WO2019131513A1 - Air conditioning unit and air conditioning system - Google Patents

Air conditioning unit and air conditioning system Download PDF

Info

Publication number
WO2019131513A1
WO2019131513A1 PCT/JP2018/047254 JP2018047254W WO2019131513A1 WO 2019131513 A1 WO2019131513 A1 WO 2019131513A1 JP 2018047254 W JP2018047254 W JP 2018047254W WO 2019131513 A1 WO2019131513 A1 WO 2019131513A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
air
conditioning unit
distance
casing
Prior art date
Application number
PCT/JP2018/047254
Other languages
French (fr)
Japanese (ja)
Inventor
山本 昌由
奥田 則之
基彦 福岡
正史 鎌田
博 渕上
堅志 辻
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP18896532.1A priority Critical patent/EP3734179B1/en
Priority to US16/957,676 priority patent/US20200363076A1/en
Priority to ES18896532T priority patent/ES2933523T3/en
Priority to CN201880084082.9A priority patent/CN111512095B/en
Publication of WO2019131513A1 publication Critical patent/WO2019131513A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/38Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • F24F1/48Component arrangements in separate outdoor units characterised by air airflow, e.g. inlet or outlet airflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/56Casing or covers of separate outdoor units, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units

Definitions

  • the present invention relates to an air conditioning unit that blows out temperature-controlled air to the front side indoors.
  • the indoor unit disclosed in Patent Document 1 Japanese Patent Laid-Open No. 201-146011
  • the indoor unit disclosed in Patent Document 1 includes a square box-like casing, and blows out air after heat exchange toward the front.
  • a configuration in which four indoor units are arranged is also disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 201-146011).
  • the air conditioning unit of the first aspect is an air conditioning unit that blows out temperature-controlled air to the front side indoors.
  • the air conditioning unit includes a fan, a casing, and an air passage forming member.
  • the casing accommodates the fan.
  • the air passage forming member is disposed downstream of the air flow of the fan.
  • the cross-sectional shape of the air passage of the air passage forming member is circular.
  • the casing is square in front view.
  • the quadrangle is a quadrilateral surrounded by first and second sides parallel to each other and third and fourth sides parallel to each other.
  • the smaller one of the first distance, which is the distance between the first side and the second side, and the second distance, which is the distance between the third side and the fourth side is the wind. It is 2.5 times or less of the diameter of the section of a passage.
  • the ratio of the smaller one of the first distance and the second distance to the diameter of the air passage cross section is smaller than that in the conventional case. Therefore, for example, when the first distance is smaller than the second distance, the first distance is suppressed to a short distance of 2.5 times or less the diameter of the cross section of the air passage.
  • the plurality of air conditioning units are arranged in the direction in which the third side and the fourth side extend, the distance between the air path of the adjacent first air conditioning unit and the air path of the second air conditioning unit becomes short. . Then, the air blown out from both of the air paths acts to reduce the resistance of the air flow to each other, and the air blown out from each of the air paths can reach far.
  • the air conditioning unit of the second aspect is the air conditioning unit of the first aspect, wherein the smaller one of the first distance and the second distance is 2.0 times or less the diameter of the air passage cross section. .
  • the first distance when the first distance is smaller than the second distance, the first distance is suppressed to a distance shorter than 2.0 times the diameter of the cross section of the air passage, which is considerably shorter than the conventional distance. For this reason, when the plurality of air conditioning units are arranged in the direction in which the third side and the fourth side extend, the air blown out from each air passage can reach very far.
  • the air conditioning unit of the third aspect is the air conditioning unit of the first aspect or the second aspect, and further includes a drain pan that receives dew condensation water generated in the casing.
  • the drain pan is disposed at the lower part of the internal space of the casing.
  • the first side and the second side of the casing extend in the horizontal direction.
  • the third side and the fourth side of the casing extend in the vertical direction.
  • the first distance which is the height dimension of the casing is smaller than the second distance which is the width dimension of the casing.
  • the drain pan is disposed below the internal space of the casing.
  • the height dimension (first distance) of the casing is smaller than the width dimension (second distance)
  • the drain pan is disposed below the internal space of the casing.
  • no design was made to limit the height dimension (first distance) of the casing to a short distance of 2.5 times or less of the diameter of the air passage cross section. That is, a design in which the diameter of the cross section of the air passage is 40% or more of the height dimension (first distance) with respect to the height dimension of the casing is not simple considering the arrangement of the drain pan etc. It has not been.
  • the height dimension (first distance) of the casing is kept small relative to the diameter of the cross section of the air passage. An effect is obtained.
  • the air conditioning system of the fourth aspect is an air conditioning system in which the first air conditioning unit and the second air conditioning unit are arranged in the first direction.
  • the first air conditioning unit is any one of the first to third aspects of the air conditioning unit.
  • the second air conditioning unit is also an air conditioning unit according to any one of the first to third aspects.
  • the center of the first air passage, which is the air passage of the first air conditioning unit, and the center of the second air passage, which is the air passage of the second air conditioning unit, are separated by a third distance in the first direction.
  • the third distance is equal to or less than 2.5 times the diameter of the cross section of the air passage.
  • the third distance is 2.5 times the diameter of the cross section of the air passage It can be suppressed to the following.
  • the third distance which is the distance between the center of the first air path and the center of the second air path is 2.5 times or less of the diameter of the cross section of the air path and is relatively short.
  • the air blown out plays a role in reducing the resistance of the air flow to each other.
  • both the air blown out from the first air passage and the air blown out from the second air passage reach far beyond the conventional one.
  • the air conditioning system of the fifth aspect is the air conditioning system of the fourth aspect, further comprising a support member.
  • the support member is disposed between the first air conditioning unit and the second air conditioning unit.
  • the support member supports the first air conditioning unit and / or the second air conditioning unit.
  • the dimension along the first direction of the support member is equal to or less than half the diameter of the cross section of the air passage.
  • a support member is used as a member for supporting the first air conditioning unit and / or the second air conditioning unit. And since the dimension along the 1st direction of the support member is made small, the center of a 1st air course and the center of a 2nd air course can be closely approached. As a result, the third distance is shortened, and the air blown out from the first air passage and the second air passage can easily reach far.
  • FIG. 9 is a diagram showing another analysis result in which the flow state of FIG. 8 is input to the blowout boundary surface.
  • the graph which shows the relationship between the reach distance of wind speed 1 m / s or more, the distance between air paths, and the diameter of an air path.
  • the figure of an analysis result which shows the furthest distance (the reach
  • FIG. 1 is a diagram showing a refrigerant piping system of the air conditioning system 10. As shown in FIG.
  • the air conditioning system 10 is a refrigerant piping type distributed air conditioner, and cools and heats the interior of the building by performing a vapor compression refrigeration cycle operation.
  • the air conditioning system 10 is installed in a factory mainly to partially cool or warm a space in an open building such as a factory.
  • the air conditioning system 10 includes a heat source unit 11 installed outside the factory, a large number of air conditioning units 12A, 12B, ... installed in the factory, the heat source unit 11 and the air conditioning units 12A, 12B, ... And a liquid refrigerant communication pipe 13 and a gas refrigerant communication pipe 14 for connecting them. That is, the refrigerant circuit of the air conditioning system 10 shown in FIG. 1 is configured by connecting the heat source unit 11, the air conditioning units 12A, 12B, ... on the use side, and the refrigerant communication pipes 13 and 14. .
  • the air conditioning units 12A, 12B,... May be placed on the floor surface, may be hung from a ceiling beam, or may be supported by columns.
  • Each of the air conditioning units 12A, 12B,... Is connected to a remote controller (not shown), and can change the set temperature and the air volume in several steps. Further, the air conditioning units 12A, 12B,... Can be individually turned on / off.
  • Refrigerant is enclosed in the refrigerant circuit shown in FIG. 1, and as described later, the refrigeration cycle operation is such that the refrigerant is compressed, cooled, condensed, decompressed, heated and evaporated, and then compressed again. To be done.
  • the heat source unit 11 mainly includes the compressor 20, the four-way switching valve 15, the heat source side heat exchanger 30, and the heat source side expansion valve 41 A liquid side shutoff valve 17 and a gas side shutoff valve 18 are provided.
  • the compressor 20 is a hermetic compressor driven by a motor for the compressor.
  • the compressor 20 sucks the gas refrigerant from the suction passage 27.
  • the four-way switching valve 15 is a mechanism for switching the flow direction of the refrigerant.
  • the four-way switching valve 15 connects the refrigerant pipe 29 on the discharge side of the compressor 20 to one end of the heat source side heat exchanger 30, and also the suction flow path 27 on the suction side of the compressor 20 and the gas side. It connects with the closing valve 18 (see the solid line of the four-way switching valve 15 in FIG. 1).
  • the heat source side heat exchanger 30 functions as a condenser of the refrigerant compressed by the compressor 20, and the utilization side heat exchanger 50 described later evaporates the refrigerant condensed in the heat source side heat exchanger 30. Function as a container.
  • the four-way switching valve 15 connects the refrigerant pipe 29 on the discharge side of the compressor 20 and the gas side closing valve 18, and at the same time, the suction flow path 27 and one end of the heat source side heat exchanger 30 It connects (refer the broken line of the four-way switching valve 15 of FIG. 1).
  • the use side heat exchanger 50 functions as a condenser of the refrigerant compressed by the compressor 20, and the heat source side heat exchanger 30 is an evaporator of the refrigerant cooled in the use side heat exchanger 50. Act as.
  • the heat source side heat exchanger 30 is a heat exchanger that functions as a condenser or an evaporator of the refrigerant. One end of the heat source side heat exchanger 30 is connected to the four-way switching valve 15, and the other end is connected to the heat source side expansion valve 41.
  • the heat source unit 11 has a heat source side fan 35 for taking outside air into the unit and discharging it outside again.
  • the heat source side expansion valve 41 is an expansion mechanism for reducing the pressure of the refrigerant, and is an electronic expansion valve whose opening degree can be adjusted. One end of the heat source side expansion valve 41 is connected to the heat source side heat exchanger 30, and the other end is connected to the liquid side closing valve 17.
  • the liquid side shutoff valve 17 is a valve to which the liquid refrigerant communication pipe 13 is connected.
  • the gas side shut-off valve 18 is a valve to which the gas refrigerant communication pipe 14 is connected, and is also connected to the four-way switching valve 15.
  • the air conditioning units 12A, 12B,... are connected to the heat source unit 11 via the refrigerant communication pipes 13 and 14, respectively.
  • the air conditioning units 12A, 12B, ... have completely the same outer shape and internal structure, respectively.
  • the air conditioning unit 12A will be described as an example with reference to FIGS. 1 to 4.
  • the air conditioning unit 12A includes a liquid refrigerant pipe 51, a use side expansion valve 42 which is a pressure reducer, a use side heat exchanger 50, a gas refrigerant pipe 52, a use side fan 55, and the like.
  • the use side expansion valve 42 is an expansion mechanism for reducing the pressure of the refrigerant, and is an electronic expansion valve whose opening degree can be adjusted.
  • One end of the use side expansion valve 42 is connected to the liquid refrigerant communication pipe 13 via the liquid refrigerant pipe 51, and the other end is connected to the use side heat exchanger 50.
  • the use side heat exchanger 50 is a heat exchanger that functions as a refrigerant evaporator or condenser. One end of the use side heat exchanger 50 is connected to the use side expansion valve 42, and the other end is connected to the gas refrigerant communication pipe 14 via the gas refrigerant pipe 52.
  • the air conditioning unit 12A is provided with the use side fan 55 for drawing indoor air into the unit and supplying it indoors again, and heat is generated between the indoor air and the refrigerant flowing through the use side heat exchanger 50. Make the exchange.
  • the refrigerant communication pipes 13, 14 are refrigerant pipes to be constructed on site when the heat source unit 11 and the air conditioning units 12A, 12B, ... are installed at installation locations inside and outside the factory. It is. When installing the above-mentioned air conditioning units 12A, 12B, ... on the use side, install them directly on the floor or base of the factory, or hang them from a ceiling beam and connect an extension duct to the outlet, Place multiple units side by side up and down. With the installation of the air conditioning units 12A, 12B, ..., the refrigerant communication pipes 13, 14 are also disposed along the floor, the ceiling, and the pillars.
  • air conditioning system 10 several tens of air conditioning units 12A, 12B, ... can be connected to the heat source unit 11, and the maximum length of the refrigerant communication pipes 13, 14 is 150 m.
  • the high-pressure gas refrigerant discharged from the compressor 20 is sent to the heat source side heat exchanger 30 functioning as a refrigerant condenser via the four-way switching valve 15, and the heat source side fan It is cooled by heat exchange with the external air supplied by 35.
  • the high pressure refrigerant cooled and liquefied in the heat source side heat exchanger 30 is sent to the air conditioning units 12A, 12B,... Via the liquid refrigerant communication pipe 13.
  • the use side expansion valve 42 is reduced in pressure by the use side expansion valve 42 and becomes a low pressure gas-liquid two-phase refrigerant, and the user side heat exchanger functions as an evaporator of the refrigerant Heat is exchanged with indoor air at 50 and evaporated to form a low pressure gas refrigerant. Then, the low-pressure gas refrigerant heated in the use-side heat exchanger 50 is sent to the heat source unit 11 via the gas refrigerant communication pipe 14, and is again sucked into the compressor 20 via the four-way switching valve 15. Ru. In this way, cooling in the factory (indoor) is performed.
  • the use-side expansion valve 42 of the air conditioning unit which is stopped is set to the stop opening degree. In this case, the refrigerant hardly passes through the inside of the air conditioning unit under operation stop, and the cooling operation is performed only for the air conditioning unit under operation.
  • the high-pressure gas refrigerant discharged from the compressor 20 is sent to the air conditioning units 12A, 12B, ... via the four-way switching valve 15 and the gas refrigerant communication pipe 14.
  • the high-pressure gas refrigerant sent to each of the air conditioning units 12A, 12B,... Is cooled by heat exchange with indoor air in the use-side heat exchanger 50 that functions as a refrigerant condenser. Thereafter, it passes through the use side expansion valve 42 and is sent to the heat source unit 11 via the liquid refrigerant communication pipe 13. Indoor air is heated when the refrigerant exchanges heat with the indoor air to be cooled.
  • the high-pressure refrigerant sent to the heat source unit 11 is decompressed by the heat source side expansion valve 41 and becomes a low pressure gas-liquid two-phase refrigerant, and flows into the heat source side heat exchanger 30 functioning as a refrigerant evaporator. .
  • the low-pressure gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 30 exchanges heat with the external air supplied by the heat source side fan 35, is heated, and evaporates to become a low pressure refrigerant.
  • the low-pressure gas refrigerant leaving the heat source side heat exchanger 30 is again drawn into the compressor 20 via the four-way switching valve 15. In this way, heating in the factory (indoor) is performed.
  • the air conditioning unit 12A is a unit that blows out the temperature-controlled air to the front side indoors.
  • the air conditioning unit 12A includes the first and second air passage forming members in addition to the liquid refrigerant pipe 51, the use side expansion valve 42 which is a pressure reducer, the use side heat exchanger 50, the gas refrigerant pipe 52 and the use fan 55. 71, 72, drain pan 59, casing 60 etc. are provided.
  • FIG. 2 is a view of a part of the internal structure of the air conditioning unit 12A viewed obliquely from behind. In FIG. 2, many of the electric component box, the use side expansion valve 42, the liquid refrigerant pipe 51, and the gas refrigerant pipe 52 are not shown in order to make the other internal structures easy to see.
  • FIG. 2 for example, a portion of the first air passage forming member 71 covering the periphery of the fan blade 55 b is not shown, for example, to facilitate understanding, and the front of the first air passage forming member 71 is shown. Only part of the side is shown.
  • the use-side heat exchanger 50 is disposed on the back side in the casing 60.
  • the right side of FIG. 2 is the front side, and the left side is the back side.
  • the user side fan 55 is located in front of the user side heat exchanger 50.
  • the use side fan 55 has a motor 55a whose rotation axis extends in the front and back direction, and a fan blade 55b located in front of the motor 55a.
  • the air having passed through the use side heat exchanger 50 passes through the outlet 66 located on the front side of the use side fan 55 and is blown out to the front side of the casing 60.
  • the first and second airway forming members 71 and 72 are both cylindrical members.
  • the first air passage forming member 71 is located in the casing 60 and covers the periphery of the fan blade 55b.
  • the second air passage forming member 72 is located outside the casing 60 and guides the air blown out from the outlet 66 forward.
  • the second air passage forming member 72 is disposed downstream of the air flow of the use side fan 55.
  • the first air passage forming member 71 and the second air passage forming member 72 have the same inner diameter ID.
  • the first and second air passage forming members 71 and 72 form a cylindrical air passage FS1 on the front side of the fan blade 55b.
  • the diameter D of the air passage FS1 is equal to the inner diameter ID of the first and second air passage forming members 71 and 72 (see FIG. 3).
  • the diameter of the cross section of the second air passage forming member 72 located downstream of the fan blade 55b in the air flow direction is constant here.
  • a structure may be adopted in which the diameter of the cross section of the second air passage forming member 72 decreases as it approaches the tip.
  • the diameter of the cross section of the tip end portion of the air passage FS1 is small, and it is difficult to satisfy the condition of the ratio to the height dimension H of the casing 60 described later.
  • the drain pan 59 is disposed at a lower portion in the casing 60, as shown in FIG.
  • the drain pan 59 is located below the use-side heat exchanger 50, the liquid refrigerant pipe 51, the gas refrigerant pipe 52, the use-side fan 55, the first air path forming member 71, etc., and receives condensed water generated in the casing 60. Even when condensation occurs on the surface of the use side heat exchanger 50 and the liquid refrigerant pipe 51 during the cooling operation, the condensed water can be received by the drain pan 59.
  • the square box-like casing 60 mainly includes a top plate 61, a bottom plate 62, a left side plate 63, a right side plate 64, and a front plate 65. There is no steel plate on the back of the casing 60, and the back of the use side heat exchanger 50 is exposed.
  • a circular air outlet 66 is formed at the center of the front plate 65.
  • the blower outlet 66 is provided with a plurality of flow straighteners. Further, the diameter of the outlet 66 and the inner diameter ID of the first and second air passage forming members 71 and 72 described above are equal.
  • the casing 60 is square in front view.
  • a first side S61 which is an upper side of the rectangular casing 60 and a second side S62 which is a lower side extend in the horizontal direction.
  • the third side S63 which is the left side of the rectangular casing 60 and the fourth side S64 which is the right side extend in the vertical direction (vertical direction).
  • the first side S61 and the second side S62 are parallel to each other.
  • the third side S63 and the fourth side S64 are parallel to each other.
  • the height dimension H which is the distance (first distance) between the first side S61 and the second side S62
  • the width dimension W which is the distance (second distance) between the third side S63 and the fourth side S64
  • the smaller one of the height dimension H and the width dimension W of the quadrangle in the front view of the casing 60, that is, the height dimension H is suppressed to 2.5 times or less the diameter D of the air passage FS1 described above. ing.
  • the smaller one of the height dimension H and the width dimension W of the casing 60 may be smaller than twice the diameter of the air passage FS1 by devising the arrangement of parts in the casing 60. More desirable.
  • the diameter D of the air passage FS1 that is, the inner diameter ID of the first and second air passage forming members 71 and 72 is 320 mm. Therefore, the height dimension H (455 mm) of the casing 60 is within 1.5 times the diameter (320 mm) of the air passage FS1.
  • the ratio of the height dimension H of the casing 60 to the diameter D of the air passage FS1 is a very small value at an unprecedented level.
  • FIGS. 5 and 6 show a state where two air-conditioning units 12A and 12B are arranged in the vertical direction D1.
  • the air conditioning unit 12A and the air conditioning unit 12B have exactly the same structure.
  • the air conditioning unit 12A is disposed immediately above the air conditioning unit 12B, and a gap with a height of 85 mm is provided between the air conditioning unit 12A and the air conditioning unit 12B.
  • the support member 81 is disposed in the gap.
  • the support members 81 respectively support the first air conditioning unit 12A or the second air conditioning unit 12B. One end of the support member 81 is fixed to the column 80.
  • the height dimension L1 of the support member 81 is 80 mm. Between the height dimension L1 (80 mm) of the support member 81 and the diameter (320 mm) of the air passage FS1 of each air conditioning unit 12A, 12B, Height dimension L1 of support member 81 ⁇ (diameter of air passage FS1) x 0.5
  • the support member 81 is selected so that the following relationship holds.
  • the number of support members 81 is two for each air conditioning unit 12A, 12B, and the height dimension L1 of the support members 81 is 80 mm.
  • the first air path FS1 which is the air path of the first air conditioning unit 12A.
  • the center C2 of the second air passage FS2, which is the air passage of the second air conditioning unit 12B are separated by the third distance L3 in the vertical direction D1.
  • the third distance L3 is equal to or less than 2.5 times the diameter (320 mm) of the cross section of the air passages FS1 and FS2.
  • the third distance L3 540 mm, which is about 1.7 times the diameter (320 mm) of the cross section of each air passage FS1, FS2.
  • FIG. 10 shows an analysis result in the case where two air conditioning units 12A and 12B separated by a gap size of 2 m are operated.
  • the gap dimension is 2 m
  • the third distance L3 which is the distance between the center C1 of the first air passage FS1 and the center C2 of the second air passage FS2 is 2455 mm, which is the diameter of the air passages FS1 and FS2 ( The value divided by 320 mm) is 7.7.
  • the area with a wind velocity of 1 m / s or more remains at a point 4 m away from each of the air conditioning units 12A and 12B.
  • the wind having a wind speed of 1 m / s reaches 4 m away from each of the air conditioning units 12A and 12B, but the wind speed is less than 1 m / s in an area further away.
  • this 4 m is called the reach of the wind speed of 1 m / s of the blown air.
  • FIG. 11 shows an analysis result in the case where two air conditioning units 12A and 12B disposed close to each other are operated with a gap size of 500 mm.
  • the gap dimension is 500 mm
  • the third distance L3 which is the distance between the center C1 of the first air passage FS1 and the center C2 of the second air passage FS2 is 955 mm, which is the diameter of the air passages FS1 and FS2 ( The value divided by 320 mm is 3.0.
  • the reach of the wind speed of 1 m / s of the blown air extends to 6.7 m.
  • FIG. 12 shows an analysis result in the case where the two air conditioning units 12A and 12B disposed adjacent to each other are operated with a gap size of 0 mm.
  • the gap dimension is 0 mm
  • the third distance L3 which is the distance between the center C1 of the first air passage FS1 and the center C2 of the second air passage FS2 is 455 mm, which is the air passage diameter (320 mm)
  • the divided value is 1.4.
  • the reach of the wind speed of 1 m / s of the blown air extends to 7.3 m.
  • the graph shown in FIG. 13 was obtained for the reaching distance of the wind speed 1 m / s of the blown air.
  • the two air conditioning units 12A and 12B may be arranged without a large separation so that the value obtained by dividing the third distance L3 by the diameter D of the air paths FS1 and FS2 may be reduced. It results in extending the reach of wind speed 1 m / s of the blown air. Then, from FIG.
  • the third distance L3 is 2.5 times or less, preferably 2.0 times or less, of the diameter D of the air paths FS1 and FS2, the wind speed of the blown air is 1 m / s. It can be seen that the reach distance can be sufficiently extended.
  • the ratio of the smaller one of the height dimension H and the width dimension W in the front view of the casing 60 (here, the height dimension H) to the diameter D of the cross section of the air passage FS1 is greater than that in the prior art. It is designed to be small. Specifically, the height dimension H is suppressed to a short dimension of 2.5 times or less of the diameter D of the cross section of the air passage FS1. Therefore, when the two air conditioning units 12A and 12B are arranged in the vertical direction D1, the front view of the first air passage FS1 of the adjacent first air conditioning unit 12A and the second air passage FS2 of the second air conditioning unit 12B.
  • the thin drain pan 59 is disposed in the lower portion in the casing 60 while using the casing 60 in which the height dimension H is smaller than the width dimension W. Then, the inner diameters ID of the utilization side fan 55 and the first and second air passage forming members 71 and 72 are designed as large as possible, and the diameter D of the cross section of the air passage FS1 with respect to the height dimension H of the casing 60.
  • the arrangement of the utilization side heat exchanger 50 and the electrical component box is devised so that
  • two air conditioning units 12A and 12B are arranged in the vertical direction D1 so that the gap is as small as possible. That is, a structure is adopted in which the two air conditioning units 12A and 12B are not largely separated while securing the arrangement space of the support member 81. Specifically, two air conditioning units 12A and 12B are vertically arranged with a gap of 85 mm in height.
  • the third distance L3 which is the distance between the center C1 of the first air passage FS1 of the first air conditioning unit 12A and the center C2 of the second air passage FS2 of the second air conditioning unit 12B, is It is within 2.5 times the diameter D (320 mm) of the cross section of FS1 and FS2.
  • Modification (8-1) 5 and 6 show an example in which two air conditioning units 12A and 12B are arranged in the vertical direction D1, but in the air conditioning system 10, three or more air conditioning units 12A, 12B,. You may For example, as shown in FIG. 14, if the four air conditioning units 12A, 12B,... Are arranged up and down so as to be close to each other, the reach of the wind speed of 1 m / s of the blown air becomes longer.
  • the height dimension H of the air conditioning unit 12A is smaller than the width dimension W, and the air conditioning units 12A, 12B,... Are arranged vertically, but may be reversed. That is, it is also possible to make the height dimension of the air conditioning unit larger than the width dimension and to arrange the plurality of air conditioning units in the lateral direction when arranging. Also in this case Width dimension of casing ⁇ (diameter of air passage) x 2.5 The air blown out can be made to reach far by satisfying the above and reducing the distance between the air passages of the plurality of air conditioning units arranged side by side.

Abstract

An air conditioning unit (12A) which, in indoors, discharges temperature-regulated air toward the front face side is provided with a utilization-side fan (55), a casing (60), and a second air passage forming member (72). An air passage (FS1) in the second air passage forming member (72) has a circular cross-section. The casing (60) is square in a front view. The square is surrounded by a first side (S61) and a second side (S62), which are parallel to each other, and by a third side (S63) and a fourth side (S64), which are parallel to each other. In the air conditioning unit (12A), among a height (H), which is the distance between the first side (S61) and the second side (S62), and a width (W), which is the distance between the third side (S63) and the fourth side (S64), the height (H), which is the smaller, is 2.5 times or less the diameter (D) of the cross-section of the air passage (FS1).

Description

空調ユニットおよび空調システムAir conditioning unit and air conditioning system
 屋内において、温度調整された空気を正面側に吹き出す、空調ユニットに関する。 The present invention relates to an air conditioning unit that blows out temperature-controlled air to the front side indoors.
 従来から、正面視の形状が四角形である空調ユニットが存在する。 BACKGROUND ART Conventionally, there are air conditioning units having a square shape in a front view.
 例えば、特許文献1(特開2017-146011号公報)に開示されている室内ユニットは、四角い箱状のケーシングを備え、熱交換後の空気を正面に向けて吹き出す。また、この室内ユニットを4台並べる構成も、特許文献1(特開2017-146011号公報)に開示されている。 For example, the indoor unit disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 201-146011) includes a square box-like casing, and blows out air after heat exchange toward the front. Further, a configuration in which four indoor units are arranged is also disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 201-146011).
 屋内に配置される空調ユニットでは、吹き出す空気が遠くまで届くことが求められることがある。 In an air conditioning unit disposed indoors, it may be required that the blowing air reaches far.
 第1観点の空調ユニットは、屋内において、温度調整された空気を正面側に吹き出す、空調ユニットである。この空調ユニットは、ファンと、ケーシングと、風路形成部材とを備える。ケーシングは、ファンを収容している。風路形成部材は、ファンの空気流れ下流側に配置される。風路形成部材の風路の断面形状は、円形である。また、ケーシングは、正面視において、四角形である。その四角形は、互いに平行な第1辺および第2辺と、互いに平行な第3辺および第4辺とに囲まれた四角形である。そして、この空調ユニットでは、第1辺と第2辺との距離である第1距離と、第3辺と第4辺との距離である第2距離とのうち、小さいほうの距離が、風路の断面の径の2.5倍以下である。 The air conditioning unit of the first aspect is an air conditioning unit that blows out temperature-controlled air to the front side indoors. The air conditioning unit includes a fan, a casing, and an air passage forming member. The casing accommodates the fan. The air passage forming member is disposed downstream of the air flow of the fan. The cross-sectional shape of the air passage of the air passage forming member is circular. In addition, the casing is square in front view. The quadrangle is a quadrilateral surrounded by first and second sides parallel to each other and third and fourth sides parallel to each other. In this air conditioning unit, the smaller one of the first distance, which is the distance between the first side and the second side, and the second distance, which is the distance between the third side and the fourth side, is the wind. It is 2.5 times or less of the diameter of the section of a passage.
 この空調ユニットは、上記のように、第1距離および第2距離のうち小さいほうの距離の、風路の断面の径に対する比率が、従来よりも小さくなる。したがって、例えば第1距離のほうが第2距離よりも小さい場合、その第1距離が、風路の断面の径の2.5倍以下という短い距離に抑えられている。この場合、複数の空調ユニットを第3辺および第4辺が延びる方向に並べると、隣接する第1の空調ユニットの風路と第2の空調ユニットの風路との正面視における間隔が短くなる。すると、両方の風路からそれぞれ吹き出される空気が、お互いに空気流れの抵抗を小さくする役割を果たすようになり、それぞれの風路から吹き出された空気が遠くまで届くようになる。 As described above, in the air conditioning unit, the ratio of the smaller one of the first distance and the second distance to the diameter of the air passage cross section is smaller than that in the conventional case. Therefore, for example, when the first distance is smaller than the second distance, the first distance is suppressed to a short distance of 2.5 times or less the diameter of the cross section of the air passage. In this case, when the plurality of air conditioning units are arranged in the direction in which the third side and the fourth side extend, the distance between the air path of the adjacent first air conditioning unit and the air path of the second air conditioning unit becomes short. . Then, the air blown out from both of the air paths acts to reduce the resistance of the air flow to each other, and the air blown out from each of the air paths can reach far.
 第2観点の空調ユニットは、第1観点の空調ユニットであって、第1距離と、第2距離とのうち、小さいほうの距離が、風路の断面の径の2.0倍以下である。 The air conditioning unit of the second aspect is the air conditioning unit of the first aspect, wherein the smaller one of the first distance and the second distance is 2.0 times or less the diameter of the air passage cross section. .
 ここでは、例えば第1距離のほうが第2距離よりも小さい場合、その第1距離が、風路の断面の径の2.0倍以下という、かなり従来よりも短い距離に抑えられている。このため、複数の空調ユニットを第3辺および第4辺が延びる方向に並べた場合に、それぞれの風路から吹き出された空気が非常に遠くまで届くようになる。 Here, for example, when the first distance is smaller than the second distance, the first distance is suppressed to a distance shorter than 2.0 times the diameter of the cross section of the air passage, which is considerably shorter than the conventional distance. For this reason, when the plurality of air conditioning units are arranged in the direction in which the third side and the fourth side extend, the air blown out from each air passage can reach very far.
 第3観点の空調ユニットは、第1観点又は第2観点の空調ユニットであって、ケーシング内で生じる結露水を受けるドレンパン、をさらに備えている。ドレンパンは、ケーシングの内部空間の下部に配置されている。ケーシングの第1辺および第2辺は、水平方向に延びている。ケーシングの第3辺および第4辺は、鉛直方向に延びている。そして、ケーシングの高さ寸法となる第1距離が、ケーシングの幅寸法となる第2距離よりも小さい。 The air conditioning unit of the third aspect is the air conditioning unit of the first aspect or the second aspect, and further includes a drain pan that receives dew condensation water generated in the casing. The drain pan is disposed at the lower part of the internal space of the casing. The first side and the second side of the casing extend in the horizontal direction. The third side and the fourth side of the casing extend in the vertical direction. The first distance which is the height dimension of the casing is smaller than the second distance which is the width dimension of the casing.
 ここでは、ケーシングの高さ寸法(第1距離)が幅寸法(第2距離)よりも小さい空調ユニットにおいて、ケーシングの内部空間の下部に、ドレンパンを配置している。このようなドレンパンを備える空調ユニットにおいて、従来は、ケーシングの高さ寸法(第1距離)を風路の断面の径の2.5倍以下という短い距離に抑える設計は為されていなかった。すなわち、ケーシングの高さ寸法に対し、風路の断面の径が高さ寸法(第1距離)の40%以上になるような設計は、ドレンパンなどの配置を考えると簡単ではなく、従来は想定されていない。しかし、第3観点の空調ユニットでは、風路の断面の径に対してケーシングの高さ寸法(第1距離)を小さく抑える構成を採用しているため、上述の、吹き出す空気が遠くまで届くという効果が得られる。 Here, in the air conditioning unit in which the height dimension (first distance) of the casing is smaller than the width dimension (second distance), the drain pan is disposed below the internal space of the casing. Conventionally, in an air conditioning unit equipped with such a drain pan, no design was made to limit the height dimension (first distance) of the casing to a short distance of 2.5 times or less of the diameter of the air passage cross section. That is, a design in which the diameter of the cross section of the air passage is 40% or more of the height dimension (first distance) with respect to the height dimension of the casing is not simple considering the arrangement of the drain pan etc. It has not been. However, in the air conditioning unit according to the third aspect, the height dimension (first distance) of the casing is kept small relative to the diameter of the cross section of the air passage. An effect is obtained.
 第4観点の空調システムは、第1空調ユニットと、第2空調ユニットとが、第1の方向に並ぶ空調システムである。第1空調ユニットは、第1観点から第3観点のいずれかの空調ユニットである。第2空調ユニットも、第1観点から第3観点のいずれかの空調ユニットである。第1空調ユニットの風路である第1風路の中心と、第2空調ユニットの風路である第2風路の中心とは、第1の方向に第3距離だけ離れている。第3距離は、風路の断面の径の2.5倍以下である。 The air conditioning system of the fourth aspect is an air conditioning system in which the first air conditioning unit and the second air conditioning unit are arranged in the first direction. The first air conditioning unit is any one of the first to third aspects of the air conditioning unit. The second air conditioning unit is also an air conditioning unit according to any one of the first to third aspects. The center of the first air passage, which is the air passage of the first air conditioning unit, and the center of the second air passage, which is the air passage of the second air conditioning unit, are separated by a third distance in the first direction. The third distance is equal to or less than 2.5 times the diameter of the cross section of the air passage.
 ここでは、第1空調ユニットおよび第2空調ユニットとして、第1観点から第3観点のいずれかの空調ユニットを採用しているため、第3距離を、風路の断面の径の2.5倍以下に抑えることができている。そして、第1風路の中心と第2風路の中心との距離である第3距離が、風路の断面の径の2.5倍以下であり、比較的短いため、両方の風路からそれぞれ吹き出される空気が、お互いに空気流れの抵抗を小さくする役割を果たす。これにより、第4観点の空調システムでは、第1風路から吹き出される空気も、第2風路から吹き出される空気も、従来よりも遠くまで届く。 Here, since the air conditioning unit according to any one of the first to third aspects is adopted as the first air conditioning unit and the second air conditioning unit, the third distance is 2.5 times the diameter of the cross section of the air passage It can be suppressed to the following. And, the third distance which is the distance between the center of the first air path and the center of the second air path is 2.5 times or less of the diameter of the cross section of the air path and is relatively short. The air blown out plays a role in reducing the resistance of the air flow to each other. Thus, in the air conditioning system according to the fourth aspect, both the air blown out from the first air passage and the air blown out from the second air passage reach far beyond the conventional one.
 第5観点の空調システムは、第4観点の空調システムであって、サポート部材をさらに備えている。サポート部材は、第1空調ユニットと、第2空調ユニットとの間に配置されている。サポート部材は、第1空調ユニット及び/又は第2空調ユニットを支持する。サポート部材の第1の方向に沿った寸法は、風路の断面の径の2分の1以下である。 The air conditioning system of the fifth aspect is the air conditioning system of the fourth aspect, further comprising a support member. The support member is disposed between the first air conditioning unit and the second air conditioning unit. The support member supports the first air conditioning unit and / or the second air conditioning unit. The dimension along the first direction of the support member is equal to or less than half the diameter of the cross section of the air passage.
 ここでは、第1空調ユニット及び/又は第2空調ユニットを支持する部材として、サポート部材を用いている。そして、そのサポート部材の第1の方向に沿った寸法を小さくしているため、第1風路の中心と、第2風路の中心とを近づけることができる。これにより、第3距離が短くなり、第1風路および第2風路から吹き出される空気が遠くまで届きやすい。 Here, a support member is used as a member for supporting the first air conditioning unit and / or the second air conditioning unit. And since the dimension along the 1st direction of the support member is made small, the center of a 1st air course and the center of a 2nd air course can be closely approached. As a result, the third distance is shortened, and the air blown out from the first air passage and the second air passage can easily reach far.
空調システムの冷媒配管系統を示す図。The figure which shows the refrigerant | coolant piping system of an air conditioning system. 利用側の空調ユニットの内部構造の一部を斜め後ろから見た図。The figure which looked at a part of internal structure of the user side air conditioning unit from diagonally back. 空調ユニットの正面図。Front view of an air conditioning unit. 空調ユニットの側面図。The side view of an air conditioning unit. 2台の空調ユニットを鉛直方向に並べて設置した状態を示す図。The figure which shows the state which put in order and installed two air conditioning units in the perpendicular direction. 2台の空調ユニットを鉛直方向に並べて設置したときのユニット間隔を示す図。The figure which shows a unit space | interval when two air conditioning units are put in order and installed in a perpendicular direction. 利用側ファンを回転させたときの流体解析の結果を示す図。The figure which shows the result of fluid analysis when making use side fans rotate. 図7の流体解析の結果のうち、吹き出し面における流れ状態(風速分布、乱流エネルギー)を示す図。The figure which shows the flow state (wind speed distribution, turbulent energy) in a blowing surface among the results of the fluid analysis of FIG. 図8の流れ状態を吹き出し境界面にインプットした、別の解析結果を示す図。FIG. 9 is a diagram showing another analysis result in which the flow state of FIG. 8 is input to the blowout boundary surface. 大きく離した2台の空調ユニットを運転させた場合の、吹き出し空気が所定風速で流れる最も遠い距離(風速1m/s以上の到達距離)を示す、解析結果の図。The figure of an analysis result which shows the furthest distance (the reach distance of wind speed 1 m / s or more) in which blowing air flows at predetermined wind speed at the time of operating two air conditioning units separated greatly. 近くに配置した2台の空調ユニットを運転させた場合の、吹き出し空気が所定風速で流れる最も遠い距離(風速1m/s以上の到達距離)を示す、解析結果の図。The figure of an analysis result which shows the furthest distance (the reach distance of wind speed 1 m / s or more) where blowing air flows at predetermined wind speed at the time of making two air conditioning units arranged near operate. 隣接して配置した2台の空調ユニットを運転させた場合の、吹き出し空気が所定風速で流れる最も遠い距離(風速1m/s以上の到達距離)を示す、解析結果の図。The figure of an analysis result which shows the furthest distance (the reach distance of wind speed 1 m / s or more) in which blowing air flows at predetermined wind speed at the time of making two adjacent air conditioning units operated operate. 風速1m/s以上の到達距離と、風路間距離および風路の径との関係を示すグラフ。The graph which shows the relationship between the reach distance of wind speed 1 m / s or more, the distance between air paths, and the diameter of an air path. 変形例に係る、4台の空調ユニットを隣接して配置したときの、所定風速で吹き出し空気が流れる最も遠い距離(風速1m/s以上の到達距離)を示す、解析結果の図。The figure of an analysis result which shows the furthest distance (the reach | attainment distance of the wind speed 1 m / s or more) in which blowing air flows by predetermined wind speed when arrange | positioning 4 units | sets of air-conditioning units based on a modification adjacently.
 (1)空調システムの全体構成
 図1は、空調システム10の冷媒配管系統を示す図である。空調システム10は、冷媒配管方式の分散型の空気調和装置であって、蒸気圧縮式の冷凍サイクル運転を行うことによって建物内を冷暖房する。
(1) Overall Configuration of Air Conditioning System FIG. 1 is a diagram showing a refrigerant piping system of the air conditioning system 10. As shown in FIG. The air conditioning system 10 is a refrigerant piping type distributed air conditioner, and cools and heats the interior of the building by performing a vapor compression refrigeration cycle operation.
 空調システム10は、主として、工場などの開放的な建物内の空間を部分的に冷やす或いは暖めるために、工場に設置される。空調システム10は、工場の外に設置される熱源ユニット11と、工場の中に設置される多数の空調ユニット12A,12B,・・・と、熱源ユニット11と空調ユニット12A,12B,・・・とを接続する液冷媒連絡管13およびガス冷媒連絡管14と、を備えている。すなわち、図1に示す空調システム10の冷媒回路は、熱源ユニット11と、利用側の空調ユニット12A,12B,・・・と、冷媒連絡管13,14とが接続されることによって構成されている。 The air conditioning system 10 is installed in a factory mainly to partially cool or warm a space in an open building such as a factory. The air conditioning system 10 includes a heat source unit 11 installed outside the factory, a large number of air conditioning units 12A, 12B, ... installed in the factory, the heat source unit 11 and the air conditioning units 12A, 12B, ... And a liquid refrigerant communication pipe 13 and a gas refrigerant communication pipe 14 for connecting them. That is, the refrigerant circuit of the air conditioning system 10 shown in FIG. 1 is configured by connecting the heat source unit 11, the air conditioning units 12A, 12B, ... on the use side, and the refrigerant communication pipes 13 and 14. .
 工場の内部において、空調ユニット12A,12B,・・・は、床面に置いてもよいし、天井の梁から吊ってもよいし、柱に支持させてもよい。空調ユニット12A,12B,・・・には、それぞれ、図示しないリモコンが接続されており、設定温度や風量を数段階で変えることができる。また、空調ユニット12A,12B,・・・は、個別にオン・オフが可能である。 Inside the factory, the air conditioning units 12A, 12B,... May be placed on the floor surface, may be hung from a ceiling beam, or may be supported by columns. Each of the air conditioning units 12A, 12B,... Is connected to a remote controller (not shown), and can change the set temperature and the air volume in several steps. Further, the air conditioning units 12A, 12B,... Can be individually turned on / off.
 図1に示す冷媒回路内には冷媒が封入されており、後述のように、冷媒が圧縮され、冷却・凝縮され、減圧され、加熱・蒸発された後に、再び圧縮されるという冷凍サイクル運転が行われる。 Refrigerant is enclosed in the refrigerant circuit shown in FIG. 1, and as described later, the refrigeration cycle operation is such that the refrigerant is compressed, cooled, condensed, decompressed, heated and evaporated, and then compressed again. To be done.
 (2)空調システムの各部の構成
 (2-1)熱源ユニット
 熱源ユニット11は、主として、圧縮機20と、四路切換弁15と、熱源側熱交換器30と、熱源側膨張弁41と、液側閉鎖弁17と、ガス側閉鎖弁18と、を有している。
(2) Configuration of each part of air conditioning system (2-1) Heat source unit The heat source unit 11 mainly includes the compressor 20, the four-way switching valve 15, the heat source side heat exchanger 30, and the heat source side expansion valve 41 A liquid side shutoff valve 17 and a gas side shutoff valve 18 are provided.
 圧縮機20は、圧縮機用のモータによって駆動される密閉式圧縮機である。圧縮機20は、吸入流路27からガス冷媒を吸入する。 The compressor 20 is a hermetic compressor driven by a motor for the compressor. The compressor 20 sucks the gas refrigerant from the suction passage 27.
 四路切換弁15は、冷媒の流れの方向を切り換えるための機構である。冷房運転時には、四路切換弁15は、圧縮機20の吐出側の冷媒配管29と熱源側熱交換器30の一端とを接続するとともに、圧縮機20の吸入側の吸入流路27とガス側閉鎖弁18とを接続する(図1の四路切換弁15の実線を参照)。これにより、熱源側熱交換器30が、圧縮機20によって圧縮される冷媒の凝縮器として機能し、かつ、後述する利用側熱交換器50が、熱源側熱交換器30において凝縮した冷媒の蒸発器として機能する。また、暖房運転時には、四路切換弁15は、圧縮機20の吐出側の冷媒配管29とガス側閉鎖弁18とを接続するとともに、吸入流路27と熱源側熱交換器30の一端とを接続する(図1の四路切換弁15の破線を参照)。これにより、利用側熱交換器50が、圧縮機20によって圧縮された冷媒の凝縮器として機能し、かつ、熱源側熱交換器30が、利用側熱交換器50において冷却された冷媒の蒸発器として機能する。 The four-way switching valve 15 is a mechanism for switching the flow direction of the refrigerant. During the cooling operation, the four-way switching valve 15 connects the refrigerant pipe 29 on the discharge side of the compressor 20 to one end of the heat source side heat exchanger 30, and also the suction flow path 27 on the suction side of the compressor 20 and the gas side. It connects with the closing valve 18 (see the solid line of the four-way switching valve 15 in FIG. 1). Thereby, the heat source side heat exchanger 30 functions as a condenser of the refrigerant compressed by the compressor 20, and the utilization side heat exchanger 50 described later evaporates the refrigerant condensed in the heat source side heat exchanger 30. Function as a container. Further, during the heating operation, the four-way switching valve 15 connects the refrigerant pipe 29 on the discharge side of the compressor 20 and the gas side closing valve 18, and at the same time, the suction flow path 27 and one end of the heat source side heat exchanger 30 It connects (refer the broken line of the four-way switching valve 15 of FIG. 1). Thereby, the use side heat exchanger 50 functions as a condenser of the refrigerant compressed by the compressor 20, and the heat source side heat exchanger 30 is an evaporator of the refrigerant cooled in the use side heat exchanger 50. Act as.
 熱源側熱交換器30は、冷媒の凝縮器又は蒸発器として機能する熱交換器である。熱源側熱交換器30は、その一端が四路切換弁15に接続されており、その他端が熱源側膨張弁41に接続されている。 The heat source side heat exchanger 30 is a heat exchanger that functions as a condenser or an evaporator of the refrigerant. One end of the heat source side heat exchanger 30 is connected to the four-way switching valve 15, and the other end is connected to the heat source side expansion valve 41.
 熱源ユニット11は、ユニット内に外気を取り入れ、再び屋外に排出するための熱源側ファン35を有している。 The heat source unit 11 has a heat source side fan 35 for taking outside air into the unit and discharging it outside again.
 熱源側膨張弁41は、冷媒を減圧するための膨張機構であり、開度調整が可能な電子膨張弁である。熱源側膨張弁41は、その一端が熱源側熱交換器30に接続され、その他端が液側閉鎖弁17に接続されている。 The heat source side expansion valve 41 is an expansion mechanism for reducing the pressure of the refrigerant, and is an electronic expansion valve whose opening degree can be adjusted. One end of the heat source side expansion valve 41 is connected to the heat source side heat exchanger 30, and the other end is connected to the liquid side closing valve 17.
 液側閉鎖弁17は、液冷媒連絡管13が接続される弁である。ガス側閉鎖弁18は、ガス冷媒連絡管14が接続される弁であり、四路切換弁15にも接続されている。 The liquid side shutoff valve 17 is a valve to which the liquid refrigerant communication pipe 13 is connected. The gas side shut-off valve 18 is a valve to which the gas refrigerant communication pipe 14 is connected, and is also connected to the four-way switching valve 15.
 (2-2)利用側の空調ユニット
 空調ユニット12A,12B,・・・は、それぞれ、冷媒連絡管13,14を介して熱源ユニット11に接続されている。空調ユニット12A,12B,・・・は、それぞれ、全く同じ外形、内部構造である。ここでは、図1~図4を参照して、空調ユニット12Aを例にとって説明を行う。
(2-2) Use-side air conditioning unit The air conditioning units 12A, 12B,... Are connected to the heat source unit 11 via the refrigerant communication pipes 13 and 14, respectively. The air conditioning units 12A, 12B, ... have completely the same outer shape and internal structure, respectively. Here, the air conditioning unit 12A will be described as an example with reference to FIGS. 1 to 4.
 空調ユニット12Aは、液冷媒配管51、減圧器である利用側膨張弁42、利用側熱交換器50、ガス冷媒配管52、利用側ファン55、などを有している。 The air conditioning unit 12A includes a liquid refrigerant pipe 51, a use side expansion valve 42 which is a pressure reducer, a use side heat exchanger 50, a gas refrigerant pipe 52, a use side fan 55, and the like.
 利用側膨張弁42は、冷媒を減圧するための膨張機構であり、開度調整が可能な電子膨張弁である。利用側膨張弁42は、その一端が液冷媒配管51を介して液冷媒連絡管13に接続され、その他端が利用側熱交換器50に接続されている。 The use side expansion valve 42 is an expansion mechanism for reducing the pressure of the refrigerant, and is an electronic expansion valve whose opening degree can be adjusted. One end of the use side expansion valve 42 is connected to the liquid refrigerant communication pipe 13 via the liquid refrigerant pipe 51, and the other end is connected to the use side heat exchanger 50.
 利用側熱交換器50は、冷媒の蒸発器又は凝縮器として機能する熱交換器である。利用側熱交換器50は、その一端が利用側膨張弁42に接続され、その他端がガス冷媒配管52を介してガス冷媒連絡管14に接続されている。 The use side heat exchanger 50 is a heat exchanger that functions as a refrigerant evaporator or condenser. One end of the use side heat exchanger 50 is connected to the use side expansion valve 42, and the other end is connected to the gas refrigerant communication pipe 14 via the gas refrigerant pipe 52.
 空調ユニット12Aは、ユニット内に屋内の空気を吸入して、再び屋内に供給するための利用側ファン55を備えており、屋内の空気と利用側熱交換器50を流れる冷媒との間で熱交換をさせる。 The air conditioning unit 12A is provided with the use side fan 55 for drawing indoor air into the unit and supplying it indoors again, and heat is generated between the indoor air and the refrigerant flowing through the use side heat exchanger 50. Make the exchange.
 (2-3)冷媒連絡管
 冷媒連絡管13,14は、熱源ユニット11および空調ユニット12A,12B,・・・を工場の内外の設置場所に設置する際に、現地にて施工される冷媒配管である。上述の利用側の空調ユニット12A,12B,・・・を設置する際、工場の床面や台の上に直に設置したり、天井梁から吊って吹き出し口に延長ダクトをつないだり、柱に上下に並べて複数台を設置したりする。それらの空調ユニット12A,12B,・・・の設置に伴い、冷媒連絡管13,14も、床下や天井、柱に沿って配置されることになる。
(2-3) Refrigerant communication pipes The refrigerant communication pipes 13, 14 are refrigerant pipes to be constructed on site when the heat source unit 11 and the air conditioning units 12A, 12B, ... are installed at installation locations inside and outside the factory. It is. When installing the above-mentioned air conditioning units 12A, 12B, ... on the use side, install them directly on the floor or base of the factory, or hang them from a ceiling beam and connect an extension duct to the outlet, Place multiple units side by side up and down. With the installation of the air conditioning units 12A, 12B, ..., the refrigerant communication pipes 13, 14 are also disposed along the floor, the ceiling, and the pillars.
 なお、冷媒連絡管13,14と空調ユニット12A,12B,・・・との間に手動バルブを設けておけば、将来において、空調ユニット増設や空調ユニット移設が容易となる。 If a manual valve is provided between the refrigerant communication pipes 13 and 14 and the air conditioning units 12A, 12B, ..., it will be easy to add an air conditioning unit or move an air conditioning unit in the future.
 この空調システム10では、数十台の空調ユニット12A,12B,・・・を熱源ユニット11に接続することが可能で、冷媒連絡管13,14の長さの最大は150mとされている。 In the air conditioning system 10, several tens of air conditioning units 12A, 12B, ... can be connected to the heat source unit 11, and the maximum length of the refrigerant communication pipes 13, 14 is 150 m.
 (3)空調システムの動作
 次に、空調システム10の動作について説明する。
(3) Operation of Air Conditioning System Next, the operation of the air conditioning system 10 will be described.
 (3-1)冷房運転の動作
 冷房運転時は、四路切換弁15が図1の実線で示される状態、すなわち、圧縮機20からの吐出ガス冷媒が熱源側熱交換器30に流れ、かつ、吸入流路27がガス側閉鎖弁18に接続された状態となる。熱源側膨張弁41は全開状態に、利用側膨張弁42は開度調節される。なお、閉鎖弁17,18は開状態である。
(3-1) Operation of cooling operation During cooling operation, the four-way switching valve 15 is in the state shown by the solid line in FIG. 1, that is, the discharge gas refrigerant from the compressor 20 flows to the heat source side heat exchanger 30, The suction passage 27 is connected to the gas side shut-off valve 18. The heat source side expansion valve 41 is fully opened, and the opening degree of the use side expansion valve 42 is adjusted. The closing valves 17 and 18 are open.
 この冷媒回路の状態において、圧縮機20から吐出された高圧のガス冷媒は、四路切換弁15を経由して、冷媒の凝縮器として機能する熱源側熱交換器30に送られ、熱源側ファン35によって供給される外気と熱交換を行って冷却される。熱源側熱交換器30において冷却されて液化した高圧の冷媒は、液冷媒連絡管13を経由して各空調ユニット12A,12B,・・・に送られる。各空調ユニット12A,12B,・・・に送られた冷媒は、利用側膨張弁42によってそれぞれ減圧されて低圧の気液二相状態の冷媒となり、冷媒の蒸発器として機能する利用側熱交換器50において屋内の空気と熱交換をし、蒸発して低圧のガス冷媒となる。そして、利用側熱交換器50において加熱された低圧のガス冷媒は、ガス冷媒連絡管14を経由して熱源ユニット11に送られ、四路切換弁15を経由して再び圧縮機20に吸入される。このようにして、工場内(屋内)の冷房が行われる。 In the state of the refrigerant circuit, the high-pressure gas refrigerant discharged from the compressor 20 is sent to the heat source side heat exchanger 30 functioning as a refrigerant condenser via the four-way switching valve 15, and the heat source side fan It is cooled by heat exchange with the external air supplied by 35. The high pressure refrigerant cooled and liquefied in the heat source side heat exchanger 30 is sent to the air conditioning units 12A, 12B,... Via the liquid refrigerant communication pipe 13. The refrigerant sent to each air conditioning unit 12A, 12B, ... is reduced in pressure by the use side expansion valve 42 and becomes a low pressure gas-liquid two-phase refrigerant, and the user side heat exchanger functions as an evaporator of the refrigerant Heat is exchanged with indoor air at 50 and evaporated to form a low pressure gas refrigerant. Then, the low-pressure gas refrigerant heated in the use-side heat exchanger 50 is sent to the heat source unit 11 via the gas refrigerant communication pipe 14, and is again sucked into the compressor 20 via the four-way switching valve 15. Ru. In this way, cooling in the factory (indoor) is performed.
 空調ユニット12A,12B,・・・のうち、一部の空調ユニットだけが運転されている場合、停止している空調ユニットについては、その利用側膨張弁42が停止開度にされる。この場合、運転停止中の空調ユニット内を冷媒が殆ど通過しないようになり、運転中の空調ユニットのみについて冷房動作が行われることになる。 When only a part of the air conditioning units of the air conditioning units 12A, 12B,... Are operating, the use-side expansion valve 42 of the air conditioning unit which is stopped is set to the stop opening degree. In this case, the refrigerant hardly passes through the inside of the air conditioning unit under operation stop, and the cooling operation is performed only for the air conditioning unit under operation.
 (3-2)暖房運転の動作
 暖房運転時は、四路切換弁15が図1の破線で示される状態、すなわち、圧縮機20の吐出側の冷媒配管29がガス側閉鎖弁18に接続され、かつ、吸入流路27が熱源側熱交換器30に接続された状態となる。熱源側膨張弁41および利用側膨張弁42は、開度調節されるようになっている。なお、閉鎖弁17,18は開状態である。
(3-2) Operation of Heating Operation During heating operation, the four-way switching valve 15 is in the state shown by the broken line in FIG. 1, that is, the refrigerant pipe 29 on the discharge side of the compressor 20 is connected to the gas side closing valve 18 Also, the suction flow path 27 is connected to the heat source side heat exchanger 30. The heat source side expansion valve 41 and the use side expansion valve 42 are adjusted in opening degree. The closing valves 17 and 18 are open.
 この冷媒回路の状態において、圧縮機20から吐出された高圧のガス冷媒は、四路切換弁15およびガス冷媒連絡管14を経由して、各空調ユニット12A,12B,・・・に送られる。そして、各空調ユニット12A,12B,・・・に送られた高圧のガス冷媒は、冷媒の凝縮器として機能する利用側熱交換器50において、それぞれ屋内の空気と熱交換を行って冷却された後、利用側膨張弁42を通過し、液冷媒連絡管13を経由して熱源ユニット11に送られる。冷媒が屋内の空気と熱交換を行って冷却される際に、屋内の空気は加熱される。熱源ユニット11に送られた高圧の冷媒は、熱源側膨張弁41によって減圧されて低圧の気液二相状態の冷媒となって、冷媒の蒸発器として機能する熱源側熱交換器30に流入する。熱源側熱交換器30に流入した低圧の気液二相状態の冷媒は、熱源側ファン35によって供給される外気と熱交換を行って加熱され、蒸発して低圧の冷媒となる。熱源側熱交換器30を出た低圧のガス冷媒は、四路切換弁15を経由して再び圧縮機20に吸入される。このようにして、工場内(屋内)の暖房が行われる。 In the state of the refrigerant circuit, the high-pressure gas refrigerant discharged from the compressor 20 is sent to the air conditioning units 12A, 12B, ... via the four-way switching valve 15 and the gas refrigerant communication pipe 14. The high-pressure gas refrigerant sent to each of the air conditioning units 12A, 12B,... Is cooled by heat exchange with indoor air in the use-side heat exchanger 50 that functions as a refrigerant condenser. Thereafter, it passes through the use side expansion valve 42 and is sent to the heat source unit 11 via the liquid refrigerant communication pipe 13. Indoor air is heated when the refrigerant exchanges heat with the indoor air to be cooled. The high-pressure refrigerant sent to the heat source unit 11 is decompressed by the heat source side expansion valve 41 and becomes a low pressure gas-liquid two-phase refrigerant, and flows into the heat source side heat exchanger 30 functioning as a refrigerant evaporator. . The low-pressure gas-liquid two-phase refrigerant flowing into the heat source side heat exchanger 30 exchanges heat with the external air supplied by the heat source side fan 35, is heated, and evaporates to become a low pressure refrigerant. The low-pressure gas refrigerant leaving the heat source side heat exchanger 30 is again drawn into the compressor 20 via the four-way switching valve 15. In this way, heating in the factory (indoor) is performed.
 (4)利用側の空調ユニットの構造の詳細
 次に、利用側の空調ユニット12A,12B,・・・の詳細を説明する。上述のとおり、各空調ユニットは同じ外形、同じ内部構造であるため、ここでは空調ユニット12Aを例にとって説明を行う。
(4) Details of the structure of the air conditioning unit on the use side Next, the details of the air conditioning units 12A, 12B, ... on the use side will be described. As described above, since the air conditioning units have the same outer shape and the same internal structure, the air conditioning unit 12A will be described as an example.
 空調ユニット12Aは、屋内において、温度調整された空気を正面側に吹き出すユニットである。空調ユニット12Aは、上述の液冷媒配管51、減圧器である利用側膨張弁42、利用側熱交換器50、ガス冷媒配管52、利用側ファン55に加え、第1、第2風路形成部材71,72、ドレンパン59、ケーシング60などを備えている。図2は、空調ユニット12Aの内部構造の一部を斜め後ろから見た図である。この図2では、電装品ボックス、利用側膨張弁42、液冷媒配管51やガス冷媒配管52の多くは、他の内部構造を見易くするために、図示が省略されている。また、図2では、理解を容易にするため、例えば、第1風路形成部材71のうちファンブレード55bの周囲を覆っている部分も示されておらず、第1風路形成部材71の正面側の一部のみが図示されている。 The air conditioning unit 12A is a unit that blows out the temperature-controlled air to the front side indoors. The air conditioning unit 12A includes the first and second air passage forming members in addition to the liquid refrigerant pipe 51, the use side expansion valve 42 which is a pressure reducer, the use side heat exchanger 50, the gas refrigerant pipe 52 and the use fan 55. 71, 72, drain pan 59, casing 60 etc. are provided. FIG. 2 is a view of a part of the internal structure of the air conditioning unit 12A viewed obliquely from behind. In FIG. 2, many of the electric component box, the use side expansion valve 42, the liquid refrigerant pipe 51, and the gas refrigerant pipe 52 are not shown in order to make the other internal structures easy to see. Further, in FIG. 2, for example, a portion of the first air passage forming member 71 covering the periphery of the fan blade 55 b is not shown, for example, to facilitate understanding, and the front of the first air passage forming member 71 is shown. Only part of the side is shown.
 (4-1)利用側熱交換器および利用側ファン
 図2に示すように、利用側熱交換器50は、ケーシング60内の背面側に配置される。図2の右側が正面側、左側が背面側である。その利用側熱交換器50の前に、利用側ファン55が位置している。利用側ファン55は、前後に回転軸が延びるモータ55aと、モータ55aの前に位置するファンブレード55bとを有している。ファンブレード55bが回転すると、ケーシング60の背面の開口から空気が吸い込まれ、利用側熱交換器50の背面側から正面側へと空気が流れる。利用側熱交換器50を通過した空気は、利用側ファン55の正面側に位置する吹出口66を抜けて、ケーシング60の正面側へと吹き出される。
(4-1) Use-Side Heat Exchanger and Use-Side Fan As shown in FIG. 2, the use-side heat exchanger 50 is disposed on the back side in the casing 60. The right side of FIG. 2 is the front side, and the left side is the back side. The user side fan 55 is located in front of the user side heat exchanger 50. The use side fan 55 has a motor 55a whose rotation axis extends in the front and back direction, and a fan blade 55b located in front of the motor 55a. When the fan blade 55 b rotates, air is drawn in from the opening at the back of the casing 60, and the air flows from the back side to the front side of the use side heat exchanger 50. The air having passed through the use side heat exchanger 50 passes through the outlet 66 located on the front side of the use side fan 55 and is blown out to the front side of the casing 60.
 (4-2)第1、第2風路形成部材
 第1、第2風路形成部材71,72は、ともに円筒状の部材である。第1風路形成部材71は、ケーシング60内に位置し、ファンブレード55bの周囲を覆う。第2風路形成部材72は、図3および図4に示すように、ケーシング60の外に位置し、吹出口66から吹き出される空気を前へと導く。第2風路形成部材72は、利用側ファン55の空気流れ下流側に配置される。第1風路形成部材71も第2風路形成部材72も、内径IDは同じである。第1、第2風路形成部材71,72は、ファンブレード55bの正面側において、円柱状の風路FS1を形成している。そして、風路FS1の径Dは、第1、第2風路形成部材71,72の内径IDに等しい(図3参照)。
(4-2) First and Second Airway Forming Members The first and second airway forming members 71 and 72 are both cylindrical members. The first air passage forming member 71 is located in the casing 60 and covers the periphery of the fan blade 55b. As shown in FIGS. 3 and 4, the second air passage forming member 72 is located outside the casing 60 and guides the air blown out from the outlet 66 forward. The second air passage forming member 72 is disposed downstream of the air flow of the use side fan 55. The first air passage forming member 71 and the second air passage forming member 72 have the same inner diameter ID. The first and second air passage forming members 71 and 72 form a cylindrical air passage FS1 on the front side of the fan blade 55b. The diameter D of the air passage FS1 is equal to the inner diameter ID of the first and second air passage forming members 71 and 72 (see FIG. 3).
 なお、ファンブレード55bよりも空気流れ下流側に位置する第2風路形成部材72の断面の径が、ここでは一定である。しかし、先端に近づくほど第2風路形成部材72の断面の径が小さくなる構造を採用してもよい。但し、その場合、風路FS1の先端部分の断面の径が小さくなるため、後述するケーシング60の高さ寸法Hとの比率の条件を満たし難くなる。 The diameter of the cross section of the second air passage forming member 72 located downstream of the fan blade 55b in the air flow direction is constant here. However, a structure may be adopted in which the diameter of the cross section of the second air passage forming member 72 decreases as it approaches the tip. However, in this case, the diameter of the cross section of the tip end portion of the air passage FS1 is small, and it is difficult to satisfy the condition of the ratio to the height dimension H of the casing 60 described later.
 (4-3)ドレンパン
 ドレンパン59は、図2に示すように、ケーシング60内の下部に配置されている。ドレンパン59は、利用側熱交換器50、液冷媒配管51、ガス冷媒配管52、利用側ファン55、第1風路形成部材71などの下方に位置し、ケーシング60内で生じる結露水を受ける。冷房運転時、利用側熱交換器50や液冷媒配管51の表面で結露が生じても、結露水はドレンパン59で受けられる。
(4-3) Drain Pan The drain pan 59 is disposed at a lower portion in the casing 60, as shown in FIG. The drain pan 59 is located below the use-side heat exchanger 50, the liquid refrigerant pipe 51, the gas refrigerant pipe 52, the use-side fan 55, the first air path forming member 71, etc., and receives condensed water generated in the casing 60. Even when condensation occurs on the surface of the use side heat exchanger 50 and the liquid refrigerant pipe 51 during the cooling operation, the condensed water can be received by the drain pan 59.
 (4-4)ケーシング
 四角い箱状のケーシング60は、主として、天板61、底板62、左側板63、右側板64および正面板65を有している。ケーシング60の背面には鋼板は存在せず、利用側熱交換器50の背面が露出している。正面板65の中央には、円形の吹出口66が形成されている。吹出口66には、複数の整流板が配置されている。また、吹出口66の径と、上述の第1、第2風路形成部材71,72の内径IDとは等しい。
(4-4) Casing The square box-like casing 60 mainly includes a top plate 61, a bottom plate 62, a left side plate 63, a right side plate 64, and a front plate 65. There is no steel plate on the back of the casing 60, and the back of the use side heat exchanger 50 is exposed. A circular air outlet 66 is formed at the center of the front plate 65. The blower outlet 66 is provided with a plurality of flow straighteners. Further, the diameter of the outlet 66 and the inner diameter ID of the first and second air passage forming members 71 and 72 described above are equal.
 図3に示すように、ケーシング60は、正面視において四角形である。四角形のケーシング60の上辺である第1辺S61と、下辺である第2辺S62とは、水平方向に延びている。四角形のケーシング60の左辺である第3辺S63と、右辺である第4辺S64とは、鉛直方向(上下方向)に延びている。第1辺S61と第2辺S62とは、互いに平行である。第3辺S63と第4辺S64とは、互いに平行である。第1辺S61と第2辺S62との距離(第1距離)である高さ寸法Hと、第3辺S63と第4辺S64との距離(第2距離)である幅寸法Wとを比較すると、空調ユニット12Aでは、高さ寸法Hが幅寸法Wよりも小さい。具体的には、高さ寸法Hが、455mm、幅寸法Wが、555mmである。 As shown in FIG. 3, the casing 60 is square in front view. A first side S61 which is an upper side of the rectangular casing 60 and a second side S62 which is a lower side extend in the horizontal direction. The third side S63 which is the left side of the rectangular casing 60 and the fourth side S64 which is the right side extend in the vertical direction (vertical direction). The first side S61 and the second side S62 are parallel to each other. The third side S63 and the fourth side S64 are parallel to each other. The height dimension H, which is the distance (first distance) between the first side S61 and the second side S62, and the width dimension W, which is the distance (second distance) between the third side S63 and the fourth side S64, are compared Then, in the air conditioning unit 12A, the height dimension H is smaller than the width dimension W. Specifically, the height dimension H is 455 mm, and the width dimension W is 555 mm.
 そして、ケーシング60の正面視における四角形の高さ寸法Hおよび幅寸法Wのうち小さいほうの寸法、すなわち高さ寸法Hが、上述の風路FS1の径Dの、2.5倍以下に抑えられている。このようにケーシング60を設計することにより、後述するように、2台の空調ユニット12A,12Bを並べたときの吹き出し空気の到達距離に関する効果が得られる。 Then, the smaller one of the height dimension H and the width dimension W of the quadrangle in the front view of the casing 60, that is, the height dimension H is suppressed to 2.5 times or less the diameter D of the air passage FS1 described above. ing. By designing the casing 60 in this manner, as described later, an effect on the reach of the blown air when the two air conditioning units 12A and 12B are arranged can be obtained.
 なお、後述のように、ケーシング60の高さ寸法Hおよび幅寸法Wのうち小さいほうの寸法は、ケーシング60内の部品の配置を工夫し、風路FS1の径の2倍以下にすることが更に望ましい。本実施形態に係る空調ユニット12Aでは、風路FS1の径D、すなわち、第1、第2風路形成部材71,72の内径IDが320mmである。したがって、ケーシング60の高さ寸法H(455mm)は、風路FS1の径(320mm)の1.5倍以下の寸法に収まっている。 As described later, the smaller one of the height dimension H and the width dimension W of the casing 60 may be smaller than twice the diameter of the air passage FS1 by devising the arrangement of parts in the casing 60. More desirable. In the air conditioning unit 12A according to the present embodiment, the diameter D of the air passage FS1, that is, the inner diameter ID of the first and second air passage forming members 71 and 72 is 320 mm. Therefore, the height dimension H (455 mm) of the casing 60 is within 1.5 times the diameter (320 mm) of the air passage FS1.
 このように、本実施形態に係る空調ユニット12Aは、従来にないレベルで、風路FS1の径Dに対するケーシング60の高さ寸法Hの比率が、非常に小さな値となっている。 As described above, in the air conditioning unit 12A according to the present embodiment, the ratio of the height dimension H of the casing 60 to the diameter D of the air passage FS1 is a very small value at an unprecedented level.
 (5)複数の空調ユニットを近接させて並べた場合の吹き出し気流の到達距離
 図5および図6に、2台の空調ユニット12A,12Bを鉛直方向D1に並べて設置した状態を示す。上述のとおり、空調ユニット12Aと空調ユニット12Bは、全く同じ構造である。空調ユニット12Aが空調ユニット12Bの直上に配置されており、空調ユニット12Aと空調ユニット12Bとの間には、85mmの高さの隙間が設けられている。その隙間に、サポート部材81が配置されている。サポート部材81は、それぞれ、第1の空調ユニット12Aあるいは第2の空調ユニット12Bを支持している。サポート部材81の一端は、柱80に固定されている。サポート部材81の高さ寸法L1は80mmである。このサポート部材81の高さ寸法L1(80mm)と、各空調ユニット12A,12Bの風路FS1の径(320mm)との間に、
サポート部材81の高さ寸法L1<(風路FS1の径)×0.5
の関係が成り立つように、サポート部材81が選択されている。ここでは、強度的な余裕があるため、各空調ユニット12A,12Bに対してサポート部材81の本数が2本、サポート部材81の高さ寸法L1が80mmとなっている。
(5) Reaching Distance of Blown Airflow When Arranging Multiple Air-Conditioning Units Adjacent to Each Other FIGS. 5 and 6 show a state where two air- conditioning units 12A and 12B are arranged in the vertical direction D1. As described above, the air conditioning unit 12A and the air conditioning unit 12B have exactly the same structure. The air conditioning unit 12A is disposed immediately above the air conditioning unit 12B, and a gap with a height of 85 mm is provided between the air conditioning unit 12A and the air conditioning unit 12B. The support member 81 is disposed in the gap. The support members 81 respectively support the first air conditioning unit 12A or the second air conditioning unit 12B. One end of the support member 81 is fixed to the column 80. The height dimension L1 of the support member 81 is 80 mm. Between the height dimension L1 (80 mm) of the support member 81 and the diameter (320 mm) of the air passage FS1 of each air conditioning unit 12A, 12B,
Height dimension L1 of support member 81 <(diameter of air passage FS1) x 0.5
The support member 81 is selected so that the following relationship holds. Here, since there is an allowance for strength, the number of support members 81 is two for each air conditioning unit 12A, 12B, and the height dimension L1 of the support members 81 is 80 mm.
 図6に示すように、上下に2台の空調ユニット12A,12Bを並べ、それらの間の隙間の高さを85mmに設定すると、第1の空調ユニット12Aの風路である第1風路FS1の中心C1と、第2の空調ユニット12Bの風路である第2風路FS2の中心C2とは、鉛直方向D1に第3距離L3だけ離れる。そして、第3距離L3は、各風路FS1,FS2の断面の径(320mm)の2.5倍以下である。ここでは、第3距離L3=540mmであり、各風路FS1,FS2の断面の径(320mm)の約1.7倍となっている。 As shown in FIG. 6, when the two air conditioning units 12A and 12B are vertically arranged and the height of the gap between them is set to 85 mm, the first air path FS1 which is the air path of the first air conditioning unit 12A. And the center C2 of the second air passage FS2, which is the air passage of the second air conditioning unit 12B, are separated by the third distance L3 in the vertical direction D1. The third distance L3 is equal to or less than 2.5 times the diameter (320 mm) of the cross section of the air passages FS1 and FS2. Here, the third distance L3 = 540 mm, which is about 1.7 times the diameter (320 mm) of the cross section of each air passage FS1, FS2.
 この第3距離L3の、各風路FS1,FS2の断面の径Dに対する比率を小さく抑えることによって、後述の吹き出し空気の到達距離に関する効果が得られる。 By reducing the ratio of the third distance L3 to the diameter D of the cross section of each of the air passages FS1 and FS2, an effect on the reaching distance of the blowoff air described later can be obtained.
 (6)2台の空調ユニットを並べたときの吹き出し空気の到達距離
 次に、図7~図13を参照しながら、2台の空調ユニット12A,12Bを上下に並べたときの、吹き出し空気の到達距離について説明する。ここでは、気流解析の結果と実機を使った計測結果とを比較検証し、それにより得られた気流解析のモデルを用いて、吹き出し空気の到達距離に関する知見を得ている。以下、その知見を説明する。
(6) Reaching Distance of Blown Air When Two Air-Conditioning Units Are Lined Up Next, referring to FIGS. 7 to 13, when the two air- conditioning units 12A and 12B are vertically arranged, The reach distance will be described. Here, the results of air flow analysis and measurement results using a real machine are compared and verified, and using the model of air flow analysis obtained by that, knowledge about the reaching distance of the blown air is obtained. The following describes the findings.
 (6-1)風速測定結果に基づく気流解析パラメータの調整
 まず、2台の空調ユニット12A,12Bを上下に重ね、すなわち、隙間なく2台の空調ユニット12A,12Bを配置して、風速測定機器を用いて1120点で風速を計測した。ファンの回転数は、1646回/分、風量は、約18立方メートル/分である。また、1台の空調ユニット12Aだけでも、同様の風速の計測を行った。
(6-1) Adjustment of Airflow Analysis Parameters Based on Wind Speed Measurement Results First, two air conditioning units 12A and 12B are vertically stacked, that is, two air conditioning units 12A and 12B are disposed without a gap, and the wind speed measurement device The wind speed was measured at 1120 points using. The rotation speed of the fan is 1646 times / minute, and the air volume is about 18 cubic meters / minute. The same wind speed was measured with only one air conditioning unit 12A.
 次に、同じファンの回転数、風量をインプットし、単独の空調ユニット12Aに関して気流解析を実施し(図7参照)、吹き出し面におけるファン1回転の時間平均の流れ状態(風速分布、乱流エネルギー)を取得した(図8参照)。そこで得られた流れ状態を、吹き出し境界面にインプットして、別の気流解析を行った(図9参照)。この気流解析も、風速測定機器を用いた実験と同じく、1台の場合、2台を上下に重ねた場合、それぞれについて行った。 Next, the same fan rotational speed and air volume are input, air flow analysis is carried out with respect to a single air conditioning unit 12A (see FIG. 7), and time-averaged flow conditions (wind speed distribution, turbulent energy) of one fan rotation on the blowing surface ) Was obtained (see FIG. 8). The flow state obtained there was input to the blowout boundary surface, and another air flow analysis was performed (see FIG. 9). This air flow analysis was also performed for each case where two units were stacked vertically, as in the case of the experiment using a wind speed measuring device.
 そして、気流解析から得られた各点における風速と、風速測定機器を用いて行った実験の計測結果とを比較検討し、気流解析のパタメータ調整を行った。 Then, the wind speed at each point obtained from the air flow analysis was compared with the measurement result of the experiment performed using the wind speed measuring device, and the parameter adjustment of the air flow analysis was performed.
 (6-2)2台の空調ユニットの相対距離と吹き出し空気の到達距離との関係
 次に、上下に並べる2台の空調ユニット12A,12Bの隙間寸法を変えて、気流解析を繰り返した。その一例を、図10~図12に示す。
(6-2) Relationship between Relative Distance between Two Air Conditioning Units and Reached Distance of Blown Air Next, the air flow analysis was repeated by changing the gap size of the two air conditioning units 12A and 12B arranged vertically. One example is shown in FIG. 10 to FIG.
 図10は、隙間寸法を2mにして、大きく離した2台の空調ユニット12A,12Bを運転させた場合の解析結果を示す。隙間寸法を2mにした場合、上述の第1風路FS1の中心C1と第2風路FS2の中心C2との距離である第3距離L3が、2455mm、それを風路FS1、FS2の径(320mm)で割った値が、7.7になる。ここでは、1台単独で運転させたときと同じく、風速1m/s以上のエリアが、各空調ユニット12A,12Bから4m離れた地点までに留まっている。すなわち、風速1m/sの風は、各空調ユニット12A,12Bから4m離れたところまでは到達するが、それ以上離れたエリアでは風速1m/s未満となる。ここでは、この4mを、吹き出し空気の風速1m/sの到達距離、と呼んでいる。 FIG. 10 shows an analysis result in the case where two air conditioning units 12A and 12B separated by a gap size of 2 m are operated. When the gap dimension is 2 m, the third distance L3 which is the distance between the center C1 of the first air passage FS1 and the center C2 of the second air passage FS2 is 2455 mm, which is the diameter of the air passages FS1 and FS2 ( The value divided by 320 mm) is 7.7. Here, as in the case where one unit is operated alone, the area with a wind velocity of 1 m / s or more remains at a point 4 m away from each of the air conditioning units 12A and 12B. That is, the wind having a wind speed of 1 m / s reaches 4 m away from each of the air conditioning units 12A and 12B, but the wind speed is less than 1 m / s in an area further away. Here, this 4 m is called the reach of the wind speed of 1 m / s of the blown air.
 図11は、隙間寸法を500mmにして、近くに配置した2台の空調ユニット12A,12Bを運転させた場合の解析結果を示す。隙間寸法を500mmにした場合、上述の第1風路FS1の中心C1と第2風路FS2の中心C2との距離である第3距離L3が、955mm、それを風路FS1、FS2の径(320mm)で割った値が、3.0になる。ここでは、吹き出し空気の風速1m/sの到達距離が、6.7mまで伸びている。 FIG. 11 shows an analysis result in the case where two air conditioning units 12A and 12B disposed close to each other are operated with a gap size of 500 mm. When the gap dimension is 500 mm, the third distance L3 which is the distance between the center C1 of the first air passage FS1 and the center C2 of the second air passage FS2 is 955 mm, which is the diameter of the air passages FS1 and FS2 ( The value divided by 320 mm is 3.0. Here, the reach of the wind speed of 1 m / s of the blown air extends to 6.7 m.
 図12は、隙間寸法を0mmにして、隣接して配置した2台の空調ユニット12A,12Bを運転させた場合の解析結果を示す。隙間寸法を0mmにした場合、上述の第1風路FS1の中心C1と第2風路FS2の中心C2との距離である第3距離L3が、455mm、それを風路の径(320mm)で割った値が、1.4になる。ここでは、吹き出し空気の風速1m/sの到達距離が、7.3mまで伸びる。 FIG. 12 shows an analysis result in the case where the two air conditioning units 12A and 12B disposed adjacent to each other are operated with a gap size of 0 mm. When the gap dimension is 0 mm, the third distance L3 which is the distance between the center C1 of the first air passage FS1 and the center C2 of the second air passage FS2 is 455 mm, which is the air passage diameter (320 mm) The divided value is 1.4. Here, the reach of the wind speed of 1 m / s of the blown air extends to 7.3 m.
 これらの図10~図12に示す条件のほか、隙間寸法などのパラメータを変えて繰り返し気流解析を行った結果、吹き出し空気の風速1m/sの到達距離に関し、図13に示すグラフが得られた。図13から判るように、2台の空調ユニット12A,12Bを大きく離さずに並べ、なるべく、第3距離L3を風路FS1、FS2の径Dで割った値が小さくなるようにすることが、吹き出し空気の風速1m/sの到達距離を伸ばす結果になる。そして、図13から、第3距離L3が、風路FS1、FS2の径Dの2.5倍以下、好ましくは2.0倍以下になるようにすることで、吹き出し空気の風速1m/sの到達距離を十分に伸ばすことができることが判る。 In addition to the conditions shown in FIGS. 10 to 12, as a result of repeating the air flow analysis while changing parameters such as the gap size, the graph shown in FIG. 13 was obtained for the reaching distance of the wind speed 1 m / s of the blown air. . As can be seen from FIG. 13, the two air conditioning units 12A and 12B may be arranged without a large separation so that the value obtained by dividing the third distance L3 by the diameter D of the air paths FS1 and FS2 may be reduced. It results in extending the reach of wind speed 1 m / s of the blown air. Then, from FIG. 13, by setting the third distance L3 to be 2.5 times or less, preferably 2.0 times or less, of the diameter D of the air paths FS1 and FS2, the wind speed of the blown air is 1 m / s. It can be seen that the reach distance can be sufficiently extended.
 なお、第3距離L3を風路FS1、FS2の径Dで割った値(L3/D)を2.5以下にするためには、2台の空調ユニット12A,12Bを上下に並べる場合、隙間なく並べたとしても、
ケーシング60の高さ寸法H<(風路FS1の径)×2.5
という式を満たしている必要がある。隙間なく空調ユニット12A、12Bを上下に並べると、第3距離=ケーシング60の高さ寸法Hになるからである。逆に言えば、
ケーシング60の高さ寸法H>(風路FS1の径)×2.5
という空調ユニットの場合、上下に隙間なく2台を重ねたとしても、上の風路と下の風路との間が大きく離れてしまって、吹き出し空気の風速1m/sの到達距離を十分には伸ばすことができない。
In order to make the value (L3 / D) obtained by dividing the third distance L3 by the diameter D of the air passages FS1 and FS2 equal to or less than 2.5, when two air conditioning units 12A and 12B are arranged vertically, a gap Even if you line up,
Height dimension H of casing 60 <(diameter of air passage FS1) × 2.5
It is necessary to satisfy the expression This is because the third distance = the height dimension H of the casing 60 is obtained if the air conditioning units 12A and 12B are vertically arranged without any gap. Conversely,
Height dimension H of casing 60> (diameter of air passage FS1) × 2.5
In the case of the air conditioning unit, even if two units are stacked without gaps, the upper and lower air paths are separated by a large distance, and the reach of the wind speed of 1 m / s of the blown air is sufficient. Can not stretch.
 (7)空調ユニットおよび空調システムの特徴
 (7-1)
 空調ユニット12Aは、ケーシング60の正面視の高さ寸法Hおよび幅寸法Wのうち小さいほうの距離(ここでは高さ寸法H)の、風路FS1の断面の径Dに対する比率が、従来よりも小さくなるように設計されている。具体的には、高さ寸法Hが、風路FS1の断面の径Dの2.5倍以下という短い寸法に抑えられている。このため、2台の空調ユニット12A、12Bを鉛直方向D1に並べると、隣接する第1の空調ユニット12Aの第1風路FS1と第2の空調ユニット12Bの第2風路FS2との正面視における間隔が短くなる(図6参照)。すると、両方の風路FS1、FS2からそれぞれ吹き出される空気が、お互いに空気流れの抵抗を小さくする役割を果たすようになり、それぞれの風路から吹き出された空気が遠くまで届くようになる(図12参照)。
(7) Features of air conditioning unit and air conditioning system (7-1)
In the air conditioning unit 12A, the ratio of the smaller one of the height dimension H and the width dimension W in the front view of the casing 60 (here, the height dimension H) to the diameter D of the cross section of the air passage FS1 is greater than that in the prior art. It is designed to be small. Specifically, the height dimension H is suppressed to a short dimension of 2.5 times or less of the diameter D of the cross section of the air passage FS1. Therefore, when the two air conditioning units 12A and 12B are arranged in the vertical direction D1, the front view of the first air passage FS1 of the adjacent first air conditioning unit 12A and the second air passage FS2 of the second air conditioning unit 12B. The interval between the two becomes shorter (see FIG. 6). Then, the air blown out from both of the air paths FS1 and FS2 serves to reduce the resistance to the air flow to each other, and the air blown out from each of the air paths can reach far ( See Figure 12).
 (7-2)
 空調ユニット12Aでは、高さ寸法Hが幅寸法Wよりも小さいケーシング60を用いつつ、図2に示すように、薄型のドレンパン59をケーシング60内の下部に配置している。その上で、なるべく利用側ファン55および第1、第2風路形成部材71,72の内径IDを大きく設計し、ケーシング60の高さ寸法Hに対して、なるべく風路FS1の断面の径Dが大きくなるように利用側熱交換器50や電装品ボックスの配置を工夫している。
(7-2)
In the air conditioning unit 12A, as shown in FIG. 2, the thin drain pan 59 is disposed in the lower portion in the casing 60 while using the casing 60 in which the height dimension H is smaller than the width dimension W. Then, the inner diameters ID of the utilization side fan 55 and the first and second air passage forming members 71 and 72 are designed as large as possible, and the diameter D of the cross section of the air passage FS1 with respect to the height dimension H of the casing 60 The arrangement of the utilization side heat exchanger 50 and the electrical component box is devised so that
 これにより、ドレンパン59を備える空調ユニット12Aであっても、上述の、吹き出し空気の風速1m/sの到達距離を十分に伸ばすという効果が得られている。 Thereby, even in the air conditioning unit 12A including the drain pan 59, the effect of sufficiently extending the above-described reach of the wind speed of 1 m / s of the blown air is obtained.
 (7-3)
 空調システム10では、図6に示すように、2台の空調ユニット12A,12Bを、なるべく隙間が小さくなるように、鉛直方向D1に並べて配置している。すなわち、サポート部材81の配置スペースを確保しつつ、2台の空調ユニット12A,12Bが大きく離れないような構造を採っている。具体的には、85mmの高さの隙間を空けて、2台の空調ユニット12A,12Bを上下に並べている。
(7-3)
In the air conditioning system 10, as shown in FIG. 6, two air conditioning units 12A and 12B are arranged in the vertical direction D1 so that the gap is as small as possible. That is, a structure is adopted in which the two air conditioning units 12A and 12B are not largely separated while securing the arrangement space of the support member 81. Specifically, two air conditioning units 12A and 12B are vertically arranged with a gap of 85 mm in height.
 このため、第1の空調ユニット12Aの第1風路FS1の中心C1と、第2の空調ユニット12Bの第2風路FS2の中心C2との距離である、第3距離L3は、各風路FS1,FS2の断面の径D(320mm)の2.5倍以下に収まっている。 For this reason, the third distance L3, which is the distance between the center C1 of the first air passage FS1 of the first air conditioning unit 12A and the center C2 of the second air passage FS2 of the second air conditioning unit 12B, is It is within 2.5 times the diameter D (320 mm) of the cross section of FS1 and FS2.
 図6に示すように、
第3距離(風路間距離)L3/風路の径D=1.7
という関係が成り立つほど、第1風路FS1、第2風路FS2の径Dを大きくし、2台の空調ユニット12A,12Bの隙間を小さくしているので、空調システム10では、図13に示すように、上述の吹き出し空気の風速1m/sの到達距離を7m以上に伸ばすことができている。
As shown in FIG.
Third distance (airway distance) L3 / airway diameter D = 1.7
Since the diameter D of the first air passage FS1 and the second air passage FS2 is increased and the gap between the two air conditioning units 12A and 12B is decreased as the relationship of the relation is satisfied, the air conditioning system 10 is shown in FIG. As described above, it is possible to extend the above-mentioned reach of the wind speed of 1 m / s of the blown air to 7 m or more.
 (8)変形例
 (8-1)
 図5,6には、2台の空調ユニット12A,12Bを鉛直方向D1に並べて設置した例を示したが、空調システム10では、3台以上の空調ユニット12A,12B,・・・を並べて配置してもよい。例えば、図14に示すように、互いに近接するように4台の空調ユニット12A,12B,・・・を上下に並べて配置すれば、吹き出し空気の風速1m/sの到達距離がより長くなる。
(8) Modification (8-1)
5 and 6 show an example in which two air conditioning units 12A and 12B are arranged in the vertical direction D1, but in the air conditioning system 10, three or more air conditioning units 12A, 12B,. You may For example, as shown in FIG. 14, if the four air conditioning units 12A, 12B,... Are arranged up and down so as to be close to each other, the reach of the wind speed of 1 m / s of the blown air becomes longer.
 (8-2)
 上記の空調システム10では、空調ユニット12Aの高さ寸法Hを幅寸法Wよりも小さくして、上下に空調ユニット12A,12B,・・・を並べているが、逆にしてもよい。すなわち、空調ユニットの高さ寸法を幅寸法よりも大きくして、並べるときには複数の空調ユニットを左右方向に並べることも可能である。この場合にも、
ケーシングの幅寸法<(風路の径)×2.5
を満たし、左右に並べた複数の空調ユニットの風路間の距離を小さくすることで、吹き出す空気を遠くまで届かせることができる。
(8-2)
In the above air conditioning system 10, the height dimension H of the air conditioning unit 12A is smaller than the width dimension W, and the air conditioning units 12A, 12B,... Are arranged vertically, but may be reversed. That is, it is also possible to make the height dimension of the air conditioning unit larger than the width dimension and to arrange the plurality of air conditioning units in the lateral direction when arranging. Also in this case
Width dimension of casing <(diameter of air passage) x 2.5
The air blown out can be made to reach far by satisfying the above and reducing the distance between the air passages of the plurality of air conditioning units arranged side by side.
 (8-3)
 以上、空調システムおよび空調ユニットの実施形態を説明したが、特許請求の範囲に記載された空調システムおよび空調ユニットの趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(8-3)
The embodiments of the air conditioning system and the air conditioning unit have been described above, but various changes in form and detail can be made without departing from the spirit and scope of the air conditioning system and the air conditioning unit described in the claims. It will be understood.
 10  空調システム
 12A 第1の空調ユニット
 12B 第2の空調ユニット
 55  利用側ファン
 59  ドレンパン
 60  ケーシング
 72  風路形成部材
 81  サポート部材
 S61 第1辺
 S62 第2辺
 S63 第3辺
 S64 第4辺
 H   ケーシングの高さ寸法(第1距離)
 W   ケーシングの幅寸法(第2距離)
 D   風路の断面の径
 FS1 第1風路
 FS2 第2風路
 C1  第1風路の中心
 C2  第2風路の中心
 D1  鉛直方向(第1の方向)
 L1  サポート部材の高さ寸法
 L3  上下に並ぶ第1の空調ユニット、第2の空調ユニットの両風路の中心間の距離(第3距離)
DESCRIPTION OF SYMBOLS 10 air-conditioning system 12A 1st air-conditioning unit 12B 2nd air-conditioning unit 55 user-side fan 59 drain pan 60 casing 72 air-path formation member 81 support member S61 1st side S62 2nd side S63 3rd side S64 4th side H casing Height dimension (first distance)
Width dimension of W casing (second distance)
D Cross section diameter of air passage FS1 First air passage FS2 Second air passage C1 Center of first air passage C2 Center of second air passage D1 Vertical direction (first direction)
L1 Height dimension of support member L3 Distance between the centers of both air paths of the first air conditioning unit and the second air conditioning unit arranged vertically (third distance)
特開2017-146011号公報Japanese Patent Application Publication No. 201-146011

Claims (5)

  1.  屋内において、温度調整された空気を正面側に吹き出す、空調ユニット(12A)であって、
     ファン(55)と、
     前記ファンを収容するケーシング(60)と、
     前記ファンの空気流れ下流側に配置され、風路(FS1)の断面形状が円形である、風路形成部材(72)と、
    を備え、
     前記ケーシングは、正面視において、互いに平行な第1辺(S61)および第2辺(S62)と、互いに平行な第3辺(S63)および第4辺(S64)とに囲まれた四角形であり、
     前記第1辺と前記第2辺との距離である第1距離(H)と、前記第3辺と前記第4辺との距離である第2距離(W)とのうち、小さいほうの距離が、前記風路の断面の径(D)の2.5倍以下である、
    空調ユニット。
    An air conditioning unit (12A) for blowing out temperature-controlled air to the front side indoors, comprising:
    With a fan (55),
    A casing (60) for housing the fan;
    An air passage forming member (72), which is disposed downstream of the air flow of the fan, and the air passage (FS1) has a circular sectional shape;
    Equipped with
    In a front view, the casing is a quadrangle surrounded by first side (S61) and second side (S62) parallel to each other and third side (S63) and fourth side (S64) parallel to each other. ,
    The smaller of the first distance (H), which is the distance between the first side and the second side, and the second distance (W), which is the distance between the third side and the fourth side Is not more than 2.5 times the diameter (D) of the cross section of the air passage,
    Air conditioning unit.
  2.  前記第1距離(H)と、前記第2距離(W)とのうち、小さいほうの距離が、前記風路の断面の径(D)の2.0倍以下である、
    請求項1に記載の空調ユニット。
    The smaller one of the first distance (H) and the second distance (W) is not more than 2.0 times the diameter (D) of the cross section of the air passage.
    The air conditioning unit according to claim 1.
  3.  前記ケーシング内で生じる結露水を受けるドレンパン(59)をさらに備え、
     前記ドレンパンは、前記ケーシングの内部空間の下部に配置されており、
     前記第1辺および前記第2辺は、水平方向に延び、
     前記第3辺および前記第4辺は、鉛直方向に延び、
     前記ケーシングの高さ寸法となる前記第1距離(H)が、前記ケーシングの幅寸法となる前記第2距離(W)よりも小さい、
    請求項1又は2に記載の空調ユニット。
    It further comprises a drain pan (59) for receiving condensation water generated in the casing,
    The drain pan is disposed in the lower part of the internal space of the casing,
    The first side and the second side extend horizontally,
    The third side and the fourth side extend in the vertical direction,
    The first distance (H) which is the height dimension of the casing is smaller than the second distance (W) which is the width dimension of the casing
    The air conditioning unit according to claim 1 or 2.
  4.  請求項1から3のいずれかに記載の空調ユニットである、第1空調ユニット(12A)と、
     請求項1から3のいずれかに記載の空調ユニットである、第2空調ユニット(12B)と、
    を備える空調システム(10)であって、
     前記第1空調ユニットと前記第2空調ユニットとは、第1の方向(D1)に並び、
     前記第1空調ユニットの風路である第1風路(FS1)の中心(C1)と、前記第2空調ユニットの風路である第2風路(FS2)の中心(C2)とが、前記第1の方向に第3距離(L3)だけ離れており、
     前記第3距離(L3)が、前記風路の断面の径(D)の2.5倍以下である、
    空調システム。
    A first air conditioning unit (12A), which is the air conditioning unit according to any one of claims 1 to 3.
    A second air conditioning unit (12B), which is the air conditioning unit according to any one of claims 1 to 3.
    An air conditioning system (10) comprising
    The first air conditioning unit and the second air conditioning unit are arranged in a first direction (D1),
    The center (C1) of the first air path (FS1) which is the air path of the first air conditioning unit and the center (C2) of the second air path (FS2) which is the air path of the second air conditioning unit Separated by a third distance (L3) in the first direction,
    The third distance (L3) is equal to or less than 2.5 times the diameter (D) of the cross section of the air passage,
    Air conditioning system.
  5.  前記第1空調ユニットと、前記第2空調ユニットとの間に配置され、前記第1空調ユニット及び/又は前記第2空調ユニットを支持する、サポート部材(81)、
    をさらに備え、
     前記サポート部材の前記第1の方向(D1)に沿った寸法(L1)が、前記風路(FS1、FS2)の断面の径(D)の2分の1以下である、
    請求項4に記載の空調システム。
    A support member (81) disposed between the first air conditioning unit and the second air conditioning unit and supporting the first air conditioning unit and / or the second air conditioning unit;
    And further
    The dimension (L1) along the first direction (D1) of the support member is equal to or less than half the diameter (D) of the cross section of the air path (FS1, FS2).
    The air conditioning system according to claim 4.
PCT/JP2018/047254 2017-12-25 2018-12-21 Air conditioning unit and air conditioning system WO2019131513A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18896532.1A EP3734179B1 (en) 2017-12-25 2018-12-21 Air conditioning unit and air conditioning system
US16/957,676 US20200363076A1 (en) 2017-12-25 2018-12-21 Air conditioning unit and air conditioning system
ES18896532T ES2933523T3 (en) 2017-12-25 2018-12-21 Air conditioning unit and air conditioning system
CN201880084082.9A CN111512095B (en) 2017-12-25 2018-12-21 Air conditioning unit and air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247365A JP6789205B2 (en) 2017-12-25 2017-12-25 Air conditioning unit and air conditioning system
JP2017-247365 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131513A1 true WO2019131513A1 (en) 2019-07-04

Family

ID=67066418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047254 WO2019131513A1 (en) 2017-12-25 2018-12-21 Air conditioning unit and air conditioning system

Country Status (6)

Country Link
US (1) US20200363076A1 (en)
EP (1) EP3734179B1 (en)
JP (1) JP6789205B2 (en)
CN (1) CN111512095B (en)
ES (1) ES2933523T3 (en)
WO (1) WO2019131513A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117006692A (en) * 2023-10-07 2023-11-07 东南大学建筑设计研究院有限公司 Heating ventilation air conditioner fixed knot constructs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2593702A (en) * 1948-04-13 1952-04-22 Claude B Schneible Gaseous curtain for ventilating exhaust
JP2007255848A (en) * 2006-03-24 2007-10-04 Daikin Ind Ltd Air conditioner and air conditioning system using the same
JP2011080759A (en) * 2010-12-20 2011-04-21 Nisshin Toa Inc Blower
US20110284185A1 (en) * 2010-11-19 2011-11-24 Fredrick Thomas Cullen Thermal fluid temperature converter
US20140000852A1 (en) * 2012-06-28 2014-01-02 Samsung Electronics Co., Ltd. Indoor unit of air conditioner and method of controlling the air conditioner
JP2017146011A (en) 2016-02-17 2017-08-24 東芝キヤリア株式会社 Air conditioner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134448A (en) * 1985-12-09 1987-06-17 Matsushita Electric Ind Co Ltd Blow-off device for air conditioner
JP2000081225A (en) * 1998-09-04 2000-03-21 Daikin Ind Ltd Structure of air outlet port for air conditioner
CN100561066C (en) * 2005-12-13 2009-11-18 广东科龙电器股份有限公司 The miniaturized outdoor unit of split-type air conditioner device
JP5855895B2 (en) * 2011-10-17 2016-02-09 富士古河E&C株式会社 Air conditioning systems for communication / information processing equipment rooms, etc.
KR20140037985A (en) * 2012-09-12 2014-03-28 삼성전자주식회사 Indoor unit of air conditioner
KR102076668B1 (en) * 2013-05-24 2020-02-12 엘지전자 주식회사 An indoor unit for an air conditioner
JP2015124986A (en) * 2013-12-27 2015-07-06 ダイキン工業株式会社 Air-conditioner indoor unit
KR101900484B1 (en) * 2015-01-23 2018-09-20 삼성전자주식회사 Air conditioner
JP6833802B2 (en) * 2016-02-17 2021-02-24 東芝キヤリア株式会社 Indoor unit for air conditioning and air conditioner
KR102479811B1 (en) * 2016-06-13 2022-12-23 삼성전자주식회사 Air conditioner and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2593702A (en) * 1948-04-13 1952-04-22 Claude B Schneible Gaseous curtain for ventilating exhaust
JP2007255848A (en) * 2006-03-24 2007-10-04 Daikin Ind Ltd Air conditioner and air conditioning system using the same
US20110284185A1 (en) * 2010-11-19 2011-11-24 Fredrick Thomas Cullen Thermal fluid temperature converter
JP2011080759A (en) * 2010-12-20 2011-04-21 Nisshin Toa Inc Blower
US20140000852A1 (en) * 2012-06-28 2014-01-02 Samsung Electronics Co., Ltd. Indoor unit of air conditioner and method of controlling the air conditioner
JP2017146011A (en) 2016-02-17 2017-08-24 東芝キヤリア株式会社 Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734179A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117006692A (en) * 2023-10-07 2023-11-07 东南大学建筑设计研究院有限公司 Heating ventilation air conditioner fixed knot constructs
CN117006692B (en) * 2023-10-07 2023-12-26 东南大学建筑设计研究院有限公司 Heating ventilation air conditioner fixed knot constructs

Also Published As

Publication number Publication date
JP6789205B2 (en) 2020-11-25
EP3734179A1 (en) 2020-11-04
EP3734179A4 (en) 2021-02-24
EP3734179B1 (en) 2022-11-16
CN111512095A (en) 2020-08-07
ES2933523T3 (en) 2023-02-09
CN111512095B (en) 2021-08-03
US20200363076A1 (en) 2020-11-19
JP2019113257A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
CN203396065U (en) Heat exchanger, indoor unit and refrigerating cycle device
EP3350518B1 (en) Portable air conditioner
JP6734624B2 (en) Indoor unit of air conditioner
JP5447569B2 (en) Air conditioner heat exchanger and air conditioner
US10760812B2 (en) Indoor unit for air conditioning device
KR102249321B1 (en) Air conditioner
WO2015098157A1 (en) Outdoor unit and refrigeration cycle device
WO2013118381A1 (en) Heat exchange unit and heat exchange device
JP2000179924A (en) Ceiling embedded indoor unit
WO2019131513A1 (en) Air conditioning unit and air conditioning system
JP2017172868A (en) Air conditioner
JP6072671B2 (en) Indoor unit and air conditioner
JP2017172869A (en) Air conditioner
JP2020003174A (en) Outdoor air conditioner
WO2010058666A1 (en) Air conditioner
JP6800649B2 (en) Air conditioner
JPWO2019116838A1 (en) Heat exchange unit and air conditioner equipped with the same
US10302313B2 (en) Indoor unit and air-conditioning apparatus
CN220689195U (en) Hanging air conditioner
JP6985614B2 (en) Air conditioner with outlet adapter and outlet adapter
JP7118264B2 (en) Exhaust grill, indoor unit and air conditioner
WO2022107209A1 (en) Indoor unit, and refrigeration cycle device
JP6566699B2 (en) Air conditioner
KR20140091864A (en) An air conditioner
JPH08285325A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896532

Country of ref document: EP

Effective date: 20200727