WO2020116466A1 - Liquid-crystal cured film and method for manufacturing same - Google Patents

Liquid-crystal cured film and method for manufacturing same Download PDF

Info

Publication number
WO2020116466A1
WO2020116466A1 PCT/JP2019/047288 JP2019047288W WO2020116466A1 WO 2020116466 A1 WO2020116466 A1 WO 2020116466A1 JP 2019047288 W JP2019047288 W JP 2019047288W WO 2020116466 A1 WO2020116466 A1 WO 2020116466A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
layer
carbon atoms
cured layer
Prior art date
Application number
PCT/JP2019/047288
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 中島
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020559933A priority Critical patent/JPWO2020116466A1/en
Publication of WO2020116466A1 publication Critical patent/WO2020116466A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal cured film and a method for manufacturing the same.
  • Liquid crystal cured film is known as one of the optical films.
  • the liquid crystal cured film generally includes a liquid crystal cured layer formed of a cured product obtained by aligning a liquid crystal composition containing a liquid crystal compound and curing the liquid crystal composition while maintaining the alignment state.
  • a liquid crystal cured film those described in Patent Documents 1 to 3 have been proposed.
  • the liquid crystal cured layer included in the liquid crystal cured film usually contains a liquid crystal compound.
  • the molecules of the liquid crystal compound may tilt with respect to the layer plane of the liquid crystal cured layer.
  • the alignment unevenness was caused by the twist of the alignment direction of the molecules of the liquid crystal compound.
  • the alignment direction of the molecules of the liquid crystalline compound may be different for each position in the thickness direction of the liquid crystal cured layer.
  • the orientation direction of molecules at a certain position in the thickness direction of the liquid crystal cured layer is used as a reference, the orientation direction of a molecule that is farther from the reference molecule in the thickness direction is parallel to the layer plane.
  • the molecules of the liquid crystal compound are aligned in a certain alignment direction on a certain first plane in the liquid crystal cured layer.
  • the orientation direction of the molecules deviates slightly from the orientation direction in the first plane.
  • the orientation direction of the molecules deviates further from the orientation direction in the second plane by an angle.
  • the angles of the orientation directions of the molecules in the planes are sequentially shifted, and the orientation directions of the molecules of the liquid crystal compound can be twisted in a spiral shape as a whole.
  • the twisting directions may be non-uniform in the plane.
  • the twist in which the alignment direction of the molecules of the liquid crystal compound included in the liquid crystal cured layer occurs in the thickness direction may be simply referred to as “twist in the alignment direction”.
  • the light passing through the liquid crystal cured layer containing the molecules of the liquid crystalline compound may cause optical rotation.
  • only a part of the light transmitted through the liquid crystal cured layer causes optical rotation, and the other part disturbs the polarization state.
  • the linearly polarized light may be partially depolarized or elliptically polarized by being transmitted through the liquid crystal cured layer. Since such a disorder of the polarization state may cause a deterioration in performance when the liquid crystal cured film is used as an optical film, it is desired to suppress it.
  • an organic electroluminescence display device (hereinafter sometimes referred to as an “organic EL display device” as appropriate)
  • a circularly polarizing plate and an ellipse are used as a reflection suppressing film for suppressing reflection of external light on its display surface.
  • a polarizing plate such as a polarizing plate may be provided.
  • This polarizing plate usually includes a linear polarizer and a retardation film in combination. When a liquid crystal cured film is used as this retardation film, the disturbance of the polarization state as described above may reduce the ability to suppress reflection of external light.
  • the present invention was devised in view of the above-mentioned problems, and includes a liquid crystal compound in which molecules are inclined with respect to a layer plane, and liquid crystal curing capable of suppressing uneven alignment and disturbance of polarization state of transmitted light.
  • An object of the present invention is to provide a liquid crystal cured film having a layer and a method for manufacturing the same.
  • the present inventor diligently studied to solve the above problems. As a result, the present inventor has found that the above problems can be solved by using a liquid crystal composition containing a chiral compound appropriately, and completed the present invention. That is, the present invention includes the following.
  • a liquid crystal cured layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound and a chiral compound containing an asymmetric carbon atom, the liquid crystal cured layer containing molecules of the liquid crystal compound which may have a fixed alignment state.
  • the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer,
  • the ratio CRe/D between the front circularly polarized light phase difference CRe of the liquid crystal cured layer and the thickness D [nm] of the liquid crystal cured layer at a measurement wavelength of 550 nm is 0.0002 or more and 0.0133 or less.
  • the front linearly polarized light phase difference LRe of the liquid crystal cured layer at a measurement wavelength of 550 nm is in the range of 50 nm or more and 90 nm or less, or in the range of 120 nm or more and 160 nm or less, [1] to [3].
  • [6] The liquid crystal cured film according to any one of [1] to [5], wherein the liquid crystalline compound has a benzothiazole ring.
  • [7] A method for producing a liquid crystal cured film according to any one of [1] to [6], A step of forming a layer of the liquid crystal composition, A step of orienting the liquid crystalline compound contained in the layer of the liquid crystal composition, And a step of curing the layer of the liquid crystal composition to obtain the liquid crystal cured layer.
  • a liquid crystal cured film including a liquid crystal compound whose molecules are inclined with respect to the plane of the layer and including a liquid crystal cured layer capable of suppressing alignment unevenness and disturbance of the polarization state of transmitted light, and a method for producing the same.
  • FIG. 1 is a graph in which the retardation ratio R( ⁇ )/R(0°) of a liquid crystal cured layer according to an example is plotted against the incident angle ⁇ .
  • FIG. 2 is a perspective view schematically showing an optical system in which a pair of linear polarizers set to a para-Nicol are arranged on both sides of a certain liquid crystal layer.
  • FIG. 4 is a cross-sectional view schematically showing an example of a liquid crystal cured layer included in the liquid crystal cured film according to an embodiment of the present invention.
  • FIG. 5 is sectional drawing which shows typically the example of the liquid crystal hardening layer with which the liquid crystal hardening film which concerns on one Embodiment of this invention is equipped.
  • FIG. 6 is a perspective view for explaining the measurement direction when measuring the linearly polarized light phase difference R( ⁇ ) as the retardation of the liquid crystal cured layer from the tilt direction.
  • the "in-plane direction" of a layer means the direction parallel to the layer plane unless otherwise specified.
  • the “thickness direction” of a layer means the direction perpendicular to the layer plane unless otherwise specified. Therefore, unless otherwise specified, the in-plane direction and the thickness direction of a certain layer are perpendicular to each other.
  • frontal direction of a surface refers to the normal direction of the surface, and specifically refers to the direction of the polar angle of 0° unless otherwise specified.
  • the “inclination direction” of a surface represents a direction that is neither parallel nor perpendicular to the surface unless specifically stated otherwise, and specifically, the polar angle of the surface is in the range of 5° to 85°. Point in the direction of.
  • polarizing plate and “wave plate” include flexible films and sheets such as resin films unless otherwise specified.
  • the birefringence reverse wavelength dispersion property means that the birefringence ⁇ n(450) at a wavelength of 450 nm and the birefringence ⁇ n(550) at a wavelength of 550 nm satisfy the following formula (N1) unless otherwise specified.
  • N1 A liquid crystal compound capable of exhibiting such birefringence having an inverse wavelength dispersive property can generally exhibit greater birefringence as the measurement wavelength is longer.
  • the birefringence forward wavelength dispersion of birefringence means that the birefringence ⁇ n (450) at a wavelength of 450 nm and the birefringence ⁇ n (550) at a wavelength of 550 nm satisfy the following formula (N2).
  • N2 the birefringence forward wavelength dispersive birefringence
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and in the direction orthogonal to the nx direction.
  • d represents the thickness of the layer.
  • represents the optical rotation angle [°] of the linearly polarized light that passes through the layer in the thickness direction.
  • represents the measurement wavelength.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the front linearly polarized light phase difference LRe and the front circularly polarized light phase difference CRe can be measured using a phase difference meter (“AxoScan” manufactured by Axometrics).
  • a resin having a positive intrinsic birefringence value means a resin whose refractive index in the stretching direction is higher than that in the direction orthogonal to it.
  • a resin having a negative intrinsic birefringence value means a resin whose refractive index in the stretching direction is smaller than that in the direction orthogonal thereto.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the slow axis of a certain layer refers to the slow axis in the in-plane direction unless otherwise specified.
  • the directions of elements are “parallel” and “vertical” unless otherwise specified, within a range that does not impair the effects of the present invention, for example, ⁇ 4°, preferably ⁇ 3°, more preferably ⁇ 1. It may include an error within a range of °.
  • the “tilt angle” of a molecule of a liquid crystal compound included in a layer represents an angle formed by the molecule of the liquid crystal compound with respect to the layer plane of the layer, and “tilt angle”. It is sometimes called "horn". This tilt angle corresponds to the maximum angle among the angles formed by the direction of the maximum refractive index with the layer plane in the refractive index ellipsoid of the molecules of the liquid crystal compound.
  • the “tilt angle” refers to the tilt angle of the molecules of the liquid crystal compound with respect to the layer plane of the layer containing the liquid crystal compound.
  • the “substantially maximum tilt angle” of the molecules of the liquid crystal compound contained in a layer means that the tilt angle of the molecule on one surface of the layer is 0° and the tilt angle of the molecule is the thickness. It means the maximum value of the tilt angle of the molecules of the liquid crystal compound when it is assumed that the liquid crystal compound changes at a constant ratio in the direction. Specifically, consider a case in which, in the thickness direction of a layer containing a liquid crystal compound, the tilt angle of the molecules of the liquid crystal compound is smaller as it is closer to one side of the layer and is larger as it is farther from the one side.
  • the substantial maximum tilt angle is calculated by assuming that the ratio of the change of the tilt angle in the thickness direction (that is, the ratio of the change that decreases toward one side and increases toward the one side) is constant. Represents the maximum value of the tilt angle.
  • the substantially maximum tilt angle is usually the molecule on the surface on the supporting surface side of the liquid crystal cured layer. Represents the maximum value of the tilt angle of the molecules of the liquid crystal compound when it is assumed that the tilt angle is 0° and the tilt angle of the molecules changes at a constant ratio in the thickness direction.
  • the substantially maximum inclination angle is usually 0 when the inclination angle of the molecule on the surface on the first cured layer side is 0. And represents the maximum value of the tilt angle of the molecules of the liquid crystal compound under the assumption that the tilt angle of the molecules changes at a constant ratio in the thickness direction.
  • the number of carbon atoms of a group having a substituent does not include the number of carbon atoms of the substituent unless otherwise specified. Therefore, for example, the description "an alkyl group having 1 to 20 carbon atoms which may have a substituent" has 1 to 20 carbon atoms in the alkyl group itself which does not include the number of carbon atoms of the substituent. It means that.
  • a liquid crystal cured film according to an embodiment of the present invention includes a liquid crystal cured layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound and a chiral compound.
  • the chiral compound refers to a compound containing an asymmetric carbon atom.
  • the liquid crystal cured layer contains molecules of a liquid crystal compound.
  • the alignment state of the molecules of the liquid crystal compound contained in the liquid crystal cured layer may be fixed.
  • a liquid crystal compound having a fixed alignment state includes a polymer of a liquid crystal compound.
  • the liquid crystallinity of the liquid crystalline compound is lost by polymerization, but in the present application, the liquid crystalline compound thus polymerized is also included in the term “liquid crystalline compound contained in the liquid crystal cured layer”.
  • At least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are tilted with respect to the layer plane of the liquid crystal cured layer.
  • the term “inclined” with respect to the layer plane of a liquid crystal compound means that the inclination angle of the molecule with respect to the layer plane is in the range of 5° to 85°.
  • the molecules of the liquid crystal compound tilted in this manner are usually neither parallel nor perpendicular to the layer plane.
  • the front linear polarization phase difference LRe and the front circular polarization phase difference CRe of the liquid crystal cured layer at the measurement wavelength of 550 nm satisfy the following formula (1).
  • the front linearly polarized light phase difference LRe may be referred to as “in-plane retardation” LRe.
  • the front circularly polarized light phase difference CRe may be referred to as “optical rotation phase difference” CRe.
  • liquid crystal cured layer having the above-mentioned configuration, it is possible to suppress the alignment unevenness of the liquid crystal cured layer, and it is possible to suppress the disturbance of the polarization state of the light transmitted through the liquid crystal cured layer.
  • the liquid crystal compound is a compound having liquid crystallinity, and usually can exhibit a liquid crystal phase when the liquid crystal compound is aligned.
  • a reverse dispersion liquid crystal compound may be used, a forward dispersion liquid crystal compound may be used, or a combination of the reverse dispersion liquid crystal compound and the forward dispersion liquid crystal compound may be used.
  • the reverse dispersion liquid crystal compound is a liquid crystal compound capable of exhibiting reverse wavelength dispersion birefringence.
  • a liquid crystal compound capable of exhibiting birefringence of reverse wavelength dispersion exhibits a birefringence of reverse wavelength dispersion when a layer of the liquid crystal compound is formed and the liquid crystal compound is oriented in the layer.
  • the forward dispersion liquid crystal compound is a liquid crystal compound capable of exhibiting forward wavelength dispersion birefringence.
  • a liquid crystal compound capable of exhibiting forward wavelength dispersive birefringence means that when a layer of the liquid crystalline compound is formed and the liquid crystal compound is oriented in the layer, forward wavelength dispersive birefringence is exhibited.
  • the wavelength dispersion property of the birefringence exhibited by the liquid crystal compound can be confirmed by examining the wavelength dispersion property of the birefringence exhibited by the layer of the liquid crystal compound.
  • Aligning the liquid crystal compound homogeneously means forming a layer containing the liquid crystal compound, and the direction of the maximum refractive index in the refractive index ellipsoid of the molecules of the liquid crystal compound in the layer is parallel to the surface of the layer. It means to orient in one certain direction.
  • the birefringence of the layer is calculated from "(in-plane retardation of layer)/(layer thickness)".
  • the liquid crystal compound it is preferable to use a reverse dispersion liquid crystal compound.
  • a reverse dispersion liquid crystalline compound When a reverse dispersion liquid crystalline compound is used, a liquid crystal cured layer having a reverse wavelength dispersion in-plane retardation LRe can be usually obtained, so that a liquid crystal cured film capable of exhibiting a desired optical function in a wide wavelength range is obtained. be able to.
  • the reverse dispersion liquid crystallinity in the present embodiment is also used from the viewpoint of effectively utilizing the effect of suppressing the alignment unevenness. Preference is given to using compounds.
  • the birefringence of the inverse dispersion liquid crystalline compound is the difference between the refractive index in the direction showing the maximum refractive index and the refractive index in another direction perpendicular to this direction in the refractive index ellipsoid of the molecule of the inverse dispersion liquid crystalline compound. It can appear as a difference.
  • the wavelength dispersibility of the refractive index in each direction may be different depending on the molecular structure of the reverse dispersion liquid crystalline compound. For example, in a certain reverse-dispersion liquid crystalline compound, the refractive index measured at a long wavelength is smaller than the refractive index measured at a short wavelength in a certain direction, but the difference between them is small.
  • the index of refraction measured at long wavelengths is less than the index of refraction measured at short wavelengths, and the difference between them is large.
  • the difference in refractive index between the directions is small when the measurement wavelength is short, and is large when the measurement wavelength is long.
  • the liquid crystal compound preferably has polymerizability. Therefore, the liquid crystal compound preferably has a molecule containing a polymerizable group such as an acryloyl group, a methacryloyl group, and an epoxy group.
  • the number of polymerizable groups per molecule of the liquid crystal compound may be one, but is preferably two or more.
  • the polymerizable liquid crystal compound can be polymerized in a state of exhibiting a liquid crystal phase and can be a polymer while maintaining the alignment state of molecules in the liquid crystal phase. Therefore, it is possible to fix the alignment state of the liquid crystal compound in the liquid crystal cured layer or increase the degree of polymerization of the liquid crystal compound to enhance the mechanical strength of the liquid crystal cured layer.
  • the molecular weight of the liquid crystal compound is preferably 300 or more, more preferably 500 or more, particularly preferably 800 or more, preferably 2000 or less, more preferably 1700 or less, and particularly preferably 1500 or less.
  • a liquid crystal compound having a molecular weight in such a range is used, the coatability of the liquid crystal composition can be made particularly good.
  • the birefringence ⁇ n of the liquid crystal compound at a measurement wavelength of 590 nm is preferably 0.01 or more, more preferably 0.03 or more, preferably 0.15 or less, more preferably 0.10 or less.
  • a liquid crystal compound having a birefringence ⁇ n in such a range is used, it is easy to obtain a liquid crystal cured layer with few alignment defects.
  • the birefringence of the liquid crystal compound can be measured, for example, by the following method.
  • a layer of a liquid crystal compound is prepared, and the liquid crystal compound contained in the layer is homogeneously aligned. Then, the in-plane retardation of the layer is measured. Then, the birefringence of the liquid crystalline compound can be obtained from "(in-plane retardation of layer)/(thickness of layer)".
  • the layer of the homogeneously aligned liquid crystalline compound may be cured.
  • the liquid crystal compound may be used alone or in combination of two or more kinds at an arbitrary ratio.
  • liquid crystal compounds examples include liquid crystal compounds represented by the following formula (I).
  • the liquid crystal compound represented by the formula (I) can usually exhibit reverse wavelength dispersion birefringence.
  • Ar has at least one of an aromatic heterocycle, a heterocycle, and an aromatic hydrocarbon ring, and is an optionally substituted divalent organic group having 6 to 67 carbon atoms.
  • aromatic heterocycle include 1H-isoindole-1,3(2H)-dione ring, 1-benzofuran ring, 2-benzofuran ring, acridine ring, isoquinoline ring, imidazole ring, indole ring and oxadiazole ring.
  • Ar examples include groups represented by any of the following formulas (II-1) to (II-4). In formulas (II-1) to (II-4), * represents a bonding position with Z 1 or Z 2 . Further, Ar preferably has a benzothiazole ring.
  • E 1 and E 2 are each independently -CR 11 R 12 -, -S-, -NR 11 -, -CO- and -. It represents a group selected from the group consisting of O-. Further, R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Among them, it is preferable that E 1 and E 2 are each independently -S-.
  • D 1 and D 2 each independently represent an acyclic group which may have a substituent. D 1 and D 2 may be joined together to form a ring.
  • the number of carbon atoms of the group represented by D 1 to D 2 is, independently of each other, usually 1 to 100.
  • the number of carbon atoms of the acyclic group in D 1 to D 2 is preferably 1 to 13.
  • Examples of the non-cyclic group for D 1 to D 2 include an alkyl group having 1 to 6 carbon atoms; a cyano group; a carboxyl group; a fluoroalkyl group having 1 to 6 carbon atoms; an alkoxy group having 1 to 6 carbon atoms.
  • R x represents an organic group having 1 to 12 carbon atoms.
  • R x include an alkoxy group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms which may be substituted with a hydroxyl group.
  • R a represents an alkyl group having 1 to 6 carbon atoms; and an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, which has 6 carbon atoms.
  • R a represents an alkyl group having 1 to 6 carbon atoms; and an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, which has 6 carbon atoms.
  • R b is an alkyl group having 1 to 20 carbon atoms which may have a substituent; an alkenyl group having 2 to 20 carbon atoms which may have a substituent; A cycloalkyl group having 3 to 12 carbon atoms; and an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent;
  • the number of carbon atoms of the alkyl group having 1 to 20 carbon atoms in R b is preferably 1 to 12, and more preferably 4 to 10.
  • Examples of the alkyl group having 1 to 20 carbon atoms for R b include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group.
  • Examples of the substituent that the alkyl group having 1 to 20 carbon atoms in R b may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like having 2 to 12 carbon atoms.
  • N,N-dialkylamino group methoxy group, ethoxy group, isopropoxy group, butoxy group, etc., alkoxy group having 1 to 20 carbon atoms; methoxymethoxy group, methoxyethoxy group, etc., having 1 to 12 carbon atoms
  • the alkenyl group having 2 to 20 carbon atoms in R b preferably has 2 to 12 carbon atoms.
  • Examples of the alkenyl group having 2 to 20 carbon atoms for R b include, for example, vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group.
  • Dodecenyl group tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, and icosenyl group.
  • Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R b include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R b.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms for R b include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Of these, a cyclopentyl group and a cyclohexyl group are preferable as the cycloalkyl group.
  • Examples of the substituent that the cycloalkyl group having 3 to 12 carbon atoms in R b may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like having 2 to 12 carbon atoms.
  • N,N-dialkylamino group an alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group; an alkoxy group having 1 to 6 carbon atoms such as methoxy group, ethoxy group, isopropoxy group Group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group.
  • a halogen atom such as a fluorine atom and a chlorine atom
  • a cyano group an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a methoxy group and an ethoxy group Groups, an alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group;
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the aromatic hydrocarbon ring group having 6 to 12 carbon atoms for R b include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like. Of these, a phenyl group is preferable as the aromatic hydrocarbon ring group.
  • Examples of the substituent that the aromatic hydrocarbon ring group having 6 to 12 carbon atoms in R b may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like.
  • fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom; —OCF 3 ; benzofuryl group; benzopyranyl group; benzodioxolyl group; A benzodioxanyl group; and the like.
  • a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methoxy group, an ethoxy group, an isopropoxy group, a butoxy group and the like having 1 to 20 carbon atoms Alkoxy group; nitro group; aromatic heterocyclic group having 2 to 20 carbon atoms such as furanyl group and thiophenyl group; cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; A fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom, such as a trifluoromethyl group, a pentafluoroethyl group, and —CH 2 CF 3 ; —OCF 3 ; is preferable.
  • the number of substituents may be one
  • D 1 and D 2 When D 1 and D 2 together form a ring, the aforementioned D 1 and D 2 form an organic group containing a ring.
  • this organic group include groups represented by the following formula. In the following formula, * represents carbon to which each organic group is bonded to D 1 and D 2 .
  • R * represents an alkyl group having 1 to 3 carbon atoms.
  • R ** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
  • R *** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
  • R *** represents a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, and —COOR 13 .
  • R 13 represents an alkyl group having 1 to 3 carbon atoms.
  • the substituent that the phenyl group may have include a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxyl group, a carboxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group and an amino group.
  • the substituent is preferably a halogen atom, an alkyl group, a cyano group or an alkoxy group.
  • the phenyl group may have one or more substituents. Further, the plurality of substituents may be the same as or different from each other.
  • the number of carbon atoms of the group represented by D 3 is usually 3 to 100.
  • R f represents a group selected from the group consisting of a hydrogen atom; and an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R g represents a group selected from the group consisting of a hydrogen atom; and an organic group having 1 to 30 carbon atoms which may have a substituent.
  • An alkynyl group having 2 to 20 carbon atoms which may have a substituent; a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent; a carbon which may have a substituent Aromatic hydrocarbon ring group having 6 to 30 atoms; Aromatic heterocyclic group having 2 to 30 carbon atoms which may have a substituent; -G x -Y x -F x ; -SO 2 R a -C( O)-R b ; -CS-NH-R b ; The meanings of R a and R b are as described above.
  • the preferable range of the number of carbon atoms of the alkyl group having 1 to 20 carbon atoms in R g and the exemplified substances are the same as the alkyl group having 1 to 20 carbon atoms in R b .
  • Examples of the substituent that the alkyl group having 1 to 20 carbon atoms in R g may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like having 2 to 12 carbon atoms.
  • N,N-dialkylamino group methoxy group, ethoxy group, isopropoxy group, butoxy group, etc., alkoxy group having 1 to 20 carbon atoms; methoxymethoxy group, methoxyethoxy group, etc., having 1 to 12 carbon atoms
  • the preferable range of the number of carbon atoms of the alkenyl group having 2 to 20 carbon atoms in R g and the exemplified substances are the same as the alkenyl group having 2 to 20 carbon atoms in R b .
  • Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • alkynyl group having 2 to 20 carbon atoms in R g examples include ethynyl group, propynyl group, 2-propynyl group (propargyl group), butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group, 2- Examples thereof include a pentynyl group, a hexynyl group, a 5-hexynyl group, a heptynyl group, an octynyl group, a 2-octynyl group, a nonanyl group, a decanyl group and a 7-decanyl group.
  • Examples of the substituent which may have an alkynyl group having 2 to 20 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the cycloalkyl group having 3 to 12 carbon atoms in R b .
  • Examples of the substituent which may have a cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g include a phenyl group and a naphthyl group. Among them, a phenyl group is more preferable as the aromatic hydrocarbon ring group.
  • Examples of the substituent which the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g may have include the same examples as the substituent which the acyclic group in D 1 to D 2 may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in R g include 1-benzofuranyl group, 2-benzofuranyl group, imidazolyl group, indolinyl group, flazanyl group, oxazolyl group, quinolyl group, thiadiazolyl group, thiazolyl group.
  • aromatic heterocyclic group a monocyclic aromatic heterocyclic group such as a furanyl group, a pyranyl group, a thienyl group, an oxazolyl group, a flazanyl group, a thiazolyl group, and a thiadiazolyl group; and a benzothiazolyl group, benzoxazol group Zolyl group, quinolyl group, 1-benzofuranyl group, 2-benzofuranyl group, phthalimido group, benzo[c]thienyl group, benzo[b]thienyl group, thiazolopyridyl group, thiazolopyrazinyl group, benzisoxazoli And a benzoxiadiazolyl group and a benzothiadiazolyl group;
  • Examples of the substituent that the aromatic heterocyclic group having 2 to 30 carbon atoms in R g may have include the same examples as the substituent that the acyclic group in D 1 to D 2 may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • G x is a divalent aliphatic hydrocarbon group having 1 to 30 carbon atoms which may have a substituent; and a divalent aliphatic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
  • R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the "divalent aliphatic hydrocarbon group” is preferably a divalent chain aliphatic
  • R 15 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y x is preferably —O—, —O—C( ⁇ O)—O— and —C( ⁇ O)—O—.
  • F x represents an organic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle.
  • the number of carbon atoms in this organic group is preferably 2 or more, more preferably 7 or more, further preferably 8 or more, particularly preferably 10 or more, and preferably 30 or less.
  • the number of carbon atoms of the organic group does not include the carbon atoms of the substituent.
  • Examples of the aromatic hydrocarbon ring in F x include aromatic hydrocarbon rings having 6 to 30 carbon atoms such as benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, and fluorene ring.
  • the plurality of aromatic hydrocarbon rings may be the same as or different from each other.
  • the aromatic hydrocarbon ring in F x may have a substituent.
  • substituents that the aromatic hydrocarbon ring in F x may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methyl group, an ethyl group, a propyl group and the like, having 1 to 6 carbon atoms.
  • R b is as described above.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the aromatic heterocycle in F x include 1H-isoindole-1,3(2H)-dione ring, 1-benzofuran ring, 2-benzofuran ring, acridine ring, isoquinoline ring, imidazole ring, indole ring, oxa Diazole ring, oxazole ring, oxazolopyrazine ring, oxazolopyridine ring, oxazolopyridazyl ring, oxazolopyrimidine ring, quinazoline ring, quinoxaline ring, quinoline ring, cinnoline ring, thiadiazole ring, thiazole ring, thiazolopyrazine Ring, thiazolopyridine ring, thiazolopyridazine ring, thiazolopyrimidine ring, thiophene ring, triazine ring, triazole ring, naphthyr
  • the aromatic heterocycle in F x may have a substituent.
  • substituents which the aromatic heterocyclic ring in the F x may have for example, include the same examples as the substituent group which may have an aromatic hydrocarbon ring in F x.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • F x include “a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, which may have a substituent and has 2 to 20 carbon atoms”.
  • this cyclic group may be appropriately referred to as “cyclic group (a)”.
  • Examples of the substituent that the cyclic group (a) may have include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • cyclic group (a) examples include a hydrocarbon ring group having 6 to 20 carbon atoms which may have a substituent and which has at least one aromatic hydrocarbon ring having 6 to 18 carbon atoms. Can be mentioned. Hereinafter, this hydrocarbon ring group may be appropriately referred to as “hydrocarbon ring group (a1)”.
  • hydrocarbon ring group (a1) examples include a phenyl group (6 carbon atoms), a naphthyl group (10 carbon atoms), an anthracenyl group (14 carbon atoms), a phenanthrenyl group (14 carbon atoms), a pyrenyl group. (16 carbon atoms), fluorenyl group (13 carbon atoms), indanyl group (9 carbon atoms), 1,2,3,4-tetrahydronaphthyl group (10 carbon atoms), 1,4-dihydronaphthyl group Examples thereof include aromatic hydrocarbon ring groups having 6 to 18 carbon atoms such as (having 10 carbon atoms).
  • hydrocarbon ring group (a1) examples include groups represented by the following formulas (1-1) to (1-21). Moreover, these groups may have a substituent.
  • “ ⁇ ” represents a bond with Y x extending from any position of the ring.
  • cyclic group (a) has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 18 carbon atoms and an aromatic heterocycle having 2 to 18 carbon atoms. And a heterocyclic group having 2 to 20 carbon atoms which may have a substituent.
  • this heterocyclic group may be referred to as “heterocyclic group (a2)” as appropriate.
  • heterocyclic group (a2) examples include a phthalimido group, a 1-benzofuranyl group, a 2-benzofuranyl group, an acridinyl group, an isoquinolinyl group, an imidazolyl group, an indolinyl group, a flazanyl group, an oxazolyl group, an oxazolopyrazinyl group and an oxaxyl group.
  • heterocyclic group (a2) examples include groups represented by the following formulas (2-1) to (2-51). Moreover, these groups may have a substituent.
  • “ ⁇ ” represents a bond with Y x extending from any position of the ring.
  • X represents —CH 2 —, —NR c —, an oxygen atom, a sulfur atom, —SO— or —SO 2 —.
  • Y and Z each independently represent -NR c -, an oxygen atom, a sulfur atom, -SO- or -SO 2 -.
  • E represents —NR c —, an oxygen atom or a sulfur atom.
  • R c represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group. (However, in each formula, an oxygen atom, a sulfur atom, —SO—, and —SO 2 — are not adjacent to each other.).
  • F x is “a cyclic group having 2 to 20 carbon atoms, which has at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, and which may have a substituent, And an alkyl group having 1 to 18 carbon atoms, which is substituted with a hydrogen atom and may have a substituent other than the above cyclic group.
  • this substituted alkyl group may be appropriately referred to as a “substituted alkyl group (b)”.
  • Examples of the alkyl group having 1 to 18 carbon atoms in the substituted alkyl group (b) include a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, which may have a substituent and has 2 to 20 carbon atoms is, for example, a cyclic group.
  • the group of the range demonstrated as group (a) is mentioned.
  • “at least one of an aromatic hydrocarbon ring and an aromatic heterocycle” may be directly bonded to a carbon atom of an alkyl group having 1 to 18 carbon atoms, and may be a linking group. It may be bound via.
  • the meaning of R 15 is as described above.
  • a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, which may have a substituent and has 2 to 20 carbon atoms is a fluorenyl group.
  • a group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle such as a benzothiazolyl group; an optionally substituted aromatic hydrocarbon ring group; an optionally substituted aromatic heterocyclic group; a linking group A group consisting of an optionally substituted aromatic hydrocarbon ring having a group; and a group consisting of an optionally substituted aromatic heterocycle having a linking group.
  • Preferred examples of the aromatic hydrocarbon ring group in the substituted alkyl group (b) include phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, fluorenyl group and the like aromatic carbon ring having 6 to 20 carbon atoms.
  • a hydrogen ring group is mentioned.
  • the aromatic hydrocarbon ring group in the substituted alkyl group (b) may have a substituent.
  • this substituent include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Preferred examples of the aromatic heterocyclic group in the substituted alkyl group (b) include a phthalimido group, a 1-benzofuranyl group, a 2-benzofuranyl group, an acridinyl group, an isoquinolinyl group, an imidazolyl group, an indolinyl group, a flazanyl group, an oxazolyl group and an oxaxyl group.
  • the aromatic heterocyclic group in the substituted alkyl group (b) may have a substituent.
  • this substituent include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the “group consisting of an aromatic hydrocarbon ring having a linking group” and the “group consisting of an aromatic heterocycle having a linking group” in the substituted alkyl group (b) include, for example, a phenylthio group, a naphthylthio group and an anthracenylthio group.
  • the "group consisting of an aromatic hydrocarbon ring having a linking group” and the “group consisting of an aromatic heterocycle having a linking group” in the substituted alkyl group (b) may each have a substituent.
  • this substituent include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the substituent other than the cyclic group which the substituted alkyl group (b) may have include the same examples as the substituent which the aromatic hydrocarbon ring in F x may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • substituted alkyl group (b) examples include groups represented by the following formulas (3-1) to (3-11). Moreover, these groups may have a substituent.
  • “ ⁇ ” represents a bond with Y x extending from any position of the ring.
  • * represents a bonding position.
  • F x is preferably a group represented by any of the following formulas (i-1) to (i-9). Further, particularly when Ar is represented by the formula (II-3) or the formula (II-4), F x is a group represented by any one of the following formulas (i-1) to (i-13). Is preferred. The groups represented by the following formulas (i-1) to (i-13) may have a substituent. Moreover, in the following formula, * represents a bonding position.
  • F x is particularly preferably a group represented by any of the following formulas (ii-1) to (ii-18).
  • Ar is represented by the formula (II-3) or the formula (II-4)
  • F x is a group represented by any of the following formulas (ii-1) to (ii-24). Is particularly preferable.
  • the groups represented by the following formulas (ii-1) to (ii-24) may have a substituent.
  • the meaning of Y is as described above.
  • * represents a bonding position.
  • the total number of ⁇ electrons contained in the ring structure in F x is preferably 8 or more, more preferably 10 or more, and 20 or less. It is preferably 18 or less, and more preferably 18 or less.
  • the total number of ⁇ electrons contained in the ring structure in F x is preferably 4 or more, and 6 or more. More preferably, it is preferably 20 or less, and more preferably 18 or less.
  • R g at least one of —CH 2 — contained in the alkyl group having 1 to 20 carbon atoms which may have a substituent; and the alkyl group having 1 to 20 carbon atoms is —O.
  • R h represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
  • R h include (1) a hydrocarbon ring group having 6 to 40 carbon atoms, which has at least one aromatic hydrocarbon ring having 6 to 30 carbon atoms.
  • the hydrocarbon ring group having the aromatic hydrocarbon ring may be appropriately referred to as "(1) hydrocarbon ring group”.
  • Specific examples of the (1) hydrocarbon ring group include the following groups.
  • the hydrocarbon ring group may have a substituent.
  • the substituent which the hydrocarbon ring group may have includes, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a C 1 to 6 carbon atom such as a methyl group, an ethyl group and a propyl group.
  • R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R h has (2) at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms. And a heterocyclic group having 2 to 40 carbon atoms.
  • the heterocyclic group having this aromatic ring may be appropriately referred to as "(2) heterocyclic group”.
  • Specific examples of the heterocyclic group include the following groups. Each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the heterocyclic group may have a substituent.
  • substituent that the (2) heterocyclic group may have include the same examples as the (1) substituent that the hydrocarbon ring group may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R h is (3) one or more groups selected from the group consisting of aromatic hydrocarbon ring groups having 6 to 30 carbon atoms and aromatic heterocyclic groups having 2 to 30 carbon atoms. And an alkyl group having 1 to 12 carbon atoms, which is substituted with.
  • the substituted alkyl group may be appropriately referred to as “(3) substituted alkyl group”.
  • Examples of the "alkyl group having 1 to 12 carbon atoms" in the substituted alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group and the like.
  • Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g .
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in R g .
  • the substituted alkyl group may further have a substituent.
  • substituents that the (3) substituted alkyl group may have include the same examples as the (1) substituent that the hydrocarbon ring group may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R h is (4) one or more groups selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms. And an alkenyl group having 2 to 12 carbon atoms, which is substituted with.
  • the substituted alkenyl group may be appropriately referred to as “(4) substituted alkenyl group”.
  • Examples of the "alkenyl group having 2 to 12 carbon atoms" in the substituted alkenyl group include vinyl group and allyl group.
  • Examples of the "aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g .
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in R g .
  • the substituted alkenyl group may further have a substituent.
  • substituent which the (4) substituted alkenyl group may have include the same examples as the (1) substituent which the hydrocarbon ring group may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R h is (5) one or more groups selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms. And an alkynyl group having 2 to 12 carbon atoms, which is substituted with.
  • the substituted alkynyl group may be appropriately referred to as "(5) substituted alkynyl group”.
  • Examples of the “alkynyl group having 2 to 12 carbon atoms” in the substituted alkynyl group include ethynyl group and propynyl group.
  • Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g .
  • Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in R g .
  • the substituted alkynyl group may further have a substituent.
  • substituents that the substituted alkynyl group may have (5) include the same examples as the substituent that the (1) hydrocarbon ring group may have.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R h include the following groups.
  • R h More preferable specific examples of R h include the following groups.
  • R h described above may further have a substituent.
  • substituents include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a vinyl group, an allyl group and the like.
  • the meanings of R a and R b are as described above.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R i represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
  • R i include a hydrocarbon ring group having 6 to 40 carbon atoms, which has at least one aromatic hydrocarbon ring having 6 to 30 carbon atoms.
  • Another preferable example of R i has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms, Examples thereof include heterocyclic groups having 2 to 40 carbon atoms.
  • R i The following groups are mentioned as particularly preferable specific examples of R i .
  • the meaning of R is as described above.
  • the group represented by any of the formulas (II-1) to (II-4) may further have a substituent in addition to D 1 to D 3 .
  • substituents include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, and an N-alkylamino group having 1 to 6 carbon atoms.
  • N,N-dialkylamino group having 2 to 12 carbon atoms alkoxy group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, carboxyl group, thioalkyl group having 1 to 6 carbon atoms , N-alkylsulfamoyl groups having 1 to 6 carbon atoms and N,N-dialkylsulfamoyl groups having 2 to 12 carbon atoms.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Preferred examples of Ar in the formula (I) include groups represented by the following formulas (III-1) to (III-7).
  • the groups represented by formulas (III-1) to (III-7) may have an alkyl group having 1 to 6 carbon atoms as a substituent.
  • * represents a bonding position.
  • a 1 , A 2 , B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, and an aromatic group which may have a substituent.
  • the number of carbon atoms of the group represented by A 1 , A 2 , B 1 and B 2 (including the number of carbon atoms of the substituent) is usually 3 to 100 each independently.
  • a 1 , A 2 , B 1 and B 2 each independently have a cycloaliphatic group having 5 to 20 carbon atoms which may have a substituent, or a substituent.
  • Aromatic groups having 2 to 20 carbon atoms are preferable.
  • Examples of the cycloaliphatic group in A 1 , A 2 , B 1 and B 2 include a cyclopentane-1,3-diyl group, a cyclohexane-1,4-diyl group, a cycloheptane-1,4-diyl group, A cycloalkanediyl group having 5 to 20 carbon atoms such as cyclooctane-1,5-diyl group; a carbon atom such as decahydronaphthalene-1,5-diyl group, decahydronaphthalene-2,6-diyl group A bicycloalkanediyl group of the number 5 to 20; and the like.
  • an optionally substituted cycloalkanediyl group having 5 to 20 carbon atoms is preferable, a cyclohexanediyl group is more preferable, and a cyclohexane-1,4-diyl group is particularly preferable.
  • the cycloaliphatic group may be in the trans form, the cis form, or a mixture of the cis form and the trans form. Among them, the trans form is more preferable.
  • Examples of the substituent that the cycloaliphatic group in A 1 , A 2 , B 1 and B 2 may have include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, Examples thereof include a nitro group and a cyano group.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • Examples of the aromatic group for A 1 , A 2 , B 1 and B 2 include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1, Aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as 5-naphthylene group, 2,6-naphthylene group, 4,4'-biphenylene group; furan-2,5-diyl group, thiophene-2,5 -Diyl group, pyridine-2,5-diyl group, pyrazine-2,5-diyl group and the like; and aromatic heterocyclic groups having 2 to 20 carbon atoms; and the like.
  • an aromatic hydrocarbon ring group having 6 to 20 carbon atoms is preferable, a phenylene group is more preferable, and a 1,4-phenylene group is particularly preferable.
  • the substituent which the aromatic group in A 1 , A 2 , B 1 and B 2 may have is, for example, the same as the substituent which the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have.
  • An example is given.
  • the number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
  • R 22 and R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms; and a methylene group contained in the aliphatic hydrocarbon group having 3 to 20 carbon atoms.
  • the hydrogen atom contained in the organic group of G 1 and G 2 may be substituted with an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a halogen atom.
  • the methylene groups (—CH 2 —) at both ends of G 1 and G 2 are not replaced with —O— or —C( ⁇ O)—.
  • Specific examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 1 to 20 carbon atoms.
  • Specific examples of the aliphatic hydrocarbon group having 3 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 3 to 20 carbon atoms.
  • P 1 and P 2 each independently represent a polymerizable group.
  • the polymerizable group for P 1 and P 2 include a group represented by CH 2 ⁇ CR 31 —C( ⁇ O)—O— such as an acryloyloxy group and a methacryloyloxy group; a vinyl group; a vinyl ether group; p-stilbene group; acryloyl group; methacryloyl group; carboxyl group; methylcarbonyl group; hydroxyl group; amide group; alkylamino group having 1 to 4 carbon atoms; amino group; epoxy group; oxetanyl group; aldehyde group; isocyanate group; thio Isocyanate group; and the like.
  • R 31 represents a hydrogen atom, a methyl group, or a chlorine atom.
  • the benzothiazole ring means a ring structure having a structure represented by the following formula (II).
  • the liquid crystal compound represented by the formula (I) can be produced, for example, by reacting a hydrazine compound with a carbonyl compound described in International Publication No. 2012/147904 and International Publication No. 2018/173954.
  • liquid crystal compound represented by the formula (I) include compounds represented by the following formulas.
  • chiral compound a compound containing an asymmetric carbon atom can be used.
  • the chiral compound can positively cause the molecules of the liquid crystal compound contained in the liquid crystal composition to twist in one direction. Therefore, it is possible to prevent the twist direction of the alignment direction from becoming non-uniform, and thus it is possible to suppress the uneven alignment of the liquid crystal cured layer.
  • Examples of the chiral compound include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, and JP-A-2000. -290315, JP-A-6-072962, JP-A-6468444, WO98/00428, JP-A-2007-176870, and the like. Further, as the chiral compound, a commercially available product can be used, and for example, it can be obtained as BASF's Palio Color LC756.
  • the chiral compound may be used alone or in combination of two or more kinds at any ratio.
  • the helical twisting power (HTP) of the chiral compound is arbitrary.
  • the HTP is preferably large from the viewpoint of positively causing the twist of the alignment direction of the molecules of the liquid crystal compound.
  • the HTP of the chiral compound is preferably 9.0 or higher, and more preferably 20.0 or higher at 25°C.
  • the upper limit of HTP is not particularly limited and may be 200 or less, for example.
  • C C represents the content ratio (% by weight) of the chiral compound in the liquid crystal composition during alignment
  • P L represents the twist pitch (nm) in the alignment direction of the molecules of the liquid crystal compound.
  • the pitch P L can be obtained by actual measurement of electron micrographs.
  • the amount of the chiral compound can be arbitrarily adjusted within the range where a desired liquid crystal cured film can be obtained.
  • the amount of the chiral compound is preferably 0.05 parts by weight or more, more preferably 0.07 parts by weight or more, particularly preferably 0.10 parts by weight or more, based on 100 parts by weight of the liquid crystal compound. It is preferably 0.5 parts by weight or less, more preferably 0.4 parts by weight or less, and particularly preferably 0.3 parts by weight or less.
  • the pitch of twist can be made sufficiently long, so that the disturbance of the polarization state of the light passing through the liquid crystal cured layer can be effectively suppressed.
  • the liquid crystal composition contains the liquid crystal compound and the chiral compound described above. Further, the liquid crystal composition may contain an arbitrary component in combination with the liquid crystal compound and the chiral compound. As the optional component, one type may be used alone, or two or more types may be used in combination at any ratio.
  • the optional components include, for example, a polymerization initiator.
  • the photopolymerization initiator is preferable.
  • the type of polymerization initiator can be selected according to the type of polymerizable compound contained in the liquid crystal composition. For example, if the polymerizable compound is radically polymerizable, a radical polymerization initiator may be used. Further, for example, if the polymerizable compound is anionically polymerizable, an anionic polymerization initiator can be used. Furthermore, for example, if the polymerizable compound is cationically polymerizable, a cationic polymerization initiator can be used. As the polymerization initiator, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the amount of the polymerization initiator is preferably 0.1 part by weight or more, more preferably 0.5 part by weight or more, preferably 30 parts by weight or less, and more preferably 10 parts by weight with respect to 100 parts by weight of the liquid crystal compound. Below the section. When the amount of the polymerization initiator falls within the above range, the polymerization can proceed efficiently.
  • a surfactant is a surfactant containing a fluorine atom in the molecule.
  • a surfactant containing a fluorine atom in the molecule is preferable from the viewpoint of improving the coatability of the liquid crystal composition and stably obtaining a liquid crystal cured layer having excellent orientation.
  • the surfactant containing a fluorine atom in the molecule may be appropriately referred to as a “fluorine-based surfactant”.
  • the fluorosurfactant preferably has a log P within a predetermined range.
  • LogP refers to the 1-octanol/water partition coefficient.
  • the preferable range of logP of the fluorosurfactant is preferably 3.5 or more and 7.5 or less.
  • the logP of the fluorosurfactant can be measured by the following measuring method.
  • a sample solution containing 1% by weight of a fluorosurfactant was prepared, and HPLC/ELSD was carried out by a method substantially conforming to JIS 7260-117:2006 ⁇ Partition coefficient (1-octanol/water) measurement-high performance liquid chromatography ⁇ .
  • An analysis high performance liquid chromatography/evaporative light scattering detection analysis is performed to measure the elution time (rt).
  • a standard compound having a known logP value described in JIS 7260-117:2006 was subjected to HPLC/ELSD analysis in the same manner as the above-mentioned fluorosurfactant, and the elution time (rt) was determined. taking measurement. Based on the measurement results of the standard compound, a calibration curve showing the relationship between the elution time and logP is created. Then, the elution time measured for the fluorosurfactant is applied to the above calibration curve to determine the logP of the fluorosurfactant.
  • the surfactant is preferably a nonionic surfactant.
  • the surfactant is a nonionic surfactant containing no ionic group, the surface state and orientation of the liquid crystal cured layer can be made particularly good.
  • surfactant examples include Surflon series (S420 etc.) manufactured by AGC Seimi Chemical Co., Futgent series (251, FTX-212M, FTX-215M, FTX-209 etc.) manufactured by Neos, manufactured by DIC. Fluorosurfactants such as Megafac series (F-444, etc.) can be mentioned. Further, one kind of the surfactant may be used alone, or two or more kinds thereof may be used in combination at an arbitrary ratio.
  • the amount of the surfactant is preferably 0.03 parts by weight or more, more preferably 0.05 parts by weight or more, preferably 0.50 parts by weight or less, and more preferably 100 parts by weight of the liquid crystal compound. It is 0.40 parts by weight or less, more preferably 0.30 parts by weight or less.
  • a solvent can be mentioned.
  • the solvent those capable of dissolving the liquid crystal compound are preferable.
  • An organic solvent is usually used as such a solvent.
  • organic solvents include ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetic acid ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as chloroform, dichloromethane and dichloroethane; 1 , 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,2-dimethoxyethane and the like; and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene.
  • the solvent may be used alone or in combination of two or more kinds at an
  • the boiling point of the solvent is preferably 60° C. to 250° C., more preferably 60° C. to 150° C. from the viewpoint of easy handling.
  • the amount of the solvent is preferably 200 parts by weight or more, more preferably 250 parts by weight or more, particularly preferably 300 parts by weight or more, preferably 650 parts by weight or less, and more preferably 100 parts by weight of the liquid crystal compound. It is 550 parts by weight or less, particularly preferably 450 parts by weight or less.
  • a tilt acting component capable of exerting an effect of increasing the substantially maximum tilt angle of the molecules of the liquid crystal compound.
  • the tilting component When the tilting component is used, the tilting of the molecules of the liquid crystalline compound can be promoted, and a liquid crystal cured layer having a large tilt angle of the molecules of the liquid crystalline compound can be easily obtained.
  • the inclination acting component since the inclination of the molecules of the liquid crystal compound can be promoted by adjusting the operation or the conditions in the process of producing the liquid crystal cured layer, the inclination acting component may not necessarily be used.
  • a gradient action component for example, the components described in JP-A-2018-163218, JP-A-2018-162379, and International Publication No. 2018/173778 can be used.
  • liquid crystal composition may include, for example, metals; metal complexes; metal oxides such as titanium oxide; coloring agents such as dyes and pigments; luminescent materials such as fluorescent materials and phosphorescent materials; antioxidants.
  • metals for example, metals; metal complexes; metal oxides such as titanium oxide; coloring agents such as dyes and pigments; luminescent materials such as fluorescent materials and phosphorescent materials; antioxidants.
  • the amounts of these components may each be 0.1 to 20 parts by weight based on 100 parts by weight of the liquid crystal compound.
  • the liquid crystal cured layer is a layer of a cured product obtained by curing the above liquid crystal composition. Curing of the liquid crystal composition is usually achieved by polymerizing a polymerizable compound contained in the liquid crystal composition. Therefore, the liquid crystal cured layer usually contains a polymer of a part or all of the components included in the liquid crystal composition. For example, when the liquid crystal compound has a polymerizability, the liquid crystal compound can be polymerized during curing of the liquid crystal composition. Therefore, the liquid crystal cured layer is a polymer of the liquid crystal compound polymerized while maintaining the alignment state before the polymerization. Can be a layer containing. As described above, this polymerized liquid crystal compound is also included in the term “liquid crystal compound contained in the liquid crystal cured layer”.
  • the fluidity before curing is lost, so the alignment state of the liquid crystal compound is usually fixed in the alignment state before curing. Then, at least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer.
  • the liquid crystal cured layer may include the tilted alignment layer as a part thereof.
  • the entire cured layer may be an inclined alignment layer.
  • the molecules of the liquid crystalline compound contained in the layer portion other than the tilt alignment layer are usually parallel to the layer plane of the liquid crystal cured layer (the tilt angle is 0°), or It is perpendicular to the layer plane of the liquid crystal cured layer (inclination angle is 90°).
  • the fact that at least a part of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are tilted with respect to the layer plane of the liquid crystal cured layer means that the cross section of the liquid crystal cured layer is observed with a polarization microscope having sufficient resolution. Can be confirmed by This observation may be carried out by inserting a wave plate between the observation sample and the objective lens of the polarizing microscope, if necessary, in order to make it easier to visually recognize the tilt of the molecules of the liquid crystal compound.
  • the linear polarization phase difference R( ⁇ ) as the retardation of the liquid crystal cured layer at the incident angle ⁇ is measured in the measurement direction perpendicular to the in-plane fast axis of the liquid crystal cured layer.
  • the retardation ratio R( ⁇ )/the linear polarization phase difference R( ⁇ ) of the liquid crystal cured layer at the incident angle ⁇ is divided by the linear polarization phase difference R(0°) of the liquid crystal cured layer at the incident angle 0°. Find R (0°).
  • the linear polarization phase difference R(0°) of the liquid crystal cured layer at an incident angle of 0° represents the in-plane retardation LRe of the liquid crystal cured layer.
  • FIG. 1 is a graph in which the retardation ratio R( ⁇ )/R(0°) of a liquid crystal cured layer according to an example is plotted against the incident angle ⁇ .
  • the retardation ratio R( ⁇ )/R(0°) is as shown by the example shown by the broken line in FIG.
  • the molecules of the liquid crystal compound tilted with respect to the plane of the layer may be oriented in one direction (tilted orientation). In this case, the tilt angle formed by the molecules of the liquid crystalline compound with respect to the plane of the layer may be constant.
  • the molecules of the liquid crystalline compound tilted with respect to the plane of the layer are oriented such that the tilt angle formed with respect to the plane of the layer is smaller as it is closer to one side of the liquid crystal cured layer and larger as it is farther from the one side. Good (hybrid orientation).
  • the liquid crystal composition contains a chiral compound
  • the alignment direction of the molecules of the liquid crystalline compound in the liquid crystal cured layer is twisted in one direction (that is, one of rightward and leftward). ..
  • the chiral compound causes a positive twist in one direction
  • the liquid crystal cured layer the unevenness of the twist direction in the alignment direction of the molecules of the liquid crystal compound is suppressed. Therefore, in the liquid crystal cured layer included in the liquid crystal cured film according to the embodiment of the present invention, it is possible to prevent the orientation directions of molecules from becoming non-uniform. In particular, it is possible to prevent the components parallel to the layer plane in the orientation direction from becoming non-uniform. Therefore, alignment unevenness can be suppressed.
  • the in-plane retardation LRe and the optical rotation retardation CRe of the liquid crystal cured layer at the measurement wavelength of 550 nm satisfy the above formula (1).
  • the parameter XRe defined by the following formula (2) is usually 500 nm or more, preferably 1000 nm or more, particularly preferably 1500 nm or more, usually 20000 nm or less, preferably 10000 nm or less, particularly preferably 5000 nm or less. ..
  • the fact that the parameter XRe represented by the formula (2) is within the above range satisfying the formula (1) means that the twist of the alignment direction of the molecules of the liquid crystal compound is gentle in the thickness direction.
  • the term “gentle” in the twist in the orientation direction means that the pitch of the twist in the orientation direction of the molecule (period of the helical structure) is long. That is, the twist in the orientation direction is "gradual" means that the difference in the orientation direction per unit thickness is small.
  • FIG. 2 is a perspective view schematically showing an optical system in which a pair of linear polarizers 110 and 120 set in a para-Nicol are arranged on both sides of a certain liquid crystal layer 100.
  • Paranicol refers to a state in which the polarization transmission axis A 110 of one linear polarizer 110 and the polarization transmission axis A 120 of the other linear polarizer 120 are parallel to each other.
  • natural light L1 enters one of the linear polarizers 110
  • linearly polarized light L2 having a vibration direction parallel to the polarization transmission axis A 110 of the linear polarizer 110 is transmitted.
  • the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
  • the linearly polarized light L2 is transmitted through the liquid crystal layer 100, and the transmitted light L3 is incident on the other linear polarizer 120.
  • the transmitted light L3 Of the transmitted light L3, only the component having the vibration direction parallel to the polarization transmission axis A 120 of the linear polarizer 120 is transmitted and becomes the transmitted light L4, and the other components are blocked by the linear polarizer 120.
  • the Gucci-Terry formula of the following formula (3) is known as the formula of the TN liquid crystal panel (SEMI color TFT liquid crystal display revised edition, “Edited color TFT liquid crystal display revised edition”). , Kyoritsu Shuppan, October 30, 2005, p.42-43).
  • the ratio (transmittance) I of light that can be transmitted through the linear polarizer 120 is represented.
  • ⁇ n the birefringence of the liquid crystal layer 100
  • d the thickness of the liquid crystal layer 100
  • the wavelength of light. Therefore, in the formula (3), ⁇ n ⁇ d represents the in-plane retardation of the liquid crystal layer 100.
  • the twist in the alignment direction of the molecules included in the liquid crystal layer 100 is not sufficiently “gradual”, and thus the polarization state is disturbed. It means that.
  • the twist in the orientation direction of the molecules is sufficiently “gradual”, which means that the disorder of the polarization state can be suppressed.
  • the liquid crystal layer 100 can change the polarization state of the transmitted light not only by optical rotation but also by the action of the in-plane retardation ⁇ n ⁇ d, the in-plane retardation ⁇ n ⁇ d is not less than the above-mentioned minimum point. In some cases, the transmittance I does not reach 0.0. As described above, when the optical rotation angle ⁇ is 90°, it can be expressed by using the formula (3) that the twist in the alignment direction is “gradual”.
  • the optical rotation angle of the liquid crystal cured layer according to the above-described embodiment is not necessarily 90°, and is usually a smaller value. Therefore, in the present embodiment, when it is assumed that the thickness of the liquid crystal cured layer is adjusted so that the liquid crystal cured layer has an optical rotation angle of 90°, the in-plane retardation that the liquid crystal cured layer will have is expressed by It is obtained as the parameter XRe represented by (2).
  • the parameter XRe thus obtained corresponds to the in-plane retardation ⁇ n ⁇ d in the Gucci-Terry equation of the equation (3). Therefore, by using this parameter XRe and the Gucci-Terry equation of the equation (3), the condition that the twist in the orientation direction is "gradual" is specified, and this condition is defined in the equation (1).
  • the parameter XRe can be adjusted by, for example, the type of liquid crystal compound; the type and amount of chiral compound; and the thickness of the liquid crystal cured layer.
  • the ratio CRe/D between the optical rotation retardation CRe of the liquid crystal cured layer and the thickness D of the liquid crystal cured layer at a measurement wavelength of 550 nm is preferably 0.0002 or more, more preferably 0.0005 or more, and particularly preferably 0.0010 or more. It is preferably 0.0133 or less, more preferably 0.0100 or less, and particularly preferably 0.0050 or less.
  • the ratio CRe/D is equal to or more than the lower limit value of the above range, the alignment direction of the molecules of the liquid crystal compound is effectively twisted, and thus the alignment unevenness can be effectively suppressed. Further, when the ratio CRe/D is equal to or less than the upper limit value of the above range, the twist of the alignment direction is gentle, so that the disturbance of the polarization state of the light passing through the liquid crystal cured layer can be effectively suppressed.
  • the optical retardation CRe of the liquid crystal cured layer at the measurement wavelength of 550 nm is preferably 1.0 nm or more, more preferably 1.2 nm or more, particularly preferably 1.5 nm or more, preferably 20 nm or less, more preferably 10 nm or less, Particularly preferably, it is 7 nm or less.
  • the optical rotation phase difference CRe is equal to or more than the lower limit value of the above range, the alignment unevenness can be effectively suppressed.
  • the optical rotation retardation CRe is equal to or less than the upper limit value of the range, it is possible to effectively suppress the disorder of the polarization state of the light passing through the liquid crystal cured layer.
  • the optical rotation retardation CRe can be adjusted by, for example, the type of liquid crystal compound; the type and amount of chiral compound; and the thickness of the liquid crystal cured layer.
  • the specific in-plane retardation LRe of the liquid crystal cured layer at the measurement wavelength of 550 nm can be arbitrarily set according to the application of the liquid crystal cured film.
  • the in-plane retardation LRe is preferably 50 nm or more, more preferably 55 nm or more, particularly preferably 60 nm or more, and preferably 90 nm or less, more preferably 85 nm or less, particularly preferably Is in the first range of 80 nm or less.
  • the in-plane retardation LRe is preferably 120 nm or more, more preferably 125 nm or more, particularly preferably 130 nm or more, and preferably 160 nm or less, more preferably 155 nm or less, particularly preferably 150 nm or less. It is in the second range.
  • the in-plane retardation LRe is in the first range, the liquid crystal cured layer can be used as a ⁇ /8 wave plate.
  • the in-plane retardation LRe is in the second range, the liquid crystal cured layer can be used as a ⁇ /4 wavelength plate.
  • the in-plane retardation LRe of the liquid crystal cured layer preferably exhibits reverse wavelength dispersion. Therefore, the in-plane retardations LRe(450) and LRe(550) of the liquid crystal cured layer at wavelengths of 450 nm and 550 nm preferably satisfy the following formula (N3), more preferably the following formula (N4). LRe(450)/LRe(550) ⁇ 1.00 (N3) LRe(450)/LRe(550) ⁇ 0.90 (N4) As described above, the liquid crystal cured layer having the in-plane retardation LRe having the reverse wavelength dispersion property can uniformly exhibit a function in a wide wavelength band in optical applications such as a quarter-wave plate or a half-wave plate. The liquid crystal cured layer having the in-plane retardation LRe having the reverse wavelength dispersion property can be realized by using the reverse dispersion liquid crystal compound as the liquid crystal compound.
  • the size of the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer as a whole layer can be represented by the substantially maximum tilt angle.
  • the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is usually 5° or more and 85° or less.
  • the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is preferably 40° or more, more preferably 46° or more, particularly preferably 56° or more, and preferably 85° or less, more preferably Is 83° or less, particularly preferably 80° or less.
  • the actual maximum tilt angle is an index showing the size of the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer.
  • a large substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer generally means that the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is large as a whole. Since a liquid crystal cured layer having a large substantially maximum tilt angle can appropriately adjust the birefringence in the thickness direction, when the liquid crystal cured layer is combined with a linear polarizer and provided as an antireflection film in an organic EL display device. In addition, reflection can be effectively suppressed in the tilt direction of the display surface. Therefore, it is possible to realize a polarizing plate that can achieve high viewing angle characteristics.
  • the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be measured by the measuring method described in Examples described later.
  • the molecules of the liquid crystal compound contained in the liquid crystal cured layer have a large tilt angle as a whole of the liquid crystal cured layer, the birefringence in the thickness direction of the liquid crystal cured layer can be appropriately adjusted. Therefore, when the liquid crystal cured layer is provided on the polarizing plate as the antireflection film, it is possible to obtain excellent viewing angle characteristics that reflection can be effectively suppressed in the tilt direction of the display surface.
  • the orientation direction of the molecules of the liquid crystal compound is usually uniform. Therefore, the liquid crystal cured layer can usually have a slow axis parallel to the alignment direction of the molecules of the liquid crystal compound when the liquid crystal cured layer is viewed from the thickness direction.
  • the liquid crystal cured layer preferably has excellent transparency.
  • the total light transmittance of the liquid crystal cured layer is preferably 75% or more, more preferably 80% or more, and particularly preferably 84% or more.
  • the haze of the liquid crystal cured layer is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
  • the total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer.
  • haze can be measured using a haze meter.
  • FIG. 4 and 5 are cross-sectional views schematically showing examples of the liquid crystal cured layers 200 and 300 included in the liquid crystal cured film according to the embodiment of the present invention, respectively.
  • the liquid crystal cured layer 200 may have a single-layer structure including only one layer.
  • the liquid crystal cured layer 300 may have a multilayer structure including a plurality of layers such as the first cured layer 310 and the second cured layer 320.
  • the layers such as the first cured layer and the second cured layer which are included in the liquid crystal cured layer may be appropriately referred to as “unit cured layer”.
  • liquid crystal cured layer 300 having a multilayer structure including a plurality of unit structure layers it is preferable that there is no other layer between the adjacent unit structure layers. Therefore, in the liquid crystal cured layer 300 including the first cured layer 310 and the second cured layer 320, it is preferable that there is no other layer between the first cured layer 310 and the second cured layer 320.
  • the contact between two layers without sandwiching another layer between them in this manner is sometimes referred to as “direct” contact.
  • the multi-layer structure as shown in FIG. 5 usually occurs due to the manufacturing method of the liquid crystal cured layer 300.
  • the surface 310U of the unit curing layer such as the first curing layer 310 containing the molecules of the reverse dispersion liquid crystal compound tilted with respect to the plane of the layer is usually formed on the surface 310U. It can function as an alignment film for increasing the tilt angle of the molecules of the reverse dispersion liquid crystalline compound contained in another unit cured layer such as the second cured layer 320 formed.
  • the reverse dispersion liquid crystal compound included in the liquid crystal cured layer 300 when it is desired to increase the tilt angle of the molecules of the reverse dispersion liquid crystal compound included in the liquid crystal cured layer 300 as a whole layer, a production including forming another unit cured layer on the previously formed unit cured layer. It is preferable to adopt the method.
  • the liquid crystal cured layer 300 including the first cured layer 310 and the second cured layer 320 when the first cured layer 310 functions as an alignment film in this manner, the reverse dispersion liquid crystal compound included in the second cured layer 320
  • the substantially maximum tilt angle of the molecule may be greater than the substantially maximum tilt angle of the molecule of the inverse dispersion liquid crystal compound included in the first curable layer 310.
  • Each unit curing layer included in the liquid crystal curing layer can be distinguished by the following method.
  • the liquid crystal cured layer is embedded with an epoxy resin to obtain a sample piece.
  • This sample piece is sliced in parallel with the thickness direction of the liquid crystal cured layer using a microtome to obtain an observation sample.
  • slicing is performed so that the slow axis of the liquid crystal cured layer and the cross section are parallel to each other.
  • the cross section exposed by the slice is observed using a polarization microscope.
  • This observation is performed by inserting a wave plate between the observation sample and the objective lens of the polarization microscope so that an image showing a color corresponding to the phase difference of the observation sample can be seen.
  • the portions having different colors are confirmed as boundaries between the unit cured layers, and each unit cured layer can be distinguished.
  • the molecules of the liquid crystalline compound contained in the liquid crystal cured layer are tilted with respect to the layer plane of the liquid crystal cured layer.
  • the molecules of the compound may not be tilted with respect to the layer plane of the liquid crystal cured layer. Therefore, for example, the molecules of the liquid crystal compound contained in some unit cured layers may be parallel or perpendicular to the layer plane of the liquid crystal cured layer. However, normally, the molecules of the liquid crystalline compound contained in any of the unit cured layers are inclined with respect to the layer plane of the liquid crystal cured layer. Therefore, in the liquid crystal cured layer 300 including the first cured layer 310 and the second cured layer 320 as in the example shown in FIG. 5, the molecules of the liquid crystalline compound contained in the first cured layer 310 are usually relative to the layer plane. The molecules of the liquid crystal compound included in the second cured layer 320 are inclined and inclined with respect to the layer plane.
  • the thickness of the liquid crystal cured layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 10.0 ⁇ m or less, more preferably 7.0 ⁇ m or less.
  • properties such as in-plane retardation LRe and optical rotation retardation CRe can be easily adjusted to desired ranges.
  • the liquid crystal cured layer having such a thickness is thinner than the conventional retardation film used for the reflection suppressing film of the organic EL display device, it can contribute to the thinning of the organic EL display device.
  • the liquid crystal cured film may be a film containing only the liquid crystal cured layer, or may be a film containing any layer in combination with the liquid crystal cured layer.
  • a base material used for producing a liquid crystal cured layer As an optional layer, a base material used for producing a liquid crystal cured layer; a retardation film; an adhesive layer for adhering to other members; a mat layer for improving the slipperiness of the film; an impact-resistant polymethacrylate resin layer, etc.
  • the method for producing the liquid crystal cured film is not particularly limited.
  • a liquid crystal cured film (I) a step of forming a layer of the liquid crystal composition, (Ii) a step of aligning a liquid crystalline compound contained in the layer of the liquid crystal composition, (Iii) curing a layer of the liquid crystal composition to obtain a liquid crystal cured layer, Can be manufactured by a manufacturing method including.
  • the layer of the liquid crystal composition is usually formed on an appropriate supporting surface.
  • the supporting surface any surface that can support the layer of the liquid crystal composition can be used. From the viewpoint of improving the surface condition of the liquid crystal cured layer, it is preferable to use a flat surface having no concave portions or convex portions as the supporting surface. Further, from the viewpoint of enhancing the productivity of the liquid crystal cured layer, it is preferable to use the surface of a long base material as the supporting surface.
  • the "long length” means a shape having a length of 5 times or more the width, preferably 10 times or more, and specifically, wound into a roll shape. The shape of the film is long enough to be stored or transported. The upper limit of the length is not particularly limited and may be 10,000 times or less the width.
  • a resin film or glass plate is used as the base material.
  • a thermoplastic resin is usually used as the resin.
  • a resin having a positive intrinsic birefringence value is preferable as the resin from the viewpoints of high orientation regulation force, high mechanical strength, and low cost.
  • a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and light weight.
  • a preferred example of the resin contained in the base material is a norbornene-based resin, which includes "Zeonor" manufactured by Nippon Zeon Co., Ltd.
  • the surface of the base material as a supporting surface is preferably subjected to a treatment for imparting an alignment regulating force in order to promote the alignment of the liquid crystal compound in the liquid crystal composition layer.
  • the alignment regulating force refers to a property of a surface that can align the liquid crystal compound contained in the liquid crystal composition. Examples of the treatment for imparting the alignment regulating force to the support surface include a photo-alignment treatment, a rubbing treatment, an ion beam alignment treatment, and a stretching treatment.
  • the liquid crystal composition is usually prepared in a fluid state. Therefore, the liquid crystal composition is usually applied to the supporting surface to form a layer of the liquid crystal composition.
  • the method for applying the liquid crystal composition include a curtain coating method, an extrusion coating method, a roll coating method, a spin coating method, a dip coating method, a bar coating method, a spray coating method, a slide coating method, a printing coating method, and a gravure method. The coating method, the die coating method, the gap coating method, and the dipping method are mentioned.
  • the step (ii) of orienting the liquid crystal compound contained in the layer of the liquid crystal composition may be performed.
  • the liquid crystal compound is usually aligned in a direction according to the alignment control force of the supporting surface by subjecting the layer of the liquid crystal composition to alignment treatment.
  • Alignment treatment is usually performed by adjusting the temperature of the liquid crystal composition layer to a predetermined alignment temperature.
  • the orientation temperature can be a temperature equal to or higher than the liquid crystallizing temperature of the liquid crystal composition. At this time, the orientation temperature is preferably lower than the glass transition temperature of the resin contained in the substrate. As a result, it is possible to suppress the occurrence of distortion of the base material due to the alignment treatment.
  • the liquid crystal compound is aligned in the direction according to the alignment control force of the supporting surface. Further, in the thickness direction, the liquid crystal compound is usually oriented so that at least a part thereof is largely inclined with respect to the layer plane. Thereby, the tilt angle of the liquid crystal compound with respect to the layer plane can be effectively increased.
  • the step (ii) is performed by adjusting the operation or conditions so that a liquid crystal cured layer having a large tilt angle of the molecules of the liquid crystal compound can be obtained.
  • step (ii) is preferably performed so that the temperature condition of the layer of the liquid crystal composition satisfies predetermined requirements.
  • the temperature condition of the layer of the liquid crystal composition in the step (ii) is the same as the temperature condition under which the residual viscosity of the test composition is usually 800 cP or less.
  • the test composition is a composition having a composition obtained by removing the polymerization initiator from the liquid crystal composition.
  • the residual viscosity of the test composition is the viscosity of the residual components of the test composition under the same temperature conditions as the layer of the liquid crystal composition in step (ii).
  • the residual component of the test composition is a component that remains in the test composition without vaporizing under the same temperature condition as the layer of the liquid crystal composition of step (ii).
  • the step (ii) of orienting the liquid crystal compound is performed so as to satisfy the above-mentioned requirements
  • the step (ii) is performed under the same temperature condition that the residual viscosity of the test composition falls within a predetermined range. This is done by adjusting the layer of the composition.
  • the specific range of the residual viscosity is usually 800 cP (centipoise) or less, preferably 600 cP or less, more preferably 400 cP or less, and further preferably 200 cP or less.
  • the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be increased.
  • the lower limit of the residual viscosity is preferably 5 cP or more, more preferably 10 cP or more from the viewpoint of obtaining a liquid crystal cured layer having a desired thickness.
  • the residual viscosity of the test composition under the same temperature conditions as the layer of the liquid crystal composition of step (ii) can be measured by the following method.
  • a test composition is prepared by removing the polymerization initiator from the liquid crystal composition.
  • the test composition is concentrated under reduced pressure with a rotary evaporator to remove the solvent and obtain a residual component.
  • the viscosity of this residual component is measured in advance while changing the measurement temperature, and information on the measurement temperature and the viscosity at the measurement temperature is obtained.
  • this information will be referred to as “temperature-viscosity information” as appropriate. From this "temperature-viscosity information", the viscosity at the temperature of the layer of the liquid crystal composition in step (ii) is read as the residual viscosity.
  • Examples of the method of keeping the residual viscosity of the test composition within the above range under the same temperature condition as the layer of the liquid crystal composition in step (ii) include the following methods (A) and (B).
  • the temperature of the layer of the liquid crystal composition in the step (ii) of orienting the liquid crystal compound (A) is appropriately adjusted.
  • the temperature of the layer of the liquid crystal composition is sufficiently high to reduce the residual viscosity of the test composition under the same temperature condition as this temperature, and the viscosity is adjusted to fall within the above range.
  • the composition of the liquid crystal composition is appropriately adjusted.
  • a liquid crystal compound is combined with an additive of an appropriate type and amount to reduce the residual viscosity of the test composition containing the additive, Adjust so that it is within the specified range.
  • the step (ii) is performed in a state in which a magnetic field is applied to a layer of the liquid crystal composition.
  • a magnetic field is applied to a layer of the liquid crystal composition.
  • the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be effectively increased.
  • the description in JP-A-2018-163218 may be referred to.
  • the step (ii) of orienting the liquid crystal compound is usually performed in an oven.
  • the set temperature of the oven may be different from the temperature of the layer of the liquid crystal composition placed in the oven.
  • the information on the recorded set temperature of the oven and the temperature of the layer of the liquid crystal composition placed in the oven at the set temperature is hereinafter referred to as "set temperature-layer temperature information" as appropriate.
  • the time for maintaining the temperature of the layer of the liquid crystal composition at the above temperature can be arbitrarily set within the range where a desired liquid crystal cured layer can be obtained, and for example, 30 seconds to 5 minutes.
  • step (iii) of orienting the liquid crystal compound After the step (ii) of orienting the liquid crystal compound, the step (iii) of curing the layer of the liquid crystal composition to obtain a liquid crystal cured layer is performed.
  • the curing of the liquid crystal composition in step (iii) is usually achieved by polymerizing the polymerizable compound contained in the liquid crystal composition.
  • the layer of the liquid crystal composition is cured by polymerizing a part or all of the liquid crystal compound.
  • the polymerization usually proceeds while maintaining the alignment of the molecules of the liquid crystal compound. Therefore, the alignment state of the liquid crystal compound contained in the liquid crystal composition before the polymerization is fixed by the above-mentioned polymerization.
  • the polymerization method a method suitable for the properties of the components contained in the liquid crystal composition can be selected.
  • the polymerization method include a method of irradiating with active energy rays and a thermal polymerization method.
  • the method of irradiating with active energy rays is preferable because heating is not necessary and the polymerization reaction can proceed at room temperature.
  • the active energy rays to be irradiated may include light such as visible light, ultraviolet rays, and infrared rays, and arbitrary energy rays such as electron beams.
  • the temperature at the time of ultraviolet irradiation is preferably not more than the glass transition temperature of the substrate, preferably 150° C. or less, more preferably 100° C. or less, particularly preferably 80° C., from the viewpoint of not affecting the substrate. It is below.
  • the lower limit of the temperature during UV irradiation is preferably 15° C. or higher, and more preferably 20° C. or higher.
  • the irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 10000 mW / cm 2 or less, more preferably 5000 mW / cm 2 or less.
  • the dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 10000 mJ / cm 2 or less, more preferably 5000 mJ / cm 2 or less.
  • the liquid crystal cured layer can be obtained by performing the above steps.
  • the above-described manufacturing method may include a step of further forming a liquid crystal cured layer on the thus obtained liquid crystal cured layer.
  • a liquid crystal cured layer having a multilayer structure including a first cured layer corresponding to the liquid crystal cured layer formed as described above and a second cured layer further formed on the first cured layer is obtained. Be done.
  • the second cured layer is preferably formed directly on the first cured layer.
  • the term “directly” as a mode of forming another layer on a certain layer means that there is no other layer between these two layers.
  • a unit cured layer such as a first cured layer containing the reverse-dispersed liquid crystalline compound is contained in another unit cured layer directly formed on the unit cured layer. It can function as an alignment film for increasing the tilt angle of the molecules of the liquid crystal compound.
  • a unit structure layer (for example, a first cured layer) formed earlier than a substantially maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound included in another unit structure layer (hereinafter referred to as a unit structure layer) is formed.
  • the substantially maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the second cured layer can be increased. Therefore, by repeating the formation of the unit cured layer, a liquid crystal cured layer having a large tilt angle of the reverse dispersion liquid crystalline compound can be obtained as a whole. In the liquid crystal cured layer thus obtained, the unit cured layer formed later tends to have a substantially larger maximum tilt angle.
  • the second cured layer can be formed, for example, by performing the steps (i) to (iii) described above.
  • the liquid crystal compound contained in the liquid crystal composition used to form the second cured layer may be the same as or different from the liquid crystal compound contained in the liquid crystal composition used to form the first cured layer. May be.
  • the liquid crystal composition used to form the second cured layer and the liquid crystal composition used to form the first cured layer may be different or the same.
  • the surface of the first cured layer Before the layer of the liquid crystal composition is formed, the surface of the first cured layer may be subjected to a treatment such as a rubbing treatment for giving an alignment regulating force.
  • a treatment such as a rubbing treatment for giving an alignment regulating force.
  • the surface of the first cured layer has an alignment regulating force for appropriately aligning the reverse dispersion liquid crystalline compound contained in the layer of the liquid crystal composition formed on the surface without any special treatment. Therefore, from the viewpoint of reducing the number of steps and efficiently advancing the production of the liquid crystal cured film, it is preferable not to rub the surface of the first cured layer.
  • a step of further forming an arbitrary unit cured layer on the second cured layer may be performed.
  • the liquid crystal cured film including the liquid crystal cured layer can be manufactured by the manufacturing method described above. In this manufacturing method, usually, a liquid crystal cured film including a substrate and a liquid crystal cured layer formed on the supporting surface of the substrate is obtained.
  • the above-mentioned manufacturing method may include a step of peeling the base material.
  • the liquid crystal cured layer itself can be used as a liquid crystal cured film.
  • the method for producing a liquid crystal cured film may include, for example, a step of transferring a liquid crystal cured layer formed on a base material to an arbitrary film layer. Therefore, for example, the method for producing a liquid crystal cured film, after laminating the liquid crystal cured layer formed on the substrate and any film layer, the substrate is peeled off if necessary, and the liquid crystal cured layer and It may include a step of obtaining a liquid crystal cured film including an optional film layer. At this time, an appropriate pressure-sensitive adhesive or adhesive may be used for bonding.
  • the method for producing a liquid crystal cured film may include a step of further forming an arbitrary layer on the liquid crystal cured layer, for example.
  • the method for producing a liquid crystal cured film may include, for example, a step of drying the liquid crystal composition layer before the step (iii) of curing the liquid crystal composition layer.
  • drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. By such drying, the solvent can be removed from the layer of the liquid crystal composition.
  • a long liquid crystal cured film can be obtained using a long substrate.
  • Such a long-sized liquid crystal cured film can be continuously manufactured and is excellent in productivity.
  • the productivity is excellent also in this respect.
  • a long liquid crystal cured film is wound up and stored and transported in a roll state.
  • a polarizing plate can be manufactured by using the above-mentioned liquid crystal cured film.
  • This polarizing plate can be usually manufactured by a manufacturing method including a step of manufacturing a liquid crystal cured film by the manufacturing method described above and a step of laminating the liquid crystal cured film and a linear polarizer.
  • the polarizing plate thus obtained contains a liquid crystal cured film and a linear polarizer. It is preferable that this polarizing plate can function as a circular polarizing plate or an elliptically polarizing plate.
  • this polarizing plate can function as a circular polarizing plate or an elliptically polarizing plate.
  • reflection of external light can be suppressed on the display surface of the organic EL display device.
  • the birefringence can be appropriately adjusted not only in the in-plane direction but also in the thickness direction by appropriately adjusting the tilt angle of the molecules of the liquid crystal compound.
  • the polarizing plate including the liquid crystal cured layer can suppress reflection of external light not only in the front direction of the display surface of the organic EL display device but also in the tilt direction. Therefore, by using this polarizing plate, an organic EL display device having a wide viewing angle can be realized. Further, since the above-mentioned liquid crystal cured layer can suppress the alignment unevenness and the disturbance of the polarization state of transmitted light, the polarizing plate provided with the liquid crystal cured film including the liquid crystal cured layer is effective in both the front direction and the tilt direction. It is possible to suppress reflection.
  • the linear polarizer for example, a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath; adsorbing the iodine or dichroic dye on the polyvinyl alcohol film And a film obtained by modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units.
  • the linear polarizer include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer and a multilayer polarizer.
  • a polarizer containing polyvinyl alcohol is preferable.
  • the degree of polarization of this linear polarizer is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
  • the thickness of the linear polarizer is preferably 5 ⁇ m to 80 ⁇ m.
  • the angle formed by the slow axis of the liquid crystal cured layer with respect to the polarization absorption axis of the linear polarizer is preferably 45° or close thereto.
  • the angle is specifically preferably 45° ⁇ 5° (ie preferably 40°-50°), more preferably 45° ⁇ 4° (ie more preferably 41°-49°), It is particularly preferably 45° ⁇ 3° (that is, particularly preferably 42° to 48°).
  • the polarizing plate may include an arbitrary layer in combination with the linear polarizer and the liquid crystal cured layer.
  • the optional layer include an adhesive layer for bonding the linear polarizer and the liquid crystal cured layer; a polarizer protective film layer for protecting the linear polarizer.
  • Organic EL display device An organic EL display device can be manufactured by using the above-mentioned polarizing plate. This organic EL display device can be usually manufactured by a manufacturing method including manufacturing a polarizing plate by the above-described manufacturing method.
  • This organic EL display device includes the above-mentioned polarizing plate.
  • An organic EL display device usually includes an organic EL element as a display element, and a polarizing plate is provided on the viewing side of this organic EL element.
  • the polarizing plate includes a liquid crystal cured film and a linear polarizer in this order from the organic EL element side. And in such a structure, the said polarizing plate can function as an antireflection film.
  • the polarizing plate functions as a circularly polarizing plate as an example.
  • Light incident from the outside of the device becomes circularly polarized light because only part of the linearly polarized light passes through the linear polarizer and then it passes through the liquid crystal curing layer.
  • Circularly polarized light is reflected by a component that reflects light in the display device (a reflective electrode of an organic EL element, etc.) and passes through the liquid crystal cured layer again, so that the vibration direction orthogonal to the vibration direction of the incident linearly polarized light is changed. It becomes the linearly polarized light that it has and does not pass through the linear polarizer.
  • the function of suppressing reflection is achieved.
  • Japanese Patent Application Laid-Open No. 9-127885 refer to Japanese Patent Application Laid-Open No. 9-127885.
  • the organic EL element is usually provided with a transparent electrode layer, a light emitting layer and an electrode layer in this order, and the light emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer.
  • the material forming the organic light emitting layer include polyparaphenylene vinylene-based materials, polyfluorene-based materials, and polyvinylcarbazole-based materials.
  • the light emitting layer may have a laminate of a plurality of layers having different emission colors or a mixed layer in which a certain dye layer is doped with different dyes.
  • the organic EL device may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • the layer thickness was measured using a film thickness meter (“F-20” manufactured by Filmetrix).
  • a resin film (“Zeonor film” manufactured by Nippon Zeon Co., Ltd.; thickness 100 ⁇ m) made of a thermoplastic norbornene resin having a masking film attached to one surface was prepared. Since this substrate film was an optically isotropic film, it does not affect the measurement results of the retardations LRe, CRe and R( ⁇ ) of the liquid crystal cured layer described later.
  • the masking film was peeled off from this substrate film, and the masking peeled surface was subjected to corona treatment. Then, the corona-treated surface was subjected to rubbing treatment.
  • the liquid crystal composition was applied to the rubbing-treated surface of the base film using a #2 or #3 wire bar to form a layer of the liquid crystal composition. Then, the layer of the liquid crystal composition was heated at 110° C. for 4 minutes to perform alignment treatment.
  • the alignment temperature in this alignment treatment was the same as the temperature condition under which the residual viscosity of the test compositions corresponding to the liquid crystal compositions of the respective Examples and Comparative Examples was 800 cP or less. By this alignment treatment, the reverse dispersion liquid crystal compound contained in the layer of the liquid crystal composition was aligned.
  • the layer of the liquid crystal composition that has been subjected to the alignment treatment is irradiated with 500 mJ/cm 2 of ultraviolet rays in a nitrogen atmosphere to cure the layer of the liquid crystal composition, and the first cured layer having the thickness shown in Table 1 below. Formed. Thereby, an intermediate film having a layer structure of the first cured layer/base film was obtained.
  • the liquid crystal composition was further applied to the surface of the first cured layer of the intermediate film using a #3 or #6 wire bar to form a layer of the liquid crystal composition. Then, the layer of the liquid crystal composition was heated at 110° C. for 4 minutes to perform alignment treatment. By this alignment treatment, the reverse dispersion liquid crystal compound contained in the layer of the liquid crystal composition was aligned.
  • the liquid crystal composition layer that had been subjected to the alignment treatment was irradiated with 1000 mJ/cm 2 of ultraviolet light in a nitrogen atmosphere to cure the liquid crystal composition layer to form a second cured layer.
  • a liquid crystal cured layer having a thickness shown in Table 1 was obtained as a layer including the first cured layer and the second cured layer.
  • a liquid crystal cured film having a layer structure of liquid crystal cured layer/base film was obtained.
  • FIG. 6 is a perspective view for explaining the measurement direction when measuring the linearly polarized light phase difference R( ⁇ ) as the retardation of the liquid crystal cured layer 400 from the tilt direction.
  • an arrow A1 represents an in-plane slow axis of the liquid crystal cured layer 400
  • an arrow A2 represents an in-plane fast axis of the liquid crystal cured layer 400
  • an arrow A3 represents a thickness direction of the liquid crystal cured layer 400. ..
  • the liquid crystal cured film was set on a retarder ("AxoScan" manufactured by Axometrics).
  • the liquid crystal cured film is rotated about the fast axis A2 of the liquid crystal cured layer 400 as a rotation axis, and as shown in FIG. 6, the linear polarization phase difference R( ⁇ ) of the liquid crystal cured layer 400 is measured at an incident angle ⁇ of ⁇ 50°. It was measured in the range of ⁇ 50°. Therefore, the measurement direction A4 is set to be perpendicular to the fast axis A2 of the liquid crystal cured layer 400.
  • the measurement wavelength was 590 nm.
  • the layer is inclined with respect to the layer plane of the hardened layer.
  • the liquid crystal cured layer of the liquid crystal cured film was observed using a polarization microscope. In the observed image, the amount of alignment unevenness was evaluated.
  • the alignment unevenness is usually caused by the formation of a portion in which the orientation directions of the molecules of the reverse dispersion liquid crystalline compound are non-uniform. Therefore, it can be determined that the smaller the orientation unevenness, the more uniform the orientation directions of the molecules of the reverse dispersion liquid crystalline compound and the better the surface state. Therefore, the surface condition of the liquid crystal cured layer was evaluated on the basis of the amount of alignment unevenness according to the following criteria. “Good”: No alignment unevenness or slight alignment unevenness. "Poor”: uneven alignment.
  • the extinction position refers to the orientation of the liquid crystal cured film that minimizes the amount of transmitted light that is transmitted through the one linearly polarized film, the liquid crystal cured film, and the other linearly polarized film in this order in the thickness direction.
  • light leakage is usually caused by linearly polarized light transmitted through the liquid crystal cured layer due to the twist pitch in the orientation direction of the molecules of the reverse dispersion liquid crystalline compound contained in the liquid crystal cured layer being too short. It is caused by the disordered polarization state. That is, when light is incident on the liquid crystal cured layer, some of the polarized light becomes elliptically polarized light or depolarized light when polarized light is incident on the liquid crystal cured layer, and part or all of it is linear. It is generated by passing through a polarizing film. The light leakage was evaluated according to the following criteria. “Good”: No light leakage. "OK”: There is a slight light leakage. "Poor”: There is light leakage.
  • Liquid Crystal Layer 110 Linear Polarizer 120 Linear Polarizer 200 Liquid Crystal Curing Layer 300 Liquid Crystal Curing Layer 310 First Curing Layer 320 Second Curing Layer 400 Liquid Crystal Curing Layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides a liquid-crystal cured film provided with a liquid-crystal cured layer formed of a cured liquid-crystal composition containing a liquid-crystal compound and a chiral compound including asymmetric carbon atoms, the liquid-crystal cured layer containing molecules of the liquid-crystal compound, which may be in a fixed alignment state. At least some molecules of the liquid-crystal compound contained in the liquid-crystal cured layer are tilted with respect to the layer plane of the liquid-crystal cured layer, and the front linear-polarization retardation LRe and the front circular-polarization retardation CRe of the liquid-crystal cured layer at a measurement wavelength of 550 nm satisfy a prescribed relationship.

Description

液晶硬化フィルム及びその製造方法Liquid crystal cured film and method for producing the same
 本発明は、液晶硬化フィルム及びその製造方法に関する。 The present invention relates to a liquid crystal cured film and a method for manufacturing the same.
 光学フィルムの一つとして、液晶硬化フィルムが知られている。液晶硬化フィルムは、一般に、液晶性化合物を含む液晶組成物を配向させ、その配向状態を維持したままで硬化させた硬化物で形成された液晶硬化層を備える。このような液晶硬化フィルムとして、特許文献1~3に記載のものが提案されている。 Liquid crystal cured film is known as one of the optical films. The liquid crystal cured film generally includes a liquid crystal cured layer formed of a cured product obtained by aligning a liquid crystal composition containing a liquid crystal compound and curing the liquid crystal composition while maintaining the alignment state. As such a liquid crystal cured film, those described in Patent Documents 1 to 3 have been proposed.
特許第5604774号公報Japanese Patent No. 5604774 特許第5804991号公報Japanese Patent No. 5804991 特開2015-161714号公報JP, 2005-161714, A
 液晶硬化フィルムが備える液晶硬化層には、通常、液晶性化合物が含まれる。この液晶性化合物の分子は、液晶硬化層の層平面に対して傾斜することがある。このように分子が傾斜した液晶性化合物を含む液晶硬化層を備えた適切な液晶硬化フィルムを画像表示装置に設けた場合、視野角特性等の光学特性が改善されうる。 The liquid crystal cured layer included in the liquid crystal cured film usually contains a liquid crystal compound. The molecules of the liquid crystal compound may tilt with respect to the layer plane of the liquid crystal cured layer. When an appropriate liquid crystal cured film having a liquid crystal cured layer containing a liquid crystal compound whose molecules are tilted in this way is provided in an image display device, optical characteristics such as viewing angle characteristics can be improved.
 ところが、分子が傾斜した液晶性化合物を含む液晶硬化層は、偏光顕微鏡で観察した場合、配向ムラが観察されることがあった。具体的には、液晶組成物の層の空気界面であった面において、液晶性化合物の分子の配向方向が不均一となることにより、その配向方向の層平面に平行な方向成分(面内成分方向)が不均一となって、面内での遅相軸方向にバラツキが生じることがあった。特に、このような配向ムラは、逆分散液晶性化合物を用いた場合に、顕著であった。 However, when a liquid crystal cured layer containing a liquid crystalline compound with tilted molecules was observed with a polarizing microscope, uneven alignment was sometimes observed. Specifically, the orientation direction of the molecules of the liquid crystal compound becomes non-uniform on the surface of the layer of the liquid crystal composition that was the air interface, so that the orientation component parallel to the layer plane of the orientation direction (in-plane component). The direction) becomes non-uniform, and variations may occur in the in-plane slow axis direction. In particular, such alignment unevenness was remarkable when the reverse dispersion liquid crystal compound was used.
 本発明者が前記の配向ムラについて検討したところ、前記の配向ムラが、液晶性化合物の分子の配向方向のねじれによって生じていることが判明した。具体的には、配向方向の層平面に平行な方向成分に着目すると、液晶硬化層の厚み方向の位置毎に、液晶性化合物の分子の配向方向は異なりうる。そして、液晶硬化層の厚み方向のある位置にある分子の配向方向を基準とすると、その基準となる分子から厚み方向に大きく離れている分子の配向方向ほど、層平面に平行な方向成分の方向が大きく異なる傾向がある。通常は、液晶性化合物の分子は、液晶硬化層内のある第一の平面上では、ある一の配向方向に配向する。層内の、当該第一の平面に重なる次の第二の平面では、分子の配向方向は、第一の平面における配向方向と、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面では、分子の配向方向は、第二の平面における配向方向から、さらに角度をなしてずれる。このように、重なって配列している平面において、当該平面での分子の配向方向の角度は順次ずれていき、液晶性化合物の分子の配向方向は全体としてらせん状にねじれうる。層平面に対して傾斜した液晶性化合物の分子を含む従来の液晶硬化層では、前記のねじれの向き(即ち、右向き及び左向き)が面内で不均一となることがあるので、分子の配向方向が不均一となり、配向ムラを生じていた。以下、液晶硬化層に含まれる液晶性化合物の分子の配向方向が、厚み方向において生じるねじれを、単に「配向方向のねじれ」ということがある。 When the present inventor examined the above-mentioned alignment unevenness, it was found that the alignment unevenness was caused by the twist of the alignment direction of the molecules of the liquid crystal compound. Specifically, paying attention to the direction component parallel to the layer plane of the alignment direction, the alignment direction of the molecules of the liquid crystalline compound may be different for each position in the thickness direction of the liquid crystal cured layer. When the orientation direction of molecules at a certain position in the thickness direction of the liquid crystal cured layer is used as a reference, the orientation direction of a molecule that is farther from the reference molecule in the thickness direction is parallel to the layer plane. Tend to be very different. Usually, the molecules of the liquid crystal compound are aligned in a certain alignment direction on a certain first plane in the liquid crystal cured layer. In the next second plane in the layer, which overlaps the first plane, the orientation direction of the molecules deviates slightly from the orientation direction in the first plane. In the next third plane, which further overlaps the second plane, the orientation direction of the molecules deviates further from the orientation direction in the second plane by an angle. In this way, in the planes that are arranged so as to overlap with each other, the angles of the orientation directions of the molecules in the planes are sequentially shifted, and the orientation directions of the molecules of the liquid crystal compound can be twisted in a spiral shape as a whole. In a conventional liquid crystal cured layer containing molecules of a liquid crystalline compound tilted with respect to the layer plane, the twisting directions (that is, rightward and leftward) may be non-uniform in the plane. Was non-uniform, resulting in uneven alignment. Hereinafter, the twist in which the alignment direction of the molecules of the liquid crystal compound included in the liquid crystal cured layer occurs in the thickness direction may be simply referred to as “twist in the alignment direction”.
 また、前記のように液晶性化合物の分子の配向方向のねじれがあると、その液晶性化合物の分子を含む液晶硬化層を透過する光は、旋光を生じることがある。しかし、液晶硬化層を透過する光が、その一部だけが旋光を生じ、他の一部は偏光状態が乱されることがあった。例えば、液晶硬化層に直線偏光が入射した場合に、液晶硬化層を透過することによって、直線偏光の一部が偏光解消したり楕円偏光になったりすることがあった。このような偏光状態の乱れは、液晶硬化フィルムを光学フィルムとして用いる場合に性能低下の原因となりうるので、抑制することが望まれる。 Also, if the molecules of the liquid crystalline compound are twisted in the alignment direction as described above, the light passing through the liquid crystal cured layer containing the molecules of the liquid crystalline compound may cause optical rotation. However, in some cases, only a part of the light transmitted through the liquid crystal cured layer causes optical rotation, and the other part disturbs the polarization state. For example, when linearly polarized light is incident on the liquid crystal cured layer, the linearly polarized light may be partially depolarized or elliptically polarized by being transmitted through the liquid crystal cured layer. Since such a disorder of the polarization state may cause a deterioration in performance when the liquid crystal cured film is used as an optical film, it is desired to suppress it.
 例えば、有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)には、その表示面に、外光の反射を抑制するための反射抑制フィルムとして、円偏光板及び楕円偏光板等の偏光板が設けられることがある。この偏光板は、通常、直線偏光子と位相差フィルムとを組み合わせて含む。この位相差フィルムとして液晶硬化フィルムを採用した場合、前記のような偏光状態の乱れが生じると、外光の反射を抑制する能力が低下する可能性があった。 For example, in an organic electroluminescence display device (hereinafter sometimes referred to as an “organic EL display device” as appropriate), a circularly polarizing plate and an ellipse are used as a reflection suppressing film for suppressing reflection of external light on its display surface. A polarizing plate such as a polarizing plate may be provided. This polarizing plate usually includes a linear polarizer and a retardation film in combination. When a liquid crystal cured film is used as this retardation film, the disturbance of the polarization state as described above may reduce the ability to suppress reflection of external light.
 本発明は、前記の課題に鑑みて創案されたもので、層平面に対して分子が傾斜した液晶性化合物を含み、配向ムラ及び透過光の偏光状態の乱れを抑制することが可能な液晶硬化層を備える液晶硬化フィルム及びその製造方法を提供することを目的とする。 The present invention was devised in view of the above-mentioned problems, and includes a liquid crystal compound in which molecules are inclined with respect to a layer plane, and liquid crystal curing capable of suppressing uneven alignment and disturbance of polarization state of transmitted light. An object of the present invention is to provide a liquid crystal cured film having a layer and a method for manufacturing the same.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、キラル化合物を適切に含む液晶組成物を用いることにより、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor diligently studied to solve the above problems. As a result, the present inventor has found that the above problems can be solved by using a liquid crystal composition containing a chiral compound appropriately, and completed the present invention.
That is, the present invention includes the following.
 〔1〕 液晶性化合物、及び、不斉炭素原子を含むキラル化合物を含む液晶組成物の硬化物で形成され、配向状態を固定されていてもよい前記液晶性化合物の分子を含む液晶硬化層を備え、
 前記液晶硬化層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶硬化層の層平面に対して傾斜しており、
 測定波長550nmにおける前記液晶硬化層の正面直線偏光位相差LRe及び正面円偏光位相差CReが、下記式(1)を満たす、液晶硬化フィルム。
Figure JPOXMLDOC01-appb-M000002
 〔2〕 測定波長550nmにおける前記液晶硬化層の正面円偏光位相差CReと前記液晶硬化層の厚みD[nm]との比CRe/Dが、0.0002以上0.0133以下である、〔1〕に記載の液晶硬化フィルム。
 〔3〕 前記液晶性化合物100重量部に対する前記キラル化合物の量が、0.05重量部以上0.5重量部以下である、〔1〕又は〔2〕に記載の液晶硬化フィルム。
 〔4〕 測定波長550nmにおける前記液晶硬化層の正面直線偏光位相差LReが、50nm以上90nm以下の範囲、又は、120nm以上160nm以下の範囲にある、〔1〕~〔3〕のいずれか一項に記載の液晶硬化フィルム。
 〔5〕 前記液晶性化合物が、逆波長分散性の複屈折を発現できる、〔1〕~〔4〕のいずれか一項に記載の液晶硬化フィルム。
 〔6〕 前記液晶性化合物が、ベンゾチアゾール環を有する、〔1〕~〔5〕のいずれか一項に記載の液晶硬化フィルム。
 〔7〕 〔1〕~〔6〕のいずれか一項に記載の液晶硬化フィルムの製造方法であって、
 前記液晶組成物の層を形成する工程と、
 前記液晶組成物の層に含まれる前記液晶性化合物を配向させる工程と、
 前記液晶組成物の層を硬化させて前記液晶硬化層を得る工程と、を含む、液晶硬化フィルムの製造方法。
[1] A liquid crystal cured layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound and a chiral compound containing an asymmetric carbon atom, the liquid crystal cured layer containing molecules of the liquid crystal compound which may have a fixed alignment state. Prepare,
At least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer,
A liquid crystal cured film in which the front linearly polarized light retardation LRe and the front circularly polarized light retardation CRe of the liquid crystal cured layer at a measurement wavelength of 550 nm satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000002
[2] The ratio CRe/D between the front circularly polarized light phase difference CRe of the liquid crystal cured layer and the thickness D [nm] of the liquid crystal cured layer at a measurement wavelength of 550 nm is 0.0002 or more and 0.0133 or less. ] A liquid crystal cured film according to.
[3] The liquid crystal cured film according to [1] or [2], wherein the amount of the chiral compound relative to 100 parts by weight of the liquid crystal compound is 0.05 parts by weight or more and 0.5 parts by weight or less.
[4] The front linearly polarized light phase difference LRe of the liquid crystal cured layer at a measurement wavelength of 550 nm is in the range of 50 nm or more and 90 nm or less, or in the range of 120 nm or more and 160 nm or less, [1] to [3]. The liquid crystal cured film according to 1.
[5] The liquid crystal cured film according to any one of [1] to [4], in which the liquid crystal compound can exhibit birefringence of reverse wavelength dispersion.
[6] The liquid crystal cured film according to any one of [1] to [5], wherein the liquid crystalline compound has a benzothiazole ring.
[7] A method for producing a liquid crystal cured film according to any one of [1] to [6],
A step of forming a layer of the liquid crystal composition,
A step of orienting the liquid crystalline compound contained in the layer of the liquid crystal composition,
And a step of curing the layer of the liquid crystal composition to obtain the liquid crystal cured layer.
 本発明によれば、層平面に対して分子が傾斜した液晶性化合物を含み、配向ムラ及び透過光の偏光状態の乱れを抑制することが可能な液晶硬化層を備える液晶硬化フィルム及びその製造方法を提供できる。 According to the present invention, a liquid crystal cured film including a liquid crystal compound whose molecules are inclined with respect to the plane of the layer and including a liquid crystal cured layer capable of suppressing alignment unevenness and disturbance of the polarization state of transmitted light, and a method for producing the same. Can be provided.
図1は、ある例に係る液晶硬化層のレターデーション比R(θ)/R(0°)を、入射角θに対してプロットしたグラフである。FIG. 1 is a graph in which the retardation ratio R(θ)/R(0°) of a liquid crystal cured layer according to an example is plotted against the incident angle θ. 図2は、ある液晶層の両側に、パラニコルに設定した一対の直線偏光子を配置した光学系を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an optical system in which a pair of linear polarizers set to a para-Nicol are arranged on both sides of a certain liquid crystal layer. 図3は、波長λ=550nmを代入した場合の式(3)における透過率Iと面内レターデーションΔn×dとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the transmittance I and the in-plane retardation Δn×d in Expression (3) when the wavelength λ=550 nm is substituted. 図4は、本発明の一実施形態に係る液晶硬化フィルムが備える液晶硬化層の例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a liquid crystal cured layer included in the liquid crystal cured film according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る液晶硬化フィルムが備える液晶硬化層の例を模式的に示す断面図である。FIG. 5: is sectional drawing which shows typically the example of the liquid crystal hardening layer with which the liquid crystal hardening film which concerns on one Embodiment of this invention is equipped. 図6は、傾斜方向から液晶硬化層のレターデーションとしての直線偏光位相差R(θ)を測定する際の測定方向を説明するための斜視図である。FIG. 6 is a perspective view for explaining the measurement direction when measuring the linearly polarized light phase difference R(θ) as the retardation of the liquid crystal cured layer from the tilt direction.
 以下、例示物及び実施形態を示して本発明について詳細に説明する。ただし、本発明は以下に示す例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing examples and embodiments. However, the present invention is not limited to the exemplifications and embodiments described below, and may be implemented by being arbitrarily modified within the scope of the claims of the present invention and the scope of equivalents thereof.
 以下の説明において、ある層の「面内方向」とは、別に断らない限り、層平面に平行な方向を表す。 In the following description, the "in-plane direction" of a layer means the direction parallel to the layer plane unless otherwise specified.
 以下の説明において、ある層の「厚み方向」とは、別に断らない限り、層平面に垂直な方向を表す。よって、別に断らない限り、ある層の面内方向と厚み方向とは、垂直である。 In the following description, the “thickness direction” of a layer means the direction perpendicular to the layer plane unless otherwise specified. Therefore, unless otherwise specified, the in-plane direction and the thickness direction of a certain layer are perpendicular to each other.
 以下の説明において、ある面の「正面方向」とは、別に断らない限り、その面の法線方向を表し、具体的には前記面の極角0°の方向を指す。 In the following description, the “frontal direction” of a surface refers to the normal direction of the surface, and specifically refers to the direction of the polar angle of 0° unless otherwise specified.
 以下の説明において、ある面の「傾斜方向」とは、別に断らない限り、その面に平行でも垂直でもない方向を表し、具体的には前記面の極角が5°以上85°以下の範囲の方向を指す。 In the following description, the “inclination direction” of a surface represents a direction that is neither parallel nor perpendicular to the surface unless specifically stated otherwise, and specifically, the polar angle of the surface is in the range of 5° to 85°. Point in the direction of.
 以下の説明において、用語「偏光板」及び用語「波長板」は、別に断らない限り、樹脂フィルム等の可撓性を有するフィルム及びシートを包含する。 In the following description, the terms “polarizing plate” and “wave plate” include flexible films and sheets such as resin films unless otherwise specified.
 以下の説明において、複屈折の逆波長分散性とは、別に断らない限り、波長450nmにおける複屈折Δn(450)及び波長550nmにおける複屈折Δn(550)が、下記式(N1)を満たすことをいう。このような逆波長分散性の複屈折を発現できる液晶性化合物は、通常、測定波長が長いほど、大きい複屈折を発現できる。
 Δn(450)<Δn(550) (N1)
In the following description, the birefringence reverse wavelength dispersion property means that the birefringence Δn(450) at a wavelength of 450 nm and the birefringence Δn(550) at a wavelength of 550 nm satisfy the following formula (N1) unless otherwise specified. Say. A liquid crystal compound capable of exhibiting such birefringence having an inverse wavelength dispersive property can generally exhibit greater birefringence as the measurement wavelength is longer.
Δn(450)<Δn(550) (N1)
 以下の説明において、複屈折の順波長分散性とは、別に断らない限り、波長450nmにおける複屈折Δn(450)及び波長550nmにおける複屈折Δn(550)が、下記式(N2)を満たすことをいう。このような順波長分散性の複屈折を発現できる液晶性化合物は、通常、測定波長が長いほど、小さい複屈折を発現できる。
 Δn(450)>Δn(550) (N2)
In the following description, unless otherwise specified, the birefringence forward wavelength dispersion of birefringence means that the birefringence Δn (450) at a wavelength of 450 nm and the birefringence Δn (550) at a wavelength of 550 nm satisfy the following formula (N2). Say. A liquid crystal compound capable of exhibiting such a forward wavelength dispersive birefringence can generally exhibit a smaller birefringence as the measurement wavelength is longer.
Δn(450)>Δn(550) (N2)
 以下の説明において、ある層の正面直線偏光位相差LReとは、別に断らない限り、「LRe=(nx-ny)×d」で表される値である。また、ある層の正面円偏光位相差CReとは、別に断らない限り、「CRe=(φ/360°)×λ」で表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、層の厚みを表す。φは、層を厚み方向に透過する直線偏光の旋光角[°]を表す。λは、測定波長を表す。測定波長は、別に断らない限り、550nmである。これらの正面直線偏光位相差LRe及び正面円偏光位相差CReは、位相差計(Axometrics社製「AxoScan」)を用いて測定できる。 In the following description, the front linearly polarized light phase difference LRe of a certain layer is a value represented by “LRe=(nx−ny)×d” unless otherwise specified. Further, the front circularly polarized light phase difference CRe of a certain layer is a value represented by “CRe=(φ/360°)×λ” unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the layer and in the direction orthogonal to the nx direction. d represents the thickness of the layer. φ represents the optical rotation angle [°] of the linearly polarized light that passes through the layer in the thickness direction. λ represents the measurement wavelength. The measurement wavelength is 550 nm unless otherwise specified. The front linearly polarized light phase difference LRe and the front circularly polarized light phase difference CRe can be measured using a phase difference meter (“AxoScan” manufactured by Axometrics).
 以下の説明において、固有複屈折値が正の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。また、固有複屈折値が負の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。 In the following description, a resin having a positive intrinsic birefringence value means a resin whose refractive index in the stretching direction is higher than that in the direction orthogonal to it. Further, a resin having a negative intrinsic birefringence value means a resin whose refractive index in the stretching direction is smaller than that in the direction orthogonal thereto. The intrinsic birefringence value can be calculated from the dielectric constant distribution.
 以下の説明において、ある層の遅相軸とは、別に断らない限り、面内方向の遅相軸をいう。 In the following description, the slow axis of a certain layer refers to the slow axis in the in-plane direction unless otherwise specified.
 以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±4°、好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。 In the following description, the directions of elements are “parallel” and “vertical” unless otherwise specified, within a range that does not impair the effects of the present invention, for example, ±4°, preferably ±3°, more preferably ±1. It may include an error within a range of °.
 以下の説明において、別に断らない限り、ある層に含まれる液晶性化合物の分子の「傾斜角」とは、その液晶性化合物の分子が当該層の層平面に対してなす角度を表し、「チルト角」とも呼ばれることがある。この傾斜角は、液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向が層平面となす角度のうち、最大の角度に相当する。また、以下の説明においては、別に断らない限り、「傾斜角」とは、液晶性化合物の分子の、当該液晶性化合物が含まれる層の層平面に対する傾斜角を表す。 In the following description, unless otherwise specified, the “tilt angle” of a molecule of a liquid crystal compound included in a layer represents an angle formed by the molecule of the liquid crystal compound with respect to the layer plane of the layer, and “tilt angle”. It is sometimes called "horn". This tilt angle corresponds to the maximum angle among the angles formed by the direction of the maximum refractive index with the layer plane in the refractive index ellipsoid of the molecules of the liquid crystal compound. In addition, in the following description, unless otherwise specified, the “tilt angle” refers to the tilt angle of the molecules of the liquid crystal compound with respect to the layer plane of the layer containing the liquid crystal compound.
 以下の説明において、ある層に含まれる液晶性化合物の分子の「実質最大傾斜角」とは、その層の一方の面での分子の傾斜角が0°であり、且つ分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値をいう。具体的には、液晶性化合物を含む層の厚み方向において、液晶性化合物の分子の傾斜角が、層の一側に近いほど小さく前記一側から遠いほど大きい場合を考える。実質最大傾斜角は、このような厚み方向における傾斜角の変化の比率(即ち、一側に近いほど減少し、一側から遠いほど増加するという変化の比率)が一定であると仮定して計算される、傾斜角の最大値を表す。具体例を挙げると、支持面上に形成された液晶組成物の層を硬化させて得られる液晶硬化層においては、実質最大傾斜角は、通常、液晶硬化層の支持面側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値を表す。また、後述するように第一硬化層及び第二硬化層を含む複層構造の液晶硬化層においては、実質最大傾斜角は、通常、第一硬化層側の面での分子の傾斜角が0°であり、且つ、分子の傾斜角が厚み方向において一定比率で変化していると仮定した場合の、液晶性化合物の分子の傾斜角の最大値を表す。 In the following description, the “substantially maximum tilt angle” of the molecules of the liquid crystal compound contained in a layer means that the tilt angle of the molecule on one surface of the layer is 0° and the tilt angle of the molecule is the thickness. It means the maximum value of the tilt angle of the molecules of the liquid crystal compound when it is assumed that the liquid crystal compound changes at a constant ratio in the direction. Specifically, consider a case in which, in the thickness direction of a layer containing a liquid crystal compound, the tilt angle of the molecules of the liquid crystal compound is smaller as it is closer to one side of the layer and is larger as it is farther from the one side. The substantial maximum tilt angle is calculated by assuming that the ratio of the change of the tilt angle in the thickness direction (that is, the ratio of the change that decreases toward one side and increases toward the one side) is constant. Represents the maximum value of the tilt angle. To give a specific example, in the liquid crystal cured layer obtained by curing the layer of the liquid crystal composition formed on the supporting surface, the substantially maximum tilt angle is usually the molecule on the surface on the supporting surface side of the liquid crystal cured layer. Represents the maximum value of the tilt angle of the molecules of the liquid crystal compound when it is assumed that the tilt angle is 0° and the tilt angle of the molecules changes at a constant ratio in the thickness direction. Further, as will be described later, in a liquid crystal cured layer having a multi-layer structure including a first cured layer and a second cured layer, the substantially maximum inclination angle is usually 0 when the inclination angle of the molecule on the surface on the first cured layer side is 0. And represents the maximum value of the tilt angle of the molecules of the liquid crystal compound under the assumption that the tilt angle of the molecules changes at a constant ratio in the thickness direction.
 以下の説明において、置換基を有する基の炭素原子数には、別に断らない限り、前記置換基の炭素原子数を含めない。よって、例えば「置換基を有していてもよい炭素原子数1~20のアルキル基」との記載は、置換基の炭素原子数を含まないアルキル基自体の炭素原子数が1~20であることを表す。 In the following description, the number of carbon atoms of a group having a substituent does not include the number of carbon atoms of the substituent unless otherwise specified. Therefore, for example, the description "an alkyl group having 1 to 20 carbon atoms which may have a substituent" has 1 to 20 carbon atoms in the alkyl group itself which does not include the number of carbon atoms of the substituent. It means that.
[1.液晶硬化フィルムの概要]
 本発明の一実施形態に係る液晶硬化フィルムは、液晶性化合物及びキラル化合物を含む液晶組成物の硬化物で形成された液晶硬化層を備える。キラル化合物とは、不斉炭素原子を含む化合物を表す。
[1. Outline of liquid crystal cured film]
A liquid crystal cured film according to an embodiment of the present invention includes a liquid crystal cured layer formed of a cured product of a liquid crystal composition containing a liquid crystal compound and a chiral compound. The chiral compound refers to a compound containing an asymmetric carbon atom.
 液晶組成物の硬化物で形成されているので、液晶硬化層は、液晶性化合物の分子を含む。液晶硬化層に含まれる液晶性化合物の分子は、配向状態を固定されていてもよい。用語「配向状態を固定された液晶性化合物」には、液晶性化合物の重合体が包含される。通常、重合によって液晶性化合物の液晶性は失われるが、本願においては、そのように重合した液晶性化合物も、用語「液晶硬化層に含まれる液晶性化合物」に含める。 Since it is formed of a cured product of a liquid crystal composition, the liquid crystal cured layer contains molecules of a liquid crystal compound. The alignment state of the molecules of the liquid crystal compound contained in the liquid crystal cured layer may be fixed. The term "a liquid crystal compound having a fixed alignment state" includes a polymer of a liquid crystal compound. Usually, the liquid crystallinity of the liquid crystalline compound is lost by polymerization, but in the present application, the liquid crystalline compound thus polymerized is also included in the term “liquid crystalline compound contained in the liquid crystal cured layer”.
 液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子は、当該液晶硬化層の層平面に対して傾斜している。ある液晶性化合物の分子が層平面に対して「傾斜している」とは、その分子の層平面に対する傾斜角が5°以上85°以下の範囲にあることを表す。このように傾斜した液晶性化合物の分子は、通常、層平面に対して平行でも垂直でもない状態となっている。 At least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are tilted with respect to the layer plane of the liquid crystal cured layer. The term “inclined” with respect to the layer plane of a liquid crystal compound means that the inclination angle of the molecule with respect to the layer plane is in the range of 5° to 85°. The molecules of the liquid crystal compound tilted in this manner are usually neither parallel nor perpendicular to the layer plane.
 測定波長550nmにおける液晶硬化層の正面直線偏光位相差LRe及び正面円偏光位相差CReは、下記式(1)を満たす。以下、正面直線偏光位相差LReを「面内レターデーション」LReということがある。また、以下、正面円偏光位相差CReを「旋光位相差」CReということがある。
Figure JPOXMLDOC01-appb-M000003
The front linear polarization phase difference LRe and the front circular polarization phase difference CRe of the liquid crystal cured layer at the measurement wavelength of 550 nm satisfy the following formula (1). Hereinafter, the front linearly polarized light phase difference LRe may be referred to as “in-plane retardation” LRe. Further, hereinafter, the front circularly polarized light phase difference CRe may be referred to as “optical rotation phase difference” CRe.
Figure JPOXMLDOC01-appb-M000003
 前記の構成を有する液晶硬化層によれば、当該液晶硬化層の配向ムラを抑制でき、且つ、当該液晶硬化層を透過する光の偏光状態の乱れを抑制することができる。 According to the liquid crystal cured layer having the above-mentioned configuration, it is possible to suppress the alignment unevenness of the liquid crystal cured layer, and it is possible to suppress the disturbance of the polarization state of the light transmitted through the liquid crystal cured layer.
[2.液晶性化合物]
 液晶性化合物は、液晶性を有する化合物であり、通常、当該液晶性化合物を配向させた場合に、液晶相を呈することができる。
[2. Liquid crystalline compound]
The liquid crystal compound is a compound having liquid crystallinity, and usually can exhibit a liquid crystal phase when the liquid crystal compound is aligned.
 液晶性化合物として、逆分散液晶性化合物を用いてもよく、順分散液晶性化合物を用いてもよく、逆分散液晶性化合物と順分散液晶性化合物との組み合わせを用いてもよい。逆分散液晶性化合物とは、逆波長分散性の複屈折を発現できる液晶性化合物である。また、逆波長分散性の複屈折を発現できる液晶性化合物とは、当該液晶性化合物の層を形成し、その層において液晶性化合物を配向させた際に、逆波長分散性の複屈折を発現する液晶性化合物をいう。他方、順分散液晶性化合物とは、順波長分散性の複屈折を発現できる液晶性化合物である。また、順波長分散性の複屈折を発現できる液晶性化合物とは、当該液晶性化合物の層を形成し、その層において液晶性化合物を配向させた際に、順波長分散性の複屈折を発現する液晶性化合物をいう。 As the liquid crystal compound, a reverse dispersion liquid crystal compound may be used, a forward dispersion liquid crystal compound may be used, or a combination of the reverse dispersion liquid crystal compound and the forward dispersion liquid crystal compound may be used. The reverse dispersion liquid crystal compound is a liquid crystal compound capable of exhibiting reverse wavelength dispersion birefringence. In addition, a liquid crystal compound capable of exhibiting birefringence of reverse wavelength dispersion exhibits a birefringence of reverse wavelength dispersion when a layer of the liquid crystal compound is formed and the liquid crystal compound is oriented in the layer. A liquid crystal compound that On the other hand, the forward dispersion liquid crystal compound is a liquid crystal compound capable of exhibiting forward wavelength dispersion birefringence. Further, a liquid crystal compound capable of exhibiting forward wavelength dispersive birefringence means that when a layer of the liquid crystalline compound is formed and the liquid crystal compound is oriented in the layer, forward wavelength dispersive birefringence is exhibited. A liquid crystal compound that
 通常は、液晶性化合物をホモジニアス配向させた場合に、液晶性化合物の層が示す複屈折の波長分散性を調べることで、その液晶性化合物が示す複屈折の波長分散性を確認できる。液晶性化合物をホモジニアス配向させる、とは、当該液晶性化合物を含む層を形成し、その層における液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向を、前記層の面に平行なある一の方向に配向させることをいう。また、前記の層の複屈折は、「(層の面内レターデーション)÷(層の厚み)」から求められる。 Usually, when the liquid crystal compound is homogeneously aligned, the wavelength dispersion property of the birefringence exhibited by the liquid crystal compound can be confirmed by examining the wavelength dispersion property of the birefringence exhibited by the layer of the liquid crystal compound. Aligning the liquid crystal compound homogeneously means forming a layer containing the liquid crystal compound, and the direction of the maximum refractive index in the refractive index ellipsoid of the molecules of the liquid crystal compound in the layer is parallel to the surface of the layer. It means to orient in one certain direction. Further, the birefringence of the layer is calculated from "(in-plane retardation of layer)/(layer thickness)".
 液晶性化合物としては、逆分散液晶性化合物を用いることが好ましい。逆分散液晶性化合物を用いると、通常、逆波長分散性の面内レターデーションLReを有する液晶硬化層を得ることができるので、広い波長範囲において所望の光学的機能を発揮できる液晶硬化フィルムを得ることができる。また、配向ムラは、逆分散液晶性化合物を用いた従来の液晶硬化層において顕著に生じていたので、配向ムラの抑制という効果を有効に活用する観点からも、本実施形態では逆分散液晶性化合物を用いることが好ましい。 As the liquid crystal compound, it is preferable to use a reverse dispersion liquid crystal compound. When a reverse dispersion liquid crystalline compound is used, a liquid crystal cured layer having a reverse wavelength dispersion in-plane retardation LRe can be usually obtained, so that a liquid crystal cured film capable of exhibiting a desired optical function in a wide wavelength range is obtained. be able to. In addition, since the alignment unevenness was remarkably generated in the conventional liquid crystal cured layer using the reverse dispersion liquid crystalline compound, the reverse dispersion liquid crystallinity in the present embodiment is also used from the viewpoint of effectively utilizing the effect of suppressing the alignment unevenness. Preference is given to using compounds.
 逆分散液晶性化合物の複屈折は、当該逆分散液晶性化合物の分子の屈折率楕円体において、最大の屈折率を示す方向の屈折率と、この方向に垂直な別の方向の屈折率との差として発現しうる。また、逆分散液晶性化合物の分子構造に応じて、前記の各方向の屈折率の波長分散性は、異なりうる。例えば、ある逆分散液晶性化合物は、屈折率が相対的に大きいある方向では、長波長で測定した屈折率は、短波長で測定した屈折率よりも小さくなるが、それらの差は小さい。他方、屈折率が相対的に小さい別の方向では、長波長で測定した屈折率は、短波長で測定した屈折率よりも小さくなり、且つ、それらの差は大きい。このような例の液晶性化合物では、前記方向間での屈折率差は、測定波長が短いと小さく、測定波長が長いと大きくなる。その結果、この逆分散液晶性化合物は、逆波長分散性の複屈折を発現できる。 The birefringence of the inverse dispersion liquid crystalline compound is the difference between the refractive index in the direction showing the maximum refractive index and the refractive index in another direction perpendicular to this direction in the refractive index ellipsoid of the molecule of the inverse dispersion liquid crystalline compound. It can appear as a difference. Further, the wavelength dispersibility of the refractive index in each direction may be different depending on the molecular structure of the reverse dispersion liquid crystalline compound. For example, in a certain reverse-dispersion liquid crystalline compound, the refractive index measured at a long wavelength is smaller than the refractive index measured at a short wavelength in a certain direction, but the difference between them is small. On the other hand, in another direction where the index of refraction is relatively small, the index of refraction measured at long wavelengths is less than the index of refraction measured at short wavelengths, and the difference between them is large. In the liquid crystal compound of such an example, the difference in refractive index between the directions is small when the measurement wavelength is short, and is large when the measurement wavelength is long. As a result, this reverse dispersion liquid crystalline compound can exhibit birefringence with reverse wavelength dispersion.
 液晶性化合物は、重合性を有することが好ましい。よって、液晶性化合物は、その分子が、アクリロイル基、メタクリロイル基、及びエポキシ基等の重合性基を含むことが好ましい。液晶性化合物の分子1つ当たりの重合性基の数は、1個でもよいが、2個以上が好ましい。重合性を有する液晶性化合物は、液晶相を呈した状態で重合し、液晶相における分子の配向状態を維持したまま重合体となることができる。よって、液晶硬化層において液晶性化合物の配向状態を固定したり、液晶性化合物の重合度を高めて液晶硬化層の機械的強度を高めたりすることが可能である。 The liquid crystal compound preferably has polymerizability. Therefore, the liquid crystal compound preferably has a molecule containing a polymerizable group such as an acryloyl group, a methacryloyl group, and an epoxy group. The number of polymerizable groups per molecule of the liquid crystal compound may be one, but is preferably two or more. The polymerizable liquid crystal compound can be polymerized in a state of exhibiting a liquid crystal phase and can be a polymer while maintaining the alignment state of molecules in the liquid crystal phase. Therefore, it is possible to fix the alignment state of the liquid crystal compound in the liquid crystal cured layer or increase the degree of polymerization of the liquid crystal compound to enhance the mechanical strength of the liquid crystal cured layer.
 液晶性化合物の分子量は、好ましくは300以上、より好ましくは500以上、特に好ましくは800以上であり、好ましくは2000以下、より好ましくは1700以下、特に好ましくは1500以下である。このような範囲の分子量を有する液晶性化合物を用いる場合に、液晶組成物の塗工性を特に良好にできる。 The molecular weight of the liquid crystal compound is preferably 300 or more, more preferably 500 or more, particularly preferably 800 or more, preferably 2000 or less, more preferably 1700 or less, and particularly preferably 1500 or less. When a liquid crystal compound having a molecular weight in such a range is used, the coatability of the liquid crystal composition can be made particularly good.
 測定波長590nmにおける液晶性化合物の複屈折Δnは、好ましくは0.01以上、より好ましくは0.03以上であり、好ましくは0.15以下、より好ましくは0.10以下である。このような範囲の複屈折Δnを有する液晶性化合物を用いる場合に、配向欠陥の少ない液晶硬化層を得やすい。 The birefringence Δn of the liquid crystal compound at a measurement wavelength of 590 nm is preferably 0.01 or more, more preferably 0.03 or more, preferably 0.15 or less, more preferably 0.10 or less. When a liquid crystal compound having a birefringence Δn in such a range is used, it is easy to obtain a liquid crystal cured layer with few alignment defects.
 液晶性化合物の複屈折は、例えば、下記の方法により測定できる。
 液晶性化合物の層を作製し、その層に含まれる液晶性化合物をホモジニアス配向させる。その後、その層の面内レターデーションを測定する。そして、「(層の面内レターデーション)÷(層の厚み)」から、液晶性化合物の複屈折を求めることができる。この際、面内レターデーション及び厚みの測定を容易にするために、ホモジニアス配向させた液晶性化合物の層は、硬化させてもよい。
The birefringence of the liquid crystal compound can be measured, for example, by the following method.
A layer of a liquid crystal compound is prepared, and the liquid crystal compound contained in the layer is homogeneously aligned. Then, the in-plane retardation of the layer is measured. Then, the birefringence of the liquid crystalline compound can be obtained from "(in-plane retardation of layer)/(thickness of layer)". At this time, in order to facilitate the measurement of the in-plane retardation and the thickness, the layer of the homogeneously aligned liquid crystalline compound may be cured.
 液晶性化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The liquid crystal compound may be used alone or in combination of two or more kinds at an arbitrary ratio.
 液晶性化合物の例としては、下記式(I)で表される液晶性化合物が挙げられる。式(I)で表される液晶性化合物は、通常、逆波長分散性の複屈折を発現できる。 Examples of liquid crystal compounds include liquid crystal compounds represented by the following formula (I). The liquid crystal compound represented by the formula (I) can usually exhibit reverse wavelength dispersion birefringence.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(I)において、Arは、芳香族複素環、複素環、および芳香族炭化水素環の少なくとも1つを有し、置換されていてもよい、炭素原子数6~67の2価の有機基を表す。芳香族複素環としては、例えば、1H-イソインドール-1,3(2H)-ジオン環、1-ベンゾフラン環、2-ベンゾフラン環、アクリジン環、イソキノリン環、イミダゾール環、インドール環、オキサジアゾール環、オキサゾール環、オキサゾロピラジン環、オキサゾロピリジン環、オキサゾロピリダジル環、オキサゾロピリミジン環、キナゾリン環、キノキサリン環、キノリン環、シンノリン環、チアジアゾール環、チアゾール環、チアゾロピラジン環、チアゾロピリジン環、チアゾロピリダジン環、チアゾロピリミジン環、チオフェン環、トリアジン環、トリアゾール環、ナフチリジン環、ピラジン環、ピラゾール環、ピラノン環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピロール環、フェナントリジン環、フタラジン環、フラン環、ベンゾ[c]チオフェン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサジアゾール環、ベンゾオキサゾール環、ベンゾチアジアゾール環、ベンゾチアゾール環、ベンゾチオフェン環、ベンゾトリアジン環、ベンゾトリアゾール環、ベンゾピラゾール環、ベンゾピラノン環等が挙げられる。複素環としては、例えば、1,3-ジチオラン環、ピロリジン、ピペラジン等が挙げられる。芳香族炭化水素環としては、例えば、フェニル環、ナフタレン環等が挙げられる。 In the formula (I), Ar has at least one of an aromatic heterocycle, a heterocycle, and an aromatic hydrocarbon ring, and is an optionally substituted divalent organic group having 6 to 67 carbon atoms. Represents. Examples of the aromatic heterocycle include 1H-isoindole-1,3(2H)-dione ring, 1-benzofuran ring, 2-benzofuran ring, acridine ring, isoquinoline ring, imidazole ring, indole ring and oxadiazole ring. , Oxazole ring, oxazolopyrazine ring, oxazolopyridine ring, oxazolopyridazyl ring, oxazolopyrimidine ring, quinazoline ring, quinoxaline ring, quinoline ring, cinnoline ring, thiadiazole ring, thiazole ring, thiazolopyrazine ring, thia Zolopyridine ring, thiazolopyridazine ring, thiazolopyrimidine ring, thiophene ring, triazine ring, triazole ring, naphthyridine ring, pyrazine ring, pyrazole ring, pyranone ring, pyran ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrrole ring, Phenanthridine ring, phthalazine ring, furan ring, benzo[c]thiophene ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, benzooxadiazole ring, benzoxazole ring, benzothiadiazole ring, benzothiazole ring, Examples thereof include a benzothiophene ring, a benzotriazine ring, a benzotriazole ring, a benzopyrazole ring, and a benzopyranone ring. Examples of the heterocycle include 1,3-dithiolane ring, pyrrolidine, piperazine and the like. Examples of the aromatic hydrocarbon ring include a phenyl ring and a naphthalene ring.
 Arの好ましい例としては、例えば、下記式(II-1)~式(II-4)のいずれかで表される基が挙げられる。式(II-1)~式(II-4)において、*は、Z又はZとの結合位置を表す。また、Arは、ベンゾチアゾール環を有することが好ましい。 Preferred examples of Ar include groups represented by any of the following formulas (II-1) to (II-4). In formulas (II-1) to (II-4), * represents a bonding position with Z 1 or Z 2 . Further, Ar preferably has a benzothiazole ring.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記の式(II-1)~式(II-4)において、E及びEは、それぞれ独立して、-CR1112-、-S-、-NR11-、-CO-及び-O-からなる群より選ばれる基を表す。また、R11及びR12は、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基を表す。中でも、E及びEは、それぞれ独立して、-S-であることが好ましい。 In the above formulas (II-1) to (II-4), E 1 and E 2 are each independently -CR 11 R 12 -, -S-, -NR 11 -, -CO- and -. It represents a group selected from the group consisting of O-. Further, R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Among them, it is preferable that E 1 and E 2 are each independently -S-.
 前記の式(II-1)~式(II-4)において、D~Dは、それぞれ独立して、置換基を有していてもよい非環状基を表す。D及びDは、一緒になって環を形成していてもよい。D~Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、1~100である。 In the above formulas (II-1) to (II-4), D 1 and D 2 each independently represent an acyclic group which may have a substituent. D 1 and D 2 may be joined together to form a ring. The number of carbon atoms of the group represented by D 1 to D 2 (including the number of carbon atoms of the substituent) is, independently of each other, usually 1 to 100.
 D~Dにおける非環状基の炭素原子数は、1~13が好ましい。D~Dにおける非環状基としては、例えば、炭素原子数1~6のアルキル基;シアノ基;カルボキシル基;炭素原子数1~6のフルオロアルキル基;炭素原子数1~6のアルコキシ基;-C(=O)-CH;-C(=O)NHPh;-C(=O)-OR;が挙げられる。中でも、非環状基としては、シアノ基、カルボキシル基、-C(=O)-CH、-C(=O)NHPh、-C(=O)-OC、-C(=O)-OC、-C(=O)-OCH(CH、-C(=O)-OCHCHCH(CH)-OCH、-C(=O)-OCHCHC(CH-OH、及び-C(=O)-OCHCH(CHCH)-C、が好ましい。前記のPhは、フェニル基を表す。また、前記のRは、炭素原子数1~12の有機基を表す。Rの具体例としては、炭素原子数1~12のアルコキシ基、または、水酸基で置換されていてもよい炭素原子数1~12のアルキル基が挙げられる。 The number of carbon atoms of the acyclic group in D 1 to D 2 is preferably 1 to 13. Examples of the non-cyclic group for D 1 to D 2 include an alkyl group having 1 to 6 carbon atoms; a cyano group; a carboxyl group; a fluoroalkyl group having 1 to 6 carbon atoms; an alkoxy group having 1 to 6 carbon atoms. -C(=O)-CH 3 ; -C(=O)NHPh; -C(=O)-OR x ; Among them, as the non-cyclic group, a cyano group, a carboxyl group, -C (= O) -CH 3 , -C (= O) NHPh, -C (= O) -OC 2 H 5, -C (= O) -OC 4 H 9 , -C(=O)-OCH(CH 3 ) 2 , -C(=O)-OCH 2 CH 2 CH(CH 3 )-OCH 3 , -C(=O)-OCH 2 CH 2 C(CH 3 ) 2 —OH, and —C(═O)—OCH 2 CH(CH 2 CH 3 )—C 4 H 9 are preferred. The above Ph represents a phenyl group. In addition, R x represents an organic group having 1 to 12 carbon atoms. Specific examples of R x include an alkoxy group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms which may be substituted with a hydroxyl group.
 D~Dにおける非環状基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数1~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which the non-cyclic group in D 1 to D 2 may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a carbon atom such as a methyl group, an ethyl group and a propyl group, 6 alkyl group; vinyl group, allyl group, etc., alkenyl group having 2 to 6 carbon atoms; trifluoromethyl group, etc., halogenated alkyl group having 1 to 6 carbon atoms; carbon atom, such as dimethylamino group N,N-dialkylamino group having 1 to 12; alkoxy group having 1 to 6 carbon atoms, such as methoxy group, ethoxy group, isopropoxy group; nitro group; -OCF 3 ; -C(=O)-R b ; -OC(=O)-R b ; -C(=O)-OR b ; -SO 2 R a ; and the like. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rは、炭素原子数1~6のアルキル基;並びに、炭素原子数1~6のアルキル基若しくは炭素原子数1~6のアルコキシ基を置換基として有していてもよい、炭素原子数6~20の芳香族炭化水素環基;からなる群より選ばれる基を表す。 R a represents an alkyl group having 1 to 6 carbon atoms; and an optionally substituted alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, which has 6 carbon atoms. To 20 aromatic hydrocarbon ring groups;
 Rは、置換基を有していてもよい炭素原子数1~20のアルキル基;置換基を有していてもよい炭素原子数2~20のアルケニル基;置換基を有していてもよい炭素原子数3~12のシクロアルキル基;及び、置換基を有していてもよい炭素原子数6~12の芳香族炭化水素環基;からなる群より選ばれる基を表す。 R b is an alkyl group having 1 to 20 carbon atoms which may have a substituent; an alkenyl group having 2 to 20 carbon atoms which may have a substituent; A cycloalkyl group having 3 to 12 carbon atoms; and an aromatic hydrocarbon ring group having 6 to 12 carbon atoms which may have a substituent;
 Rにおける炭素原子数1~20のアルキル基の炭素原子数は、好ましくは1~12、より好ましくは4~10である。Rにおける炭素原子数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、およびn-イコシル基等が挙げられる。 The number of carbon atoms of the alkyl group having 1 to 20 carbon atoms in R b is preferably 1 to 12, and more preferably 4 to 10. Examples of the alkyl group having 1 to 20 carbon atoms for R b include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, 1-methylpentyl group, 1-ethylpentyl group. , Sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group , N-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, and n-icosyl group Groups and the like.
 Rにおける炭素原子数1~20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チエニル基、チアゾリル基、ベンゾチアゾール-2-イルチオ基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;及び、ベンゾジオキサニル基;等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the alkyl group having 1 to 20 carbon atoms in R b may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like having 2 to 12 carbon atoms. N,N-dialkylamino group; methoxy group, ethoxy group, isopropoxy group, butoxy group, etc., alkoxy group having 1 to 20 carbon atoms; methoxymethoxy group, methoxyethoxy group, etc., having 1 to 12 carbon atoms An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group; a nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, Aromatic heterocyclic group having 2 to 20 carbon atoms such as thienyl group, thiazolyl group and benzothiazol-2-ylthio group; cycloalkyl having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group Group; cycloalkyloxy group having 3 to 8 carbon atoms such as cyclopentyloxy group and cyclohexyloxy group; cyclic ether having 2 to 12 carbon atoms such as tetrahydrofuranyl group, tetrahydropyranyl group, dioxolanyl group and dioxanyl group Group; phenoxy group, naphthoxy group, etc., aryloxy group having 6 to 14 carbon atoms; trifluoromethyl group, pentafluoroethyl group, --CH 2 CF 3, etc., at least one hydrogen atom being replaced by a fluorine atom A fluoroalkyl group having 1 to 12 carbon atoms; a benzofuryl group; a benzopyranyl group; a benzodioxolyl group; and a benzodioxanyl group. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数2~20のアルケニル基の炭素原子数は、好ましくは2~12である。Rにおける炭素原子数2~20のアルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、およびイコセニル基等が挙げられる。 The alkenyl group having 2 to 20 carbon atoms in R b preferably has 2 to 12 carbon atoms. Examples of the alkenyl group having 2 to 20 carbon atoms for R b include, for example, vinyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, decenyl group, undecenyl group. , Dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonadecenyl group, and icosenyl group.
 Rにおける炭素原子数2~20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R b, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R b. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びシクロオクチル基等が挙げられる。中でも、シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基が好ましい。 Examples of the cycloalkyl group having 3 to 12 carbon atoms for R b include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Of these, a cyclopentyl group and a cyclohexyl group are preferable as the cycloalkyl group.
 Rにおける炭素原子数3~12のシクロアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;等が挙げられる。中でも、シクロアルキル基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;および、フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the cycloalkyl group having 3 to 12 carbon atoms in R b may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like having 2 to 12 carbon atoms. An N,N-dialkylamino group; an alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group; an alkoxy group having 1 to 6 carbon atoms such as methoxy group, ethoxy group, isopropoxy group Group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group. Among them, as the substituent of the cycloalkyl group, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a methoxy group and an ethoxy group Groups, an alkoxy group having 1 to 6 carbon atoms such as an isopropoxy group; a nitro group; and an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数6~12の芳香族炭化水素環基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基が好ましい。 Examples of the aromatic hydrocarbon ring group having 6 to 12 carbon atoms for R b include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like. Of these, a phenyl group is preferable as the aromatic hydrocarbon ring group.
 Rにおける炭素原子数6~12の芳香族炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;-OCF;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;等が挙げられる。中でも、芳香族炭化水素環基の置換基としては、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;ニトロ基;フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;-OCF;が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the aromatic hydrocarbon ring group having 6 to 12 carbon atoms in R b may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like. 2 to 12 N,N-dialkylamino group; methoxy group, ethoxy group, isopropoxy group, butoxy group, etc., alkoxy group having 1 to 20 carbon atoms; methoxymethoxy group, methoxyethoxy group, etc., carbon atom number An alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12; a nitro group; an aromatic heterocyclic group having 2 to 20 carbon atoms, such as a triazolyl group, a pyrrolyl group, a furanyl group or a thiophenyl group; Cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group, cyclohexyl group; cycloalkyloxy group having 3 to 8 carbon atoms such as cyclopentyloxy group, cyclohexyloxy group; tetrahydrofuranyl group, tetrahydro Cyclic ether group having 2 to 12 carbon atoms such as pyranyl group, dioxolanyl group and dioxanyl group; aryloxy group having 6 to 14 carbon atoms such as phenoxy group and naphthoxy group; trifluoromethyl group, pentafluoroethyl group Group, a —CH 2 CF 3 etc. fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom; —OCF 3 ; benzofuryl group; benzopyranyl group; benzodioxolyl group; A benzodioxanyl group; and the like. Among them, as the substituent of the aromatic hydrocarbon ring group, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methoxy group, an ethoxy group, an isopropoxy group, a butoxy group and the like having 1 to 20 carbon atoms Alkoxy group; nitro group; aromatic heterocyclic group having 2 to 20 carbon atoms such as furanyl group and thiophenyl group; cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group and cyclohexyl group; A fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with a fluorine atom, such as a trifluoromethyl group, a pentafluoroethyl group, and —CH 2 CF 3 ; —OCF 3 ; is preferable. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 D及びDが一緒になって環を形成している場合、前記のD及びDによって環を含む有機基が形成される。この有機基としては、例えば、下記式で表される基が挙げられる。下記式において、*は、各有機基が、D及びDが結合する炭素を表す。 When D 1 and D 2 together form a ring, the aforementioned D 1 and D 2 form an organic group containing a ring. Examples of this organic group include groups represented by the following formula. In the following formula, * represents carbon to which each organic group is bonded to D 1 and D 2 .
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Rは、炭素原子数1~3のアルキル基を表す。
 R**は、炭素原子数1~3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
 R***は、炭素原子数1~3のアルキル基、及び、置換基を有していてもよいフェニル基からなる群より選ばれる基を表す。
 R****は、水素原子、炭素原子数1~3のアルキル基、水酸基、及び、-COOR13からなる群より選ばれる基を表す。R13は、炭素原子数1~3のアルキル基を表す。
 フェニル基が有しうる置換基としては、例えば、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基及びアミノ基が挙げられる。中でも、置換基としては、ハロゲン原子、アルキル基、シアノ基及びアルコキシ基が好ましい。フェニル基が有する置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。
R * represents an alkyl group having 1 to 3 carbon atoms.
R ** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
R *** represents a group selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a phenyl group which may have a substituent.
R *** represents a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a hydroxyl group, and —COOR 13 . R 13 represents an alkyl group having 1 to 3 carbon atoms.
Examples of the substituent that the phenyl group may have include a halogen atom, an alkyl group, an alkenyl group, an aryl group, a heterocyclic group, a hydroxyl group, a carboxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a cyano group and an amino group. Is mentioned. Among them, the substituent is preferably a halogen atom, an alkyl group, a cyano group or an alkoxy group. The phenyl group may have one or more substituents. Further, the plurality of substituents may be the same as or different from each other.
 前記の式(II-1)~式(II-4)において、Dは、-C(R)=N-N(R)R、-C(R)=N-N=C(R)R、及び、-C(R)=N-N=Rからなる群より選ばれる基を表す。Dが表す基の炭素原子数(置換基の炭素原子数を含む。)は、通常、3~100である。 In the above formulas (II-1) to (II-4), D 3 is -C(R f )=NN(R g )R h , -C(R f )=NN=C (R g )R h and a group selected from the group consisting of —C(R f )═N—N═R i . The number of carbon atoms of the group represented by D 3 (including the number of carbon atoms of the substituent) is usually 3 to 100.
 Rは、水素原子;並びに、メチル基、エチル基、プロピル基、及びイソプロピル基等の、炭素原子数1~6のアルキル基;からなる群より選ばれる基を表す。 R f represents a group selected from the group consisting of a hydrogen atom; and an alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
 Rは、水素原子;並びに、置換基を有していてもよい炭素原子数1~30の有機基;からなる群より選ばれる基を表す。 R g represents a group selected from the group consisting of a hydrogen atom; and an organic group having 1 to 30 carbon atoms which may have a substituent.
 Rにおける置換基を有していてもよい炭素原子数1~30の有機基としては、例えば、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、又は、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数2~20のアルケニル基;置換基を有していてもよい炭素原子数2~20のアルキニル基;置換基を有していてもよい炭素原子数3~12のシクロアルキル基;置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;置換基を有していてもよい炭素原子数2~30の芳香族複素環基;-G-Y-F;-SO;-C(=O)-R;-CS-NH-R;が挙げられる。R及びRの意味は、上述した通りである。 Examples of the organic group having 1 to 30 carbon atoms which may have a substituent in R g include, for example, an alkyl group having 1 to 20 carbon atoms which may have a substituent; At least one of —CH 2 — contained in the alkyl group of 20 is —O—, —S—, —O—C(═O)—, —C(═O)—O—, or —C(= O)-substituted group (provided that two or more —O— or —S— are adjacent to each other); an alkenyl group having 2 to 20 carbon atoms which may have a substituent. An alkynyl group having 2 to 20 carbon atoms which may have a substituent; a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent; a carbon which may have a substituent Aromatic hydrocarbon ring group having 6 to 30 atoms; Aromatic heterocyclic group having 2 to 30 carbon atoms which may have a substituent; -G x -Y x -F x ; -SO 2 R a -C(=O)-R b ; -CS-NH-R b ; The meanings of R a and R b are as described above.
 Rにおける炭素原子数1~20のアルキル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数1~20のアルキル基と同じである。 The preferable range of the number of carbon atoms of the alkyl group having 1 to 20 carbon atoms in R g and the exemplified substances are the same as the alkyl group having 1 to 20 carbon atoms in R b .
 Rにおける炭素原子数1~20のアルキル基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の、炭素原子数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素原子数1~12のアルコキシ基で置換された炭素原子数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;トリアゾリル基、ピロリル基、フラニル基、チオフェニル基等の、炭素原子数2~20の芳香族複素環基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の、炭素原子数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の、炭素原子数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の、炭素原子数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の、炭素原子数6~14のアリールオキシ基;1個以上の水素原子がフッ素原子で置換された炭素原子数1~12のフルオロアルキル基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-SO;-SR;-SRで置換された炭素原子数1~12のアルコキシ基;水酸基;等が挙げられる。R及びRの意味は、上述した通りである。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the alkyl group having 1 to 20 carbon atoms in R g may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a dimethylamino group and the like having 2 to 12 carbon atoms. N,N-dialkylamino group; methoxy group, ethoxy group, isopropoxy group, butoxy group, etc., alkoxy group having 1 to 20 carbon atoms; methoxymethoxy group, methoxyethoxy group, etc., having 1 to 12 carbon atoms An alkoxy group substituted with an alkoxy group having 1 to 12 carbon atoms; a nitro group; an aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as a phenyl group and a naphthyl group; a triazolyl group, a pyrrolyl group, a furanyl group, Aromatic heterocyclic group having 2 to 20 carbon atoms such as thiophenyl group; Cycloalkyl group having 3 to 8 carbon atoms such as cyclopropyl group, cyclopentyl group, cyclohexyl group; cyclopentyloxy group, cyclohexyloxy group A cycloalkyloxy group having 3 to 8 carbon atoms; a tetrahydrofuranyl group, a tetrahydropyranyl group, a dioxolanyl group, a dioxanyl group, a cyclic ether group having 2 to 12 carbon atoms, a carbon group such as a phenoxy group or a naphthoxy group Aryloxy group having 6 to 14 atoms; Fluoroalkyl group having 1 to 12 carbon atoms in which one or more hydrogen atoms are substituted with fluorine atoms; benzofuryl group; benzopyranyl group; benzodioxolyl group; benzodioxanyl Group; —SO 2 R a ; —SR b ; —SR b substituted alkoxy group having 1 to 12 carbon atoms; hydroxyl group; and the like. The meanings of R a and R b are as described above. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数2~20のアルケニル基の好ましい炭素原子数の範囲及び例示物は、Rにおける炭素原子数2~20のアルケニル基と同じである。 The preferable range of the number of carbon atoms of the alkenyl group having 2 to 20 carbon atoms in R g and the exemplified substances are the same as the alkenyl group having 2 to 20 carbon atoms in R b .
 Rにおける炭素原子数2~20のアルケニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have an alkenyl group having 2 to 20 carbon atoms in R g, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数2~20のアルキニル基としては、例えば、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基等が挙げられる。 Examples of the alkynyl group having 2 to 20 carbon atoms in R g include ethynyl group, propynyl group, 2-propynyl group (propargyl group), butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group, 2- Examples thereof include a pentynyl group, a hexynyl group, a 5-hexynyl group, a heptynyl group, an octynyl group, a 2-octynyl group, a nonanyl group, a decanyl group and a 7-decanyl group.
 Rにおける炭素原子数2~20のアルキニル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have an alkynyl group having 2 to 20 carbon atoms in R g, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数3~12のシクロアルキル基としては、例えば、Rにおける炭素原子数3~12のシクロアルキル基と同じ例が挙げられる。 Examples of the cycloalkyl group having 3 to 12 carbon atoms in R g include the same examples as the cycloalkyl group having 3 to 12 carbon atoms in R b .
 Rにおける炭素原子数3~12のシクロアルキル基が有しうる置換基としては、例えば、Rにおける炭素原子数1~20のアルキル基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which may have a cycloalkyl group having 3 to 12 carbon atoms in R g, for example, include the same examples as the substituent group which may have an alkyl group having 1 to 20 carbon atoms in R g. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数6~30の芳香族炭化水素環基としては、例えば、フェニル基、ナフチル基等が挙げられる。中でも、芳香族炭化水素環基としては、フェニル基がより好ましい。 Examples of the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g include a phenyl group and a naphthyl group. Among them, a phenyl group is more preferable as the aromatic hydrocarbon ring group.
 Rにおける炭素原子数6~30の芳香族炭化水素環基が有しうる置換基としては、例えば、D~Dにおける非環状基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent which the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g may have include the same examples as the substituent which the acyclic group in D 1 to D 2 may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rにおける炭素原子数2~30の芳香族複素環基としては、例えば、1-ベンゾフラニル基、2-ベンゾフラニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、キノリル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、およびベンゾピラゾリル基等が挙げられる。中でも、芳香族複素環基としては、フラニル基、ピラニル基、チエニル基、オキサゾリル基、フラザニル基、チアゾリル基、及びチアジアゾリル基等の、単環の芳香族複素環基;並びに、ベンゾチアゾリル基、ベンゾオキサゾリル基、キノリル基、1-ベンゾフラニル基、2-ベンゾフラニル基、フタルイミド基、ベンゾ[c]チエニル基、ベンゾ[b]チエニル基、チアゾロピリジル基、チアゾロピラジニル基、ベンゾイソオキサゾリル基、ベンゾオキサジアゾリル基、及びベンゾチアジアゾリル基等の、縮合環の芳香族複素環基;がより好ましい。 Examples of the aromatic heterocyclic group having 2 to 30 carbon atoms in R g include 1-benzofuranyl group, 2-benzofuranyl group, imidazolyl group, indolinyl group, flazanyl group, oxazolyl group, quinolyl group, thiadiazolyl group, thiazolyl group. , Thiazolopyrazinyl group, thiazolopyridyl group, thiazolopyridazinyl group, thiazolopyrimidinyl group, thienyl group, triazinyl group, triazolyl group, naphthyridinyl group, pyrazinyl group, pyrazolyl group, pyranyl group, pyridyl group, Pyridazinyl group, pyrimidinyl group, pyrrolyl group, phthalazinyl group, furanyl group, benzo[c]thienyl group, benzo[b]thienyl group, benzisoxazolyl group, benzisothiazolyl group, benzimidazolyl group, benzoxazodiazolyl group , A benzoxazolyl group, a benzothiadiazolyl group, a benzothiazolyl group, a benzotriazinyl group, a benzotriazolyl group, and a benzopyrazolyl group. Among them, as the aromatic heterocyclic group, a monocyclic aromatic heterocyclic group such as a furanyl group, a pyranyl group, a thienyl group, an oxazolyl group, a flazanyl group, a thiazolyl group, and a thiadiazolyl group; and a benzothiazolyl group, benzoxazol group Zolyl group, quinolyl group, 1-benzofuranyl group, 2-benzofuranyl group, phthalimido group, benzo[c]thienyl group, benzo[b]thienyl group, thiazolopyridyl group, thiazolopyrazinyl group, benzisoxazoli And a benzoxiadiazolyl group and a benzothiadiazolyl group;
 Rにおける炭素原子数2~30の芳香族複素環基が有しうる置換基としては、例えば、D~Dにおける非環状基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the aromatic heterocyclic group having 2 to 30 carbon atoms in R g may have include the same examples as the substituent that the acyclic group in D 1 to D 2 may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Gは、置換基を有していてもよい炭素原子数1~30の2価の脂肪族炭化水素基;並びに、置換基を有していてもよい炭素原子数3~30の2価の脂肪族炭化水素基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR14-C(=O)-、-C(=O)-NR14-、-NR14-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);からなる群より選ばれる有機基を表す。R14は、水素原子、又は、炭素原子数1~6のアルキル基を表す。前記「2価の脂肪族炭化水素基」は、2価の鎖状の脂肪族炭化水素基であることが好ましく、アルキレン基であることがより好ましい。 G x is a divalent aliphatic hydrocarbon group having 1 to 30 carbon atoms which may have a substituent; and a divalent aliphatic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent. At least one of —CH 2 — contained in the aliphatic hydrocarbon group is —O—, —S—, —O—C(═O)—, —C(═O)—O—, —O—C( =O)-O-, -NR 14 -C(=O)-, -C(=O)-NR 14 -, -NR 14 -, or a group substituted with -C(=O)- (provided that , -O- or -S- are each adjacent to each other except for two or more). R 14 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. The "divalent aliphatic hydrocarbon group" is preferably a divalent chain aliphatic hydrocarbon group, and more preferably an alkylene group.
 Yは、-O-、-C(=O)-、-S-、-C(=O)-O-、-O-C(=O)-、-O-C(=O)-O-、-C(=O)-S-、-S-C(=O)-、-NR15-C(=O)-、-C(=O)-NR15-、-O-C(=O)-NR15-、-NR15-C(=O)-O-、-N=N-、及び、-C≡C-、からなる群より選ばれる基を表す。R15は、水素原子、又は、炭素原子数1~6のアルキル基を表す。中でも、Yとしては、-O-、-O-C(=O)-O-及び-C(=O)-O-が好ましい。 Y x is -O-, -C(=O)-, -S-, -C(=O)-O-, -OC(=O)-, -OC(=O)-O. -, - C (= O) -S -, - S-C (= O) -, - NR 15 -C (= O) -, - C (= O) -NR 15 -, - O-C (= O)—NR 15 —, —NR 15 —C(═O)—O—, —N═N—, and —C≡C—. R 15 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Of these, Y x is preferably —O—, —O—C(═O)—O— and —C(═O)—O—.
 Fは、芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する有機基を表す。この有機基の炭素原子数は、好ましくは2以上、より好ましくは7以上、更に好ましくは8以上、特に好ましくは10以上であり、好ましくは30以下である。前記の有機基の炭素原子数には、置換基の炭素原子を含まない。 F x represents an organic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle. The number of carbon atoms in this organic group is preferably 2 or more, more preferably 7 or more, further preferably 8 or more, particularly preferably 10 or more, and preferably 30 or less. The number of carbon atoms of the organic group does not include the carbon atoms of the substituent.
 Fにおける芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環、フルオレン環等の、炭素原子数6~30の芳香族炭化水素環が挙げられる。Fが、複数の芳香族炭化水素環を有する場合、複数の芳香族炭化水素環は、互いに同じであってもよく、異なっていてもよい。 Examples of the aromatic hydrocarbon ring in F x include aromatic hydrocarbon rings having 6 to 30 carbon atoms such as benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, and fluorene ring. When F x has a plurality of aromatic hydrocarbon rings, the plurality of aromatic hydrocarbon rings may be the same as or different from each other.
 Fにおける芳香族炭化水素環は、置換基を有していてもよい。Fにおける芳香族炭化水素環が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基、ペンタフルオロエチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-C(=O)-O-R;-O-C(=O)-R;等が挙げられる。Rの意味は、上述した通りである。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The aromatic hydrocarbon ring in F x may have a substituent. Examples of the substituent that the aromatic hydrocarbon ring in F x may have include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a methyl group, an ethyl group, a propyl group and the like, having 1 to 6 carbon atoms. Alkyl groups; vinyl groups, allyl groups, etc., alkenyl groups having 2 to 6 carbon atoms; trifluoromethyl groups, pentafluoroethyl groups, etc., halogenated alkyl groups having 1 to 6 carbon atoms; dimethylamino groups, etc. An N,N-dialkylamino group having 2 to 12 carbon atoms; an alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, an isopropoxy group; a nitro group; -OCF 3 ; O)-R b ; -C(=O)-O-R b ; -OC(=O)-R b ; and the like. The meaning of R b is as described above. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Fにおける芳香族複素環としては、例えば、1H-イソインドール-1,3(2H)-ジオン環、1-ベンゾフラン環、2-ベンゾフラン環、アクリジン環、イソキノリン環、イミダゾール環、インドール環、オキサジアゾール環、オキサゾール環、オキサゾロピラジン環、オキサゾロピリジン環、オキサゾロピリダジル環、オキサゾロピリミジン環、キナゾリン環、キノキサリン環、キノリン環、シンノリン環、チアジアゾール環、チアゾール環、チアゾロピラジン環、チアゾロピリジン環、チアゾロピリダジン環、チアゾロピリミジン環、チオフェン環、トリアジン環、トリアゾール環、ナフチリジン環、ピラジン環、ピラゾール環、ピラノン環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピロール環、フェナントリジン環、フタラジン環、フラン環、ベンゾ[c]チオフェン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサジアゾール環、ベンゾオキサゾール環、ベンゾチアジアゾール環、ベンゾチアゾール環、ベンゾチオフェン環、ベンゾトリアジン環、ベンゾトリアゾール環、ベンゾピラゾール環、ベンゾピラノン環等の、炭素原子数2~30の芳香族複素環が挙げられる。Fが、複数の芳香族複素環を有する場合、複数の芳香族複素環は、互いに同じであってもよく、異なっていてもよい。 Examples of the aromatic heterocycle in F x include 1H-isoindole-1,3(2H)-dione ring, 1-benzofuran ring, 2-benzofuran ring, acridine ring, isoquinoline ring, imidazole ring, indole ring, oxa Diazole ring, oxazole ring, oxazolopyrazine ring, oxazolopyridine ring, oxazolopyridazyl ring, oxazolopyrimidine ring, quinazoline ring, quinoxaline ring, quinoline ring, cinnoline ring, thiadiazole ring, thiazole ring, thiazolopyrazine Ring, thiazolopyridine ring, thiazolopyridazine ring, thiazolopyrimidine ring, thiophene ring, triazine ring, triazole ring, naphthyridine ring, pyrazine ring, pyrazole ring, pyranone ring, pyran ring, pyridine ring, pyridazine ring, pyrimidine ring, Pyrrole ring, phenanthridine ring, phthalazine ring, furan ring, benzo[c]thiophene ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, benzooxadiazole ring, benzoxazole ring, benzothiadiazole ring, benzo Examples thereof include aromatic heterocycles having 2 to 30 carbon atoms such as thiazole ring, benzothiophene ring, benzotriazine ring, benzotriazole ring, benzopyrazole ring and benzopyranone ring. When F x has a plurality of aromatic heterocycles, the plurality of aromatic heterocycles may be the same as or different from each other.
 Fにおける芳香族複素環は、置換基を有していてもよい。Fにおける芳香族複素環が有しうる置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The aromatic heterocycle in F x may have a substituent. Examples of the substituent which the aromatic heterocyclic ring in the F x may have, for example, include the same examples as the substituent group which may have an aromatic hydrocarbon ring in F x. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Fの好ましい例としては、「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい、炭素原子数2~20の環状基」が挙げられる。以下、この環状基を、適宜「環状基(a)」ということがある。 Preferred examples of F x include “a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, which may have a substituent and has 2 to 20 carbon atoms”. Hereinafter, this cyclic group may be appropriately referred to as “cyclic group (a)”.
 環状基(a)が有しうる置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the cyclic group (a) may have include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 環状基(a)の好ましい例としては、少なくとも一つの炭素原子数6~18の芳香族炭化水素環を有する、置換基を有していてもよい炭素原子数6~20の炭化水素環基が挙げられる。この炭化水素環基を、以下、適宜「炭化水素環基(a1)」ということがある。 Preferred examples of the cyclic group (a) include a hydrocarbon ring group having 6 to 20 carbon atoms which may have a substituent and which has at least one aromatic hydrocarbon ring having 6 to 18 carbon atoms. Can be mentioned. Hereinafter, this hydrocarbon ring group may be appropriately referred to as “hydrocarbon ring group (a1)”.
 炭化水素環基(a1)としては、例えば、フェニル基(炭素原子数6)、ナフチル基(炭素原子数10)、アントラセニル基(炭素原子数14)、フェナントレニル基(炭素原子数14)、ピレニル基(炭素原子数16)、フルオレニル基(炭素原子数13)、インダニル基(炭素原子数9)、1,2,3,4-テトラヒドロナフチル基(炭素原子数10)、1,4-ジヒドロナフチル基(炭素原子数10)等の、炭素原子数6~18の芳香族炭化水素環基が挙げられる。 Examples of the hydrocarbon ring group (a1) include a phenyl group (6 carbon atoms), a naphthyl group (10 carbon atoms), an anthracenyl group (14 carbon atoms), a phenanthrenyl group (14 carbon atoms), a pyrenyl group. (16 carbon atoms), fluorenyl group (13 carbon atoms), indanyl group (9 carbon atoms), 1,2,3,4-tetrahydronaphthyl group (10 carbon atoms), 1,4-dihydronaphthyl group Examples thereof include aromatic hydrocarbon ring groups having 6 to 18 carbon atoms such as (having 10 carbon atoms).
 前記の炭化水素環基(a1)の具体例としては、下記式(1-1)~(1-21)で表される基が挙げられる。また、これらの基は、置換基を有していてもよい。下記式中、「-」は、環の任意の位置からのびる、Yとの結合手を表す。 Specific examples of the hydrocarbon ring group (a1) include groups represented by the following formulas (1-1) to (1-21). Moreover, these groups may have a substituent. In the following formula, “−” represents a bond with Y x extending from any position of the ring.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 環状基(a)の別の好ましい例としては、炭素原子数6~18の芳香族炭化水素環及び炭素原子数2~18の芳香族複素環からなる群から選ばれる1以上の芳香環を有する、置換基を有していてもよい炭素原子数2~20の複素環基が挙げられる。この複素環基を、以下、適宜「複素環基(a2)」ということがある。 Another preferable example of the cyclic group (a) has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 18 carbon atoms and an aromatic heterocycle having 2 to 18 carbon atoms. And a heterocyclic group having 2 to 20 carbon atoms which may have a substituent. Hereinafter, this heterocyclic group may be referred to as “heterocyclic group (a2)” as appropriate.
 複素環基(a2)としては、例えば、フタルイミド基、1-ベンゾフラニル基、2-ベンゾフラニル基、アクリジニル基、イソキノリニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、オキサゾロピラジニル基、オキサゾロピリジニル基、オキサゾロピリダジニル基、オキサゾロピリミジニル基、キナゾリニル基、キノキサリニル基、キノリル基、シンノリニル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジニル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラノンニル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フェナントリジニル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾチオフェニル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ベンゾピラノニル基等の、炭素原子数2~18の芳香族複素環基;キサンテニル基;2,3-ジヒドロインドーリル基;9,10-ジヒドロアクリジニル基;1,2,3,4-テトラヒドロキノリル基;ジヒドロピラニル基;テトラヒドロピラニル基;ジヒドロフラニル基;およびテトラヒドロフラニル基;が挙げられる。 Examples of the heterocyclic group (a2) include a phthalimido group, a 1-benzofuranyl group, a 2-benzofuranyl group, an acridinyl group, an isoquinolinyl group, an imidazolyl group, an indolinyl group, a flazanyl group, an oxazolyl group, an oxazolopyrazinyl group and an oxaxyl group. Zolopyridinyl group, oxazolopyridazinyl group, oxazolopyrimidinyl group, quinazolinyl group, quinoxalinyl group, quinolyl group, cinnolinyl group, thiadiazolyl group, thiazolyl group, thiazlopyrazinyl group, thiazolopyridinyl group , Thiazolopyridazinyl group, thiazolopyrimidinyl group, thienyl group, triazinyl group, triazolyl group, naphthyridinyl group, pyrazinyl group, pyrazolyl group, pyranonyl group, pyranyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrrolyl group, Phenanthridinyl group, phthalazinyl group, furanyl group, benzo[c]thienyl group, benzisoxazolyl group, benzisothiazolyl group, benzimidazolyl group, benzoxazolyl group, benzothiadiazolyl group, benzothiazolyl group, Aromatic heterocyclic groups having 2 to 18 carbon atoms, such as benzothiophenyl group, benzotriazinyl group, benzotriazolyl group, benzopyrazolyl group, benzopyranonyl group; xanthenyl group; 2,3-dihydroindolyl group 1,10-dihydroacridinyl group; 1,2,3,4-tetrahydroquinolyl group; dihydropyranyl group; tetrahydropyranyl group; dihydrofuranyl group; and tetrahydrofuranyl group.
 前記の複素環基(a2)の具体例としては、下記式(2-1)~(2-51)で表される基が挙げられる。また、これらの基は、置換基を有していてもよい。下記式中、「-」は、環の任意の位置からのびる、Yとの結合手を表す。下記式中、Xは、-CH-、-NR-、酸素原子、硫黄原子、-SO-または-SO-を表す。YおよびZは、それぞれ独立して、-NR-、酸素原子、硫黄原子、-SO-または-SO-を表す。Eは、-NR-、酸素原子または硫黄原子を表す。ここで、Rは、水素原子;または、メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基を表す。(但し、各式中において酸素原子、硫黄原子、-SO-、-SO-は、それぞれ隣接しないものとする。)。 Specific examples of the heterocyclic group (a2) include groups represented by the following formulas (2-1) to (2-51). Moreover, these groups may have a substituent. In the following formula, “−” represents a bond with Y x extending from any position of the ring. In the following formula, X represents —CH 2 —, —NR c —, an oxygen atom, a sulfur atom, —SO— or —SO 2 —. Y and Z each independently represent -NR c -, an oxygen atom, a sulfur atom, -SO- or -SO 2 -. E represents —NR c —, an oxygen atom or a sulfur atom. Here, R c represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group. (However, in each formula, an oxygen atom, a sulfur atom, —SO—, and —SO 2 — are not adjacent to each other.).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 Fの好ましい別の例としては、「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい炭素原子数2~20の環状基で、少なくとも一つの水素原子が置換され、且つ、前記環状基以外の置換基を有していてもよい、炭素原子数1~18のアルキル基」が挙げられる。この置換されたアルキル基を、以下、適宜「置換アルキル基(b)」ということがある。 Another preferable example of F x is “a cyclic group having 2 to 20 carbon atoms, which has at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, and which may have a substituent, And an alkyl group having 1 to 18 carbon atoms, which is substituted with a hydrogen atom and may have a substituent other than the above cyclic group. Hereinafter, this substituted alkyl group may be appropriately referred to as a “substituted alkyl group (b)”.
 置換アルキル基(b)における炭素原子数1~18のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。 Examples of the alkyl group having 1 to 18 carbon atoms in the substituted alkyl group (b) include a methyl group, an ethyl group, a propyl group and an isopropyl group.
 置換アルキル基(b)において、「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい炭素原子数2~20の環状基」としては、例えば、環状基(a)として説明した範囲の基が挙げられる。 In the substituted alkyl group (b), “a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, which may have a substituent and has 2 to 20 carbon atoms” is, for example, a cyclic group. The group of the range demonstrated as group (a) is mentioned.
 置換アルキル基(b)において、「芳香族炭化水素環および芳香族複素環の少なくとも一方」は、炭素原子数1~18のアルキル基の炭素原子に、直接に結合していてもよく、連結基を介して結合していてもよい。連結基としては、例えば、-S-、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-O-C(=O)-O-、-C(=O)-S-、-S-C(=O)-、-NR15-C(=O)-、-C(=O)-NR15などが挙げられる。R15の意味は、上述した通りである。よって、置換アルキル基(b)における「芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する、置換基を有していてもよい炭素原子数2~20の環状基」には、フルオレニル基、ベンゾチアゾリル基等の、芳香族炭化水素環及び芳香族複素環の少なくとも一方を有する基;置換されていてもよい芳香族炭化水素環基;置換されていてもよい芳香族複素環基;連結基を有する置換されていてもよい芳香族炭化水素環よりなる基;連結基を有する置換されていてもよい芳香族複素環よりなる基;が含まれる。 In the substituted alkyl group (b), “at least one of an aromatic hydrocarbon ring and an aromatic heterocycle” may be directly bonded to a carbon atom of an alkyl group having 1 to 18 carbon atoms, and may be a linking group. It may be bound via. Examples of the linking group include -S-, -O-, -C(=O)-, -C(=O)-O-, -OC(=O)-, -OC(=O). ) -O-, -C(=O)-S-, -SC(=O)-, -NR 15 -C(=O)-, -C(=O)-NR 15 and the like. The meaning of R 15 is as described above. Therefore, in the "substituted alkyl group (b) "a cyclic group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle, which may have a substituent and has 2 to 20 carbon atoms"," is a fluorenyl group. , A group having at least one of an aromatic hydrocarbon ring and an aromatic heterocycle such as a benzothiazolyl group; an optionally substituted aromatic hydrocarbon ring group; an optionally substituted aromatic heterocyclic group; a linking group A group consisting of an optionally substituted aromatic hydrocarbon ring having a group; and a group consisting of an optionally substituted aromatic heterocycle having a linking group.
 置換アルキル基(b)における芳香族炭化水素環基の好ましい例としては、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、およびフルオレニル基等の、炭素原子数6~20の芳香族炭化水素環基が挙げられる。 Preferred examples of the aromatic hydrocarbon ring group in the substituted alkyl group (b) include phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, fluorenyl group and the like aromatic carbon ring having 6 to 20 carbon atoms. A hydrogen ring group is mentioned.
 置換アルキル基(b)における芳香族炭化水素環基は、置換基を有していてもよい。この置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The aromatic hydrocarbon ring group in the substituted alkyl group (b) may have a substituent. Examples of this substituent include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 置換アルキル基(b)における芳香族複素環基の好ましい例としては、フタルイミド基、1-ベンゾフラニル基、2-ベンゾフラニル基、アクリジニル基、イソキノリニル基、イミダゾリル基、インドリニル基、フラザニル基、オキサゾリル基、オキサゾロピラジニル基、オキサゾロピリジニル基、オキサゾロピリダジニル基、オキサゾロピリミジニル基、キナゾリニル基、キノキサリニル基、キノリル基、シンノリニル基、チアジアゾリル基、チアゾリル基、チアゾロピラジニル基、チアゾロピリジル基、チアゾロピリダジニル基、チアゾロピリミジニル基、チエニル基、トリアジニル基、トリアゾリル基、ナフチリジニル基、ピラジニル基、ピラゾリル基、ピラノンニル基、ピラニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピロリル基、フェナントリジニル基、フタラジニル基、フラニル基、ベンゾ[c]チエニル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、ベンゾイミダゾリル基、ベンゾオキサジアゾリル基、ベンゾオキサゾリル基、ベンゾチアジアゾリル基、ベンゾチアゾリル基、ベンゾチエニル基、ベンゾトリアジニル基、ベンゾトリアゾリル基、ベンゾピラゾリル基、ベンゾピラノニル基等の、炭素原子数2~20の芳香族複素環基が挙げられる。 Preferred examples of the aromatic heterocyclic group in the substituted alkyl group (b) include a phthalimido group, a 1-benzofuranyl group, a 2-benzofuranyl group, an acridinyl group, an isoquinolinyl group, an imidazolyl group, an indolinyl group, a flazanyl group, an oxazolyl group and an oxaxyl group. Zolopyrazinyl group, oxazolopyridinyl group, oxazolopyridazinyl group, oxazolopyrimidinyl group, quinazolinyl group, quinoxalinyl group, quinolyl group, cinnolinyl group, thiadiazolyl group, thiazolyl group, thiazolopyrazinyl group , Thiazolopyridyl group, thiazolopyridazinyl group, thiazolopyrimidinyl group, thienyl group, triazinyl group, triazolyl group, naphthyridinyl group, pyrazinyl group, pyrazolyl group, pyranonyl group, pyranyl group, pyridyl group, pyridazinyl group, pyrimidinyl Group, pyrrolyl group, phenanthridinyl group, phthalazinyl group, furanyl group, benzo[c]thienyl group, benzisoxazolyl group, benzisothiazolyl group, benzimidazolyl group, benzoxazodiazolyl group, benzoxazolyl Group, benzothiadiazolyl group, benzothiazolyl group, benzothienyl group, benzotriazinyl group, benzotriazolyl group, benzopyrazolyl group, benzopyranonyl group and the like, and aromatic heterocyclic group having 2 to 20 carbon atoms. Be done.
 置換アルキル基(b)における芳香族複素環基は、置換基を有していてもよい。この置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The aromatic heterocyclic group in the substituted alkyl group (b) may have a substituent. Examples of this substituent include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 置換アルキル基(b)における「連結基を有する芳香族炭化水素環よりなる基」及び「連結基を有する芳香族複素環よりなる基」としては、例えば、フェニルチオ基、ナフチルチオ基、アントラセニルチオ基、フェナントレニルチオ基、ピレニルチオ基、フルオレニルチオ基、フェニルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基、ベンゾイソオキサゾリルチオ基、ベンゾイソチアゾリルチオ基、ベンゾオキサジアゾリルチオ基、ベンゾオキサゾリルチオ基、ベンゾチアジアゾリルチオ基、ベンゾチアゾリルチオ基、ベンゾチエニルチオ基、ベンゾイソオキサゾリルオキシ基、ベンゾイソチアゾリルオキシ基、ベンゾオキサジアゾリルオキシ基、ベンゾオキサゾリルオキシ基、ベンゾチアジアゾリルオキシ基、ベンゾチアゾリルオキシ基、ベンゾチエニルオキシ基、等が挙げられる。 Examples of the “group consisting of an aromatic hydrocarbon ring having a linking group” and the “group consisting of an aromatic heterocycle having a linking group” in the substituted alkyl group (b) include, for example, a phenylthio group, a naphthylthio group and an anthracenylthio group. , Phenanthrenylthio group, pyrenylthio group, fluorenylthio group, phenyloxy group, naphthyloxy group, anthracenyloxy group, phenanthrenyloxy group, pyrenyloxy group, fluorenyloxy group, benzisoxazolylthio group, Benzisothiazolylthio group, benzoxazodiazolylthio group, benzoxazolylthio group, benzothiadiazolylthio group, benzothiazolylthio group, benzothienylthio group, benzisoxazolyloxy group, benzisothiazolyl Examples thereof include an oxy group, a benzoxazodiazolyloxy group, a benzoxazolyloxy group, a benzothiadiazolyloxy group, a benzothiazolyloxy group and a benzothienyloxy group.
 置換アルキル基(b)における「連結基を有する芳香族炭化水素環よりなる基」及び「連結基を有する芳香族複素環よりなる基」は、それぞれ、置換基を有していてもよい。この置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The "group consisting of an aromatic hydrocarbon ring having a linking group" and the "group consisting of an aromatic heterocycle having a linking group" in the substituted alkyl group (b) may each have a substituent. Examples of this substituent include the same examples as the substituent that the aromatic hydrocarbon ring in F x may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 置換アルキル基(b)が有しうる環状基以外の置換基としては、例えば、Fにおける芳香族炭化水素環が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent other than the cyclic group which the substituted alkyl group (b) may have include the same examples as the substituent which the aromatic hydrocarbon ring in F x may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 置換アルキル基(b)の具体例としては、下記式(3-1)~(3-11)で表される基が挙げられる。また、これらの基は、置換基を有していてもよい。下記式中、「-」は、環の任意の位置からのびる、Yとの結合手を表す。また、下記式中、*は、結合位置を表す。 Specific examples of the substituted alkyl group (b) include groups represented by the following formulas (3-1) to (3-11). Moreover, these groups may have a substituent. In the following formula, “−” represents a bond with Y x extending from any position of the ring. Moreover, in the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 特に、Arが式(II-2)で表される場合、Fは、下記式(i-1)~(i-9)のいずれかで表される基であることが好ましい。また、特に、Arが式(II-3)又は式(II-4)で表される場合、Fは、下記式(i-1)~(i-13)のいずれかで表される基であることが好ましい。下記式(i-1)~(i-13)で表される基は、置換基を有していてもよい。また、下記式中、*は、結合位置を表す。 In particular, when Ar is represented by the formula (II-2), F x is preferably a group represented by any of the following formulas (i-1) to (i-9). Further, particularly when Ar is represented by the formula (II-3) or the formula (II-4), F x is a group represented by any one of the following formulas (i-1) to (i-13). Is preferred. The groups represented by the following formulas (i-1) to (i-13) may have a substituent. Moreover, in the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 更には、Arが式(II-2)で表される場合、Fは、下記式(ii-1)~(ii-18)のいずれかで表される基であることが特に好ましい。また、Arが式(II-3)又は式(II-4)で表される場合、Fは、下記式(ii-1)~(ii-24)のいずれかで表される基であることが特に好ましい。下記式(ii-1)~(ii-24)で表される基は、置換基を有していてもよい。下記の式において、Yの意味は、上述した通りである。また、下記式中、*は、結合位置を表す。 Further, when Ar is represented by the formula (II-2), F x is particularly preferably a group represented by any of the following formulas (ii-1) to (ii-18). When Ar is represented by the formula (II-3) or the formula (II-4), F x is a group represented by any of the following formulas (ii-1) to (ii-24). Is particularly preferable. The groups represented by the following formulas (ii-1) to (ii-24) may have a substituent. In the following formula, the meaning of Y is as described above. Moreover, in the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 Arが式(II-2)で表される場合、F中の環構造に含まれるπ電子の総数は、8以上であることが好ましく、10以上であることがより好ましく、20以下であることが好ましく、18以下であることがより好ましい。また、Arが式(II-3)又は式(II-4)で表される場合、F中の環構造に含まれるπ電子の総数は、4以上であることが好ましく、6以上であることがより好ましく、20以下であることが好ましく、18以下であることがより好ましい。 When Ar is represented by the formula (II-2), the total number of π electrons contained in the ring structure in F x is preferably 8 or more, more preferably 10 or more, and 20 or less. It is preferably 18 or less, and more preferably 18 or less. When Ar is represented by the formula (II-3) or the formula (II-4), the total number of π electrons contained in the ring structure in F x is preferably 4 or more, and 6 or more. More preferably, it is preferably 20 or less, and more preferably 18 or less.
 上述したものの中でも、Rとしては、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数3~12のシクロアルキル基;置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;置換基を有していてもよい炭素原子数2~30の芳香族複素環基;並びに、-G-Y-F;が好ましい。その中でも、Rとしては、置換基を有していてもよい炭素原子数1~20のアルキル基;炭素原子数1~20のアルキル基に含まれる-CH-の少なくとも一つが、-O-、-S-、-O-C(=O)-、-C(=O)-O-、または、-C(=O)-に置換された基(ただし、-O-または-S-がそれぞれ2以上隣接して介在する場合を除く);置換基を有していてもよい炭素原子数6~30の芳香族炭化水素環基;並びに、-G-Y-F;が特に好ましい。 Among the above, as R g , at least one of —CH 2 — contained in the alkyl group having 1 to 20 carbon atoms which may have a substituent; and the alkyl group having 1 to 20 carbon atoms, -O-, -S-, -OC(=O)-, -C(=O)-O-, or a group substituted with -C(=O)- (provided that -O- or- (Except when two or more S- groups are adjacently intervening each other); a cycloalkyl group having a carbon number of 3 to 12 which may have a substituent; a carbon atom having a carbon number of 6 to which a substituent may have 6 to An aromatic hydrocarbon ring group having 30; an aromatic heterocyclic group having 2 to 30 carbon atoms which may have a substituent; and -G x -Y x -F x ; are preferable. Among them, as R g , at least one of —CH 2 — contained in the alkyl group having 1 to 20 carbon atoms which may have a substituent; and the alkyl group having 1 to 20 carbon atoms is —O. Groups substituted with -, -S-, -OC(=O)-, -C(=O)-O-, or -C(=O)- (provided that -O- or -S- Each of which is adjacent to each other by 2 or more); an aromatic hydrocarbon ring group having 6 to 30 carbon atoms which may have a substituent; and -G x -Y x -F x ; Particularly preferred.
 Rは、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。 R h represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
 Rの好ましい例としては、(1)一以上の炭素原子数6~30の芳香族炭化水素環を有する、炭素原子数6~40の炭化水素環基、が挙げられる。この芳香族炭化水素環を有する炭化水素環基を、以下、適宜「(1)炭化水素環基」ということがある。(1)炭化水素環基の具体例としては、下記の基が挙げられる。 Preferred examples of R h include (1) a hydrocarbon ring group having 6 to 40 carbon atoms, which has at least one aromatic hydrocarbon ring having 6 to 30 carbon atoms. Hereinafter, the hydrocarbon ring group having the aromatic hydrocarbon ring may be appropriately referred to as "(1) hydrocarbon ring group". Specific examples of the (1) hydrocarbon ring group include the following groups.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (1)炭化水素環基は、置換基を有していてもよい。(1)炭化水素環基が有しうる置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等の、炭素原子数6~20の芳香族炭化水素環基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、および、炭素原子数1~6のアルコキシ基、が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (1) The hydrocarbon ring group may have a substituent. (1) The substituent which the hydrocarbon ring group may have includes, for example, a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; a C 1 to 6 carbon atom such as a methyl group, an ethyl group and a propyl group. Alkyl group; vinyl group, allyl group, etc., alkenyl group having 2 to 6 carbon atoms; trifluoromethyl group, etc., halogenated alkyl group having 1 to 6 carbon atoms; dimethylamino group, etc., 2 carbon atoms To 12 N,N-dialkylamino groups; methoxy groups, ethoxy groups, isopropoxy groups, and other alkoxy groups having 1 to 6 carbon atoms; nitro groups; phenyl groups, naphthyl groups, and other C6 to 20 carbon atoms An aromatic hydrocarbon ring group; -OCF 3 ; -C(=O)-R b ; -OC(=O)-R b ; -C(=O)-O-R b ; -SO 2 R a ; and the like. The meanings of R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rの別の好ましい例としては、(2)炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2~40の複素環基が挙げられる。この芳香環を有する複素環基を、以下、適宜「(2)複素環基」ということがある。(2)複素環基の具体例としては、下記の基が挙げられる。Rは、それぞれ独立に、水素原子又は炭素原子数1~6のアルキル基を表す。 Another preferable example of R h has (2) at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms. And a heterocyclic group having 2 to 40 carbon atoms. Hereinafter, the heterocyclic group having this aromatic ring may be appropriately referred to as "(2) heterocyclic group". (2) Specific examples of the heterocyclic group include the following groups. Each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 (2)複素環基は、置換基を有していてもよい。(2)複素環基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (2) The heterocyclic group may have a substituent. Examples of the substituent that the (2) heterocyclic group may have include the same examples as the (1) substituent that the hydrocarbon ring group may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rの更に別の好ましい例としては、(3)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数1~12のアルキル基が挙げられる。この置換されたアルキル基を、以下、適宜「(3)置換アルキル基」ということがある。 Yet another preferred example of R h is (3) one or more groups selected from the group consisting of aromatic hydrocarbon ring groups having 6 to 30 carbon atoms and aromatic heterocyclic groups having 2 to 30 carbon atoms. And an alkyl group having 1 to 12 carbon atoms, which is substituted with. Hereinafter, the substituted alkyl group may be appropriately referred to as “(3) substituted alkyl group”.
 (3)置換アルキル基における「炭素原子数1~12のアルキル基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。
 (3)置換アルキル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、Rにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (3)置換アルキル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、Rにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
(3) Examples of the "alkyl group having 1 to 12 carbon atoms" in the substituted alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group and the like.
(3) Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g .
(3) Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in R g .
 (3)置換アルキル基は、更に置換基を有していてもよい。(3)置換アルキル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (3) The substituted alkyl group may further have a substituent. Examples of the substituent that the (3) substituted alkyl group may have include the same examples as the (1) substituent that the hydrocarbon ring group may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rの更に別の好ましい例としては、(4)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2~12のアルケニル基が挙げられる。この置換されたアルケニル基を、以下、適宜「(4)置換アルケニル基」ということがある。 Still another preferable example of R h is (4) one or more groups selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms. And an alkenyl group having 2 to 12 carbon atoms, which is substituted with. Hereinafter, the substituted alkenyl group may be appropriately referred to as “(4) substituted alkenyl group”.
 (4)置換アルケニル基における「炭素原子数2~12のアルケニル基」としては、例えば、ビニル基、アリル基などが挙げられる。
 (4)置換アルケニル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、Rにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (4)置換アルケニル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、Rにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
(4) Examples of the "alkenyl group having 2 to 12 carbon atoms" in the substituted alkenyl group include vinyl group and allyl group.
(4) Examples of the "aromatic hydrocarbon ring group having 6 to 30 carbon atoms" in the substituted alkenyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g .
(4) Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkenyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in R g .
 (4)置換アルケニル基は、更に置換基を有していてもよい。(4)置換アルケニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (4) The substituted alkenyl group may further have a substituent. Examples of the substituent which the (4) substituted alkenyl group may have include the same examples as the (1) substituent which the hydrocarbon ring group may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rの更に別の好ましい例としては、(5)炭素原子数6~30の芳香族炭化水素環基及び炭素原子数2~30の芳香族複素環基からなる群より選ばれる1以上の基で置換された、炭素原子数2~12のアルキニル基が挙げられる。この置換されたアルキニル基を、以下、適宜「(5)置換アルキニル基」ということがある。 Still another preferable example of R h is (5) one or more groups selected from the group consisting of an aromatic hydrocarbon ring group having 6 to 30 carbon atoms and an aromatic heterocyclic group having 2 to 30 carbon atoms. And an alkynyl group having 2 to 12 carbon atoms, which is substituted with. Hereinafter, the substituted alkynyl group may be appropriately referred to as "(5) substituted alkynyl group".
 (5)置換アルキニル基における「炭素原子数2~12のアルキニル基」としては、例えば、エチニル基、プロピニル基などが挙げられる。
 (5)置換アルキニル基における「炭素原子数6~30の芳香族炭化水素環基」としては、例えば、Rにおける炭素原子数6~30の芳香族炭化水素環基と同じ例が挙げられる。
 (5)置換アルキニル基における「炭素原子数2~30の芳香族複素環基」としては、例えば、Rにおける炭素原子数2~30の芳香族複素環基と同じ例が挙げられる。
(5) Examples of the “alkynyl group having 2 to 12 carbon atoms” in the substituted alkynyl group include ethynyl group and propynyl group.
(5) Examples of the “aromatic hydrocarbon ring group having 6 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic hydrocarbon ring group having 6 to 30 carbon atoms in R g .
(5) Examples of the “aromatic heterocyclic group having 2 to 30 carbon atoms” in the substituted alkynyl group include the same examples as the aromatic heterocyclic group having 2 to 30 carbon atoms in R g .
 (5)置換アルキニル基は、更に置換基を有していてもよい。(5)置換アルキニル基が有しうる置換基としては、例えば、(1)炭化水素環基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 (5) The substituted alkynyl group may further have a substituent. Examples of the substituent that the substituted alkynyl group may have (5) include the same examples as the substituent that the (1) hydrocarbon ring group may have. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rの好ましい具体例としては、下記の基が挙げられる。 Specific examples of R h include the following groups.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 Rの更に好ましい具体例としては、下記の基が挙げられる。 More preferable specific examples of R h include the following groups.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 Rの特に好ましい具体例としては、下記の基が挙げられる。 The following groups are mentioned as particularly preferable specific examples of R h .
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上述したRの具体例は、更に置換基を有していてもよい。この置換基としては、例えば、フッ素原子、塩素原子等の、ハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の、炭素原子数1~6のアルキル基;ビニル基、アリル基等の、炭素原子数2~6のアルケニル基;トリフルオロメチル基等の、炭素原子数1~6のハロゲン化アルキル基;ジメチルアミノ基等の、炭素原子数2~12のN,N-ジアルキルアミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の、炭素原子数1~6のアルコキシ基;ニトロ基;-OCF;-C(=O)-R;-O-C(=O)-R;-C(=O)-O-R;-SO;等が挙げられる。R及びRの意味は、上述した通りである。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、および、炭素原子数1~6のアルコキシ基が好ましい。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The specific examples of R h described above may further have a substituent. Examples of the substituent include a halogen atom such as a fluorine atom and a chlorine atom; a cyano group; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group and a propyl group; a vinyl group, an allyl group and the like. An alkenyl group having 2 to 6 carbon atoms; a halogenated alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; an N,N-dialkylamino group having 2 to 12 carbon atoms such as a dimethylamino group An alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group; a nitro group; -OCF 3 ; -C(=O)-R b ; -OC(=O)-R b; -C (= O) -O -R b; -SO 2 R a; and the like. The meanings of R a and R b are as described above. Among these, a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 Rは、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、有機基を表す。 R i represents an organic group having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms.
 Rの好ましい例としては、一以上の炭素原子数6~30の芳香族炭化水素環を有する、炭素原子数6~40の炭化水素環基が挙げられる。
 また、Rの別の好ましい例としては、炭素原子数6~30の芳香族炭化水素環及び炭素原子数2~30の芳香族複素環からなる群より選ばれる1以上の芳香環を有する、炭素原子数2~40の複素環基が挙げられる。
Preferred examples of R i include a hydrocarbon ring group having 6 to 40 carbon atoms, which has at least one aromatic hydrocarbon ring having 6 to 30 carbon atoms.
Another preferable example of R i has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aromatic heterocycle having 2 to 30 carbon atoms, Examples thereof include heterocyclic groups having 2 to 40 carbon atoms.
 Rの特に好ましい具体例としては、下記の基が挙げられる。Rの意味は、上述した通りである。 The following groups are mentioned as particularly preferable specific examples of R i . The meaning of R is as described above.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式(II-1)~式(II-4)のいずれかで表される基は、D~D以外に更に置換基を有していてもよい。この置換基としては、例えば、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基、炭素原子数1~6のN-アルキルアミノ基、炭素原子数2~12のN,N-ジアルキルアミノ基、炭素原子数1~6のアルコキシ基、炭素原子数1~6のアルキルスルフィニル基、カルボキシル基、炭素原子数1~6のチオアルキル基、炭素原子数1~6のN-アルキルスルファモイル基、炭素原子数2~12のN,N-ジアルキルスルファモイル基が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The group represented by any of the formulas (II-1) to (II-4) may further have a substituent in addition to D 1 to D 3 . Examples of the substituent include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, and an N-alkylamino group having 1 to 6 carbon atoms. Group, N,N-dialkylamino group having 2 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, alkylsulfinyl group having 1 to 6 carbon atoms, carboxyl group, thioalkyl group having 1 to 6 carbon atoms , N-alkylsulfamoyl groups having 1 to 6 carbon atoms and N,N-dialkylsulfamoyl groups having 2 to 12 carbon atoms. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 式(I)におけるArの好ましい例としては、下記の式(III-1)~式(III-7)で表される基が挙げられる。また、式(III-1)~式(III-7)で表される基は、置換基として炭素原子数1~6のアルキル基を有していてもよい。下記式中、*は、結合位置を表す。 Preferred examples of Ar in the formula (I) include groups represented by the following formulas (III-1) to (III-7). The groups represented by formulas (III-1) to (III-7) may have an alkyl group having 1 to 6 carbon atoms as a substituent. In the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(III-1)の特に好ましい具体例としては、下記の基が挙げられる。下記式中、*は、結合位置を表す。 Particularly preferred specific examples of the formula (III-1) include the following groups. In the following formula, * represents a bonding position.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式(I)において、Z及びZは、それぞれ独立して、単結合、-O-、-O-CH-、-CH-O-、-O-CH-CH-、-CH-CH-O-、-C(=O)-O-、-O-C(=O)-、-C(=O)-S-、-S-C(=O)-、-NR21-C(=O)-、-C(=O)-NR21-、-CF-O-、-O-CF-、-CH-CH-、-CF-CF-、-O-CH-CH-O-、-CH=CH-C(=O)-O-、-O-C(=O)-CH=CH-、-CH-C(=O)-O-、-O-C(=O)-CH-、-CH-O-C(=O)-、-C(=O)-O-CH-、-CH-CH-C(=O)-O-、-O-C(=O)-CH-CH-、-CH-CH-O-C(=O)-、-C(=O)-O-CH-CH-、-CH=CH-、-N=CH-、-CH=N-、-N=C(CH)-、-C(CH)=N-、-N=N-、及び、-C≡C-、からなる群より選ばれるいずれかを表す。R21は、それぞれ独立して、水素原子又は炭素原子数1~6のアルキル基を表す。 In formula (I), Z 1 and Z 2 are each independently a single bond, —O—, —O—CH 2 —, —CH 2 —O—, —O—CH 2 —CH 2 —, — CH 2 -CH 2 -O-, -C(=O)-O-, -OC(=O)-, -C(=O)-S-, -SC(=O)-,- NR 21 -C (= O) - , - C (= O) -NR 21 -, - CF 2 -O -, - O-CF 2 -, - CH 2 -CH 2 -, - CF 2 -CF 2 - , -O-CH 2 -CH 2 -O-, -CH=CH-C(=O)-O-, -OC(=O)-CH=CH-, -CH 2 -C(=O) -O -, - O-C ( = O) -CH 2 -, - CH 2 -O-C (= O) -, - C (= O) -O-CH 2 -, - CH 2 -CH 2 - C (= O) -O -, - O-C (= O) -CH 2 -CH 2 -, - CH 2 -CH 2 -O-C (= O) -, - C (= O) -O- CH 2 -CH 2 -, -CH=CH-, -N=CH-, -CH=N-, -N=C(CH 3 )-, -C(CH 3 )=N-, -N=N- , And -C≡C-. R 21's each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 式(I)において、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい環状脂肪族基、及び、置換基を有していてもよい芳香族基、からなる群より選ばれる基を表す。A、A、B及びBが表す基の炭素原子数(置換基の炭素原子数を含む。)は、それぞれ独立して、通常、3~100である。中でも、A、A、B及びBは、それぞれ独立して、置換基を有していてもよい炭素原子数5~20の環状脂肪族基、または、置換基を有していてもよい炭素原子数2~20の芳香族基が好ましい。 In formula (I), A 1 , A 2 , B 1 and B 2 are each independently a cyclic aliphatic group which may have a substituent, and an aromatic group which may have a substituent. Represents a group selected from the group consisting of a group. The number of carbon atoms of the group represented by A 1 , A 2 , B 1 and B 2 (including the number of carbon atoms of the substituent) is usually 3 to 100 each independently. Among them, A 1 , A 2 , B 1 and B 2 each independently have a cycloaliphatic group having 5 to 20 carbon atoms which may have a substituent, or a substituent. Aromatic groups having 2 to 20 carbon atoms are preferable.
 A、A、B及びBにおける環状脂肪族基としては、例えば、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロヘプタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等の、炭素原子数5~20のシクロアルカンジイル基;デカヒドロナフタレン-1,5-ジイル基、デカヒドロナフタレン-2,6-ジイル基等の、炭素原子数5~20のビシクロアルカンジイル基;等が挙げられる。中でも、置換されていてもよい炭素原子数5~20のシクロアルカンジイル基が好ましく、シクロヘキサンジイル基がより好ましく、シクロヘキサン-1,4-ジイル基が特に好ましい。環状脂肪族基は、トランス体であってもよく、シス体であってもよく、シス体とトランス体との混合物であってもよい。中でも、トランス体がより好ましい。 Examples of the cycloaliphatic group in A 1 , A 2 , B 1 and B 2 include a cyclopentane-1,3-diyl group, a cyclohexane-1,4-diyl group, a cycloheptane-1,4-diyl group, A cycloalkanediyl group having 5 to 20 carbon atoms such as cyclooctane-1,5-diyl group; a carbon atom such as decahydronaphthalene-1,5-diyl group, decahydronaphthalene-2,6-diyl group A bicycloalkanediyl group of the number 5 to 20; and the like. Of these, an optionally substituted cycloalkanediyl group having 5 to 20 carbon atoms is preferable, a cyclohexanediyl group is more preferable, and a cyclohexane-1,4-diyl group is particularly preferable. The cycloaliphatic group may be in the trans form, the cis form, or a mixture of the cis form and the trans form. Among them, the trans form is more preferable.
 A、A、B及びBにおける環状脂肪族基が有しうる置換基としては、例えば、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数1~5のアルコキシ基、ニトロ基、シアノ基等が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 Examples of the substituent that the cycloaliphatic group in A 1 , A 2 , B 1 and B 2 may have include a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, Examples thereof include a nitro group and a cyano group. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 A、A、B及びBにおける芳香族基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、4,4’-ビフェニレン基等の、炭素原子数6~20の芳香族炭化水素環基;フラン-2,5-ジイル基、チオフェン-2,5-ジイル基、ピリジン-2,5-ジイル基、ピラジン-2,5-ジイル基等の、炭素原子数2~20の芳香族複素環基;等が挙げられる。中でも、炭素原子数6~20の芳香族炭化水素環基が好ましく、フェニレン基がさらに好ましく、1,4-フェニレン基が特に好ましい。 Examples of the aromatic group for A 1 , A 2 , B 1 and B 2 include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1, Aromatic hydrocarbon ring group having 6 to 20 carbon atoms such as 5-naphthylene group, 2,6-naphthylene group, 4,4'-biphenylene group; furan-2,5-diyl group, thiophene-2,5 -Diyl group, pyridine-2,5-diyl group, pyrazine-2,5-diyl group and the like; and aromatic heterocyclic groups having 2 to 20 carbon atoms; and the like. Among them, an aromatic hydrocarbon ring group having 6 to 20 carbon atoms is preferable, a phenylene group is more preferable, and a 1,4-phenylene group is particularly preferable.
 A、A、B及びBにおける芳香族基が有しうる置換基としては、例えば、A、A、B及びBにおける環状脂肪族基が有しうる置換基と同じ例が挙げられる。置換基の数は、一つでもよく、複数でもよい。また、複数の置換基は、互いに同一であってもよく、異なっていてもよい。 The substituent which the aromatic group in A 1 , A 2 , B 1 and B 2 may have is, for example, the same as the substituent which the cyclic aliphatic group in A 1 , A 2 , B 1 and B 2 may have. An example is given. The number of substituents may be one or plural. Further, the plurality of substituents may be the same as or different from each other.
 式(I)において、Y~Yは、それぞれ独立して、単結合、-O-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-NR22-C(=O)-、-C(=O)-NR22-、-O-C(=O)-O-、-NR22-C(=O)-O-、-O-C(=O)-NR22-、及び、-NR22-C(=O)-NR23-、からなる群より選ばれるいずれかを表す。R22及びR23は、それぞれ独立して、水素原子又は炭素原子数1~6のアルキル基を表す。 In formula (I), Y 1 to Y 4 are each independently a single bond, —O—, —C(═O)—, —C(═O)—O—, —O—C(═O )-, -NR 22 -C(=O)-, -C(=O)-NR 22 -, -OC(=O)-O-, -NR 22 -C(=O)-O-, -O-C (= O) -NR 22 -, and, -NR 22 -C (= O) -NR 23 -, represents any one selected from the group consisting of. R 22 and R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 式(I)において、G及びGは、それぞれ独立して、炭素原子数1~20の脂肪族炭化水素基;並びに、炭素原子数3~20の脂肪族炭化水素基に含まれるメチレン基(-CH-)の1以上が-O-又は-C(=O)-に置換された基;からなる群より選ばれる有機基を表す。G及びGの前記有機基に含まれる水素原子は、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、または、ハロゲン原子に置換されていてもよい。ただし、G及びGの両末端のメチレン基(-CH-)が-O-又は-C(=O)-に置換されることはない。 In the formula (I), G 1 and G 2 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms; and a methylene group contained in the aliphatic hydrocarbon group having 3 to 20 carbon atoms. Represents an organic group selected from the group consisting of one or more of (—CH 2 —) substituted with —O— or —C(═O)—. The hydrogen atom contained in the organic group of G 1 and G 2 may be substituted with an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a halogen atom. However, the methylene groups (—CH 2 —) at both ends of G 1 and G 2 are not replaced with —O— or —C(═O)—.
 G及びGにおける炭素原子数1~20の脂肪族炭化水素基の具体例としては、炭素原子数1~20のアルキレン基が挙げられる。 Specific examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 1 to 20 carbon atoms.
 G及びGにおける炭素原子数3~20の脂肪族炭化水素基の具体例としては、炭素原子数3~20のアルキレン基が挙げられる。 Specific examples of the aliphatic hydrocarbon group having 3 to 20 carbon atoms in G 1 and G 2 include an alkylene group having 3 to 20 carbon atoms.
 式(I)において、P及びPは、それぞれ独立して、重合性基を表す。P及びPにおける重合性基としては、例えば、アクリロイルオキシ基、メタクリロイルオキシ基等の、CH=CR31-C(=O)-O-で表される基;ビニル基;ビニルエーテル基;p-スチルベン基;アクリロイル基;メタクリロイル基;カルボキシル基;メチルカルボニル基;水酸基;アミド基;炭素原子数1~4のアルキルアミノ基;アミノ基;エポキシ基;オキセタニル基;アルデヒド基;イソシアネート基;チオイソシアネート基;等が挙げられる。R31は、水素原子、メチル基、又は塩素原子を表す。中でも、CH=CR31-C(=O)-O-で表される基が好ましく、CH=CH-C(=O)-O-(アクリロイルオキシ基)、CH=C(CH)-C(=O)-O-(メタクリロイルオキシ基)がより好ましく、アクリロイルオキシ基が特に好ましい。 In formula (I), P 1 and P 2 each independently represent a polymerizable group. Examples of the polymerizable group for P 1 and P 2 include a group represented by CH 2 ═CR 31 —C(═O)—O— such as an acryloyloxy group and a methacryloyloxy group; a vinyl group; a vinyl ether group; p-stilbene group; acryloyl group; methacryloyl group; carboxyl group; methylcarbonyl group; hydroxyl group; amide group; alkylamino group having 1 to 4 carbon atoms; amino group; epoxy group; oxetanyl group; aldehyde group; isocyanate group; thio Isocyanate group; and the like. R 31 represents a hydrogen atom, a methyl group, or a chlorine atom. Of these, a group represented by CH 2 ═CR 31 —C(═O)—O— is preferable, and CH 2 ═CH—C(═O)—O—(acryloyloxy group) and CH 2 ═C(CH 3 )-C(=O)-O-(methacryloyloxy group) is more preferable, and acryloyloxy group is particularly preferable.
 式(I)において、p及びqは、それぞれ独立して、0又は1を表す。 In the formula (I), p and q each independently represent 0 or 1.
 上述した液晶性化合物の中でも、本発明の所望の効果を顕著に発揮する観点から、当該液晶性化合物の分子中に、ベンゾチアゾール環を含有するものが好ましい。ここで、ベンゾチアゾール環とは、下記式(II)に示す構造の環構造を示す。 Among the above-mentioned liquid crystal compounds, those containing a benzothiazole ring in the molecule of the liquid crystal compound are preferable from the viewpoint of remarkably exerting the desired effect of the present invention. Here, the benzothiazole ring means a ring structure having a structure represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(I)で表される液晶性化合物は、例えば、国際公開第2012/147904号および国際公開第2018/173954号に記載される、ヒドラジン化合物とカルボニル化合物との反応により製造しうる。 The liquid crystal compound represented by the formula (I) can be produced, for example, by reacting a hydrazine compound with a carbonyl compound described in International Publication No. 2012/147904 and International Publication No. 2018/173954.
 式(I)で表される液晶性化合物としては、具体的には、例えば、下記の式で表される化合物が挙げられる。 Specific examples of the liquid crystal compound represented by the formula (I) include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[3.キラル化合物]
 キラル化合物としては、不斉炭素原子を含む化合物を用いうる。キラル化合物は、液晶組成物に含まれる液晶性化合物の分子に、一方の向きへの配向方向のねじれを積極的に生じさせうる。よって、配向方向のねじれの向きが不均一となることを抑制できるので、液晶硬化層の配向ムラを抑制することができる。
[3. Chiral compound]
As the chiral compound, a compound containing an asymmetric carbon atom can be used. The chiral compound can positively cause the molecules of the liquid crystal compound contained in the liquid crystal composition to twist in one direction. Therefore, it is possible to prevent the twist direction of the alignment direction from becoming non-uniform, and thus it is possible to suppress the uneven alignment of the liquid crystal cured layer.
 キラル化合物としては、例えば、特開2005-289881号公報、特開2004-115414号公報、特開2003-66214号公報、特開2003-313187号公報、特開2003-342219号公報、特開2000-290315号公報、特開平6-072962号公報、米国特許第6468444号明細書、国際公開第98/00428号、特開2007-176870号公報、等に掲載されるものが挙げられる。また、キラル化合物としては、市販品を使用することもでき、例えばBASF社パリオカラーのLC756として入手できる。 Examples of the chiral compound include JP-A-2005-289881, JP-A-2004-115414, JP-A-2003-66214, JP-A-2003-313187, JP-A-2003-342219, and JP-A-2000. -290315, JP-A-6-072962, JP-A-6468444, WO98/00428, JP-A-2007-176870, and the like. Further, as the chiral compound, a commercially available product can be used, and for example, it can be obtained as BASF's Palio Color LC756.
 キラル化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The chiral compound may be used alone or in combination of two or more kinds at any ratio.
 キラル化合物のヘリカルツイスティングパワー(HTP)は、任意である。ただし、液晶性化合物の分子の配向方向のねじれを積極的に生じさせる観点では、HTPは大きいことが好ましい。具体的には、キラル化合物のHTPは、25℃において、好ましくは9.0以上、より好ましくは20.0以上である。他方、HTPの上限は、特に限定されず、例えば200以下でありうる。
 ここで、HTPは、HTP=1/(P×0.01C)により求められる。式中、Cは、配向時の液晶組成物中のキラル化合物の含有割合(重量%)を表し、Pは液晶性化合物の分子の配向方向のねじれのピッチ(nm)を表す。ピッチPは、電子顕微鏡写真の実測より求めることができる。
The helical twisting power (HTP) of the chiral compound is arbitrary. However, the HTP is preferably large from the viewpoint of positively causing the twist of the alignment direction of the molecules of the liquid crystal compound. Specifically, the HTP of the chiral compound is preferably 9.0 or higher, and more preferably 20.0 or higher at 25°C. On the other hand, the upper limit of HTP is not particularly limited and may be 200 or less, for example.
Here, HTP is calculated by HTP=1/(P L ×0.01C C ). In the formula, C C represents the content ratio (% by weight) of the chiral compound in the liquid crystal composition during alignment, and P L represents the twist pitch (nm) in the alignment direction of the molecules of the liquid crystal compound. The pitch P L can be obtained by actual measurement of electron micrographs.
 キラル化合物の量は、所望の液晶硬化フィルムが得られる範囲で、任意の調整しうる。具体的な範囲を示すと、液晶性化合物100重量部に対するキラル化合物の量は、好ましくは0.05重量部以上、より好ましくは0.07重量部以上、特に好ましくは0.10重量部以上であり、好ましくは0.5重量部以下、より好ましくは0.4重量部以下、特に好ましくは0.3重量部以下である。キラル化合物の量が、前記の範囲の下限値以上である場合、液晶性化合物の分子の配向方向のねじれを効果的に生じさせられるので、液晶硬化層の配向ムラを効果的に抑制できる。他方、キラル化合物の量が、前記の範囲の上限値以下である場合、ねじれのピッチを十分に長くできるので、液晶硬化層を透過する光の偏光状態の乱れを効果的に抑制できる。 The amount of the chiral compound can be arbitrarily adjusted within the range where a desired liquid crystal cured film can be obtained. Specifically, the amount of the chiral compound is preferably 0.05 parts by weight or more, more preferably 0.07 parts by weight or more, particularly preferably 0.10 parts by weight or more, based on 100 parts by weight of the liquid crystal compound. It is preferably 0.5 parts by weight or less, more preferably 0.4 parts by weight or less, and particularly preferably 0.3 parts by weight or less. When the amount of the chiral compound is equal to or more than the lower limit value of the above range, twist in the alignment direction of the molecules of the liquid crystal compound can be effectively caused, and thus the alignment unevenness of the liquid crystal cured layer can be effectively suppressed. On the other hand, when the amount of the chiral compound is less than or equal to the upper limit value of the above range, the pitch of twist can be made sufficiently long, so that the disturbance of the polarization state of the light passing through the liquid crystal cured layer can be effectively suppressed.
[4.液晶組成物]
 液晶組成物は、上述した液晶性化合物及びキラル化合物を含む。また、液晶組成物は、液晶性化合物及びキラル化合物に組み合わせて、任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[4. Liquid crystal composition]
The liquid crystal composition contains the liquid crystal compound and the chiral compound described above. Further, the liquid crystal composition may contain an arbitrary component in combination with the liquid crystal compound and the chiral compound. As the optional component, one type may be used alone, or two or more types may be used in combination at any ratio.
 任意の成分としては、例えば、重合開始剤が挙げられる。中でも、光重合開始剤が好ましい。重合開始剤の種類は、液晶組成物に含まれる重合性の化合物の種類に応じて選択しうる。例えば、重合性の化合物がラジカル重合性であれば、ラジカル重合開始剤を使用しうる。また、例えば、重合性の化合物がアニオン重合性であれば、アニオン重合開始剤を使用しうる。さらに、例えば、重合性の化合物がカチオン重合性であれば、カチオン重合開始剤を使用しうる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The optional components include, for example, a polymerization initiator. Among them, the photopolymerization initiator is preferable. The type of polymerization initiator can be selected according to the type of polymerizable compound contained in the liquid crystal composition. For example, if the polymerizable compound is radically polymerizable, a radical polymerization initiator may be used. Further, for example, if the polymerizable compound is anionically polymerizable, an anionic polymerization initiator can be used. Furthermore, for example, if the polymerizable compound is cationically polymerizable, a cationic polymerization initiator can be used. As the polymerization initiator, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 重合開始剤の量は、液晶性化合物100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上であり、好ましくは30重量部以下、より好ましくは10重量部以下である。重合開始剤の量が前記範囲に収まることにより、重合を効率的に進行させることができる。 The amount of the polymerization initiator is preferably 0.1 part by weight or more, more preferably 0.5 part by weight or more, preferably 30 parts by weight or less, and more preferably 10 parts by weight with respect to 100 parts by weight of the liquid crystal compound. Below the section. When the amount of the polymerization initiator falls within the above range, the polymerization can proceed efficiently.
 別の任意の成分としては、例えば、界面活性剤が挙げられる。界面活性剤の中でも、液晶組成物の塗工性を良好にする観点、並びに、配向性に優れた液晶硬化層を安定して得る観点から、分子中にフッ素原子を含む界面活性剤が好ましい。以下の説明において、分子中にフッ素原子を含む界面活性剤を、適宜「フッ素系界面活性剤」ということがある。 Another optional ingredient is, for example, a surfactant. Among the surfactants, a surfactant containing a fluorine atom in the molecule is preferable from the viewpoint of improving the coatability of the liquid crystal composition and stably obtaining a liquid crystal cured layer having excellent orientation. In the following description, the surfactant containing a fluorine atom in the molecule may be appropriately referred to as a “fluorine-based surfactant”.
 フッ素系界面活性剤は、所定の範囲のlogPを有することが好ましい。「logP」とは、1-オクタノール/水分配係数のことをいう。フッ素系界面活性剤のlogPの好ましい範囲は、好ましくは3.5以上7.5以下である。このような範囲のlogPを有するフッ素系界面活性剤を用いることにより、液晶硬化層の層平面に対する液晶性化合物の分子の傾斜角を、液晶硬化層の全体として、効果的に大きくできる。 The fluorosurfactant preferably has a log P within a predetermined range. "LogP" refers to the 1-octanol/water partition coefficient. The preferable range of logP of the fluorosurfactant is preferably 3.5 or more and 7.5 or less. By using a fluorine-based surfactant having a logP in such a range, the tilt angle of the molecules of the liquid crystal compound with respect to the layer plane of the liquid crystal cured layer can be effectively increased as a whole of the liquid crystal cured layer.
 フッ素系界面活性剤のlogPは、下記の測定方法によって測定できる。
 フッ素系界面活性剤を1重量%含む試料溶液を調製し、JIS 7260-117:2006{分配係数(1-オクタノール/水)の測定-高速液体クロマトグラフィー}に概ね準拠した方法で、HPLC/ELSD分析(高速液体クロマトグラフィー/蒸発光散乱検出分析)を行って、溶出時間(r.t.)を測定する。他方、JIS 7260-117:2006に記載のある、logPの値が既知の標準化合物に、前記フッ素系界面活性剤と同様にして、HPLC/ELSD分析を行い、溶出時間(r.t.)を測定する。標準化合物の測定結果に基づいて、溶出時間とlogPとの関係を示す検量線を作成する。その後、フッ素系界面活性剤について測定された溶出時間を、前記の検量線に当てはめることにより、フッ素系界面活性剤のlogPを求める。
The logP of the fluorosurfactant can be measured by the following measuring method.
A sample solution containing 1% by weight of a fluorosurfactant was prepared, and HPLC/ELSD was carried out by a method substantially conforming to JIS 7260-117:2006 {Partition coefficient (1-octanol/water) measurement-high performance liquid chromatography}. An analysis (high performance liquid chromatography/evaporative light scattering detection analysis) is performed to measure the elution time (rt). On the other hand, a standard compound having a known logP value described in JIS 7260-117:2006 was subjected to HPLC/ELSD analysis in the same manner as the above-mentioned fluorosurfactant, and the elution time (rt) was determined. taking measurement. Based on the measurement results of the standard compound, a calibration curve showing the relationship between the elution time and logP is created. Then, the elution time measured for the fluorosurfactant is applied to the above calibration curve to determine the logP of the fluorosurfactant.
 界面活性剤はノニオン系界面活性剤であることが好ましい。界面活性剤がイオン性基を含まないノニオン系界面活性剤である場合に、液晶硬化層の面状態及び配向性を、特に良好にすることができる。 The surfactant is preferably a nonionic surfactant. When the surfactant is a nonionic surfactant containing no ionic group, the surface state and orientation of the liquid crystal cured layer can be made particularly good.
 界面活性剤としては、例えば、AGCセイミケミカル社製のサーフロンシリーズ(S420など)、ネオス社製のフタージェントシリーズ(251、FTX-212M、FTX-215M、FTX-209など)、DIC社製のメガファックシリーズ(F-444など)などのフッ素系界面活性剤が挙げられる。また、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the surfactant include Surflon series (S420 etc.) manufactured by AGC Seimi Chemical Co., Futgent series (251, FTX-212M, FTX-215M, FTX-209 etc.) manufactured by Neos, manufactured by DIC. Fluorosurfactants such as Megafac series (F-444, etc.) can be mentioned. Further, one kind of the surfactant may be used alone, or two or more kinds thereof may be used in combination at an arbitrary ratio.
 界面活性剤の量は、液晶性化合物100重量部に対して、好ましくは0.03重量部以上、より好ましくは0.05重量部以上であり、好ましくは0.50重量部以下、より好ましくは0.40重量部以下、更に好ましくは0.30重量部以下である。界面活性剤の量が前記の範囲にあることにより、所望の液晶硬化層を安定して得ることができる。 The amount of the surfactant is preferably 0.03 parts by weight or more, more preferably 0.05 parts by weight or more, preferably 0.50 parts by weight or less, and more preferably 100 parts by weight of the liquid crystal compound. It is 0.40 parts by weight or less, more preferably 0.30 parts by weight or less. By setting the amount of the surfactant within the above range, a desired liquid crystal cured layer can be stably obtained.
 更に別の任意の成分としては、例えば、溶媒が挙げられる。溶媒としては、液晶性化合物を溶解できるものが好ましい。このような溶媒としては、通常、有機溶媒を用いる。有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン溶媒;酢酸ブチル、酢酸アミル等の酢酸エステル溶媒;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル溶媒;及びトルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒;が挙げられる。また、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As another optional component, for example, a solvent can be mentioned. As the solvent, those capable of dissolving the liquid crystal compound are preferable. An organic solvent is usually used as such a solvent. Examples of organic solvents include ketone solvents such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetic acid ester solvents such as butyl acetate and amyl acetate; halogenated hydrocarbon solvents such as chloroform, dichloromethane and dichloroethane; 1 , 4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,2-dimethoxyethane and the like; and aromatic hydrocarbon solvents such as toluene, xylene and mesitylene. Further, the solvent may be used alone or in combination of two or more kinds at an arbitrary ratio.
 溶媒の沸点は、取り扱い性に優れる観点から、好ましくは60℃~250℃、より好ましくは60℃~150℃である。 The boiling point of the solvent is preferably 60° C. to 250° C., more preferably 60° C. to 150° C. from the viewpoint of easy handling.
 溶媒の量は、液晶性化合物100重量部に対して、好ましくは200重量部以上、より好ましくは250重量部以上、特に好ましくは300重量部以上であり、好ましくは650重量部以下、より好ましくは550重量部以下、特に好ましくは450重量部以下である。溶媒の量を、前記範囲の下限値以上にすることにより異物発生の抑制ができ、前記範囲の上限値以下にすることにより乾燥負荷の低減ができる。 The amount of the solvent is preferably 200 parts by weight or more, more preferably 250 parts by weight or more, particularly preferably 300 parts by weight or more, preferably 650 parts by weight or less, and more preferably 100 parts by weight of the liquid crystal compound. It is 550 parts by weight or less, particularly preferably 450 parts by weight or less. When the amount of the solvent is equal to or more than the lower limit value of the above range, generation of foreign matter can be suppressed, and when the amount of the solvent is less than or equal to the upper limit value of the range, the drying load can be reduced.
 更に別の任意の成分としては、例えば、液晶性化合物の分子の実質最大傾斜角を大きくする作用を発揮できる傾斜作用成分が挙げられる。傾斜作用成分を用いた場合、液晶性化合物の分子の傾斜を促進して、液晶性化合物の分子の傾斜角が大きい液晶硬化層を容易に得ることができる。ただし、液晶性化合物の分子の傾斜の促進は、液晶硬化層を製造する過程において操作又は条件を調整することによっても可能であるので、傾斜作用成分は必ずしも用いなくても構わない。このような傾斜作用成分としては、例えば、特開2018-163218号公報、特開2018-162379号公報、国際公開第2018/173778号などに記載の成分を用いうる。 As yet another optional component, for example, a tilt acting component capable of exerting an effect of increasing the substantially maximum tilt angle of the molecules of the liquid crystal compound can be mentioned. When the tilting component is used, the tilting of the molecules of the liquid crystalline compound can be promoted, and a liquid crystal cured layer having a large tilt angle of the molecules of the liquid crystalline compound can be easily obtained. However, since the inclination of the molecules of the liquid crystal compound can be promoted by adjusting the operation or the conditions in the process of producing the liquid crystal cured layer, the inclination acting component may not necessarily be used. As such a gradient action component, for example, the components described in JP-A-2018-163218, JP-A-2018-162379, and International Publication No. 2018/173778 can be used.
 液晶組成物が含みうるその他の任意の成分としては、例えば、金属;金属錯体;酸化チタン等の金属酸化物;染料、顔料等の着色剤;蛍光材料、燐光材料等の発光材料;酸化防止剤;レベリング剤;チキソ剤;ゲル化剤;多糖類;紫外線吸収剤;赤外線吸収剤;抗酸化剤;イオン交換樹脂;等が挙げられる。これらの成分の量は、液晶性化合物の合計100重量部に対して、各々0.1重量部~20重量部でありうる。 Other optional components that the liquid crystal composition may include include, for example, metals; metal complexes; metal oxides such as titanium oxide; coloring agents such as dyes and pigments; luminescent materials such as fluorescent materials and phosphorescent materials; antioxidants. Leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, and the like. The amounts of these components may each be 0.1 to 20 parts by weight based on 100 parts by weight of the liquid crystal compound.
[5.液晶硬化層の特性]
 液晶硬化層は、上述した液晶組成物を硬化した硬化物の層である。前記の液晶組成物の硬化は、通常、当該液晶組成物が含む重合性の化合物の重合によって達成される。よって、液晶硬化層は、通常、液晶組成物が含んでいた成分の一部又は全部の重合体を含む。例えば、液晶性化合物が重合性を有する場合、液晶組成物の硬化時にその液晶性化合物が重合しうるので、液晶硬化層は、重合前の配向状態を維持したまま重合した液晶性化合物の重合体を含む層でありうる。前述のように、この重合した液晶性化合物も、用語「液晶硬化層に含まれる液晶性化合物」に含める。
[5. Characteristics of liquid crystal cured layer]
The liquid crystal cured layer is a layer of a cured product obtained by curing the above liquid crystal composition. Curing of the liquid crystal composition is usually achieved by polymerizing a polymerizable compound contained in the liquid crystal composition. Therefore, the liquid crystal cured layer usually contains a polymer of a part or all of the components included in the liquid crystal composition. For example, when the liquid crystal compound has a polymerizability, the liquid crystal compound can be polymerized during curing of the liquid crystal composition. Therefore, the liquid crystal cured layer is a polymer of the liquid crystal compound polymerized while maintaining the alignment state before the polymerization. Can be a layer containing. As described above, this polymerized liquid crystal compound is also included in the term “liquid crystal compound contained in the liquid crystal cured layer”.
 液晶組成物の硬化物においては、硬化前の流動性が失われるので、通常、液晶性化合物の配向状態は、硬化前の配向状態のまま、固定されている。そして、この液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が、当該液晶硬化層の層平面に対して傾斜している。 In the cured product of the liquid crystal composition, the fluidity before curing is lost, so the alignment state of the liquid crystal compound is usually fixed in the alignment state before curing. Then, at least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer.
 液晶硬化層において、液晶性化合物の分子のうち、一部が液晶硬化層の層平面に対して傾斜していてもよく、全部が液晶硬化層の層平面に対して傾斜していてもよい。よって、液晶硬化層の層平面に対して傾斜した液晶性化合物の分子を含む層を「傾斜配向層」と呼ぶ場合、液晶硬化層がその一部として傾斜配向層を含んでいてもよく、液晶硬化層の全体が傾斜配向層となっていてもよい。また、液晶硬化層において、傾斜配向層以外の層部分に含まれる液晶性化合物の分子は、通常、液晶硬化層の層平面に対して平行(傾斜角が0°)となっているか、又は、液晶硬化層の層平面に対して垂直(傾斜角が90°)になっている。 In the liquid crystal cured layer, some of the molecules of the liquid crystal compound may be inclined with respect to the layer plane of the liquid crystal cured layer, or all of them may be inclined with respect to the layer plane of the liquid crystal cured layer. Therefore, when the layer containing the molecules of the liquid crystalline compound tilted with respect to the layer plane of the liquid crystal cured layer is referred to as the “tilted alignment layer”, the liquid crystal cured layer may include the tilted alignment layer as a part thereof. The entire cured layer may be an inclined alignment layer. In the liquid crystal cured layer, the molecules of the liquid crystalline compound contained in the layer portion other than the tilt alignment layer are usually parallel to the layer plane of the liquid crystal cured layer (the tilt angle is 0°), or It is perpendicular to the layer plane of the liquid crystal cured layer (inclination angle is 90°).
 液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該液晶硬化層の層平面に対して傾斜していることは、十分な分解能を有する偏光顕微鏡で液晶硬化層の断面を観察することによって、確認できる。この観察は、液晶性化合物の分子の傾斜を視認し易くするために、必要に応じて、観察サンプルと偏光顕微鏡の対物レンズとの間に波長板を挿入して実施してもよい。 The fact that at least a part of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are tilted with respect to the layer plane of the liquid crystal cured layer means that the cross section of the liquid crystal cured layer is observed with a polarization microscope having sufficient resolution. Can be confirmed by This observation may be carried out by inserting a wave plate between the observation sample and the objective lens of the polarizing microscope, if necessary, in order to make it easier to visually recognize the tilt of the molecules of the liquid crystal compound.
 または、液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該液晶硬化層の層平面に対して傾斜していることは、下記のようにして確認できる。液晶硬化層の面内の進相軸に対して垂直な測定方向で、入射角θにおける液晶硬化層のレターデーションとしての直線偏光位相差R(θ)を測定する。そして、入射角θでの液晶硬化層の直線偏光位相差R(θ)を入射角0°での液晶硬化層の直線偏光位相差R(0°)で割ったレターデーション比R(θ)/R(0°)を求める。ここで、入射角0°での液晶硬化層の直線偏光位相差R(0°)とは、即ち、液晶硬化層の面内レターデーションLReを表す。こうして求めたレターデーション比R(θ)/R(0°)を縦軸、入射角θを横軸としたグラフを描いた場合に、得られたグラフがθ=0°に対して非対称であれば、液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該液晶硬化層の層平面に対して傾斜していることが確認できる。 Alternatively, it can be confirmed as described below that at least a part of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer. The linear polarization phase difference R(θ) as the retardation of the liquid crystal cured layer at the incident angle θ is measured in the measurement direction perpendicular to the in-plane fast axis of the liquid crystal cured layer. The retardation ratio R(θ)/the linear polarization phase difference R(θ) of the liquid crystal cured layer at the incident angle θ is divided by the linear polarization phase difference R(0°) of the liquid crystal cured layer at the incident angle 0°. Find R (0°). Here, the linear polarization phase difference R(0°) of the liquid crystal cured layer at an incident angle of 0° represents the in-plane retardation LRe of the liquid crystal cured layer. When a graph is drawn with the retardation ratio R(θ)/R(0°) thus obtained as the vertical axis and the incident angle θ as the horizontal axis, the obtained graph must be asymmetric with respect to θ=0°. For example, it can be confirmed that at least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer.
 以下、例を挙げてより具体的に説明する。図1は、ある例に係る液晶硬化層のレターデーション比R(θ)/R(0°)を、入射角θに対してプロットしたグラフである。液晶硬化層に含まれる液晶性化合物の全ての分子の傾斜角が0°又は90°であると、レターデーション比R(θ)/R(0°)は、図1で破線で示す例のように、θ=0°の直線(図1では、θ=0°を通る縦軸)に対して線対称となる。これに対して、液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が液晶硬化層の層平面に対して傾斜していると、レターデーション比R(θ)/R(0°)は、図1に実線で示す例のように、通常はθ=0°の直線に対して非対称となる。よって、レターデーション比R(θ)/R(0°)がθ=0°に対して非対称である場合には、液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が当該液晶硬化層の層平面に対して傾斜している、と判定できる。 The following is a more specific explanation using an example. FIG. 1 is a graph in which the retardation ratio R(θ)/R(0°) of a liquid crystal cured layer according to an example is plotted against the incident angle θ. When the tilt angle of all the molecules of the liquid crystal compound contained in the liquid crystal cured layer is 0° or 90°, the retardation ratio R(θ)/R(0°) is as shown by the example shown by the broken line in FIG. In addition, it is line-symmetric with respect to a straight line of θ=0° (in FIG. 1, a vertical axis passing through θ=0°). On the other hand, when at least a part of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer, the retardation ratio R(θ)/R(0°) becomes As in the example shown by the solid line in FIG. 1, it is usually asymmetric with respect to a straight line at θ=0°. Therefore, when the retardation ratio R(θ)/R(0°) is asymmetric with respect to θ=0°, at least a part of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is the liquid crystal cured layer. It can be determined that it is inclined with respect to the layer plane.
 層平面に対して傾斜した液晶性化合物の分子は、一の方向に配向していてもよい(傾斜配向)。この場合、当該液晶性化合物の分子が層平面に対してなす傾斜角は、一定でありうる。また、層平面に対して傾斜した液晶性化合物の分子は、層平面に対してなす傾斜角が、液晶硬化層の一側に近いほど小さく、前記一側から遠いほど大きい態様で配向していてもよい(ハイブリッド配向)。 The molecules of the liquid crystal compound tilted with respect to the plane of the layer may be oriented in one direction (tilted orientation). In this case, the tilt angle formed by the molecules of the liquid crystalline compound with respect to the plane of the layer may be constant. The molecules of the liquid crystalline compound tilted with respect to the plane of the layer are oriented such that the tilt angle formed with respect to the plane of the layer is smaller as it is closer to one side of the liquid crystal cured layer and larger as it is farther from the one side. Good (hybrid orientation).
 液晶組成物がキラル化合物を含むので、そのキラル化合物の作用により、液晶硬化層中の液晶性化合物の分子の配向方向は、一方の向き(即ち、右向き及び左向きの一方)にねじれを生じている。このようにキラル化合物によって一方の向きへの積極的なねじれを生じるので、液晶硬化層においては、液晶性化合物の分子の配向方向のねじれの向きの不均一さは、抑制されている。したがって、本発明の一実施形態に係る液晶硬化フィルムが備える液晶硬化層では、分子の配向方向が不均一になることを抑制できる。特に、配向方向の層平面に平行な成分が不均一になることを抑制できる。よって、配向ムラを抑制できる。 Since the liquid crystal composition contains a chiral compound, due to the action of the chiral compound, the alignment direction of the molecules of the liquid crystalline compound in the liquid crystal cured layer is twisted in one direction (that is, one of rightward and leftward). .. As described above, since the chiral compound causes a positive twist in one direction, in the liquid crystal cured layer, the unevenness of the twist direction in the alignment direction of the molecules of the liquid crystal compound is suppressed. Therefore, in the liquid crystal cured layer included in the liquid crystal cured film according to the embodiment of the present invention, it is possible to prevent the orientation directions of molecules from becoming non-uniform. In particular, it is possible to prevent the components parallel to the layer plane in the orientation direction from becoming non-uniform. Therefore, alignment unevenness can be suppressed.
 測定波長550nmにおける液晶硬化層の面内レターデーションLRe及び旋光位相差CReは、前記の式(1)を満たす。より詳細には、下記の式(2)によって定義されるパラメータXReが、通常500nm以上、好ましくは1000nm以上、特に好ましくは1500nm以上、通常20000nm以下、好ましくは10000nm以下、特に好ましくは5000nm以下である。パラメータXReが前記の範囲にあることにより、液晶硬化層を透過する光の偏光状態の乱れを抑制できる。 The in-plane retardation LRe and the optical rotation retardation CRe of the liquid crystal cured layer at the measurement wavelength of 550 nm satisfy the above formula (1). More specifically, the parameter XRe defined by the following formula (2) is usually 500 nm or more, preferably 1000 nm or more, particularly preferably 1500 nm or more, usually 20000 nm or less, preferably 10000 nm or less, particularly preferably 5000 nm or less. .. By setting the parameter XRe within the above range, it is possible to suppress the disturbance of the polarization state of the light passing through the liquid crystal cured layer.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 式(2)で表されるパラメータXReが式(1)を満たす前記範囲にあることは、厚み方向において液晶性化合物の分子の配向方向のねじれが緩やかであることを表す。ここで、配向方向のねじれが「緩やか」とは、分子の配向方向のねじれのピッチ(らせん構造の周期)が長いことを表す。すなわち、配向方向のねじれが「緩やか」とは、単位厚み当たりの配向方向の差が小さいことを表す。 The fact that the parameter XRe represented by the formula (2) is within the above range satisfying the formula (1) means that the twist of the alignment direction of the molecules of the liquid crystal compound is gentle in the thickness direction. Here, the term “gentle” in the twist in the orientation direction means that the pitch of the twist in the orientation direction of the molecule (period of the helical structure) is long. That is, the twist in the orientation direction is "gradual" means that the difference in the orientation direction per unit thickness is small.
 一般に、配向方向がらせん状にねじれた液晶性化合物の分子を含む液晶層を光が透過する際、旋光を生じるためには、ねじれのピッチが十分に長いことが求められる(モーガン条件;SEMIカラーTFT液晶ディスプレイ改訂版編集委員会編、「カラーTFT液晶ディスプレイ改訂版」、共立出版、2005年10月30日、p.36)。仮にねじれのピッチが短いと、その液晶層を透過する光は、ねじれに追従した旋光ができない光成分が生じ、その光成分の偏光状態が乱され、楕円偏光となったり偏光解消が生じたりすることがある。式(1)は、このような偏光状態の乱れを抑制できる程度に配向方向のねじれが緩やかであることを表している。 In general, when light passes through a liquid crystal layer containing molecules of a liquid crystalline compound whose orientation direction is twisted in a spiral, a twist pitch is required to be sufficiently long to generate optical rotation (Morgan condition; SEMI color Revised edition of TFT liquid crystal display editorial committee, "Revised edition of color TFT liquid crystal display", Kyoritsu Shuppan, October 30, 2005, p.36). If the pitch of the twist is short, the light passing through the liquid crystal layer has a light component that cannot be rotated according to the twist, and the polarization state of the light component is disturbed, resulting in elliptically polarized light or depolarization. Sometimes. Expression (1) indicates that the twist in the alignment direction is gentle enough to suppress such a disorder of the polarization state.
 式(1)の意義について、更に詳細に説明する。図2は、ある液晶層100の両側に、パラニコルに設定した一対の直線偏光子110及び120を配置した光学系を模式的に示す斜視図である。パラニコルとは、一方の直線偏光子110の偏光透過軸A110と、他方の直線偏光子120の偏光透過軸A120とが平行となった状態をいう。一方の直線偏光子110に自然光L1が入射すると、その直線偏光子110の偏光透過軸A110に平行な振動方向を有する直線偏光L2が透過する。直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。直線偏光L2は、液晶層100を透過し、その透過光L3が他方の直線偏光子120に入射する。透過光L3のうち、直線偏光子120の偏光透過軸A120に平行な振動方向を有する成分だけが透過して透過光L4となり、それ以外の成分は直線偏光子120で遮られる。 The significance of the formula (1) will be described in more detail. FIG. 2 is a perspective view schematically showing an optical system in which a pair of linear polarizers 110 and 120 set in a para-Nicol are arranged on both sides of a certain liquid crystal layer 100. Paranicol refers to a state in which the polarization transmission axis A 110 of one linear polarizer 110 and the polarization transmission axis A 120 of the other linear polarizer 120 are parallel to each other. When natural light L1 enters one of the linear polarizers 110, linearly polarized light L2 having a vibration direction parallel to the polarization transmission axis A 110 of the linear polarizer 110 is transmitted. The vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light. The linearly polarized light L2 is transmitted through the liquid crystal layer 100, and the transmitted light L3 is incident on the other linear polarizer 120. Of the transmitted light L3, only the component having the vibration direction parallel to the polarization transmission axis A 120 of the linear polarizer 120 is transmitted and becomes the transmitted light L4, and the other components are blocked by the linear polarizer 120.
 前記の光学系に関して、TN液晶パネルの式として、下記式(3)のグッチ・テリーの式が知られている(SEMIカラーTFT液晶ディスプレイ改訂版編集委員会編、「カラーTFT液晶ディスプレイ改訂版」、共立出版、2005年10月30日、p.42-43)。この式(3)は、液晶層100に含まれる液晶性化合物の分子の配向方向が90°のねじれを生じており、そのため、液晶層100によって直線偏光L2が旋光角φ=90°だけ旋光させられる場合に、直線偏光子120を透過できる光の割合(透過率)Iを表している。式(3)において、Δnは液晶層100の複屈折を表し、dは液晶層100の厚みを表し、λは光の波長を表す。よって、式(3)において、Δn×dは、液晶層100の面内レターデーションを表す。 Regarding the above optical system, the Gucci-Terry formula of the following formula (3) is known as the formula of the TN liquid crystal panel (SEMI color TFT liquid crystal display revised edition, “Edited color TFT liquid crystal display revised edition”). , Kyoritsu Shuppan, October 30, 2005, p.42-43). In this formula (3), the orientation direction of the molecules of the liquid crystal compound included in the liquid crystal layer 100 is twisted by 90°. Therefore, the linearly polarized light L2 is rotated by the liquid crystal layer 100 by the optical rotation angle φ=90°. In this case, the ratio (transmittance) I of light that can be transmitted through the linear polarizer 120 is represented. In Expression (3), Δn represents the birefringence of the liquid crystal layer 100, d represents the thickness of the liquid crystal layer 100, and λ represents the wavelength of light. Therefore, in the formula (3), Δn×d represents the in-plane retardation of the liquid crystal layer 100.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 前記の式(3)に、光の波長λ=550nmを代入して、透過率Iを縦軸、面内レターデーションΔn×dを横軸に取ったグラフで表示すると、図3のようになる。図3から分かるように、透過率Iは、面内レターデーションΔn×d=500nm付近で最小点(約476nm)をとり、この最小点より面内レターデーションΔn×dが小さい範囲では透過率Iが大きい。この結果は、面内レターデーションΔn×dが前記の最小点より小さい範囲では、液晶層100に含まれる分子の配向方向のねじれが十分に「緩やか」でないので、偏光状態の乱れが生じていることを表す。他方、面内レターデーションΔn×dが前記の最小点以上である範囲では、分子の配向方向のねじれが十分に「緩やか」であり、偏光状態の乱れを抑制できていることを表す。なお、液晶層100は、旋光だけでなく、面内レターデーションΔn×dの作用によっても透過光の偏光状態を変化させうるので、面内レターデーションΔn×dが前記の最小点以上であっても透過率Iが0.0とならない範囲が生じている。このように、旋光角φが90°である場合には、配向方向のねじれが「緩やか」であることを式(3)を利用して表すことができる。 Substituting the wavelength of light λ=550 nm into the formula (3) and displaying the transmittance I on the vertical axis and the in-plane retardation Δn×d on the horizontal axis, a graph shown in FIG. 3 is obtained. .. As can be seen from FIG. 3, the transmittance I takes a minimum point (about 476 nm) near the in-plane retardation Δn×d=500 nm, and the transmittance I is within a range where the in-plane retardation Δn×d is smaller than this minimum point. Is big. As a result, in the range where the in-plane retardation Δn×d is smaller than the above-mentioned minimum point, the twist in the alignment direction of the molecules included in the liquid crystal layer 100 is not sufficiently “gradual”, and thus the polarization state is disturbed. It means that. On the other hand, in the range where the in-plane retardation Δn×d is equal to or more than the above-mentioned minimum point, the twist in the orientation direction of the molecules is sufficiently “gradual”, which means that the disorder of the polarization state can be suppressed. Since the liquid crystal layer 100 can change the polarization state of the transmitted light not only by optical rotation but also by the action of the in-plane retardation Δn×d, the in-plane retardation Δn×d is not less than the above-mentioned minimum point. In some cases, the transmittance I does not reach 0.0. As described above, when the optical rotation angle φ is 90°, it can be expressed by using the formula (3) that the twist in the alignment direction is “gradual”.
 しかし、上述した実施形態に係る液晶硬化層の旋光角は、必ずしも90°ではなく、通常は更に小さい値である。よって、本実施形態では、液晶硬化層が旋光角90°を有するように当該液晶硬化層の厚みを調整したと仮定した場合に、その液晶硬化層が有するであろう面内レターデーションを、式(2)で表されるパラメータXReとして求めている。こうして求めたパラメータXReは、式(3)のグッチ・テリーの式における面内レターデーションΔn×dに相当する。そこで、このパラメータXRe及び式(3)のグッチ・テリーの式を用いて、配向方向のねじれが「緩やか」となる条件を特定し、この条件を式(1)に規定している。 However, the optical rotation angle of the liquid crystal cured layer according to the above-described embodiment is not necessarily 90°, and is usually a smaller value. Therefore, in the present embodiment, when it is assumed that the thickness of the liquid crystal cured layer is adjusted so that the liquid crystal cured layer has an optical rotation angle of 90°, the in-plane retardation that the liquid crystal cured layer will have is expressed by It is obtained as the parameter XRe represented by (2). The parameter XRe thus obtained corresponds to the in-plane retardation Δn×d in the Gucci-Terry equation of the equation (3). Therefore, by using this parameter XRe and the Gucci-Terry equation of the equation (3), the condition that the twist in the orientation direction is "gradual" is specified, and this condition is defined in the equation (1).
 前記のパラメータXReは、例えば、液晶性化合物の種類;キラル化合物の種類及び量;並びに液晶硬化層の厚み;により、調整できる。 The parameter XRe can be adjusted by, for example, the type of liquid crystal compound; the type and amount of chiral compound; and the thickness of the liquid crystal cured layer.
 測定波長550nmにおける液晶硬化層の旋光位相差CReと液晶硬化層の厚みDとの比CRe/Dは、好ましくは0.0002以上、より好ましくは0.0005以上、特に好ましくは0.0010以上であり、好ましくは0.0133以下、より好ましくは0.0100以下、特に好ましくは0.0050以下である。前記の比CRe/Dが、前記範囲の下限値以上である場合、液晶性化合物の分子の配向方向が効果的にねじれられているので、配向ムラを効果的に抑制できる。また、前記の比CRe/Dが前記範囲の上限値以下である場合、配向方向のねじれが緩やかであるので、液晶硬化層を透過する光の偏光状態の乱れを効果的に抑制できる。 The ratio CRe/D between the optical rotation retardation CRe of the liquid crystal cured layer and the thickness D of the liquid crystal cured layer at a measurement wavelength of 550 nm is preferably 0.0002 or more, more preferably 0.0005 or more, and particularly preferably 0.0010 or more. It is preferably 0.0133 or less, more preferably 0.0100 or less, and particularly preferably 0.0050 or less. When the ratio CRe/D is equal to or more than the lower limit value of the above range, the alignment direction of the molecules of the liquid crystal compound is effectively twisted, and thus the alignment unevenness can be effectively suppressed. Further, when the ratio CRe/D is equal to or less than the upper limit value of the above range, the twist of the alignment direction is gentle, so that the disturbance of the polarization state of the light passing through the liquid crystal cured layer can be effectively suppressed.
 測定波長550nmにおける液晶硬化層の旋光位相差CReは、好ましくは1.0nm以上、より好ましくは1.2nm以上、特に好ましくは1.5nm以上であり、好ましくは20nm以下、より好ましくは10nm以下、特に好ましくは7nm以下である。前記の旋光位相差CReが前記範囲の下限値以上である場合、配向ムラを効果的に抑制できる。また、前記の旋光位相差CReが前記範囲の上限値以下である場合、液晶硬化層を透過する光の偏光状態の乱れを効果的に抑制できる。 The optical retardation CRe of the liquid crystal cured layer at the measurement wavelength of 550 nm is preferably 1.0 nm or more, more preferably 1.2 nm or more, particularly preferably 1.5 nm or more, preferably 20 nm or less, more preferably 10 nm or less, Particularly preferably, it is 7 nm or less. When the optical rotation phase difference CRe is equal to or more than the lower limit value of the above range, the alignment unevenness can be effectively suppressed. Further, when the optical rotation retardation CRe is equal to or less than the upper limit value of the range, it is possible to effectively suppress the disorder of the polarization state of the light passing through the liquid crystal cured layer.
 旋光位相差CReは、例えば、液晶性化合物の種類;キラル化合物の種類及び量;並びに液晶硬化層の厚み;により、調整できる。 The optical rotation retardation CRe can be adjusted by, for example, the type of liquid crystal compound; the type and amount of chiral compound; and the thickness of the liquid crystal cured layer.
 測定波長550nmにおける液晶硬化層の具体的な面内レターデーションLReは、液晶硬化フィルムの用途に応じて任意に設定しうる。中でも好ましい範囲を挙げると、前記の面内レターデーションLReは、好ましくは50nm以上、より好ましくは55nm以上、特に好ましくは60nm以上であり、また、好ましくは90nm以下、より好ましくは85nm以下、特に好ましくは80nm以下の第一の範囲にある。または、前記の面内レターデーションLReは、好ましくは120nm以上、より好ましくは125nm以上、特に好ましくは130nm以上であり、また、好ましくは160nm以下、より好ましくは155nm以下、特に好ましくは150nm以下の第二の範囲にある。第一の範囲に面内レターデーションLReがある場合、液晶硬化層をλ/8波長板として使用できる。また、第二の範囲に面内レターデーションLReがある場合、液晶硬化層をλ/4波長板として使用できる。 The specific in-plane retardation LRe of the liquid crystal cured layer at the measurement wavelength of 550 nm can be arbitrarily set according to the application of the liquid crystal cured film. Among the preferred ranges, the in-plane retardation LRe is preferably 50 nm or more, more preferably 55 nm or more, particularly preferably 60 nm or more, and preferably 90 nm or less, more preferably 85 nm or less, particularly preferably Is in the first range of 80 nm or less. Alternatively, the in-plane retardation LRe is preferably 120 nm or more, more preferably 125 nm or more, particularly preferably 130 nm or more, and preferably 160 nm or less, more preferably 155 nm or less, particularly preferably 150 nm or less. It is in the second range. When the in-plane retardation LRe is in the first range, the liquid crystal cured layer can be used as a λ/8 wave plate. When the in-plane retardation LRe is in the second range, the liquid crystal cured layer can be used as a λ/4 wavelength plate.
 液晶硬化層の面内レターデーションLReは、逆波長分散性を示すことが好ましい。よって、液晶硬化層の波長450nm及び波長550nmにおける面内レターデーションLRe(450)及びLRe(550)は、好ましくは下記式(N3)を満たし、より好ましくは下記式(N4)を満たす。
 LRe(450)/LRe(550)<1.00 (N3)
 LRe(450)/LRe(550)<0.90 (N4)
 このように逆波長分散性の面内レターデーションLReを有する液晶硬化層は、1/4波長板又は1/2波長板等の光学用途において、広い波長帯域において均一に機能を発現できる。逆波長分散性の面内レターデーションLReを有する液晶硬化層は、液晶性化合物として逆分散液晶性化合物を用いることにより、実現できる。
The in-plane retardation LRe of the liquid crystal cured layer preferably exhibits reverse wavelength dispersion. Therefore, the in-plane retardations LRe(450) and LRe(550) of the liquid crystal cured layer at wavelengths of 450 nm and 550 nm preferably satisfy the following formula (N3), more preferably the following formula (N4).
LRe(450)/LRe(550)<1.00 (N3)
LRe(450)/LRe(550)<0.90 (N4)
As described above, the liquid crystal cured layer having the in-plane retardation LRe having the reverse wavelength dispersion property can uniformly exhibit a function in a wide wavelength band in optical applications such as a quarter-wave plate or a half-wave plate. The liquid crystal cured layer having the in-plane retardation LRe having the reverse wavelength dispersion property can be realized by using the reverse dispersion liquid crystal compound as the liquid crystal compound.
 液晶硬化層に含まれる液晶性化合物の分子の層全体としての傾斜角の大きさは、実質最大傾斜角によって表すことができる。液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、通常、5°以上85°以下となる。中でも、液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、好ましくは40°以上、より好ましくは46°以上、特に好ましくは56°以上であり、好ましくは85°以下、より好ましくは83°以下、特に好ましくは80°以下である。 The size of the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer as a whole layer can be represented by the substantially maximum tilt angle. The substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is usually 5° or more and 85° or less. Among them, the substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is preferably 40° or more, more preferably 46° or more, particularly preferably 56° or more, and preferably 85° or less, more preferably Is 83° or less, particularly preferably 80° or less.
 実質最大傾斜角は、液晶硬化層に含まれる液晶性化合物の分子の傾斜角の大きさを示す指標である。液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角が大きいことは、通常、当該液晶硬化層に含まれる液晶性化合物の分子の傾斜角が全体として大きいことを表す。実質最大傾斜角が大きい液晶硬化層は、厚み方向における複屈折の調整を適切に行うことができるので、当該液晶硬化層を直線偏光子と組み合わせて反射抑制フィルムとして有機EL表示装置に設けた場合に、表示面の傾斜方向において反射を効果的に抑制することができる。したがって、高い視野角特性を達成できる偏光板を実現することが可能である。 The actual maximum tilt angle is an index showing the size of the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer. A large substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer generally means that the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer is large as a whole. Since a liquid crystal cured layer having a large substantially maximum tilt angle can appropriately adjust the birefringence in the thickness direction, when the liquid crystal cured layer is combined with a linear polarizer and provided as an antireflection film in an organic EL display device. In addition, reflection can be effectively suppressed in the tilt direction of the display surface. Therefore, it is possible to realize a polarizing plate that can achieve high viewing angle characteristics.
 液晶硬化層に含まれる液晶性化合物の分子の実質最大傾斜角は、後述する実施例に記載の測定方法で測定できる。 The substantially maximum tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be measured by the measuring method described in Examples described later.
 液晶硬化層に含まれる液晶性化合物の分子が当該液晶硬化層の全体として大きな傾斜角を有する場合、液晶硬化層の厚み方向の複屈折を適切に調整できる。したがって、液晶硬化層は、反射抑制フィルムとしての偏光板に設けた場合に、表示面の傾斜方向において反射を効果的に抑制できるという優れた視野角特性を得ることができる。 When the molecules of the liquid crystal compound contained in the liquid crystal cured layer have a large tilt angle as a whole of the liquid crystal cured layer, the birefringence in the thickness direction of the liquid crystal cured layer can be appropriately adjusted. Therefore, when the liquid crystal cured layer is provided on the polarizing plate as the antireflection film, it is possible to obtain excellent viewing angle characteristics that reflection can be effectively suppressed in the tilt direction of the display surface.
 液晶硬化層の面内方向においては、液晶性化合物の分子の配向方向は、通常、均一である。よって、液晶硬化層は、通常、液晶硬化層を厚み方向から見た液晶性化合物の分子の配向方向に平行な遅相軸を有しうる。 In the in-plane direction of the liquid crystal cured layer, the orientation direction of the molecules of the liquid crystal compound is usually uniform. Therefore, the liquid crystal cured layer can usually have a slow axis parallel to the alignment direction of the molecules of the liquid crystal compound when the liquid crystal cured layer is viewed from the thickness direction.
 液晶硬化層は、透明性に優れることが好ましい。具体的には、液晶硬化層の全光線透過率は、好ましくは75%以上、より好ましくは80%以上、特に好ましくは84%以上である。また、液晶硬化層のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下である。全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定できる。また、ヘイズは、ヘイズメーターを用いて測定できる。 The liquid crystal cured layer preferably has excellent transparency. Specifically, the total light transmittance of the liquid crystal cured layer is preferably 75% or more, more preferably 80% or more, and particularly preferably 84% or more. The haze of the liquid crystal cured layer is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. The total light transmittance can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet/visible spectrometer. Moreover, haze can be measured using a haze meter.
[6.液晶硬化層の層構成]
 図4及び図5は、それぞれ、本発明の一実施形態に係る液晶硬化フィルムが備える液晶硬化層200及び300の例を模式的に示す断面図である。
 図4に示す例のように、液晶硬化層200は、1層のみを含む単層構造を有していてもよい。また、図5に示す例のように、液晶硬化層300は、第一硬化層310、第二硬化層320等の複数の層を含む複層構造を有していてもよい。以下の説明では、液晶硬化層に含まれる部分としての第一硬化層及び第二硬化層等の層を、適宜「単位硬化層」と呼ぶことがある。
[6. Layer configuration of liquid crystal cured layer]
4 and 5 are cross-sectional views schematically showing examples of the liquid crystal cured layers 200 and 300 included in the liquid crystal cured film according to the embodiment of the present invention, respectively.
As in the example shown in FIG. 4, the liquid crystal cured layer 200 may have a single-layer structure including only one layer. Further, as in the example shown in FIG. 5, the liquid crystal cured layer 300 may have a multilayer structure including a plurality of layers such as the first cured layer 310 and the second cured layer 320. In the following description, the layers such as the first cured layer and the second cured layer which are included in the liquid crystal cured layer may be appropriately referred to as “unit cured layer”.
 複数の単位構造層を含む複層構造の液晶硬化層300において、隣り合う単位構造層同士の間には、他の層が無いことが好ましい。よって、第一硬化層310及び第二硬化層320を含む液晶硬化層300において、第一硬化層310と第二硬化層320との間には、他の層が無いことが好ましい。このように間に他の層を挟まないで2層が接することを、「直接に」接する、ということがある。 In the liquid crystal cured layer 300 having a multilayer structure including a plurality of unit structure layers, it is preferable that there is no other layer between the adjacent unit structure layers. Therefore, in the liquid crystal cured layer 300 including the first cured layer 310 and the second cured layer 320, it is preferable that there is no other layer between the first cured layer 310 and the second cured layer 320. The contact between two layers without sandwiching another layer between them in this manner is sometimes referred to as “direct” contact.
 図5に示すような複層構造は、通常、液晶硬化層300の製造方法に起因して生じる。例えば、逆分散液晶性化合物を用いた場合、層平面に対して傾斜した逆分散液晶性化合物の分子を含む第一硬化層310等の単位硬化層の表面310Uは、通常、その表面310U上に形成される第二硬化層320等の他の単位硬化層に含まれる逆分散液晶性化合物の分子の傾斜角を大きくする配向膜として機能できる。よって、液晶硬化層300に含まれる逆分散液晶性化合物の分子の傾斜角を層全体として大きくしたい場合、先に形成された単位硬化層上に更に別の単位硬化層を形成することを含む製造方法を採用することが好ましい。第一硬化層310及び第二硬化層320を備える液晶硬化層300では、このように第一硬化層310を配向膜として機能させた場合、第二硬化層320に含まれる逆分散液晶性化合物の分子の実質最大傾斜角が、第一硬化層310に含まれる逆分散液晶性化合物の分子の実質最大傾斜角よりも、大きくなりうる。 The multi-layer structure as shown in FIG. 5 usually occurs due to the manufacturing method of the liquid crystal cured layer 300. For example, when the reverse dispersion liquid crystal compound is used, the surface 310U of the unit curing layer such as the first curing layer 310 containing the molecules of the reverse dispersion liquid crystal compound tilted with respect to the plane of the layer is usually formed on the surface 310U. It can function as an alignment film for increasing the tilt angle of the molecules of the reverse dispersion liquid crystalline compound contained in another unit cured layer such as the second cured layer 320 formed. Therefore, when it is desired to increase the tilt angle of the molecules of the reverse dispersion liquid crystal compound included in the liquid crystal cured layer 300 as a whole layer, a production including forming another unit cured layer on the previously formed unit cured layer. It is preferable to adopt the method. In the liquid crystal cured layer 300 including the first cured layer 310 and the second cured layer 320, when the first cured layer 310 functions as an alignment film in this manner, the reverse dispersion liquid crystal compound included in the second cured layer 320 The substantially maximum tilt angle of the molecule may be greater than the substantially maximum tilt angle of the molecule of the inverse dispersion liquid crystal compound included in the first curable layer 310.
 液晶硬化層に含まれる各単位硬化層は、下記の方法によって区別できる。液晶硬化層を、エポキシ樹脂で包埋して、試料片を得る。この試料片を、ミクロトームを用いて、液晶硬化層の厚み方向に平行にスライスして、観察サンプルを得る。この際、スライスは、液晶硬化層の遅相軸と断面とが平行となるように行う。その後、スライスにより現れた断面を、偏光顕微鏡を用いて観察する。この観察は、観察サンプルと偏光顕微鏡の対物レンズとの間に波長板を挿入して、観察サンプルの位相差に応じた色を呈した像が見られるように行う。このとき、色が異なる部分を、単位硬化層同士の境目として確認し、各単位硬化層を区別できる。 Each unit curing layer included in the liquid crystal curing layer can be distinguished by the following method. The liquid crystal cured layer is embedded with an epoxy resin to obtain a sample piece. This sample piece is sliced in parallel with the thickness direction of the liquid crystal cured layer using a microtome to obtain an observation sample. At this time, slicing is performed so that the slow axis of the liquid crystal cured layer and the cross section are parallel to each other. After that, the cross section exposed by the slice is observed using a polarization microscope. This observation is performed by inserting a wave plate between the observation sample and the objective lens of the polarization microscope so that an image showing a color corresponding to the phase difference of the observation sample can be seen. At this time, the portions having different colors are confirmed as boundaries between the unit cured layers, and each unit cured layer can be distinguished.
 液晶硬化層は、当該液晶硬化層に含まれる液晶性化合物の少なくとも一部の分子が液晶硬化層の層平面に対して傾斜しているのであるから、一部の単位硬化層に含まれる液晶性化合物の分子は、液晶硬化層の層平面に対して傾斜していなくてもよい。よって、例えば、一部の単位硬化層に含まれる液晶性化合物の分子が液晶硬化層の層平面に対して平行又は垂直であってもよい。しかし、通常は、いずれの単位硬化層に含まれる液晶性化合物の分子も、液晶硬化層の層平面に対して傾斜している。よって、図5に示す例のように第一硬化層310及び第二硬化層320を備える液晶硬化層300では、通常、第一硬化層310に含まれる液晶性化合物の分子が層平面に対して傾斜しており、且つ、第二硬化層320に含まれる液晶性化合物の分子が層平面に対して傾斜している。 In the liquid crystal cured layer, at least some of the molecules of the liquid crystalline compound contained in the liquid crystal cured layer are tilted with respect to the layer plane of the liquid crystal cured layer. The molecules of the compound may not be tilted with respect to the layer plane of the liquid crystal cured layer. Therefore, for example, the molecules of the liquid crystal compound contained in some unit cured layers may be parallel or perpendicular to the layer plane of the liquid crystal cured layer. However, normally, the molecules of the liquid crystalline compound contained in any of the unit cured layers are inclined with respect to the layer plane of the liquid crystal cured layer. Therefore, in the liquid crystal cured layer 300 including the first cured layer 310 and the second cured layer 320 as in the example shown in FIG. 5, the molecules of the liquid crystalline compound contained in the first cured layer 310 are usually relative to the layer plane. The molecules of the liquid crystal compound included in the second cured layer 320 are inclined and inclined with respect to the layer plane.
[7.液晶硬化層の厚み]
 液晶硬化層の厚みは、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、好ましくは10.0μm以下、より好ましくは7.0μm以下である。液晶硬化層の厚みが前記の範囲にある場合、面内レターデーションLRe、旋光位相差CRe等の特性を所望の範囲に容易に調整することができる。また、このような厚みの液晶硬化層は、有機EL表示装置の反射抑制フィルムに用いられてきた従来の位相差フィルムよりも薄いので、有機EL表示装置の薄型化に貢献できる。
[7. Liquid crystal cured layer thickness]
The thickness of the liquid crystal cured layer is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 10.0 μm or less, more preferably 7.0 μm or less. When the thickness of the liquid crystal cured layer is within the above range, properties such as in-plane retardation LRe and optical rotation retardation CRe can be easily adjusted to desired ranges. Further, since the liquid crystal cured layer having such a thickness is thinner than the conventional retardation film used for the reflection suppressing film of the organic EL display device, it can contribute to the thinning of the organic EL display device.
[8.任意の層]
 液晶硬化フィルムは、液晶硬化層のみを含むフィルムであってもよく、液晶硬化層に組み合わせて任意の層を含むフィルムであってもよい。任意の層としては、液晶硬化層の製造に用いる基材;位相差フィルム;他の部材と接着するための接着剤層;フィルムの滑り性を良くするマット層;耐衝撃性ポリメタクリレート樹脂層などのハードコート層;反射防止層;防汚層;等が挙げられる。
[8. Any layer]
The liquid crystal cured film may be a film containing only the liquid crystal cured layer, or may be a film containing any layer in combination with the liquid crystal cured layer. As an optional layer, a base material used for producing a liquid crystal cured layer; a retardation film; an adhesive layer for adhering to other members; a mat layer for improving the slipperiness of the film; an impact-resistant polymethacrylate resin layer, etc. Hard coat layer; antireflection layer; antifouling layer;
[9.液晶硬化フィルムの製造方法]
 液晶硬化フィルムの製造方法は、特に制限されない。例えば、液晶硬化フィルムは、
 (i)液晶組成物の層を形成する工程と、
 (ii)液晶組成物の層に含まれる液晶性化合物を配向させる工程と、
 (iii)液晶組成物の層を硬化させて液晶硬化層を得る工程と、
 を含む製造方法によって製造できる。
[9. Manufacturing method of liquid crystal cured film]
The method for producing the liquid crystal cured film is not particularly limited. For example, a liquid crystal cured film
(I) a step of forming a layer of the liquid crystal composition,
(Ii) a step of aligning a liquid crystalline compound contained in the layer of the liquid crystal composition,
(Iii) curing a layer of the liquid crystal composition to obtain a liquid crystal cured layer,
Can be manufactured by a manufacturing method including.
 液晶組成物の層を形成する工程(i)では、通常、適切な支持面に、液晶組成物の層を形成する。支持面としては、液晶組成物の層を支持できる任意の面を用いうる。この支持面としては、液晶硬化層の面状態を良好にする観点から、凹部及び凸部の無い平坦面を用いることが好ましい。また、液晶硬化層の生産性を高める観点から、前記の支持面としては、長尺の基材の表面を用いることが好ましい。ここで「長尺」とは、幅に対して、5倍以上の長さを有する形状をいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムの形状をいう。長さの上限は、特に制限は無く、例えば、幅に対して1万倍以下としうる。 In the step (i) of forming the layer of the liquid crystal composition, the layer of the liquid crystal composition is usually formed on an appropriate supporting surface. As the supporting surface, any surface that can support the layer of the liquid crystal composition can be used. From the viewpoint of improving the surface condition of the liquid crystal cured layer, it is preferable to use a flat surface having no concave portions or convex portions as the supporting surface. Further, from the viewpoint of enhancing the productivity of the liquid crystal cured layer, it is preferable to use the surface of a long base material as the supporting surface. Here, the "long length" means a shape having a length of 5 times or more the width, preferably 10 times or more, and specifically, wound into a roll shape. The shape of the film is long enough to be stored or transported. The upper limit of the length is not particularly limited and may be 10,000 times or less the width.
 基材としては、通常、樹脂フィルム又はガラス板を用いる。特に、高い温度で配向処理を行う場合、その温度に耐えられる基材を選択するのが好ましい。樹脂としては、通常、熱可塑性樹脂を用いる。中でも、配向規制力の高さ、機械的強度の高さ、及びコストの低さといった観点から、樹脂としては、正の固有複屈折値を有する樹脂が好ましい。更には、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、ノルボルネン系樹脂等の、脂環式構造含有重合体を含む樹脂を用いることが好ましい。基材に含まれる樹脂の好適な例を商品名で挙げると、ノルボルネン系樹脂として、日本ゼオン社製「ゼオノア」を挙げられる。  Normally, a resin film or glass plate is used as the base material. In particular, when the orientation treatment is performed at a high temperature, it is preferable to select a substrate that can withstand the temperature. A thermoplastic resin is usually used as the resin. Among them, a resin having a positive intrinsic birefringence value is preferable as the resin from the viewpoints of high orientation regulation force, high mechanical strength, and low cost. Furthermore, it is preferable to use a resin containing an alicyclic structure-containing polymer such as a norbornene-based resin because it is excellent in transparency, low hygroscopicity, dimensional stability and light weight. A preferred example of the resin contained in the base material is a norbornene-based resin, which includes "Zeonor" manufactured by Nippon Zeon Co., Ltd.
 支持面としての基材の表面には、液晶組成物の層における液晶性化合物の配向を促進するため、配向規制力を付与するための処理が施されていることが好ましい。配向規制力とは、液晶組成物に含まれる液晶性化合物を配向させることができる、面の性質をいう。支持面に配向規制力を付与するため処理としては、例えば、光配向処理、ラビング処理、イオンビーム配向処理、延伸処理などが挙げられる。 The surface of the base material as a supporting surface is preferably subjected to a treatment for imparting an alignment regulating force in order to promote the alignment of the liquid crystal compound in the liquid crystal composition layer. The alignment regulating force refers to a property of a surface that can align the liquid crystal compound contained in the liquid crystal composition. Examples of the treatment for imparting the alignment regulating force to the support surface include a photo-alignment treatment, a rubbing treatment, an ion beam alignment treatment, and a stretching treatment.
 液晶組成物の層を形成する工程(i)において、液晶組成物は、通常、流体状で用意される。そのため、通常は、支持面に液晶組成物を塗工して、液晶組成物の層を形成する。液晶組成物を塗工する方法としては、例えば、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、ギャップコーティング法、及びディッピング法が挙げられる。 In the step (i) of forming a layer of the liquid crystal composition, the liquid crystal composition is usually prepared in a fluid state. Therefore, the liquid crystal composition is usually applied to the supporting surface to form a layer of the liquid crystal composition. Examples of the method for applying the liquid crystal composition include a curtain coating method, an extrusion coating method, a roll coating method, a spin coating method, a dip coating method, a bar coating method, a spray coating method, a slide coating method, a printing coating method, and a gravure method. The coating method, the die coating method, the gap coating method, and the dipping method are mentioned.
 液晶組成物の層を形成する工程(i)の後で、液晶組成物の層に含まれる液晶性化合物を配向させる工程(ii)を行いうる。この工程(ii)では、通常は、液晶組成物の層に配向処理を施すことにより、支持面の配向規制力に応じた方向に液晶性化合物を配向させる。 After the step (i) of forming the layer of the liquid crystal composition, the step (ii) of orienting the liquid crystal compound contained in the layer of the liquid crystal composition may be performed. In this step (ii), the liquid crystal compound is usually aligned in a direction according to the alignment control force of the supporting surface by subjecting the layer of the liquid crystal composition to alignment treatment.
 配向処理は、通常、液晶組成物の層の温度を所定の配向温度に調整することによって行う。配向温度は、液晶組成物の液晶化温度以上の温度としうる。この際、配向温度は、基材に含まれる樹脂のガラス転移温度未満の温度であることが好ましい。これにより、配向処理による基材の歪みの発生を抑制できる。 Alignment treatment is usually performed by adjusting the temperature of the liquid crystal composition layer to a predetermined alignment temperature. The orientation temperature can be a temperature equal to or higher than the liquid crystallizing temperature of the liquid crystal composition. At this time, the orientation temperature is preferably lower than the glass transition temperature of the resin contained in the substrate. As a result, it is possible to suppress the occurrence of distortion of the base material due to the alignment treatment.
 通常、面内方向においては、液晶性化合物は、支持面の配向規制力に応じた方向に配向する。また、厚み方向において、液晶性化合物は、通常、少なくとも一部が層平面に対して大きく傾斜するように配向する。これにより、液晶性化合物の層平面に対する傾斜角を効果的に大きくできる。 Normally, in the in-plane direction, the liquid crystal compound is aligned in the direction according to the alignment control force of the supporting surface. Further, in the thickness direction, the liquid crystal compound is usually oriented so that at least a part thereof is largely inclined with respect to the layer plane. Thereby, the tilt angle of the liquid crystal compound with respect to the layer plane can be effectively increased.
 さらに、工程(ii)は、液晶性化合物の分子の傾斜角が大きい液晶硬化層が得られるように、操作又は条件を調整して行うことが好ましい。 Further, it is preferable that the step (ii) is performed by adjusting the operation or conditions so that a liquid crystal cured layer having a large tilt angle of the molecules of the liquid crystal compound can be obtained.
 例えば、液晶性化合物として逆分散液晶性化合物を用いている場合、工程(ii)は、液晶組成物の層の温度条件が所定の要件を満たすように行うことが好ましい。具体的には、工程(ii)における液晶組成物の層の温度条件が、試験組成物の残留分粘度が通常800cP以下となる温度条件と同一になるように、行うことが好ましい。前記の試験組成物とは、液晶組成物から重合開始剤を除いた組成を有する組成物である。また、試験組成物の残留分粘度とは、工程(ii)の液晶組成物の層と同一温度条件における、試験組成物の残留成分の粘度である。また、試験組成物の残留成分とは、試験組成物に含まれる成分のうち、工程(ii)の液晶組成物の層と同一温度条件において気化せずに残留した成分である。このような要件を満たすように工程(ii)を行うことで、液晶硬化層に含まれる液晶性化合物の分子の傾斜角を大きくすることが可能である。 For example, when an inverse dispersion liquid crystal compound is used as the liquid crystal compound, step (ii) is preferably performed so that the temperature condition of the layer of the liquid crystal composition satisfies predetermined requirements. Specifically, it is preferable that the temperature condition of the layer of the liquid crystal composition in the step (ii) is the same as the temperature condition under which the residual viscosity of the test composition is usually 800 cP or less. The test composition is a composition having a composition obtained by removing the polymerization initiator from the liquid crystal composition. The residual viscosity of the test composition is the viscosity of the residual components of the test composition under the same temperature conditions as the layer of the liquid crystal composition in step (ii). In addition, the residual component of the test composition is a component that remains in the test composition without vaporizing under the same temperature condition as the layer of the liquid crystal composition of step (ii). By performing the step (ii) so as to satisfy such requirements, it is possible to increase the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer.
 更に詳しく説明する。液晶性化合物を配向させる工程(ii)を、前記の要件を満たすように行う場合、当該工程(ii)は、試験組成物の残留分粘度が所定範囲に収まる温度条件と同一温度条件に、液晶組成物の層を調整して、行う。前記残留分粘度の具体的範囲は、通常800cP(センチポアズ)以下、好ましくは600cP以下、より好ましくは400cP以下、さらに好ましくは200cP以下である。このように試験組成物の残留分粘度が低くなる温度条件と同一温度条件で液晶組成物の層中の液晶性化合物を配向させることにより、液晶硬化層に含まれる液晶性化合物の分子の傾斜角を大きくすることができる。前記残留分粘度の下限は、所望の厚みの液晶硬化層を得る観点から、好ましくは5cP以上、より好ましくは10cP以上である。 Explain further. When the step (ii) of orienting the liquid crystal compound is performed so as to satisfy the above-mentioned requirements, the step (ii) is performed under the same temperature condition that the residual viscosity of the test composition falls within a predetermined range. This is done by adjusting the layer of the composition. The specific range of the residual viscosity is usually 800 cP (centipoise) or less, preferably 600 cP or less, more preferably 400 cP or less, and further preferably 200 cP or less. In this way, by aligning the liquid crystal compound in the layer of the liquid crystal composition under the same temperature condition that the residual viscosity of the test composition becomes low, the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer Can be increased. The lower limit of the residual viscosity is preferably 5 cP or more, more preferably 10 cP or more from the viewpoint of obtaining a liquid crystal cured layer having a desired thickness.
 工程(ii)の液晶組成物の層と同一温度条件における試験組成物の残留分粘度は、下記の方法によって測定できる。
 液晶組成物から重合開始剤を除いた試験組成物を用意する。この試験組成物をロータリーエバポレーターで減圧濃縮して溶媒を除去し、残留成分を得る。この残留成分について、予め、測定温度を変化させながら粘度を測定し、測定温度とその測定温度での粘度との情報を得る。この情報を、以下、適宜「温度-粘度情報」という。この「温度-粘度情報」から、工程(ii)での液晶組成物の層の温度における粘度を、残留分粘度として読み取る。
The residual viscosity of the test composition under the same temperature conditions as the layer of the liquid crystal composition of step (ii) can be measured by the following method.
A test composition is prepared by removing the polymerization initiator from the liquid crystal composition. The test composition is concentrated under reduced pressure with a rotary evaporator to remove the solvent and obtain a residual component. The viscosity of this residual component is measured in advance while changing the measurement temperature, and information on the measurement temperature and the viscosity at the measurement temperature is obtained. Hereinafter, this information will be referred to as “temperature-viscosity information” as appropriate. From this "temperature-viscosity information", the viscosity at the temperature of the layer of the liquid crystal composition in step (ii) is read as the residual viscosity.
 工程(ii)の液晶組成物の層と同一温度条件において試験組成物の残留分粘度を上述した範囲に収める方法としては、例えば、下記(A)及び(B)の方法が挙げられる。
 (A)液晶性化合物を配向させる工程(ii)における液晶組成物の層の温度を、適切に調整する。この方法では、通常、液晶組成物の層の温度を十分に高温にすることで、この温度と同一温度条件での試験組成物の残留分粘度を低くして、上述した範囲となるように調整する。
 (B)液晶組成物の組成を、適切に調整する。この方法では、通常、液晶組成物に含まれる成分として、液晶性化合物に適切な種類及び量の添加剤を組み合わせることで、当該添加剤を含む試験組成物の残留分粘度を低くして、上述した範囲となるように調整する。
Examples of the method of keeping the residual viscosity of the test composition within the above range under the same temperature condition as the layer of the liquid crystal composition in step (ii) include the following methods (A) and (B).
The temperature of the layer of the liquid crystal composition in the step (ii) of orienting the liquid crystal compound (A) is appropriately adjusted. In this method, usually, the temperature of the layer of the liquid crystal composition is sufficiently high to reduce the residual viscosity of the test composition under the same temperature condition as this temperature, and the viscosity is adjusted to fall within the above range. To do.
(B) The composition of the liquid crystal composition is appropriately adjusted. In this method, usually, as a component contained in the liquid crystal composition, a liquid crystal compound is combined with an additive of an appropriate type and amount to reduce the residual viscosity of the test composition containing the additive, Adjust so that it is within the specified range.
 工程(ii)における液晶組成物の層の温度条件の調整については、国際公開第2018/173773号の記載を参照してよい。 Regarding the adjustment of the temperature condition of the layer of the liquid crystal composition in the step (ii), the description in International Publication No. 2018/1737773 may be referred to.
 また、例えば、逆分散液晶性化合物と磁場応答性を有する液晶性化合物とを含む液晶組成物を用いる場合には、工程(ii)を、液晶組成物の層に磁界を印加した状態で行うことが好ましい。これにより、液晶硬化層に含まれる液晶性化合物の分子の傾斜角を効果的に大きくできる。磁界の印加については、特開2018-163218号公報の記載を参照してよい。 Further, for example, when using a liquid crystal composition containing an inverse dispersion liquid crystal compound and a liquid crystal compound having a magnetic field responsiveness, the step (ii) is performed in a state in which a magnetic field is applied to a layer of the liquid crystal composition. Is preferred. Thereby, the tilt angle of the molecules of the liquid crystal compound contained in the liquid crystal cured layer can be effectively increased. Regarding the application of the magnetic field, the description in JP-A-2018-163218 may be referred to.
 液晶性化合物を配向させる工程(ii)は、通常、オーブン内において行われる。この際、オーブンの設定温度と、そのオーブン内に置かれた液晶組成物の層の温度とは、異なる場合がありえる。この場合、予め、多数のオーブン設定温度において、その設定温度のオーブン内に置かれた液晶組成物の層の温度を測定し、記録しておくことが好ましい。この記録されたオーブンの設定温度とその設定温度のオーブン内に置かれた液晶組成物の層の温度との情報を、以下、適宜「設定温度-層温度情報」という。この「設定温度-層温度情報」を用いれば、オーブン設定温度から、オーブン内に置かれた液晶組成物の層の温度を容易に知ることができる。 The step (ii) of orienting the liquid crystal compound is usually performed in an oven. At this time, the set temperature of the oven may be different from the temperature of the layer of the liquid crystal composition placed in the oven. In this case, it is preferable to measure and record the temperature of the layer of the liquid crystal composition placed in the oven at the preset temperatures at a number of preset temperatures. The information on the recorded set temperature of the oven and the temperature of the layer of the liquid crystal composition placed in the oven at the set temperature is hereinafter referred to as "set temperature-layer temperature information" as appropriate. By using this "set temperature-layer temperature information", the temperature of the layer of the liquid crystal composition placed in the oven can be easily known from the oven set temperature.
 液晶性化合物を配向させる工程(ii)において、液晶組成物の層の温度を前記の温度に保持する時間は、所望の液晶硬化層が得られる範囲で任意に設定でき、例えば30秒間~5分間でありうる。 In the step (ii) of orienting the liquid crystal compound, the time for maintaining the temperature of the layer of the liquid crystal composition at the above temperature can be arbitrarily set within the range where a desired liquid crystal cured layer can be obtained, and for example, 30 seconds to 5 minutes. Can be
 液晶性化合物を配向させる工程(ii)の後で、液晶組成物の層を硬化させて、液晶硬化層を得る工程(iii)を行う。この工程(iii)の液晶組成物の硬化は、通常、当該液晶組成物が含む重合性の化合物の重合によって達成される。例えば、液晶性化合物が重合性を有する場合、その液晶性化合物の一部又は全部を重合させることにより、液晶組成物の層を硬化させる。重合は、通常、液晶性化合物の分子の配向を維持したままで進行する。よって、前記の重合により、重合前の液晶組成物に含まれる液晶性化合物の配向状態は、固定される。 After the step (ii) of orienting the liquid crystal compound, the step (iii) of curing the layer of the liquid crystal composition to obtain a liquid crystal cured layer is performed. The curing of the liquid crystal composition in step (iii) is usually achieved by polymerizing the polymerizable compound contained in the liquid crystal composition. For example, when the liquid crystal compound is polymerizable, the layer of the liquid crystal composition is cured by polymerizing a part or all of the liquid crystal compound. The polymerization usually proceeds while maintaining the alignment of the molecules of the liquid crystal compound. Therefore, the alignment state of the liquid crystal compound contained in the liquid crystal composition before the polymerization is fixed by the above-mentioned polymerization.
 重合方法としては、液晶組成物に含まれる成分の性質に適合した方法を選択しうる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、加熱が不要であり、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。 As the polymerization method, a method suitable for the properties of the components contained in the liquid crystal composition can be selected. Examples of the polymerization method include a method of irradiating with active energy rays and a thermal polymerization method. Among them, the method of irradiating with active energy rays is preferable because heating is not necessary and the polymerization reaction can proceed at room temperature. Here, the active energy rays to be irradiated may include light such as visible light, ultraviolet rays, and infrared rays, and arbitrary energy rays such as electron beams.
 なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、基材に悪影響を与えない範囲という観点から、基材のガラス転移温度以下とすることが好ましく、好ましくは150℃以下、より好ましくは100℃以下、特に好ましくは80℃以下である。紫外線照射時の温度の下限は、15℃以上であることが好ましく、20℃以上であることがより好ましい。紫外線の照射強度は、好ましくは0.1mW/cm2以上、より好ましくは0.5mW/cm2以上であり、好ましくは10000mW/cm2以下、より好ましくは5000mW/cm2以下である。紫外線の照射量は、好ましくは0.1mJ/cm2以上、より好ましくは0.5mJ/cm2以上であり、好ましくは10000mJ/cm2以下、より好ましくは5000mJ/cm2以下である。 Among them, the method of irradiating light such as ultraviolet rays is preferable because the operation is simple. The temperature at the time of ultraviolet irradiation is preferably not more than the glass transition temperature of the substrate, preferably 150° C. or less, more preferably 100° C. or less, particularly preferably 80° C., from the viewpoint of not affecting the substrate. It is below. The lower limit of the temperature during UV irradiation is preferably 15° C. or higher, and more preferably 20° C. or higher. The irradiation intensity of ultraviolet rays is preferably 0.1 mW / cm 2 or more, more preferably 0.5 mW / cm 2 or more, preferably 10000 mW / cm 2 or less, more preferably 5000 mW / cm 2 or less. The dose of ultraviolet rays is preferably 0.1 mJ / cm 2 or more, more preferably 0.5 mJ / cm 2 or more, preferably 10000 mJ / cm 2 or less, more preferably 5000 mJ / cm 2 or less.
 以上の工程を行うことにより、液晶硬化層を得ることができる。上述した製造方法は、こうして得られた液晶硬化層上に、更に液晶硬化層を形成する工程を含んでいてもよい。この場合、前記のようにして形成された液晶硬化層に相当する第一硬化層と、この第一硬化層上に更に形成された第二硬化層とを含む複層構造の液晶硬化層が得られる。 The liquid crystal cured layer can be obtained by performing the above steps. The above-described manufacturing method may include a step of further forming a liquid crystal cured layer on the thus obtained liquid crystal cured layer. In this case, a liquid crystal cured layer having a multilayer structure including a first cured layer corresponding to the liquid crystal cured layer formed as described above and a second cured layer further formed on the first cured layer is obtained. Be done.
 第二硬化層は、第一硬化層上に、直接に形成することが好ましい。ここで、ある層上に別の層を形成する態様が「直接に」とは、これら2層の間に他の層が無いことをいう。逆分散液晶性化合物を用いた場合、その逆分散液晶性化合物を含む第一硬化層等の単位硬化層は、当該単位硬化層上に直接に形成される別の単位硬化層に含まれる逆分散液晶性化合物の分子の傾斜角を大きくする配向膜として機能できる。よって、通常は、先に形成される単位構造層(例えば、第一硬化層)に含まれる逆分散液晶性化合物の分子の実質最大傾斜角よりも、その後に形成される別の単位構造層(例えば、第二硬化層)に含まれる逆分散液晶性化合物の分子の実質最大傾斜角を大きくできる。よって、単位硬化層の形成を繰り返すことにより、全体として逆分散液晶性化合物の大きな傾斜角を有する液晶硬化層を得ることができる。こうして得られた液晶硬化層においては、通常、後に形成された単位硬化層ほど、大きな実質最大傾斜角を有する傾向がある。 The second cured layer is preferably formed directly on the first cured layer. Here, the term “directly” as a mode of forming another layer on a certain layer means that there is no other layer between these two layers. When a reverse-dispersed liquid crystalline compound is used, a unit cured layer such as a first cured layer containing the reverse-dispersed liquid crystalline compound is contained in another unit cured layer directly formed on the unit cured layer. It can function as an alignment film for increasing the tilt angle of the molecules of the liquid crystal compound. Therefore, in general, a unit structure layer (for example, a first cured layer) formed earlier than a substantially maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound included in another unit structure layer (hereinafter referred to as a unit structure layer) is formed. For example, the substantially maximum tilt angle of the molecules of the reverse dispersion liquid crystal compound contained in the second cured layer) can be increased. Therefore, by repeating the formation of the unit cured layer, a liquid crystal cured layer having a large tilt angle of the reverse dispersion liquid crystalline compound can be obtained as a whole. In the liquid crystal cured layer thus obtained, the unit cured layer formed later tends to have a substantially larger maximum tilt angle.
 第二硬化層は、例えば、上述した工程(i)~工程(iii)を行うことにより、形成できる。この際、第二硬化層を形成するために用いる液晶組成物に含まれる液晶性化合物は、第一硬化層を形成するために用いる液晶組成物に含まれる液晶性化合物と、同一でもよく、異なっていてもよい。さらに、第二硬化層を形成するために用いる液晶組成物と、第一硬化層を形成するために用いる液晶組成物とは、異なっていてもよいし、同一であってもよい。 The second cured layer can be formed, for example, by performing the steps (i) to (iii) described above. At this time, the liquid crystal compound contained in the liquid crystal composition used to form the second cured layer may be the same as or different from the liquid crystal compound contained in the liquid crystal composition used to form the first cured layer. May be. Furthermore, the liquid crystal composition used to form the second cured layer and the liquid crystal composition used to form the first cured layer may be different or the same.
 第一硬化層の表面には、液晶組成物の層を形成する前に、ラビング処理等の配向規制力を付与するための処理を施してもよい。しかし、第一硬化層の表面は、特段の処理を施さなくても、当該表面上に形成される液晶組成物の層に含まれる逆分散液晶性化合物を適切に配向させる配向規制力を有する。よって、工程数を減らして液晶硬化フィルムの製造を効率的に進める観点では、第一硬化層の表面にラビング処理を施さないことが好ましい。 Before the layer of the liquid crystal composition is formed, the surface of the first cured layer may be subjected to a treatment such as a rubbing treatment for giving an alignment regulating force. However, the surface of the first cured layer has an alignment regulating force for appropriately aligning the reverse dispersion liquid crystalline compound contained in the layer of the liquid crystal composition formed on the surface without any special treatment. Therefore, from the viewpoint of reducing the number of steps and efficiently advancing the production of the liquid crystal cured film, it is preferable not to rub the surface of the first cured layer.
 また、第二硬化層を形成した後で、その第二硬化層状に、更に任意の単位硬化層を形成する工程を行ってもよい。 After forming the second cured layer, a step of further forming an arbitrary unit cured layer on the second cured layer may be performed.
 上述した製造方法により、液晶硬化層を含む液晶硬化フィルムを製造できる。この製造方法では、通常、基材と、この基材の支持面上に形成された液晶硬化層とを含む液晶硬化フィルムが得られる。 The liquid crystal cured film including the liquid crystal cured layer can be manufactured by the manufacturing method described above. In this manufacturing method, usually, a liquid crystal cured film including a substrate and a liquid crystal cured layer formed on the supporting surface of the substrate is obtained.
 また、上述した製造方法は、基材を剥離する工程を含んでいてもよい。この場合、液晶硬化層それ自体を、液晶硬化フィルムとして用いることができる。 The above-mentioned manufacturing method may include a step of peeling the base material. In this case, the liquid crystal cured layer itself can be used as a liquid crystal cured film.
 さらに、液晶硬化フィルムの製造方法は、例えば、基材上に形成された液晶硬化層を、任意のフィルム層に転写する工程を含んでいてもよい。よって、例えば、液晶硬化フィルムの製造方法は、基材上に形成された液晶硬化層と任意のフィルム層とを貼り合わせた後で、必要に応じて基材を剥離して、液晶硬化層及び任意のフィルム層を含む液晶硬化フィルムを得る工程を含んでいてもよい。この際、貼り合わせには、適切な粘着剤又は接着剤を用いてもよい。 Furthermore, the method for producing a liquid crystal cured film may include, for example, a step of transferring a liquid crystal cured layer formed on a base material to an arbitrary film layer. Therefore, for example, the method for producing a liquid crystal cured film, after laminating the liquid crystal cured layer formed on the substrate and any film layer, the substrate is peeled off if necessary, and the liquid crystal cured layer and It may include a step of obtaining a liquid crystal cured film including an optional film layer. At this time, an appropriate pressure-sensitive adhesive or adhesive may be used for bonding.
 また、液晶硬化フィルムの製造方法は、例えば、液晶硬化層上に、更に任意の層を形成する工程を含んでいてもよい。 Further, the method for producing a liquid crystal cured film may include a step of further forming an arbitrary layer on the liquid crystal cured layer, for example.
 さらに、液晶硬化フィルムの製造方法は、例えば、液晶組成物の層を硬化させる工程(iii)の前に、液晶組成物の層を乾燥させる工程を含んでいてもよい。かかる乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、液晶組成物の層から、溶媒を除去することができる。 Further, the method for producing a liquid crystal cured film may include, for example, a step of drying the liquid crystal composition layer before the step (iii) of curing the liquid crystal composition layer. Such drying can be achieved by a drying method such as natural drying, heat drying, reduced pressure drying, and reduced pressure heat drying. By such drying, the solvent can be removed from the layer of the liquid crystal composition.
 前記のような製造方法によれば、長尺の基材を用いて、長尺の液晶硬化フィルムを得ることができる。このような長尺の液晶硬化フィルムは、連続的な製造が可能であり、生産性に優れる。また、長尺の液晶硬化フィルムは、他のフィルムとの貼り合わせを、ロールトゥロールによって行うことができるので、この点でも、生産性に優れる。通常、長尺の液晶硬化フィルムは、巻き取られてロールの状態で保存及び運搬がなされる。 According to the manufacturing method as described above, a long liquid crystal cured film can be obtained using a long substrate. Such a long-sized liquid crystal cured film can be continuously manufactured and is excellent in productivity. In addition, since the long liquid crystal cured film can be attached to another film by roll-to-roll, the productivity is excellent also in this respect. Usually, a long liquid crystal cured film is wound up and stored and transported in a roll state.
[10.偏光板]
 上述した液晶硬化フィルムを用いることにより、偏光板を製造できる。この偏光板は、通常、上述した製造方法で液晶硬化フィルムを製造する工程と、この液晶硬化フィルムと直線偏光子とを貼合する工程と、を含む製造方法により、製造できる。
[10. Polarizer]
A polarizing plate can be manufactured by using the above-mentioned liquid crystal cured film. This polarizing plate can be usually manufactured by a manufacturing method including a step of manufacturing a liquid crystal cured film by the manufacturing method described above and a step of laminating the liquid crystal cured film and a linear polarizer.
 こうして得られた偏光板は、液晶硬化フィルムと直線偏光子とを含む。この偏光板は、円偏光板又は楕円偏光板として機能できることが好ましい。このような偏光板を有機EL表示装置に設けることにより、有機EL表示装置の表示面において外光の反射を抑制できる。特に、上述した液晶硬化層は、液晶性化合物の分子の傾斜角が適切に調整されることで、面内方向だけでなく厚み方向においても複屈折を適切に調整することができる。よって、この液晶硬化層を含む偏光板は、有機EL表示装置の表示面の正面方向だけでなく傾斜方向においても外光の反射を抑制できる。したがって、この偏光板を用いることにより、視野角の広い有機EL表示装置を実現することができる。さらに、上述した液晶硬化層が配向ムラ及び透過光の偏光状態の乱れを抑制できるので、その液晶硬化層を含む液晶硬化フィルムを備えた偏光板は、正面方向及び傾斜方向の両方において効果的な反射の抑制が可能である。 The polarizing plate thus obtained contains a liquid crystal cured film and a linear polarizer. It is preferable that this polarizing plate can function as a circular polarizing plate or an elliptically polarizing plate. By providing such a polarizing plate in the organic EL display device, reflection of external light can be suppressed on the display surface of the organic EL display device. In particular, in the above-mentioned liquid crystal cured layer, the birefringence can be appropriately adjusted not only in the in-plane direction but also in the thickness direction by appropriately adjusting the tilt angle of the molecules of the liquid crystal compound. Therefore, the polarizing plate including the liquid crystal cured layer can suppress reflection of external light not only in the front direction of the display surface of the organic EL display device but also in the tilt direction. Therefore, by using this polarizing plate, an organic EL display device having a wide viewing angle can be realized. Further, since the above-mentioned liquid crystal cured layer can suppress the alignment unevenness and the disturbance of the polarization state of transmitted light, the polarizing plate provided with the liquid crystal cured film including the liquid crystal cured layer is effective in both the front direction and the tilt direction. It is possible to suppress reflection.
 直線偏光子としては、例えば、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるフィルム;ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるフィルム;が挙げられる。また、直線偏光子の他の例としては、グリッド偏光子、多層偏光子などの、偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうち、直線偏光子としては、ポリビニルアルコールを含有する偏光子が好ましい。 As the linear polarizer, for example, a film obtained by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and then uniaxially stretching it in a boric acid bath; adsorbing the iodine or dichroic dye on the polyvinyl alcohol film And a film obtained by modifying a part of polyvinyl alcohol units in the molecular chain into polyvinylene units. Further, other examples of the linear polarizer include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer and a multilayer polarizer. Among these, as the linear polarizer, a polarizer containing polyvinyl alcohol is preferable.
 直線偏光子に自然光を入射させると、一方の偏光だけが透過する。この直線偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。
 また、直線偏光子の厚みは、好ましくは5μm~80μmである。
When natural light is incident on the linear polarizer, only one polarized light is transmitted. The degree of polarization of this linear polarizer is not particularly limited, but is preferably 98% or more, more preferably 99% or more.
The thickness of the linear polarizer is preferably 5 μm to 80 μm.
 偏光板を円偏光板として機能させたい場合、直線偏光子の偏光吸収軸に対して液晶硬化層の遅相軸がなす角度は、45°またはそれに近い角度であることが好ましい。前記の角度は、具体的には、好ましくは45°±5°(即ち、好ましくは40°~50°)、より好ましくは45°±4°(即ち、より好ましくは41°~49°)、特に好ましくは45°±3°(即ち、特に好ましくは42°~48°)である。 When the polarizing plate is desired to function as a circularly polarizing plate, the angle formed by the slow axis of the liquid crystal cured layer with respect to the polarization absorption axis of the linear polarizer is preferably 45° or close thereto. The angle is specifically preferably 45°±5° (ie preferably 40°-50°), more preferably 45°±4° (ie more preferably 41°-49°), It is particularly preferably 45°±3° (that is, particularly preferably 42° to 48°).
 偏光板は、直線偏光子及び液晶硬化層に組み合わせて、更に任意の層を含んでいてもよい。任意の層としては、例えば、直線偏光子と液晶硬化層とを貼り合わせるための接着剤層;直線偏光子を保護するための偏光子保護フィルム層;などが挙げられる。 The polarizing plate may include an arbitrary layer in combination with the linear polarizer and the liquid crystal cured layer. Examples of the optional layer include an adhesive layer for bonding the linear polarizer and the liquid crystal cured layer; a polarizer protective film layer for protecting the linear polarizer.
[11.有機EL表示装置]
 上述した偏光板を用いることにより、有機EL表示装置を製造できる。この有機EL表示装置は、通常、上述した製造方法で偏光板を製造することを含む製造方法により、製造できる。
[11. Organic EL display device]
An organic EL display device can be manufactured by using the above-mentioned polarizing plate. This organic EL display device can be usually manufactured by a manufacturing method including manufacturing a polarizing plate by the above-described manufacturing method.
 この有機EL表示装置は、上述した偏光板を含む。有機EL表示装置は、通常、表示素子として有機EL素子を含み、この有機EL素子の視認側に、偏光板が設けられる。また、偏光板は、有機EL素子側から、液晶硬化フィルム及び直線偏光子をこの順に含む。そして、このような構成において、前記の偏光板が反射抑制フィルムとして機能できる。 This organic EL display device includes the above-mentioned polarizing plate. An organic EL display device usually includes an organic EL element as a display element, and a polarizing plate is provided on the viewing side of this organic EL element. The polarizing plate includes a liquid crystal cured film and a linear polarizer in this order from the organic EL element side. And in such a structure, the said polarizing plate can function as an antireflection film.
 以下、偏光板が円偏光板として機能する場合を例に挙げて、反射抑制の仕組みを説明する。装置外部から入射した光は、その一部の直線偏光のみが直線偏光子を通過し、次にそれが液晶硬化層を通過することにより、円偏光となる。円偏光は、表示装置内の光を反射する構成要素(有機EL素子の反射電極等)により反射され、再び液晶硬化層を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子を通過しなくなる。これにより、反射抑制の機能が達成される。このような反射抑制の原理は、特開平9-127885号公報を参照してよい。 Below, the mechanism of reflection suppression will be explained by taking the case where the polarizing plate functions as a circularly polarizing plate as an example. Light incident from the outside of the device becomes circularly polarized light because only part of the linearly polarized light passes through the linear polarizer and then it passes through the liquid crystal curing layer. Circularly polarized light is reflected by a component that reflects light in the display device (a reflective electrode of an organic EL element, etc.) and passes through the liquid crystal cured layer again, so that the vibration direction orthogonal to the vibration direction of the incident linearly polarized light is changed. It becomes the linearly polarized light that it has and does not pass through the linear polarizer. Thereby, the function of suppressing reflection is achieved. For the principle of such reflection suppression, refer to Japanese Patent Application Laid-Open No. 9-127885.
 有機EL素子は、通常、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。 The organic EL element is usually provided with a transparent electrode layer, a light emitting layer and an electrode layer in this order, and the light emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer. Examples of the material forming the organic light emitting layer include polyparaphenylene vinylene-based materials, polyfluorene-based materials, and polyvinylcarbazole-based materials. Further, the light emitting layer may have a laminate of a plurality of layers having different emission colors or a mixed layer in which a certain dye layer is doped with different dyes. Furthermore, the organic EL device may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples shown below, and may be implemented by being arbitrarily modified within the scope of the claims of the present invention and the scope of equivalents thereof. In the following description, "%" and "parts" representing amounts are by weight unless otherwise specified. Unless otherwise specified, the operations described below were performed in normal temperature and normal pressure atmosphere.
[厚みの測定方法]
 以下の実施例及び比較例において、層の厚みは、膜厚測定計(Filmetrix社製「F-20」)を用いて測定した。
[Method of measuring thickness]
In the following examples and comparative examples, the layer thickness was measured using a film thickness meter (“F-20” manufactured by Filmetrix).
[液晶性化合物の説明]
 下記の実施例及び比較例で用いた逆分散液晶性化合物(L-A)~(L-C)の分子構造は、下記の通りである。
[Explanation of Liquid Crystalline Compound]
The molecular structures of the reverse dispersion liquid crystalline compounds (LA) to (LC) used in the following Examples and Comparative Examples are as follows.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[キラル化合物の説明]
 下記の実施例及び比較例では、キラル化合物(C-X)として、BASF社製「LC756」を用いた。
 また、キラル化合物(C-Y)としては、下記の分子構造を有する化合物を用いた。下記式において、Meはメチル基を表す。キラル化合物(C-X)であるBASF社製「LC756」およびキラル化合物(C-Y)のHTPは、それぞれ、20以上200以下の値である。
[Explanation of chiral compounds]
In the following examples and comparative examples, "LC756" manufactured by BASF Corporation was used as the chiral compound (C-X).
A compound having the following molecular structure was used as the chiral compound (CY). In the formula below, Me represents a methyl group. The HLC of the chiral compound (C—X) “LC756” manufactured by BASF and the chiral compound (C—Y) are 20 or more and 200 or less, respectively.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[実施例及び比較例]
 (液晶組成物の調整)
 下記表1に示す種類の逆分散液晶性化合物100重量部と、フッ素系界面活性剤(AGCセイミケミカル社製「S420」;logP=5.3)0.15重量部と、下記表1に示す種類及び量のキラル化合物と、光重合開始剤(ADEKA社製「NCI-730」)4.0重量部と、溶媒としてのシクロペンタノン162.3重量部及び1,3-ジオキソラン243.5重量部とを混合して、液晶組成物を得た。
[Examples and Comparative Examples]
(Preparation of liquid crystal composition)
100 parts by weight of a reverse dispersion liquid crystalline compound of the type shown in Table 1 below, 0.15 parts by weight of a fluorosurfactant ("S420" manufactured by AGC Seimi Chemical Co., log P=5.3), and shown in Table 1 below. Type and amount of chiral compound, 4.0 parts by weight of photopolymerization initiator (“NCI-730” manufactured by ADEKA), 162.3 parts by weight of cyclopentanone as a solvent, and 243.5 parts by weight of 1,3-dioxolane. And parts were mixed to obtain a liquid crystal composition.
 (基材フィルムの用意)
 基材フィルムとして、片面にマスキングフィルムが貼り合わせられた熱可塑性のノルボルネン樹脂からなる樹脂フィルム(日本ゼオン社製「ゼオノアフィルム」;厚み100μm)を用意した。この基材フィルムは、光学的に等方性のフィルムであったので、後述する液晶硬化層の位相差LRe、CRe及びR(θ)の測定結果に影響を及ぼすものでは無い。この基材フィルムからマスキングフィルムを剥離し、マスキング剥離面にコロナ処理を施した。次いで、コロナ処理面に、ラビング処理を施した。
(Preparation of base film)
As a base film, a resin film (“Zeonor film” manufactured by Nippon Zeon Co., Ltd.; thickness 100 μm) made of a thermoplastic norbornene resin having a masking film attached to one surface was prepared. Since this substrate film was an optically isotropic film, it does not affect the measurement results of the retardations LRe, CRe and R(θ) of the liquid crystal cured layer described later. The masking film was peeled off from this substrate film, and the masking peeled surface was subjected to corona treatment. Then, the corona-treated surface was subjected to rubbing treatment.
 (第一硬化層の形成)
 基材フィルムのラビング処理面に、#2又は#3のワイヤーバーを用いて液晶組成物を塗工して、液晶組成物の層を形成した。
 その後、液晶組成物の層を、110℃で4分間加熱して、配向処理を行った。この配向処理での配向温度は、各実施例及び比較例の液晶組成物に対応する試験組成物の残留分粘度が800cP以下となる温度条件と同一であった。この配向処理により、液晶組成物の層に含まれる逆分散液晶性化合物が配向した。
 配向処理を施された液晶組成物の層に、窒素雰囲気下で、500mJ/cmの紫外線を照射して、液晶組成物の層を硬化させて、下記表1に示す厚みの第一硬化層を形成した。これにより、第一硬化層/基材フィルムの層構成を有する中間フィルムを得た。
(Formation of first cured layer)
The liquid crystal composition was applied to the rubbing-treated surface of the base film using a #2 or #3 wire bar to form a layer of the liquid crystal composition.
Then, the layer of the liquid crystal composition was heated at 110° C. for 4 minutes to perform alignment treatment. The alignment temperature in this alignment treatment was the same as the temperature condition under which the residual viscosity of the test compositions corresponding to the liquid crystal compositions of the respective Examples and Comparative Examples was 800 cP or less. By this alignment treatment, the reverse dispersion liquid crystal compound contained in the layer of the liquid crystal composition was aligned.
The layer of the liquid crystal composition that has been subjected to the alignment treatment is irradiated with 500 mJ/cm 2 of ultraviolet rays in a nitrogen atmosphere to cure the layer of the liquid crystal composition, and the first cured layer having the thickness shown in Table 1 below. Formed. Thereby, an intermediate film having a layer structure of the first cured layer/base film was obtained.
 (液晶硬化層の形成)
 中間フィルムの第一硬化層の表面に、#3又は#6のワイヤーバーを用いて更に液晶組成物を塗工して、液晶組成物の層を形成した。
 その後、液晶組成物の層を、110℃で4分間加熱して、配向処理を行った。この配向処理により、液晶組成物の層に含まれる逆分散液晶性化合物が配向した。
 配向処理を施された液晶組成物の層に、窒素雰囲気下で、1000mJ/cmの紫外線を照射して、液晶組成物の層を硬化させて、第二硬化層を形成した。これにより、第一硬化層及び第二硬化層を合わせた層として、表1に示す厚みの液晶硬化層を得た。そして、これにより、液晶硬化層/基材フィルムの層構成を有する液晶硬化フィルムを得た。
(Formation of liquid crystal cured layer)
The liquid crystal composition was further applied to the surface of the first cured layer of the intermediate film using a #3 or #6 wire bar to form a layer of the liquid crystal composition.
Then, the layer of the liquid crystal composition was heated at 110° C. for 4 minutes to perform alignment treatment. By this alignment treatment, the reverse dispersion liquid crystal compound contained in the layer of the liquid crystal composition was aligned.
The liquid crystal composition layer that had been subjected to the alignment treatment was irradiated with 1000 mJ/cm 2 of ultraviolet light in a nitrogen atmosphere to cure the liquid crystal composition layer to form a second cured layer. Thus, a liquid crystal cured layer having a thickness shown in Table 1 was obtained as a layer including the first cured layer and the second cured layer. Thus, a liquid crystal cured film having a layer structure of liquid crystal cured layer/base film was obtained.
 (液晶硬化層に含まれる逆分散液晶性化合物の傾斜配向性の確認)
 図6は、傾斜方向から液晶硬化層400のレターデーションとしての直線偏光位相差R(θ)を測定する際の測定方向を説明するための斜視図である。図6において、矢印A1は液晶硬化層400の面内の遅相軸を表し、矢印A2は液晶硬化層400の面内の進相軸を表し、矢印A3は液晶硬化層400の厚み方向を表す。
(Confirmation of tilt orientation of the reverse dispersion liquid crystalline compound contained in the liquid crystal cured layer)
FIG. 6 is a perspective view for explaining the measurement direction when measuring the linearly polarized light phase difference R(θ) as the retardation of the liquid crystal cured layer 400 from the tilt direction. In FIG. 6, an arrow A1 represents an in-plane slow axis of the liquid crystal cured layer 400, an arrow A2 represents an in-plane fast axis of the liquid crystal cured layer 400, and an arrow A3 represents a thickness direction of the liquid crystal cured layer 400. ..
 液晶硬化フィルムを、位相差計(Axometrics社製「AxoScan」)にセットした。液晶硬化層400の進相軸A2を回転軸として液晶硬化フィルムを回転させて、図6に示すように、液晶硬化層400の直線偏光位相差R(θ)を、入射角θが-50°~50°の範囲で測定した。よって、前記の測定方向A4は、液晶硬化層400の進相軸A2に対して垂直に設定される。また、測定波長は590nmであった。 The liquid crystal cured film was set on a retarder ("AxoScan" manufactured by Axometrics). The liquid crystal cured film is rotated about the fast axis A2 of the liquid crystal cured layer 400 as a rotation axis, and as shown in FIG. 6, the linear polarization phase difference R(θ) of the liquid crystal cured layer 400 is measured at an incident angle θ of −50°. It was measured in the range of ˜50°. Therefore, the measurement direction A4 is set to be perpendicular to the fast axis A2 of the liquid crystal cured layer 400. The measurement wavelength was 590 nm.
 入射角θが-50°~50°の範囲で測定された液晶硬化層の直線偏光位相差R(θ)を、入射角0°での液晶硬化層の直線偏光位相差R(0°)で割って、レターデーション比R(θ)/R(0°)を求めた。求めたレターデーション比R(θ)/R(0°)を縦軸、入射角θを横軸としたグラフを描いた。
 得られたレターデーション比R(θ)/R(0°)のグラフがθ=0°に対して非対称である場合、液晶硬化層に含まれる逆分散液晶性化合物の少なくとも一部の分子が液晶硬化層の層平面に対して傾斜していると判定できる。また、レターデーション比R(θ)/R(0°)のグラフがθ=0°に対して対称である場合、液晶硬化層に含まれる逆分散液晶性化合物の全ての分子が液晶硬化層の層平面に対して平行又は垂直であると判定できる。
The linear polarization phase difference R(θ) of the liquid crystal cured layer measured at an incident angle θ of −50° to 50° is defined as the linear polarization phase difference R(0°) of the liquid crystal cured layer at an incident angle of 0°. It was divided to obtain the retardation ratio R(θ)/R(0°). A graph was drawn with the determined retardation ratio R(θ)/R(0°) as the vertical axis and the incident angle θ as the horizontal axis.
When the obtained graph of retardation ratio R(θ)/R(0°) is asymmetric with respect to θ=0°, at least some of the molecules of the reverse dispersion liquid crystalline compound contained in the liquid crystal cured layer are liquid crystals. It can be determined that the layer is inclined with respect to the layer plane of the hardened layer. When the graph of retardation ratio R(θ)/R(0°) is symmetric with respect to θ=0°, all the molecules of the reverse dispersion liquid crystalline compound contained in the liquid crystal cured layer are in the liquid crystal cured layer. It can be determined to be parallel or perpendicular to the layer plane.
 測定の結果、いずれの実施例及び比較例でも、レターデーション比R(θ)/R(0°)のグラフがθ=0°に対して非対称であった。よって、液晶硬化層に含まれる逆分散液晶性化合物の少なくとも一部の分子が液晶硬化層の層平面に対して傾斜していると判定した。 As a result of the measurement, the graph of the retardation ratio R(θ)/R(0°) was asymmetric with respect to θ=0° in any of the examples and the comparative examples. Therefore, it was determined that at least some of the molecules of the reverse dispersion liquid crystalline compound contained in the liquid crystal cured layer were tilted with respect to the layer plane of the liquid crystal cured layer.
 (実質最大傾斜角の測定)
 前記の(液晶硬化層に含まれる逆分散液晶性化合物の傾斜配向性の確認)で測定された直線偏光位相差R(θ)から、前記の位相差計に付属の解析ソフトウェア(Axometrics社製の解析ソフトウェア「Multi-Layer Analysis」;解析条件は、解析波長590nm、層分割数20層)により、液晶硬化層に含まれる逆分散液晶性化合物の分子の実質最大傾斜角Θを計算した。
(Measurement of actual maximum tilt angle)
From the linearly polarized light phase difference R(θ) measured in the above (confirmation of the tilt orientation of the inverse dispersion liquid crystalline compound contained in the liquid crystal cured layer), the analysis software attached to the above retarder (Axometrics The analysis software “Multi-Layer Analysis”; analysis conditions were an analysis wavelength of 590 nm and the number of layer divisions was 20).
 (面内レターデーションLRe及び旋光位相差CReの測定)
 位相差計(Axometrix社製「Axoscan」)を用いて、液晶硬化層の面内レターデーションLRe及び旋光位相差CReを測定した。測定波長は、550nmであった。
(Measurement of in-plane retardation LRe and optical retardation CRe)
An in-plane retardation LRe and an optical rotation retardation CRe of the liquid crystal cured layer were measured using a retardation meter (“Axoscan” manufactured by Axometrix). The measurement wavelength was 550 nm.
 (逆波長分散性の確認)
 液晶硬化フィルムの液晶硬化層の測定波長450nm及び550nmにおける面内レターデーションLRe(450)及びLRe(550)を、位相差計(Axometrics社製「AxoScan」)を用いて、測定した。測定の結果、いずれの実施例及び比較例でも、LRe(450)/LRe(550)<0.9が成立していた。
(Confirmation of reverse wavelength dispersion)
The in-plane retardations LRe (450) and LRe (550) at the measurement wavelengths of 450 nm and 550 nm of the liquid crystal cured layer of the liquid crystal cured film were measured using a retardation meter (“AxoScan” manufactured by Axometrics). As a result of the measurement, LRe(450)/LRe(550)<0.9 was established in all Examples and Comparative Examples.
 (液晶硬化層の面状の評価)
 液晶硬化フィルムの液晶硬化層を、偏光顕微鏡を用いて観察した。観察された像において、配向ムラの量を評価した。前記の実施例及び比較例において、配向ムラは、通常、逆分散液晶性化合物の分子の配向方向が不均一な部分が形成されることによって、生じる。よって、配向ムラが少ないほど、逆分散液晶性化合物の分子の配向方向が揃い、面状が良好であると判定できる。そこで、配向ムラの量に基づき、下記の基準で、液晶硬化層の面状を評価した。
  「良」:配向ムラがないか、配向ムラがわずかである。
  「不良」:配向ムラがある。
(Evaluation of surface condition of liquid crystal cured layer)
The liquid crystal cured layer of the liquid crystal cured film was observed using a polarization microscope. In the observed image, the amount of alignment unevenness was evaluated. In the above Examples and Comparative Examples, the alignment unevenness is usually caused by the formation of a portion in which the orientation directions of the molecules of the reverse dispersion liquid crystalline compound are non-uniform. Therefore, it can be determined that the smaller the orientation unevenness, the more uniform the orientation directions of the molecules of the reverse dispersion liquid crystalline compound and the better the surface state. Therefore, the surface condition of the liquid crystal cured layer was evaluated on the basis of the amount of alignment unevenness according to the following criteria.
“Good”: No alignment unevenness or slight alignment unevenness.
"Poor": uneven alignment.
 (消光の評価)
 2枚の直線偏光フィルムを用意し、クロスニコルとなるように重ねた。次いで、前記の直線偏光フィルムの間に液晶硬化フィルムを配置した。厚み方向の軸を中心に液晶硬化フィルムを回転させて、液晶硬化フィルムの向きを、消光位となるように調整した。ここで、消光位とは、一方の直線偏光フィルム、液晶硬化フィルム及び他方の直線偏光フィルムをこの順で厚み方向に透過する透過光の光量が最小となる液晶硬化フィルムの向きを表す。
(Evaluation of extinction)
Two sheets of linearly polarizing film were prepared and laminated so as to form a crossed Nicol. Then, a liquid crystal cured film was placed between the linearly polarized films. The liquid crystal cured film was rotated around the axis in the thickness direction, and the orientation of the liquid crystal cured film was adjusted to the extinction position. Here, the extinction position refers to the orientation of the liquid crystal cured film that minimizes the amount of transmitted light that is transmitted through the one linearly polarized film, the liquid crystal cured film, and the other linearly polarized film in this order in the thickness direction.
 この状態で前記の透過光を観察し、透過光が視認される現象としての「光抜け」を評価した。前記の実施例及び比較例において、光抜けは、通常、液晶硬化層に含まれる逆分散液晶性化合物の分子の配向方向のねじれのピッチが短すぎることにより、液晶硬化層を透過した直線偏光の偏光状態が乱れることによって、生じる。すなわち、光抜けは、液晶硬化層へ偏光が入射した場合に、液晶硬化層を透過する過程で偏光の一部が楕円偏光となったり偏光解消を生じたりして、その一部又は全部が直線偏光フィルムを透過して生じる。この光抜けを、下記の基準で評価した。
 「良」:光抜けがない。
 「可」:光抜けがわずかにある。
 「不良」:光抜けがある。
In this state, the transmitted light was observed, and "light leakage" as a phenomenon in which the transmitted light was visually recognized was evaluated. In the above Examples and Comparative Examples, light leakage is usually caused by linearly polarized light transmitted through the liquid crystal cured layer due to the twist pitch in the orientation direction of the molecules of the reverse dispersion liquid crystalline compound contained in the liquid crystal cured layer being too short. It is caused by the disordered polarization state. That is, when light is incident on the liquid crystal cured layer, some of the polarized light becomes elliptically polarized light or depolarized light when polarized light is incident on the liquid crystal cured layer, and part or all of it is linear. It is generated by passing through a polarizing film. The light leakage was evaluated according to the following criteria.
“Good”: No light leakage.
"OK": There is a slight light leakage.
"Poor": There is light leakage.
[結果]
 前記の実施例及び比較例の結果を、下記の表1に示す。下記表において、略称の意味は、以下の通りである。
 Θ:液晶硬化層の実質最大傾斜角。
 LRe:液晶硬化層の面内レターデーション。
 CRe:液晶硬化層の旋光位相差。
 XRe:式(2)で定義されるパラメータ。
[result]
The results of the above Examples and Comparative Examples are shown in Table 1 below. In the table below, the meanings of the abbreviations are as follows.
Θ: Substantially maximum tilt angle of the liquid crystal cured layer.
LRe: In-plane retardation of the liquid crystal cured layer.
CRe: Optical retardation of the cured liquid crystal layer.
XRe: Parameter defined by equation (2).
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 100 液晶層
 110 直線偏光子
 120 直線偏光子
 200 液晶硬化層
 300 液晶硬化層
 310 第一硬化層
 320 第二硬化層
 400 液晶硬化層
100 Liquid Crystal Layer 110 Linear Polarizer 120 Linear Polarizer 200 Liquid Crystal Curing Layer 300 Liquid Crystal Curing Layer 310 First Curing Layer 320 Second Curing Layer 400 Liquid Crystal Curing Layer

Claims (7)

  1.  液晶性化合物、及び、不斉炭素原子を含むキラル化合物を含む液晶組成物の硬化物で形成され、配向状態を固定されていてもよい前記液晶性化合物の分子を含む液晶硬化層を備え、
     前記液晶硬化層に含まれる前記液晶性化合物の少なくとも一部の分子が、前記液晶硬化層の層平面に対して傾斜しており、
     測定波長550nmにおける前記液晶硬化層の正面直線偏光位相差LRe及び正面円偏光位相差CReが、下記式(1)を満たす、液晶硬化フィルム。
    Figure JPOXMLDOC01-appb-M000001
    A liquid crystal compound, and, formed of a cured product of a liquid crystal composition containing a chiral compound containing an asymmetric carbon atom, a liquid crystal cured layer containing a molecule of the liquid crystal compound which may have a fixed alignment state,
    At least some of the molecules of the liquid crystal compound contained in the liquid crystal cured layer are inclined with respect to the layer plane of the liquid crystal cured layer,
    A liquid crystal cured film in which the front linearly polarized light retardation LRe and the front circularly polarized light retardation CRe of the liquid crystal cured layer at a measurement wavelength of 550 nm satisfy the following formula (1).
    Figure JPOXMLDOC01-appb-M000001
  2.  測定波長550nmにおける前記液晶硬化層の正面円偏光位相差CReと前記液晶硬化層の厚みD[nm]との比CRe/Dが、0.0002以上0.0133以下である、請求項1に記載の液晶硬化フィルム。 The ratio CRe/D between the front circularly polarized light phase difference CRe of the liquid crystal cured layer and the thickness D [nm] of the liquid crystal cured layer at a measurement wavelength of 550 nm is 0.0002 or more and 0.0133 or less. Liquid crystal cured film.
  3.  前記液晶性化合物100重量部に対する前記キラル化合物の量が、0.05重量部以上0.5重量部以下である、請求項1又は2に記載の液晶硬化フィルム。 The liquid crystal cured film according to claim 1 or 2, wherein the amount of the chiral compound is 0.05 parts by weight or more and 0.5 parts by weight or less based on 100 parts by weight of the liquid crystal compound.
  4.  測定波長550nmにおける前記液晶硬化層の正面直線偏光位相差LReが、50nm以上90nm以下の範囲、又は、120nm以上160nm以下の範囲にある、請求項1~3のいずれか一項に記載の液晶硬化フィルム。 The liquid crystal cure according to any one of claims 1 to 3, wherein a front linear polarization phase difference LRe of the liquid crystal cured layer at a measurement wavelength of 550 nm is in a range of 50 nm to 90 nm, or 120 nm to 160 nm. the film.
  5.  前記液晶性化合物が、逆波長分散性の複屈折を発現できる、請求項1~4のいずれか一項に記載の液晶硬化フィルム。 The liquid crystal cured film according to any one of claims 1 to 4, wherein the liquid crystal compound is capable of exhibiting birefringence of reverse wavelength dispersion.
  6.  前記液晶性化合物が、ベンゾチアゾール環を有する、請求項1~5のいずれか一項に記載の液晶硬化フィルム。 The liquid crystal cured film according to any one of claims 1 to 5, wherein the liquid crystalline compound has a benzothiazole ring.
  7.  請求項1~6のいずれか一項に記載の液晶硬化フィルムの製造方法であって、
     前記液晶組成物の層を形成する工程と、
     前記液晶組成物の層に含まれる前記液晶性化合物を配向させる工程と、
     前記液晶組成物の層を硬化させて前記液晶硬化層を得る工程と、を含む、液晶硬化フィルムの製造方法。
    The method for producing a liquid crystal cured film according to any one of claims 1 to 6, comprising:
    A step of forming a layer of the liquid crystal composition,
    A step of orienting the liquid crystalline compound contained in the layer of the liquid crystal composition,
    And a step of curing the layer of the liquid crystal composition to obtain the liquid crystal cured layer.
PCT/JP2019/047288 2018-12-06 2019-12-03 Liquid-crystal cured film and method for manufacturing same WO2020116466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559933A JPWO2020116466A1 (en) 2018-12-06 2019-12-03 Liquid crystal cured film and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229145 2018-12-06
JP2018229145 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116466A1 true WO2020116466A1 (en) 2020-06-11

Family

ID=70974657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047288 WO2020116466A1 (en) 2018-12-06 2019-12-03 Liquid-crystal cured film and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2020116466A1 (en)
WO (1) WO2020116466A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825448A (en) * 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
JP2009265130A (en) * 2008-04-22 2009-11-12 Fujifilm Corp Optical anisotropic film
JP2017102259A (en) * 2015-12-01 2017-06-08 富士フイルム株式会社 Optical rotatory film
JP2018049138A (en) * 2016-09-21 2018-03-29 富士フイルム株式会社 Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825448A (en) * 1995-05-19 1998-10-20 Kent State University Reflective optically active diffractive device
JP2009265130A (en) * 2008-04-22 2009-11-12 Fujifilm Corp Optical anisotropic film
JP2017102259A (en) * 2015-12-01 2017-06-08 富士フイルム株式会社 Optical rotatory film
JP2018049138A (en) * 2016-09-21 2018-03-29 富士フイルム株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
JPWO2020116466A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6860012B2 (en) Optically anisotropic laminated body, polarizing plate, and image display device
JPWO2017170455A1 (en) Optically anisotropic layer and manufacturing method thereof, optically anisotropic laminate and manufacturing method thereof, optically anisotropic transfer body, polarizing plate, and image display device
WO2020137529A1 (en) Retardation film, method for producing same and polarizing plate
KR20180096615A (en) An optically anisotropic layer and its production method, optically anisotropic laminate and circular polarizer
JP7276144B2 (en) Cured liquid crystal film and manufacturing method thereof, polarizing plate, and organic electroluminescence display device
JP7081660B2 (en) Liquid crystal cured film and its manufacturing method, first cured layer, polarizing plate, and organic electroluminescence display device
JP7047405B2 (en) Organic light emission display device
JPWO2019188495A1 (en) Optical anisotropic body and its manufacturing method, 1/4 wave plate, polarizing plate and organic electroluminescence display panel
WO2020116466A1 (en) Liquid-crystal cured film and method for manufacturing same
JP7222235B2 (en) Elongated circularly polarizing plate and manufacturing method thereof
WO2019116989A1 (en) Liquid crystal alignment layer and method for manufacturing same, optical film and method for manufacturing same, quarter-wave plate, polarization plate, and organic electroluminescence display panel
JP7363483B2 (en) Optical film and its manufacturing method, quarter wavelength plate, polarizing plate, and organic electroluminescent display panel
JP7306273B2 (en) Liquid crystal cured film, polarizing plate and method for manufacturing organic electroluminescence display device
CN111684325A (en) Cured liquid crystal layer, method for producing same, optical film, polarizing plate, and display device
JP7342579B2 (en) Laminate and its manufacturing method
JP7279645B2 (en) organic light emitting display
JP7363484B2 (en) Liquid crystal alignment layer and its manufacturing method, optical film and its manufacturing method, quarter wavelength plate, polarizing plate, and organic electroluminescent display panel
JP7310513B2 (en) LAMINATED PRODUCT, METHOD FOR MANUFACTURING SAME, AND OPTICAL FILM
WO2020045094A1 (en) Liquid crystal composition, liquid crystal cured film, polarization plate, organic electroluminescent display device, and liquid crystal cured film production method
WO2019142839A1 (en) Optically anisotropic body and method for manufacturing same
WO2019142831A1 (en) Optically anisotropic body and method for manufacturing same
JP2020106714A (en) Manufacturing method of liquid crystal cured film, manufacturing method of polarizer, and manufacturing method of organic electroluminescence display device
WO2019131350A1 (en) Liquid crystal composition and liquid crystal cured film
JP2020034871A (en) Liquid crystal cured film and method for manufacturing the same, polarizing plate, and organic electroluminescence display
JP2020038242A (en) Liquid crystal cure film, polarizer and method of manufacturing organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892244

Country of ref document: EP

Kind code of ref document: A1