL3671946T3 (en)
WO (1) WO2019132290A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102364202B1 (en) * 2020-04-14 2022-02-17 에너테크인터내셔널 주식회사 Battery pack for electric vehicles with improved cooling performance
KR20210132817A (en) * 2020-04-28 2021-11-05 주식회사 엘지에너지솔루션 Battery pack and device including the same
KR20220066699A (en) 2020-11-16 2022-05-24 주식회사 엘지에너지솔루션 Battery module having a cooling structure using insulating oil, and a battery pack and vehicle comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093244A (en) * 2012-11-06 2014-05-19 Nissan Motor Co Ltd Heat transfer structure of battery module
JP2014220089A (en) * 2013-05-08 2014-11-20 小島プレス工業株式会社 Battery pack
KR20150094030A (en) * 2014-02-10 2015-08-19 삼성에스디아이 주식회사 Battery pack
KR101561121B1 (en) * 2012-11-01 2015-10-19 주식회사 엘지화학 Middle or Large-sized Battery Pack Having Efficient Cooling Structure
KR101780037B1 (en) * 2015-04-22 2017-09-19 주식회사 엘지화학 Cooling device for battery cell and battery module comprising the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102851A (en) 2005-03-25 2006-09-28 삼성에스디아이 주식회사 Secondary battery module
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
EP2442383A1 (en) 2010-10-13 2012-04-18 Magna E-Car Systems GmbH & Co OG Modular system for a battery
JP2013051100A (en) 2011-08-31 2013-03-14 Nissan Motor Co Ltd Battery temperature control module
DE102011082199B4 (en) * 2011-09-06 2021-06-10 Robert Bosch Gmbh Battery with temperature control unit
US9647304B2 (en) 2011-12-09 2017-05-09 Honda Motor Co., Ltd. Battery cooling structure including heat transfer sheet
KR101686583B1 (en) * 2013-11-29 2016-12-14 주식회사 엘지화학 Battery Module of Cartridge Stacking Structure
KR101589931B1 (en) 2014-01-06 2016-01-29 희성정밀 주식회사 Battery cooling apparatus for electric vehicle
KR101773105B1 (en) 2014-07-31 2017-08-30 주식회사 엘지화학 Battery module
KR101678490B1 (en) * 2014-08-22 2016-11-22 주식회사 엘지화학 Cartridge for secondary battery and battery module including the same
KR101795703B1 (en) * 2014-11-06 2017-11-08 주식회사 엘지화학 Cartridge for secondary battery and battery module including the same
JP6122414B2 (en) 2014-11-13 2017-04-26 本田技研工業株式会社 Electric vehicle
DE102015214185B4 (en) 2015-07-27 2017-03-30 Audi Ag Battery module for a motor vehicle, module assembly and motor vehicle
EP3331054A4 (en) * 2015-07-27 2019-02-27 Contemporary Amperex Technology Co., Limited Battery group heat management module
KR102057620B1 (en) * 2015-08-13 2019-12-19 주식회사 엘지화학 Battery module
KR102084151B1 (en) 2015-10-07 2020-03-03 주식회사 엘지화학 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
US10147986B2 (en) * 2015-11-03 2018-12-04 Ford Global Technologies, Llc Traction battery assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561121B1 (en) * 2012-11-01 2015-10-19 주식회사 엘지화학 Middle or Large-sized Battery Pack Having Efficient Cooling Structure
JP2014093244A (en) * 2012-11-06 2014-05-19 Nissan Motor Co Ltd Heat transfer structure of battery module
JP2014220089A (en) * 2013-05-08 2014-11-20 小島プレス工業株式会社 Battery pack
KR20150094030A (en) * 2014-02-10 2015-08-19 삼성에스디아이 주식회사 Battery pack
KR101780037B1 (en) * 2015-04-22 2017-09-19 주식회사 엘지화학 Cooling device for battery cell and battery module comprising the same

Also Published As

Publication number Publication date
US11264668B2 (en) 2022-03-01
HUE062188T2 (en) 2023-09-28
KR102273195B1 (en) 2021-07-05
US20200168864A1 (en) 2020-05-28
ES2946145T3 (en) 2023-07-13
CN110770965B (en) 2023-04-04
KR20190078841A (en) 2019-07-05
EP3671946B1 (en) 2023-04-26
EP3671946A4 (en) 2020-11-18
PL3671946T3 (en) 2023-07-17
CN110770965A (en) 2020-02-07
JP7045605B2 (en) 2022-04-01
JP2020523756A (en) 2020-08-06
EP3671946A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2015182909A1 (en) Battery module including water cooling structure
WO2019203460A1 (en) Battery pack provided with degassing flow channel
WO2013168856A1 (en) Battery module including high-efficiency cooling structure
WO2019235724A1 (en) Battery module having improved cooling structure
WO2010050697A2 (en) Battery cartridge, and battery module comprising same
WO2019107795A1 (en) Battery pack
WO2014027783A1 (en) Battery module comprising venting guidance portion
WO2011145830A2 (en) Compact cooling member having superior stability, and battery module comprising same
WO2018008866A1 (en) Battery module, battery pack comprising same, and vehicle
WO2014010842A1 (en) Battery module including indirect air cooling structure
WO2015030431A1 (en) Battery module comprising structure for preventing mixing of refrigerant and exhaust gas
WO2014027786A1 (en) Battery module having assembly coupling structure
WO2011083968A2 (en) Mid- or large-sized battery pack having improved cooling efficiency
WO2012023753A2 (en) Battery module with compact structure and excellent heat radiation characteristics, and medium- or large-sized battery pack
WO2017217641A1 (en) Battery module, and battery pack and vehicle comprising same
WO2011013905A2 (en) Battery module having improved cooling efficiency
WO2019107734A1 (en) Battery module having initial pressing force strengthening structure for cell assembly, and method for manufacturing same
WO2011145831A2 (en) Cooling member having a novel structure, and battery module including same
WO2013168934A1 (en) Battery module having improved stability
WO2017146379A1 (en) Battery module, battery pack and vehicle having same
WO2020197208A1 (en) Battery module and manufacturing method therefor
WO2019146892A1 (en) Battery module comprising a housing with integrated bus bar
WO2019132290A1 (en) Battery module having improved cooling structure
WO2021107305A1 (en) Battery module
WO2020022643A1 (en) Cooling efficiency-enhanced battery module and battery pack comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568612

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018897735

Country of ref document: EP

Effective date: 20200316

NENP Non-entry into the national phase

Ref country code: DE