WO2019131662A1 - Liquid crystal cured film, polarization plate, and method for manufacturing organic electroluminescence display device - Google Patents

Liquid crystal cured film, polarization plate, and method for manufacturing organic electroluminescence display device Download PDF

Info

Publication number
WO2019131662A1
WO2019131662A1 PCT/JP2018/047634 JP2018047634W WO2019131662A1 WO 2019131662 A1 WO2019131662 A1 WO 2019131662A1 JP 2018047634 W JP2018047634 W JP 2018047634W WO 2019131662 A1 WO2019131662 A1 WO 2019131662A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
layer
cured
crystal compound
Prior art date
Application number
PCT/JP2018/047634
Other languages
French (fr)
Japanese (ja)
Inventor
菜津美 藤原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019562041A priority Critical patent/JP7306273B2/en
Publication of WO2019131662A1 publication Critical patent/WO2019131662A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a liquid crystal cured film, a polarizing plate, and a method of manufacturing an organic electroluminescence display.
  • a liquid crystal cured film is known as one of the optical films.
  • the liquid crystal cured film generally includes a liquid crystal cured layer formed of a cured product in which a liquid crystal composition containing a liquid crystal compound is aligned and cured while maintaining the alignment state.
  • a liquid crystal composition containing a liquid crystal compound is aligned and cured while maintaining the alignment state.
  • Patent No. 5363022 gazette International Publication No. 2016/031853 JP, 2017-037193, A
  • the liquid crystal cured layer included in the liquid crystal cured film usually contains a liquid crystal compound.
  • the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal cured layer.
  • the liquid crystal cured layer containing the liquid crystal compound in which the molecules are inclined in this manner generally has birefringence in the thickness direction according to the size of the inclination angle of the molecules of the liquid crystal compound.
  • a cured liquid crystal film including a cured liquid crystal layer whose birefringence in the thickness direction is appropriately adjusted is used as an image display device such as an organic electroluminescent display device (hereinafter sometimes referred to as “organic EL display device” as appropriate). By providing them, various advantages such as improvement of the viewing angle can be obtained.
  • the tilt angle of the molecules of the liquid crystal compound contained in a certain layer can be evaluated by the substantially maximum tilt angle.
  • the “substantially maximum inclination angle” means that the inclination angle of the molecule on one surface of the layer is 0 ° and the inclination angle of the molecule changes at a constant rate in the thickness direction.
  • the inclination angle of the molecules of the liquid crystal compound may be smaller as it is closer to one side of the layer in the thickness direction, and larger as it is farther from the one side.
  • the actual maximum inclination angle is calculated on the assumption that the ratio of the change of the inclination angle in the thickness direction (ie, the ratio of the change decreasing closer to one side and increasing increasing farther from one side) is constant. Represents the maximum value of the tilt angle.
  • the adjustment of the substantial maximum tilt angle of the molecules of the liquid crystal compound can usually be performed by adjusting the composition of the liquid crystal composition. However, it is troublesome to prepare liquid crystal compositions having different compositions each time the substantial maximum inclination angle is to be changed. Therefore, development of a technique capable of easily adjusting the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is desired.
  • the present invention has been made in view of the above problems, and is a method for producing a cured liquid crystal film having a cured liquid crystal layer, which facilitates the substantially maximum inclination angle of the molecules of the liquid crystal compound contained in the cured liquid crystal layer.
  • the present inventors diligently studied to solve the above-mentioned problems. As a result, the inventor forms a first cured layer with the first liquid crystal composition, forms a layer of the second liquid crystal composition containing the liquid crystal compound directly on the first cured layer, and After the liquid crystal compound contained in the layer of the second liquid crystal composition is aligned, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition is increased with the passage of time. I found it to grow. And based on this knowledge, the present inventors completed the present invention. That is, the present invention includes the following.
  • a method for producing a cured liquid crystal film comprising a cured liquid crystal composition containing a liquid crystal compound, and a cured liquid crystal layer comprising a first cured layer and a second cured layer,
  • the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is 5 ° or more and 85 ° or less
  • the manufacturing method is Step (I) of forming a layer of a first liquid crystal composition containing the liquid crystal compound Aligning the liquid crystal compound contained in the layer of the first liquid crystal composition (II); Curing the layer of the first liquid crystal composition to form the first cured layer (III); Forming a layer of a second liquid crystal composition containing the liquid crystal compound which is the same as or different from the liquid crystal compound contained in the first liquid crystal composition directly on the first cured layer; Aligning the liquid crystalline compound contained in the layer of the second liquid crystal composition (V); Step (VI) in which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition
  • a manufacturing method of a polarizing plate provided with a liquid crystal cured film A method for producing a polarizing plate, comprising producing the liquid crystal cured film by the method according to any one of [1] to [8].
  • a method of manufacturing an organic electroluminescent display device comprising a polarizing plate, The manufacturing method of the organic electroluminescent display apparatus including manufacturing the said polarizing plate by the manufacturing method of [9] description.
  • a method of producing a cured liquid crystal film comprising a cured liquid crystal layer, wherein the substantially maximum inclination angle of the molecules of the liquid crystal compound contained in the cured liquid crystal layer can be easily adjusted;
  • the manufacturing method of the polarizing plate using the manufacturing method of these;
  • the manufacturing method of the organic electroluminescence display using the manufacturing method of said liquid crystal cured film can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal cured film produced by a production method according to an embodiment of the present invention.
  • FIG. 2 is a graph in which the retardation ratio R ( ⁇ ) / R (0 °) of the first cured layer according to an example is plotted against the incident angle ⁇ .
  • FIG. 3 is a perspective view for explaining the measurement direction when measuring the retardation of the liquid crystal cured layer from the tilt direction.
  • the “in-plane direction” of a layer means a direction parallel to the layer plane unless otherwise specified.
  • the “thickness direction” of a certain layer indicates the direction perpendicular to the plane of the layer, unless otherwise specified. Therefore, unless otherwise specified, the in-plane direction and thickness direction of a given layer are perpendicular.
  • the “front direction” of a surface means the normal direction of the surface unless specifically stated otherwise, and specifically refers to the direction of the polar angle of 0 ° of the surface.
  • the “inclination direction” of a surface means a direction neither parallel nor perpendicular to the surface unless specifically stated otherwise, specifically, the polar angle of the surface is in the range of 5 ° to 85 °. Point in the direction of
  • the birefringence ⁇ n (450) at a wavelength of 450 nm and the birefringence ⁇ n (550) at a wavelength of 550 nm satisfy the following formula (N1) unless otherwise specified: Say Generally, a liquid crystal compound capable of expressing such reverse wavelength dispersive birefringence can exhibit greater birefringence as the measurement wavelength is longer. ⁇ n (450) ⁇ n (550) (N1)
  • the birefringence ⁇ n (450) at a wavelength of 450 nm and the birefringence ⁇ n (550) at a wavelength of 550 nm satisfy the following formula (N2), unless otherwise specified.
  • N2 the following formula
  • nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the layer and in the direction giving the maximum refractive index.
  • ny represents the refractive index of the in-plane direction of the layer, which is perpendicular to the nx direction.
  • d represents the thickness of the layer.
  • the measurement wavelength of retardation is 590 nm unless otherwise stated.
  • the in-plane retardation Re can be measured using a retardation meter ("AxoScan" manufactured by Axometrics).
  • a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto.
  • a resin having a negative intrinsic birefringence value means a resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal thereto.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the direction of the slow axis of a layer means the direction of the slow axis in the in-plane direction unless otherwise specified.
  • the "tilt angle" of the molecules of the liquid crystal compound contained in a certain layer means the angle that the molecules of the liquid crystal compound form with respect to the layer plane, and "tilt angle” Sometimes called. This inclination angle corresponds to the largest angle among the angles that the direction of the largest refractive index makes with the layer plane in the refractive index ellipsoid of the molecules of the liquid crystal compound.
  • the “tilt angle” refers to the tilt angle of the molecules of the liquid crystal compound relative to the layer plane of the layer in which the liquid crystal compound is contained.
  • the tilt angle with respect to the layer plane may be referred to as “tilt angle with respect to the in-plane direction” parallel to the layer plane.
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal cured film 100 produced by the production method according to an embodiment of the present invention.
  • the method for producing a cured liquid crystal film 100 according to an embodiment of the present invention is a cured liquid crystal film 100 having a cured liquid crystal layer 110 formed of a cured product of a liquid crystal composition containing a liquid crystalline compound.
  • the liquid crystal cured layer 110 of the liquid crystal cured film 100 produced by this production method includes a first cured layer 111 and a second cured layer 112 formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
  • the liquid crystal cured layer 110 contains molecules (not shown) of the liquid crystal compound.
  • the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 may be fixed in the alignment state.
  • the term "liquid crystal compound in which the alignment state is fixed” includes polymers of liquid crystal compounds. Usually, the liquid crystallinity of the liquid crystalline compound is lost by polymerization, but in the present application, the liquid crystalline compound thus polymerized is also included in the term “liquid crystalline compound contained in the liquid crystal cured layer”.
  • At least a part of molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 is inclined with respect to the layer plane of the liquid crystal cured layer 110 (that is, in the in-plane direction).
  • the tilt angle of the molecule with respect to the layer plane ie with respect to the in-plane direction
  • the molecules of the liquid crystal compound thus inclined are usually neither parallel nor perpendicular to the layer plane (ie, to the in-plane direction).
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound is usually 5 ° or more and 85 ° or less.
  • the substantial maximum tilt angle is an index indicating the magnitude of the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110.
  • the tilt angle as a whole of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 tends to be larger.
  • the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 can be adjusted, the inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 can be adjusted as a whole.
  • the liquid crystal cured film 100 provided with the liquid crystal cured layer 110 in which the substantial maximum inclination angle is appropriately adjusted can appropriately adjust the birefringence in the thickness direction, and therefore can exhibit excellent viewing angle characteristics.
  • the manufacturing method of such a liquid crystal hardening film 100 is Forming a layer of a first liquid crystal composition containing a liquid crystal compound (I); Aligning the liquid crystal compound contained in the layer of the first liquid crystal composition (II); Curing the layer of the first liquid crystal composition to form a first cured layer 111 (III); Forming a layer of a second liquid crystal composition containing a liquid crystal compound which is the same as or different from the liquid crystal compound contained in the first liquid crystal composition directly on the first cured layer 111; Aligning the liquid crystal compound contained in the layer of the second liquid crystal composition (V); Step (VI) in which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition increases with the passage of time; Curing the layer of the second liquid crystal composition to form a second cured layer 112 (VII); In this order.
  • Step (I): Formation of Layer of First Liquid Crystal Composition In the step (I), a layer of a first liquid crystal composition as a liquid crystal composition for forming a first cured layer is formed.
  • the first liquid crystal composition includes a liquid crystal compound for forming a first cured layer.
  • the liquid crystal compound is a compound having liquid crystallinity, and is usually a compound capable of exhibiting a liquid crystal phase when the liquid crystal compound is aligned.
  • a reverse dispersion liquid crystal compound may be used, a forward dispersion liquid crystal compound may be used, or a combination of the reverse dispersion liquid crystal compound and the forward dispersion liquid crystal compound may be used.
  • the reverse dispersion liquid crystal compound is a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence.
  • a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence forms a layer of the liquid crystal compound, and when the liquid crystal compound is aligned in that layer, it exhibits reverse wavelength dispersive birefringence. Liquid crystal compound.
  • the normal dispersion liquid crystal compound is a liquid crystal compound capable of expressing birefringence with normal wavelength dispersion.
  • a liquid crystal compound capable of expressing forward wavelength dispersive birefringence forms a layer of the liquid crystal compound, and when the liquid crystal compound is aligned in the layer, it exhibits birefringence of forward wavelength dispersion. Liquid crystal compound.
  • the wavelength dispersion of birefringence exhibited by the liquid crystalline compound can be confirmed by examining the wavelength dispersion of birefringence exhibited by the layer of the liquid crystalline compound.
  • the liquid crystal compound is homogeneously aligned by forming a layer containing the liquid crystal compound, and the direction of the maximum refractive index in the refractive index ellipsoid of the molecules of the liquid crystal compound in the layer is It refers to orienting in one direction parallel to the plane.
  • the birefringence of the layer is determined from "(in-plane retardation of layer) / (thickness of layer)".
  • the liquid crystal compound contained in the first liquid crystal composition when the second liquid crystal composition contains a reverse dispersion liquid crystal compound, a reverse dispersion liquid crystal compound is preferable.
  • the reverse dispersion liquid crystal compound in the step (VI), the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the layer of the second liquid crystal composition can be effectively enlarged with the passage of time. Therefore, adjustment of the tilt angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed.
  • the reverse dispersion liquid crystal compound in general, the first cured layer can function as a tilted alignment film that increases the tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the second cured layer. Therefore, when the second liquid crystal composition contains the reverse dispersion liquid crystal compound, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be adjusted in a wide range.
  • the refractive index anisotropy of the liquid crystal compound exhibiting reverse wavelength dispersion is the refractive index of the direction showing the maximum refractive index and the refractive index of the molecule of the liquid crystal compound, and the other direction intersecting this direction It expresses as a difference with the refractive index of Further, depending on the molecular structure of the liquid crystal compound, the wavelength dispersion of the refractive index in each direction may differ. Thus, for example, in a direction in which the refractive index is relatively large, the refractive index measured at the long wavelength is smaller than the refractive index measured at the short wavelength, but the difference between them is small.
  • the refractive index measured at the long wavelength is smaller than the refractive index measured at the short wavelength, and the difference between them is large.
  • the refractive index difference between the directions in such an example is small when the measurement wavelength is short, and is large when the measurement wavelength is long. As a result, it is possible to express reverse wavelength dispersive birefringence.
  • the liquid crystal compound preferably has a polymerizability. Therefore, in the liquid crystal compound, the molecule preferably contains a polymerizable group such as an acryloyl group, a methacryloyl group, and an epoxy group.
  • a polymerizable liquid crystal compound can be polymerized in a liquid crystal phase, and can be a polymer while maintaining the alignment state of molecules in the liquid crystal phase. Therefore, it is possible to fix the alignment state of the liquid crystalline compound in the first cured layer, or to increase the degree of polymerization of the liquid crystalline compound to increase the mechanical strength of the first cured layer.
  • the molecular weight of the liquid crystal compound is preferably 300 or more, more preferably 500 or more, particularly preferably 800 or more, preferably 2000 or less, more preferably 1700 or less, particularly preferably 1500 or less.
  • the birefringence ⁇ n of the liquid crystal compound at a measurement wavelength of 550 nm is preferably 0.01 or more, more preferably 0.03 or more, preferably 0.15 or less, more preferably 0.10 or less.
  • the birefringence of the liquid crystal compound can be measured, for example, by the following method. A layer of liquid crystal compound is produced, and the liquid crystal compound contained in the layer is homogeneously aligned. Thereafter, the in-plane retardation of the layer is measured. Then, the birefringence of the liquid crystal compound can be determined from “(in-plane retardation of layer) / (thickness of layer)”. Under the present circumstances, in order to make measurement of in-plane retardation and thickness easy, you may harden the layer of the liquid crystal compound which carried out homogeneous orientation.
  • the liquid crystal compounds may be used alone or in combination of two or more at an arbitrary ratio.
  • Ar represents a group represented by any of the following formulas (II-1) to (II-7).
  • * represents a bonding position to Z 1 or Z 2 .
  • E 1 and E 2 are each independently —CR 11 R 12 —, —S—, —NR 11 —, —CO— and — It represents a group selected from the group consisting of O-.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Among them, E 1 and E 2 are preferably each independently —S—.
  • D 1 to D 3 each independently represent an aromatic hydrocarbon ring group which may have a substituent, or a substituent Represents an aromatic heterocyclic group which may be possessed.
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by D 1 to D 3 is generally independently 2 to 100.
  • the number of carbon atoms of the aromatic hydrocarbon ring group in D 1 to D 3 is preferably 6 to 30.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 include a phenyl group and a naphthyl group. Among them, as an aromatic hydrocarbon ring group, a phenyl group is more preferable.
  • the aromatic hydrocarbon ring group in D 1 to D 3 may have, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a carbon atom such as a methyl group, an ethyl group and a propyl group
  • a halogen atom such as a fluorine atom and a chlorine atom
  • a cyano group such as a carbon atom such as a methyl group, an ethyl group and a propyl group
  • R a represents an alkyl group having 1 to 6 carbon atoms; and an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms as a substituent, having 6 carbon atoms And a group selected from the group consisting of -20 aromatic hydrocarbon ring groups;
  • R b is an alkyl group having 1 to 20 carbon atoms which may have a substituent; an alkenyl group having 2 to 20 carbon atoms which may have a substituent; even if it has a substituent And a group selected from the group consisting of a good cycloalkyl group having 3 to 12 carbon atoms; and an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent.
  • the number of carbon atoms of the alkyl group having 1 to 20 carbon atoms for R b is preferably 1 to 12, and more preferably 4 to 10.
  • a C1-C20 alkyl group in R b for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group , Sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group , N-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group
  • the substituent which the alkyl group having 1 to 20 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a dimethylamino group or the like; N, N-dialkylamino group; an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropoxy and butoxy; and C 1 to 12 having carbon atoms such as methoxymethoxy and methoxyethoxy
  • the number of carbon atoms of the alkenyl group having 2 to 20 carbon atoms for R b is preferably 2 to 12.
  • a C2-C20 alkenyl group in R b for example, a vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group And dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icosenyl group and the like.
  • Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R b include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R b.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms as R b include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Among them, as a cycloalkyl group, a cyclopentyl group and a cyclohexyl group are preferable.
  • the substituent that the cycloalkyl group having 3 to 12 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a cyano group; a dimethylamino group or the like N, N-dialkylamino groups; alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl and propyl; and alkoxy having 1 to 6 carbon atoms, such as methoxy, ethoxy and isopropoxy. And nitro aromatic group, and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group.
  • a substituent of the cycloalkyl group a halogen atom such as fluorine atom and chlorine atom; cyano group; an alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; methoxy group, ethoxy
  • An alkoxy group having 1 to 6 carbon atoms such as a group and isopropoxy group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group are preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the aromatic hydrocarbon ring group having 6 to 12 carbon atoms as R b include a phenyl group, a 1-naphthyl group and a 2-naphthyl group. Among them, as an aromatic hydrocarbon ring group, a phenyl group is preferable.
  • the substituent that the aromatic hydrocarbon ring group having 6 to 12 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a carbon atom number such as a cyano group; a dimethylamino group 2 to 12 N, N-dialkylamino group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group and butoxy group; carbon atom number such as methoxymethoxy group and methoxyethoxy group An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group of 1 to 12; nitro group; an aromatic heterocyclic group having 2 to 20 carbon atoms such as triazolyl group, pyrrolyl group, furanyl group, thiophenyl group, etc .; A cycloalkyl group having 3 to 8 carbon atoms, such as cyclopropyl group, cyclopenty
  • a halogen atom such as a fluorine atom or a chlorine atom
  • a cyano group such as a fluorine atom or a chlorine atom
  • a cyano group such as a fluorine atom or a chlorine atom
  • a cyano group such as a methoxy group, an ethoxy group, an isopropoxy group, a butoxy group, etc.
  • Alkoxy group Alkoxy group; nitro group; aromatic heterocyclic group having 2 to 20 carbon atoms such as furanyl group and thiophenyl group; cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; A fluoroalkyl group having 1 to 12 carbon atoms, in which one or more hydrogen atoms are substituted with a fluorine atom, such as trifluoromethyl group, pentafluoroethyl group, -CH 2 CF 3 and the like; -OCF 3 ; is preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • the number of carbon atoms of the aromatic heterocyclic group in D 1 to D 3 is preferably 2 to 30.
  • Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 include 1-benzofuranyl group, 2-benzofuranyl group, imidazolyl group, indolinyl group, furazanyl group, oxazolyl group, quinolyl group, and thiadiazolyl group.
  • aromatic heterocyclic group monocyclic aromatic heterocyclic groups such as furanyl group, pyranyl group, thienyl group, oxazolyl group, furazanyl group, thiazolyl group, and thiadiazolyl group; and benzothiazolyl group, benzooxa group Zoryl group, quinolyl group, 1-benzofuranyl group, 2-benzofuranyl group, phthalimido group, benzo [c] thienyl group, benzo [b] thienyl group, thiazolopyridyl group, thiazolopyrazinyl group, benzisoxazolate
  • aromatic heterocyclic groups such as fused rings, such as a ring group, a benzoxadiazolyl group, and a benzothiadiazolyl group.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • D 4 to D 5 each independently represent an acyclic group which may have a substituent. D 4 and D 5 may together form a ring.
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by D 4 to D 5 is generally independently 1 to 100.
  • the number of carbon atoms of the noncyclic group in D 4 to D 5 is preferably 1 to 13.
  • the above Ph represents a phenyl group.
  • R x represents an organic group having 1 to 12 carbon atoms.
  • R x include an alkoxy group having 1 to 12 carbon atoms, and an alkyl group having 1 to 12 carbon atoms which may be substituted with a hydroxyl group.
  • Examples of the substituent that the noncyclic group in D 4 to D 5 may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • D 4 and D 5 When D 4 and D 5 are taken together to form a ring, the above-mentioned D 4 and D 5 form an organic group containing a ring.
  • this organic group the group represented by a following formula is mentioned, for example.
  • * represents the position where each organic group is bonded to the carbon to which D 4 and D 5 are bonded.
  • R * represents an alkyl group having 1 to 3 carbon atoms.
  • R ** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
  • R *** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
  • R **** is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, hydroxyl group, and represents a group selected from the group consisting of -COOR 13.
  • R 13 represents an alkyl group having 1 to 3 carbon atoms.
  • a substituent which a phenyl group may have, for example, a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxyl group, a carboxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group and an amino group
  • a substituent a halogen atom, an alkyl group, a cyano group and an alkoxy group are preferable.
  • the number of substituents which a phenyl group has may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by D 6 is usually 3 to 100.
  • R f represents a hydrogen atom; and a group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl and isopropyl.
  • R g represents a group selected from the group consisting of a hydrogen atom; and an organic group having 1 to 30 carbon atoms which may have a substituent.
  • the preferable carbon atom number range and examples of the alkyl group having 1 to 20 carbon atoms in R g are the same as the alkyl group having 1 to 20 carbon atoms in R b .
  • the substituent which the alkyl group having 1 to 20 carbon atoms in R g may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a dimethylamino group or the like, and the like.
  • N, N-dialkylamino group an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropoxy and butoxy; and C 1 to 12 having carbon atoms such as methoxymethoxy and methoxyethoxy
  • Alkyl group cycloalkyloxy group having 3 to 8 carbon atoms such as cyclopentyloxy group and cyclohexyloxy group; cyclic having 2 to 12 carbon atoms such as tetrahydrofuranyl group, tetrahydropyranyl group, dioxolanyl group, dioxanyl group and the like
  • An ether group an aryloxy group having 6 to 14 carbon atoms such as phenoxy group and naphthoxy group; a fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom; benzofuryl group; benzopyranyl A benzodioxolyl group; a benzodioxanyl group; -SO 2 R a ; -SR b ; an alkoxy group having 1 to 12 carbon atoms substituted with -SR b ; a hydroxyl group; and the like.
  • the preferable carbon atom number range and examples of the alkenyl group having 2 to 20 carbon atoms in R g are the same as the alkenyl group having 2 to 20 carbon atoms in R b .
  • Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • alkynyl group having 2 to 20 carbon atoms for R g for example, ethynyl group, propynyl group, 2-propynyl group (propargyl group), butynyl group, 2-butynyl group, 3-butynyl group, 3-butynyl group, pentynyl group, 2- And pentynyl group, hexynyl group, 5-hexynyl group, heptynyl group, octynyl group, 2-octynyl group, nonanyl group, decanyl group, 7-decanyl group and the like.
  • Examples of the substituent which may have an alkynyl group having 2 to 20 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the cycloalkyl group having 3 to 12 carbon atoms in R b .
  • Examples of the substituent which may have a cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 .
  • Examples of the substituent that the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have.
  • Be The number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in R g include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 .
  • Examples of the substituent that the aromatic heterocyclic group having 2 to 30 carbon atoms in R g may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have. .
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
  • R h include (1) a hydrocarbon ring group having 6 to 40 carbon atoms, which has one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
  • the hydrocarbon ring group having an aromatic hydrocarbon ring may be appropriately referred to as “(1) hydrocarbon ring group”.
  • (1) Specific examples of the hydrocarbon ring group include the following groups.
  • the hydrocarbon ring group may have a substituent.
  • a substituent which a hydrocarbon ring group may have, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a methyl group, an ethyl group, a propyl group, etc.
  • R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h includes (2) at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms. And heterocyclic groups having 2 to 40 carbon atoms.
  • the heterocyclic group having an aromatic ring may be appropriately referred to as "(2) heterocyclic group”.
  • the following groups may be mentioned as specific examples of the heterocyclic group.
  • Each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the heterocyclic group may have a substituent.
  • substituents that the (2) heterocyclic group may have include the same examples as the substituents that the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h (3) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkyl group having 1 to 12 carbon atoms substituted by
  • this substituted alkyl group may be appropriately referred to as "(3) substituted alkyl group”.
  • Examples of the “alkyl group having 1 to 12 carbon atoms” in the substituted alkyl group include a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • Examples of the "aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
  • the substituted alkyl group may further have a substituent.
  • substituent which the substituted alkyl group may have include the same examples as the substituent which the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h (4) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkenyl group having 2 to 12 carbon atoms which is substituted by
  • this substituted alkenyl group may be referred to as “(4) substituted alkenyl group” as appropriate.
  • Examples of the “alkenyl group having 2 to 12 carbon atoms” in the substituted alkenyl group include a vinyl group and an allyl group.
  • Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
  • the substituted alkenyl group may further have a substituent.
  • a substituent which a substituted alkenyl group may have the same example as a substituent which (1) hydrocarbon ring group may have is mentioned, for example.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h (5) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkynyl group having 2 to 12 carbon atoms which is substituted by
  • this substituted alkynyl group may be referred to as “(5) substituted alkynyl group” as appropriate.
  • Examples of the “C 2-12 alkynyl group” in the substituted alkynyl group include ethynyl group and propynyl group.
  • Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
  • the substituted alkynyl group may further have a substituent.
  • substituents that the substituted alkynyl group may have (5) include the same examples as the substituent that the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R h More preferable specific examples of R h include the following groups.
  • R h include the following groups.
  • R h described above may further have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; vinyl group, allyl group and the like
  • R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • R i represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms.
  • R i include hydrocarbon ring groups having 6 to 40 carbon atoms, which have one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
  • another preferable example of R i has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms, And heterocyclic groups having 2 to 40 carbon atoms.
  • R i include the following groups.
  • the meaning of R is as described above.
  • the group represented by any one of formulas (II-1) to (II-7) may further have a substituent in addition to D 1 to D 6 .
  • substituents include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, and an N-alkylamino having 1 to 6 carbon atoms.
  • N, N-dialkylamino group having 2 to 12 carbon atoms alkoxy group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, carboxyl group, thioalkyl group having 1 to 6 carbon atoms And an N-alkylsulfamoyl group having 1 to 6 carbon atoms, and an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Preferred examples of Ar in the formula (I) include groups represented by the following formulas (III-1) to (III-10).
  • the groups represented by the formulas (III-1) to (III-10) may have an alkyl group having 1 to 6 carbon atoms as a substituent.
  • * represents a bonding position.
  • a 1 , A 2 , B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, and an aromatic which may have a substituent A group selected from the group consisting of
  • the carbon atom number (including the carbon atom number of the substituent) of the group represented by A 1 , A 2 , B 1 and B 2 is generally independently 3 to 100.
  • each of A 1 , A 2 , B 1 and B 2 independently has a cyclic aliphatic group having 5 to 20 carbon atoms which may have a substituent, or a substituent Preferred are aromatic groups having 2 to 20 carbon atoms.
  • cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 for example, cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, 1,4-cycloheptane-1,4 Cycloalkanediyl group having 5 to 20 carbon atoms, such as -diyl group, cyclooctane-1,5-diyl group; decahydronaphthalene-1,5-diyl group, decahydronaphthalene-2,6-diyl group, etc. And a bicycloalkanediyl group having 5 to 20 carbon atoms; and the like.
  • a cycloalkanediyl group having 5 to 20 carbon atoms which may be substituted is preferable, a cyclohexanediyl group is more preferable, and a cyclohexane-1,4-diyl group is particularly preferable.
  • the cyclic aliphatic group may be trans, cis or a mixture of cis and trans. Among them, the trans form is more preferable.
  • Examples of the substituent that the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, A nitro group, a cyano group, etc. are mentioned.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as 5-naphthylene group, 2,6-naphthylene group, 4,4′-biphenylene group, etc .; furan-2,5-diyl group, thiophene-2,5 -Aromatic heterocyclic groups having 2 to 20 carbon atoms, such as -diyl, pyridine-2, 5-diyl and pyrazine-2, 5-diyl; and the like.
  • an aromatic hydrocarbon ring group having 6 to 20 carbon atoms is preferable, a phenylene group is more preferable, and a 1,4-phenylene group is particularly preferable.
  • substituent which the aromatic group in A 1 , A 2 , B 1 and B 2 may have, for example, the same as the substituents which the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have An example is given.
  • the number of substituents may be one or more.
  • the plurality of substituents may be identical to or different from each other.
  • Each of R 22 and R 23 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the hydrogen atom contained in the organic group of G 1 and G 2 may be substituted by an alkyl group of 1 to 5 carbon atoms, an alkoxy group of 1 to 5 carbon atoms, or a halogen atom.
  • Specific examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 1 to 20 carbon atoms.
  • Specific examples of the aliphatic hydrocarbon group having 3 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 3 to 20 carbon atoms.
  • P 1 and P 2 each independently represent a polymerizable group.
  • R 31 represents a hydrogen atom, a methyl group or a chlorine atom.
  • the reverse dispersed liquid crystalline compound represented by the formula (I) can be produced, for example, by the reaction of a hydrazine compound and a carbonyl compound described in WO 2012/147904.
  • the first liquid crystal composition may further contain an optional component in combination with the liquid crystal compound, if necessary.
  • an optional component in combination with the liquid crystal compound, if necessary.
  • one type may be used alone, or two or more types may be used in combination in an optional ratio.
  • the first liquid crystal composition contains a polymerization initiator as an optional component.
  • the type of polymerization initiator may be selected according to the type of polymerizable compound contained in the first liquid crystal composition. For example, if the polymerizable compound is radically polymerizable, a radical polymerization initiator may be used. In addition, if the polymerizable compound is anionically polymerizable, an anionic polymerization initiator may be used. Furthermore, if the polymerizable compound is cationically polymerizable, a cationic polymerization initiator may be used. As the polymerization initiator, one type may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the amount of the polymerization initiator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 30 parts by weight or less, more preferably 10 parts by weight, based on 100 parts by weight of the liquid crystal compound. Part or less.
  • the amount of the polymerization initiator falls within the above range, the polymerization can be efficiently advanced.
  • the first liquid crystal composition may contain a surfactant as an optional component.
  • a surfactant as an optional component.
  • a surfactant containing a fluorine atom in the molecule is preferable.
  • the surfactant is preferably a nonionic surfactant.
  • the surfactant is a nonionic surfactant which does not contain an ionic group, the surface state and the orientation of the liquid crystal cured layer can be made particularly good.
  • the surfactant may not have the polymerizability, and may have the polymerizability.
  • the polymerizable surfactant can be polymerized in the step of curing the layer of the first liquid crystal composition, and therefore, in the liquid crystal cured layer, it is usually contained in a part of the molecules of the polymer.
  • surfactant for example, Surfron series (S420 etc.) manufactured by AGC Seimi Chemical Co., Ltd., Ftergent series manufactured by Neos (251, FTX-212M, FTX-215M, FTX-209 etc.), manufactured by DIC Megafuck series (F-444 etc.) etc. may be mentioned.
  • surfactant may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the surfactant is preferably 0.03 parts by weight or more, more preferably 0.05 parts by weight or more, preferably 0.50 parts by weight or less, more preferably 100 parts by weight of the liquid crystal compound. It is 0.30 parts by weight or less. When the amount of surfactant is in the above range, the substantial maximum inclination angle of the molecules of the liquid crystal compound in the liquid crystal cured layer can be effectively increased.
  • the first liquid crystal composition may contain a solvent as an optional component.
  • a solvent those capable of dissolving the liquid crystal compound are preferable.
  • An organic solvent is usually used as such a solvent.
  • the organic solvent include ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetic acid ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as chloroform, dichloromethane and dichloroethane; And ether solvents such as 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane and 1,2-dimethoxyethane; and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene.
  • a solvent may be used individually by 1 type,
  • the boiling point of the solvent is preferably 60 ° C. to 250 ° C., more preferably 60 ° C. to 150 ° C. from the viewpoint of excellent handleability.
  • the amount of the solvent is preferably 200 parts by weight or more, more preferably 250 parts by weight or more, particularly preferably 300 parts by weight or more, preferably 650 parts by weight or less, more preferably 100 parts by weight of the liquid crystalline compound. It is at most 550 parts by weight, particularly preferably at most 450 parts by weight.
  • the first liquid crystal composition has an effect of increasing the substantial maximum tilt angle of the molecules of the liquid crystal compound as an optional component in order to increase the tilt angle of the molecules of the liquid crystal compound contained in the first cured layer.
  • It may contain a gradient action component capable of exerting As a kind and quantity of a gradient action component, the specification of Unexamined-Japanese-Patent No. 2018-262379 (or specification of Japanese Patent Application No. 2017-060154), the specification of International Publication No. 2018/173778 (or Japanese Patent Application No. 2017-060122) is mentioned, for example. And JP-A No. 2018-163218 (or the specification of Japanese Patent Application No. 2017-059327).
  • the inclination action component is not necessarily used. I do not care.
  • the first liquid crystal composition may contain include metals; metal complexes; metal oxides such as titanium oxide; colorants such as dyes and pigments; light emitting materials such as fluorescent materials and phosphorescent materials; Agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, and the like.
  • the amount of these components may be 0.1 parts by weight to 20 parts by weight with respect to a total of 100 parts by weight of the liquid crystal compound.
  • a layer of the first liquid crystal composition is usually formed on a suitable support surface.
  • the support surface any surface capable of supporting the layer of the first liquid crystal composition can be used. From the viewpoint of improving the surface condition of the cured liquid crystal layer, it is preferable to use a flat surface free of concave and convex portions as the support surface. In addition, from the viewpoint of enhancing the productivity of the liquid crystal cured layer, it is preferable to use the surface of a long base as the support surface.
  • “long” refers to a shape having a length of 5 or more times the width, preferably 10 or more times the length, and specifically wound in a roll. It refers to the shape of a film having a length that can be stored or transported.
  • a base material usually, a resin film or a glass plate is used. In particular, when the orientation treatment is performed at a high temperature, it is preferable to select a substrate that can withstand the temperature.
  • a thermoplastic resin is used. Among them, a resin having a positive intrinsic birefringence value is preferable as the resin from the viewpoint of the height of alignment control force, the height of mechanical strength, and the cost reduction. Furthermore, it is preferable to use a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and lightness.
  • a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and lightness.
  • the glass transition temperature of the material forming the support surface is preferably 90 ° C. or more, more preferably 100 ° C. or more, and particularly preferably 120 ° C. or more. Steps (II) and (V) may be performed in a high temperature environment to adjust the temperature of the layer of the first liquid crystal composition and the temperature of the layer of the second liquid crystal composition to a temperature suitable for alignment. .
  • the high glass transition temperature of the material forming the support surface as described above can suppress deformation of the support surface due to heat in a high temperature environment.
  • the upper limit of the glass transition temperature of the material forming the support surface is not particularly limited, and may be, for example, 250 ° C. or less.
  • the surface of the base material as the support surface is preferably subjected to a treatment for imparting an alignment regulating force.
  • the alignment control force refers to the property of the support surface which can align the liquid crystal compound contained in the liquid crystal composition.
  • the treatment for applying the alignment control force to the support surface include a photoalignment treatment, a rubbing treatment, an ion beam alignment treatment, and an extension treatment.
  • the first liquid crystal composition is usually prepared in a fluid state. Therefore, the first liquid crystal composition is usually coated on the support surface to form a layer of the first liquid crystal composition.
  • a method of applying the first liquid crystal composition for example, curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, printing coating method , Gravure coating method, die coating method, gap coating method, and dipping method.
  • the step (II) of orienting the liquid crystal compound contained in the layer of the first liquid crystal composition is performed.
  • orientation usually, the layer of the first liquid crystal composition is kept at a predetermined temperature condition for a predetermined time. Thereby, in the layer of the first liquid crystal composition, the liquid crystal compound can be aligned.
  • the liquid crystal compound in the in-plane direction, is usually oriented in a direction according to the alignment regulating force of the support surface.
  • the thickness direction it is preferable to align the liquid crystal compound so that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction).
  • a method for orienting the liquid crystal compound contained in the layer of the first liquid crystal composition so that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction) is optional.
  • the step (II) is preferably performed such that the temperature condition of the layer of the first liquid crystal composition satisfies a predetermined requirement.
  • the temperature condition of the layer of the first liquid crystal composition in step (II) is preferably the same as the temperature condition at which the residual viscosity of the test composition is usually 800 cP or less.
  • the above-mentioned test composition is a composition having a composition obtained by removing the polymerization initiator from the first liquid crystal composition.
  • the residual viscosity of the test composition is the viscosity of the residual component of the test composition under the same temperature conditions as the layer of the first liquid crystal composition in step (II).
  • the residual component of the test composition is a component of the components contained in the test composition which remains without being vaporized under the same temperature conditions as the layer of the first liquid crystal composition of step (II).
  • the step (II) of orienting the liquid crystal compound is performed so as to satisfy the above requirements, the step (II) is performed under the same temperature condition as the temperature condition in which the residual viscosity of the test composition falls within the predetermined range. It is carried out by adjusting the layer of one liquid crystal composition.
  • the specific range of the residual viscosity is usually 800 cP (centipoise) or less, preferably 600 cP or less, more preferably 400 cP or less, still more preferably 200 cP or less.
  • the molecules of the liquid crystal compound contained in the first cured layer are oriented by orienting the liquid crystal compound in the layer of the first liquid crystal composition under the same temperature conditions as the temperature conditions at which the residual viscosity of the test composition decreases.
  • the real maximum inclination angle of can be increased.
  • the lower limit of the residual viscosity is preferably 5 cP or more, more preferably 10 cP or more, from the viewpoint of obtaining a first cured layer having a desired thickness.
  • the residual viscosity of the test composition under the same temperature conditions as the layer of the first liquid crystal composition of step (II) can be measured by the following method.
  • a test composition is prepared by removing the polymerization initiator from the first liquid crystal composition.
  • the test composition is concentrated under reduced pressure on a rotary evaporator to remove the solvent and obtain the remaining components.
  • the viscosity of this residual component is measured in advance while changing the measurement temperature, and information on the measurement temperature and the viscosity at the measurement temperature is obtained.
  • this information is appropriately referred to as "temperature-viscosity information”. From this “temperature-viscosity information”, the viscosity at the temperature of the layer of the first liquid crystal composition in step (II) is read as the residual viscosity.
  • Examples of the method for keeping the residual viscosity of the test composition in the above-mentioned range under the same temperature conditions as the layer of the first liquid crystal composition of the step (II) include the following methods (A) and (B).
  • (A) The temperature of the layer of the first liquid crystal composition in the step (II) of orienting the liquid crystal compound is appropriately adjusted. In this method, usually, the temperature of the layer of the first liquid crystal composition is sufficiently raised to lower the residual viscosity of the test composition under the same temperature condition as this temperature, and the above-mentioned range is achieved.
  • Adjust to (B) The composition of the first liquid crystal composition is appropriately adjusted. In this method, as a component contained in the first liquid crystal composition, the residual viscosity of the test composition containing the additive is reduced by combining the liquid crystal compound with an additive of an appropriate type and amount. , Adjust to be in the range described above.
  • a liquid crystal compound can be obtained by a method using a first liquid crystal composition containing a tilt action component, or a method using a liquid crystal compound having a property of being inclined with respect to a layer plane (that is, with respect to the in-plane direction) It is possible to obtain a first cured layer having a substantial maximum inclination angle of the molecule of.
  • the specific temperature at the time of alignment treatment is appropriately set in the range above the liquid crystal phase-solid phase transition temperature of the liquid crystal compound, and is preferably a temperature below the glass transition temperature of the resin contained in the substrate. . Thereby, generation
  • the step (II) of orienting the liquid crystal compound is usually performed in an oven.
  • the set temperature of the oven and the temperature of the layer of the first liquid crystal composition placed in the oven may be different.
  • the information on the recorded set temperature of the oven and the temperature of the layer of the first liquid crystal composition placed in the set temperature is hereinafter referred to as "set temperature-layer temperature information" as appropriate.
  • set temperature-layer temperature information By using this "set temperature-layer temperature information", the temperature of the layer of the first liquid crystal composition placed in the oven can be easily known from the oven set temperature.
  • the time for which the temperature of the layer of the first liquid crystal composition is kept at the above temperature can be arbitrarily set within a range where the desired first cured layer can be obtained. It may be ⁇ 5 minutes.
  • the layer of the first liquid crystal composition is cured by polymerization of the polymerizable compound contained in the first liquid crystal composition. Therefore, for example, when the liquid crystal compound has a polymerizability, the liquid crystal compound is usually polymerized while maintaining the alignment of its molecules. The alignment state of the liquid crystal compound contained in the first liquid crystal composition before polymerization is fixed by the polymerization described above.
  • the polymerization method a method may be selected that is adapted to the nature of the components contained in the first liquid crystal composition.
  • the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because heating is unnecessary and the polymerization reaction can be allowed to proceed at room temperature.
  • the active energy ray to be irradiated may include light such as visible light, ultraviolet light and infrared light, and any energy ray such as electron beam.
  • the temperature at the time of ultraviolet irradiation is preferably below the glass transition temperature of the substrate, preferably 150 ° C. or less, more preferably 100 ° C. or less, and particularly preferably 80 ° C. or less.
  • the lower limit of the temperature during ultraviolet irradiation may be 15 ° C. or higher.
  • the irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 10000 mW / cm 2 or less, more preferably 5000 mW / cm 2 or less.
  • the dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 10000 mJ / cm 2 or less, more preferably 5000 mJ / cm 2 or less.
  • the first cured layer formed of the cured product of the first liquid crystal composition is obtained by the above-mentioned step (III).
  • the first cured layer is a layer of a cured product obtained by curing the first liquid crystal composition described above.
  • the curing of the first liquid crystal composition is usually achieved by the polymerization of the polymerizable compound contained in the first liquid crystal composition, as described above.
  • the first cured layer usually contains a polymer of part or all of the components contained in the first liquid crystal composition. Therefore, when the liquid crystal compound has a polymerizability, the liquid crystal compound is polymerized, so the first cured layer may be a layer containing a polymer of the liquid crystal compound polymerized while maintaining the alignment state before polymerization. .
  • the polymerized liquid crystal compound is included in the term "liquid crystal compound contained in the first cured layer".
  • the alignment state of the liquid crystal compound is usually fixed in the alignment state before curing. And it is preferable that at least a part of molecules of the liquid crystal compound contained in the first cured layer be inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction). Thereby, adjustment of the tilt angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed.
  • some of the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction). It may be inclined with respect to the layer plane (ie, with respect to the in-plane direction).
  • the inclination angle of the molecules of the liquid crystal compound is smaller as it is closer to the support surface in the thickness direction, and larger as it is farther from the support surface. Therefore, in the vicinity of the surface on the support surface side of the first cured layer, the molecules of the liquid crystal compound may be parallel to the layer plane (that is, in the in-plane direction).
  • the molecules of the liquid crystal compound may be perpendicular to the layer plane (that is, in the in-plane direction).
  • the molecules of the liquid crystal compound may be inclined with respect to the plane of the layer (i.e., with respect to the in-plane direction) in the portions other than the vicinity.
  • That at least a part of the molecules of the liquid crystal compound contained in the first cured layer is inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction) is polarized light with sufficient resolution. It can confirm by observing the cross section of a 1st hardened layer with a microscope. This observation may be carried out by inserting a wave plate as an inspection plate between the observation sample and the objective lens of the polarization microscope, if necessary, in order to make the inclination of the molecules of the liquid crystal compound more visible. .
  • the molecules of the liquid crystal compound contained in the first cured layer are inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction) as follows: Can check.
  • the retardation R ( ⁇ ) of the first cured layer at an incident angle ⁇ is measured in a measurement direction perpendicular to the in-plane fast axis direction of the first cured layer.
  • retardation ratio R ((theta)) / R ((theta) which divided the retardation R ((theta)) of the 1st cured layer in incident angle (theta) by the retardation R (0 degree) of the 1st cured layer in 0 angle of incidence Find 0 °).
  • FIG. 2 is a graph in which the retardation ratio R ( ⁇ ) / R (0 °) of the first cured layer according to an example is plotted against the incident angle ⁇ .
  • the retardation ratio R ( ⁇ ) / R (0 °) is an example shown by a broken line in FIG. 2 when the tilt angle of all the molecules of the liquid crystal compound contained in the first cured layer is 0 ° or 90 °.
  • the substantial maximum tilt angle of the first cured layer is The tilt angle of the molecule on the surface on the support surface side of one cured layer is 0 °, and the tilt angle of the molecule is assumed to change at a constant ratio in the thickness direction, and the molecules of the liquid crystal compound Represents the maximum value of the tilt angle.
  • the substantial maximum inclination angle is an index indicating the size of the inclination angle of the molecules of the liquid crystal compound contained in the first cured layer. In general, as the first cured layer having a substantially larger maximum tilt angle, the tilt angle as a whole of the molecules of the liquid crystal compound contained in the first cured layer tends to be larger.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer is larger, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be increased. Therefore, since the maximum value of the range of the substantially maximum tilt angle adjustable in step (VI) can be increased, the adjustable range of the substantially maximum tilt angle of the liquid crystal compound molecules contained in the finally obtained liquid crystal cured layer Can be
  • the range of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer should be set so that the substantial maximum tilt angle of the molecules of the liquid crystalline compound contained in the liquid crystal cured layer can be adjusted to an appropriate range. Is desirable.
  • the specific range of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer is preferably 15 ° or more, more preferably 20 ° or more, particularly preferably 30 ° or more, and preferably 60 ° It is below.
  • adjustment of the inclination angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed. .
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer can be measured by the measurement method described in the examples described later.
  • the alignment direction of the molecules of the liquid crystal compound is usually uniform. Therefore, the first cured layer usually has an in-plane slow axis parallel to the alignment direction of the molecules of the liquid crystal compound when the first cured layer is viewed from the thickness direction.
  • the surface of the first cured layer (see the surface 111U in FIG. 1) has an alignment regulating force that aligns the molecules of the liquid crystal compound contained in the second cured layer formed on the surface.
  • This alignment control force tends to align the molecules of the liquid crystal compound contained in the second cured layer in the same direction as the alignment direction of the molecules of the liquid crystal compound contained in the first cured layer in the in-plane direction. .
  • the orientation control force of the surface of a 1st hardened layer it is desirable to orientate the molecule
  • the first cured layer can function as a tilted alignment film that increases the tilt angle of the molecules of the liquid crystal compound contained in the second cured layer.
  • the function as the above-mentioned gradient alignment film is remarkably exhibited, for example, when both of the first liquid crystal composition and the second liquid crystal composition contain the reverse dispersion liquid crystal compound.
  • the thickness of the first cured layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, particularly preferably 0.3 ⁇ m or more, preferably 5.0 ⁇ m or less, more preferably 4 0.1 ⁇ m or less, particularly preferably 3.0 ⁇ m or less.
  • Step (IV): Formation of Layer of Second Liquid Crystal Composition After obtaining the first cured layer in step (III), a layer of a second liquid crystal composition as a liquid crystal composition for forming a second cured layer is formed directly on the first cured layer Perform step (IV).
  • the aspect of forming another layer on a certain layer "directly” means that there is no other layer between these two layers.
  • the second liquid crystal composition includes a liquid crystal compound for forming a second cured layer.
  • any liquid crystal compound can be selected and used from the range described as the liquid crystal compound contained in the first liquid crystal composition.
  • the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer.
  • the tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition in the step (V) Of the liquid crystal compound in step (VI) can be effectively adjusted.
  • the liquid crystal compound contained in the second liquid crystal composition may be the same as or different from the liquid crystal compound contained in the first liquid crystal composition.
  • the liquid crystal compound contained in the first liquid crystal composition and the liquid crystal compound contained in the second liquid crystal composition And preferably have the same or similar structure.
  • the liquid crystal compound contained in the second liquid crystal composition one type may be used alone, or two or more types may be used in combination in an arbitrary ratio.
  • the second liquid crystal composition may further contain an optional component in combination with the liquid crystal compound, if necessary.
  • One of the optional components may be used alone, or two or more of the optional components may be used in combination at an optional ratio.
  • a component other than the liquid crystal compound which can be contained in the first liquid crystal composition can be used in the range of the amount of the component in the first liquid crystal composition.
  • the second liquid crystal composition may be different from or identical to the first liquid crystal composition.
  • the second liquid crystal composition is usually prepared in a fluid state. Therefore, the second liquid crystal composition is usually coated on the surface of the first cured layer to form a layer of the second liquid crystal composition.
  • a method of coating a 2nd liquid crystal composition the same example as the method demonstrated as a method of coating a 1st liquid crystal composition is mentioned, for example. Since the first cured layer is formed of a cured product containing a liquid crystalline compound, the first cured layer usually has high affinity to the second liquid crystal composition containing a liquid crystalline compound. Therefore, usually, the second liquid crystal composition conforms well to the surface of the first cured layer. Therefore, the surface condition of the layer of the second liquid crystal composition can be improved, and hence the surface condition of the second cured layer can be improved.
  • Step (V): Alignment Treatment of Layer of Second Liquid Crystal Composition After forming the layer of the second liquid crystal composition in the step (IV), the step (V) of orienting the liquid crystal compound contained in the layer of the second liquid crystal composition is performed. Thereby, in the layer of the second liquid crystal composition, the liquid crystal compound can be aligned.
  • the liquid crystalline compound contained in the layer of the second liquid crystal composition is generally contained in the first cured layer by the alignment regulating force of the surface of the first cured layer. Align in the same direction as the orientation direction of.
  • the liquid crystal compound contained in the layer of the second liquid crystal composition is oriented such that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction).
  • the method for orienting the liquid crystal compound contained in the layer of the second liquid crystal composition so that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction) is optional.
  • the function of the first cured layer as a tilted alignment film can be exhibited largely.
  • the molecules of the liquid crystal compound contained in the layer of the two liquid crystal composition can be aligned so as to be greatly inclined with respect to the layer plane (that is, with respect to the in-plane direction). Therefore, the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition can be particularly increased.
  • the first cured layer is allowed to act as the inclined alignment film, generally, molecules of the liquid crystal compound having a substantially maximum tilt angle larger than the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer A second cured layer can be obtained.
  • step (V) of orienting the liquid crystal compound contained in the layer of the second liquid crystal composition is the same as the step (II) of orienting the liquid crystal compound contained in the layer of the first liquid crystal composition it can.
  • the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer.
  • the temperature conditions of the layer of the second liquid crystal composition in the step (V) are generally the residual viscosity of the test composition corresponding to the second liquid crystal composition. It is preferable to carry out so that it may become the same as the temperature conditions used as 800 cP or less.
  • the first cured layer has high affinity to the second liquid crystal composition. Therefore, the second liquid crystal composition conforms to the first cured layer, and the orientation of molecules is less likely to be disturbed. Further, in general, in the first cured layer, the occurrence of alignment defects is suppressed, so that the occurrence of alignment defects in the layer of the second liquid crystal composition caused by the alignment defects of the first cured layer is also suppressed. Therefore, in the layer of the second liquid crystal composition, the alignment state can be made uniform in the in-plane direction, so the generation of alignment defects is suppressed.
  • step (VI) time is allowed between the alignment of the liquid crystal compound in the step (V) and the curing of the layer of the second liquid crystal composition in the step (VII).
  • step (VII) time is allowed between the alignment of the liquid crystal compound in the step (V) and the curing of the layer of the second liquid crystal composition in the step (VII).
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition is increased. Since the substantial maximum inclination angle increases with the passage of time, generally, the longer the time left between step (V) and step (VII), the more the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition The substantial maximum inclination angle is larger.
  • step (V) the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be adjusted, as a result, The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer including the cured layer and the second cured layer can be adjusted.
  • the temperature conditions of the layer of the second liquid crystal composition in step (VI) are not particularly limited. Usually, step (V) is performed within a temperature control device such as an oven to adjust the temperature of the layer of the second liquid crystal composition, while step (VI) is performed outside the temperature control device. . Therefore, the temperature conditions of the layer of the second liquid crystal composition in step (VI) are often different from the temperature conditions in step (V).
  • the specific temperature condition is not particularly limited, but is preferably a temperature lower than the glass transition temperature of the resin contained in the substrate.
  • temperature conditions lower than the liquid crystal phase-solid phase transition temperature of the liquid crystal compound contained in the second liquid crystal composition are preferable, and the normal temperature of 20 ° C to 30 ° C. Is particularly preferred.
  • the time taken for the step (VI) refers to the time from the alignment of the liquid crystal compound in the step (V) to the curing of the layer of the second liquid crystal composition in the step (VII).
  • the specific time taken for step (VI) is preferably 60 seconds or more, more preferably 120 seconds or more, and preferably 600 seconds or less. Since the substantially maximum inclination angle of the liquid crystal compound contained in the layer of the second liquid crystal composition can be greatly increased by setting the time for step (VI) to be at least the lower limit of the above range, the action of step (VI) Can be used effectively. Moreover, the time which manufacture of a liquid crystal cured film can be shortened because time to apply to process (VI) is below the upper limit of the said range.
  • the magnitude at which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition changes according to step (VI) is preferably 1 ° or more, more preferably 5 ° or more, still more preferably 15 °
  • the angle is more preferably 20 ° or more, preferably 45 ° or less, more preferably 40 ° or less.
  • Step (VII): Curing of Layer of Second Liquid Crystal Composition After adjusting the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition in step (VI), the layer of the second liquid crystal composition is cured to obtain a second cured layer Do (VII). Thereby, a liquid crystal cured film provided with a liquid crystal cured layer including the first cured layer and the second cured layer can be obtained.
  • the specific operation in the step (VII) of curing the layer of the second liquid crystal composition can be the same as the step (III) of curing the layer of the first liquid crystal composition. Thereby, the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer.
  • the second cured layer is a layer formed of a cured product of a second composition containing a liquid crystal compound.
  • the curing of the second liquid crystal composition is generally achieved by the polymerization of the polymerizable compound contained in the second liquid crystal composition, as with the curing of the first liquid crystal composition. Therefore, the second cured layer usually contains a polymer of part or all of the components contained in the second liquid crystal composition.
  • the liquid crystal compound has a polymerizability
  • the liquid crystal compound is polymerized, so the second cured layer may be a layer containing a polymer of the liquid crystal compound polymerized while maintaining the alignment state before polymerization. .
  • the polymerized liquid crystal compound is included in the term "liquid crystal compound contained in the second cured layer".
  • the alignment state of the liquid crystal compound is usually fixed with the alignment state before curing. At least a part of the liquid crystal compound contained in the second hardened layer is inclined with respect to the layer plane of the second hardened layer (that is, in the in-plane direction). And the inclination angle of the liquid crystal compound contained in the second cured layer is adjusted to a size according to the adjustment in the step (VI). Therefore, the size of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer is properly adjusted.
  • the substantially maximum inclination angle is It represents the maximum value of the tilt angles of the molecules of the liquid crystal compound under the assumption.
  • the substantial maximum tilt angle is an index indicating the size of the tilt angle of the molecules of the liquid crystal compound contained in the second cured layer. In general, as the second cured layer has a larger substantial maximum tilt angle, the tilt angle viewed as a whole of the molecules of the liquid crystal compound contained in the second cured layer tends to be larger.
  • the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably set so that the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer falls within a desired range.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably larger than the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer.
  • the second liquid crystal composition may include a reverse dispersion liquid crystal compound.
  • the difference between the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer and the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably 5 ° or more More preferably, it is 8 ° or more, particularly preferably 10 ° or more, preferably 70 ° or less, more preferably 65 ° or less, particularly preferably 55 ° or less.
  • the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably 40 ° or more, more preferably 45 ° or more, still more preferably 50, from the viewpoint of obtaining a liquid crystal cured film excellent in viewing angle characteristics. Or more, particularly preferably 57 or more, preferably 85 or less.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be measured by the measurement method described in the examples described later.
  • the alignment direction of the molecules of the liquid crystal compound in the in-plane direction of the second cured layer is the same as the alignment direction of the molecules of the liquid crystal compound in the in-plane direction of the first cured layer.
  • the orientation defect is suppressed in the first hardened layer, the generation of the orientation defect can be suppressed also in the second hardened layer formed on the first hardened layer. Furthermore, the second cured layer usually has a good surface condition.
  • the thickness of the second cured layer is not particularly limited, but is preferably thicker than the first cured layer. Thereby, the correlation of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer with respect to the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be increased. Therefore, by adjusting the substantial maximum tilt angle in the step (VI), it is possible to adjust the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer in a wide range.
  • the specific thickness of the second cured layer is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and preferably 10.0 ⁇ m or less, more preferably 7.5 ⁇ m or less, still more preferably 5. It is 0 ⁇ m or less, particularly preferably 3.0 ⁇ m or less.
  • the method for producing a liquid crystal cured film may further include an optional step in combination with the above-described step.
  • a liquid crystal cured film provided with the liquid crystal cured layer formed on the support surface of the base material can be obtained by the above-described manufacturing method. Therefore, the method for producing a cured liquid crystal film may include the step of peeling the cured liquid crystal layer from the support surface.
  • the manufacturing method of a liquid crystal cured film may include the process of further forming a layer by the hardened
  • the manufacturing method of a liquid crystal hardening film may be combined with a liquid crystal hardening layer, for example, and may include the process of forming an arbitrary layer further.
  • the manufacturing method of a liquid-crystal cured film may include the process of transcribe
  • the surface of the first cured layer may be subjected to a treatment for applying an alignment regulating force such as rubbing treatment. Good. However, even if the surface of the first cured layer is not subjected to any special treatment, the alignment regulating force for appropriately aligning the liquid crystal compound contained in the layer of the second liquid crystal composition formed on the surface is usually performed. Have. Therefore, in order to reduce the number of steps and efficiently advance the production of a cured liquid crystal film, in the step (IV), the surface of the first cured layer is not subjected to rubbing treatment, and the second liquid crystal is applied to the surface of the first cured layer It is preferred to include forming a layer of the composition.
  • a long liquid crystal cured film can be obtained using a long base material.
  • Such a long liquid crystal cured film can be manufactured continuously and is excellent in productivity.
  • bonding with another film can be performed by roll to roll, productivity is excellent in this point as well.
  • a long liquid crystal cured film is wound and stored and transported in the form of a roll.
  • the liquid crystal cured film produced by the production method according to the embodiment described above includes a liquid crystal cured layer including a first cured layer and a second cured layer directly in contact with the surface of the first cured layer.
  • the “direct” contact of another layer with the surface of one layer means that there is no other layer between the two layers.
  • At least a part of molecules of the liquid crystal compound contained in the liquid crystal cured layer is inclined with respect to the layer plane of the liquid crystal cured layer (that is, in the in-plane direction).
  • some of the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal cured layer (that is, with respect to the in-plane direction). It may be inclined with respect to (that is, with respect to the in-plane direction).
  • the fact that at least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane (that is, with respect to the in-plane direction) is the same method as the method described in the section of the first cured layer It can confirm by.
  • the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is usually , 5 ° or more and 85 ° or less.
  • the substantially maximum tilt angle is 0 ° of the tilt angle of the molecule on the surface on the first cured layer side, and that the tilt angle of the molecule changes at a constant ratio in the thickness direction
  • the maximum value of the tilt angle of the molecules of the liquid crystal compound is represented.
  • the substantial maximum inclination angle is an index indicating the size of the inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer. In general, as the liquid crystal cured layer has a substantially larger maximum tilt angle, the tilt angle as a whole of the molecules of the liquid crystal compound contained in the liquid crystal cured layer tends to be larger.
  • the birefringence of the liquid crystal cured layer in the thickness direction can be increased by increasing the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer. Therefore, the birefringence of the liquid crystal cured layer can be appropriately adjusted by adjusting the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer, so the liquid crystal cured film is provided on the polarizing plate as the reflection suppressing film. In this case, it is possible to obtain excellent viewing angle characteristics that reflection can be effectively suppressed in the inclination direction of the display surface.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be arbitrarily set according to the application of the liquid crystal cured film.
  • the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is preferably 40 ° or more, more preferably 46 ° or more, particularly preferably 56 ° or more Preferably it is 85 degrees or less, More preferably, it is 83 degrees or less, More preferably, it is 80 degrees or less.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be measured by the measurement method described in the examples described later.
  • the molecules of the liquid crystal compound contained in the liquid crystal cured layer are aligned in the same in-plane direction as the alignment direction of the molecules of the liquid crystal compound contained in the first cured layer as a whole. Therefore, the in-plane slow axis of the liquid crystal hardened layer is usually parallel to the in-plane slow axis of the first hardened layer.
  • the range of the in-plane retardation of the liquid crystal cured layer can be arbitrarily set according to the application of the liquid crystal cured film.
  • the liquid crystal cured layer can function as a quarter wavelength plate in-plane retardation.
  • the in-plane retardation which can function as a quarter-wave plate is preferably 80 nm or more, more preferably 100 nm or more, still more preferably 110 nm or more, particularly preferably 120 nm or more at a measurement wavelength of 590 nm.
  • it is 190 nm or less, More preferably, it is 180 nm or less, More preferably, it is 170 nm or less, Especially preferably, it is 160 nm or less.
  • the in-plane retardation of the liquid crystal cured layer preferably exhibits reverse wavelength dispersion. Therefore, the in-plane retardations Re (450) and Re (550) of the liquid crystal cured layer at the measurement wavelengths of 450 nm and 550 nm preferably satisfy the following formula (N3), and more preferably the following formula (N4). Re (450) / Re (550) ⁇ 1.00 (N3) Re (450) / Re (550) ⁇ 0.90 (N4)
  • the liquid crystal cured layer having in-plane retardation exhibiting reverse wavelength dispersion can uniformly exhibit functions in a wide wavelength band in optical applications such as a quarter wavelength plate or a half wavelength plate. Therefore, when the liquid crystal cured film including the liquid crystal cured layer is used for a polarizing plate as a reflection suppression film, it is possible to suppress reflection in a wide wavelength range.
  • the average retardation ratio R ( ⁇ 50 °) / R (0 °) of the liquid crystal cured layer is preferably greater than 0.91, more preferably 0.93 or more, and particularly preferably Preferably it is 0.95 or more, Moreover, Preferably it is 1.10 or less, More preferably, it is 1.08 or less, Especially preferably, it is 1.05 or less.
  • R ( ⁇ 50 °) is the value of the liquid crystal cured layer measured at a measurement direction perpendicular to the in-plane fast axis direction of the liquid crystal cured layer at an incident angle ⁇ of ⁇ 50 ° and + 50 °. It represents the average of retardations R ( ⁇ 50 °) and R (+ 50 °). Further, R (0 °) represents the retardation of the liquid crystal cured layer at an incident angle of 0 °.
  • the retardation ratio R ( ⁇ 50 °) / R (0 °) of the liquid crystal cured layer is preferably close to 1.00 from the viewpoint of effectively suppressing the reflection of light passing through this path.
  • the occurrence of alignment defects is usually suppressed. Therefore, the occurrence of alignment defects can be suppressed even in the entire liquid crystal cured layer including the first cured layer and the second cured layer.
  • the first cured layer and the second cured layer generally have good surface condition. Therefore, the surface condition is good also as the whole liquid crystal cured layer including the first cured layer and the second cured layer. Therefore, the cured liquid crystal layer usually has small unevenness in thickness and therefore small unevenness in in-plane retardation.
  • the thickness of the liquid crystal cured layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 15.0 ⁇ m or less, more preferably less than 11.5 ⁇ m, still more preferably 8.0 ⁇ m or less, particularly preferably 6.0 ⁇ m or less.
  • the thickness of the liquid crystal cured layer is in the above range, characteristics such as in-plane retardation can be easily adjusted to a desired range.
  • the liquid crystal cured layer of such a thickness is thinner than the conventional retardation film used for the reflection suppression film of the organic EL display panel, it can contribute to thinning of the organic EL display panel.
  • the first cured layer and the second cured layer can usually be distinguished by the following method.
  • the liquid crystal cured layer is embedded in epoxy resin to obtain a sample piece.
  • the sample piece is sliced in parallel to the thickness direction of the liquid crystal cured layer using a microtome to obtain an observation sample.
  • slicing is performed so that the in-plane slow axis direction of the liquid crystal hardened layer and the cross section become parallel.
  • the cross section which appeared by slicing is observed using a polarization microscope. This observation is performed by inserting a wave plate as an inspection plate between the observation sample and the objective lens of the polarization microscope so that an image exhibiting a color according to the retardation of the observation sample can be seen.
  • portions with different colors can be distinguished as boundaries between the first cured layer and the second cured layer.
  • the liquid crystal cured layer may be a layer having a two-layer structure including only the first cured layer and the second cured layer, but may include three or more layers.
  • the liquid crystal cured film may be a film including only the liquid crystal cured layer, or may be a film including any layer in combination with the liquid crystal cured layer.
  • the liquid crystal cured film is preferably excellent in transparency.
  • the total light transmittance of the liquid crystal cured film is preferably 75% or more, more preferably 80% or more, and particularly preferably 84% or more.
  • the haze of the liquid crystal cured film is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
  • the total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet and visible spectrometer.
  • the haze can be measured using a haze meter.
  • the thickness of the liquid crystal cured film is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the liquid crystal cured film described above can be applied to a polarizing plate.
  • This polarizing plate comprises the liquid crystal cured film described above, and usually comprises a linear polarizer. It is preferable that the polarizing plate can function as a circularly polarizing plate or an elliptically polarizing plate. By providing such a polarizing plate in a display device such as an organic EL display device, reflection of external light can be suppressed in the front direction of the display surface.
  • the liquid crystal cured layer has a birefringence appropriately adjusted not only in the in-plane direction but also in the thickness direction.
  • the polarizing plate can suppress the reflection of outside light not only in the front direction of the display surface of the display device but also in the inclination direction. Therefore, by using this polarizing plate, a display device with a wide viewing angle can be realized.
  • a linear polarizer for example, a film obtained by adsorbing iodine or a dichroic dye to a polyvinyl alcohol film and uniaxially stretching in a boric acid bath; iodine or a dichroic dye is adsorbed to a polyvinyl alcohol film And a film obtained by further stretching and further modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units.
  • polarized-light into reflected light and transmitted light such as a grid polarizer and a multilayer polarizer, is mentioned.
  • the linear polarizer a polarizer containing polyvinyl alcohol is preferable.
  • the degree of polarization of this linear polarizer is not particularly limited, it is preferably 98% or more, more preferably 99% or more.
  • the thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the angle formed by the slow axis of the liquid crystal cured layer with the polarization absorption axis of the linear polarizer is preferably 45 ° or near.
  • the above angle is preferably 45 ° ⁇ 5 ° (ie, 40 ° to 50 °), more preferably 45 ° ⁇ 4 ° (ie, 41 ° to 49 °), and particularly preferably 45 ° ⁇ 3. ° (ie 42 ° to 48 °).
  • the polarizing plate may further contain any layer in addition to the linear polarizer and the liquid crystal cured film.
  • any layer for example, an adhesive layer for bonding a linear polarizer and a liquid crystal cured film; a polarizer protective film layer for protecting a linear polarizer; and the like can be mentioned.
  • the polarizing plate can be manufactured by a manufacturing method including manufacturing a liquid crystal cured film by the manufacturing method according to the embodiment described above.
  • the polarizing plate is manufactured by a manufacturing method including manufacturing a liquid crystal cured film by the manufacturing method according to the above-described embodiment, and laminating the manufactured liquid crystal cured film and a linear polarizer. it can.
  • an adhesive may be used as necessary.
  • the above polarizing plate can be applied to an organic EL display device.
  • the organic EL display device includes the above-described polarizing plate, and further usually includes an organic electroluminescent element (hereinafter sometimes referred to as “organic EL element” as appropriate).
  • the organic EL display device usually has a polarizing plate on the viewing side of the organic EL element.
  • a polarizing plate is equipped with a liquid crystal cured film and a linear polarizer in this order from the organic EL element side. In such a configuration, the polarizing plate can function as a reflection suppression film.
  • the polarizing plate functions as a circularly polarizing plate as an example.
  • the light incident from the outside of the device becomes circularly polarized light when only a part of the linearly polarized light passes through the linear polarizer and then passes through the liquid crystal cured film.
  • Circularly polarized light is reflected by a component (such as a reflective electrode of the organic EL element) that reflects light in the organic EL element, and passes through the liquid crystal cured film again, so that the vibration direction is orthogonal to the vibration direction of incident linearly polarized light.
  • a component such as a reflective electrode of the organic EL element
  • the vibration direction of linearly polarized light means the vibration direction of an electric field of linearly polarized light.
  • the organic EL device generally includes a transparent electrode layer, a light emitting layer and an electrode layer in this order, and the light emitting layer can generate light when voltage is applied from the transparent electrode layer and the electrode layer.
  • the material which comprises an organic light emitting layer the material of a polypara phenylene vinylene type
  • the light emitting layer may have a stack of a plurality of layers having different emission colors, or a mixed layer in which layers of certain dyes are doped with different dyes.
  • the organic EL element may be provided with functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • the organic EL display device can be manufactured by a manufacturing method including manufacturing a polarizing plate by the above-described manufacturing method.
  • the support base material contained in the liquid-crystal cured film manufactured by the Example and comparative example which are demonstrated below has optical isotropy, it does not affect the measurement result of retardation. Then, the measurement of the retardation of the liquid-crystal cured layer in the Example and comparative example which are demonstrated below was implemented using the liquid-crystal cured film as a sample.
  • FIG. 3 is a perspective view for explaining the measurement direction when measuring the retardation of the liquid crystal cured layer 200 from the tilt direction.
  • the arrow A 1 represents the in-plane slow axis direction of the liquid crystal hardened layer 200
  • the arrow A 2 represents the in-plane fast axis direction of the liquid crystal hardened layer 200
  • the arrow A 3 represents the thickness direction of the liquid crystal hardened layer 200.
  • the retardation of the cured liquid crystal layer 200 was measured in the range of an incident angle ⁇ of ⁇ 50 ° to 50 °, as shown in FIG. 3, using a retardation meter (“AxoScan” manufactured by Axometrics).
  • the measurement direction A4 was set to be perpendicular to the in-plane fast axis direction A2 of the liquid crystal cured layer 200.
  • the measurement wavelength was 590 nm.
  • the liquid crystal cured layer was analyzed by the analysis software (analysis software "Multi-Layer Analysis” manufactured by AxoMetrics; analysis conditions: analysis wavelength 590 nm, 20 layer division number) attached to the above-mentioned retardation meter
  • analysis software “Multi-Layer Analysis” manufactured by AxoMetrics; analysis conditions: analysis wavelength 590 nm, 20 layer division number
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer was measured by the following method.
  • the liquid crystal contained in the first cured layer by the same method as the method for measuring the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer except using the first cured layer instead of the liquid crystal cured layer Maximum tilt angle of the molecule of the sex compound was measured. This measurement is carried out at a time before the liquid crystal composition for forming a second cured layer is further coated on the surface of the first cured layer after obtaining the first cured layer during the production of the liquid crystal cured layer.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer was measured by the following method.
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer and the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer were measured.
  • the maximum tilt angles of the molecules of the liquid crystal compound contained in the second cured layer were analyzed using these measured maximum tilt angles and the thicknesses of the first cured layer and the second cured layer.
  • the retardation of the cured liquid crystal layer 200 was measured in the range of an incident angle ⁇ of ⁇ 50 ° to 50 °, as shown in FIG. 3, using a retardation meter (“AxoScan” manufactured by Axometrics).
  • the measurement direction A4 was set to be perpendicular to the in-plane fast axis direction A2 of the liquid crystal cured layer 200.
  • the measurement wavelength was 590 nm.
  • the average value R ( ⁇ 50 °) of the retardation R ( ⁇ 50 °) at an incident angle ⁇ of ⁇ 50 ° and the retardation R (+ 50 °) at an incident angle ⁇ of + 50 ° was calculated. Then, the average value R ( ⁇ 50 °) is divided by the in-plane retardation R (0 °) at an incident angle ⁇ of 0 ° to obtain an average retardation ratio R ( ⁇ 50 °) / R (0 °). I asked. The closer the average retardation ratio R ( ⁇ 50 °) / R (0 °) to 1.00, the better the viewing angle characteristics can be realized in the organic EL display device.
  • the viewing angle characteristics of the liquid crystal cured layer were evaluated based on the value of the average retardation ratio R ( ⁇ 50 °) / R (0 °) according to the following criteria. "Good”: R ( ⁇ 50 °) / R (0 °)> 0.91 “Bad”: R ( ⁇ 50 °) / R (0 °) ⁇ 0.91
  • the average retardation ratio R ( ⁇ 50 °) / R (0 °) of the first cured layer is the average retardation of the liquid crystal cured layer except that the first cured layer is used instead of the liquid crystal cured layer. It was determined by the same method as the ratio R ( ⁇ 50 °) / R (0 °).
  • Examples 1 to 21 (Preparation of liquid crystal composition) 100 parts by weight of a liquid crystal compound of the type shown in Table 1, 0.15 parts by weight of a surfactant ("S420” manufactured by AGC Seimi Chemical Co., Ltd.), 4.3 parts by weight of a polymerization initiator ("Irgacure OXE04" manufactured by BASF Corp.), Also, 148.5 parts by weight of cyclopentanone and 222.8 parts by weight of 1,3-dioxolane were mixed as a solvent to prepare a liquid crystal composition.
  • a surfactant "S420” manufactured by AGC Seimi Chemical Co., Ltd.)
  • Irgacure OXE04 manufactured by BASF Corp.
  • a resin film (“Zeonor film ZF16” manufactured by Nippon Zeon Co., Ltd .; thickness 100 ⁇ m; glass transition temperature of resin: 160 ° C.) made of thermoplastic norbornene resin was prepared.
  • One side of this support base was subjected to corona treatment.
  • the corona-treated surface of the support substrate was subjected to rubbing treatment.
  • the liquid crystal composition was coated on the rubbing-treated surface of the supporting substrate using a bar coater to form a layer of the liquid crystal composition (step (I)). Then, the layer of the liquid crystal composition was heated for 2 minutes in an oven set at 160 ° C. to align the liquid crystal compound in the layer (step (II)).
  • the heating condition was a temperature condition at which the residual viscosity of the test composition corresponding to the liquid crystal composition used is 140 cP. Further, in the example using the liquid crystal compound 2, the heating condition was such a temperature condition that the residual viscosity of the test composition corresponding to the used liquid crystal composition is 209 cP.
  • the layer of the liquid crystal composition was irradiated with ultraviolet light of 500 mJ / cm 2 in a nitrogen atmosphere to cure the layer of the liquid crystal composition to form a first cured layer having a thickness of about 1 ⁇ m (step (III)) ).
  • the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer, and the average retardation ratio R ( ⁇ 50 °) / R (0 °) of the first cured layer were measured.
  • the standing at a temperature of 23 ° C. was performed by placing the work-in-process on a stainless steel plate.
  • standing at other temperatures was carried out by placing the work-in-process on a temperature-controlled hot plate.
  • the layer of the liquid crystal composition was irradiated with ultraviolet light of 500 mJ / cm 2 in a nitrogen atmosphere to cure the layer of the liquid crystal composition, thereby forming a second cured layer having a thickness of about 2 ⁇ m (step (VII) ).
  • step (VII) a liquid crystal cured film provided with a support base and a liquid crystal cured layer including the first cured layer and the second cured layer was obtained.
  • Comparative Example 1 After the step (V) of orienting the liquid crystal compound in the layer of the liquid crystal composition for forming the second cured layer, the step (VI) of leaving the work in place is not performed, and the liquid crystal composition is irradiated with ultraviolet light. The step (VII) of curing the layer of matter was performed. Except for the above matters, the same operation as in Example 1 was performed to manufacture and evaluate a liquid crystal cured film.
  • Example 22 After the step (II) of orienting the liquid crystal compound in the layer of the liquid crystal composition for forming the first cured layer, before the step (III) of curing the layer of the liquid crystal composition by irradiation of ultraviolet light A step (VIII) was performed in which the layer of the composition was allowed to stand at room temperature of 23 ° C. for 240 seconds. The standing under the temperature condition of 23 ° C. was carried out by placing a work-in-progress provided with a supporting substrate and a layer of a liquid crystal composition on a stainless steel plate. Except for the above matters, the same operation as in Example 4 was performed to manufacture and evaluate a liquid crystal cured film.
  • the substantial tilt angle of the molecules of the liquid crystal compound contained in the second cured layer could be increased.
  • the substantial tilt angles of the molecules of the liquid crystal compound contained in the liquid crystal cured layer including the first cured layer and the second cured layer are also increased.
  • the substantial maximum inclination angle tends to be larger as the time taken to the step (VI) is longer. Therefore, according to the manufacturing method including the step (VI), it can be confirmed from the above example that the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be easily adjusted.
  • liquid crystal cured film 110 liquid crystal cured layer 111 first cured layer 112 second cured layer 200 liquid crystal cured layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A method for manufacturing a liquid crystal cured film provided with a liquid crystal cured layer including a first cured layer and a second cured layer, wherein the method includes, in the sequence listed: a step for forming a layer of a first liquid crystal composition; a step for aligning a liquid crystalline compound contained in the first liquid crystal composition; a step for curing the layer of the first liquid crystal composition and forming the first cured layer; a step for forming a layer of a second liquid crystal composition directly on the first cured layer; a step for aligning a liquid crystalline compound contained in the second liquid crystal composition; a step in which the actual maximum tilt angle of the molecules of the liquid crystalline compound contained in the second liquid crystal composition increases with the passage of time; and a step for curing the layer of the second liquid crystal composition and forming the second cured layer.

Description

液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法Method of manufacturing liquid crystal cured film, polarizing plate and organic electroluminescence display device
 本発明は、液晶硬化フィルム、偏光板及び有機エレクトロルミネッセンス表示装置の製造方法に関する。 The present invention relates to a liquid crystal cured film, a polarizing plate, and a method of manufacturing an organic electroluminescence display.
 光学フィルムの一つとして、液晶硬化フィルムが知られている。液晶硬化フィルムは、一般に、液晶性化合物を含む液晶組成物を配向させ、その配向状態を維持したままで硬化させた硬化物で形成された液晶硬化層を備える。このような液晶硬化フィルムとして、特許文献1~3に記載のものが提案されている。 A liquid crystal cured film is known as one of the optical films. The liquid crystal cured film generally includes a liquid crystal cured layer formed of a cured product in which a liquid crystal composition containing a liquid crystal compound is aligned and cured while maintaining the alignment state. As such liquid crystal cured films, those described in Patent Documents 1 to 3 have been proposed.
特許第5363022号公報Patent No. 5363022 gazette 国際公開第2016/031853号International Publication No. 2016/031853 特開2017-037193号公報JP, 2017-037193, A
 液晶硬化フィルムが備える液晶硬化層には、通常、液晶性化合物が含まれる。この液晶性化合物の分子は、液晶硬化層の層平面に対して傾斜することがある。このように分子が傾斜した液晶性化合物を含む液晶硬化層は、一般に、当該液晶性化合物の分子の傾斜角の大きさに応じて厚み方向の複屈折を有する。そして、厚み方向の複屈折が適切に調整された液晶硬化層を含む液晶硬化フィルムは、有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)等の画像表示装置に設けることにより、視野角の改善等の多様な利点を得ることができる。 The liquid crystal cured layer included in the liquid crystal cured film usually contains a liquid crystal compound. The molecules of the liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal cured layer. The liquid crystal cured layer containing the liquid crystal compound in which the molecules are inclined in this manner generally has birefringence in the thickness direction according to the size of the inclination angle of the molecules of the liquid crystal compound. A cured liquid crystal film including a cured liquid crystal layer whose birefringence in the thickness direction is appropriately adjusted is used as an image display device such as an organic electroluminescent display device (hereinafter sometimes referred to as “organic EL display device” as appropriate). By providing them, various advantages such as improvement of the viewing angle can be obtained.
 ある層に含まれる液晶性化合物の分子の傾斜角は、実質最大傾斜角によって評価できる。この「実質最大傾斜角」とは、その層の一方の面での分子の傾斜角が0°であり、且つ分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値をいう。液晶性化合物を含む層において、液晶性化合物の分子の傾斜角は、厚み方向において、層の一側に近いほど小さく、前記一側から遠いほど大きいことがある。実質最大傾斜角は、このような厚み方向における傾斜角の変化の比率(即ち、一側に近いほど減少し、一側から遠いほど増加するという変化の比率)が一定であると仮定して計算される、傾斜角の最大値を表す。 The tilt angle of the molecules of the liquid crystal compound contained in a certain layer can be evaluated by the substantially maximum tilt angle. The “substantially maximum inclination angle” means that the inclination angle of the molecule on one surface of the layer is 0 ° and the inclination angle of the molecule changes at a constant rate in the thickness direction. The maximum value of the tilt angle of molecules of a liquid crystal compound. In a layer containing a liquid crystal compound, the inclination angle of the molecules of the liquid crystal compound may be smaller as it is closer to one side of the layer in the thickness direction, and larger as it is farther from the one side. The actual maximum inclination angle is calculated on the assumption that the ratio of the change of the inclination angle in the thickness direction (ie, the ratio of the change decreasing closer to one side and increasing increasing farther from one side) is constant. Represents the maximum value of the tilt angle.
 液晶性化合物の分子の実質最大傾斜角の調整は、通常、液晶組成物の組成を調整することによって行うことができる。しかし、実質最大傾斜角を変更しようとする都度、組成の異なる液晶組成物を用意することは、煩雑である。そこで、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を簡単に調整できる技術の開発が望まれる。 The adjustment of the substantial maximum tilt angle of the molecules of the liquid crystal compound can usually be performed by adjusting the composition of the liquid crystal composition. However, it is troublesome to prepare liquid crystal compositions having different compositions each time the substantial maximum inclination angle is to be changed. Therefore, development of a technique capable of easily adjusting the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is desired.
 本発明は、前記の課題に鑑みて創案されたもので、液晶硬化層を備える液晶硬化フィルムの製造方法であって、前記液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を容易に調整できる製造方法;前記の液晶硬化フィルムの製造方法を用いた偏光板の製造方法;並びに、前記の液晶硬化フィルムの製造方法を用いた有機EL表示装置の製造方法;を提供することを目的とする。 The present invention has been made in view of the above problems, and is a method for producing a cured liquid crystal film having a cured liquid crystal layer, which facilitates the substantially maximum inclination angle of the molecules of the liquid crystal compound contained in the cured liquid crystal layer. Manufacturing method of the polarizing plate using the manufacturing method of the liquid crystal cured film described above; and a manufacturing method of an organic EL display device using the manufacturing method of the liquid crystal cured film described above; I assume.
 前記の課題を解決するべく、本発明者は鋭意検討を行った。その結果、本発明者は、第一液晶組成物によって第一硬化層を形成すること、この第一硬化層上に直接に液晶性化合物を含む第二液晶組成物の層を形成すること、及び、前記第二液晶組成物の層に含まれる液晶性化合物を配向させることを行った後に、時間の経過により、第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角が大きくなることを見い出した。そして、この知見に基づき、本発明者は、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventors diligently studied to solve the above-mentioned problems. As a result, the inventor forms a first cured layer with the first liquid crystal composition, forms a layer of the second liquid crystal composition containing the liquid crystal compound directly on the first cured layer, and After the liquid crystal compound contained in the layer of the second liquid crystal composition is aligned, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition is increased with the passage of time. I found it to grow. And based on this knowledge, the present inventors completed the present invention.
That is, the present invention includes the following.
 〔1〕 液晶性化合物を含む液晶組成物の硬化物で形成され第一硬化層及び第二硬化層を含む液晶硬化層を備えた液晶硬化フィルムの製造方法であって、
 前記液晶硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、5°以上85°以下であり、
 前記製造方法が、
 前記液晶性化合物を含む第一液晶組成物の層を形成する工程(I)と、
 前記第一液晶組成物の層に含まれる前記液晶性化合物を配向させる工程(II)と、
 前記第一液晶組成物の層を硬化させて、前記第一硬化層を形成する工程(III)と、
 前記第一硬化層上に、直接に、前記第一液晶組成物に含まれる前記液晶性化合物と同一又は異なる前記液晶性化合物を含む第二液晶組成物の層を形成する工程(IV)と、
 前記第二液晶組成物の層に含まれる前記液晶性化合物を配向させる工程(V)と、
 前記第二液晶組成物の層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、時間の経過により大きくなる工程(VI)と、
 前記第二液晶組成物の層を硬化させて、前記第二硬化層を形成する工程(VII)と、をこの順に含む、液晶硬化フィルムの製造方法。
 〔2〕 前記工程(VI)を、60秒以上の時間をかけて行う、〔1〕に記載の液晶硬化フィルムの製造方法。
 〔3〕 前記工程(VI)を、120秒以上600秒以下の時間をかけて行う、〔1〕又は〔2〕に記載の液晶硬化フィルムの製造方法。
 〔4〕 前記工程(VI)を、前記第二液晶組成物に含まれる前記液晶性化合物の液晶相-固相転移温度未満の温度条件で行う、〔1〕~〔3〕のいずれか一項に記載の液晶硬化フィルムの製造方法。
 〔5〕 前記液晶性化合物が、逆波長分散性の複屈折を発現できる液晶性化合物である、〔1〕~〔4〕のいずれか一項に記載の液晶硬化フィルムの製造方法。
 〔6〕 前記液晶硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、40°以上85°以下である、〔1〕~〔5〕のいずれか一項に記載の液晶硬化フィルムの製造方法。
 〔7〕 前記第二硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、第一硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角よりも大きい、〔1〕~〔6〕のいずれか一項に記載の液晶硬化フィルムの製造方法。
 〔8〕 前記液晶硬化層が、1/4波長板として機能できる、〔1〕~〔7〕のいずれか一項に記載の液晶硬化フィルムの製造方法。
 〔9〕 液晶硬化フィルムを備える偏光板の製造方法であって、
 前記液晶硬化フィルムを、〔1〕~〔8〕のいずれか一項に記載の製造方法で製造することを含む、偏光板の製造方法。
 〔10〕 偏光板を備える有機エレクトロルミネッセンス表示装置の製造方法であって、
 前記偏光板を、〔9〕記載の製造方法で製造することを含む、有機エレクトロルミネッセンス表示装置の製造方法。
[1] A method for producing a cured liquid crystal film comprising a cured liquid crystal composition containing a liquid crystal compound, and a cured liquid crystal layer comprising a first cured layer and a second cured layer,
The substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is 5 ° or more and 85 ° or less,
The manufacturing method is
Step (I) of forming a layer of a first liquid crystal composition containing the liquid crystal compound
Aligning the liquid crystal compound contained in the layer of the first liquid crystal composition (II);
Curing the layer of the first liquid crystal composition to form the first cured layer (III);
Forming a layer of a second liquid crystal composition containing the liquid crystal compound which is the same as or different from the liquid crystal compound contained in the first liquid crystal composition directly on the first cured layer;
Aligning the liquid crystalline compound contained in the layer of the second liquid crystal composition (V);
Step (VI) in which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition increases with the passage of time;
Curing the layer of the second liquid crystal composition to form the second cured layer (VII); in this order, a method for producing a liquid crystal cured film.
[2] The method for producing a liquid crystal cured film according to [1], wherein the step (VI) is performed for 60 seconds or more.
[3] The method for producing a liquid crystal cured film according to [1] or [2], wherein the step (VI) is performed for a time of 120 seconds to 600 seconds.
[4] Any one of [1] to [3], wherein the step (VI) is performed under a temperature condition lower than the liquid crystal phase-solid phase transition temperature of the liquid crystal compound contained in the second liquid crystal composition The manufacturing method of the liquid crystal hardening film as described in-.
[5] The method for producing a liquid crystal cured film according to any one of [1] to [4], wherein the liquid crystal compound is a liquid crystal compound capable of exhibiting reverse wavelength dispersive birefringence.
[6] The liquid crystal cured film according to any one of [1] to [5], wherein the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is 40 ° to 85 °. Manufacturing method.
[7] The substantial maximum tilt angle of the molecules of the liquid crystalline compound contained in the second cured layer is larger than the substantial maximum tilt angle of the molecules of the liquid crystalline compound contained in the first cured layer, [1] The manufacturing method of the liquid crystal cured film as described in any one of [6].
[8] The method for producing a liquid crystal cured film according to any one of [1] to [7], wherein the liquid crystal cured layer can function as a quarter wavelength plate.
[9] A manufacturing method of a polarizing plate provided with a liquid crystal cured film,
A method for producing a polarizing plate, comprising producing the liquid crystal cured film by the method according to any one of [1] to [8].
[10] A method of manufacturing an organic electroluminescent display device comprising a polarizing plate,
The manufacturing method of the organic electroluminescent display apparatus including manufacturing the said polarizing plate by the manufacturing method of [9] description.
 本発明によれば、液晶硬化層を備える液晶硬化フィルムの製造方法であって、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を容易に調整できる製造方法;前記の液晶硬化フィルムの製造方法を用いた偏光板の製造方法;並びに、前記の液晶硬化フィルムの製造方法を用いた有機EL表示装置の製造方法;を提供できる。 According to the present invention, there is provided a method of producing a cured liquid crystal film comprising a cured liquid crystal layer, wherein the substantially maximum inclination angle of the molecules of the liquid crystal compound contained in the cured liquid crystal layer can be easily adjusted; The manufacturing method of the polarizing plate using the manufacturing method of these; And the manufacturing method of the organic electroluminescence display using the manufacturing method of said liquid crystal cured film can be provided.
図1は、本発明の一実施形態としての製造方法で製造される液晶硬化フィルムを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a liquid crystal cured film produced by a production method according to an embodiment of the present invention. 図2は、ある例に係る第一硬化層のレターデーション比R(θ)/R(0°)を、入射角θに対してプロットしたグラフである。FIG. 2 is a graph in which the retardation ratio R (θ) / R (0 °) of the first cured layer according to an example is plotted against the incident angle θ. 図3は、傾斜方向から液晶硬化層のレターデーションを測定する際の測定方向を説明するための斜視図である。FIG. 3 is a perspective view for explaining the measurement direction when measuring the retardation of the liquid crystal cured layer from the tilt direction.
 以下、例示物及び実施形態を示して本発明について詳細に説明する。ただし、本発明は以下に示す例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by way of examples and embodiments. However, the present invention is not limited to the examples and embodiments shown below, and can be implemented with arbitrary modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 以下の説明において、ある層の「面内方向」とは、別に断らない限り、層平面に平行な方向を表す。 In the following description, the “in-plane direction” of a layer means a direction parallel to the layer plane unless otherwise specified.
 以下の説明において、ある層の「厚み方向」とは、別に断らない限り、層平面に垂直な方向を表す。よって、別に断らない限り、ある層の面内方向と厚み方向とは、垂直である。 In the following description, the “thickness direction” of a certain layer indicates the direction perpendicular to the plane of the layer, unless otherwise specified. Therefore, unless otherwise specified, the in-plane direction and thickness direction of a given layer are perpendicular.
 以下の説明において、ある面の「正面方向」とは、別に断らない限り、その面の法線方向を表し、具体的には前記面の極角0°の方向を指す。 In the following description, the “front direction” of a surface means the normal direction of the surface unless specifically stated otherwise, and specifically refers to the direction of the polar angle of 0 ° of the surface.
 以下の説明において、ある面の「傾斜方向」とは、別に断らない限り、その面に平行でも垂直でもない方向を表し、具体的には前記面の極角が5°以上85°以下の範囲の方向を指す。 In the following description, the “inclination direction” of a surface means a direction neither parallel nor perpendicular to the surface unless specifically stated otherwise, specifically, the polar angle of the surface is in the range of 5 ° to 85 °. Point in the direction of
 以下の説明において、逆波長分散性の複屈折とは、別に断らない限り、波長450nmにおける複屈折Δn(450)及び波長550nmにおける複屈折Δn(550)が、下記式(N1)を満たす複屈折をいう。このような逆波長分散性の複屈折を発現できる液晶性化合物は、通常、測定波長が長いほど、大きい複屈折を発現できる。
 Δn(450)<Δn(550) (N1)
In the following description, the birefringence Δn (450) at a wavelength of 450 nm and the birefringence Δn (550) at a wavelength of 550 nm satisfy the following formula (N1) unless otherwise specified: Say Generally, a liquid crystal compound capable of expressing such reverse wavelength dispersive birefringence can exhibit greater birefringence as the measurement wavelength is longer.
Δn (450) <Δn (550) (N1)
 以下の説明において、順波長分散性の複屈折とは、別に断らない限り、波長450nmにおける複屈折Δn(450)及び波長550nmにおける複屈折Δn(550)が、下記式(N2)を満たす複屈折をいう。このような順波長分散性の複屈折を発現できる液晶性化合物は、通常、測定波長が長いほど、小さい複屈折を発現できる。
 Δn(450)>Δn(550) (N2)
In the following description, unless otherwise specified, the birefringence Δn (450) at a wavelength of 450 nm and the birefringence Δn (550) at a wavelength of 550 nm satisfy the following formula (N2), unless otherwise specified. Say In general, a liquid crystal compound capable of expressing such normal wavelength dispersive birefringence can exhibit smaller birefringence as the measurement wavelength is longer.
Δn (450)> Δn (550) (N2)
 以下の説明において、ある層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、層の厚みを表す。レターデーションの測定波長は、別に断らない限り、590nmである。面内レターデーションReは、位相差計(Axometrics社製「AxoScan」)を用いて測定できる。 In the following description, the in-plane retardation Re of a certain layer is a value represented by Re = (nx−ny) × d unless otherwise specified. Here, nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the layer and in the direction giving the maximum refractive index. ny represents the refractive index of the in-plane direction of the layer, which is perpendicular to the nx direction. d represents the thickness of the layer. The measurement wavelength of retardation is 590 nm unless otherwise stated. The in-plane retardation Re can be measured using a retardation meter ("AxoScan" manufactured by Axometrics).
 以下の説明において、固有複屈折値が正の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、固有複屈折値が負の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。 In the following description, a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto. In addition, a resin having a negative intrinsic birefringence value means a resin in which the refractive index in the stretching direction is smaller than the refractive index in the direction orthogonal thereto. The intrinsic birefringence value can be calculated from the dielectric constant distribution.
 以下の説明において、ある層の遅相軸の方向とは、別に断らない限り、面内方向の遅相軸の方向をいう。 In the following description, the direction of the slow axis of a layer means the direction of the slow axis in the in-plane direction unless otherwise specified.
 以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±4°、好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。 In the following description, unless the directions of the elements “parallel” and “vertical” are different from each other, they do not impair the effects of the present invention, for example, ± 4 °, preferably ± 3 °, more preferably ± 1. An error within the range of ° may be included.
 以下の説明において、別に断らない限り、ある層に含まれる液晶性化合物の分子の「傾斜角」とは、その液晶性化合物の分子が層平面に対してなす角度を表し、「チルト角」とも呼ばれることがある。この傾斜角は、液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向が層平面となす角度のうち、最大の角度に相当する。また、以下の説明においては、別に断らない限り、「傾斜角」とは、液晶性化合物の分子の、当該液晶性化合物が含まれる層の層平面に対する傾斜角を表す。層平面に対する傾斜角は、その層平面に平行な「面内方向に対する傾斜角」ということがある。 In the following description, unless otherwise specified, the "tilt angle" of the molecules of the liquid crystal compound contained in a certain layer means the angle that the molecules of the liquid crystal compound form with respect to the layer plane, and "tilt angle" Sometimes called. This inclination angle corresponds to the largest angle among the angles that the direction of the largest refractive index makes with the layer plane in the refractive index ellipsoid of the molecules of the liquid crystal compound. In the following description, unless otherwise specified, the "tilt angle" refers to the tilt angle of the molecules of the liquid crystal compound relative to the layer plane of the layer in which the liquid crystal compound is contained. The tilt angle with respect to the layer plane may be referred to as “tilt angle with respect to the in-plane direction” parallel to the layer plane.
[1.液晶硬化フィルムの製造方法の概要]
 図1は、本発明の一実施形態としての製造方法で製造される液晶硬化フィルム100を模式的に示す断面図である。
 図1に示すように、本発明の一実施形態としての液晶硬化フィルム100の製造方法は、液晶性化合物を含む液晶組成物の硬化物で形成された液晶硬化層110を備えた液晶硬化フィルム100の製造方法である。この製造方法で製造される液晶硬化フィルム100の液晶硬化層110は、液晶性化合物を含む液晶組成物の硬化物で形成された第一硬化層111及び第二硬化層112を含む。
[1. Outline of production method of liquid crystal cured film]
FIG. 1 is a cross-sectional view schematically showing a liquid crystal cured film 100 produced by the production method according to an embodiment of the present invention.
As shown in FIG. 1, the method for producing a cured liquid crystal film 100 according to an embodiment of the present invention is a cured liquid crystal film 100 having a cured liquid crystal layer 110 formed of a cured product of a liquid crystal composition containing a liquid crystalline compound. Manufacturing method. The liquid crystal cured layer 110 of the liquid crystal cured film 100 produced by this production method includes a first cured layer 111 and a second cured layer 112 formed of a cured product of a liquid crystal composition containing a liquid crystal compound.
 液晶組成物の硬化物で形成されているので、液晶硬化層110は、液晶性化合物の分子(図示省略)を含む。液晶硬化層110に含まれる液晶性化合物の分子は、配向状態を固定されていてもよい。用語「配向状態を固定された液晶性化合物」には、液晶性化合物の重合体が包含される。通常、重合によって液晶性化合物の液晶性は失われるが、本願においては、そのように重合した液晶性化合物も、用語「液晶硬化層に含まれる液晶性化合物」に含める。 Since it is formed of a cured product of the liquid crystal composition, the liquid crystal cured layer 110 contains molecules (not shown) of the liquid crystal compound. The molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 may be fixed in the alignment state. The term "liquid crystal compound in which the alignment state is fixed" includes polymers of liquid crystal compounds. Usually, the liquid crystallinity of the liquid crystalline compound is lost by polymerization, but in the present application, the liquid crystalline compound thus polymerized is also included in the term “liquid crystalline compound contained in the liquid crystal cured layer”.
 前記の液晶硬化層110に含まれる液晶性化合物の少なくとも一部の分子は、当該液晶硬化層110の層平面に対して(即ち面内方向に対して)傾斜している。ある液晶性化合物の分子が層平面に対して(即ち面内方向に対して)「傾斜している」とは、その分子の層平面に対する(即ち面内方向に対する)傾斜角が5°以上85°以下の範囲にあることを表す。このように傾斜した液晶性化合物の分子は、通常、層平面に対して(即ち面内方向に対して)平行でも垂直でもない状態となっている。 At least a part of molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 is inclined with respect to the layer plane of the liquid crystal cured layer 110 (that is, in the in-plane direction). When a molecule of a liquid crystal compound is "tilted" with respect to the layer plane (ie, with respect to the in-plane direction), the tilt angle of the molecule with respect to the layer plane (ie with respect to the in-plane direction) It represents that it is in the range below °. The molecules of the liquid crystal compound thus inclined are usually neither parallel nor perpendicular to the layer plane (ie, to the in-plane direction).
 液晶硬化層110に含まれる液晶性化合物の少なくとも一部の分子が当該液晶硬化層110の層平面に対して(即ち面内方向に対して)傾斜しているので、液晶硬化層110に含まれる液晶性化合物の分子の実質最大傾斜角は、通常5°以上85°以下である。この実質最大傾斜角は、液晶硬化層110に含まれる液晶性化合物の分子の傾斜角の大きさを示す指標である。通常、実質最大傾斜角が大きい液晶硬化層110ほど、その液晶硬化層110に含まれる液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。よって、液晶硬化層110に含まれる液晶性化合物の分子の実質最大傾斜角を調整できれば、その液晶硬化層110に含まれる液晶性化合物の分子の傾斜角を全体として調整することができる。そして、実質最大傾斜角を適切に調整された液晶硬化層110を備える液晶硬化フィルム100は、厚み方向における複屈折の調整を適切に行うことができるので、優れた視野角特性を発揮できる。 Since at least a part of molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 is inclined with respect to the layer plane of the liquid crystal cured layer 110 (that is, with respect to the in-plane direction), it is included in the liquid crystal cured layer 110 The substantial maximum tilt angle of the molecules of the liquid crystal compound is usually 5 ° or more and 85 ° or less. The substantial maximum tilt angle is an index indicating the magnitude of the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110. In general, as the liquid crystal cured layer 110 has a substantially larger maximum tilt angle, the tilt angle as a whole of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 tends to be larger. Therefore, if the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 can be adjusted, the inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer 110 can be adjusted as a whole. And the liquid crystal cured film 100 provided with the liquid crystal cured layer 110 in which the substantial maximum inclination angle is appropriately adjusted can appropriately adjust the birefringence in the thickness direction, and therefore can exhibit excellent viewing angle characteristics.
 このような液晶硬化フィルム100の製造方法は、
 液晶性化合物を含む第一液晶組成物の層を形成する工程(I)と、
 第一液晶組成物の層に含まれる液晶性化合物を配向させる工程(II)と、
 第一液晶組成物の層を硬化させて、第一硬化層111を形成する工程(III)と、
 第一硬化層111上に、直接に、第一液晶組成物に含まれる液晶性化合物と同一又は異なる液晶性化合物を含む第二液晶組成物の層を形成する工程(IV)と、
 第二液晶組成物の層に含まれる液晶性化合物を配向させる工程(V)と、
 第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角が、時間の経過により大きくなる工程(VI)と、
 第二液晶組成物の層を硬化させて、第二硬化層112を形成する工程(VII)と、
 を、この順に含む。
The manufacturing method of such a liquid crystal hardening film 100 is
Forming a layer of a first liquid crystal composition containing a liquid crystal compound (I);
Aligning the liquid crystal compound contained in the layer of the first liquid crystal composition (II);
Curing the layer of the first liquid crystal composition to form a first cured layer 111 (III);
Forming a layer of a second liquid crystal composition containing a liquid crystal compound which is the same as or different from the liquid crystal compound contained in the first liquid crystal composition directly on the first cured layer 111;
Aligning the liquid crystal compound contained in the layer of the second liquid crystal composition (V);
Step (VI) in which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition increases with the passage of time;
Curing the layer of the second liquid crystal composition to form a second cured layer 112 (VII);
In this order.
[2.工程(I):第一液晶組成物の層の形成]
 工程(I)では、第一硬化層を形成するための液晶組成物としての第一液晶組成物の層を形成する。
[2. Step (I): Formation of Layer of First Liquid Crystal Composition]
In the step (I), a layer of a first liquid crystal composition as a liquid crystal composition for forming a first cured layer is formed.
 第一液晶組成物は、第一硬化層を形成するための液晶性化合物を含む。液晶性化合物は、液晶性を有する化合物であり、通常、当該液晶性化合物を配向させた場合に、液晶相を呈することができる化合物である。液晶性化合物としては、逆分散液晶性化合物を用いてもよく、順分散液晶性化合物を用いてもよく、逆分散液晶性化合物と順分散液晶性化合物との組み合わせを用いてもよい。 The first liquid crystal composition includes a liquid crystal compound for forming a first cured layer. The liquid crystal compound is a compound having liquid crystallinity, and is usually a compound capable of exhibiting a liquid crystal phase when the liquid crystal compound is aligned. As the liquid crystal compound, a reverse dispersion liquid crystal compound may be used, a forward dispersion liquid crystal compound may be used, or a combination of the reverse dispersion liquid crystal compound and the forward dispersion liquid crystal compound may be used.
 逆分散液晶性化合物とは、逆波長分散性の複屈折を発現できる液晶性化合物である。また、逆波長分散性の複屈折を発現できる液晶性化合物とは、当該液晶性化合物の層を形成し、その層において液晶性化合物を配向させた際に、逆波長分散性の複屈折を発現する液晶性化合物をいう。 The reverse dispersion liquid crystal compound is a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence. In addition, a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence forms a layer of the liquid crystal compound, and when the liquid crystal compound is aligned in that layer, it exhibits reverse wavelength dispersive birefringence. Liquid crystal compound.
 順分散液晶性化合物とは、順波長分散性の複屈折を発現できる液晶性化合物である。また、順波長分散性の複屈折を発現できる液晶性化合物とは、当該液晶性化合物の層を形成し、その層において液晶性化合物を配向させた際に、順波長分散性の複屈折を発現する液晶性化合物をいう。 The normal dispersion liquid crystal compound is a liquid crystal compound capable of expressing birefringence with normal wavelength dispersion. In addition, a liquid crystal compound capable of expressing forward wavelength dispersive birefringence forms a layer of the liquid crystal compound, and when the liquid crystal compound is aligned in the layer, it exhibits birefringence of forward wavelength dispersion. Liquid crystal compound.
 通常は、液晶性化合物をホモジニアス配向させた場合に、液晶性化合物の層が示す複屈折の波長分散性を調べることで、その液晶性化合物が示す複屈折の波長分散性を確認できる。ここで、液晶性化合物をホモジニアス配向させる、とは、当該液晶性化合物を含む層を形成し、その層における液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向を、前記層の面に平行なある一の方向に配向させることをいう。また、前記の層の複屈折は、「(層の面内レターデーション)÷(層の厚み)」から求められる。 Usually, when the liquid crystalline compound is homogeneously aligned, the wavelength dispersion of birefringence exhibited by the liquid crystalline compound can be confirmed by examining the wavelength dispersion of birefringence exhibited by the layer of the liquid crystalline compound. Here, the liquid crystal compound is homogeneously aligned by forming a layer containing the liquid crystal compound, and the direction of the maximum refractive index in the refractive index ellipsoid of the molecules of the liquid crystal compound in the layer is It refers to orienting in one direction parallel to the plane. The birefringence of the layer is determined from "(in-plane retardation of layer) / (thickness of layer)".
 特に、第一液晶組成物が含む液晶性化合物としては、第二液晶組成物が逆分散液晶性化合物を含む場合、逆分散液晶性化合物が好ましい。逆分散液晶性化合物を用いることにより、工程(VI)において、第二液晶組成物の層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を、時間の経過により効果的に大きくできる。よって、工程(VI)における液晶性化合物の分子の傾斜角の調整を、効果的に行うことができる。さらに、逆分散液晶性化合物を用いることにより、通常は、第一硬化層が、第二硬化層に含まれる逆分散液晶性化合物の分子の傾斜角を大きくする傾斜配向膜として機能できる。よって、第二液晶組成物が逆分散液晶性化合物を含む場合に、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を、広い範囲で調整することができる。 In particular, as the liquid crystal compound contained in the first liquid crystal composition, when the second liquid crystal composition contains a reverse dispersion liquid crystal compound, a reverse dispersion liquid crystal compound is preferable. By using the reverse dispersion liquid crystal compound, in the step (VI), the substantial maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the layer of the second liquid crystal composition can be effectively enlarged with the passage of time. Therefore, adjustment of the tilt angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed. Furthermore, by using the reverse dispersion liquid crystal compound, in general, the first cured layer can function as a tilted alignment film that increases the tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the second cured layer. Therefore, when the second liquid crystal composition contains the reverse dispersion liquid crystal compound, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be adjusted in a wide range.
 逆波長分散性を示す液晶性化合物の屈折率異方性は、当該液晶性化合物の分子の屈折率楕円体において、最大の屈折率を示す方向の屈折率と、この方向に交差する別の方向の屈折率との差として発現する。また、液晶性化合物の分子構造に応じて、前記の各方向の屈折率の波長分散性は、異なりうる。よって、例えば、屈折率が相対的に大きいある方向では、長波長で測定した屈折率は、短波長で測定した屈折率よりも小さくなるが、それらの差は小さい。他方、屈折率が相対的に小さい別の方向では、長波長で測定した屈折率は、短波長で測定した屈折率よりも小さくなり、且つ、それらの差は大きい。このような例における前記方向間での屈折率差は、測定波長が短いと小さく、測定波長が長いと大きくなる。その結果、逆波長分散性の複屈折を発現できる。 The refractive index anisotropy of the liquid crystal compound exhibiting reverse wavelength dispersion is the refractive index of the direction showing the maximum refractive index and the refractive index of the molecule of the liquid crystal compound, and the other direction intersecting this direction It expresses as a difference with the refractive index of Further, depending on the molecular structure of the liquid crystal compound, the wavelength dispersion of the refractive index in each direction may differ. Thus, for example, in a direction in which the refractive index is relatively large, the refractive index measured at the long wavelength is smaller than the refractive index measured at the short wavelength, but the difference between them is small. On the other hand, in the other direction where the refractive index is relatively small, the refractive index measured at the long wavelength is smaller than the refractive index measured at the short wavelength, and the difference between them is large. The refractive index difference between the directions in such an example is small when the measurement wavelength is short, and is large when the measurement wavelength is long. As a result, it is possible to express reverse wavelength dispersive birefringence.
 液晶性化合物は、重合性を有することが好ましい。よって、液晶性化合物は、その分子が、アクリロイル基、メタクリロイル基、及びエポキシ基等の重合性基を含むことが好ましい。重合性を有する液晶性化合物は、液晶相を呈した状態で重合し、液晶相における分子の配向状態を維持したまま重合体となることができる。よって、第一硬化層において液晶性化合物の配向状態を固定したり、液晶性化合物の重合度を高めて第一硬化層の機械的強度を高めたりすることが可能である。 The liquid crystal compound preferably has a polymerizability. Therefore, in the liquid crystal compound, the molecule preferably contains a polymerizable group such as an acryloyl group, a methacryloyl group, and an epoxy group. A polymerizable liquid crystal compound can be polymerized in a liquid crystal phase, and can be a polymer while maintaining the alignment state of molecules in the liquid crystal phase. Therefore, it is possible to fix the alignment state of the liquid crystalline compound in the first cured layer, or to increase the degree of polymerization of the liquid crystalline compound to increase the mechanical strength of the first cured layer.
 液晶性化合物の分子量は、好ましくは300以上、より好ましくは500以上、特に好ましくは800以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。このような範囲の分子量を有する液晶性化合物を用いることにより、第一液晶組成物の塗工性を特に良好にできる。 The molecular weight of the liquid crystal compound is preferably 300 or more, more preferably 500 or more, particularly preferably 800 or more, preferably 2000 or less, more preferably 1700 or less, particularly preferably 1500 or less. By using a liquid crystal compound having a molecular weight in such a range, the coatability of the first liquid crystal composition can be made particularly good.
 測定波長550nmにおける液晶性化合物の複屈折Δnは、好ましくは0.01以上、より好ましくは0.03以上であり、好ましくは0.15以下、より好ましくは0.10以下である。このような範囲の複屈折Δnを有する液晶性化合物を用いることにより、液晶性化合物の分子の実質最大傾斜角が大きい第一硬化層を容易に得ることができる。さらに、通常は、このような範囲の複屈折Δnを有する液晶性化合物を用いることにより、配向欠陥の少ない第一硬化層を得やすい。 The birefringence Δn of the liquid crystal compound at a measurement wavelength of 550 nm is preferably 0.01 or more, more preferably 0.03 or more, preferably 0.15 or less, more preferably 0.10 or less. By using a liquid crystal compound having a birefringence Δn in such a range, it is possible to easily obtain a first cured layer in which the substantial maximum tilt angle of the molecules of the liquid crystal compound is large. Furthermore, usually, by using a liquid crystal compound having a birefringence Δn in such a range, it is easy to obtain a first cured layer with few alignment defects.
 液晶性化合物の複屈折は、例えば、下記の方法により測定できる。
 液晶性化合物の層を作製し、その層に含まれる液晶性化合物をホモジニアス配向させる。その後、その層の面内レターデーションを測定する。そして、「(層の面内レターデーション)÷(層の厚み)」から、液晶性化合物の複屈折を求めることができる。この際、面内レターデーション及び厚みの測定を容易にするために、ホモジニアス配向させた液晶性化合物の層は、硬化させてもよい。
The birefringence of the liquid crystal compound can be measured, for example, by the following method.
A layer of liquid crystal compound is produced, and the liquid crystal compound contained in the layer is homogeneously aligned. Thereafter, the in-plane retardation of the layer is measured. Then, the birefringence of the liquid crystal compound can be determined from “(in-plane retardation of layer) / (thickness of layer)”. Under the present circumstances, in order to make measurement of in-plane retardation and thickness easy, you may harden the layer of the liquid crystal compound which carried out homogeneous orientation.
 液晶性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The liquid crystal compounds may be used alone or in combination of two or more at an arbitrary ratio.
 具体的な液晶性化合物の種類に制限は無い。例えば、逆分散液晶性化合物の例としては、下記式(I)で表されるものが挙げられる。 There is no restriction | limiting in the kind of concrete liquid crystalline compound. For example, as an example of the reverse dispersion liquid crystal compound, those represented by the following formula (I) can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Arは、下記式(II-1)~式(II-7)のいずれかで表される基を示す。式(II-1)~式(II-7)において、*は、Z又はZとの結合位置を表す。 In the formula (I), Ar represents a group represented by any of the following formulas (II-1) to (II-7). In formulas (II-1) to (II-7), * represents a bonding position to Z 1 or Z 2 .
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記の式(II-1)~式(II-7)において、E及びEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-及び-O-からなる群より選ばれる基を表す。また、R11及びR12は、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基を表す。中でも、E及びEは、それぞれ独立して、-S-であることが好ましい。 In formulas (II-1) to (II-7) above, E 1 and E 2 are each independently —CR 11 R 12 —, —S—, —NR 11 —, —CO— and — It represents a group selected from the group consisting of O-. R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Among them, E 1 and E 2 are preferably each independently —S—.
 前記の式(II-1)~式(II-7)において、D~Dは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素環基、または、置換基を有していてもよい芳香族複素環基を表す。D~Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、2~100である。 In formulas (II-1) to (II-7) above, D 1 to D 3 each independently represent an aromatic hydrocarbon ring group which may have a substituent, or a substituent Represents an aromatic heterocyclic group which may be possessed. The carbon atom number (including the carbon atom number of the substituent) of the group represented by D 1 to D 3 is generally independently 2 to 100.
 D~Dにおける芳香族炭化水素環基の炭素原子数は、6~30が好ましい。D~Dにおける炭素原子数6~30の芳香族炭化水素環基としては、例えば、フェニル基、ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基がより好ましい。 The number of carbon atoms of the aromatic hydrocarbon ring group in D 1 to D 3 is preferably 6 to 30. Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 include a phenyl group and a naphthyl group. Among them, as an aromatic hydrocarbon ring group, a phenyl group is more preferable.
 D~Dにおける芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数1~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 As a substituent which the aromatic hydrocarbon ring group in D 1 to D 3 may have, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a carbon atom such as a methyl group, an ethyl group and a propyl group An alkyl group having 1 to 6 carbons; an alkenyl group having 2 to 6 carbon atoms such as a vinyl group or an allyl group; a halogenated alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a dimethylamino group And an alkoxy group having 1 to 6 carbon atoms, such as an N, N-dialkylamino group having 1 to 12 carbon atoms; a methoxy group, an ethoxy group and an isopropoxy group; a nitro group; -OCF 3 ; -C (= O —R b ; —O—C (= O) —R b ; —C (= O) —O—R b ; —SO 2 R a ; The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rは、炭素原子数1~6のアルキル基;並びに、炭素原子数1~6のアルキル基若しくは炭素原子数1~6のアルコキシ基を置換基として有していてもよい、炭素原子数6~20の芳香族炭化水素環基;からなる群より選ばれる基を表す。 R a represents an alkyl group having 1 to 6 carbon atoms; and an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms as a substituent, having 6 carbon atoms And a group selected from the group consisting of -20 aromatic hydrocarbon ring groups;
 Rは、置換基を有していてもよい炭素原子数1~20のアルキル基;置換基を有していてもよい炭素原子数2~20のアルケニル基;置換基を有していてもよい炭素原子数3~12のシクロアルキル基;及び、置換基を有していてもよい炭素原子数6~12の芳香族炭化水素環基;からなる群より選ばれる基を表す。 R b is an alkyl group having 1 to 20 carbon atoms which may have a substituent; an alkenyl group having 2 to 20 carbon atoms which may have a substituent; even if it has a substituent And a group selected from the group consisting of a good cycloalkyl group having 3 to 12 carbon atoms; and an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent.
 Rにおける炭素原子数1~20のアルキル基の炭素原子数は、好ましくは1~12、より好ましくは4~10である。Rにおける炭素原子数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基等が挙げられる。 The number of carbon atoms of the alkyl group having 1 to 20 carbon atoms for R b is preferably 1 to 12, and more preferably 4 to 10. As a C1-C20 alkyl group in R b , for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group , Sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group , N-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, and n-icosyl group And the like.
 Rにおける炭素原子数1~20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チエニル基、チアゾリル基、ベンゾチアゾール-2-イルチオ基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;及び、ベンゾジオキサニル基;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The substituent which the alkyl group having 1 to 20 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a dimethylamino group or the like; N, N-dialkylamino group; an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropoxy and butoxy; and C 1 to 12 having carbon atoms such as methoxymethoxy and methoxyethoxy An alkoxy group substituted with an alkoxy group, an alkoxy group having 1 to 12 carbon atoms, a nitro group, an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, Aromatic heterocyclic groups having 2 to 20 carbon atoms such as thienyl group, thiazolyl group and benzothiazol-2-ylthio group; cyclopropyl group, cyclopentyl group A cycloalkyl group having 3 to 8 carbon atoms, such as clohexyl group; a cycloalkyloxy group having 3 to 8 carbon atoms, such as cyclopentyloxy group and cyclohexyloxy group; a tetrahydrofuranyl group, a tetrahydropyranyl group, a dioxolanyl group, Cyclic ether group having 2 to 12 carbon atoms such as dioxanyl group; aryloxy group having 6 to 14 carbon atoms such as phenoxy group and naphthoxy group; trifluoromethyl group, pentafluoroethyl group, -CH 2 CF 3 And the like, fluoroalkyl groups having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted by fluorine atoms; benzofuryl groups; benzopyranyl groups; benzodioxolyl groups; and benzodioxanyl groups; Be The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数2~20のアルケニル基の炭素原子数は、好ましくは2~12である。Rにおける炭素原子数2~20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、およびイコセニル基等が挙げられる。 The number of carbon atoms of the alkenyl group having 2 to 20 carbon atoms for R b is preferably 2 to 12. As a C2-C20 alkenyl group in R b , for example, a vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group And dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, icosenyl group and the like.
 Rにおける炭素原子数2~20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R b, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R b. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基等が挙げられる。中でも、シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基が好ましい。 Examples of the cycloalkyl group having 3 to 12 carbon atoms as R b include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Among them, as a cycloalkyl group, a cyclopentyl group and a cyclohexyl group are preferable.
 Rにおける炭素原子数3~12のシクロアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;等が挙げられる。中でも、シクロアルキル基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The substituent that the cycloalkyl group having 3 to 12 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a cyano group; a dimethylamino group or the like N, N-dialkylamino groups; alkyl groups having 1 to 6 carbon atoms, such as methyl, ethyl and propyl; and alkoxy having 1 to 6 carbon atoms, such as methoxy, ethoxy and isopropoxy. And nitro aromatic group, and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as phenyl group and naphthyl group. Among them, as a substituent of the cycloalkyl group, a halogen atom such as fluorine atom and chlorine atom; cyano group; an alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; methoxy group, ethoxy An alkoxy group having 1 to 6 carbon atoms such as a group and isopropoxy group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group are preferable. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数6~12の芳香族炭化水素環基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基が好ましい。 Examples of the aromatic hydrocarbon ring group having 6 to 12 carbon atoms as R b include a phenyl group, a 1-naphthyl group and a 2-naphthyl group. Among them, as an aromatic hydrocarbon ring group, a phenyl group is preferable.
 Rにおける炭素原子数6~12の芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;-OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;等が挙げられる。中でも、芳香族炭化水素環基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;ニトロ基;フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;-OCF;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The substituent that the aromatic hydrocarbon ring group having 6 to 12 carbon atoms for R b may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a carbon atom number such as a cyano group; a dimethylamino group 2 to 12 N, N-dialkylamino group; alkoxy group having 1 to 20 carbon atoms such as methoxy group, ethoxy group, isopropoxy group and butoxy group; carbon atom number such as methoxymethoxy group and methoxyethoxy group An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group of 1 to 12; nitro group; an aromatic heterocyclic group having 2 to 20 carbon atoms such as triazolyl group, pyrrolyl group, furanyl group, thiophenyl group, etc .; A cycloalkyl group having 3 to 8 carbon atoms, such as cyclopropyl group, cyclopentyl group and cyclohexyl group; cyclopentyloxy group, cyclohexyloxy group and the like Of C 3-8 cycloalkyloxy groups; tetrahydrofuranyl groups, tetrahydropyranyl groups, dioxolanyl groups, dioxanyl groups, cyclic ether groups of 2 to 12 carbon atoms, phenoxy groups, naphthoxy groups, etc. An aryloxy group having 6 to 14 carbon atoms; a fluorocarbon having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom, such as trifluoromethyl group, pentafluoroethyl group, -CH 2 CF 3 alkyl group; -OCF 3; benzofuryl; benzopyranyl group; benzodioxolyl group; benzodioxanyl group; and the like. Among them, as a substituent of the aromatic hydrocarbon ring group, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a cyano group; a methoxy group, an ethoxy group, an isopropoxy group, a butoxy group, etc. Alkoxy group; nitro group; aromatic heterocyclic group having 2 to 20 carbon atoms such as furanyl group and thiophenyl group; cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; A fluoroalkyl group having 1 to 12 carbon atoms, in which one or more hydrogen atoms are substituted with a fluorine atom, such as trifluoromethyl group, pentafluoroethyl group, -CH 2 CF 3 and the like; -OCF 3 ; is preferable. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 D~Dにおける芳香族複素環基の炭素原子数は、2~30が好ましい。D~Dにおける炭素原子数2~30の芳香族複素環基としては、例えば、1-ベンゾフラニル基、2-ベンゾフラニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、キノリル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、およびベンゾピラゾリル基等が挙げられる。中でも、芳香族複素環基としては、フラニル基、ピラニル基、チエニル基、オキサゾリル基、フラザニル基、チアゾリル基、及びチアジアゾリル基等の、単環の芳香族複素環基;並びに、ベンゾチアゾリル基、ベンゾオキサゾリル基、キノリル基、1-ベンゾフラニル基、2-ベンゾフラニル基、フタルイミド基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、チアゾロピリジル基、チアゾロピラジニル基、ベンゾイソオキサゾリル基、ベンゾオキサジアゾリル基、及びベンゾチアジアゾリル基等の、縮合環の芳香族複素環基;がより好ましい。 The number of carbon atoms of the aromatic heterocyclic group in D 1 to D 3 is preferably 2 to 30. Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 include 1-benzofuranyl group, 2-benzofuranyl group, imidazolyl group, indolinyl group, furazanyl group, oxazolyl group, quinolyl group, and thiadiazolyl group. , Thiazolyl group, thiazolopyrazinyl group, thiazolopyridyl group, thiazolopyridazinyl group, thiazolopyridazinyl group, thiazolopyrimidinyl group, thienyl group, triazinyl group, triazolyl group, naphthyridinyl group, pyrazinyl group, pyrazolyl group, pyranyl group, Pyridyl group, pyridazinyl group, pyrimidinyl group, pyrrolyl group, phthalazinyl group, furanyl group, benzo [c] thienyl group, benzo [b] thienyl group, benzoisoxazolyl group, benzoisothiazolyl group, benzoimidazolyl group, benzooxa Diazolyl group, benzoxazolyl group, Down zone thiadiazolyl group, benzothiazolyl group, triazinyl group, benzotriazolyl group, and benzo pyrazolyl group and the like. Among them, as the aromatic heterocyclic group, monocyclic aromatic heterocyclic groups such as furanyl group, pyranyl group, thienyl group, oxazolyl group, furazanyl group, thiazolyl group, and thiadiazolyl group; and benzothiazolyl group, benzooxa group Zoryl group, quinolyl group, 1-benzofuranyl group, 2-benzofuranyl group, phthalimido group, benzo [c] thienyl group, benzo [b] thienyl group, thiazolopyridyl group, thiazolopyrazinyl group, benzisoxazolate And aromatic heterocyclic groups such as fused rings, such as a ring group, a benzoxadiazolyl group, and a benzothiadiazolyl group.
 D~Dにおける芳香族複素環基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which the aromatic heterocyclic group may have the D 1 ~ D 3, for example, include the same examples as the substituent group which may have an aromatic hydrocarbon ring group of D 1 ~ D 3. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 前記の式(II-1)~式(II-7)において、D~Dは、それぞれ独立して、置換基を有していてもよい非環状基を表す。D及びDは、一緒になって環を形成していてもよい。D~Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、1~100である。 In the above formulas (II-1) to (II-7), D 4 to D 5 each independently represent an acyclic group which may have a substituent. D 4 and D 5 may together form a ring. The carbon atom number (including the carbon atom number of the substituent) of the group represented by D 4 to D 5 is generally independently 1 to 100.
 D~Dにおける非環状基の炭素原子数は、1~13が好ましい。D~Dにおける非環状基としては、例えば、炭素原子数1~6のアルキル基;シアノ基;カルボキシル基;炭素原子数1~6のフルオロアルキル基;炭素原子数1~6のアルコキシ基;-C(=O)-CH;-C(=O)NHPh;-C(=O)-OR;が挙げられる。中でも、非環状基としては、シアノ基、カルボキシル基、-C(=O)-CH、-C(=O)NHPh、-C(=O)-OC、-C(=O)-OC、-C(=O)-OCH(CH、-C(=O)-OCHCHCH(CH)-OCH、-C(=O)-OCHCHC(CH-OH、及び-C(=O)-OCHCH(CHCH)-C、が好ましい。前記のPhは、フェニル基を表す。また、前記のRは、炭素原子数1~12の有機基を表す。Rの具体例としては、炭素原子数1~12のアルコキシ基、または、水酸基で置換されていてもよい炭素原子数1~12のアルキル基が挙げられる。 The number of carbon atoms of the noncyclic group in D 4 to D 5 is preferably 1 to 13. As the non-cyclic group in D 4 to D 5 , for example, alkyl group having 1 to 6 carbon atoms; cyano group; carboxyl group; fluoroalkyl group having 1 to 6 carbon atoms; alkoxy group having 1 to 6 carbon atoms ; -C (= O) -CH 3 ; -C (= O) NHPh; -C (= O) -OR x; and the like. Among them, as the non-cyclic group, a cyano group, a carboxyl group, -C (= O) -CH 3 , -C (= O) NHPh, -C (= O) -OC 2 H 5, -C (= O) -OC 4 H 9, -C (= O) -OCH (CH 3) 2, -C (= O) -OCH 2 CH 2 CH (CH 3) -OCH 3, -C (= O) -OCH 2 CH 2 C (CH 3 ) 2 —OH and —C (= O) —OCH 2 CH (CH 2 CH 3 ) —C 4 H 9 are preferred. The above Ph represents a phenyl group. Further, R x represents an organic group having 1 to 12 carbon atoms. Specific examples of R x include an alkoxy group having 1 to 12 carbon atoms, and an alkyl group having 1 to 12 carbon atoms which may be substituted with a hydroxyl group.
 D~Dにおける非環状基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the noncyclic group in D 4 to D 5 may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 D及びDが一緒になって環を形成している場合、前記のD及びDによって環を含む有機基が形成される。この有機基としては、例えば、下記式で表される基が挙げられる。下記式において、*は、各有機基が、D及びDが結合する炭素と結合する位置を表す。 When D 4 and D 5 are taken together to form a ring, the above-mentioned D 4 and D 5 form an organic group containing a ring. As this organic group, the group represented by a following formula is mentioned, for example. In the following formula, * represents the position where each organic group is bonded to the carbon to which D 4 and D 5 are bonded.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 Rは、炭素原子数1~3のアルキル基を表す。
 R**は、炭素原子数1~3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
 R***は、炭素原子数1~3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
 R****は、水素原子、炭素原子数1~3のアルキル基、水酸基、及び、-COOR13からなる群より選ばれる基を表す。R13は、炭素原子数1~3のアルキル基を表す。
 フェニル基が有しうる置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基及びアミノ基が挙げられる。中でも、置換基としては、ハロゲン原子、アルキル基、シアノ基及びアルコキシ基が好ましい。フェニル基が有する置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
R * represents an alkyl group having 1 to 3 carbon atoms.
R ** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
R *** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
R **** is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, hydroxyl group, and represents a group selected from the group consisting of -COOR 13. R 13 represents an alkyl group having 1 to 3 carbon atoms.
As a substituent which a phenyl group may have, for example, a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxyl group, a carboxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group and an amino group Can be mentioned. Among them, as a substituent, a halogen atom, an alkyl group, a cyano group and an alkoxy group are preferable. The number of substituents which a phenyl group has may be one or more. The plurality of substituents may be identical to or different from each other.
 前記の式(II-1)~式(II-7)において、Dは、-C(R)=N-N(R)R、-C(R)=N-N=C(R)R、及び、-C(R)=N-N=Rからなる群より選ばれる基を表す。Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、通常、3~100である。 In the above formulas (II-1) to (II-7), D 6 is —C (R f ) = N—N (R g ) R h , —C (R f ) = N—N = C (R g ) R h and a group selected from the group consisting of —C (R f ) = N—N = R i The carbon atom number (including the carbon atom number of the substituent) of the group represented by D 6 is usually 3 to 100.
 Rは、水素原子;並びに、メチル基、エチル基、プロピル基、及びイソプロピル基等の、炭素原子数1~6のアルキル基;からなる群より選ばれる基を表す。 R f represents a hydrogen atom; and a group selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl and isopropyl.
 Rは、水素原子;並びに、置換基を有していてもよい炭素原子数1~30の有機基;からなる群より選ばれる基を表す。 R g represents a group selected from the group consisting of a hydrogen atom; and an organic group having 1 to 30 carbon atoms which may have a substituent.
 Rにおける置換基を有していてもよい炭素原子数1~30の有機基としては、例えば、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、又は、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数2~20のアルケニル基;置換基を有していてもよい炭素原子数2~20のアルキニル基;置換基を有していてもよい炭素原子数3~12のシクロアルキル基;置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;置換基を有していてもよい炭素原子数2~30の芳香族複素環基;-SO;-C(=O)-R;-CS-NH-R;が挙げられる。R及びRの意味は、上述した通りである。 As the organic group having 1 to 30 carbon atoms which may have a substituent in R g , for example, an alkyl group having 1 to 20 carbon atoms which may have a substituent; At least one of —CH 2 — contained in the 20 alkyl groups is —O—, —S—, —O—C (= O) —, —C (= O) —O—, or —C (= O)-substituted group (provided that two or more adjacent groups each other except -O- or -S- are interposed); alkenyl group having 2 to 20 carbon atoms which may have a substituent An alkynyl group having 2 to 20 carbon atoms which may have a substituent; a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent; carbon which may have a substituent An aromatic hydrocarbon ring group having 6 to 30 atoms; an aromatic compound having 2 to 30 carbon atoms which may have a substituent Ring group; -SO 2 R a; -C ( = O) -R b; -CS-NH-R b; and the like. The meanings of R a and R b are as described above.
 Rにおける炭素原子数1~20のアルキル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数1~20のアルキル基と同じである。 The preferable carbon atom number range and examples of the alkyl group having 1 to 20 carbon atoms in R g are the same as the alkyl group having 1 to 20 carbon atoms in R b .
 Rにおける炭素原子数1~20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-SO;-SR;-SRで置換された炭素原子数1~12のアルコキシ基;水酸基;等が挙げられる。R及びRの意味は、上述した通りである。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The substituent which the alkyl group having 1 to 20 carbon atoms in R g may have is, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a dimethylamino group or the like, and the like. N, N-dialkylamino group; an alkoxy group having 1 to 20 carbon atoms such as methoxy, ethoxy, isopropoxy and butoxy; and C 1 to 12 having carbon atoms such as methoxymethoxy and methoxyethoxy An alkoxy group substituted with an alkoxy group, an alkoxy group having 1 to 12 carbon atoms, a nitro group, an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, Aromatic heterocyclic groups having 2 to 20 carbon atoms, such as thiophenyl; and cyclos having 3 to 8 carbons, such as cyclopropyl, cyclopentyl and cyclohexyl. Alkyl group: cycloalkyloxy group having 3 to 8 carbon atoms such as cyclopentyloxy group and cyclohexyloxy group; cyclic having 2 to 12 carbon atoms such as tetrahydrofuranyl group, tetrahydropyranyl group, dioxolanyl group, dioxanyl group and the like An ether group; an aryloxy group having 6 to 14 carbon atoms such as phenoxy group and naphthoxy group; a fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom; benzofuryl group; benzopyranyl A benzodioxolyl group; a benzodioxanyl group; -SO 2 R a ; -SR b ; an alkoxy group having 1 to 12 carbon atoms substituted with -SR b ; a hydroxyl group; and the like. The meanings of R a and R b are as described above. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数2~20のアルケニル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数2~20のアルケニル基と同じである。 The preferable carbon atom number range and examples of the alkenyl group having 2 to 20 carbon atoms in R g are the same as the alkenyl group having 2 to 20 carbon atoms in R b .
 Rにおける炭素原子数2~20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R g, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基等が挙げられる。 As an alkynyl group having 2 to 20 carbon atoms for R g , for example, ethynyl group, propynyl group, 2-propynyl group (propargyl group), butynyl group, 2-butynyl group, 3-butynyl group, 3-butynyl group, pentynyl group, 2- And pentynyl group, hexynyl group, 5-hexynyl group, heptynyl group, octynyl group, 2-octynyl group, nonanyl group, decanyl group, 7-decanyl group and the like.
 Rにおける炭素原子数2~20のアルキニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have an alkynyl group having 2 to 20 carbon atoms in R g, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数3~12のシクロアルキル基としては、例えば、Rにおける炭素原子数3~12のシクロアルキル基と同じ例が挙げられる。 Examples of the cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the cycloalkyl group having 3 to 12 carbon atoms in R b .
 Rにおける炭素原子数3~12のシクロアルキル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have a cycloalkyl group having 3 to 12 carbon atoms in R g, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数6~30の芳香族炭化水素環基としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。 Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 .
 Rにおける炭素原子数6~30の芳香族炭化水素環基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have. Be The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rにおける炭素原子数2~30の芳香族複素環基としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。 Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in R g include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 .
 Rにおける炭素原子数2~30の芳香族複素環基が有しうる置換基としては、例えば、D~Dにおける芳香族炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the aromatic heterocyclic group having 2 to 30 carbon atoms in R g may have include the same examples as the substituents that the aromatic hydrocarbon ring group in D 1 to D 3 may have. . The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 上述したものの中でも、Rとしては、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数3~12のシクロアルキル基;置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;並びに、置換基を有していてもよい炭素原子数2~30の芳香族複素環基;が好ましい。その中でも、Rとしては、置換基を有していてもよい炭素原子数1~20のアルキル基;並びに、炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);が特に好ましい。 Among the above-mentioned, as R g , at least one of an alkyl group having 1 to 20 carbon atoms which may have a substituent; and —CH 2 — contained in an alkyl group having 1 to 20 carbon atoms is -O-, -S-, -O-C (= O)-, -C (= O) -O-, or a group substituted with -C (= O)-, provided that -O- or- Two or more adjacent to each other and intervening S)); a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent; 6 to 6 carbon atom which may have a substituent 30 aromatic hydrocarbon ring groups; and an optionally substituted aromatic heterocyclic group having 2 to 30 carbon atoms are preferable. Among them, as R g , at least one of —C 2 -C 20 alkyl groups which may have a substituent; and —CH 2 — contained in C 1 -C 20 alkyl groups is -O-, -S-, -O-C (= O)-, -C (= O) -O-, or a group substituted with -C (= O)-, provided that -O- or- Particularly preferred is the case where two or more S-s are adjacent to each other.
 Rは、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。 R h represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
 Rの好ましい例としては、(1)1以上の炭素原子数6~30の芳香族炭化水素環を有する、炭素原子数6~40の炭化水素環基、が挙げられる。この芳香族炭化水素環を有する炭化水素環基を、以下、適宜「(1)炭化水素環基」ということがある。(1)炭化水素環基の具体例としては、下記の基が挙げられる。 Preferred examples of R h include (1) a hydrocarbon ring group having 6 to 40 carbon atoms, which has one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms. Hereinafter, the hydrocarbon ring group having an aromatic hydrocarbon ring may be appropriately referred to as “(1) hydrocarbon ring group”. (1) Specific examples of the hydrocarbon ring group include the following groups.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (1)炭化水素環基は、置換基を有していてもよい。(1)炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、および、炭素原子数1~6のアルコキシ基、が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (1) The hydrocarbon ring group may have a substituent. (1) As a substituent which a hydrocarbon ring group may have, for example, a halogen atom such as a fluorine atom or a chlorine atom; a cyano group; a methyl group, an ethyl group, a propyl group, etc. Alkyl group; alkenyl group having 2 to 6 carbon atoms such as vinyl group and allyl group; halogenated alkyl group having 1 to 6 carbon atoms such as trifluoromethyl group; and 2 carbon atoms such as dimethylamino group -12 N, N-dialkylamino groups; alkoxy groups having 1 to 6 carbon atoms such as methoxy, ethoxy and isopropoxy groups; nitro groups; 6 to 20 carbon atoms such as phenyl and naphthyl groups aromatic hydrocarbon ring group; -OCF 3; -C (= O ) -R b; -O-C (= O) -R b; -C (= O) -O-R b; -SO 2 R a ; etc. The meanings of R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rの別の好ましい例としては、(2)炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2~40の複素環基が挙げられる。この芳香環を有する複素環基を、以下、適宜「(2)複素環基」ということがある。(2)複素環基の具体例としては、下記の基が挙げられる。Rは、それぞれ独立に、水素原子又は炭素原子数1~6のアルキル基を表す。 Another preferable example of R h includes (2) at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms. And heterocyclic groups having 2 to 40 carbon atoms. Hereinafter, the heterocyclic group having an aromatic ring may be appropriately referred to as "(2) heterocyclic group". (2) The following groups may be mentioned as specific examples of the heterocyclic group. Each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (2)複素環基は、置換基を有していてもよい。(2)複素環基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (2) The heterocyclic group may have a substituent. Examples of the substituent that the (2) heterocyclic group may have include the same examples as the substituents that the (1) hydrocarbon ring group may have. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rの更に別の好ましい例としては、(3)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数1~12のアルキル基が挙げられる。この置換されたアルキル基を、以下、適宜「(3)置換アルキル基」ということがある。 As still another preferable example of R h , (3) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkyl group having 1 to 12 carbon atoms substituted by Hereinafter, this substituted alkyl group may be appropriately referred to as "(3) substituted alkyl group".
 (3)置換アルキル基における「炭素原子数1~12のアルキル基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
 (3)置換アルキル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (3)置換アルキル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
(3) Examples of the “alkyl group having 1 to 12 carbon atoms” in the substituted alkyl group include a methyl group, an ethyl group, a propyl group and an isopropyl group.
(3) Examples of the "aromatic hydrocarbon ring group having 6 to 30 carbon atoms" in the substituted alkyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
(3) Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
 (3)置換アルキル基は、更に置換基を有していてもよい。(3)置換アルキル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (3) The substituted alkyl group may further have a substituent. (3) Examples of the substituent which the substituted alkyl group may have include the same examples as the substituent which the (1) hydrocarbon ring group may have. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rの更に別の好ましい例としては、(4)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2~12のアルケニル基が挙げられる。この置換されたアルケニル基を、以下、適宜「(4)置換アルケニル基」ということがある。 As still another preferable example of R h , (4) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkenyl group having 2 to 12 carbon atoms which is substituted by Hereinafter, this substituted alkenyl group may be referred to as “(4) substituted alkenyl group” as appropriate.
 (4)置換アルケニル基における「炭素原子数2~12のアルケニル基」としては、例えば、ビニル基、アリル基などが挙げられる。
 (4)置換アルケニル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (4)置換アルケニル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
(4) Examples of the “alkenyl group having 2 to 12 carbon atoms” in the substituted alkenyl group include a vinyl group and an allyl group.
(4) Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
(4) Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
 (4)置換アルケニル基は、更に置換基を有していてもよい。(4)置換アルケニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (4) The substituted alkenyl group may further have a substituent. (4) As a substituent which a substituted alkenyl group may have, the same example as a substituent which (1) hydrocarbon ring group may have is mentioned, for example. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rの更に別の好ましい例としては、(5)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2~12のアルキニル基が挙げられる。この置換されたアルキニル基を、以下、適宜「(5)置換アルキニル基」ということがある。 As still another preferable example of R h , (5) at least one group selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms And an alkynyl group having 2 to 12 carbon atoms which is substituted by Hereinafter, this substituted alkynyl group may be referred to as “(5) substituted alkynyl group” as appropriate.
 (5)置換アルキニル基における「炭素原子数2~12のアルキニル基」としては、例えば、エチニル基、プロピニル基などが挙げられる。
 (5)置換アルキニル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、D~Dにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (5)置換アルキニル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、D~Dにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
(5) Examples of the “C 2-12 alkynyl group” in the substituted alkynyl group include ethynyl group and propynyl group.
(5) Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in D 1 to D 3 . It can be mentioned.
(5) Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in D 1 to D 3 . .
 (5)置換アルキニル基は、更に置換基を有していてもよい。(5)置換アルキニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (5) The substituted alkynyl group may further have a substituent. Examples of the substituent that the substituted alkynyl group may have (5) include the same examples as the substituent that the (1) hydrocarbon ring group may have. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rの好ましい具体例としては、下記の基が挙げられる。 The following group is mentioned as a preferable specific example of R h .
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Rの更に好ましい具体例としては、下記の基が挙げられる。 More preferable specific examples of R h include the following groups.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 Rの特に好ましい具体例としては、下記の基が挙げられる。 Particularly preferred specific examples of R h include the following groups.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上述したRの具体例は、更に置換基を有していてもよい。この置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、および、炭素原子数1~6のアルコキシ基が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The specific examples of R h described above may further have a substituent. Examples of this substituent include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; vinyl group, allyl group and the like An alkenyl group having 2 to 6 carbon atoms; a halogenated alkyl group having 1 to 6 carbon atoms such as trifluoromethyl group; an N, N-dialkylamino group having 2 to 12 carbon atoms such as dimethylamino group An alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group and an isopropoxy group; a nitro group; -OCF 3 ; -C (= O) -R b ; -O-C (= O) -R b ; -C (= O) -O-R b ; -SO 2 R a ; and the like. The meanings of R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 Rは、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。 R i represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms.
 Rの好ましい例としては、1以上の炭素原子数6~30の芳香族炭化水素環を有する、炭素原子数6~40の炭化水素環基が挙げられる。
 また、Rの別の好ましい例としては、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2~40の複素環基が挙げられる。
Preferred examples of R i include hydrocarbon ring groups having 6 to 40 carbon atoms, which have one or more aromatic hydrocarbon rings having 6 to 30 carbon atoms.
In addition, another preferable example of R i has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocyclic ring having 2 to 30 carbon atoms, And heterocyclic groups having 2 to 40 carbon atoms.
 Rの特に好ましい具体例としては、下記の基が挙げられる。Rの意味は、上述した通りである。 Particularly preferred specific examples of R i include the following groups. The meaning of R is as described above.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(II-1)~式(II-7)のいずれかで表される基は、D~D以外に更に置換基を有していてもよい。この置換基としては、例えば、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基、炭素原子数1~6のN-アルキルアミノ基、炭素原子数2~12のN,N-ジアルキルアミノ基、炭素原子数1~6のアルコキシ基、炭素原子数1~6のアルキルスルフィニル基、カルボキシル基、炭素原子数1~6のチオアルキル基、炭素原子数1~6のN-アルキルスルファモイル基、炭素原子数2~12のN,N-ジアルキルスルファモイル基が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The group represented by any one of formulas (II-1) to (II-7) may further have a substituent in addition to D 1 to D 6 . Examples of the substituent include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, and an N-alkylamino having 1 to 6 carbon atoms. Group, N, N-dialkylamino group having 2 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, carboxyl group, thioalkyl group having 1 to 6 carbon atoms And an N-alkylsulfamoyl group having 1 to 6 carbon atoms, and an N, N-dialkylsulfamoyl group having 2 to 12 carbon atoms. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 式(I)におけるArの好ましい例としては、下記の式(III-1)~式(III-10)で表される基が挙げられる。また、式(III-1)~式(III-10)で表される基は、置換基として炭素原子数1~6のアルキル基を有していてもよい。下記式中、*は、結合位置を表す。 Preferred examples of Ar in the formula (I) include groups represented by the following formulas (III-1) to (III-10). The groups represented by the formulas (III-1) to (III-10) may have an alkyl group having 1 to 6 carbon atoms as a substituent. In the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(III-1)及び式(III-4)の特に好ましい具体例としては、下記の基が挙げられる。下記式中、*は、結合位置を表す。 Specific preferred examples of the formula (III-1) and the formula (III-4) include the following groups. In the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(I)において、Z及びZは、それぞれ独立して、単結合、-O-、-O-CH-、-CH-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR21-C(=O)-、-C(=O)-NR21-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-C(=O)-O-、-O-C(=O)-CH-、-CH-O-C(=O)-、-C(=O)-O-CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、及び、-C≡C-、からなる群より選ばれるいずれかを表す。R21は、それぞれ独立して、水素原子又は炭素原子数1~6のアルキル基を表す。 In formula (I), Z 1 and Z 2 are each independently a single bond, -O-, -O-CH 2- , -CH 2 -O-, -O-CH 2 -CH 2 -,- CH 2 -CH 2 -O-, -C (= O) -O-, -O-C (= O)-, -C (= O) -S-, -S-C (= O)-,- NR 21 -C (= O) - , - C (= O) -NR 21 -, - CF 2 -O -, - O-CF 2 -, - CH 2 -CH 2 -, - CF 2 -CF 2 - , -O-CH 2 -CH 2 -O -, - CH = CH-C (= O) -O -, - O-C (= O) -CH = CH -, - CH 2 -C (= O) -O -, - O-C ( = O) -CH 2 -, - CH 2 -O-C (= O) -, - C (= O) -O-CH 2 -, - CH 2 -CH 2 - C (= O) -O -, - O-C (= O) -CH 2 -CH 2 -, - C 2 -CH 2 -O-C (= O) -, - C (= O) -O-CH 2 -CH 2 -, - CH = CH -, - N = CH -, - CH = N -, - N It represents any one selected from the group consisting of CC (CH 3 ) —, —C (CH 3 ) = N—, —N = N—, and —C≡C—. Each R 21 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 式(I)において、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、及び、置換基を有していてもよい芳香族基、からなる群より選ばれる基を表す。A、A、B及びBが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、3~100である。中でも、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい炭素原子数5~20の環状脂肪族基、または、置換基を有していてもよい炭素原子数2~20の芳香族基が好ましい。 In the formula (I), A 1 , A 2 , B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, and an aromatic which may have a substituent A group selected from the group consisting of The carbon atom number (including the carbon atom number of the substituent) of the group represented by A 1 , A 2 , B 1 and B 2 is generally independently 3 to 100. Among them, each of A 1 , A 2 , B 1 and B 2 independently has a cyclic aliphatic group having 5 to 20 carbon atoms which may have a substituent, or a substituent Preferred are aromatic groups having 2 to 20 carbon atoms.
 A、A、B及びBにおける環状脂肪族基としては、例えば、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、1,4-シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等の、炭素原子数5~20のシクロアルカンジイル基;デカヒドロナフタレン-1,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基等の、炭素原子数5~20のビシクロアルカンジイル基;等が挙げられる。中でも、置換されていてもよい炭素原子数5~20のシクロアルカンジイル基が好ましく、シクロヘキサンジイル基がより好ましく、シクロヘキサン-1,4-ジイル基が特に好ましい。環状脂肪族基は、トランス体であってもよく、シス体であってもよく、シス体とトランス体との混合物であってもよい。中でも、トランス体がより好ましい。 As a cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 , for example, cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, 1,4-cycloheptane-1,4 Cycloalkanediyl group having 5 to 20 carbon atoms, such as -diyl group, cyclooctane-1,5-diyl group; decahydronaphthalene-1,5-diyl group, decahydronaphthalene-2,6-diyl group, etc. And a bicycloalkanediyl group having 5 to 20 carbon atoms; and the like. Among them, a cycloalkanediyl group having 5 to 20 carbon atoms which may be substituted is preferable, a cyclohexanediyl group is more preferable, and a cyclohexane-1,4-diyl group is particularly preferable. The cyclic aliphatic group may be trans, cis or a mixture of cis and trans. Among them, the trans form is more preferable.
 A、A、B及びBにおける環状脂肪族基が有しうる置換基としては、例えば、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数1~5のアルコキシ基、ニトロ基、シアノ基等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, A nitro group, a cyano group, etc. are mentioned. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 A、A、B及びBにおける芳香族基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、4,4’-ビフェニレン基等の、炭素原子数6~20の芳香族炭化水素環基;フラン-2,5-ジイル基、チオフェン-2,5-ジイル基、ピリジン-2,5-ジイル基、ピラジン-2,5-ジイル基等の、炭素原子数2~20の芳香族複素環基;等が挙げられる。中でも、炭素原子数6~20の芳香族炭化水素環基が好ましく、フェニレン基がさらに好ましく、1,4-フェニレン基が特に好ましい。 As an aromatic group in A 1 , A 2 , B 1 and B 2 , for example, 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1, Aromatic hydrocarbon ring group having 6 to 20 carbon atoms, such as 5-naphthylene group, 2,6-naphthylene group, 4,4′-biphenylene group, etc .; furan-2,5-diyl group, thiophene-2,5 -Aromatic heterocyclic groups having 2 to 20 carbon atoms, such as -diyl, pyridine-2, 5-diyl and pyrazine-2, 5-diyl; and the like. Among them, an aromatic hydrocarbon ring group having 6 to 20 carbon atoms is preferable, a phenylene group is more preferable, and a 1,4-phenylene group is particularly preferable.
 A、A、B及びBにおける芳香族基が有しうる置換基としては、例えば、A、A、B及びBにおける環状脂肪族基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 As a substituent which the aromatic group in A 1 , A 2 , B 1 and B 2 may have, for example, the same as the substituents which the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have An example is given. The number of substituents may be one or more. The plurality of substituents may be identical to or different from each other.
 式(I)において、Y~Yは、それぞれ独立して、単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR22-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR22-C(=O)-O-、-O-C(=O)-NR22-、及び、-NR22-C(=O)-NR23-、からなる群より選ばれるいずれかを表す。R22及びR23は、それぞれ独立して、水素原子又は炭素原子数1~6のアルキル基を表す。 In formula (I), Y 1 to Y 4 each independently represent a single bond, -O-, -C (= O)-, -C (= O) -O-, -O-C (= O ) -, - NR 22 -C ( = O) -, - C (= O) -NR 22 -, - O-C (= O) -O -, - NR 22 -C (= O) -O-, It represents any one selected from the group consisting of —O—C (= O) —NR 22 — and —NR 22 —C (= O) —NR 23 —. Each of R 22 and R 23 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 式(I)において、G及びGは、それぞれ独立して、炭素原子数1~20の脂肪族炭化水素基;並びに、炭素原子数3~20の脂肪族炭化水素基に含まれるメチレン基(-CH-)の1以上が-O-又は-C(=O)-に置換された基;からなる群より選ばれる有機基を表す。G及びGの前記有機基に含まれる水素原子は、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、または、ハロゲン原子に置換されていてもよい。ただし、G及びGの両末端のメチレン基(-CH-)が-O-又は-C(=O)-に置換されることはない。 In formula (I), G 1 and G 2 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms; and a methylene group contained in an aliphatic hydrocarbon group having 3 to 20 carbon atoms 1 or more of (—CH 2 —) represents an organic group selected from the group consisting of a group substituted by —O— or —C (= O) —. The hydrogen atom contained in the organic group of G 1 and G 2 may be substituted by an alkyl group of 1 to 5 carbon atoms, an alkoxy group of 1 to 5 carbon atoms, or a halogen atom. However, methylene groups (-CH 2- ) at both ends of G 1 and G 2 are not substituted with -O- or -C (= O)-.
 G及びGにおける炭素原子数1~20の脂肪族炭化水素基の具体例としては、炭素原子数1~20のアルキレン基が挙げられる。 Specific examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 1 to 20 carbon atoms.
 G及びGにおける炭素原子数3~20の脂肪族炭化水素基の具体例としては、炭素原子数3~20のアルキレン基が挙げられる。 Specific examples of the aliphatic hydrocarbon group having 3 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 3 to 20 carbon atoms.
 式(I)において、P及びPは、それぞれ独立して、重合性基を表す。P及びPにおける重合性基としては、例えば、アクリロイルオキシ基、メタクリロイルオキシ基等の、CH=CR31-C(=O)-O-で表される基;ビニル基;ビニルエーテル基;p-スチルベン基;アクリロイル基;メタクリロイル基;カルボキシル基;メチルカルボニル基;水酸基;アミド基;炭素原子数1~4のアルキルアミノ基;アミノ基;エポキシ基;オキセタニル基;アルデヒド基;イソシアネート基;チオイソシアネート基;等が挙げられる。R31は、水素原子、メチル基、又は塩素原子を表す。中でも、CH=CR31-C(=O)-O-で表される基が好ましく、CH=CH-C(=O)-O-(アクリロイルオキシ基)、CH=C(CH)-C(=O)-O-(メタクリロイルオキシ基)がより好ましく、アクリロイルオキシ基が特に好ましい。 In formula (I), P 1 and P 2 each independently represent a polymerizable group. As a polymerizable group in P 1 and P 2 , for example, a group represented by CH 2 CRCR 31 —C (= O) —O— such as an acryloyloxy group, a methacryloyloxy group, etc .; a vinyl group; a vinyl ether group; Acryloyl: methacryloyl group; carboxyl group: methyl carbonyl group: hydroxyl group: amide group: alkylamino group having 1 to 4 carbon atoms; amino group: epoxy group: oxetanyl group: aldehyde group: isocyanate group: thio Isocyanate group; and the like. R 31 represents a hydrogen atom, a methyl group or a chlorine atom. Among them, a group represented by CH 2 CRCR 31 —C (= O) —O— is preferable, and CH 2 CHCH—C (= O) —O— (acryloyloxy group), CH 2 CC (CH 3) More preferred is —C (= O) —O— (methacryloyloxy group), and the acryloyloxy group is particularly preferred.
 式(I)において、p及びqは、それぞれ独立して、0又は1を表す。 In formula (I), p and q each independently represent 0 or 1.
 式(I)で表される逆分散液晶性化合物は、例えば、国際公開第2012/147904号に記載される、ヒドラジン化合物とカルボニル化合物との反応により製造しうる。 The reverse dispersed liquid crystalline compound represented by the formula (I) can be produced, for example, by the reaction of a hydrazine compound and a carbonyl compound described in WO 2012/147904.
 第一液晶組成物は、必要に応じて、液晶性化合物に組み合わせて更に任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組合わせて用いてもよい。 The first liquid crystal composition may further contain an optional component in combination with the liquid crystal compound, if necessary. As the optional components, one type may be used alone, or two or more types may be used in combination in an optional ratio.
 通常、第一液晶組成物は重合によって硬化できるので、第一液晶組成物は、任意の成分として重合開始剤を含む。重合開始剤の種類は、第一液晶組成物に含まれる重合性の化合物の種類に応じて選択しうる。例えば、重合性の化合物がラジカル重合性であれば、ラジカル重合開始剤を使用しうる。また、重合性の化合物がアニオン重合性であれば、アニオン重合開始剤を使用しうる。さらに、重合性の化合物がカチオン重合性であれば、カチオン重合開始剤を使用しうる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Usually, since the first liquid crystal composition can be cured by polymerization, the first liquid crystal composition contains a polymerization initiator as an optional component. The type of polymerization initiator may be selected according to the type of polymerizable compound contained in the first liquid crystal composition. For example, if the polymerizable compound is radically polymerizable, a radical polymerization initiator may be used. In addition, if the polymerizable compound is anionically polymerizable, an anionic polymerization initiator may be used. Furthermore, if the polymerizable compound is cationically polymerizable, a cationic polymerization initiator may be used. As the polymerization initiator, one type may be used alone, or two or more types may be used in combination in an arbitrary ratio.
 重合開始剤の量は、液晶性化合物100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下である。重合開始剤の量が前記範囲に収まることにより、重合を効率的に進行させることができる。 The amount of the polymerization initiator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, preferably 30 parts by weight or less, more preferably 10 parts by weight, based on 100 parts by weight of the liquid crystal compound. Part or less. When the amount of the polymerization initiator falls within the above range, the polymerization can be efficiently advanced.
 第一液晶組成物は、任意の成分として、界面活性剤を含んでいてもよい。特に、所望の液晶硬化層を安定して得る観点から、界面活性剤としては、分子中にフッ素原子を含む界面活性剤が好ましい。 The first liquid crystal composition may contain a surfactant as an optional component. In particular, from the viewpoint of stably obtaining a desired liquid crystal cured layer, as the surfactant, a surfactant containing a fluorine atom in the molecule is preferable.
 界面活性剤はノニオン系界面活性剤であることが好ましい。界面活性剤がイオン性基を含まないノニオン系界面活性剤である場合に、液晶硬化層の面状態及び配向性を、特に良好にすることができる。 The surfactant is preferably a nonionic surfactant. When the surfactant is a nonionic surfactant which does not contain an ionic group, the surface state and the orientation of the liquid crystal cured layer can be made particularly good.
 界面活性剤は、重合性を有さなくてもよく、重合性を有していてもよい。重合性を有する界面活性剤は、第一液晶組成物の層を硬化させる工程で重合できるので、通常は、液晶硬化層においては重合体の分子の一部に含まれる。 The surfactant may not have the polymerizability, and may have the polymerizability. The polymerizable surfactant can be polymerized in the step of curing the layer of the first liquid crystal composition, and therefore, in the liquid crystal cured layer, it is usually contained in a part of the molecules of the polymer.
 界面活性剤としては、例えば、AGCセイミケミカル社製のサーフロンシリーズ(S420など)、ネオス社製のフタージェントシリーズ(251、FTX-212M、FTX-215M、FTX-209など)、DIC社製のメガファックシリーズ(F-444など)等が挙げられる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the surfactant, for example, Surfron series (S420 etc.) manufactured by AGC Seimi Chemical Co., Ltd., Ftergent series manufactured by Neos (251, FTX-212M, FTX-215M, FTX-209 etc.), manufactured by DIC Megafuck series (F-444 etc.) etc. may be mentioned. Moreover, surfactant may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 界面活性剤の量は、液晶性化合物100重量部に対して、好ましくは0.03重量部以上、より好ましくは0.05重量部以上であり、好ましくは0.50重量部以下、より好ましくは0.30重量部以下である。界面活性剤の量が前記の範囲にあることにより、液晶硬化層における液晶性化合物の分子の実質最大傾斜角を効果的に大きくできる。 The amount of the surfactant is preferably 0.03 parts by weight or more, more preferably 0.05 parts by weight or more, preferably 0.50 parts by weight or less, more preferably 100 parts by weight of the liquid crystal compound. It is 0.30 parts by weight or less. When the amount of surfactant is in the above range, the substantial maximum inclination angle of the molecules of the liquid crystal compound in the liquid crystal cured layer can be effectively increased.
 第一液晶組成物は、任意の成分として、溶媒を含んでいてもよい。溶媒としては、液晶性化合物を溶解できるものが好ましい。このような溶媒としては、通常、有機溶媒を用いる。有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン溶媒;酢酸ブチル、酢酸アミル等の酢酸エステル溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル溶媒;及びトルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;が挙げられる。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The first liquid crystal composition may contain a solvent as an optional component. As the solvent, those capable of dissolving the liquid crystal compound are preferable. An organic solvent is usually used as such a solvent. Examples of the organic solvent include ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetic acid ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as chloroform, dichloromethane and dichloroethane; And ether solvents such as 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane and 1,2-dimethoxyethane; and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene. Moreover, a solvent may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
 溶媒の沸点は、取り扱い性に優れる観点から、好ましくは60℃~250℃、より好ましくは60℃~150℃である。 The boiling point of the solvent is preferably 60 ° C. to 250 ° C., more preferably 60 ° C. to 150 ° C. from the viewpoint of excellent handleability.
 溶媒の量は、液晶性化合物100重量部に対して、好ましくは200重量部以上、より好ましくは250重量部以上、特に好ましくは300重量部以上であり、好ましくは650重量部以下、より好ましくは550重量部以下、特に好ましくは450重量部以下である。溶媒の量を、前記範囲の下限値以上にすることにより異物発生の抑制ができ、前記範囲の上限値以下にすることにより乾燥負荷の低減ができる。 The amount of the solvent is preferably 200 parts by weight or more, more preferably 250 parts by weight or more, particularly preferably 300 parts by weight or more, preferably 650 parts by weight or less, more preferably 100 parts by weight of the liquid crystalline compound. It is at most 550 parts by weight, particularly preferably at most 450 parts by weight. By setting the amount of the solvent to the lower limit value or more of the range, the generation of foreign matter can be suppressed, and by setting the amount to the upper limit value or less of the range, the drying load can be reduced.
 また、第一液晶組成物は、第一硬化層に含まれる液晶性化合物の分子の傾斜角をより大きくするために、任意の成分として、液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる傾斜作用成分を含んでいてもよい。傾斜作用成分の種類及び量としては、例えば、特開2018-162379号公報(又は特願2017-060154号の明細書)、国際公開第2018/173778号(又は特願2017-060122号の明細書)、特開2018-163218号公報(又は特願2017-059327号の明細書)に記載されたものを採用しうる。ただし、液晶性化合物の分子の実質最大傾斜角を大きくすることは、第一硬化層を製造する過程において操作又は条件を調整することによっても可能であるので、傾斜作用成分は必ずしも用いなくても構わない。 In addition, the first liquid crystal composition has an effect of increasing the substantial maximum tilt angle of the molecules of the liquid crystal compound as an optional component in order to increase the tilt angle of the molecules of the liquid crystal compound contained in the first cured layer. It may contain a gradient action component capable of exerting As a kind and quantity of a gradient action component, the specification of Unexamined-Japanese-Patent No. 2018-262379 (or specification of Japanese Patent Application No. 2017-060154), the specification of International Publication No. 2018/173778 (or Japanese Patent Application No. 2017-060122) is mentioned, for example. And JP-A No. 2018-163218 (or the specification of Japanese Patent Application No. 2017-059327). However, since it is possible to increase the substantial maximum inclination angle of the molecules of the liquid crystal compound also by adjusting the operation or conditions in the process of producing the first cured layer, the inclination action component is not necessarily used. I do not care.
 第一液晶組成物が含みうる任意のその他の成分としては、例えば、金属;金属錯体;酸化チタン等の金属酸化物;染料、顔料等の着色剤;蛍光材料、燐光材料等の発光材料;レベリング剤;チキソ剤;ゲル化剤;多糖類;紫外線吸収剤;赤外線吸収剤;抗酸化剤;イオン交換樹脂;等が挙げられる。これらの成分の量は、液晶性化合物の合計100重量部に対して、各々0.1重量部~20重量部としうる。 Examples of optional other components that the first liquid crystal composition may contain include metals; metal complexes; metal oxides such as titanium oxide; colorants such as dyes and pigments; light emitting materials such as fluorescent materials and phosphorescent materials; Agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, and the like. The amount of these components may be 0.1 parts by weight to 20 parts by weight with respect to a total of 100 parts by weight of the liquid crystal compound.
 工程(I)では、通常、適切な支持面に、第一液晶組成物の層を形成する。支持面としては、第一液晶組成物の層を支持できる任意の面を用いうる。この支持面としては、液晶硬化層の面状態を良好にする観点から、凹部及び凸部の無い平坦面を用いることが好ましい。また、液晶硬化層の生産性を高める観点から、前記の支持面としては、長尺の基材の表面を用いることが好ましい。ここで「長尺」とは、幅に対して、5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。 In step (I), a layer of the first liquid crystal composition is usually formed on a suitable support surface. As the support surface, any surface capable of supporting the layer of the first liquid crystal composition can be used. From the viewpoint of improving the surface condition of the cured liquid crystal layer, it is preferable to use a flat surface free of concave and convex portions as the support surface. In addition, from the viewpoint of enhancing the productivity of the liquid crystal cured layer, it is preferable to use the surface of a long base as the support surface. Here, "long" refers to a shape having a length of 5 or more times the width, preferably 10 or more times the length, and specifically wound in a roll. It refers to the shape of a film having a length that can be stored or transported.
 基材としては、通常、樹脂フィルム又はガラス板を用いる。特に、高い温度で配向処理を行う場合、その温度に耐えうる基材を選択するのが好ましい。樹脂としては、通常、熱可塑性樹脂を用いる。中でも、配向規制力の高さ、機械的強度の高さ、及びコストの低さといった観点から、樹脂としては、正の固有複屈折値を有する樹脂が好ましい。更には、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、ノルボルネン系樹脂等の、脂環式構造含有重合体を含む樹脂を用いることが好ましい。基材に含まれる樹脂の好適な例を商品名で挙げると、ノルボルネン系樹脂として、日本ゼオン社製「ゼオノア」を挙げうる。 As a base material, usually, a resin film or a glass plate is used. In particular, when the orientation treatment is performed at a high temperature, it is preferable to select a substrate that can withstand the temperature. As the resin, usually, a thermoplastic resin is used. Among them, a resin having a positive intrinsic birefringence value is preferable as the resin from the viewpoint of the height of alignment control force, the height of mechanical strength, and the cost reduction. Furthermore, it is preferable to use a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and lightness. When the suitable example of resin contained in a base material is mentioned by a brand name, "Zeonor" by Nippon Zeon Co., Ltd. can be mentioned as norbornene-type resin.
 支持面を形成する材料のガラス転移温度は、好ましくは90℃以上、より好ましくは100℃以上、特に好ましくは120℃以上である。工程(II)及び工程(V)は、第一液晶組成物の層の温度及び第二液晶組成物の層の温度を配向に適した温度に調整するために、高温環境において行われることがある。支持面を形成する材料のガラス転移温度が前記のように高いことで、高温環境において支持面が熱によって変形することを抑制できる。支持面を形成する材料のガラス転移温度の上限は、特段の制限は無く、例えば、250℃以下でありうる。 The glass transition temperature of the material forming the support surface is preferably 90 ° C. or more, more preferably 100 ° C. or more, and particularly preferably 120 ° C. or more. Steps (II) and (V) may be performed in a high temperature environment to adjust the temperature of the layer of the first liquid crystal composition and the temperature of the layer of the second liquid crystal composition to a temperature suitable for alignment. . The high glass transition temperature of the material forming the support surface as described above can suppress deformation of the support surface due to heat in a high temperature environment. The upper limit of the glass transition temperature of the material forming the support surface is not particularly limited, and may be, for example, 250 ° C. or less.
 支持面としての基材の表面には、第一液晶組成物の層における液晶性化合物の配向を促進するため、配向規制力を付与するための処理が施されていることが好ましい。配向規制力とは、液晶組成物に含まれる液晶性化合物を配向させることができる、支持面の性質をいう。支持面に配向規制力を付与するため処理としては、例えば、光配向処理、ラビング処理、イオンビーム配向処理、延伸処理などが挙げられる。 In order to promote the alignment of the liquid crystal compound in the layer of the first liquid crystal composition, the surface of the base material as the support surface is preferably subjected to a treatment for imparting an alignment regulating force. The alignment control force refers to the property of the support surface which can align the liquid crystal compound contained in the liquid crystal composition. Examples of the treatment for applying the alignment control force to the support surface include a photoalignment treatment, a rubbing treatment, an ion beam alignment treatment, and an extension treatment.
 第一液晶組成物の層を形成する工程(I)において、第一液晶組成物は、通常、流体状で用意される。そのため、通常は、支持面に第一液晶組成物を塗工して、第一液晶組成物の層を形成する。第一液晶組成物を塗工する方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。 In the step (I) of forming the layer of the first liquid crystal composition, the first liquid crystal composition is usually prepared in a fluid state. Therefore, the first liquid crystal composition is usually coated on the support surface to form a layer of the first liquid crystal composition. As a method of applying the first liquid crystal composition, for example, curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, printing coating method , Gravure coating method, die coating method, gap coating method, and dipping method.
[3.工程(II):第一液晶組成物の層の配向処理]
 工程(I)で第一液晶組成物の層を形成した後で、その第一液晶組成物の層に含まれる液晶性化合物を配向させる工程(II)を行う。配向を行う際には、通常、第一液晶組成物の層を、所定の温度条件に所定の時間だけ保持する。これにより、第一液晶組成物の層において、液晶性化合物を配向させることができる。
[3. Step (II): Alignment Treatment of Layer of First Liquid Crystal Composition]
After the layer of the first liquid crystal composition is formed in the step (I), the step (II) of orienting the liquid crystal compound contained in the layer of the first liquid crystal composition is performed. In orientation, usually, the layer of the first liquid crystal composition is kept at a predetermined temperature condition for a predetermined time. Thereby, in the layer of the first liquid crystal composition, the liquid crystal compound can be aligned.
 具体的には、面内方向においては、通常、液晶性化合物を、支持面の配向規制力に応じた方向に配向させる。
 他方、厚み方向においては、液晶性化合物は、少なくとも一部が層平面に対して(即ち面内方向に対して)傾斜するように配向させることが好ましい。これにより、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を大きくすることができる。そして、それにより、工程(VI)における液晶性化合物の分子の実質最大傾斜角の調整を、効果的に行うことができる。
Specifically, in the in-plane direction, the liquid crystal compound is usually oriented in a direction according to the alignment regulating force of the support surface.
On the other hand, in the thickness direction, it is preferable to align the liquid crystal compound so that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction). Thereby, the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the first cured layer can be increased. And thereby, the adjustment of the substantial maximum inclination angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed.
 第一液晶組成物の層に含まれる液晶性化合物を、その少なくとも一部が層平面に対して(即ち面内方向に対して)傾斜するように配向させるための方法は、任意である。中でも、液晶性化合物の分子の実質最大傾斜角が大きい第一硬化層が得られるように、液晶性化合物を配向させる方法を選択することが好ましい。 A method for orienting the liquid crystal compound contained in the layer of the first liquid crystal composition so that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction) is optional. Among them, it is preferable to select a method of aligning the liquid crystal compound so as to obtain a first cured layer in which the substantial maximum inclination angle of the molecules of the liquid crystal compound is large.
 例えば、工程(II)は、第一液晶組成物の層の温度条件が所定の要件を満たすように行うことが好ましい。具体的には、工程(II)における第一液晶組成物の層の温度条件が、試験組成物の残留分粘度が通常800cP以下となる温度条件と同一になるように、行うことが好ましい。前記の試験組成物とは、第一液晶組成物から重合開始剤を除いた組成を有する組成物である。また、試験組成物の残留分粘度とは、工程(II)の第一液晶組成物の層と同一温度条件における、試験組成物の残留成分の粘度である。また、試験組成物の残留成分とは、試験組成物に含まれる成分のうち、工程(II)の第一液晶組成物の層と同一温度条件において気化せずに残留した成分である。このような要件を満たすように工程(II)を行うことで、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を大きくすることが可能である。 For example, the step (II) is preferably performed such that the temperature condition of the layer of the first liquid crystal composition satisfies a predetermined requirement. Specifically, the temperature condition of the layer of the first liquid crystal composition in step (II) is preferably the same as the temperature condition at which the residual viscosity of the test composition is usually 800 cP or less. The above-mentioned test composition is a composition having a composition obtained by removing the polymerization initiator from the first liquid crystal composition. The residual viscosity of the test composition is the viscosity of the residual component of the test composition under the same temperature conditions as the layer of the first liquid crystal composition in step (II). Further, the residual component of the test composition is a component of the components contained in the test composition which remains without being vaporized under the same temperature conditions as the layer of the first liquid crystal composition of step (II). By performing the step (II) so as to satisfy such requirements, it is possible to increase the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer.
 更に詳しく説明する。液晶性化合物を配向させる工程(II)を、前記の要件を満たすように行う場合、当該工程(II)は、試験組成物の残留分粘度が所定範囲に収まる温度条件と同一温度条件に、第一液晶組成物の層を調整して、行う。前記残留分粘度の具体的範囲は、通常800cP(センチポアズ)以下、好ましくは600cP以下、より好ましくは400cP以下、さらに好ましくは200cP以下である。このように試験組成物の残留分粘度が低くなる温度条件と同一温度条件で第一液晶組成物の層中の液晶性化合物を配向させることにより、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を大きくすることができる。前記残留分粘度の下限は、所望の厚みの第一硬化層を得る観点から、好ましくは5cP以上、より好ましくは10cP以上である。 It will be described in more detail. When the step (II) of orienting the liquid crystal compound is performed so as to satisfy the above requirements, the step (II) is performed under the same temperature condition as the temperature condition in which the residual viscosity of the test composition falls within the predetermined range. It is carried out by adjusting the layer of one liquid crystal composition. The specific range of the residual viscosity is usually 800 cP (centipoise) or less, preferably 600 cP or less, more preferably 400 cP or less, still more preferably 200 cP or less. Thus, the molecules of the liquid crystal compound contained in the first cured layer are oriented by orienting the liquid crystal compound in the layer of the first liquid crystal composition under the same temperature conditions as the temperature conditions at which the residual viscosity of the test composition decreases. The real maximum inclination angle of can be increased. The lower limit of the residual viscosity is preferably 5 cP or more, more preferably 10 cP or more, from the viewpoint of obtaining a first cured layer having a desired thickness.
 工程(II)の第一液晶組成物の層と同一温度条件における試験組成物の残留分粘度は、下記の方法によって測定できる。
 第一液晶組成物から重合開始剤を除いた試験組成物を用意する。この試験組成物をロータリーエバポレーターで減圧濃縮して溶媒を除去し、残留成分を得る。この残留成分について、予め、測定温度を変化させながら粘度を測定し、測定温度とその測定温度での粘度との情報を得る。この情報を、以下、適宜「温度-粘度情報」という。この「温度-粘度情報」から、工程(II)での第一液晶組成物の層の温度における粘度を、残留分粘度として読み取る。
The residual viscosity of the test composition under the same temperature conditions as the layer of the first liquid crystal composition of step (II) can be measured by the following method.
A test composition is prepared by removing the polymerization initiator from the first liquid crystal composition. The test composition is concentrated under reduced pressure on a rotary evaporator to remove the solvent and obtain the remaining components. The viscosity of this residual component is measured in advance while changing the measurement temperature, and information on the measurement temperature and the viscosity at the measurement temperature is obtained. Hereinafter, this information is appropriately referred to as "temperature-viscosity information". From this “temperature-viscosity information”, the viscosity at the temperature of the layer of the first liquid crystal composition in step (II) is read as the residual viscosity.
 工程(II)の第一液晶組成物の層と同一温度条件において試験組成物の残留分粘度を上述した範囲に収める方法としては、例えば、下記(A)及び(B)の方法が挙げられる。
 (A)液晶性化合物を配向させる工程(II)における第一液晶組成物の層の温度を、適切に調整する。この方法では、通常、第一液晶組成物の層の温度を十分に高温にすることで、この温度と同一温度条件での試験組成物の残留分粘度を低くして、上述した範囲となるように調整する。
 (B)第一液晶組成物の組成を、適切に調整する。この方法では、通常、第一液晶組成物に含まれる成分として、液晶性化合物に適切な種類及び量の添加剤を組み合わせることで、当該添加剤を含む試験組成物の残留分粘度を低くして、上述した範囲となるように調整する。
Examples of the method for keeping the residual viscosity of the test composition in the above-mentioned range under the same temperature conditions as the layer of the first liquid crystal composition of the step (II) include the following methods (A) and (B).
(A) The temperature of the layer of the first liquid crystal composition in the step (II) of orienting the liquid crystal compound is appropriately adjusted. In this method, usually, the temperature of the layer of the first liquid crystal composition is sufficiently raised to lower the residual viscosity of the test composition under the same temperature condition as this temperature, and the above-mentioned range is achieved. Adjust to
(B) The composition of the first liquid crystal composition is appropriately adjusted. In this method, as a component contained in the first liquid crystal composition, the residual viscosity of the test composition containing the additive is reduced by combining the liquid crystal compound with an additive of an appropriate type and amount. , Adjust to be in the range described above.
 工程(II)における第一液晶組成物の層の温度条件の調整については、国際公開第2018/173773号(又は特願2017-060159号の明細書)の記載を参照してよい。 For adjustment of the temperature condition of the layer of the first liquid crystal composition in the step (II), the description of WO 2018/173773 (or the specification of Japanese Patent Application No. 2017-060159) may be referred to.
 また、例えば、傾斜作用成分を含む第一液晶組成物を用いる方法、層平面に対して(即ち面内方向に対して)傾斜する性質を有する液晶性化合物を用いる方法、によっても、液晶性化合物の分子の実質最大傾斜角が大きい第一硬化層を得ることができる。 Also, for example, a liquid crystal compound can be obtained by a method using a first liquid crystal composition containing a tilt action component, or a method using a liquid crystal compound having a property of being inclined with respect to a layer plane (that is, with respect to the in-plane direction) It is possible to obtain a first cured layer having a substantial maximum inclination angle of the molecule of.
 配向処理時の具体的な温度は、液晶性化合物の液晶相-固相転移温度以上の範囲で適切に設定され、中でも、基材に含まれる樹脂のガラス転移温度未満の温度であることが好ましい。これにより、配向処理による基材の歪みの発生を抑制できる。 The specific temperature at the time of alignment treatment is appropriately set in the range above the liquid crystal phase-solid phase transition temperature of the liquid crystal compound, and is preferably a temperature below the glass transition temperature of the resin contained in the substrate. . Thereby, generation | occurrence | production of distortion of the base material by orientation processing can be suppressed.
 液晶性化合物を配向させる工程(II)は、通常、オーブン内において行われる。この際、オーブンの設定温度と、そのオーブン内に置かれた第一液晶組成物の層の温度とは、異なる場合がありえる。この場合、予め、多数のオーブン設定温度において、その設定温度のオーブン内に置かれた第一液晶組成物の層の温度を測定し、記録しておくことが好ましい。この記録されたオーブンの設定温度とその設定温度のオーブン内に置かれた第一液晶組成物の層の温度との情報を、以下、適宜「設定温度-層温度情報」という。この「設定温度-層温度情報」を用いれば、オーブン設定温度から、オーブン内に置かれた第一液晶組成物の層の温度を容易に知ることができる。 The step (II) of orienting the liquid crystal compound is usually performed in an oven. At this time, the set temperature of the oven and the temperature of the layer of the first liquid crystal composition placed in the oven may be different. In this case, it is preferable to measure and record in advance the temperature of the layer of the first liquid crystal composition placed in the oven at a number of oven setting temperatures. The information on the recorded set temperature of the oven and the temperature of the layer of the first liquid crystal composition placed in the set temperature is hereinafter referred to as "set temperature-layer temperature information" as appropriate. By using this "set temperature-layer temperature information", the temperature of the layer of the first liquid crystal composition placed in the oven can be easily known from the oven set temperature.
 液晶性化合物を配向させる工程(II)において、第一液晶組成物の層の温度を前記の温度に保持する時間は、所望の第一硬化層が得られる範囲で任意に設定でき、例えば30秒間~5分間でありうる。 In the step (II) of orienting the liquid crystal compound, the time for which the temperature of the layer of the first liquid crystal composition is kept at the above temperature can be arbitrarily set within a range where the desired first cured layer can be obtained. It may be ~ 5 minutes.
[4.工程(III):第一液晶組成物の層の硬化]
 工程(II)で第一液晶組成物の層に含まれる液晶性化合物を配向させた後で、第一液晶組成物の層を硬化させる工程(III)を行う。
[4. Step (III): Curing of Layer of First Liquid Crystal Composition]
After the liquid crystal compound contained in the layer of the first liquid crystal composition is oriented in the step (II), the step (III) of curing the layer of the first liquid crystal composition is performed.
 工程(III)では、通常、第一液晶組成物に含まれる重合性の化合物の重合により、第一液晶組成物の層を硬化させる。よって、例えば、液晶性化合物が重合性を有する場合、液晶性化合物は、通常、その分子の配向を維持したままで重合する。前記の重合により、重合前の第一液晶組成物に含まれる液晶性化合物の配向状態は固定される。 In the step (III), usually, the layer of the first liquid crystal composition is cured by polymerization of the polymerizable compound contained in the first liquid crystal composition. Therefore, for example, when the liquid crystal compound has a polymerizability, the liquid crystal compound is usually polymerized while maintaining the alignment of its molecules. The alignment state of the liquid crystal compound contained in the first liquid crystal composition before polymerization is fixed by the polymerization described above.
 重合方法としては、第一液晶組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱が不要であり、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。 As the polymerization method, a method may be selected that is adapted to the nature of the components contained in the first liquid crystal composition. Examples of the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because heating is unnecessary and the polymerization reaction can be allowed to proceed at room temperature. Here, the active energy ray to be irradiated may include light such as visible light, ultraviolet light and infrared light, and any energy ray such as electron beam.
 なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、基材のガラス転移温度以下とすることが好ましく、好ましくは150℃以下、より好ましくは100℃以下、特に好ましくは80℃以下である。紫外線照射時の温度の下限は、15℃以上としうる。紫外線の照射強度は、好ましくは0.1mW/cm以上、より好ましくは0.5mW/cm以上であり、好ましくは10000mW/cm以下、より好ましくは5000mW/cm以下である。紫外線の照射量は、好ましくは0.1mJ/cm以上、より好ましくは0.5mJ/cm以上であり、好ましくは10000mJ/cm以下、より好ましくは5000mJ/cm以下である。 Among them, a method of irradiating light such as ultraviolet light is preferable because the operation is simple. The temperature at the time of ultraviolet irradiation is preferably below the glass transition temperature of the substrate, preferably 150 ° C. or less, more preferably 100 ° C. or less, and particularly preferably 80 ° C. or less. The lower limit of the temperature during ultraviolet irradiation may be 15 ° C. or higher. The irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 10000 mW / cm 2 or less, more preferably 5000 mW / cm 2 or less. The dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 10000 mJ / cm 2 or less, more preferably 5000 mJ / cm 2 or less.
 前記の工程(III)により、第一液晶組成物の硬化物で形成された第一硬化層が得られる。この第一硬化層は、上述した第一液晶組成物を硬化した硬化物の層である。前記の第一液晶組成物の硬化は、上述のように、通常、当該第一液晶組成物が含む重合性の化合物の重合によって達成される。よって、第一硬化層は、通常、第一液晶組成物が含んでいた成分の一部又は全部の重合体を含む。したがって、液晶性化合物が重合性を有する場合、その液晶性化合物が重合するので、第一硬化層は、重合前の配向状態を維持したまま重合した液晶性化合物の重合体を含む層でありうる。この重合した液晶性化合物は、用語「第一硬化層に含まれる液晶性化合物」に含まれる。 The first cured layer formed of the cured product of the first liquid crystal composition is obtained by the above-mentioned step (III). The first cured layer is a layer of a cured product obtained by curing the first liquid crystal composition described above. The curing of the first liquid crystal composition is usually achieved by the polymerization of the polymerizable compound contained in the first liquid crystal composition, as described above. Thus, the first cured layer usually contains a polymer of part or all of the components contained in the first liquid crystal composition. Therefore, when the liquid crystal compound has a polymerizability, the liquid crystal compound is polymerized, so the first cured layer may be a layer containing a polymer of the liquid crystal compound polymerized while maintaining the alignment state before polymerization. . The polymerized liquid crystal compound is included in the term "liquid crystal compound contained in the first cured layer".
 第一液晶組成物の硬化物においては、硬化前の流動性が失われるので、通常、第一硬化層では、液晶性化合物の配向状態は、硬化前の配向状態のまま、固定されている。そして、第一硬化層に含まれる液晶性化合物の少なくとも一部の分子は、当該第一硬化層の層平面に対して(即ち面内方向に対して)傾斜していることが好ましい。これにより、工程(VI)における液晶性化合物の分子の傾斜角の調整を、効果的に行うことができる。 In the cured product of the first liquid crystal composition, the flowability before curing is lost. Therefore, in the first cured layer, the alignment state of the liquid crystal compound is usually fixed in the alignment state before curing. And it is preferable that at least a part of molecules of the liquid crystal compound contained in the first cured layer be inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction). Thereby, adjustment of the tilt angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed.
 第一硬化層において、液晶性化合物の分子のうち、一部が第一硬化層の層平面に対して(即ち面内方向に対して)傾斜していてもよく、全部が第一硬化層の層平面に対して(即ち面内方向に対して)傾斜していてもよい。通常、第一硬化層において、液晶性化合物の分子の傾斜角は、厚み方向において、支持面に近いほど小さく、支持面から遠いほど大きい。よって、第一硬化層の支持面側の面の近傍部分では、液晶性化合物の分子が層平面に対して(即ち面内方向に対して)平行でありえる。また、第一硬化層の支持面とは反対側の面の近傍部分では、液晶性化合物の分子が層平面に対して(即ち面内方向に対して)垂直でありえる。しかし、このように第一硬化層の表面近傍部分で液晶性化合物の分子が層平面に対して(面内方向に対して)平行又は垂直である場合であっても、第一硬化層の表面近傍部分を除いた部分では、液晶性化合物の分子は層平面に対して(即ち面内方向に対して)傾斜していることが好ましい。 In the first cured layer, some of the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction). It may be inclined with respect to the layer plane (ie, with respect to the in-plane direction). Usually, in the first cured layer, the inclination angle of the molecules of the liquid crystal compound is smaller as it is closer to the support surface in the thickness direction, and larger as it is farther from the support surface. Therefore, in the vicinity of the surface on the support surface side of the first cured layer, the molecules of the liquid crystal compound may be parallel to the layer plane (that is, in the in-plane direction). In addition, in the vicinity of the surface opposite to the support surface of the first cured layer, the molecules of the liquid crystal compound may be perpendicular to the layer plane (that is, in the in-plane direction). However, even if the molecules of the liquid crystal compound are parallel or perpendicular to the layer plane (in the in-plane direction) in the vicinity of the surface of the first hardened layer, the surface of the first hardened layer It is preferable that the molecules of the liquid crystal compound be inclined with respect to the plane of the layer (i.e., with respect to the in-plane direction) in the portions other than the vicinity.
 第一硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該第一硬化層の層平面に対して(即ち面内方向に対して)傾斜していることは、十分な分解能を有する偏光顕微鏡で第一硬化層の断面を観察することによって、確認できる。この観察は、液晶性化合物の分子の傾斜を視認し易くするために、必要に応じて、観察サンプルと偏光顕微鏡の対物レンズとの間に検板として波長板を挿入して実施してもよい。 That at least a part of the molecules of the liquid crystal compound contained in the first cured layer is inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction) is polarized light with sufficient resolution. It can confirm by observing the cross section of a 1st hardened layer with a microscope. This observation may be carried out by inserting a wave plate as an inspection plate between the observation sample and the objective lens of the polarization microscope, if necessary, in order to make the inclination of the molecules of the liquid crystal compound more visible. .
 または、第一硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該第一硬化層の層平面に対して(即ち面内方向に対して)傾斜していることは、下記のようにして確認できる。第一硬化層の面内の進相軸方向に対して垂直な測定方向で、入射角θにおける第一硬化層のレターデーションR(θ)を測定する。そして、入射角θでの第一硬化層のレターデーションR(θ)を入射角0°での第一硬化層のレターデーションR(0°)で割ったレターデーション比R(θ)/R(0°)を求める。こうして求めたレターデーション比R(θ)/R(0°)を縦軸、入射角θを横軸としたグラフを描いた場合に、得られたグラフがθ=0°に対して非対称であれば、第一硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該第一硬化層の層平面に対して(即ち面内方向に対して)傾斜していることが確認できる。 Alternatively, at least some of the molecules of the liquid crystal compound contained in the first cured layer are inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction) as follows: Can check. The retardation R (θ) of the first cured layer at an incident angle θ is measured in a measurement direction perpendicular to the in-plane fast axis direction of the first cured layer. And retardation ratio R ((theta)) / R ((theta) which divided the retardation R ((theta)) of the 1st cured layer in incident angle (theta) by the retardation R (0 degree) of the 1st cured layer in 0 angle of incidence Find 0 °). If a graph is drawn with the thus obtained retardation ratio R (θ) / R (0 °) as the vertical axis and the incident angle θ as the horizontal axis, the obtained graph may be asymmetric with respect to θ = 0 °. For example, it can be confirmed that at least a part of molecules of the liquid crystal compound contained in the first cured layer is inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction).
 以下、例を挙げてより具体的に説明する。図2は、ある例に係る第一硬化層のレターデーション比R(θ)/R(0°)を、入射角θに対してプロットしたグラフである。第一硬化層に含まれる液晶性化合物の全ての分子の傾斜角が0°又は90°であると、レターデーション比R(θ)/R(0°)は、図2で破線で示す例のように、θ=0°の直線(図2では、θ=0°を通る縦軸)に対して線対称となる。これに対して、第一硬化層に含まれる液晶性化合物の少なくとも一部の分子が第一硬化層の層平面に対して(面内方向に対して)傾斜していると、レターデーション比R(θ)/R(0°)は、図2に実線で示す例のように、通常はθ=0°の直線に対して非対称となる。よって、レターデーション比R(θ)/R(0°)がθ=0°に対して非対称である場合には、第一硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該第一硬化層の層平面に対して(即ち面内方向に対して)傾斜している、と判定できる。 Hereinafter, the present invention will be described in more detail by way of examples. FIG. 2 is a graph in which the retardation ratio R (θ) / R (0 °) of the first cured layer according to an example is plotted against the incident angle θ. The retardation ratio R (θ) / R (0 °) is an example shown by a broken line in FIG. 2 when the tilt angle of all the molecules of the liquid crystal compound contained in the first cured layer is 0 ° or 90 °. As described above, line symmetry is made with respect to a line of θ = 0 ° (in FIG. 2, a vertical axis passing θ = 0 °). On the other hand, when at least a part of the molecules of the liquid crystal compound contained in the first cured layer is inclined with respect to the layer plane of the first cured layer (with respect to the in-plane direction), the retardation ratio R is As in the example shown by the solid line in FIG. 2, (θ) / R (0 °) is usually asymmetric with respect to the straight line of θ = 0 °. Therefore, when the retardation ratio R (θ) / R (0 °) is asymmetrical with respect to θ = 0 °, at least a part of the molecules of the liquid crystal compound contained in the first cured layer is the first one. It can be determined that it is inclined with respect to the layer plane of the hardened layer (that is, with respect to the in-plane direction).
 第一硬化層が、当該第一硬化層の層平面に対して(即ち面内方向に対して)傾斜した液晶性化合物の分子を含む場合、その第一硬化層の実質最大傾斜角は、第一硬化層の支持面側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値を表す。この実質最大傾斜角は、第一硬化層に含まれる液晶性化合物の分子の傾斜角の大きさを示す指標である。通常、実質最大傾斜角が大きい第一硬化層ほど、その第一硬化層に含まれる液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。 When the first cured layer contains molecules of the liquid crystal compound inclined with respect to the layer plane of the first cured layer (that is, with respect to the in-plane direction), the substantial maximum tilt angle of the first cured layer is The tilt angle of the molecule on the surface on the support surface side of one cured layer is 0 °, and the tilt angle of the molecule is assumed to change at a constant ratio in the thickness direction, and the molecules of the liquid crystal compound Represents the maximum value of the tilt angle. The substantial maximum inclination angle is an index indicating the size of the inclination angle of the molecules of the liquid crystal compound contained in the first cured layer. In general, as the first cured layer having a substantially larger maximum tilt angle, the tilt angle as a whole of the molecules of the liquid crystal compound contained in the first cured layer tends to be larger.
 通常、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角が大きいほど、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を大きくできる。よって、工程(VI)において調整可能な実質最大傾斜角の範囲の最大値を大きくできるので、最終的に得られる液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の調整可能な範囲を広くできる。 Generally, as the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer is larger, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be increased. Therefore, since the maximum value of the range of the substantially maximum tilt angle adjustable in step (VI) can be increased, the adjustable range of the substantially maximum tilt angle of the liquid crystal compound molecules contained in the finally obtained liquid crystal cured layer Can be
 第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の範囲は、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を適切な範囲に調整できるように、設定することが望ましい。第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の具体的な範囲は、好ましくは15°以上、より好ましくは20°以上、特に好ましくは30°以上であり、好ましくは60°以下である。第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角が前記の範囲にあることにより、工程(VI)における液晶性化合物の分子の傾斜角の調整を、効果的に行うことができる。さらに、通常は、特に優れた視野角特性を有する液晶硬化フィルムを製造し易い。 The range of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer should be set so that the substantial maximum tilt angle of the molecules of the liquid crystalline compound contained in the liquid crystal cured layer can be adjusted to an appropriate range. Is desirable. The specific range of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer is preferably 15 ° or more, more preferably 20 ° or more, particularly preferably 30 ° or more, and preferably 60 ° It is below. When the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the first cured layer is in the above range, adjustment of the inclination angle of the molecules of the liquid crystal compound in the step (VI) can be effectively performed. . Furthermore, it is usually easy to produce a liquid crystal cured film having particularly excellent viewing angle characteristics.
 第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、後述する実施例に記載の測定方法で測定できる。 The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer can be measured by the measurement method described in the examples described later.
 第一硬化層の面内方向においては、液晶性化合物の分子の配向方向は、通常、均一である。よって、第一硬化層は、通常、第一硬化層を厚み方向から見た液晶性化合物の分子の配向方向に平行な面内遅相軸を有する。 In the in-plane direction of the first cured layer, the alignment direction of the molecules of the liquid crystal compound is usually uniform. Therefore, the first cured layer usually has an in-plane slow axis parallel to the alignment direction of the molecules of the liquid crystal compound when the first cured layer is viewed from the thickness direction.
 通常、第一硬化層の表面(図1の面111U参照)は、当該表面に形成される第二硬化層に含まれる液晶性化合物の分子を配向させる配向規制力を有する。この配向規制力は、面内方向においては、第二硬化層に含まれる液晶性化合物の分子を、第一硬化層に含まれる液晶性化合物の分子の配向方向と同じ方向に配向させようとする。 Usually, the surface of the first cured layer (see the surface 111U in FIG. 1) has an alignment regulating force that aligns the molecules of the liquid crystal compound contained in the second cured layer formed on the surface. This alignment control force tends to align the molecules of the liquid crystal compound contained in the second cured layer in the same direction as the alignment direction of the molecules of the liquid crystal compound contained in the first cured layer in the in-plane direction. .
 また、第一硬化層の表面の配向規制力は、厚み方向において、第二硬化層に含まれる液晶性化合物の分子を、当該分子の傾斜角が大きくなるように配向させることが望ましい。この場合、第一硬化層は、第二硬化層に含まれる液晶性化合物の分子の傾斜角を大きくする傾斜配向膜として機能できる。前記の傾斜配向膜としての機能は、例えば、第一液晶組成物及び第二液晶組成物の両方が逆分散液晶性化合物を含む場合に、顕著に発揮される。 Moreover, as for the orientation control force of the surface of a 1st hardened layer, it is desirable to orientate the molecule | numerator of the liquid crystalline compound contained in a 2nd hardened layer in the thickness direction so that the inclination angle of the said molecule may become large. In this case, the first cured layer can function as a tilted alignment film that increases the tilt angle of the molecules of the liquid crystal compound contained in the second cured layer. The function as the above-mentioned gradient alignment film is remarkably exhibited, for example, when both of the first liquid crystal composition and the second liquid crystal composition contain the reverse dispersion liquid crystal compound.
 ある所定の厚み範囲においては、第一硬化層が薄いほど、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を大きくできる。そこで、当該第一硬化層を含む液晶硬化層における液晶性化合物の分子の実質最大傾斜角を大きくできるようにして、液晶硬化層に含まれる液晶性化合物の分子の傾斜角を広い範囲で調整できるようにする観点では、第一硬化層の厚みは、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.3μm以上であり、好ましくは5.0μm以下、より好ましくは4.0μm以下、特に好ましくは3.0μm以下である。 In a certain predetermined thickness range, as the first cured layer is thinner, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer can be increased. Therefore, the substantial maximum tilt angle of the molecules of the liquid crystal compound in the liquid crystal cured layer including the first cured layer can be increased, and the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be adjusted in a wide range. From the viewpoint of achieving this, the thickness of the first cured layer is preferably 0.1 μm or more, more preferably 0.2 μm or more, particularly preferably 0.3 μm or more, preferably 5.0 μm or less, more preferably 4 0.1 μm or less, particularly preferably 3.0 μm or less.
[5.工程(IV):第二液晶組成物の層の形成]
 工程(III)で第一硬化層を得た後で、その第一硬化層上に、直接に、第二硬化層を形成するための液晶組成物としての第二液晶組成物の層を形成する工程(IV)を行う。ここで、ある層上に別の層を形成する態様が「直接に」とは、これら2層の間に他の層が無いことをいう。
[5. Step (IV): Formation of Layer of Second Liquid Crystal Composition]
After obtaining the first cured layer in step (III), a layer of a second liquid crystal composition as a liquid crystal composition for forming a second cured layer is formed directly on the first cured layer Perform step (IV). Here, the aspect of forming another layer on a certain layer "directly" means that there is no other layer between these two layers.
 第二液晶組成物は、第二硬化層を形成するための液晶性化合物を含む。第二液晶組成物に含まれる液晶性化合物としては、第一液晶組成物に含まれる液晶性化合物として説明した範囲から任意の液晶性化合物を選択して用いることができる。これにより、第一液晶組成物及び第一硬化層において得られたのと同じ利点を、第二液晶組成物及び第二硬化層においても得ることができる。特に、第一液晶組成物及び第二液晶組成物の両方が逆分散液晶性化合物を含む場合には、工程(V)において第二液晶組成物の層に含まれる液晶性化合物の分子の傾斜角を大きくしたり、工程(VI)における液晶性化合物の分子の傾斜角の調整を効果的に行ったりできる。第二液晶組成物に含まれる液晶性化合物は、第一液晶組成物に含まれる液晶性化合物と、同一でもよく、異なっていてもよい。第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を効果的に調整するためには、第一液晶組成物に含まれる液晶性化合物と第二液晶組成物に含まれる液晶性化合物とは、同一又は類似した構造を有することが好ましい。さらに、第二液晶組成物に含まれる液晶性化合物としては、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The second liquid crystal composition includes a liquid crystal compound for forming a second cured layer. As the liquid crystal compound contained in the second liquid crystal composition, any liquid crystal compound can be selected and used from the range described as the liquid crystal compound contained in the first liquid crystal composition. Thereby, the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer. In particular, when both of the first liquid crystal composition and the second liquid crystal composition contain the reverse dispersion liquid crystal compound, the tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition in the step (V) Of the liquid crystal compound in step (VI) can be effectively adjusted. The liquid crystal compound contained in the second liquid crystal composition may be the same as or different from the liquid crystal compound contained in the first liquid crystal composition. In order to effectively adjust the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer, the liquid crystal compound contained in the first liquid crystal composition and the liquid crystal compound contained in the second liquid crystal composition And preferably have the same or similar structure. Furthermore, as the liquid crystal compound contained in the second liquid crystal composition, one type may be used alone, or two or more types may be used in combination in an arbitrary ratio.
 さらに、第二液晶組成物は、必要に応じて、液晶性化合物に組み合わせて更に任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。任意の成分としては、例えば、第一液晶組成物が含みうる液晶性化合物以外の成分を、第一液晶組成物における前記成分の量の範囲で、用いることができる。これにより、第一液晶組成物及び第一硬化層において得られたのと同じ利点を、第二液晶組成物及び第二硬化層においても得ることができる。 Furthermore, the second liquid crystal composition may further contain an optional component in combination with the liquid crystal compound, if necessary. One of the optional components may be used alone, or two or more of the optional components may be used in combination at an optional ratio. As an optional component, for example, a component other than the liquid crystal compound which can be contained in the first liquid crystal composition can be used in the range of the amount of the component in the first liquid crystal composition. Thereby, the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer.
 第二液晶組成物は、第一液晶組成物と異なっていてもよいし、同一であってもよい。 The second liquid crystal composition may be different from or identical to the first liquid crystal composition.
 第二液晶組成物の層を形成する工程(IV)において、第二液晶組成物は、通常、流体状で用意される。そのため、通常は、第一硬化層の表面に第二液晶組成物を塗工して、第二液晶組成物の層を形成する。第二液晶組成物を塗工する方法としては、例えば、第一液晶組成物を塗工する方法として説明した方法と同じ例が挙げられる。第一硬化層が液晶性化合物を含む硬化物で形成されているので、第一硬化層は、通常、液晶性化合物を含む第二液晶組成物に対して高い親和性を有する。よって、通常は、第一硬化層の表面に対して第二液晶組成物のなじみが良い。したがって、第二液晶組成物の層の面状態を良好にでき、ひいては第二硬化層の面状態を良好にできる。 In the step (IV) of forming the layer of the second liquid crystal composition, the second liquid crystal composition is usually prepared in a fluid state. Therefore, the second liquid crystal composition is usually coated on the surface of the first cured layer to form a layer of the second liquid crystal composition. As a method of coating a 2nd liquid crystal composition, the same example as the method demonstrated as a method of coating a 1st liquid crystal composition is mentioned, for example. Since the first cured layer is formed of a cured product containing a liquid crystalline compound, the first cured layer usually has high affinity to the second liquid crystal composition containing a liquid crystalline compound. Therefore, usually, the second liquid crystal composition conforms well to the surface of the first cured layer. Therefore, the surface condition of the layer of the second liquid crystal composition can be improved, and hence the surface condition of the second cured layer can be improved.
[6.工程(V):第二液晶組成物の層の配向処理]
 工程(IV)で第二液晶組成物の層を形成した後で、その第二液晶組成物の層に含まれる液晶性化合物を配向させる工程(V)を行う。これにより、第二液晶組成物の層において、液晶性化合物を配向させることができる。
[6. Step (V): Alignment Treatment of Layer of Second Liquid Crystal Composition]
After forming the layer of the second liquid crystal composition in the step (IV), the step (V) of orienting the liquid crystal compound contained in the layer of the second liquid crystal composition is performed. Thereby, in the layer of the second liquid crystal composition, the liquid crystal compound can be aligned.
 具体的には、面内方向においては、通常、第二液晶組成物の層に含まれる液晶性化合物を、第一硬化層の表面の配向規制力により、第一硬化層に含まれる液晶性化合物の配向方向と同じ方向に配向させる。
 他方、厚み方向においては、通常、第二液晶組成物の層に含まれる液晶性化合物を、少なくとも一部が層平面に対して(即ち面内方向に対して)傾斜するように配向させる。第二液晶組成物の層に含まれる液晶性化合物を、その少なくとも一部が層平面に対して(即ち面内方向に対して)傾斜するように配向させるための方法は、任意である。例えば、第一液晶組成物及び第二液晶組成物の両方に逆分散液晶性化合物を含ませる方法によれば、第一硬化層の傾斜配向膜としての作用を大きく発揮させることができるので、第二液晶組成物の層に含まれる液晶性化合物の分子を、層平面に対して(即ち面内方向に対して)大きく傾斜するように配向させることができる。よって、第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角を、特に大きくできる。第一硬化層を傾斜配向膜として作用させた場合には、通常、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角よりも大きい実質最大傾斜角を有する液晶性化合物の分子を含む第二硬化層を得ることができる。
Specifically, in the in-plane direction, the liquid crystalline compound contained in the layer of the second liquid crystal composition is generally contained in the first cured layer by the alignment regulating force of the surface of the first cured layer. Align in the same direction as the orientation direction of.
On the other hand, in the thickness direction, usually, the liquid crystal compound contained in the layer of the second liquid crystal composition is oriented such that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction). The method for orienting the liquid crystal compound contained in the layer of the second liquid crystal composition so that at least a part thereof is inclined with respect to the layer plane (that is, with respect to the in-plane direction) is optional. For example, according to the method in which the reverse dispersion liquid crystal compound is contained in both the first liquid crystal composition and the second liquid crystal composition, the function of the first cured layer as a tilted alignment film can be exhibited largely. The molecules of the liquid crystal compound contained in the layer of the two liquid crystal composition can be aligned so as to be greatly inclined with respect to the layer plane (that is, with respect to the in-plane direction). Therefore, the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition can be particularly increased. When the first cured layer is allowed to act as the inclined alignment film, generally, molecules of the liquid crystal compound having a substantially maximum tilt angle larger than the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer A second cured layer can be obtained.
 第二液晶組成物の層に含まれる液晶性化合物を配向させる工程(V)における具体的な操作は、第一液晶組成物の層に含まれる液晶性化合物を配向させる工程(II)と同じにできる。これにより、第一液晶組成物及び第一硬化層において得られたのと同じ利点を、第二液晶組成物及び第二硬化層においても得ることができる。特に、工程(V)では、工程(II)と同じく、工程(V)における第二液晶組成物の層の温度条件が、当該第二液晶組成物に対応する試験組成物の残留分粘度が通常800cP以下となる温度条件と同一になるように、行うことが好ましい。 The specific operation in the step (V) of orienting the liquid crystal compound contained in the layer of the second liquid crystal composition is the same as the step (II) of orienting the liquid crystal compound contained in the layer of the first liquid crystal composition it can. Thereby, the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer. In particular, in the step (V), as in the step (II), the temperature conditions of the layer of the second liquid crystal composition in the step (V) are generally the residual viscosity of the test composition corresponding to the second liquid crystal composition. It is preferable to carry out so that it may become the same as the temperature conditions used as 800 cP or less.
 また、前記のように、第一硬化層は、第二液晶組成物に対して高い親和性を有する。よって、第二液晶組成物は第一硬化層になじみ、分子の配向が乱され難い。また、通常、第一硬化層では、配向欠陥の発生が抑制されているので、第一硬化層の配向欠陥に起因した第二液晶組成物の層での配向欠陥の発生も抑制される。よって、第二液晶組成物の層では配向状態を面内方向において均一にできるので、配向欠陥の発生が抑制される。 Also, as described above, the first cured layer has high affinity to the second liquid crystal composition. Therefore, the second liquid crystal composition conforms to the first cured layer, and the orientation of molecules is less likely to be disturbed. Further, in general, in the first cured layer, the occurrence of alignment defects is suppressed, so that the occurrence of alignment defects in the layer of the second liquid crystal composition caused by the alignment defects of the first cured layer is also suppressed. Therefore, in the layer of the second liquid crystal composition, the alignment state can be made uniform in the in-plane direction, so the generation of alignment defects is suppressed.
[7.工程(VI):実質最大傾斜角の調整]
 工程(V)で第二液晶組成物の層に含まれる液晶性化合物を配向させた後で、その第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角を調整するために、工程(VI)を行う。工程(VI)では、時間の経過により、第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角を、大きくする。
[7. Step (VI): Adjustment of the substantially maximum inclination angle]
After aligning the liquid crystal compound contained in the layer of the second liquid crystal composition in the step (V), in order to adjust the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition Perform step (VI). In step (VI), the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition is increased with the passage of time.
 具体的には、工程(VI)では、工程(V)において液晶性化合物を配向させてから、工程(VII)において第二液晶組成物の層を硬化させるまでの間に、時間を空ける。この空いた時間で、第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角は、大きくなる。時間の経過によって実質最大傾斜角が大きくなるので、通常、工程(V)から工程(VII)までの間に空ける時間が長いほど、第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角は、より大きくなる。したがって、工程(V)から工程(VII)までの間に空ける時間を調整することによって、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を調整できるので、その結果、第一硬化層及び第二硬化層を含む液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を調整できる。 Specifically, in the step (VI), time is allowed between the alignment of the liquid crystal compound in the step (V) and the curing of the layer of the second liquid crystal composition in the step (VII). At this idle time, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition is increased. Since the substantial maximum inclination angle increases with the passage of time, generally, the longer the time left between step (V) and step (VII), the more the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition The substantial maximum inclination angle is larger. Therefore, by adjusting the time interval from step (V) to step (VII), the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be adjusted, as a result, The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer including the cured layer and the second cured layer can be adjusted.
 工程(VI)における第二液晶組成物の層の温度条件は、特段の制限は無い。通常、工程(V)が第二液晶組成物の層の温度を調整するためにオーブン等の温度調整装置の内で行われるのに対し、工程(VI)は前記温度調整装置の外で行われる。よって、工程(VI)における第二液晶組成物の層の温度条件は、工程(V)における温度条件とは異なることが多い。具体的な温度条件は、特段の制限は無いが、基材に含まれる樹脂のガラス転移温度未満の温度であることが好ましい。中でも、加熱のためのエネルギーを省いて製造コストを下げる観点では、第二液晶組成物に含まれる液晶性化合物の液晶相-固相転移温度未満の温度条件が好ましく、20℃~30℃の常温が特に好ましい。 The temperature conditions of the layer of the second liquid crystal composition in step (VI) are not particularly limited. Usually, step (V) is performed within a temperature control device such as an oven to adjust the temperature of the layer of the second liquid crystal composition, while step (VI) is performed outside the temperature control device. . Therefore, the temperature conditions of the layer of the second liquid crystal composition in step (VI) are often different from the temperature conditions in step (V). The specific temperature condition is not particularly limited, but is preferably a temperature lower than the glass transition temperature of the resin contained in the substrate. Among them, from the viewpoint of omitting the energy for heating and lowering the manufacturing cost, temperature conditions lower than the liquid crystal phase-solid phase transition temperature of the liquid crystal compound contained in the second liquid crystal composition are preferable, and the normal temperature of 20 ° C to 30 ° C. Is particularly preferred.
 工程(VI)にかける時間は、液晶硬化層に含まれる液晶性化合物の分子の目的とする実質最大傾斜角に応じて、適切に設定することが望ましい。ここで、工程(VI)にかける時間とは、工程(V)において液晶性化合物を配向させてから、工程(VII)において第二液晶組成物の層を硬化させるまでの間の時間をいう。工程(VI)にかける具体的な時間は、好ましくは60秒以上、より好ましくは120秒以上であり、好ましくは600秒以下である。工程(VI)にかける時間が前記範囲の下限値以上であることにより、第二液晶組成物の層に含まれる液晶性化合物の実質最大傾斜角を大幅に大きくできるので、工程(VI)による作用を有効に活用できる。また、工程(VI)にかける時間が前記範囲の上限値以下であることにより、液晶硬化フィルムの製造に要する時間を短くできる。 It is desirable that the time taken for the step (VI) be appropriately set in accordance with the intended substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer. Here, the time taken for the step (VI) refers to the time from the alignment of the liquid crystal compound in the step (V) to the curing of the layer of the second liquid crystal composition in the step (VII). The specific time taken for step (VI) is preferably 60 seconds or more, more preferably 120 seconds or more, and preferably 600 seconds or less. Since the substantially maximum inclination angle of the liquid crystal compound contained in the layer of the second liquid crystal composition can be greatly increased by setting the time for step (VI) to be at least the lower limit of the above range, the action of step (VI) Can be used effectively. Moreover, the time which manufacture of a liquid crystal cured film can be shortened because time to apply to process (VI) is below the upper limit of the said range.
 第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角が工程(VI)によって変化する大きさは、好ましくは1°以上、より好ましくは5°以上、さらに好ましくは15°以上、特に好ましくは20°以上であり、好ましくは45°以下、より好ましくは40°以下である。 The magnitude at which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition changes according to step (VI) is preferably 1 ° or more, more preferably 5 ° or more, still more preferably 15 ° The angle is more preferably 20 ° or more, preferably 45 ° or less, more preferably 40 ° or less.
[8.工程(VII):第二液晶組成物の層の硬化]
 工程(VI)で第二液晶組成物の層に含まれる液晶性化合物の分子の実質最大傾斜角を調整した後で、第二液晶組成物の層を硬化させて、第二硬化層を得る工程(VII)を行う。これにより、第一硬化層及び第二硬化層を含む液晶硬化層を備えた液晶硬化フィルムを得ることができる。第二液晶組成物の層を硬化させる工程(VII)における具体的な操作は、第一液晶組成物の層を硬化させる工程(III)と同じにできる。これにより、第一液晶組成物及び第一硬化層において得られたのと同じ利点を、第二液晶組成物及び第二硬化層においても得ることができる。
[8. Step (VII): Curing of Layer of Second Liquid Crystal Composition]
After adjusting the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition in step (VI), the layer of the second liquid crystal composition is cured to obtain a second cured layer Do (VII). Thereby, a liquid crystal cured film provided with a liquid crystal cured layer including the first cured layer and the second cured layer can be obtained. The specific operation in the step (VII) of curing the layer of the second liquid crystal composition can be the same as the step (III) of curing the layer of the first liquid crystal composition. Thereby, the same advantage as obtained in the first liquid crystal composition and the first cured layer can be obtained also in the second liquid crystal composition and the second cured layer.
 第二硬化層は、液晶性化合物を含む第二組成物の硬化物で形成された層である。第二液晶組成物の硬化は、第一液晶組成物の硬化と同じく、通常、当該第二液晶組成物が含む重合性の化合物の重合によって達成される。よって、第二硬化層は、通常、第二液晶組成物が含んでいた成分の一部又は全部の重合体を含む。例えば、液晶性化合物が重合性を有する場合、その液晶性化合物が重合するので、第二硬化層は、重合前の配向状態を維持したまま重合した液晶性化合物の重合体を含む層でありうる。この重合した液晶性化合物は、用語「第二硬化層に含まれる液晶性化合物」に含まれる。 The second cured layer is a layer formed of a cured product of a second composition containing a liquid crystal compound. The curing of the second liquid crystal composition is generally achieved by the polymerization of the polymerizable compound contained in the second liquid crystal composition, as with the curing of the first liquid crystal composition. Therefore, the second cured layer usually contains a polymer of part or all of the components contained in the second liquid crystal composition. For example, when the liquid crystal compound has a polymerizability, the liquid crystal compound is polymerized, so the second cured layer may be a layer containing a polymer of the liquid crystal compound polymerized while maintaining the alignment state before polymerization. . The polymerized liquid crystal compound is included in the term "liquid crystal compound contained in the second cured layer".
 第二液晶組成物の硬化物においては、硬化前の流動性が失われるので、通常、液晶性化合物の配向状態は、硬化前の配向状態のまま、固定されている。この第二硬化層に含まれる液晶性化合物の少なくとも一部は、当該第二硬化層の層平面に対して(即ち面内方向に対して)傾斜している。そして、第二硬化層に含まれる液晶性化合物の傾斜角は、工程(VI)での調整に応じた大きさに調整されている。よって、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の大きさは、適切に調整されている。第二硬化層において、この実質最大傾斜角は、第一硬化層側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値を表す。この実質最大傾斜角は、第二硬化層に含まれる液晶性化合物の分子の傾斜角の大きさを示す指標である。通常は、実質最大傾斜角が大きい第二硬化層ほど、その第二硬化層に含まれる液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。 In the cured product of the second liquid crystal composition, since the flowability before curing is lost, the alignment state of the liquid crystal compound is usually fixed with the alignment state before curing. At least a part of the liquid crystal compound contained in the second hardened layer is inclined with respect to the layer plane of the second hardened layer (that is, in the in-plane direction). And the inclination angle of the liquid crystal compound contained in the second cured layer is adjusted to a size according to the adjustment in the step (VI). Therefore, the size of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer is properly adjusted. In the second hardened layer, when the inclination angle of the molecule on the surface on the first hardened layer side is 0 ° and the inclination angle of the molecule changes at a constant ratio in the thickness direction, the substantially maximum inclination angle is It represents the maximum value of the tilt angles of the molecules of the liquid crystal compound under the assumption. The substantial maximum tilt angle is an index indicating the size of the tilt angle of the molecules of the liquid crystal compound contained in the second cured layer. In general, as the second cured layer has a larger substantial maximum tilt angle, the tilt angle viewed as a whole of the molecules of the liquid crystal compound contained in the second cured layer tends to be larger.
 第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角が所望の範囲に収まるように、設定されることが望ましい。このとき、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角よりも大きいことが好ましい。これにより、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角に対する、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の相関性を大きくできる。よって、工程(VI)での実質最大傾斜角の調整により、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を広い範囲で調整することが可能となる。第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角よりも大きくする方法としては、例えば、第一液晶組成物及び第二液晶組成物の両方に逆分散液晶性化合物を含ませる方法が挙げられる。 The substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably set so that the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer falls within a desired range. . At this time, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably larger than the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer. Thereby, the correlation of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer with respect to the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be increased. Therefore, by adjusting the substantial maximum tilt angle in the step (VI), it is possible to adjust the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer in a wide range. As a method of making the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer larger than the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer, for example, And the second liquid crystal composition may include a reverse dispersion liquid crystal compound.
 前記の場合、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角と、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角との差は、好ましくは5°以上、より好ましくは8°以上、特に好ましくは10°以上であり、好ましくは70°以下、より好ましくは65°以下、特に好ましくは55°以下である。 In the above case, the difference between the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer and the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably 5 ° or more More preferably, it is 8 ° or more, particularly preferably 10 ° or more, preferably 70 ° or less, more preferably 65 ° or less, particularly preferably 55 ° or less.
 第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、視野角特性に優れた液晶硬化フィルムを得る観点では、好ましくは40°以上、より好ましくは45°以上、更に好ましくは50°以上、特に好ましくは57°以上であり、好ましくは85°以下である。 The substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the second cured layer is preferably 40 ° or more, more preferably 45 ° or more, still more preferably 50, from the viewpoint of obtaining a liquid crystal cured film excellent in viewing angle characteristics. Or more, particularly preferably 57 or more, preferably 85 or less.
 第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、後述する実施例に記載の測定方法で測定できる。 The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be measured by the measurement method described in the examples described later.
 通常、第二硬化層の面内方向における液晶性化合物の分子の配向方向は、第一硬化層の面内方向における液晶性化合物の分子の配向方向と同じである。 Usually, the alignment direction of the molecules of the liquid crystal compound in the in-plane direction of the second cured layer is the same as the alignment direction of the molecules of the liquid crystal compound in the in-plane direction of the first cured layer.
 また、第一硬化層において配向欠陥が抑制されているので、その第一硬化層上に形成される第二硬化層においても、配向欠陥の発生を抑制できる。
 さらに、第二硬化層は、通常、面状態が良好である。
In addition, since the orientation defect is suppressed in the first hardened layer, the generation of the orientation defect can be suppressed also in the second hardened layer formed on the first hardened layer.
Furthermore, the second cured layer usually has a good surface condition.
 第二硬化層の厚みは、特段の制限は無いが、第一硬化層よりも厚いことが好ましい。これにより、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角に対する、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の相関性を大きくできる。よって、工程(VI)での実質最大傾斜角の調整により、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を広い範囲で調整することが可能となる。第二硬化層の具体的な厚みは、好ましくは0.3μm以上、より好ましくは0.5μm以上であり、また、好ましくは10.0μm以下、より好ましくは7.5μm以下、更に好ましくは5.0μm以下、特に好ましくは3.0μm以下である。 The thickness of the second cured layer is not particularly limited, but is preferably thicker than the first cured layer. Thereby, the correlation of the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer with respect to the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be increased. Therefore, by adjusting the substantial maximum tilt angle in the step (VI), it is possible to adjust the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer in a wide range. The specific thickness of the second cured layer is preferably 0.3 μm or more, more preferably 0.5 μm or more, and preferably 10.0 μm or less, more preferably 7.5 μm or less, still more preferably 5. It is 0 μm or less, particularly preferably 3.0 μm or less.
[9.任意の工程]
 液晶硬化フィルムの製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。
 例えば、基材を用いた場合には、前記の製造方法により、基材の支持面上に形成された液晶硬化層を備える液晶硬化フィルムが得られる。そこで、前記の液晶硬化フィルムの製造方法は、支持面から液晶硬化層を剥離する工程を含んでいてもよい。
 また、液晶硬化フィルムの製造方法は、例えば、第二硬化層上に、液晶性化合物の硬化物によって更に層を形成する工程を含んでいてもよい。
 さらに、液晶硬化フィルムの製造方法は、例えば、液晶硬化層に組み合わせて、更に任意の層を形成する工程を含んでいてもよい。
[9. Optional process]
The method for producing a liquid crystal cured film may further include an optional step in combination with the above-described step.
For example, when a base material is used, a liquid crystal cured film provided with the liquid crystal cured layer formed on the support surface of the base material can be obtained by the above-described manufacturing method. Therefore, the method for producing a cured liquid crystal film may include the step of peeling the cured liquid crystal layer from the support surface.
Moreover, the manufacturing method of a liquid crystal cured film may include the process of further forming a layer by the hardened | cured material of a liquid crystalline compound on a 2nd cured layer, for example.
Furthermore, the manufacturing method of a liquid crystal hardening film may be combined with a liquid crystal hardening layer, for example, and may include the process of forming an arbitrary layer further.
 また、液晶硬化フィルムの製造方法は、例えば、基材上に形成された液晶硬化層を、任意のフィルム層に転写する工程を含んでいてもよい。よって、例えば、液晶硬化フィルムの製造方法は、基材上に形成された液晶硬化層と任意のフィルム層とを貼り合わせた後で、必要に応じて基材を剥離して、液晶硬化層及び任意のフィルム層を含む液晶硬化フィルムを得る工程を含んでいてもよい。この際、貼り合わせには、適切な粘着剤又は接着剤を用いてもよい。 Moreover, the manufacturing method of a liquid-crystal cured film may include the process of transcribe | transferring the liquid-crystal cured layer formed on the base material to arbitrary film layers, for example. Therefore, for example, in the method for producing a cured liquid crystal film, after the liquid crystal cured layer formed on the substrate and the optional film layer are attached to each other, the substrate is peeled if necessary, and the cured liquid crystal layer You may include the process of obtaining the liquid-crystal cured film containing an arbitrary film layer. At this time, a suitable pressure-sensitive adhesive or adhesive may be used for bonding.
 さらに、例えば、第一硬化層の表面に第二液晶組成物の層を形成する前に、第一硬化層の表面には、ラビング処理等の配向規制力を付与するための処理を施してもよい。しかし、第一硬化層の表面は、特段の処理を施さなくても、通常は、当該表面上に形成される第二液晶組成物の層に含まれる液晶性化合物を適切に配向させる配向規制力を有する。よって、工程数を減らして液晶硬化フィルムの製造を効率的に進める観点では、工程(IV)は、第一硬化層の表面にラビング処理を施さないで、第一硬化層の表面に第二液晶組成物の層を形成することを含むことが好ましい。 Furthermore, for example, before forming the layer of the second liquid crystal composition on the surface of the first cured layer, the surface of the first cured layer may be subjected to a treatment for applying an alignment regulating force such as rubbing treatment. Good. However, even if the surface of the first cured layer is not subjected to any special treatment, the alignment regulating force for appropriately aligning the liquid crystal compound contained in the layer of the second liquid crystal composition formed on the surface is usually performed. Have. Therefore, in order to reduce the number of steps and efficiently advance the production of a cured liquid crystal film, in the step (IV), the surface of the first cured layer is not subjected to rubbing treatment, and the second liquid crystal is applied to the surface of the first cured layer It is preferred to include forming a layer of the composition.
[10.液晶硬化フィルムの製造方法の主な利点]
 上述したように、本発明の一実施形態に係る液晶硬化フィルムの製造方法によれば、第一硬化層及び第二硬化層を含む液晶硬化層を備えた液晶硬化フィルムを製造できる。この製造方法では、工程(VI)にかける時間を調整することにより、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を調整できる。よって、液晶組成物の組成を変更しなくても、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を調整することが可能である。したがって、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の調整を、容易に行うことができる。
[10. Main advantages of liquid crystal cured film manufacturing method]
As described above, according to the method of manufacturing a cured liquid crystal film according to an embodiment of the present invention, it is possible to manufacture a cured liquid crystal film provided with a cured liquid crystal layer including the first cured layer and the second cured layer. In this production method, the maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer can be adjusted by adjusting the time applied to step (VI). Therefore, it is possible to adjust the substantially maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer without changing the composition of the liquid crystal composition. Therefore, the adjustment of the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be easily performed.
 また、前記の製造方法によれば、長尺の基材を用いて、長尺の液晶硬化フィルムを得ることができる。このような長尺の液晶硬化フィルムは、連続的な製造が可能であり、生産性に優れる。また、他のフィルムとの貼り合わせを、ロールトゥロールによって行うことができるので、この点でも、生産性に優れる。通常、長尺の液晶硬化フィルムは、巻き取られてロールの状態で保存及び運搬がなされる。 Moreover, according to said manufacturing method, a long liquid crystal cured film can be obtained using a long base material. Such a long liquid crystal cured film can be manufactured continuously and is excellent in productivity. Moreover, since bonding with another film can be performed by roll to roll, productivity is excellent in this point as well. Usually, a long liquid crystal cured film is wound and stored and transported in the form of a roll.
[11.得られる液晶硬化フィルム]
 上述した実施形態に係る製造方法で製造される液晶硬化フィルムは、第一硬化層と、この第一硬化層の表面に直接に接した第二硬化層とを含む液晶硬化層を備える。ある層の面に別の層が「直接に」接するとは、これら2層の間に他の層が無いことをいう。
[11. Liquid crystal cured film obtained]
The liquid crystal cured film produced by the production method according to the embodiment described above includes a liquid crystal cured layer including a first cured layer and a second cured layer directly in contact with the surface of the first cured layer. The “direct” contact of another layer with the surface of one layer means that there is no other layer between the two layers.
 液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子は、当該液晶硬化層の層平面に対して(即ち面内方向に対して)傾斜している。液晶硬化層において、液晶性化合物の分子のうち、一部が液晶硬化層の層平面に対して(即ち面内方向に対して)傾斜していてもよく、全部が液晶硬化層の層平面に対して(即ち面内方向に対して)傾斜していてもよい。液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が層平面に対して(即ち面内方向に対して)傾斜していることは、第一硬化層の項において説明した方法と同じ方法によって、確認できる。そして、このように層平面に対して(即ち面内方向に対して)傾斜した液晶性化合物の分子を含むことにより、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、通常、5°以上85°以下となっている。 At least a part of molecules of the liquid crystal compound contained in the liquid crystal cured layer is inclined with respect to the layer plane of the liquid crystal cured layer (that is, in the in-plane direction). In the liquid crystal cured layer, some of the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal cured layer (that is, with respect to the in-plane direction). It may be inclined with respect to (that is, with respect to the in-plane direction). The fact that at least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane (that is, with respect to the in-plane direction) is the same method as the method described in the section of the first cured layer It can confirm by. Then, by including the molecules of the liquid crystal compound inclined with respect to the layer plane (that is, with respect to the in-plane direction) in this way, the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is usually , 5 ° or more and 85 ° or less.
 液晶硬化層において、実質最大傾斜角は、第一硬化層側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値を表す。この実質最大傾斜角は、液晶硬化層に含まれる液晶性化合物の分子の傾斜角の大きさを示す指標である。通常は、実質最大傾斜角が大きい液晶硬化層ほど、その液晶硬化層に含まれる液晶性化合物の分子の全体として見た傾斜角が大きい傾向がある。よって、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を大きくできることにより、厚み方向における液晶硬化層の複屈折を大きくできる。したがって、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を調整することにより、液晶硬化層の複屈折を適切に調整できるので、液晶硬化フィルムを反射抑制フィルムとしての偏光板に設けた場合に、表示面の傾斜方向において反射を効果的に抑制できるという優れた視野角特性を得ることができる。 In the liquid crystal cured layer, it is assumed that the substantially maximum tilt angle is 0 ° of the tilt angle of the molecule on the surface on the first cured layer side, and that the tilt angle of the molecule changes at a constant ratio in the thickness direction In this case, the maximum value of the tilt angle of the molecules of the liquid crystal compound is represented. The substantial maximum inclination angle is an index indicating the size of the inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer. In general, as the liquid crystal cured layer has a substantially larger maximum tilt angle, the tilt angle as a whole of the molecules of the liquid crystal compound contained in the liquid crystal cured layer tends to be larger. Therefore, the birefringence of the liquid crystal cured layer in the thickness direction can be increased by increasing the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer. Therefore, the birefringence of the liquid crystal cured layer can be appropriately adjusted by adjusting the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer, so the liquid crystal cured film is provided on the polarizing plate as the reflection suppressing film. In this case, it is possible to obtain excellent viewing angle characteristics that reflection can be effectively suppressed in the inclination direction of the display surface.
 液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、液晶硬化フィルムの用途に応じて任意に設定しうる。例えば、優れた視野角特性を達成する観点では、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、好ましくは40°以上、より好ましくは46°以上、特に好ましくは56°以上であり、好ましくは85°以下、より好ましくは83°以下、更に好ましくは80°以下である。 The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be arbitrarily set according to the application of the liquid crystal cured film. For example, from the viewpoint of achieving excellent viewing angle characteristics, the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is preferably 40 ° or more, more preferably 46 ° or more, particularly preferably 56 ° or more Preferably it is 85 degrees or less, More preferably, it is 83 degrees or less, More preferably, it is 80 degrees or less.
 液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、後述する実施例に記載の測定方法で測定できる。 The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be measured by the measurement method described in the examples described later.
 面内方向においては、液晶硬化層に含まれる液晶性化合物の分子は、全体として、第一硬化層に含まれる液晶性化合物の分子の配向方向と同じ面内方向に配向する。よって、液晶硬化層の面内遅相軸は、通常、第一硬化層の面内遅相軸と平行である。 In the in-plane direction, the molecules of the liquid crystal compound contained in the liquid crystal cured layer are aligned in the same in-plane direction as the alignment direction of the molecules of the liquid crystal compound contained in the first cured layer as a whole. Therefore, the in-plane slow axis of the liquid crystal hardened layer is usually parallel to the in-plane slow axis of the first hardened layer.
 液晶硬化層の面内レターデーションの範囲は、液晶硬化フィルムの用途に応じて任意に設定できる。特に、液晶硬化フィルムと直線偏光子とを組み合わせて、有機EL表示パネル用の反射抑制フィルムとしての偏光板を得るためには、液晶硬化層は、1/4波長板として機能できる面内レターデーションを有することが望ましい。ここで、1/4波長板として機能できる面内レターデーションとは、具体的には、測定波長590nmにおいて、好ましくは80nm以上、より好ましくは100nm以上、さらに好ましくは110nm以上、特に好ましくは120nm以上であり、好ましくは190nm以下、より好ましくは180nm以下、さらに好ましく170nm以下、特に好ましくは160nm以下である。 The range of the in-plane retardation of the liquid crystal cured layer can be arbitrarily set according to the application of the liquid crystal cured film. In particular, in order to obtain a polarizing plate as a reflection suppression film for an organic EL display panel by combining a liquid crystal cured film and a linear polarizer, the liquid crystal cured layer can function as a quarter wavelength plate in-plane retardation. It is desirable to have Here, specifically, the in-plane retardation which can function as a quarter-wave plate is preferably 80 nm or more, more preferably 100 nm or more, still more preferably 110 nm or more, particularly preferably 120 nm or more at a measurement wavelength of 590 nm. Preferably it is 190 nm or less, More preferably, it is 180 nm or less, More preferably, it is 170 nm or less, Especially preferably, it is 160 nm or less.
 液晶硬化層の面内レターデーションは、逆波長分散性を示すことが好ましい。よって、測定波長450nm及び550nmにおける液晶硬化層の面内レターデーションRe(450)及びRe(550)は、下記式(N3)を満たすことが好ましく、下記式(N4)を満たすことがより好ましい。
  Re(450)/Re(550)<1.00   (N3)
  Re(450)/Re(550)<0.90   (N4)
 このように逆波長分散性を示す面内レターデーションを有する液晶硬化層は、1/4波長板又は1/2波長板等の光学用途において、広い波長帯域において均一に機能を発現できる。よって、この液晶硬化層を含む液晶硬化フィルムを反射抑制フィルムとしての偏光板に用いた場合に、広い波長範囲において反射を抑制することが可能である。
The in-plane retardation of the liquid crystal cured layer preferably exhibits reverse wavelength dispersion. Therefore, the in-plane retardations Re (450) and Re (550) of the liquid crystal cured layer at the measurement wavelengths of 450 nm and 550 nm preferably satisfy the following formula (N3), and more preferably the following formula (N4).
Re (450) / Re (550) <1.00 (N3)
Re (450) / Re (550) <0.90 (N4)
Thus, the liquid crystal cured layer having in-plane retardation exhibiting reverse wavelength dispersion can uniformly exhibit functions in a wide wavelength band in optical applications such as a quarter wavelength plate or a half wavelength plate. Therefore, when the liquid crystal cured film including the liquid crystal cured layer is used for a polarizing plate as a reflection suppression film, it is possible to suppress reflection in a wide wavelength range.
 優れた視野角特性を実現する観点から、液晶硬化層の平均レターデーション比R(±50°)/R(0°)は、好ましくは0.91より大きく、より好ましくは0.93以上、特に好ましくは0.95以上であり、また、好ましくは1.10以下、より好ましくは1.08以下、特に好ましくは1.05以下である。ここで、R(±50°)とは、液晶硬化層の面内の進相軸方向に対して垂直な測定方向で測定した、入射角θが-50°及び+50°での液晶硬化層のレターデーションR(-50°)及びR(+50°)の平均値を表す。また、R(0°)は、入射角0°での液晶硬化層のレターデーションを表す。 From the viewpoint of realizing excellent viewing angle characteristics, the average retardation ratio R (± 50 °) / R (0 °) of the liquid crystal cured layer is preferably greater than 0.91, more preferably 0.93 or more, and particularly preferably Preferably it is 0.95 or more, Moreover, Preferably it is 1.10 or less, More preferably, it is 1.08 or less, Especially preferably, it is 1.05 or less. Here, R (± 50 °) is the value of the liquid crystal cured layer measured at a measurement direction perpendicular to the in-plane fast axis direction of the liquid crystal cured layer at an incident angle θ of −50 ° and + 50 °. It represents the average of retardations R (−50 °) and R (+ 50 °). Further, R (0 °) represents the retardation of the liquid crystal cured layer at an incident angle of 0 °.
 一般に、画像表示装置の表示面に入射角「+φ」で入射する外光は、出射角「-φ」で反射する。よって、表示面に設けられる反射抑制フィルムが液晶硬化フィルムを含む場合、表示面の傾斜方向において外光は入射角「+φ」での往路と出射角「-φ」での復路とを含む経路で液晶硬化層を通過する。この経路を通る光の反射を効果的に抑制する観点から、液晶硬化層のレターデーション比R(±50°)/R(0°)は、1.00に近いことが好ましい。液晶硬化層のレターデーション比R(±50°)/R(0°)が1.00に近い前記の範囲にあることにより、その液晶硬化層を含む偏光板によって、傾斜方向における外光の反射を効果的に抑制できる。具体的には、外光が液晶硬化層を入射時及び反射時の2回通る間に、その偏光状態を適切に変換して、偏光板の直線偏光子による効果的な遮断を実現することが可能となる。よって、このような液晶硬化層を含む液晶硬化フィルムは、直線偏光子と組み合わせて偏光板を得た場合に、その偏光板による反射抑制能力を広い入射角範囲において発揮できるので、特に優れた視野角特性を得ることができる。 Generally, external light incident on the display surface of the image display device at an incident angle "+ φ" is reflected at an emission angle "-φ". Therefore, when the reflection suppression film provided on the display surface includes the liquid crystal cured film, the external light is in a path including the outward path at the incident angle "+ .PHI." And the return path at the emission angle "-.PHI." Pass through the liquid crystal curing layer. The retardation ratio R (± 50 °) / R (0 °) of the liquid crystal cured layer is preferably close to 1.00 from the viewpoint of effectively suppressing the reflection of light passing through this path. When the retardation ratio R (± 50 °) / R (0 °) of the liquid crystal cured layer is in the above-mentioned range close to 1.00, reflection of external light in the tilt direction by the polarizing plate including the liquid crystal cured layer Can be effectively suppressed. Specifically, while external light passes through the liquid crystal cured layer twice during incident and reflection, the polarization state is appropriately converted to realize effective blocking by the linear polarizer of the polarizing plate. It becomes possible. Therefore, when a liquid crystal cured film including such a liquid crystal cured layer is obtained in combination with a linear polarizer to obtain a polarizing plate, the reflection suppressing ability by the polarizing plate can be exhibited in a wide incident angle range, so a particularly excellent visual field Angular characteristics can be obtained.
 上述したように、第一硬化層及び第二硬化層では、通常、配向欠陥の発生が抑制されている。よって、第一硬化層及び第二硬化層を含む液晶硬化層の全体としても、配向欠陥の発生を抑制することができる。 As described above, in the first and second cured layers, the occurrence of alignment defects is usually suppressed. Therefore, the occurrence of alignment defects can be suppressed even in the entire liquid crystal cured layer including the first cured layer and the second cured layer.
 上述したように、第一硬化層及び第二硬化層では、通常、面状態が良好である。よって、第一硬化層及び第二硬化層を含む液晶硬化層の全体としても、面状態が良好である。したがって、液晶硬化層は、通常、その厚みのムラが小さく、したがって面内レターデーションのムラが小さい。 As described above, the first cured layer and the second cured layer generally have good surface condition. Therefore, the surface condition is good also as the whole liquid crystal cured layer including the first cured layer and the second cured layer. Therefore, the cured liquid crystal layer usually has small unevenness in thickness and therefore small unevenness in in-plane retardation.
 液晶硬化層の厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは15.0μm以下、より好ましくは11.5μm未満、更に好ましくは8.0μm以下、特に好ましくは6.0μm以下である。液晶硬化層の厚みが前記の範囲にあることにより、面内レターデーション等の特性を所望の範囲に容易に調整することができる。また、このような厚みの液晶硬化層は、有機EL表示パネルの反射抑制フィルムに用いられてきた従来の位相差フィルムよりも薄いので、有機EL表示パネルの薄型化に貢献できる。 The thickness of the liquid crystal cured layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 15.0 μm or less, more preferably less than 11.5 μm, still more preferably 8.0 μm or less, particularly preferably 6.0 μm or less. When the thickness of the liquid crystal cured layer is in the above range, characteristics such as in-plane retardation can be easily adjusted to a desired range. Moreover, since the liquid crystal cured layer of such a thickness is thinner than the conventional retardation film used for the reflection suppression film of the organic EL display panel, it can contribute to thinning of the organic EL display panel.
 液晶硬化層において、第一硬化層と第二硬化層とは、通常、下記の方法によって区別できる。
 液晶硬化層を、エポキシ樹脂で包埋して、試料片を得る。この試料片を、ミクロトームを用いて、液晶硬化層の厚み方向に平行にスライスして、観察サンプルを得る。この際、スライスは、液晶硬化層の面内遅相軸方向と断面とが平行となるように行う。その後、スライスにより現れた断面を、偏光顕微鏡を用いて観察する。この観察は、観察サンプルと偏光顕微鏡の対物レンズとの間に検板として波長板を挿入して、観察サンプルのレターデーションに応じた色を呈した像が見られるように行う。このとき、色が異なる部分を、第一硬化層と第二硬化層との境目として、区別できる。
In the liquid crystal cured layer, the first cured layer and the second cured layer can usually be distinguished by the following method.
The liquid crystal cured layer is embedded in epoxy resin to obtain a sample piece. The sample piece is sliced in parallel to the thickness direction of the liquid crystal cured layer using a microtome to obtain an observation sample. At this time, slicing is performed so that the in-plane slow axis direction of the liquid crystal hardened layer and the cross section become parallel. Then, the cross section which appeared by slicing is observed using a polarization microscope. This observation is performed by inserting a wave plate as an inspection plate between the observation sample and the objective lens of the polarization microscope so that an image exhibiting a color according to the retardation of the observation sample can be seen. At this time, portions with different colors can be distinguished as boundaries between the first cured layer and the second cured layer.
 また、液晶硬化層は、第一硬化層及び第二硬化層のみを含む2層構造の層であってもよいが、3層以上の層を含んでいてもよい。 The liquid crystal cured layer may be a layer having a two-layer structure including only the first cured layer and the second cured layer, but may include three or more layers.
 液晶硬化フィルムは、液晶硬化層のみを含むフィルムであってもよく、液晶硬化層に組み合わせて任意の層を含むフィルムであってもよい。任意の層としては、液晶硬化層の製造に用いる基材;位相差フィルム;他の部材と接着するための接着剤層;フィルムの滑り性を良くするマット層;耐衝撃性ポリメタクリレート樹脂層などのハードコート層;反射防止層;防汚層;等が挙げられる。 The liquid crystal cured film may be a film including only the liquid crystal cured layer, or may be a film including any layer in combination with the liquid crystal cured layer. As an optional layer, a base material used for producing a liquid crystal cured layer, a retardation film, an adhesive layer for bonding to other members, a mat layer for improving the sliding property of the film, an impact resistant polymethacrylate resin layer, etc. Hard coat layer; antireflective layer; antifouling layer; and the like.
 液晶硬化フィルムは、透明性に優れることが好ましい。具体的には、液晶硬化フィルムの全光線透過率は、好ましくは75%以上、より好ましくは80%以上、特に好ましくは84%以上である。また、液晶硬化フィルムのヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定できる。また、ヘイズは、ヘイズメーターを用いて測定できる。 The liquid crystal cured film is preferably excellent in transparency. Specifically, the total light transmittance of the liquid crystal cured film is preferably 75% or more, more preferably 80% or more, and particularly preferably 84% or more. The haze of the liquid crystal cured film is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. The total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet and visible spectrometer. In addition, the haze can be measured using a haze meter.
 液晶硬化フィルムの厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは300μm以下、より好ましくは200μm以下である。 The thickness of the liquid crystal cured film is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 300 μm or less, more preferably 200 μm or less.
[12.偏光板]
 前記の液晶硬化フィルムは、偏光板に適用できる。この偏光板は、上述した液晶硬化フィルムを備え、更に通常は直線偏光子を備える。偏光板は、円偏光板又は楕円偏光板として機能できることが好ましい。このような偏光板は、有機EL表示装置等の表示装置に設けることにより、その表示面の正面方向において外光の反射を抑制できる。
[12. Polarizer]
The liquid crystal cured film described above can be applied to a polarizing plate. This polarizing plate comprises the liquid crystal cured film described above, and usually comprises a linear polarizer. It is preferable that the polarizing plate can function as a circularly polarizing plate or an elliptically polarizing plate. By providing such a polarizing plate in a display device such as an organic EL display device, reflection of external light can be suppressed in the front direction of the display surface.
 また、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角が適切に調整されているので、液晶硬化層は、面内方向だけでなく厚み方向においても適切に調整された複屈折を有する。よって、偏光板は、表示装置の表示面の正面方向だけでなく傾斜方向においても外光の反射を抑制できる。したがって、この偏光板を用いることにより、視野角の広い表示装置を実現することができる。 In addition, since the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is properly adjusted, the liquid crystal cured layer has a birefringence appropriately adjusted not only in the in-plane direction but also in the thickness direction. Have. Therefore, the polarizing plate can suppress the reflection of outside light not only in the front direction of the display surface of the display device but also in the inclination direction. Therefore, by using this polarizing plate, a display device with a wide viewing angle can be realized.
 直線偏光子としては、例えば、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。 As a linear polarizer, for example, a film obtained by adsorbing iodine or a dichroic dye to a polyvinyl alcohol film and uniaxially stretching in a boric acid bath; iodine or a dichroic dye is adsorbed to a polyvinyl alcohol film And a film obtained by further stretching and further modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units. Moreover, as another example of a linear polarizer, the polarizer which has the function to isolate | separate polarization | polarized-light into reflected light and transmitted light, such as a grid polarizer and a multilayer polarizer, is mentioned. Among these, as the linear polarizer, a polarizer containing polyvinyl alcohol is preferable.
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子の厚みは、好ましくは5μm~80μmである。
When natural light is incident on the linear polarizer, only one polarized light is transmitted. Although the degree of polarization of this linear polarizer is not particularly limited, it is preferably 98% or more, more preferably 99% or more.
The thickness of the linear polarizer is preferably 5 μm to 80 μm.
 偏光板を円偏光板として機能させたい場合、直線偏光子の偏光吸収軸に対して液晶硬化層の遅相軸がなす角度は、45°またはそれに近い角度であることが好ましい。前記の角度は、具体的には、好ましくは45°±5°(即ち40°~50°)、より好ましくは45°±4°(即ち41°~49°)、特に好ましくは45°±3°(即ち42°~48°)である。 When it is desired to make the polarizing plate function as a circularly polarizing plate, the angle formed by the slow axis of the liquid crystal cured layer with the polarization absorption axis of the linear polarizer is preferably 45 ° or near. Specifically, the above angle is preferably 45 ° ± 5 ° (ie, 40 ° to 50 °), more preferably 45 ° ± 4 ° (ie, 41 ° to 49 °), and particularly preferably 45 ° ± 3. ° (ie 42 ° to 48 °).
 偏光板は、直線偏光子及び液晶硬化フィルム以外に、更に任意の層を含んでいてもよい。任意の層としては、例えば、直線偏光子と液晶硬化フィルムとを貼り合わせるための接着層;直線偏光子を保護するための偏光子保護フィルム層;などが挙げられる。 The polarizing plate may further contain any layer in addition to the linear polarizer and the liquid crystal cured film. As an optional layer, for example, an adhesive layer for bonding a linear polarizer and a liquid crystal cured film; a polarizer protective film layer for protecting a linear polarizer; and the like can be mentioned.
 前記の偏光板は、上述した実施形態に係る製造方法によって液晶硬化フィルムを製造することを含む製造方法によって製造できる。例えば、前記の偏光板は、上述した実施形態に係る製造方法によって液晶硬化フィルムを製造することと、製造された液晶硬化フィルムと直線偏光子とを貼り合わせることと、を含む製造方法によって、製造できる。貼り合わせには、必要に応じて、接着剤を用いてもよい。 The polarizing plate can be manufactured by a manufacturing method including manufacturing a liquid crystal cured film by the manufacturing method according to the embodiment described above. For example, the polarizing plate is manufactured by a manufacturing method including manufacturing a liquid crystal cured film by the manufacturing method according to the above-described embodiment, and laminating the manufactured liquid crystal cured film and a linear polarizer. it can. For bonding, an adhesive may be used as necessary.
[13.有機EL表示装置]
 前記の偏光板は、有機EL表示装置に適用できる。この有機EL表示装置は、上述した偏光板を備え、更に通常は有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」ということがある。)を備える。有機EL表示装置は、通常、有機EL素子の視認側に偏光板を備える。また、偏光板は、有機EL素子側から、液晶硬化フィルム及び直線偏光子をこの順に備える。このような構成において、偏光板は、反射抑制フィルムとして機能できる。
[13. Organic EL Display Device]
The above polarizing plate can be applied to an organic EL display device. The organic EL display device includes the above-described polarizing plate, and further usually includes an organic electroluminescent element (hereinafter sometimes referred to as “organic EL element” as appropriate). The organic EL display device usually has a polarizing plate on the viewing side of the organic EL element. Moreover, a polarizing plate is equipped with a liquid crystal cured film and a linear polarizer in this order from the organic EL element side. In such a configuration, the polarizing plate can function as a reflection suppression film.
 以下、偏光板が円偏光板として機能する場合を例に挙げて、反射抑制の仕組みを説明する。装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが液晶硬化フィルムを通過することにより、円偏光となる。円偏光は、有機EL素子内の光を反射する構成要素(有機EL素子の反射電極等)により反射され、再び液晶硬化フィルムを通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子を通過しなくなる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。これにより、反射抑制の機能が達成される。このような反射抑制の原理は、特開平9-127885号公報を参照してよい。 Hereinafter, the mechanism of reflection suppression will be described by taking the case where the polarizing plate functions as a circularly polarizing plate as an example. The light incident from the outside of the device becomes circularly polarized light when only a part of the linearly polarized light passes through the linear polarizer and then passes through the liquid crystal cured film. Circularly polarized light is reflected by a component (such as a reflective electrode of the organic EL element) that reflects light in the organic EL element, and passes through the liquid crystal cured film again, so that the vibration direction is orthogonal to the vibration direction of incident linearly polarized light. Become linearly polarized light, and does not pass through the linear polarizer. Here, the vibration direction of linearly polarized light means the vibration direction of an electric field of linearly polarized light. Thereby, the function of reflection suppression is achieved. For the principle of such reflection suppression, reference may be made to JP-A-9-127885.
 有機EL素子は、通常、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。 The organic EL device generally includes a transparent electrode layer, a light emitting layer and an electrode layer in this order, and the light emitting layer can generate light when voltage is applied from the transparent electrode layer and the electrode layer. As an example of the material which comprises an organic light emitting layer, the material of a polypara phenylene vinylene type | system | group, a poly fluorene type | system | group, and a polyvinyl carbazole type can be mentioned. In addition, the light emitting layer may have a stack of a plurality of layers having different emission colors, or a mixed layer in which layers of certain dyes are doped with different dyes. Furthermore, the organic EL element may be provided with functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
 前記の有機EL表示装置は、上述した製造方法によって偏光板を製造することを含む製造方法によって製造できる。 The organic EL display device can be manufactured by a manufacturing method including manufacturing a polarizing plate by the above-described manufacturing method.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the embodiments shown below, and can be implemented with arbitrary modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。 In the following description, "%" and "parts" representing amounts are by weight unless otherwise stated. Moreover, unless otherwise indicated, the operation described below was performed in a normal temperature and pressure atmosphere.
 また、以下に説明する実施例及び比較例で製造された液晶硬化フィルムに含まれる支持基材は、光学等方性を有するので、レターデーションの測定結果には影響を与えない。そこで、以下に説明する実施例及び比較例における液晶硬化層のレターデーションの測定は、試料として液晶硬化フィルムを用いて実施した。 Moreover, since the support base material contained in the liquid-crystal cured film manufactured by the Example and comparative example which are demonstrated below has optical isotropy, it does not affect the measurement result of retardation. Then, the measurement of the retardation of the liquid-crystal cured layer in the Example and comparative example which are demonstrated below was implemented using the liquid-crystal cured film as a sample.
[評価方法]
 (液晶性化合物の液晶相-固相転移温度の測定方法)
 液晶性化合物を10mg計量した。計量した液晶性化合物を、当該液晶性化合物が固体状態のまま、ラビング処理を施されたガラス基板2枚に挟んだ。この基板をホットプレート上に載せ、40℃から200℃まで昇温した後、40℃まで降温した。前記の昇温時及び降温時に、液晶性化合物の組織構造の変化を、偏光光学顕微鏡で観察した。
 このようにして、温度40℃から200℃の範囲で、液晶性化合物の液晶相-固相転移温度の測定を行った。
[Evaluation method]
(Method of measuring liquid crystal phase-solid phase transition temperature of liquid crystal compound)
10 mg of the liquid crystal compound was weighed. The measured liquid crystal compound was sandwiched between two glass substrates subjected to rubbing treatment while the liquid crystal compound was in a solid state. The substrate was placed on a hot plate, heated from 40 ° C. to 200 ° C., and then cooled to 40 ° C. At the time of temperature rise and temperature drop, the change in the structure of the liquid crystal compound was observed with a polarizing optical microscope.
Thus, the liquid crystal phase-solid phase transition temperature of the liquid crystal compound was measured at a temperature of 40 ° C. to 200 ° C.
 (液晶硬化層及びそれに含まれる第一硬化層~第二硬化層での液晶性化合物の分子の実質最大傾斜角の測定方法)
 図3は、傾斜方向から液晶硬化層200のレターデーションを測定する際の測定方向を説明するための斜視図である。図3において、矢印A1は液晶硬化層200の面内の遅相軸方向を表し、矢印A2は液晶硬化層200の面内の進相軸方向を表し、矢印A3は液晶硬化層200の厚み方向を表す。
(Method of measuring substantially maximum tilt angle of molecules of liquid crystal compound in liquid crystal cured layer and first to second cured layers contained therein)
FIG. 3 is a perspective view for explaining the measurement direction when measuring the retardation of the liquid crystal cured layer 200 from the tilt direction. In FIG. 3, the arrow A 1 represents the in-plane slow axis direction of the liquid crystal hardened layer 200, the arrow A 2 represents the in-plane fast axis direction of the liquid crystal hardened layer 200, and the arrow A 3 represents the thickness direction of the liquid crystal hardened layer 200. Represents
 位相差計(Axometrics社製「AxoScan」)を用いて、図3に示すように、液晶硬化層200のレターデーションを、入射角θが-50°~50°の範囲で測定した。この際、測定方向A4は、液晶硬化層200の面内の進相軸方向A2に対して垂直に設定した。また、測定波長は590nmであった。 The retardation of the cured liquid crystal layer 200 was measured in the range of an incident angle θ of −50 ° to 50 °, as shown in FIG. 3, using a retardation meter (“AxoScan” manufactured by Axometrics). At this time, the measurement direction A4 was set to be perpendicular to the in-plane fast axis direction A2 of the liquid crystal cured layer 200. In addition, the measurement wavelength was 590 nm.
 測定されたレターデーションから、前記の位相差計に付属の解析ソフトウェア(AxoMetrics社製の解析ソフトウェア「Multi-Layer Analysis」;解析条件は、解析波長590nm、層分割数20層)により、液晶硬化層200に含まれる液晶性化合物の分子の実質最大傾斜角を解析した。 Based on the measured retardation, the liquid crystal cured layer was analyzed by the analysis software (analysis software "Multi-Layer Analysis" manufactured by AxoMetrics; analysis conditions: analysis wavelength 590 nm, 20 layer division number) attached to the above-mentioned retardation meter The substantial maximum tilt angles of the molecules of the liquid crystal compound contained in 200 were analyzed.
 また、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、下記の方法によって測定した。
 第一硬化層を液晶硬化層の代わりに用いること以外は、前記の液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の測定方法と同じ方法により、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を測定した。この測定は、液晶硬化層の製造途中に、第一硬化層を得た後、その第一硬化層の表面に更に第二硬化層形成用の液晶組成物を塗工する前の時点で、行った。
Further, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer was measured by the following method.
The liquid crystal contained in the first cured layer by the same method as the method for measuring the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer except using the first cured layer instead of the liquid crystal cured layer Maximum tilt angle of the molecule of the sex compound was measured. This measurement is carried out at a time before the liquid crystal composition for forming a second cured layer is further coated on the surface of the first cured layer after obtaining the first cured layer during the production of the liquid crystal cured layer. The
 さらに、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、下記の方法によって測定した。
 液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角と、第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角とを測定した。そして、測定したこれらの実質最大傾斜角と、第一硬化層及び第二硬化層の厚みとを用いて、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を解析した。
Furthermore, the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the second cured layer was measured by the following method.
The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer and the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer were measured. Then, the maximum tilt angles of the molecules of the liquid crystal compound contained in the second cured layer were analyzed using these measured maximum tilt angles and the thicknesses of the first cured layer and the second cured layer.
 (視野角特性の評価方法)
 位相差計(Axometrics社製「AxoScan」)を用いて、図3に示すように、液晶硬化層200のレターデーションを、入射角θが-50°~50°の範囲で測定した。この際、測定方向A4は、液晶硬化層200の面内の進相軸方向A2に対して垂直に設定した。また、測定波長は590nmであった。
(Evaluation method of viewing angle characteristics)
The retardation of the cured liquid crystal layer 200 was measured in the range of an incident angle θ of −50 ° to 50 °, as shown in FIG. 3, using a retardation meter (“AxoScan” manufactured by Axometrics). At this time, the measurement direction A4 was set to be perpendicular to the in-plane fast axis direction A2 of the liquid crystal cured layer 200. In addition, the measurement wavelength was 590 nm.
 入射角θが-50°でのレターデーションR(-50°)及び入射角θが+50°でのレターデーションR(+50°)の平均値R(±50°)を計算した。そして、この平均値R(±50°)を、入射角θが0°の面内レターデーションR(0°)で割って、平均レターデーション比R(±50°)/R(0°)を求めた。この平均レターデーション比R(±50°)/R(0°)が1.00に近いほど、より優れた視野角特性を有機EL表示装置において実現できることを表す。そこで、前記の平均レターデーション比R(±50°)/R(0°)の値に基づいて、下記の基準で液晶硬化層の視野角特性を評価した。
  「良」: R(±50°)/R(0°)>0.91
  「不良」: R(±50°)/R(0°)≦0.91
The average value R (± 50 °) of the retardation R (−50 °) at an incident angle θ of −50 ° and the retardation R (+ 50 °) at an incident angle θ of + 50 ° was calculated. Then, the average value R (± 50 °) is divided by the in-plane retardation R (0 °) at an incident angle θ of 0 ° to obtain an average retardation ratio R (± 50 °) / R (0 °). I asked. The closer the average retardation ratio R (± 50 °) / R (0 °) to 1.00, the better the viewing angle characteristics can be realized in the organic EL display device. Therefore, the viewing angle characteristics of the liquid crystal cured layer were evaluated based on the value of the average retardation ratio R (± 50 °) / R (0 °) according to the following criteria.
"Good": R (± 50 °) / R (0 °)> 0.91
“Bad”: R (± 50 °) / R (0 °) ≦ 0.91
 また、第一硬化層の平均レターデーション比R(±50°)/R(0°)は、第一硬化層を液晶硬化層の代わりに用いること以外は、前記の液晶硬化層の平均レターデーション比R(±50°)/R(0°)と同じ方法により、求めた。 In addition, the average retardation ratio R (± 50 °) / R (0 °) of the first cured layer is the average retardation of the liquid crystal cured layer except that the first cured layer is used instead of the liquid crystal cured layer. It was determined by the same method as the ratio R (± 50 °) / R (0 °).
[液晶性化合物の説明]
 下記の実施例で使用した逆分散液晶性化合物1(液晶相-固相転移温度=96℃)及び逆分散液晶性化合物2(液晶相-固相転移温度=125℃)の構造は、下記の通りである。
[Description of Liquid Crystalline Compound]
The structures of the reverse dispersed liquid crystal compound 1 (liquid crystal phase-solid phase transition temperature = 96 ° C.) and the reverse dispersed liquid crystal compound 2 (liquid crystal phase-solid phase transition temperature = 125 ° C.) used in the following examples are as follows: It is street.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[実施例1~21]
 (液晶組成物の用意)
 表1に示す種類の液晶性化合物100重量部、界面活性剤(AGCセイミケミカル社製「S420」)0.15重量部、重合開始剤(BASF社製「Irgacure OXE04」)4.3重量部、並びに、溶媒としてシクロペンタノン148.5重量部及び1,3-ジオキソラン222.8重量部を混合して、液晶組成物を製造した。
[Examples 1 to 21]
(Preparation of liquid crystal composition)
100 parts by weight of a liquid crystal compound of the type shown in Table 1, 0.15 parts by weight of a surfactant ("S420" manufactured by AGC Seimi Chemical Co., Ltd.), 4.3 parts by weight of a polymerization initiator ("Irgacure OXE04" manufactured by BASF Corp.), Also, 148.5 parts by weight of cyclopentanone and 222.8 parts by weight of 1,3-dioxolane were mixed as a solvent to prepare a liquid crystal composition.
 (支持基材の用意)
 支持基材として、熱可塑性のノルボルネン樹脂からなる樹脂フィルム(日本ゼオン社製「ゼオノアフィルム ZF16」;厚み100μm;樹脂のガラス転移温度160℃)を用意した。この支持基材の片面に、コロナ処理を施した。次いで、支持基材のコロナ処理面にラビング処理を施した。
(Preparation of support base material)
As a supporting substrate, a resin film ("Zeonor film ZF16" manufactured by Nippon Zeon Co., Ltd .; thickness 100 μm; glass transition temperature of resin: 160 ° C.) made of thermoplastic norbornene resin was prepared. One side of this support base was subjected to corona treatment. Next, the corona-treated surface of the support substrate was subjected to rubbing treatment.
 (第一硬化層の形成)
 支持基材のラビング処理面に、バーコーターを用いて液晶組成物を塗工して、液晶組成物の層を形成した(工程(I))。
 次いで、この液晶組成物の層を、160℃に設定したオーブン内で2分加熱して、層内の液晶性化合物を配向させた(工程(II))。前記の加熱条件は、液晶性化合物1を用いた実施例では、使用した液晶組成物に対応する試験組成物の残留分粘度が140cPとなる温度条件であった。また、前記の加熱条件は、液晶性化合物2を用いた実施例では、使用した液晶組成物に対応する試験組成物の残留分粘度が209cPとなる温度条件であった。
 その後、液晶組成物の層に、窒素雰囲気下で500mJ/cmの紫外線を照射して、液晶組成物の層を硬化させて、厚み約1μmの第一硬化層を形成した(工程(III))。
 この第一硬化層に含まれる液晶性化合物の分子の実質最大傾斜角、及び、第一硬化層の平均レターデーション比R(±50°)/R(0°)を測定した。
(Formation of first hardened layer)
The liquid crystal composition was coated on the rubbing-treated surface of the supporting substrate using a bar coater to form a layer of the liquid crystal composition (step (I)).
Then, the layer of the liquid crystal composition was heated for 2 minutes in an oven set at 160 ° C. to align the liquid crystal compound in the layer (step (II)). In the example using the liquid crystal compound 1, the heating condition was a temperature condition at which the residual viscosity of the test composition corresponding to the liquid crystal composition used is 140 cP. Further, in the example using the liquid crystal compound 2, the heating condition was such a temperature condition that the residual viscosity of the test composition corresponding to the used liquid crystal composition is 209 cP.
Thereafter, the layer of the liquid crystal composition was irradiated with ultraviolet light of 500 mJ / cm 2 in a nitrogen atmosphere to cure the layer of the liquid crystal composition to form a first cured layer having a thickness of about 1 μm (step (III)) ).
The substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the first cured layer, and the average retardation ratio R (± 50 °) / R (0 °) of the first cured layer were measured.
 (第二硬化層の形成)
 第一硬化層の表面に、直接に、第一硬化層の形成に用いた残りの液晶組成物を、バーコーターを用いて塗工して、液晶組成物の層を形成した(工程(IV))。これにより、支持基材、第一硬化層及び液晶組成物の層をこの順に有する仕掛品を得た。
 次いで、この仕掛品を、160℃に設定したオーブン内に入れ、2分加熱して、液晶組成物の層内の液晶性化合物を配向させた(工程(V))。その後、仕掛品を、オーブンから取り出した。
 その後、表1に示す温度に表1に示す時間だけ仕掛品を静置した(工程(VI))。この際、23℃の温度での静置は、仕掛品をステンレス板上に置くことで、行った。また、それ以外の温度での静置は、仕掛品を温度調整されたホットプレート上に置くことで、行った。
 その後、液晶組成物の層に、窒素雰囲気下で500mJ/cmの紫外線を照射して、液晶組成物の層を硬化させて、厚み約2μmの第二硬化層を形成した(工程(VII))。これにより、支持基材と、第一硬化層及び第二硬化層を含む液晶硬化層とを備える液晶硬化フィルムを得た。
 こうして得た液晶硬化フィルムの液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の測定、第二硬化層に含まれる液晶性化合物の分子の実質最大傾斜角の測定、及び、液晶硬化層の視野角特性の評価を行った。
(Formation of second hardened layer)
The remaining liquid crystal composition used for forming the first cured layer was directly coated on the surface of the first cured layer using a bar coater to form a layer of the liquid crystal composition (step (IV)) ). Thus, a work-in-process having the supporting substrate, the first cured layer, and the layer of the liquid crystal composition in this order was obtained.
Next, this work-in-process was placed in an oven set at 160 ° C. and heated for 2 minutes to orient the liquid crystal compound in the layer of the liquid crystal composition (step (V)). Thereafter, the work in process was removed from the oven.
Thereafter, the work-in-process was allowed to stand at the temperature shown in Table 1 for the time shown in Table 1 (Step (VI)). At this time, the standing at a temperature of 23 ° C. was performed by placing the work-in-process on a stainless steel plate. In addition, standing at other temperatures was carried out by placing the work-in-process on a temperature-controlled hot plate.
Thereafter, the layer of the liquid crystal composition was irradiated with ultraviolet light of 500 mJ / cm 2 in a nitrogen atmosphere to cure the layer of the liquid crystal composition, thereby forming a second cured layer having a thickness of about 2 μm (step (VII) ). Thus, a liquid crystal cured film provided with a support base and a liquid crystal cured layer including the first cured layer and the second cured layer was obtained.
Measurement of the substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer of the liquid crystal cured film thus obtained, measurement of the substantial maximum inclination angle of the molecules of the liquid crystalline compound contained in the second cured layer, and liquid crystal curing The viewing angle characteristics of the layer were evaluated.
[比較例1]
 第二硬化層を形成するための液晶組成物の層内の液晶性化合物を配向させる工程(V)の後、仕掛品を静置する工程(VI)を行わないで、紫外線の照射により液晶組成物の層を硬化させる工程(VII)を行った。
 以上の事項以外は、実施例1と同じ操作を行って、液晶硬化フィルムの製造及び評価を行った。
Comparative Example 1
After the step (V) of orienting the liquid crystal compound in the layer of the liquid crystal composition for forming the second cured layer, the step (VI) of leaving the work in place is not performed, and the liquid crystal composition is irradiated with ultraviolet light. The step (VII) of curing the layer of matter was performed.
Except for the above matters, the same operation as in Example 1 was performed to manufacture and evaluate a liquid crystal cured film.
[実施例22]
 第一硬化層を形成するための液晶組成物の層内の液晶性化合物を配向させる工程(II)の後、紫外線の照射により液晶組成物の層を硬化させる工程(III)の前に、液晶組成物の層を23℃の室温で240秒間静置する工程(VIII)を行った。この23℃の温度条件での静置は、支持基材及び液晶組成物の層を備える仕掛品をステンレス板上に置くことで、行った。
 以上の事項以外は、実施例4と同じ操作を行って、液晶硬化フィルムの製造及び評価を行った。
Example 22
After the step (II) of orienting the liquid crystal compound in the layer of the liquid crystal composition for forming the first cured layer, before the step (III) of curing the layer of the liquid crystal composition by irradiation of ultraviolet light A step (VIII) was performed in which the layer of the composition was allowed to stand at room temperature of 23 ° C. for 240 seconds. The standing under the temperature condition of 23 ° C. was carried out by placing a work-in-progress provided with a supporting substrate and a layer of a liquid crystal composition on a stainless steel plate.
Except for the above matters, the same operation as in Example 4 was performed to manufacture and evaluate a liquid crystal cured film.
[比較例2]
 第二硬化層を形成するための液晶組成物の層内の液晶性化合物を配向させる工程(V)の後、仕掛品を静置する工程(VI)を行わないで、紫外線の照射により液晶組成物の層を硬化させる工程(VII)を行った。
 以上の事項以外は、実施例22と同じ操作を行って、液晶硬化フィルムの製造及び評価を行った。
Comparative Example 2
After the step (V) of orienting the liquid crystal compound in the layer of the liquid crystal composition for forming the second cured layer, the step (VI) of leaving the work in place is not performed, and the liquid crystal composition is irradiated with ultraviolet light. The step (VII) of curing the layer of matter was performed.
Except for the above matters, the same operation as in Example 22 was performed to manufacture and evaluate a liquid crystal cured film.
[結果]
 前記の実施例及び比較例の結果を、下記の表1に示す。表1において、略称の意味は、下記の通りである。
 Θ:実質最大傾斜角。
 Re比:R(±50°)/R(0°)。
[result]
The results of the above Examples and Comparative Examples are shown in Table 1 below. In Table 1, the meanings of the abbreviations are as follows.
Θ: Real maximum tilt angle.
Re ratio: R (± 50 °) / R (0 °).
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
[検討]
 工程(VI)を行わなかった比較例に比べ、工程(VI)を行った実施例では、第二硬化層に含まれる液晶性化合物の分子の実質傾斜角を大きくできており、その結果、第一硬化層及び第二硬化層を含む液晶硬化層に含まれる液晶性化合物の分子の実質傾斜角も大きくできている。また、実施例では、工程(VI)にかける時間が長いほど、実質最大傾斜角が大きくなる傾向が確認できる。よって、前記の実施例から、工程(VI)を含む製造方法によれば液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角を容易に調整できることが確認できる。さらには、液晶硬化層に含まれる液晶性化合物の分子の実質傾斜角が調整されることにより、その液晶硬化層の厚み方向の複屈折を適切に調整できるので、視野角特性の改善が達成できることが確認できる。
[Consideration]
As compared with the comparative example in which the step (VI) was not performed, in the example in which the step (VI) was performed, the substantial tilt angle of the molecules of the liquid crystal compound contained in the second cured layer could be increased. The substantial tilt angles of the molecules of the liquid crystal compound contained in the liquid crystal cured layer including the first cured layer and the second cured layer are also increased. Moreover, in the example, it can be confirmed that the substantial maximum inclination angle tends to be larger as the time taken to the step (VI) is longer. Therefore, according to the manufacturing method including the step (VI), it can be confirmed from the above example that the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be easily adjusted. Furthermore, by adjusting the substantial tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer, it is possible to appropriately adjust the birefringence in the thickness direction of the liquid crystal cured layer, so improvement in viewing angle characteristics can be achieved. Can be confirmed.
 100 液晶硬化フィルム
 110 液晶硬化層
 111 第一硬化層
 112 第二硬化層
 200 液晶硬化層
100 liquid crystal cured film 110 liquid crystal cured layer 111 first cured layer 112 second cured layer 200 liquid crystal cured layer

Claims (10)

  1.  液晶性化合物を含む液晶組成物の硬化物で形成され第一硬化層及び第二硬化層を含む液晶硬化層を備えた液晶硬化フィルムの製造方法であって、
     前記液晶硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、5°以上85°以下であり、
     前記製造方法が、
     前記液晶性化合物を含む第一液晶組成物の層を形成する工程(I)と、
     前記第一液晶組成物の層に含まれる前記液晶性化合物を配向させる工程(II)と、
     前記第一液晶組成物の層を硬化させて、前記第一硬化層を形成する工程(III)と、
     前記第一硬化層上に、直接に、前記第一液晶組成物に含まれる前記液晶性化合物と同一又は異なる前記液晶性化合物を含む第二液晶組成物の層を形成する工程(IV)と、
     前記第二液晶組成物の層に含まれる前記液晶性化合物を配向させる工程(V)と、
     前記第二液晶組成物の層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、時間の経過により大きくなる工程(VI)と、
     前記第二液晶組成物の層を硬化させて、前記第二硬化層を形成する工程(VII)と、をこの順に含む、液晶硬化フィルムの製造方法。
    A method for producing a cured liquid crystal film comprising a cured liquid crystal composition containing a liquid crystal compound and comprising a cured liquid crystal layer comprising a first cured layer and a second cured layer,
    The substantial maximum inclination angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is 5 ° or more and 85 ° or less,
    The manufacturing method is
    Step (I) of forming a layer of a first liquid crystal composition containing the liquid crystal compound
    Aligning the liquid crystal compound contained in the layer of the first liquid crystal composition (II);
    Curing the layer of the first liquid crystal composition to form the first cured layer (III);
    Forming a layer of a second liquid crystal composition containing the liquid crystal compound which is the same as or different from the liquid crystal compound contained in the first liquid crystal composition directly on the first cured layer;
    Aligning the liquid crystalline compound contained in the layer of the second liquid crystal composition (V);
    Step (VI) in which the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the layer of the second liquid crystal composition increases with the passage of time;
    Curing the layer of the second liquid crystal composition to form the second cured layer (VII); in this order, a method for producing a liquid crystal cured film.
  2.  前記工程(VI)を、60秒以上の時間をかけて行う、請求項1に記載の液晶硬化フィルムの製造方法。 The method for producing a liquid crystal cured film according to claim 1, wherein the step (VI) is performed for 60 seconds or more.
  3.  前記工程(VI)を、120秒以上600秒以下の時間をかけて行う、請求項1又は2に記載の液晶硬化フィルムの製造方法。 The manufacturing method of the liquid-crystal cured film of Claim 1 or 2 which performs said process (VI) over the time of 120 to 600 second.
  4.  前記工程(VI)を、前記第二液晶組成物に含まれる前記液晶性化合物の液晶相-固相転移温度未満の温度条件で行う、請求項1~3のいずれか一項に記載の液晶硬化フィルムの製造方法。 The liquid crystal curing according to any one of claims 1 to 3, wherein the step (VI) is performed under a temperature condition lower than the liquid crystal phase-solid phase transition temperature of the liquid crystal compound contained in the second liquid crystal composition. How to make a film.
  5.  前記液晶性化合物が、逆波長分散性の複屈折を発現できる液晶性化合物である、請求項1~4のいずれか一項に記載の液晶硬化フィルムの製造方法。 The method for producing a liquid crystal cured film according to any one of claims 1 to 4, wherein the liquid crystal compound is a liquid crystal compound capable of expressing reverse wavelength dispersive birefringence.
  6.  前記液晶硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、40°以上85°以下である、請求項1~5のいずれか一項に記載の液晶硬化フィルムの製造方法。 The method for producing a liquid crystal cured film according to any one of claims 1 to 5, wherein the substantial maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is 40 ° or more and 85 ° or less.
  7.  前記第二硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角が、第一硬化層に含まれる前記液晶性化合物の分子の実質最大傾斜角よりも大きい、請求項1~6のいずれか一項に記載の液晶硬化フィルムの製造方法。 The substantial maximum inclination angle of the molecule of the liquid crystal compound contained in the second hardened layer is larger than the substantial maximum inclination angle of the molecule of the liquid crystal compound contained in the first hardened layer. The manufacturing method of the liquid crystal hardening film as described in any one.
  8.  前記液晶硬化層が、1/4波長板として機能できる、請求項1~7のいずれか一項に記載の液晶硬化フィルムの製造方法。 The method for producing a liquid crystal cured film according to any one of claims 1 to 7, wherein the liquid crystal cured layer can function as a quarter wavelength plate.
  9.  液晶硬化フィルムを備える偏光板の製造方法であって、
     前記液晶硬化フィルムを、請求項1~8のいずれか一項に記載の製造方法で製造することを含む、偏光板の製造方法。
    It is a manufacturing method of a polarizing plate provided with a liquid crystal hardening film,
    A method for producing a polarizing plate, comprising producing the liquid crystal cured film by the method according to any one of claims 1 to 8.
  10.  偏光板を備える有機エレクトロルミネッセンス表示装置の製造方法であって、
     前記偏光板を、請求項9記載の製造方法で製造することを含む、有機エレクトロルミネッセンス表示装置の製造方法。
    A method of manufacturing an organic electroluminescent display device comprising a polarizing plate, comprising:
    The manufacturing method of the organic electroluminescent display apparatus including manufacturing the said polarizing plate by the manufacturing method of Claim 9.
PCT/JP2018/047634 2017-12-28 2018-12-25 Liquid crystal cured film, polarization plate, and method for manufacturing organic electroluminescence display device WO2019131662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562041A JP7306273B2 (en) 2017-12-28 2018-12-25 Liquid crystal cured film, polarizing plate and method for manufacturing organic electroluminescence display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253356 2017-12-28
JP2017253356 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131662A1 true WO2019131662A1 (en) 2019-07-04

Family

ID=67067553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047634 WO2019131662A1 (en) 2017-12-28 2018-12-25 Liquid crystal cured film, polarization plate, and method for manufacturing organic electroluminescence display device

Country Status (3)

Country Link
JP (1) JP7306273B2 (en)
TW (1) TW201940562A (en)
WO (1) WO2019131662A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142618A (en) * 2012-12-28 2014-08-07 Fujifilm Corp Optical film, polarizing plate, liquid crystal display device, and manufacturing method of optical film
WO2016148047A1 (en) * 2015-03-19 2016-09-22 日本ゼオン株式会社 Liquid crystal composition, method for producing retardation layer, and circularly polarizing plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142618A (en) * 2012-12-28 2014-08-07 Fujifilm Corp Optical film, polarizing plate, liquid crystal display device, and manufacturing method of optical film
WO2016148047A1 (en) * 2015-03-19 2016-09-22 日本ゼオン株式会社 Liquid crystal composition, method for producing retardation layer, and circularly polarizing plate

Also Published As

Publication number Publication date
TW201940562A (en) 2019-10-16
JPWO2019131662A1 (en) 2021-01-28
JP7306273B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2020137529A1 (en) Retardation film, method for producing same and polarizing plate
WO2019116995A1 (en) Hardened liquid crystal film and method for manufacturing same, polarization plate, and organic electroluminescence display device
JP7047405B2 (en) Organic light emission display device
WO2019116989A1 (en) Liquid crystal alignment layer and method for manufacturing same, optical film and method for manufacturing same, quarter-wave plate, polarization plate, and organic electroluminescence display panel
CN111684325B (en) Cured liquid crystal layer, method for producing same, optical film, polarizing plate, and display device
WO2019131662A1 (en) Liquid crystal cured film, polarization plate, and method for manufacturing organic electroluminescence display device
JP7222235B2 (en) Elongated circularly polarizing plate and manufacturing method thereof
WO2019116991A1 (en) Liquid crystal alignment layer and method for manufacturing same, optical film and method for manufacturing same, quarter-wave plate, polarization plate, and organic electroluminescence display panel
WO2019116990A1 (en) Liquid crystal alignment layer, method for producing said liquid crystal alignment layer, optical film, method for producing said optical film, quarter wave plate, polarizer, and organic electroluminescence display panel
WO2019146468A1 (en) Organic light emitting display device
WO2019142839A1 (en) Optically anisotropic body and method for manufacturing same
WO2019142831A1 (en) Optically anisotropic body and method for manufacturing same
WO2019131350A1 (en) Liquid crystal composition and liquid crystal cured film
WO2020116466A1 (en) Liquid-crystal cured film and method for manufacturing same
JP2021004994A (en) Liquid crystal composition, liquid crystal cured film, its manufacturing method, polarizer and organic electroluminescence display device
JP2020160278A (en) Liquid crystal composition, liquid crystal cured film, manufacturing method therefor, and polarizing plate
JP2020034871A (en) Liquid crystal cured film and method for manufacturing the same, polarizing plate, and organic electroluminescence display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894940

Country of ref document: EP

Kind code of ref document: A1