WO2019131381A1 - Additive for fluid catalytic cracking catalyst, and method for producing same - Google Patents

Additive for fluid catalytic cracking catalyst, and method for producing same Download PDF

Info

Publication number
WO2019131381A1
WO2019131381A1 PCT/JP2018/046787 JP2018046787W WO2019131381A1 WO 2019131381 A1 WO2019131381 A1 WO 2019131381A1 JP 2018046787 W JP2018046787 W JP 2018046787W WO 2019131381 A1 WO2019131381 A1 WO 2019131381A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
amount
additive
ppm
fcc catalyst
Prior art date
Application number
PCT/JP2018/046787
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 瀬戸
玲 濱田
知宏 三津井
中島 昭
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to JP2019561574A priority Critical patent/JP7128844B2/en
Priority to SG11202005887PA priority patent/SG11202005887PA/en
Priority to MYPI2020003239A priority patent/MY196429A/en
Priority to KR1020207017421A priority patent/KR102574700B1/en
Publication of WO2019131381A1 publication Critical patent/WO2019131381A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention is used in fluid catalytic cracking (hereinafter also referred to as "FCC") together with fluid catalytic cracking catalyst (hereinafter also referred to as "FCC catalyst”) to increase the octane number of gasoline and to increase the production of lower olefins. Additives and a method for producing the same.
  • FCC fluid catalytic cracking
  • FCC catalyst fluid catalytic cracking catalyst
  • a fluid catalytic cracking unit (hereinafter also referred to as “FCC unit”) of a refinery, the main purpose is to produce a gasoline fraction by catalytically cracking a feedstock hydrocarbon oil, and it is desirable that gasoline has a high octane number. It is rare.
  • it is required to catalytically crack the feedstock hydrocarbon oil in the FCC unit to produce a gasoline fraction, and at the same time increase the production of lower olefins, especially propylene and butene, which are petrochemical feedstocks. There is a case.
  • Patent Document 1 discloses a composition comprising a pentasil-type zeolite and an inorganic oxide matrix and having many macropores having a pore diameter of about 100 nm.
  • Patent Document 2 discloses a composition which is a particle comprising a pentasil-type zeolite, a porous inorganic oxide and phosphorus pentoxide, wherein the content of phosphorus pentoxide in the surface portion is larger than that in the central portion of the particle. It is done.
  • Patent Document 3 discloses an FCC catalyst additive containing a binder containing zeolite such as ZSM-5, phosphate, clay, and silica as an additive capable of increasing the production amount of propylene or the like.
  • Patent Document 4 discloses an FCC catalyst additive containing a modified ZSM-5 type zeolite having predetermined properties, a filler and a binder.
  • Patent Document 5 discloses an attrition resistant catalyst containing a large amount of zeolite and containing phosphorus and alumina, which can be used by being added to the catalyst in the FCC method.
  • Patent Document 6 discloses an FCC catalyst comprising zeolite, kaolin, phosphorus compound, high density non-reactive component and optionally reactive alumina, which catalyst is added to the decomposition process using large pore molecular sieve component It is also suitable as an agent.
  • JP 2005-270851 A Unexamined-Japanese-Patent No. 2007-244964 Japanese Patent Application Publication No. 2014-527459 International Publication No. 2017/82345 Japanese Patent Publication No. 2002-537976 Japanese Patent Application Publication No. 2007-534485
  • the feedstock hydrocarbon oil is rich in heavy metals such as vanadium and nickel, particularly when the feedstock hydrocarbon oil to be catalytically cracked is a heavy hydrocarbon oil such as an atmospheric distillation residual oil or a vacuum distillation residual oil. .
  • Vanadium promotes dealumination from the zeolite, destroying its crystal structure and reducing its activity.
  • nickel generates a large amount of coke because of high dehydrogenation activity, which poisons the active site of the FCC catalyst and generates heat when the FCC catalyst is regenerated to promote the deterioration of the zeolite.
  • the conventional FCC catalyst additive had room for further improvement from the viewpoint of obtaining lower olefins such as propylene in high yield even if the raw material hydrocarbon oil to be catalytically cracked contains a large amount of heavy metals. .
  • the present invention is an additive for an FCC catalyst used together with an FCC catalyst in an FCC, and a high yield is obtained even if the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel. It is an object of the present invention to provide an FCC catalyst additive (additive catalyst) capable of obtaining lower olefins such as propylene at a rate and a process for producing the same.
  • the gist of the present invention is as follows.
  • An additive for fluid catalytic cracking catalyst comprising pentasil type zeolite and an inorganic oxide matrix,
  • the amount of the pentasil-type zeolite is 10 to 60% by mass, Contains 5 to 20% by mass of phosphorus in terms of the mass of P 2 O 5
  • the inorganic oxide matrix contains an alumina component in an amount such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass (provided that the amount of the additive is 100% by mass).
  • formula (1) 0.02 ⁇ P ( ⁇ 25 ppm) / P ( ⁇ 30 ppm) ⁇ 0.40 ...
  • P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively. ] Additive for fluid catalytic cracking catalyst which is satisfied.
  • Pentasil-type zeolite Binder raw material containing phosphorus, At least one alumina component selected from the group consisting of gibbsite and a calcined product of gibbsite, A slurry comprising a filler comprising an inorganic oxide (but excluding the alumina component), and a dispersion medium, The amount of the pentasil-type zeolite is 10 to 60% by mass, The amount of the binder material containing phosphorus is an amount such that the amount of phosphorus converted to the mass of P 2 O 5 is 5 to 20 mass%, A slurry wherein the amount of the alumina component is 2 to 20% by mass of the amount of aluminum converted to the mass of Al 2 O 3 (provided that the amount of the solid content of the slurry is 100% by mass). Spray dry to obtain powder A method for producing a fluid catalytic cracking catalyst additive, wherein the powder is heated at a temperature rising rate of 150 ° C. or more / hour and then heat-treated at 500
  • the additive for an FCC catalyst of the present invention even when the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel, lower olefins such as propylene can be obtained with high yield. Further, according to the production method of the present invention, an additive for an FCC catalyst capable of obtaining lower olefins such as propylene in high yield even when the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel It can be manufactured.
  • the additive for FCC catalyst according to the present invention is An additive for fluid catalytic cracking catalyst comprising pentasil type zeolite and an inorganic oxide matrix,
  • the amount of the pentasil-type zeolite is 10 to 60% by mass, Contains 5 to 20% by mass of phosphorus in terms of the mass of P 2 O 5
  • the inorganic oxide matrix contains an alumina component in an amount such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass (provided that the amount of the additive is 100% by mass).
  • formula (1) 0.02 ⁇ P ( ⁇ 25 ppm) / P ( ⁇ 30 ppm) ⁇ 0.40 ...
  • P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively.
  • the pentasil-type zeolite is dispersed in the inorganic oxide matrix.
  • examples of the pentasil-type zeolite include ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35, ZSM-38, and ZSM-48.
  • ZSM-5 is particularly preferable because it has a solid acid with high acid strength and exhibits high shape selectivity, and thus has a large effect on enhancing the octane number of gasoline and the yield of lower olefins.
  • the amount of the pentasil-type zeolite in the additive for an FCC catalyst according to the present invention is 10% by mass or more, preferably 30% by mass or more from the viewpoint of enhancing the yield of lower olefins such as propylene.
  • the content is 60% by mass or less, preferably 50% by mass or less, from the viewpoint of not reducing the amount of lower olefin produced and maintaining the physical properties (for example, moldability or abrasion resistance) of a practically usable range.
  • the ratio of silicon to aluminum contained in the pentasil-type zeolite is preferably 25 to 100 in terms of the mass ratio of SiO 2 to Al 2 O 3 (mass of SiO 2 / mass of Al 2 O 3 ). .
  • the mass ratio is 25 or more, the acid density on the pentasil-type zeolite is not too high, so it is possible to prevent over-decomposition of the raw material hydrocarbon oil and to increase the yield of the target lower olefin. Moreover, since the acid density on pentasil-type zeolite is appropriate that the said mass ratio is 100 or less, the decomposition activity of raw material hydrocarbon oil is excellent.
  • the primary particle size of pentasil-type zeolite is preferably 0.3 to 5 ⁇ m.
  • the primary particle diameter is the median diameter (D50) measured by the method adopted in the examples described later.
  • the primary particle diameter of the pentasil-type zeolite is the same as that of the pentasil-type zeolite particles in the FCC catalyst additive from the viewpoint of preventing the decrease in the hydrothermal resistance of the FCC catalyst additive and the reduction of the lower olefin yield.
  • the thickness is preferably 0.3 ⁇ m or more from the viewpoint of preventing the increase of the space between the layers to reduce the ABD and the attrition.
  • the primary particle diameter of the pentasil-type zeolite is preferably from the viewpoint of preventing a decrease in catalytic activity due to a decrease in the dispersibility of the reaction site due to the solid acid or pores of the zeolite in the particles of the additive for FCC catalyst. 5 ⁇ m or less.
  • the inorganic oxide matrix comprises a binder which binds the components in the FCC catalyst additive, which binder comprises an oxide comprising phosphorous, preferably comprising an oxide comprising phosphorous and aluminum.
  • the amount of phosphorus in the FCC catalyst additive is 5% by mass or more, preferably 7% by mass or more, in terms of diphosphorus pentaoxide (P 2 O 5 ).
  • the amount of phosphorus can be measured by ICP emission spectrometry under the conditions adopted in the examples described later.
  • the additive for FCC catalyst is excellent in wear resistance because the binder has a large power to bond pentasil-type zeolite, alumina component and extender such as kaolin, and further, pentasil-type zeolite Since the hydrothermal stability of is maintained, the yield of lower olefins such as propylene can be increased in the catalytic cracking of hydrocarbon oils.
  • the amount of phosphorus is 20% by mass or less, preferably 15% by mass or less, based on the above.
  • the pore volume of the additive for FCC catalyst is not too small, the reactant is diffused in the pores, and the yield of lower olefin such as propylene is reduced in the catalytic cracking of hydrocarbon oil. It can be enhanced.
  • the inorganic oxide matrix contains an alumina component.
  • the alumina component is preferably obtained by subjecting at least one alumina component selected from the group consisting of gibbsite (a kind of aluminum hydroxide) and a calcined product of gibbsite to the heat treatment described later.
  • the amount of aluminum converted to Al 2 O 3 in the inorganic oxide matrix is 2 to 20% by mass, preferably 2.5 to 15% by mass.
  • the amount is included (however, the amount of the FCC catalyst additive is 100% by mass).
  • the amount of the alumina component is in the above range, it is possible to sufficiently suppress a decrease in propylene yield due to poisoning of metals (heavy metals such as vanadium and nickel contained in raw material hydrocarbon oil) in FCC and practical use A range of catalytic properties (eg, moldability or abrasion resistance) can be maintained.
  • the inorganic oxide matrix may contain, as a binder, any binder other than the above-described oxides containing phosphorus and aluminum.
  • Optional binders include inorganic oxides such as silica, silica-magnesia, titania, zirconia, silica-zirconia and calcium silicate.
  • the amount of the optional binder contained in the FCC catalyst additive of the present invention is preferably 5 to 25% by mass, more preferably 10 to 15% by mass.
  • the inorganic oxide matrix contains a filler made of an inorganic oxide which is usually blended with an additive for FCC catalyst.
  • extenders include clay minerals such as kaolin, bentonite and halloysite, with kaolin being particularly preferred.
  • the filler may be a heat-treated product of these clay minerals.
  • the amount of the extender contained in the FCC catalyst additive of the present invention is the amount of the FCC catalyst additive minus the total amount of the pentasil-type zeolite, the binder and the alumina component.
  • the additive for FCC catalyst of the present invention has the following formula (1): 0.02 ⁇ P ( ⁇ 25 ppm) / P ( ⁇ 30 ppm) ⁇ 0.40 ... (1) Meet.
  • P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively, and the details are as follows: .
  • the FCC catalyst additive is uniformly packed into a 3.2 mm diameter sample tube for NMR solid, and the sample tube is set in an NMR apparatus (magnetic field strength: 14.1 T ( 1 H resonance frequency: 600 MHz)). , Rotate at 20 kHz with a magic angle (54.7 °) to the external magnetic field. As a chemical shift secondary standard, the peak of NH 4 H 2 PO 4 is 1 ppm. Using the single pulse method, the flip angle of the pulse is set to 90 °, and the pulse repetition time is set to 11.5 seconds.
  • the resulting spectrum is analyzed as follows. First, baseline correction of the spectrum is performed. Next, five peaks having chemical shifts of about -6 ppm, -18 ppm, -25 ppm, -30 ppm, and -37 ppm are separated into Voigt functions. The area intensities of all functions are calculated, and the peak area intensity (P (-25 ppm)) of chemical shift about -25 ppm and the peak area intensity (P (-30 ppm)) of chemical shift about -30 ppm Calculate the ratio.
  • the peak with a chemical shift of about -25 ppm is attributed to verlinite formed by the reaction of the calcined material of gibbsite or gibbsite with the binder material containing a phosphorus component, and the peak with a chemical shift of about -30 ppm represents amorphous aluminum phosphate etc. Belonging to
  • the above formula (1) is an index showing the reactivity between the alumina component and the binder material containing the phosphorus component when producing the additive for FCC catalyst by the production method described later, and the larger the value, the more the alumina is. It means that the component is reacting more with the binder raw material containing a phosphorus component.
  • the value of P (-25 ppm) / P (-30 ppm) is 0.02 to 0.40, preferably 0.02 to 0.35, more preferably 0.02 to 0.30, still more preferably 0. It is preferably from 02 to 0.25, particularly preferably from 0.02 to 0.20.
  • P (-25 ppm) / P (-30 ppm) is smaller than 0.02, the resistance to heavy metals of the FCC catalyst additive may be reduced.
  • the value of P (-25 ppm) / P (-30 ppm) is, for example, in the method for producing an additive for an FCC catalyst described later, by increasing the heating rate at the time of firing, an alumina component having a large particle diameter It can be made small by using it, or using the thing with high sodium content as an alumina component.
  • the pore volume of the additive for an FCC catalyst of the present invention in the range of 2 to 50 nm as measured by the BJH method is preferably 0.03 ml / g or more, and the upper limit thereof is, for example, 0.08 ml / g. It may be g.
  • the FCC catalyst additive of the present invention preferably has the following formula (A): Al (9 ppm) / Al (T) 0.10 0.10 (A) Meet.
  • Al (9 ppm) and Al (T) are respectively the peak area ratio of about 9 ppm in 27 Al-NMR measurement and the sum of all peak areas in the range of -30 ppm to 80 ppm. It is as follows.
  • the FCC catalyst additive is uniformly packed into a 3.2 mm diameter sample tube for NMR solid, and the sample tube is set in an NMR apparatus (magnetic field strength: 14.1 T ( 1 H resonance frequency: 600 MHz)). , Rotate at 20 kHz with a magic angle (54.7 °) to the external magnetic field. As a chemical shift reference, the 1mol / L Al (NO 3) 3 aqueous peak of the 0 ppm. Using a single pulse method, the pulse flip angle is set to 10 °, and the pulse repetition time is set to 0.1 seconds.
  • the resulting spectrum is analyzed as follows. First, baseline correction of the spectrum is performed. Next, seven peaks having chemical shifts of about -9 ppm, about 0 ppm, about 9 ppm, about 27 ppm, about 40 ppm, about 55 ppm, and about 60 ppm are separated into Voigt functions. The area intensities of all the functions are calculated, and the ratio of the area intensity of the peak with a chemical shift of about 9 ppm (Al (9 ppm)) to the sum of the area intensities of all functions (Al (T)) is calculated.
  • a peak with a chemical shift of about 9 ppm is assigned to six-coordinated Al.
  • This peak is derived, for example, from an alumina component such as gibbsite added in the manufacturing method described later, and the phosphorus is contained in the manufacturing method described later contained in the catalyst as the addition amount of the alumina component increases.
  • the additive for an FCC catalyst according to the present invention usually has a microspherical particle shape.
  • the size of the particle size of the additive for the FCC catalyst is because the additive for the FCC catalyst is used in combination with the FCC catalyst containing faujasite-type zeolite for the purpose of producing gasoline used in the FCC unit. , Preferably comparable to or greater than conventional FCC catalysts.
  • the average particle diameter of the microspheroidal particles measured by a laser diffraction / scattering method under the conditions adopted in the examples described later is preferably 40 to 140 ⁇ m, more preferably 60 to 120 ⁇ m.
  • the method for producing the additive for FCC catalyst according to the present invention is Pentasil-type zeolite, Binder raw material containing phosphorus, At least one alumina component selected from the group consisting of gibbsite and a calcined product of gibbsite, A slurry comprising a filler comprising an inorganic oxide (but excluding the alumina component), and a dispersion medium,
  • the amount of the pentasil-type zeolite is 10 to 60% by mass
  • the amount of the binder material containing phosphorus is an amount such that the amount of phosphorus converted to the mass of P 2 O 5 is 5 to 20 mass%
  • the amount of solids in the slurry that is, components other than the dispersion medium in which the amount of the alumina component is 2 to 20% by mass of the amount of aluminum converted to the mass of Al 2 O 3 To 100% by mass), spray-dried to obtain a powder,
  • the powder is characterized in that it is heated
  • the amount of the pentasil-type zeolite is 10% by mass or more, preferably 30% by mass or more, from the viewpoint of obtaining an additive for an FCC catalyst with a high yield of lower olefins such as propylene, 60 mass% or less, preferably 50 mass% or less from the viewpoint of obtaining an additive for an FCC catalyst which does not reduce the amount of lower olefin produced, but the total amount of components other than the dispersion medium of the slurry is 100 mass% ).
  • the binder raw material containing phosphorus a compound which generates phosphate ion (PO 4 3- ) by heating (for example, 500 to 750 ° C.) is preferable.
  • a compound containing phosphorus, aluminum and oxygen is preferable, and as such a compound, aluminum dihydrogenphosphate (Al (H 2 PO 4 ) 3 ), aluminum hydrogenphosphate (Al) 2 (HPO 4 ) 3 ), aluminum phosphate (AlPO 4 ), and aluminum dihydrogenphosphate (Al (H 2 PO 4 ) 3 ) is preferable from the viewpoint of high curing bondability or high reactivity with zeolite. These compounds may be used alone or in combination of two or more.
  • the binder raw material containing phosphorus preferably contains aluminum dihydrogen phosphate as a main component (component that occupies 70% by mass or more).
  • the aqueous solution may be used as a binder raw material containing the said phosphorus.
  • aqueous solution if it is a commercial product, an aqueous solution of aluminum dihydrogen phosphate (Al (H 2 PO 4 ) 3 ) (brand: 50 L, 100 L, acidophos 120 M, manufactured by Takaki Chemical Co., Ltd.), etc. may be mentioned.
  • the amount of phosphorus is 5 to 20% by mass, preferably 6 to 15% by mass in terms of diphosphorus pentaoxide (P 2 O 5 ) (however, the dispersion medium of the slurry is Let the total amount of components other than be 100 mass%.
  • the amount of phosphorus is in the above range, it is 5% by mass or more and is excellent in abrasion resistance, and an additive for an FCC catalyst which can obtain lower olefin such as propylene in high yield in catalytic cracking of hydrocarbon oil Can be manufactured.
  • the said slurry may contain arbitrary binders other than the said binder raw material,
  • the specific aspect is as above-mentioned.
  • the addition of at least one alumina component selected from the group consisting of gibbsite and calcined gibbsite results in an FCC catalyst obtained as compared to the addition of other forms of alumina, for example boehmite which is an alumina monohydrate.
  • the additive is high in hydrothermal resistance and metal resistance, and has a high yield of lower olefin even when there is a large amount of deposition such as vanadium and nickel.
  • the above-mentioned alumina component such as gibbsite type has low reactivity with the phosphorus source, and furthermore, it is possible to generate mesopores derived from the above-mentioned alumina component in the catalyst, and the reaction site for trapping heavy metals such as vanadium and nickel. It is presumed that more can be given.
  • a calcined product containing ⁇ -alumina which is heated at a heating rate of 150 ° C. (preferably 180 ° C.) / Hour or more, at 500 to 750 ° C. (preferably 550 to 700 ° C.)
  • a heating rate of 150 ° C. preferably 180 ° C.
  • 500 to 750 ° C. preferably 550 to 700 ° C.
  • those subjected to heat treatment for 0.2 to 5.0 hours (more preferably for 0.5 to 2.0 hours) can be mentioned.
  • the amount of the alumina component is such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass, preferably 2.5 to 15% by mass (however, the total amount of components other than the dispersion medium of the slurry is 100 Used in% by mass).
  • the amount of the alumina component is in the above range, a decrease in the yield of lower olefins such as propylene due to metal poisoning can be sufficiently suppressed in the case of FCC, and catalyst physical properties (for example, formability) in a practically usable range Or wear resistance).
  • the average particle diameter of the alumina component measured by the method employed in the examples described later is preferably 2 to 50 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the average particle size is in the above range, particles of the alumina component can be sufficiently diffused in the additive for the FCC catalyst, and further, side reactions between the alumina component and the binder raw material containing phosphorus are suppressed, and vanadium, nickel, etc. Many reaction sites can be formed to trap metal components. On the other hand, if this range is exceeded excessively, properties (for example, moldability or abrasion resistance) which are practically required may be impaired.
  • the specific aspect and the preferable aspect of the filler which consists of inorganic oxides are as above-mentioned.
  • the amount of the extender is an amount obtained by subtracting the total amount of the pentasil-type zeolite, the binder raw material containing the phosphorus and aluminum, and the optional binder raw material from the total amount of components other than the dispersion medium of the slurry. Water is preferable as the dispersion medium.
  • the pentasil-type zeolite, the binder raw material containing the phosphorus, the gibbsite-type aluminum hydroxide, the extender, the dispersion medium, and the optional binder raw material as needed are mixed.
  • Prepare the slurry A conventionally known method can be applied to the preparation of the slurry.
  • the solid content concentration of the slurry is preferably about 25 to 50% by mass from the viewpoint of the spray drying operation.
  • the slurry is spray-dried to obtain a powder, and the powder is heated at a temperature rising rate of 150 ° C./hour or more, preferably 180 ° C./hour or more.
  • a temperature rising rate of 150 ° C./hour or more, preferably 180 ° C./hour or more.
  • the rate may decrease.
  • the upper limit of the temperature rising rate may be, for example, 800 ° C./hour, depending on the temperature rising device.
  • heat treatment is performed at a temperature of 500 to 750 ° C., preferably 550 to 700 ° C., preferably for 0.2 to 5.0 hours, more preferably for 0.5 to 2.0 hours to obtain an additive for the FCC catalyst. can get.
  • the conditions for spray drying are, for example, as follows. Spray inlet temperature: 200 to 450 ° C Outlet temperature: 110 to 350 ° C
  • the powder obtained by spray drying is allowed to cool to normal temperature (for example, 0 to 40 ° C.) and then classified to adjust the average particle diameter to, for example, 40 to 140 ⁇ m, preferably 60 to 120 ⁇ m, and then subjected to heat treatment. May be
  • the reaction between the added alumina component and the binder raw material containing phosphorus can be suppressed, and the obtained additive for FCC catalyst has vanadium or nickel on the surface of the alumina component. It is assumed that many reaction sites that trap heavy metals, etc., are formed and show high metal resistance.
  • the heat treatment is preferably performed in a water vapor atmosphere from the viewpoint of further diffusing the binder raw material containing phosphorus, promoting modification of the zeolite acid sites, and further suppressing clogging of zeolite pores by polyphosphoric acid.
  • the additive for FCC catalyst (also referred to as "additive catalyst") according to the present invention is used in a fluid catalytic cracking of hydrocarbon oil in an FCC unit by mixing it with an FCC catalyst containing faujasite type zeolite. .
  • an FCC catalyst containing faujasite-type zeolite a conventional FCC catalyst used in an FCC unit can be used.
  • FCC catalyst commercially available FCC catalysts, for example, DCT, ACZ, CVZ (all are trademarks or registered trademarks of products manufactured by JGC Co., Ltd.) can be exemplified.
  • the amount of the FCC catalyst additive is propylene or the like in a high yield even if the raw material hydrocarbon oil contains a large amount of heavy metals in the FCC.
  • it is preferably 0.1% by mass or more, more preferably 1% by mass or more, and from the viewpoint of the decomposition activity of raw material hydrocarbon oil, generally used at 30% by mass or less
  • up to 60% by mass may be added in a new process or the like for increasing the production of light olefins.
  • Example 1 The ZSM-5 type zeolite produced according to Example 1 of JP2011-213525A is suspended in pure water, crushed by a bead mill until the average particle diameter becomes 2.5 ⁇ m, and the ZSM-5 type zeolite concentration is A 25% by mass slurry (hereinafter also referred to as “ZSM-5 crushed slurry”) was prepared.
  • the mass of phosphorus converted to 482.1 g (the mass of P 2 O 5 ) of an aqueous solution (“100 L” manufactured by Taki Chemical Co., Ltd.) containing 3 ) is 10.8 mass% (162 g) based on the mass of the target substance 527.3 g of pure water is added so that the concentration of the slurry becomes about 35 mass% (as converted to the concentration of the object), and the concentration is about 35 mass%.
  • the following slurry (hereinafter referred to as "mixed slurry") was obtained.
  • the mixed slurry is spray-dried (spray inlet temperature: 250 to 260 ° C., outlet temperature: 150 ° C.), and the obtained particles are allowed to cool to about 25 ° C. and then classified using a sieve with an opening of 212 ⁇ m.
  • Microspherical particles having an average particle diameter of 84 ⁇ m were prepared. 150 g of the micro-spherical particles are put into a baking vessel (volume: 6.2 L) using a small rotary furnace, the temperature is raised to 600 ° C. at a heating rate of 300 ° C./hour, and baking is carried out at 600 ° C. for 30 minutes.
  • FCC catalyst additive A was obtained.
  • Example 2 An amount of 740.2 g (The mass after dehydration is 41.5 mass% based on the mass of the desired product (1,500 g) based on the mass of the desired product) for each of the amounts of kaolin, gibbsite type aluminum hydroxide and aluminum dihydrogen phosphate aqueous solution ), 112.6 g (the amount by which the mass of aluminum converted to the mass of Al 2 O 3 becomes 5% by mass based on the mass of the object), and 446.4 g (phosphorus converted to the mass of P 2 O 5 )
  • the same operation as in Example 1 was carried out except that the mass of was changed to 10.0% by mass based on the mass of the desired product, to obtain an additive B for FCC catalyst. Physical properties and the like of the additive B for FCC catalyst are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was carried out except that the type of the gibbsite type aluminum hydroxide was changed to "C-301N" (median diameter 2.5 ⁇ m) manufactured by Sumitomo Chemical Co., Ltd., to obtain the additive C for FCC catalyst The Physical properties and the like of the additive C for FCC catalyst are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was carried out except that the type of the gibbsite type aluminum hydroxide was changed to "B-316" (median diameter 17.4 ⁇ m) manufactured by Almorix Co., Ltd., to obtain an additive D for FCC catalyst
  • B-316 medium diameter 17.4 ⁇ m
  • the Physical properties and the like of the additive D for FCC catalyst are shown in Table 1.
  • Example 5 The same as Example 1, except that the type of the gibbsite type aluminum hydroxide was changed to “CL-303”, manufactured by Sumitomo Chemical Co., Ltd., (median diameter 5.6 ⁇ m, Na 2 O content 0.19% by weight). The operation was carried out to obtain an additive E for FCC catalyst. Physical properties and the like of the additive E for FCC catalyst are shown in Table 1.
  • Example 6 The same procedure as in Example 1 was carried out except that the type of aluminum hydroxide was changed to a calcined product of gibbsite (the crystal phase is ⁇ -alumina) (“AP-22” manufactured by POROCEL), and the additive F for FCC catalyst was prepared Obtained. Physical properties and the like of the additive F for FCC catalyst are shown in Table 1.
  • Example 7 The amount of ZSM-5 ground slurry was changed to 1,800 g (the amount of ZSM-5 type zeolite to be 30.0 mass% (450 g) based on the mass of the object (1,500 g)), kaolin And the amount of the aqueous solution of aluminum dihydrogen phosphate are respectively 891.7 g (the mass after dehydration is 50.0 mass% based on the mass of the desired product (1,500 g)), 358.2 g (P 2 ) The mass of phosphorus converted to the mass of O 5 was changed to an amount of 8.0 mass% based on the mass of the target product) and 1010.6 g of the amount of pure water to be added for adjusting the concentration of the mixed slurry The same operation as in Example 1 was carried out except for changing to, to obtain an additive G for FCC catalyst. Physical properties and the like of the additive G for FCC catalyst are shown in Table 1.
  • Example 8 The amount of ZSM-5 pulverized slurry was changed to 3,000 g (an amount to 50 mass% (750 g) based on the mass of the object (1,500 g) of ZSM-5 type zeolite), and kaolin, And 414.5 g (the mass after dehydration is 23.2 mass% based on the mass of the desired product (1,500 g)) and 604.5 g (P 2 )
  • the same operation as in Example 1 is carried out except that the mass of phosphorus converted to the mass of O 5 is changed to 13.5 mass% based on the mass of the target product, and the additive H for FCC catalyst I got Physical properties and the like of the additive H for FCC catalyst are shown in Table 1.
  • Example 9 The amount of kaolin and gibbsite type aluminum hydroxide is 561.8 g (the mass after dehydration is 31.5 mass% based on the mass of the object (1,500 g)), and 337.8 g (Al) The same operation as in Example 1 is carried out except that the mass of aluminum converted to the mass of 2 O 3 is changed to 15.0 mass% based on the mass of the desired product, and the additive for FCC catalyst I got. Physical properties and the like of the additive I for FCC catalyst are shown in Table 1.
  • Comparative Example 1 The same operation as in Example 1 was carried out except that the temperature raising rate was changed to 100 ° C./hour, to obtain an additive J for FCC catalyst. Physical properties and the like of the additive J for FCC catalyst are shown in Table 1.
  • Example 2 The amount of kaolin and aqueous solution of aluminum dihydrogen phosphate is 847.2 g (mass after dehydration is 47.5 mass based on the mass of the desired product (1,500 g)) without using gibbsite type aluminum hydroxide. %, And 446.4 g (the mass of phosphorus converted to the mass of P 2 O 5 was changed to 10.0 mass% based on the mass of the object)
  • Example 1 The same operation as in was carried out to obtain an additive K for FCC catalyst. Physical properties and the like of the additive K for FCC catalyst are shown in Table 1.
  • the mass of the target substance is 90.4 g (converted to the mass of Al 2 O 3 ) of 83.0% by mass of boehmite type aluminum hydroxide (“CATAPAL 200” manufactured by Sasol)
  • CAPAL 200 boehmite type aluminum hydroxide
  • the amount of an aqueous solution of kaolin and monobasic aluminum phosphate is 758.0 g
  • Operation was carried out in the same manner as in Example 1 except that the amount was changed to 446.4 g (the amount to be 12.5% by mass based on the mass of the desired product) to obtain an additive L for FCC catalyst .
  • Physical properties and the like of the FCC catalyst additive L are shown in Table 1.
  • Comparative Example 4 FCC catalyst additive K was prepared according to the description of the preparation method of sample B in Example 1 of JP-A-2002-535976. Specifically, 800 g (dry basis) of ZSM-5, 830 g (dry basis) of kaolin, 130 g (Al 2 O 3 equivalent, dry basis) of CATAPAL B (made by Sasol), 390 g of 85% H 3 PO 4 The aqueous solution and pure water were mixed to obtain a mixed slurry with a solid concentration of 45%. The mixed slurry was sufficiently stirred and spray-dried under the same conditions as in Example 1 to prepare microspheres. The resulting micro spherical particles were allowed to stand, heated to 530 ° C. at a temperature rising rate of 300 ° C./hour, and calcined at 530 ° C. for 2 hours to obtain an additive M for FCC catalyst. Physical properties and the like of the additive M for FCC catalyst are shown in Table 1.
  • the measuring method and the evaluation test method in Examples etc. are as follows. (Method of measuring the content of each element) The mass analysis of each element was carried out by chemical analysis using an atomic absorption spectrophotometer for Na and an inductively coupled plasma spectrometer except for Na. Specifically, zeolite (ZSM-5) or catalyst was added with sulfuric acid and hydrofluoric acid and heated to dryness, and the dried product was dissolved in concentrated hydrochloric acid and diluted with water to a concentration of 10 to 100 mass ppm The solution was prepared and analyzed using an atomic absorptiometer (Z-2310) manufactured by Hitachi High-Tech Science Co., Ltd.
  • ICPS-8100 inductively coupled plasma spectrometer manufactured by Shimadzu Corporation.
  • the wavelengths are Na: 589.6 nm, Al: 396.2 nm, Si: 251.6 nm, P: 178.3 nm.
  • the peak of 1 mol / L Al (NO 3 ) 3 aqueous solution was set to 0 ppm as a chemical shift standard.
  • the flip angle of the pulse was set to 10 °, and the pulse repetition time was set to 0.1 s.
  • the peak of NH 4 H 2 PO 4 was used as a chemical shift secondary reference, and it was 1 ppm.
  • the flip angle of the pulse was set to 90 °, and the pulse repetition time was set to 11.5 s.
  • the resulting spectrum was analyzed using Origin. First, baseline correction of the spectrum was performed. Each peak was then separated into Voigt functions. In 27 Al-MAS NMR, seven peaks having chemical shifts of about -9 ppm, about 0 ppm, about 9 ppm, about 27 ppm, about 40 ppm, about 55 ppm and about 60 ppm were separated into functions. The area ratio of each peak was determined by calculating the area intensity of all functions and calculating the ratio of each peak to the sum of the areas. Among them, the area ratio of about 9 ppm attributable to the 6-coordinated Al derived from the added aluminum hydroxide or boehmite alumina was calculated.
  • the particle size distribution of the sample was measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-950V2) manufactured by Horiba, Ltd. Specifically, the sample is placed in a solvent (water) so that the light transmittance is in the range of 70 to 95%, circulation rate: 5.0 L / min, ultrasonic irradiation: 1 minute, repetition number: 15 times It measured on condition of. The median diameter (D50) was adopted as the average particle diameter. The refractive index was measured at 1.46 for zeolite and 1.66 for aluminum hydroxide.
  • the particle size distribution of the sample was measured by a laser diffraction / scattering type particle size distribution measuring apparatus (LA-300) manufactured by Horiba, Ltd. Specifically, the sample is placed in a solvent (water) so that the light transmittance is in the range of 70 to 95%, circulation rate: 2.8 L / min, ultrasonic irradiation: 3 minutes, repetition number: 30 times It measured on condition of.
  • the median diameter (D50) was adopted as the average particle diameter.
  • the specific surface area (SA) and the pore volume of pores having a pore diameter of 50 nm or less were measured by BELSORP-mini Ver 2.5.6 manufactured by Microtrac Bell Inc. Specifically, the measurement was performed using a sample obtained by pretreating the catalyst at 500 ° C. for 1 hour, using nitrogen as an adsorption gas.
  • the specific surface area (SA) of the additive for FCC catalyst is BET method
  • the volume of micropores with a pore diameter of 2 nm or less of additive for FCC catalyst is MP method
  • the volume of mesopores with a pore diameter of 2 to 50 nm is BJH method Calculated.
  • TPD temperature rising desorption
  • Ammonia was adsorbed for 30 minutes at 100 ° C., and deaerated for 30 minutes under helium flow at the same temperature. Thereafter, the desorption amount of ammonia when the temperature was raised from 100 ° C. to 500 ° C. at 10 ° C./min was detected by TCD, and the ammonia adsorption amount was calculated from the desorption amount.
  • ACE-MAT Advanced Cracking Evaluation-Micro Activity Test
  • the mixed catalyst is prepared by blending the FCC catalyst additive pretreated to the FCC equilibrium catalyst so that the amount of the FCC catalyst additive in the mixed catalyst is a fixed amount of 2.4% by weight, and preparing the mixed catalyst, ACE-MAT
  • the mixed catalyst was evaluated (measurement of the yield (% by mass) of propylene) in the activity test device.
  • the reaction conditions were as follows. Reaction temperature: 510 ° C. -Raw material oil: Desulfurized vacuum gas oil (DSVGO) 100% by mass oil-WHSV: 8h -1 ⁇ Catalyst / oil ratio: 5% by mass /% by mass
  • the evaluation results are shown in Table 1.

Abstract

[Problem] To provide an additive for a FCC catalyst, which enables the production of a lower olefin such as propylene with high yield in FCC even when a raw material hydrocarbon oil contains a heavy metal in a large quantity. [Solution] An additive for a fluid catalytic cracking catalyst, the additive containing pentasil-type zeolite and an inorganic oxide matrix, wherein the amount of the pentasil-type zeolite is 10 to 60% by mass and the pentasil-type zeolite contains phosphorus in an amount of 5 to 20% by mass in terms of the mass of P2O5, the inorganic oxide matrix contains an alumina component in such an amount that the amount of aluminum in terms of Al2O3 can become 2 to 20% by mass (in which the amount of the additive is 100% by mass), and the following formulae are satisfied: 0.02 ≤ P(-25 ppm)/P(-30 ppm) ≤ 0.40 [wherein P(-25 ppm) and P(-30 ppm) respectively represent an area ratio of a peak appearing at -25 ppm and an area ratio of a peak appearing at -30 ppm in a 31P-NMR measurement].

Description

流動接触分解触媒用添加物およびその製造方法Additive for fluid catalytic cracking catalyst and method for producing the same
 本発明は、流動接触分解(以下「FCC」ともいう。)において、ガソリンのオクタン価を高め、低級オレフィンの生産量を増加させるために流動接触分解触媒(以下「FCC触媒」ともいう。)と共に使用される添加物およびその製造方法に関する。 The present invention is used in fluid catalytic cracking (hereinafter also referred to as "FCC") together with fluid catalytic cracking catalyst (hereinafter also referred to as "FCC catalyst") to increase the octane number of gasoline and to increase the production of lower olefins. Additives and a method for producing the same.
 製油所の流動接触分解装置(以下「FCC装置」ともいう。)では、原料炭化水素油を接触分解してガソリン留分を製造することが主目的であり、ガソリンは高オクタン価であることが望まれている。また、製油所によっては、FCC装置で原料炭化水素油を接触分解してガソリン留分を生成すると同時に、石油化学原料である低級オレフィン、特に、プロピレン、ブテンの生産量を高めることが要求される場合がある。 In a fluid catalytic cracking unit (hereinafter also referred to as “FCC unit”) of a refinery, the main purpose is to produce a gasoline fraction by catalytically cracking a feedstock hydrocarbon oil, and it is desirable that gasoline has a high octane number. It is rare. In addition, depending on the refinery, it is required to catalytically crack the feedstock hydrocarbon oil in the FCC unit to produce a gasoline fraction, and at the same time increase the production of lower olefins, especially propylene and butene, which are petrochemical feedstocks. There is a case.
 この要求に応えるべく、FCCに使用される触媒に、ZSM-5型ゼオライトなどのペンタシル型ゼオライトを含有する組成物(アディティブ触媒ともいう。)を添加してFCCを行う方法が種々提案されている。 In order to meet this demand, various methods have been proposed to perform FCC by adding a composition containing pentasil type zeolite such as ZSM-5 type zeolite (also referred to as an additive catalyst) to the catalyst used in FCC. .
 このような添加剤として、たとえば特許文献1には、ペンタシル型ゼオライトおよび無機酸化物マトリックスからなる組成物であって、細孔直径が100nm程度のマクロ細孔を多く有するものが開示されている。特許文献2には、ペンタシル型ゼオライト、多孔性無機酸化物および五酸化リンからなる粒子である組成物であって、粒子の中心部分よりも表面部分の五酸化リンの含有量が多いものが開示されている。特許文献3には、プロピレン等の生産量を高めることのできる添加剤として、ZSM-5等のゼオライト、リン酸塩、粘土、およびシリカを含むバインダーを含むFCC触媒添加物が開示されている。さらに特許文献4には、所定の特性を有する変性ZSM-5型ゼオライトと、充填材と、バインダーとを含有するFCC触媒添加物が開示されている。 As such an additive, for example, Patent Document 1 discloses a composition comprising a pentasil-type zeolite and an inorganic oxide matrix and having many macropores having a pore diameter of about 100 nm. Patent Document 2 discloses a composition which is a particle comprising a pentasil-type zeolite, a porous inorganic oxide and phosphorus pentoxide, wherein the content of phosphorus pentoxide in the surface portion is larger than that in the central portion of the particle. It is done. Patent Document 3 discloses an FCC catalyst additive containing a binder containing zeolite such as ZSM-5, phosphate, clay, and silica as an additive capable of increasing the production amount of propylene or the like. Further, Patent Document 4 discloses an FCC catalyst additive containing a modified ZSM-5 type zeolite having predetermined properties, a filler and a binder.
 また特許文献5には、ゼオライト量を多く含み、かつリンおよびアルミナを含む、耐摩損性に優れた触媒が開示され、この触媒は、FCC法において触媒に添加して使用することができる。さらに特許文献6には、ゼオライト、カオリン、リン化合物、高密度の非反応性成分および任意に反応性アルミナを含むFCC触媒が開示され、この触媒は大孔径分子ふるい成分を使用する分解工程に対する添加剤としても適している。 Patent Document 5 discloses an attrition resistant catalyst containing a large amount of zeolite and containing phosphorus and alumina, which can be used by being added to the catalyst in the FCC method. Further, Patent Document 6 discloses an FCC catalyst comprising zeolite, kaolin, phosphorus compound, high density non-reactive component and optionally reactive alumina, which catalyst is added to the decomposition process using large pore molecular sieve component It is also suitable as an agent.
特開2005-270851号公報JP 2005-270851 A 特開2007-244964号公報Unexamined-Japanese-Patent No. 2007-244964 特表2014-527459号公報Japanese Patent Application Publication No. 2014-527459 国際公開第2017/82345号International Publication No. 2017/82345 特表2002-537976号公報Japanese Patent Publication No. 2002-537976 特表2007-534485号公報Japanese Patent Application Publication No. 2007-534485
 接触分解される原料炭化水素油が、特に常圧蒸留残渣油、減圧蒸留残渣油などの重質炭化水素油である場合には、原料炭化水素油にはバナジウムおよびニッケルなどの重金属が多く含まれる。バナジウムは、ゼオライトからの脱アルミニウムを促進し、その結晶構造を破壊させ、活性を低下させてしまう。また、ニッケルは、脱水素活性が高いためコークを多く生成させ、このコークは、FCC触媒の活性点を被毒するほか、FCC触媒を再生させる際に発熱してゼオライトの劣化を促進する。 The feedstock hydrocarbon oil is rich in heavy metals such as vanadium and nickel, particularly when the feedstock hydrocarbon oil to be catalytically cracked is a heavy hydrocarbon oil such as an atmospheric distillation residual oil or a vacuum distillation residual oil. . Vanadium promotes dealumination from the zeolite, destroying its crystal structure and reducing its activity. In addition, nickel generates a large amount of coke because of high dehydrogenation activity, which poisons the active site of the FCC catalyst and generates heat when the FCC catalyst is regenerated to promote the deterioration of the zeolite.
 従来のFCC触媒用添加物には、接触分解される原料炭化水素油が重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得るという観点から、さらなる改善の余地があった。 The conventional FCC catalyst additive had room for further improvement from the viewpoint of obtaining lower olefins such as propylene in high yield even if the raw material hydrocarbon oil to be catalytically cracked contains a large amount of heavy metals. .
 このような問題点に鑑み、本発明は、FCCにおいてFCC触媒と共に使用されるFCC触媒用添加物であって、原料炭化水素油がバナジウム、ニッケル等の重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得ることのできるFCC触媒用添加物(アディティブ触媒)、およびその製造方法を提供することを目的としている。 In view of such problems, the present invention is an additive for an FCC catalyst used together with an FCC catalyst in an FCC, and a high yield is obtained even if the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel. It is an object of the present invention to provide an FCC catalyst additive (additive catalyst) capable of obtaining lower olefins such as propylene at a rate and a process for producing the same.
 本発明の要旨は以下のとおりである。
 〔1〕
 ペンタシル型ゼオライトおよび無機酸化物マトリックスを含む流動接触分解触媒用添加物であって、
 前記ペンタシル型ゼオライトの量が10~60質量%であり、
 リンをP25の質量に換算して5~20質量%含み、
 前記無機酸化物マトリックスがアルミナ成分を、Al23に換算したアルミニウムの量が2~20質量%(ただし、前記添加物の量を100質量%とする。)となる量で含み、
 下記式(1):
   0.02≦P(-25ppm)/P(-30ppm)≦0.40
                              …(1)
〔式中、P(-25ppm)およびP(-30ppm)は、それぞれ31P-NMR測定における-25ppmのピーク面積比率および-30ppmのピーク面積比率である。〕
が満たされる
流動接触分解触媒用添加物。
The gist of the present invention is as follows.
[1]
An additive for fluid catalytic cracking catalyst comprising pentasil type zeolite and an inorganic oxide matrix,
The amount of the pentasil-type zeolite is 10 to 60% by mass,
Contains 5 to 20% by mass of phosphorus in terms of the mass of P 2 O 5 ,
The inorganic oxide matrix contains an alumina component in an amount such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass (provided that the amount of the additive is 100% by mass).
Following formula (1):
0.02 ≦ P (−25 ppm) / P (−30 ppm) ≦ 0.40
... (1)
[Wherein, P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively. ]
Additive for fluid catalytic cracking catalyst which is satisfied.
 〔2〕
 ペンタシル型ゼオライト、
 リンを含むバインダー原料、
 ギブサイトおよびギブサイトの焼成物からなる群から選ばれる少なくとも1種のアルミナ成分、
 無機酸化物(ただし、前記アルミナ成分を除く。)からなる増量材、および
 分散媒
を含むスラリーであって、
 前記ペンタシル型ゼオライトの量が10~60質量%であり、
 前記リンを含むバインダー原料の量が、P25の質量に換算したリンの量が5~20質量%となる量であり、
 前記アルミナ成分の量が、Al23の質量に換算したアルミニウムの量が2~20質量%となる量である
スラリー(ただし、前記スラリーの固形分の量を100質量%とする。)を、噴霧乾燥して粉末を得て、
 前記粉末を150℃以上/時間の昇温速度で加熱し、次いで500~750℃で熱処理する
流動接触分解触媒用添加物の製造方法。
[2]
Pentasil-type zeolite,
Binder raw material containing phosphorus,
At least one alumina component selected from the group consisting of gibbsite and a calcined product of gibbsite,
A slurry comprising a filler comprising an inorganic oxide (but excluding the alumina component), and a dispersion medium,
The amount of the pentasil-type zeolite is 10 to 60% by mass,
The amount of the binder material containing phosphorus is an amount such that the amount of phosphorus converted to the mass of P 2 O 5 is 5 to 20 mass%,
A slurry wherein the amount of the alumina component is 2 to 20% by mass of the amount of aluminum converted to the mass of Al 2 O 3 (provided that the amount of the solid content of the slurry is 100% by mass). Spray dry to obtain powder
A method for producing a fluid catalytic cracking catalyst additive, wherein the powder is heated at a temperature rising rate of 150 ° C. or more / hour and then heat-treated at 500 to 750 ° C.
 本発明のFCC触媒用添加物によれば、原料炭化水素油がバナジウム、ニッケル等の重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得ることができる。また、本発明の製造方法によれば、原料炭化水素油がバナジウム、ニッケル等の重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得ることのできるFCC触媒用添加物を製造することができる。 According to the additive for an FCC catalyst of the present invention, even when the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel, lower olefins such as propylene can be obtained with high yield. Further, according to the production method of the present invention, an additive for an FCC catalyst capable of obtaining lower olefins such as propylene in high yield even when the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel It can be manufactured.
 以下、本発明をさらに詳細に説明する。
           [FCC触媒用添加物]
 本発明に係るFCC触媒用添加物は、
 ペンタシル型ゼオライトおよび無機酸化物マトリックスを含む流動接触分解触媒用添加物であって、
 前記ペンタシル型ゼオライトの量が10~60質量%であり、
 リンをP25の質量に換算して5~20質量%含み、
 前記無機酸化物マトリックスがアルミナ成分を、Al23に換算したアルミニウムの量が2~20質量%(ただし、前記添加物の量を100質量%とする。)となる量で含み、
 下記式(1):
   0.02≦P(-25ppm)/P(-30ppm)≦0.40
                              …(1)
〔式中、P(-25ppm)およびP(-30ppm)は、それぞれ31P-NMR測定における-25ppmのピーク面積比率および-30ppmのピーク面積比率である。〕
が満たされる
ことを特徴としている。
Hereinafter, the present invention will be described in more detail.
[Additives for FCC catalyst]
The additive for FCC catalyst according to the present invention is
An additive for fluid catalytic cracking catalyst comprising pentasil type zeolite and an inorganic oxide matrix,
The amount of the pentasil-type zeolite is 10 to 60% by mass,
Contains 5 to 20% by mass of phosphorus in terms of the mass of P 2 O 5 ,
The inorganic oxide matrix contains an alumina component in an amount such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass (provided that the amount of the additive is 100% by mass).
Following formula (1):
0.02 ≦ P (−25 ppm) / P (−30 ppm) ≦ 0.40
... (1)
[Wherein, P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively. ]
Is characterized by being satisfied.
 前記ペンタシル型ゼオライトは前記無機酸化物マトリックス中に分散している。
 前記ペンタシル型ゼオライトの例としては、ZSM-5、ZSM-11、ZSM-12、ZSM-22、ZSM-23、ZSM-35、ZSM-38、ZSM-48が挙げられる。ZSM-5は、酸強度の高い固体酸を有し、高い形状選択性を示すため、ガソリンのオクタン価および低級オレフィンの収率を高める効果が大きいので、特に好ましい。
The pentasil-type zeolite is dispersed in the inorganic oxide matrix.
Examples of the pentasil-type zeolite include ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35, ZSM-38, and ZSM-48. ZSM-5 is particularly preferable because it has a solid acid with high acid strength and exhibits high shape selectivity, and thus has a large effect on enhancing the octane number of gasoline and the yield of lower olefins.
 本発明のFCC触媒用添加物中の前記ペンタシル型ゼオライトの量は、プロピレン等の低級オレフィンの収率を高める観点から10質量%以上、好ましくは30質量%以上であり、過分解によって目的とする低級オレフィン生成量を低下させない観点や、実際に使用できる範囲の物性(たとえば、成形性または耐摩耗性)を維持する観点から60質量%以下、好ましくは50質量%以下である。 The amount of the pentasil-type zeolite in the additive for an FCC catalyst according to the present invention is 10% by mass or more, preferably 30% by mass or more from the viewpoint of enhancing the yield of lower olefins such as propylene. The content is 60% by mass or less, preferably 50% by mass or less, from the viewpoint of not reducing the amount of lower olefin produced and maintaining the physical properties (for example, moldability or abrasion resistance) of a practically usable range.
 前記ペンタシル型ゼオライトに含まれるケイ素とアルミニウムとの割合は、SiO2とAl23との質量比(SiO2の質量/Al23の質量)に換算すると、好ましくは25~100である。 The ratio of silicon to aluminum contained in the pentasil-type zeolite is preferably 25 to 100 in terms of the mass ratio of SiO 2 to Al 2 O 3 (mass of SiO 2 / mass of Al 2 O 3 ). .
 前記質量比が25以上であると、ペンタシル型ゼオライト上の酸密度が高過ぎないため、原料炭化水素油の過分解を防ぎ、目的とする低級オレフィンの収率を高めることができる。また、前記質量比が100以下であると、ペンタシル型ゼオライト上の酸密度が適度であるため、原料炭化水素油の分解活性が優れる。 When the mass ratio is 25 or more, the acid density on the pentasil-type zeolite is not too high, so it is possible to prevent over-decomposition of the raw material hydrocarbon oil and to increase the yield of the target lower olefin. Moreover, since the acid density on pentasil-type zeolite is appropriate that the said mass ratio is 100 or less, the decomposition activity of raw material hydrocarbon oil is excellent.
 ペンタシル型ゼオライトの一次粒子径は、好ましくは0.3~5μmである。
 この一次粒子径とは、後述する実施例で採用した方法で測定されるメジアン径(D50)である。
The primary particle size of pentasil-type zeolite is preferably 0.3 to 5 μm.
The primary particle diameter is the median diameter (D50) measured by the method adopted in the examples described later.
 前記ペンタシル型ゼオライトの一次粒子径は、FCC触媒用添加物の耐水熱性が低下して低級オレフィンの収率が低下することを防ぐ観点からは、またFCC触媒用添加物内で前記ペンタシル型ゼオライト粒子間の空隙が増加して、ABDが低下したりやアトリッションが悪化したりすることを防ぐ観点からは、好ましくは0.3μm以上である。 The primary particle diameter of the pentasil-type zeolite is the same as that of the pentasil-type zeolite particles in the FCC catalyst additive from the viewpoint of preventing the decrease in the hydrothermal resistance of the FCC catalyst additive and the reduction of the lower olefin yield. The thickness is preferably 0.3 μm or more from the viewpoint of preventing the increase of the space between the layers to reduce the ABD and the attrition.
 また、前記ペンタシル型ゼオライトの一次粒子径は、FCC触媒用添加物の粒子内でのゼオライトの固体酸または細孔による反応場の分散性の低下による触媒活性の低下を防ぐ観点からは、好ましくは5μm以下である。 The primary particle diameter of the pentasil-type zeolite is preferably from the viewpoint of preventing a decrease in catalytic activity due to a decrease in the dispersibility of the reaction site due to the solid acid or pores of the zeolite in the particles of the additive for FCC catalyst. 5 μm or less.
 前記無機酸化物マトリックスは、FCC触媒用添加物中の各成分を結合するバインダーを含んでおり、このバインダーはリンを含む酸化物からなり、好ましくはリンおよびアルミニウムを含む酸化物からなる。 The inorganic oxide matrix comprises a binder which binds the components in the FCC catalyst additive, which binder comprises an oxide comprising phosphorous, preferably comprising an oxide comprising phosphorous and aluminum.
 FCC触媒用添加物中のリンの量は、五酸化二リン(P25)の量に換算すると、5質量%以上、好ましくは7質量%以上である。リンの量は、後述する実施例で採用した条件下でのICP発光分光分析法により測定することができる。リンの量がこの範囲にあると、FCC触媒用添加物は、バインダーがペンタシル型ゼオライトとアルミナ成分とカオリン等の増量材とを結合する力が大きいため耐摩耗性に優れ、さらに、ペンタシル型ゼオライトの水熱安定性が保たれることから、炭化水素油の接触分解においてプロピレン等の低級オレフィンの収率を高めることができる。また、リンの量は、前記基準で、20質量%以下、好ましくは15質量%以下である。リンの量がこの範囲にあると、FCC触媒用添加物の細孔容積が小さ過ぎず、細孔内で反応物が拡散され、炭化水素油の接触分解においてプロピレン等の低級オレフィンの収率を高めることができる。 The amount of phosphorus in the FCC catalyst additive is 5% by mass or more, preferably 7% by mass or more, in terms of diphosphorus pentaoxide (P 2 O 5 ). The amount of phosphorus can be measured by ICP emission spectrometry under the conditions adopted in the examples described later. When the amount of phosphorus is in this range, the additive for FCC catalyst is excellent in wear resistance because the binder has a large power to bond pentasil-type zeolite, alumina component and extender such as kaolin, and further, pentasil-type zeolite Since the hydrothermal stability of is maintained, the yield of lower olefins such as propylene can be increased in the catalytic cracking of hydrocarbon oils. In addition, the amount of phosphorus is 20% by mass or less, preferably 15% by mass or less, based on the above. When the amount of phosphorus is in this range, the pore volume of the additive for FCC catalyst is not too small, the reactant is diffused in the pores, and the yield of lower olefin such as propylene is reduced in the catalytic cracking of hydrocarbon oil. It can be enhanced.
 前記無機酸化物マトリックスは、アルミナ成分を含んでいる。このアルミナ成分は、好ましくは、ギブサイト(水酸化アルミニウムの一種)およびギブサイトの焼成物からなる群から選ばれる少なくとも1種のアルミナ成分に後述する熱処理を施して得られる。 The inorganic oxide matrix contains an alumina component. The alumina component is preferably obtained by subjecting at least one alumina component selected from the group consisting of gibbsite (a kind of aluminum hydroxide) and a calcined product of gibbsite to the heat treatment described later.
 本発明のFCC触媒用添加物は、前記無機酸化物マトリックス中に前記アルミナ成分を、Al23に換算したアルミニウムの量が2~20質量%、好ましくは2.5~15質量%となる量で含んでいる(ただし、FCC触媒用添加物の量を100質量%とする。)。前記アルミナ成分の量が上記範囲にあると、FCCの際にメタル(原料炭化水素油に含まれるバナジウムおよびニッケルなどの重金属)被毒によるプロピレン収率の低下を十分に抑制でき、実用上使用可能な範囲の触媒物性(たとえば、成形性または耐摩耗性)を維持できる。 In the additive for an FCC catalyst of the present invention, the amount of aluminum converted to Al 2 O 3 in the inorganic oxide matrix is 2 to 20% by mass, preferably 2.5 to 15% by mass. The amount is included (however, the amount of the FCC catalyst additive is 100% by mass). When the amount of the alumina component is in the above range, it is possible to sufficiently suppress a decrease in propylene yield due to poisoning of metals (heavy metals such as vanadium and nickel contained in raw material hydrocarbon oil) in FCC and practical use A range of catalytic properties (eg, moldability or abrasion resistance) can be maintained.
 前記無機酸化物マトリックスは、バインダーとして、上述したリンおよびアルミニウムを含む酸化物以外の任意のバインダーを含んでいてもよい。任意のバインダーとしては、シリカ、シリカ-マグネシア、チタニア、ジルコニア、シリカ-ジルコニアおよび珪酸カルシウムなどの無機酸化物が挙げられる。
 本発明のFCC触媒用添加物に含まれる任意のバインダーの量は、好ましくは5~25質量%、より好ましくは10~15質量%である。
The inorganic oxide matrix may contain, as a binder, any binder other than the above-described oxides containing phosphorus and aluminum. Optional binders include inorganic oxides such as silica, silica-magnesia, titania, zirconia, silica-zirconia and calcium silicate.
The amount of the optional binder contained in the FCC catalyst additive of the present invention is preferably 5 to 25% by mass, more preferably 10 to 15% by mass.
 また、前記無機酸化物マトリックスは、FCC触媒用添加物に通常配合される無機酸化物からなる増量材を含んでいる。増量材としては、たとえばカオリン、ベントナイト、およびハロイサイトなどの粘土鉱物が挙げられ、カオリンが特に好ましい。増量材は、これらの粘土鉱物の熱処理物であってもよい。 In addition, the inorganic oxide matrix contains a filler made of an inorganic oxide which is usually blended with an additive for FCC catalyst. Examples of extenders include clay minerals such as kaolin, bentonite and halloysite, with kaolin being particularly preferred. The filler may be a heat-treated product of these clay minerals.
 本発明のFCC触媒用添加物に含まれる増量材の量は、FCC触媒用添加物の量から前記ペンタシル型ゼオライト、前記バインダーおよび前記アルミナ成分の合計量を差し引いた量である。 The amount of the extender contained in the FCC catalyst additive of the present invention is the amount of the FCC catalyst additive minus the total amount of the pentasil-type zeolite, the binder and the alumina component.
 本発明のFCC触媒用添加物は、下記式(1):
   0.02≦P(-25ppm)/P(-30ppm)≦0.40
                              …(1)
を満たす。
 式(1)中、P(-25ppm)およびP(-30ppm)は、それぞれ31P-NMR測定における-25ppmのピーク面積比率および-30ppmのピーク面積比率であり、その詳細は以下のとおりである。
The additive for FCC catalyst of the present invention has the following formula (1):
0.02 ≦ P (−25 ppm) / P (−30 ppm) ≦ 0.40
... (1)
Meet.
In Formula (1), P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively, and the details are as follows: .
 FCC触媒用添加物を直径3.2mmのNMR固体用試料管に均一になるように充填し、試料管を、NMR装置(磁場強度:14.1T(1H共鳴周波数:600MHz))にセットし、外部磁場に対してマジック角(54.7°)で、20kHzで回転させる。化学シフト二次基準として、NH42PO4のピークを1ppmとする。シングルパルス法を用い、パルスのフリップ角を90°、パルス繰り返し時間を11.5秒に設定する。 The FCC catalyst additive is uniformly packed into a 3.2 mm diameter sample tube for NMR solid, and the sample tube is set in an NMR apparatus (magnetic field strength: 14.1 T ( 1 H resonance frequency: 600 MHz)). , Rotate at 20 kHz with a magic angle (54.7 °) to the external magnetic field. As a chemical shift secondary standard, the peak of NH 4 H 2 PO 4 is 1 ppm. Using the single pulse method, the flip angle of the pulse is set to 90 °, and the pulse repetition time is set to 11.5 seconds.
 得られたスペクトルを、以下のように解析する。まず、スペクトルのベースライン補正を行う。次に化学シフトが約-6ppm、-18ppm、-25ppm、-30ppm、-37ppmの5つのピークを、フォークト関数に分離する。すべての関数の面積強度を計算し、化学シフトが約-25ppmのピークの面積強度(P(-25ppm))と、化学シフトが約-30ppmのピークの面積強度(P(-30ppm))との比率を計算する。 The resulting spectrum is analyzed as follows. First, baseline correction of the spectrum is performed. Next, five peaks having chemical shifts of about -6 ppm, -18 ppm, -25 ppm, -30 ppm, and -37 ppm are separated into Voigt functions. The area intensities of all functions are calculated, and the peak area intensity (P (-25 ppm)) of chemical shift about -25 ppm and the peak area intensity (P (-30 ppm)) of chemical shift about -30 ppm Calculate the ratio.
 化学シフトが約-25ppmのピークは、ギブサイトまたはギブサイトの焼成物とリン成分を含有するバインダー原料との反応によって生成するベルリナイトに帰属され、化学シフトが約-30ppmのピークは、アモルファスリン酸アルミ等に帰属される。 The peak with a chemical shift of about -25 ppm is attributed to verlinite formed by the reaction of the calcined material of gibbsite or gibbsite with the binder material containing a phosphorus component, and the peak with a chemical shift of about -30 ppm represents amorphous aluminum phosphate etc. Belonging to
 上記式(1)は、後述する製造方法によりFCC触媒用添加物を製造する際の、アルミナ成分とリン成分を含有するバインダー原料との反応性を示す指標であり、この値が大きい程、アルミナ成分がリン成分を含有するバインダー原料とより多く反応していることを意味する。 The above formula (1) is an index showing the reactivity between the alumina component and the binder material containing the phosphorus component when producing the additive for FCC catalyst by the production method described later, and the larger the value, the more the alumina is. It means that the component is reacting more with the binder raw material containing a phosphorus component.
 前記P(-25ppm)/P(-30ppm)の値は、0.02~0.40、好ましくは0.02~0.35、より好ましくは0.02~0.30、さらに好ましくは0.02~0.25、特に好ましくは0.02~0.20である。前記P(-25ppm)/P(-30ppm)が0.02よりも小さいと、FCC触媒用添加物の重金属への耐性が低下してしまう場合がある。 The value of P (-25 ppm) / P (-30 ppm) is 0.02 to 0.40, preferably 0.02 to 0.35, more preferably 0.02 to 0.30, still more preferably 0. It is preferably from 02 to 0.25, particularly preferably from 0.02 to 0.20. When P (-25 ppm) / P (-30 ppm) is smaller than 0.02, the resistance to heavy metals of the FCC catalyst additive may be reduced.
 前記P(-25ppm)/P(-30ppm)の値は、たとえば後述するFCC触媒用添加物の製造方法において、焼成時の昇温速度を高くすることにより、アルミナ成分として粒子径の大きなものを用いることにより、あるいは、アルミナ成分としてナトリウム含有量が高いものを使用することにより小さくすることができる。 The value of P (-25 ppm) / P (-30 ppm) is, for example, in the method for producing an additive for an FCC catalyst described later, by increasing the heating rate at the time of firing, an alumina component having a large particle diameter It can be made small by using it, or using the thing with high sodium content as an alumina component.
 リンの量およびアルミナ成分の量がそれぞれ上記範囲にあり、かつ上記式(1)が満たされることにより、無機酸化物マトリックス中のアルミナ成分中のアルミニウムが金属捕捉剤として優れた効果を発揮し、その結果、FCCにおいて原料炭化水素油がバナジウム、ニッケル等の重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得ることができると考えられる。 When the amount of phosphorus and the amount of alumina component are respectively in the above ranges and the above formula (1) is satisfied, aluminum in the alumina component in the inorganic oxide matrix exerts an excellent effect as a metal capture agent, As a result, it is considered that lower olefins such as propylene can be obtained in high yield even if the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel in FCC.
 本発明のFCC触媒用添加物の、BJH法により測定される細孔径2~50nmの範囲の細孔容積は、好ましくは0.03ml/g以上であり、その上限値は、たとえば0.08ml/gであってもよい。 The pore volume of the additive for an FCC catalyst of the present invention in the range of 2 to 50 nm as measured by the BJH method is preferably 0.03 ml / g or more, and the upper limit thereof is, for example, 0.08 ml / g. It may be g.
 前記細孔容積が前記範囲内にあると、FCCにおいて原料炭化水素油がバナジウム、ニッケル等の重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得ることができる。 When the pore volume is in the above range, lower olefins such as propylene can be obtained with high yield even if the raw material hydrocarbon oil contains a large amount of heavy metals such as vanadium and nickel in FCC.
 本発明のFCC触媒用添加物は、好ましくは下記式(A):
   Al(9ppm)/Al(T)≧0.10 …(A)
を満たす。
 式(A)中、Al(9ppm)およびAl(T)は、それぞれ27Al-NMR測定における約9ppmのピーク面積比率、および-30ppmから80ppmの範囲の全ピーク面積の和であり、その詳細は以下のとおりである。
The FCC catalyst additive of the present invention preferably has the following formula (A):
Al (9 ppm) / Al (T) 0.10 0.10 (A)
Meet.
In the formula (A), Al (9 ppm) and Al (T) are respectively the peak area ratio of about 9 ppm in 27 Al-NMR measurement and the sum of all peak areas in the range of -30 ppm to 80 ppm. It is as follows.
 FCC触媒用添加物を直径3.2mmのNMR固体用試料管に均一になるように充填し、試料管を、NMR装置(磁場強度:14.1T(1H共鳴周波数:600MHz))にセットし、外部磁場に対してマジック角(54.7°)で、20kHzで回転させる。化学シフト基準として、1mol/L Al(NO33水溶液のピークを0ppmとする。シングルパルス法を用い、パルスのフリップ角を10°、パルス繰り返し時間を0.1秒に設定する。 The FCC catalyst additive is uniformly packed into a 3.2 mm diameter sample tube for NMR solid, and the sample tube is set in an NMR apparatus (magnetic field strength: 14.1 T ( 1 H resonance frequency: 600 MHz)). , Rotate at 20 kHz with a magic angle (54.7 °) to the external magnetic field. As a chemical shift reference, the 1mol / L Al (NO 3) 3 aqueous peak of the 0 ppm. Using a single pulse method, the pulse flip angle is set to 10 °, and the pulse repetition time is set to 0.1 seconds.
 得られたスペクトルを、以下のように解析する。まず、スペクトルのベースライン補正を行う。次に化学シフトが約-9ppm、約0ppm、約9ppm、約27ppm、約40ppm、約55ppm、約60ppmの7つのピークを、フォークト関数に分離する。すべての関数の面積強度を計算し、化学シフトが約9ppmのピークの面積強度(Al(9ppm))と、すべての関数の面積強度の総和(Al(T))との比率を計算する。 The resulting spectrum is analyzed as follows. First, baseline correction of the spectrum is performed. Next, seven peaks having chemical shifts of about -9 ppm, about 0 ppm, about 9 ppm, about 27 ppm, about 40 ppm, about 55 ppm, and about 60 ppm are separated into Voigt functions. The area intensities of all the functions are calculated, and the ratio of the area intensity of the peak with a chemical shift of about 9 ppm (Al (9 ppm)) to the sum of the area intensities of all functions (Al (T)) is calculated.
 化学シフトが約9ppmのピークは6配位Alに帰属される。このピークは、たとえば後述する製造方法において添加されるギブサイト等のアルミナ成分に由来するものであり、アルミナ成分の添加量が多い程、また、触媒中に含まれる後述する製造方法においてリンを含有するバインダー原料とアルミナ成分との反応が少ない程、ピーク面積は大きくなり、式(A)も高い値を示す。 A peak with a chemical shift of about 9 ppm is assigned to six-coordinated Al. This peak is derived, for example, from an alumina component such as gibbsite added in the manufacturing method described later, and the phosphorus is contained in the manufacturing method described later contained in the catalyst as the addition amount of the alumina component increases. The smaller the reaction between the binder raw material and the alumina component, the larger the peak area, and the formula (A) also exhibits a higher value.
 本発明に係るFCC触媒用添加物は、通常、微小球状粒子形状を有している。前記FCC触媒用添加物は、FCC装置で使用されるガソリン生成を目的としたフォージャサイト型ゼオライトを含有するFCC触媒と混合して使用するため、前記FCC触媒用添加物の粒子の大きさは、好ましくは通常のFCC触媒と同程度か、または、それより大きい。 The additive for an FCC catalyst according to the present invention usually has a microspherical particle shape. The size of the particle size of the additive for the FCC catalyst is because the additive for the FCC catalyst is used in combination with the FCC catalyst containing faujasite-type zeolite for the purpose of producing gasoline used in the FCC unit. , Preferably comparable to or greater than conventional FCC catalysts.
 後述する実施例で採用した条件下でレーザー回折・散乱法により測定される前記微小球状粒子の平均粒子径は、好ましくは40~140μm、より好ましくは60~120μmである。 The average particle diameter of the microspheroidal particles measured by a laser diffraction / scattering method under the conditions adopted in the examples described later is preferably 40 to 140 μm, more preferably 60 to 120 μm.
         [FCC触媒用添加物の製造方法]
 本発明に係るFCC触媒用添加物の製造方法は、
 ペンタシル型ゼオライト、
 リンを含むバインダー原料、
 ギブサイトおよびギブサイトの焼成物からなる群から選ばれる少なくとも1種のアルミナ成分、
 無機酸化物(ただし、前記アルミナ成分を除く。)からなる増量材、および
 分散媒
を含むスラリーであって、
 前記ペンタシル型ゼオライトの量が10~60質量%であり、
 前記リンを含むバインダー原料の量が、P25の質量に換算したリンの量が5~20質量%となる量であり、
 前記アルミナ成分の量が、Al23の質量に換算したアルミニウムの量が2~20質量%となる量である
スラリー(ただし、前記スラリーの固形分(すなわち、分散媒以外の成分)の量を100質量%とする。)を、噴霧乾燥して粉末を得て、
 前記粉末を150℃以上/時間の昇温速度で加熱し、次いで500~750℃で熱処理する
ことを特徴としている。
[Method of producing additive for FCC catalyst]
The method for producing the additive for FCC catalyst according to the present invention is
Pentasil-type zeolite,
Binder raw material containing phosphorus,
At least one alumina component selected from the group consisting of gibbsite and a calcined product of gibbsite,
A slurry comprising a filler comprising an inorganic oxide (but excluding the alumina component), and a dispersion medium,
The amount of the pentasil-type zeolite is 10 to 60% by mass,
The amount of the binder material containing phosphorus is an amount such that the amount of phosphorus converted to the mass of P 2 O 5 is 5 to 20 mass%,
The amount of solids in the slurry (that is, components other than the dispersion medium) in which the amount of the alumina component is 2 to 20% by mass of the amount of aluminum converted to the mass of Al 2 O 3 To 100% by mass), spray-dried to obtain a powder,
The powder is characterized in that it is heated at a temperature rising rate of 150 ° C. or more / hour, and then heat-treated at 500 to 750 ° C.
 前記ペンタシル型ゼオライトの具体的態様、および好ましい態様は前述のとおりである。
 前記ペンタシル型ゼオライトの量は、プロピレン等の低級オレフィンの収率が高いFCC触媒用添加物を得る観点から10質量%以上、好ましくは30質量%以上であり、原料炭化水素油の過分解によって目的とする低級オレフィン生成量を低下させないFCC触媒用添加物を得る観点から60質量%以下、好ましくは50質量%以下である(ただし、前記スラリーの分散媒以外の成分の合計量を100質量%とする。)。
Specific embodiments and preferred embodiments of the pentasil-type zeolite are as described above.
The amount of the pentasil-type zeolite is 10% by mass or more, preferably 30% by mass or more, from the viewpoint of obtaining an additive for an FCC catalyst with a high yield of lower olefins such as propylene, 60 mass% or less, preferably 50 mass% or less from the viewpoint of obtaining an additive for an FCC catalyst which does not reduce the amount of lower olefin produced, but the total amount of components other than the dispersion medium of the slurry is 100 mass% ).
 前記リンを含むバインダー原料としては、加熱(たとえば500~750℃)によりリン酸イオン(PO4 3-)を発生させる化合物が好ましい。前記リンを含むバインダー原料としては、リン、アルミニウムおよび酸素を含有する化合物が好ましく、このような化合物としては、リン酸二水素アルミニウム(Al(H2PO43)、リン酸水素アルミニウム(Al2(HPO43)、リン酸アルミニウム(AlPO4)が挙げられ、硬化結合性またはゼオライトと反応性が高いという観点からリン酸二水素アルミニウム(Al(H2PO43)が好ましい。これらの化合物は、1種単独で使用してもよく2種以上を併用してもよい。前記リンを含むバインダー原料は、好ましくは主成分(70質量%以上を占める成分)としてリン酸二水素アルミニウムを含む。 As the binder raw material containing phosphorus, a compound which generates phosphate ion (PO 4 3- ) by heating (for example, 500 to 750 ° C.) is preferable. As the binder raw material containing phosphorus, a compound containing phosphorus, aluminum and oxygen is preferable, and as such a compound, aluminum dihydrogenphosphate (Al (H 2 PO 4 ) 3 ), aluminum hydrogenphosphate (Al) 2 (HPO 4 ) 3 ), aluminum phosphate (AlPO 4 ), and aluminum dihydrogenphosphate (Al (H 2 PO 4 ) 3 ) is preferable from the viewpoint of high curing bondability or high reactivity with zeolite. These compounds may be used alone or in combination of two or more. The binder raw material containing phosphorus preferably contains aluminum dihydrogen phosphate as a main component (component that occupies 70% by mass or more).
 前記リンを含むバインダー原料として、その水溶液を使用してもよい。前記水溶液として、市販品であれば、リン酸二水素アルミニウム(Al(H2PO43)水溶液(銘柄:50L、100L、アシドホス120M、多木化学(株)製)、などが挙げられる。 The aqueous solution may be used as a binder raw material containing the said phosphorus. As the aqueous solution, if it is a commercial product, an aqueous solution of aluminum dihydrogen phosphate (Al (H 2 PO 4 ) 3 ) (brand: 50 L, 100 L, acidophos 120 M, manufactured by Takaki Chemical Co., Ltd.), etc. may be mentioned.
 前記リンを含むバインダー原料は、リンの量が五酸化二リン(P25)に換算して5~20質量%、好ましくは6~15質量%となる量(ただし、前記スラリーの分散媒以外の成分の合計量を100質量%とする。)で用いられる。リンの量が前記範囲にあると、5質量%以上であると、耐摩耗性に優れ、炭化水素油の接触分解においてプロピレン等の低級オレフィンを高収率で得ることのできるFCC触媒用添加物を製造することができる。 In the binder material containing phosphorus, the amount of phosphorus is 5 to 20% by mass, preferably 6 to 15% by mass in terms of diphosphorus pentaoxide (P 2 O 5 ) (however, the dispersion medium of the slurry is Let the total amount of components other than be 100 mass%. When the amount of phosphorus is in the above range, it is 5% by mass or more and is excellent in abrasion resistance, and an additive for an FCC catalyst which can obtain lower olefin such as propylene in high yield in catalytic cracking of hydrocarbon oil Can be manufactured.
 前記スラリーには、前記バインダー原料以外の任意のバインダーを含んでいてもよく、その具体的態様は前述のとおりである。
 ギブサイトおよびギブサイトの焼成物からなる群から選ばれる少なくとも1種のアルミナ成分を添加すると、他の形態のアルミナ、たとえばアルミナ一水和物であるベーマイトが添加された場合と比べて、得られるFCC触媒用添加物は、耐水熱性や耐メタル性が高くバナジウムやニッケル等の堆積が多い場合においても低級オレフィン収率が高い。その理由としては、ギブサイト型等の前記アルミナ成分はリン源との反応性が低く、さらに触媒内に前記アルミナ成分由来のメソ細孔を生成でき、バナジウムやニッケル等の重金属をトラップする反応場をより多く付与できるためであると推測される。
The said slurry may contain arbitrary binders other than the said binder raw material, The specific aspect is as above-mentioned.
The addition of at least one alumina component selected from the group consisting of gibbsite and calcined gibbsite results in an FCC catalyst obtained as compared to the addition of other forms of alumina, for example boehmite which is an alumina monohydrate. The additive is high in hydrothermal resistance and metal resistance, and has a high yield of lower olefin even when there is a large amount of deposition such as vanadium and nickel. The reason is that the above-mentioned alumina component such as gibbsite type has low reactivity with the phosphorus source, and furthermore, it is possible to generate mesopores derived from the above-mentioned alumina component in the catalyst, and the reaction site for trapping heavy metals such as vanadium and nickel. It is presumed that more can be given.
 前記ギブサイトの焼成物としては、χ-アルミナを含む焼成物、ギブサイトを150℃(好ましくは180℃)/時間以上の昇温速度で加熱し、500~750℃(好ましくは550~700℃)で好ましくは0.2~5.0時間(より好ましくは0.5~2.0時間)熱処理を施したものなどが挙げられる。 As the calcined product of gibbsite, a calcined product containing χ-alumina, which is heated at a heating rate of 150 ° C. (preferably 180 ° C.) / Hour or more, at 500 to 750 ° C. (preferably 550 to 700 ° C.) Preferably, those subjected to heat treatment for 0.2 to 5.0 hours (more preferably for 0.5 to 2.0 hours) can be mentioned.
 前記アルミナ成分は、Al23に換算したアルミニウムの量が2~20質量%、好ましくは2.5~15質量%となる量(ただし、前記スラリーの分散媒以外の成分の合計量を100質量%とする。)で用いられる。アルミナ成分の量が前記範囲内にあると、FCCの際にメタル被毒によるプロピレン等の低級オレフィンの収率の低下を十分に抑制でき、実用上使用可能な範囲の触媒物性(たとえば、成形性または耐摩耗性)を維持できる。 The amount of the alumina component is such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass, preferably 2.5 to 15% by mass (however, the total amount of components other than the dispersion medium of the slurry is 100 Used in% by mass). When the amount of the alumina component is in the above range, a decrease in the yield of lower olefins such as propylene due to metal poisoning can be sufficiently suppressed in the case of FCC, and catalyst physical properties (for example, formability) in a practically usable range Or wear resistance).
 前記アルミナ成分の、後述する実施例で採用された方法により測定される平均粒子径は、好ましくは2~50μm、より好ましくは5~30μmである。平均粒子径が上記範囲にあるとFCC触媒用添加物内にアルミナ成分の粒子を十分拡散させることができ、さらにアルミナ成分とリンを含むバインダー原料との副反応を抑制し、バナジウムやニッケル等のメタル成分をトラップする反応場を多く形成できる。一方、この範囲を過度に超えると実用上求められる特性(たとえば、成形性または耐摩耗性)に支障をきたす恐れがある
The average particle diameter of the alumina component measured by the method employed in the examples described later is preferably 2 to 50 μm, more preferably 5 to 30 μm. When the average particle size is in the above range, particles of the alumina component can be sufficiently diffused in the additive for the FCC catalyst, and further, side reactions between the alumina component and the binder raw material containing phosphorus are suppressed, and vanadium, nickel, etc. Many reaction sites can be formed to trap metal components. On the other hand, if this range is exceeded excessively, properties (for example, moldability or abrasion resistance) which are practically required may be impaired.
 前記ギブサイトとしては、市販品であれば、「C-303」、「C-301N」、「CL-303」(住友化学(株)製)、「B-316」(銘柄名、アルモリックス社製)、などが挙げられる。また前記ギブサイトの焼成物としては、市販品であれば、POLOCEL製「AP-22」などが挙げられる。 As the gibbsite, if it is a commercial product, "C-303", "C-301N", "CL-303" (Sumitomo Chemical Co., Ltd. product), "B-316" (brand name, Almorix company product) ), Etc. Moreover, as the baked product of the gibbsite, if it is a commercially available product, "AP-22" manufactured by PLOCEL can be mentioned.
 無機酸化物からなる増量材の具体的態様、および好ましい態様は前述のとおりである。
 前記増量材の量は、スラリーの分散媒以外の成分の合計量から前記ペンタシル型ゼオライト、前記リンおよびアルミニウムを含むバインダー原料および前記任意のバインダー原料の合計量を差し引いた量である。
 前記分散媒としては、水が好ましい。
The specific aspect and the preferable aspect of the filler which consists of inorganic oxides are as above-mentioned.
The amount of the extender is an amount obtained by subtracting the total amount of the pentasil-type zeolite, the binder raw material containing the phosphorus and aluminum, and the optional binder raw material from the total amount of components other than the dispersion medium of the slurry.
Water is preferable as the dispersion medium.
 本発明の製造方法では、まず、前記ペンタシル型ゼオライト、前記リンを含むバインダー原料、前記ギブサイト型水酸化アルミニウム、前記増量材、および前記分散媒、ならびに必要に応じて前記任意のバインダー原料を混合してスラリーを調製する。スラリーの調製には、従来公知の方法を適用することができる。前記スラリーの固形分濃度は、噴霧乾燥の操作の観点から、好ましくは25~50質量%程度である。 In the production method of the present invention, first, the pentasil-type zeolite, the binder raw material containing the phosphorus, the gibbsite-type aluminum hydroxide, the extender, the dispersion medium, and the optional binder raw material as needed are mixed. Prepare the slurry. A conventionally known method can be applied to the preparation of the slurry. The solid content concentration of the slurry is preferably about 25 to 50% by mass from the viewpoint of the spray drying operation.
 次に、前記スラリーを噴霧乾燥して粉末を得て、この粉末を150℃/時間以上、好ましくは180℃/時間以上の昇温速度で加熱する。昇温速度が前記下限値よりも小さいと、前記アルミナ成分と前記リンを含むバインダー原料との反応が過度に進行してしまい、FCC触媒用添加物の重金属被毒によりプロピレン等の低級オレフィンの収率が低下してしまう場合がある。昇温速度の上限は、昇温装置にもよるが、たとえば800℃/時間であってもよい。 Next, the slurry is spray-dried to obtain a powder, and the powder is heated at a temperature rising rate of 150 ° C./hour or more, preferably 180 ° C./hour or more. When the temperature rise rate is smaller than the lower limit, the reaction between the alumina component and the binder material containing the phosphorus proceeds excessively, and the heavy metal poisoning of the FCC catalyst additive causes the recovery of lower olefins such as propylene. The rate may decrease. The upper limit of the temperature rising rate may be, for example, 800 ° C./hour, depending on the temperature rising device.
 次いで500~750℃、好ましくは550~700℃の温度で、好ましくは0.2~5.0時間、より好ましくは0.5~2.0時間熱処理を行うことにより、FCC触媒用添加物が得られる。 Then, heat treatment is performed at a temperature of 500 to 750 ° C., preferably 550 to 700 ° C., preferably for 0.2 to 5.0 hours, more preferably for 0.5 to 2.0 hours to obtain an additive for the FCC catalyst. can get.
 噴霧乾燥の条件は、たとえば以下のとおりである。
   スプレー入口温度:200~450℃
   出口温度:110~350℃
 噴霧乾燥により得られた粉末は、常温(たとえば0~40℃)にまで放冷した後、分級して、平均粒子径をたとえば40~140μm、好ましくは60~120μmに調整してから熱処理に供してもよい。
The conditions for spray drying are, for example, as follows.
Spray inlet temperature: 200 to 450 ° C
Outlet temperature: 110 to 350 ° C
The powder obtained by spray drying is allowed to cool to normal temperature (for example, 0 to 40 ° C.) and then classified to adjust the average particle diameter to, for example, 40 to 140 μm, preferably 60 to 120 μm, and then subjected to heat treatment. May be
 噴霧乾燥された粉末を上記の条件で熱処理することによって、添加したアルミナ成分とリンを含むバインダー原料との反応を抑制でき、得られたFCC触媒用添加物は、アルミナ成分の表面にバナジウムやニッケル等の重金属をトラップする反応場が多く形成され、高いメタル耐性を示すと推測される。 By heat-treating the spray-dried powder under the above conditions, the reaction between the added alumina component and the binder raw material containing phosphorus can be suppressed, and the obtained additive for FCC catalyst has vanadium or nickel on the surface of the alumina component. It is assumed that many reaction sites that trap heavy metals, etc., are formed and show high metal resistance.
 前記熱処理は、リンを含むバインダー原料をより拡散させ、ゼオライト酸点の修飾を促進させ、さらにはポリリン酸によるゼオライト細孔の閉塞を抑制する観点から、好ましくは水蒸気雰囲気下で行われる。 The heat treatment is preferably performed in a water vapor atmosphere from the viewpoint of further diffusing the binder raw material containing phosphorus, promoting modification of the zeolite acid sites, and further suppressing clogging of zeolite pores by polyphosphoric acid.
         [FCC触媒用添加物の使用方法]
 本発明に係るFCC触媒用添加物(「アディティブ触媒」ともいう。)は、FCC装置での炭化水素油の流動接触分解において、フォージャサイト型ゼオライトを含有するFCC触媒に混合して使用される。
[Method of using the additive for FCC catalyst]
The additive for FCC catalyst (also referred to as "additive catalyst") according to the present invention is used in a fluid catalytic cracking of hydrocarbon oil in an FCC unit by mixing it with an FCC catalyst containing faujasite type zeolite. .
 フォージャサイト型ゼオライトを含有するFCC触媒としては、FCC装置で使用される通常のFCC触媒が使用可能である。この様なFCC触媒としては、市販のFCC触媒、例えば、DCT、ACZ、CVZ(いずれも日揮触媒化成(株)製の製品の商標または登録商標)などが例示される。 As an FCC catalyst containing faujasite-type zeolite, a conventional FCC catalyst used in an FCC unit can be used. As such an FCC catalyst, commercially available FCC catalysts, for example, DCT, ACZ, CVZ (all are trademarks or registered trademarks of products manufactured by JGC Co., Ltd.) can be exemplified.
 FCC触媒用添加物の量は、FCC触媒用添加物およびFCC触媒の合計量を100質量%とすると、FCCにおいて原料炭化水素油が重金属を多く含む場合であっても高い収率でプロピレン等の低級オレフィンを得る観点からは、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、原料炭化水素油の分解活性の観点からは、一般的には30質量%以下で使用されるが、ライトオレフィン類を増産させる新規プロセスなどでは60質量%まで添加してもよい。 Assuming that the total amount of the FCC catalyst additive and the FCC catalyst is 100% by mass, the amount of the FCC catalyst additive is propylene or the like in a high yield even if the raw material hydrocarbon oil contains a large amount of heavy metals in the FCC. From the viewpoint of obtaining lower olefins, it is preferably 0.1% by mass or more, more preferably 1% by mass or more, and from the viewpoint of the decomposition activity of raw material hydrocarbon oil, generally used at 30% by mass or less However, up to 60% by mass may be added in a new process or the like for increasing the production of light olefins.
 本発明に係るFCC触媒用添加物が使用される炭化水素油の流動接触分解プロセスでは、FCC触媒用添加物として本発明に係るFCC触媒用添加物が使用される点を除いて、通常のFCC装置における炭化水素油の流動接触分解条件を採用することができる。 In the fluid catalytic cracking process of hydrocarbon oil in which the FCC catalyst additive according to the present invention is used, a conventional FCC except that the FCC catalyst additive according to the present invention is used as the FCC catalyst additive. Fluid catalytic cracking conditions of hydrocarbon oil in the apparatus can be employed.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 [実施例1]
 特開2011-213525号公報の実施例1に従って製造したZSM-5型ゼオライトを、純水に懸濁させ、ビーズミルにより平均粒子径が2.5μmになるまで粉砕し、ZSM-5型ゼオライト濃度が25質量%のスラリー(以下「ZSM-5粉砕スラリー」ともいう。)を調製した。このZSM-5粉砕スラリー2,400g(ZSM-5型ゼオライトの質量が目的物(触媒用添加物。以下同様)の質量(1,500g)を基準として40質量%(600g)となる量)秤量し、ZSM-5粉砕スラリーのpHが9.0になるまで15%アンモニウム水溶液を添加した。これにカオリン 651.0g(脱水後の質量が、目的物の質量を基準として36.5質量%(547.5g)となる量)を混合し、ギブサイト(ギブサイト型水酸化アルミニウム)(住友化学(株)製「C-303」、メジアン径5.3μm)225.2g(Al23の質量に換算したアルミニウムの質量が、目的物の質量を基準として10.0質量%(150g)となる量)を混合し、ホモジナイザーにてスラリーの分散処理を実施した。得られたスラリーにアルミニウムをAl23に換算して8.5質量%、リンをP25に換算して33.5質量%含むリン酸二水素アルミニウム(Al(H2PO43)を含む水溶液(多木化学(株)製「100L」)を482.1g(P25の質量に換算したリンの質量が、目的物の質量を基準として10.8質量%(162g)となる量)となるように加え、さらに、スラリーの濃度が(目的物の濃度に換算して)約35質量%となるように純水を527.3g加えて、濃度が約35質量%のスラリー(以下「混合スラリー」といもいう。)を得た。この混合スラリーを噴霧乾燥(スプレー入口温度:250~260℃、出口温度:150℃)し、得られた粒子を、25℃程度にまで放冷した後、目開き212μmの篩にて分級して平均粒子径84μmの微小球状粒子を調製した。この微小球状粒子150gを、小型回転炉を使用して、焼成容器(容積:6.2L)に入れて昇温速度300℃/時間で600℃まで昇温し、600℃で30分間焼成し、FCC触媒用添加物Aを得た。容器内は100%スチーム雰囲気にするため、焼成容器内部の温度が150℃に達してから600℃保持が終了するまで水を1.0g/分の速度で添加した。FCC触媒用添加物Aの物性等を表1に示す。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
Example 1
The ZSM-5 type zeolite produced according to Example 1 of JP2011-213525A is suspended in pure water, crushed by a bead mill until the average particle diameter becomes 2.5 μm, and the ZSM-5 type zeolite concentration is A 25% by mass slurry (hereinafter also referred to as “ZSM-5 crushed slurry”) was prepared. 2,400 g of this ZSM-5 pulverized slurry (an amount of 40 mass% (600 g) based on the mass (1,500 g) of ZSM-5 type zeolite based on the mass (1,500 g) of the object (additive for catalyst, the same applies hereinafter)) And a 15% aqueous ammonium solution was added until the pH of the ZSM-5 ground slurry was 9.0. This is mixed with 651.0 g of kaolin (an amount such that the mass after dehydration is 36.5 mass% (547.5 g) based on the mass of the target product) to give gibbsite (gibbsite type aluminum hydroxide) (Sumitomo Chemical ( 225.2 g (converted to the mass of Al 2 O 3 ) of “C-303”, Inc. “C-303”, median diameter 5.3 μm, the mass of aluminum becomes 10.0 mass% (150 g) based on the mass of the target product Amount was mixed, and the dispersing treatment of the slurry was carried out with a homogenizer. Aluminum dihydrogen phosphate (Al (H 2 PO 4 )) containing 8.5% by mass of aluminum converted to Al 2 O 3 and 33.5% by mass converted phosphorus to P 2 O 5 in the obtained slurry The mass of phosphorus converted to 482.1 g (the mass of P 2 O 5 ) of an aqueous solution (“100 L” manufactured by Taki Chemical Co., Ltd.) containing 3 ) is 10.8 mass% (162 g) based on the mass of the target substance 527.3 g of pure water is added so that the concentration of the slurry becomes about 35 mass% (as converted to the concentration of the object), and the concentration is about 35 mass%. The following slurry (hereinafter referred to as "mixed slurry") was obtained. The mixed slurry is spray-dried (spray inlet temperature: 250 to 260 ° C., outlet temperature: 150 ° C.), and the obtained particles are allowed to cool to about 25 ° C. and then classified using a sieve with an opening of 212 μm. Microspherical particles having an average particle diameter of 84 μm were prepared. 150 g of the micro-spherical particles are put into a baking vessel (volume: 6.2 L) using a small rotary furnace, the temperature is raised to 600 ° C. at a heating rate of 300 ° C./hour, and baking is carried out at 600 ° C. for 30 minutes. FCC catalyst additive A was obtained. Water was added at a rate of 1.0 g / minute until the temperature in the baking vessel reached 150 ° C. and the holding at 600 ° C. was finished in order to make the inside of the vessel 100% steam atmosphere. Physical properties and the like of the additive A for FCC catalyst are shown in Table 1.
 [実施例2]
 カオリン、ギブサイト型水酸化アルミニウム、およびリン酸二水素アルミニウム水溶液の量を、それぞれ740.2g(脱水後の質量が、目的物の質量(1,500g)を基準として41.5質量%となる量)、112.6g(Al23の質量に換算したアルミニウムの質量が、目的物の質量を基準として5質量%となる量)、および446.4g(P25の質量に換算したリンの質量が、目的物の質量を基準として10.0質量%となる量)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Bを得た。FCC触媒用添加物Bの物性等を表1に示す。
Example 2
An amount of 740.2 g (The mass after dehydration is 41.5 mass% based on the mass of the desired product (1,500 g) based on the mass of the desired product) for each of the amounts of kaolin, gibbsite type aluminum hydroxide and aluminum dihydrogen phosphate aqueous solution ), 112.6 g (the amount by which the mass of aluminum converted to the mass of Al 2 O 3 becomes 5% by mass based on the mass of the object), and 446.4 g (phosphorus converted to the mass of P 2 O 5 ) The same operation as in Example 1 was carried out except that the mass of was changed to 10.0% by mass based on the mass of the desired product, to obtain an additive B for FCC catalyst. Physical properties and the like of the additive B for FCC catalyst are shown in Table 1.
 [実施例3]
 ギブサイト型水酸化アルミニウムの種類を住友化学(株)製「C-301N」(メジアン径2.5μm)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Cを得た。FCC触媒用添加物Cの物性等を表1に示す。
[Example 3]
The same procedure as in Example 1 was carried out except that the type of the gibbsite type aluminum hydroxide was changed to "C-301N" (median diameter 2.5 μm) manufactured by Sumitomo Chemical Co., Ltd., to obtain the additive C for FCC catalyst The Physical properties and the like of the additive C for FCC catalyst are shown in Table 1.
 [実施例4]
 ギブサイト型水酸化アルミニウムの種類をアルモリックス(株)製「B-316」(メジアン径17.4μm)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Dを得た。FCC触媒用添加物Dの物性等を表1に示す。
Example 4
The same procedure as in Example 1 was carried out except that the type of the gibbsite type aluminum hydroxide was changed to "B-316" (median diameter 17.4 μm) manufactured by Almorix Co., Ltd., to obtain an additive D for FCC catalyst The Physical properties and the like of the additive D for FCC catalyst are shown in Table 1.
 [実施例5]
 ギブサイト型水酸化アルミニウムの種類を住友化学(株)製「CL-303」、(メジアン径5.6μm、Na2O含有量0.19重量%)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Eを得た。FCC触媒用添加物Eの物性等を表1に示す。
[Example 5]
The same as Example 1, except that the type of the gibbsite type aluminum hydroxide was changed to “CL-303”, manufactured by Sumitomo Chemical Co., Ltd., (median diameter 5.6 μm, Na 2 O content 0.19% by weight). The operation was carried out to obtain an additive E for FCC catalyst. Physical properties and the like of the additive E for FCC catalyst are shown in Table 1.
 [実施例6]
 水酸化アルミニウムの種類をギブサイトの焼成物(結晶相はχ-アルミナ)(POROCEL製「AP-22」)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Fを得た。FCC触媒用添加物Fの物性等を表1に示す。
[Example 6]
The same procedure as in Example 1 was carried out except that the type of aluminum hydroxide was changed to a calcined product of gibbsite (the crystal phase is χ-alumina) (“AP-22” manufactured by POROCEL), and the additive F for FCC catalyst was prepared Obtained. Physical properties and the like of the additive F for FCC catalyst are shown in Table 1.
 [実施例7]
 ZSM-5粉砕スラリーの量を1,800g(ZSM-5型ゼオライトの質量が目的物の質量(1,500g)を基準として30.0質量%(450g)となる量)に変更したこと、カオリンおよびリン酸二水素アルミニウム水溶液の量を、それぞれ891.7g(脱水後の質量が、目的物の質量(1,500g)を基準として50.0質量%となる量)、358.2g(P25の質量に換算したリンの質量が、目的物の質量を基準として8.0質量%となる量)に変更したこと、ならびに混合スラリーの濃度調整用に加える純水の量を1010.6gに変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Gを得た。FCC触媒用添加物Gの物性等を表1に示す。
[Example 7]
The amount of ZSM-5 ground slurry was changed to 1,800 g (the amount of ZSM-5 type zeolite to be 30.0 mass% (450 g) based on the mass of the object (1,500 g)), kaolin And the amount of the aqueous solution of aluminum dihydrogen phosphate are respectively 891.7 g (the mass after dehydration is 50.0 mass% based on the mass of the desired product (1,500 g)), 358.2 g (P 2 ) The mass of phosphorus converted to the mass of O 5 was changed to an amount of 8.0 mass% based on the mass of the target product) and 1010.6 g of the amount of pure water to be added for adjusting the concentration of the mixed slurry The same operation as in Example 1 was carried out except for changing to, to obtain an additive G for FCC catalyst. Physical properties and the like of the additive G for FCC catalyst are shown in Table 1.
 [実施例8]
 ZSM-5粉砕スラリーの量を3,000g(ZSM-5型ゼオライトの質量が目的物の質量(1,500g)を基準として50質量%(750g)となる量)に変更したこと、ならびにカオリン、およびリン酸二水素アルミニウム水溶液の量を、それぞれ413.8g(脱水後の質量が、目的物の質量(1,500g)を基準として23.2質量%となる量)および604.5g(P25の質量に換算したリンの質量が、目的物の質量を基準として13.5質量%となる量)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Hを得た。FCC触媒用添加物Hの物性等を表1に示す。
[Example 8]
The amount of ZSM-5 pulverized slurry was changed to 3,000 g (an amount to 50 mass% (750 g) based on the mass of the object (1,500 g) of ZSM-5 type zeolite), and kaolin, And 414.5 g (the mass after dehydration is 23.2 mass% based on the mass of the desired product (1,500 g)) and 604.5 g (P 2 ) The same operation as in Example 1 is carried out except that the mass of phosphorus converted to the mass of O 5 is changed to 13.5 mass% based on the mass of the target product, and the additive H for FCC catalyst I got Physical properties and the like of the additive H for FCC catalyst are shown in Table 1.
 [実施例9]
 カオリンおよびギブサイト型水酸化アルミニウムの量を、それぞれ561.8g(脱水後の質量が、目的物の質量(1,500g)を基準として31.5質量%となる量)、および337.8g(Al23の質量に換算したアルミニウムの質量が、目的物の質量を基準として15.0質量%となる量)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Iを得た。FCC触媒用添加物Iの物性等を表1に示す。
[Example 9]
The amount of kaolin and gibbsite type aluminum hydroxide is 561.8 g (the mass after dehydration is 31.5 mass% based on the mass of the object (1,500 g)), and 337.8 g (Al) The same operation as in Example 1 is carried out except that the mass of aluminum converted to the mass of 2 O 3 is changed to 15.0 mass% based on the mass of the desired product, and the additive for FCC catalyst I got. Physical properties and the like of the additive I for FCC catalyst are shown in Table 1.
 [比較例1]
 昇温速度を100℃/時間に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Jを得た。FCC触媒用添加物Jの物性等を表1に示す。
Comparative Example 1
The same operation as in Example 1 was carried out except that the temperature raising rate was changed to 100 ° C./hour, to obtain an additive J for FCC catalyst. Physical properties and the like of the additive J for FCC catalyst are shown in Table 1.
 [比較例2]
 ギブサイト型水酸化アルミニウムを使用せず、カオリン、およびリン酸二水素アルミニウム水溶液の量を、それぞれ847.2g(脱水後の質量が、目的物の質量(1,500g)を基準として47.5質量%となる量)、および446.4g(P25の質量に換算したリンの質量が、目的物の質量を基準として10.0質量%となる量)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Kを得た。FCC触媒用添加物Kの物性等を表1に示す。
Comparative Example 2
The amount of kaolin and aqueous solution of aluminum dihydrogen phosphate is 847.2 g (mass after dehydration is 47.5 mass based on the mass of the desired product (1,500 g)) without using gibbsite type aluminum hydroxide. %, And 446.4 g (the mass of phosphorus converted to the mass of P 2 O 5 was changed to 10.0 mass% based on the mass of the object) Example 1 The same operation as in was carried out to obtain an additive K for FCC catalyst. Physical properties and the like of the additive K for FCC catalyst are shown in Table 1.
 [比較例3]
 ギブサイト型水酸化アルミニウムに替えて、83.0質量%のベーマイト型水酸化アルミニウム(Sasol製「CATAPAL 200」)90.4g(Al23の質量に換算したアルミニウムの質量が、目的物の質量(1,500g)を基準として5質量%となる量)を使用し、カオリン、および第一リン酸アルミニウム水溶液の量を、それぞれ758.0g(目的物の質量を基準として42.5質量%となる量)、および446.4g(目的物の質量を基準として12.5質量%となる量)に変更したこと以外は実施例1と同様の操作を行い、FCC触媒用添加物Lを得た。FCC触媒用添加物Lの物性等を表1に示す。
Comparative Example 3
Instead of the gibbsite type aluminum hydroxide, the mass of the target substance is 90.4 g (converted to the mass of Al 2 O 3 ) of 83.0% by mass of boehmite type aluminum hydroxide (“CATAPAL 200” manufactured by Sasol) Using an amount of 5% by mass based on (1,500 g), the amount of an aqueous solution of kaolin and monobasic aluminum phosphate is 758.0 g ( Operation was carried out in the same manner as in Example 1 except that the amount was changed to 446.4 g (the amount to be 12.5% by mass based on the mass of the desired product) to obtain an additive L for FCC catalyst . Physical properties and the like of the FCC catalyst additive L are shown in Table 1.
 [比較例4]
 特表2002-537976号公報の実施例1の試料Bの調製方法の記載に従ってFCC触媒用添加物Kを調製した。具体的には、800g(乾燥基準)のZSM-5、830g(乾燥基準)のカオリン、130g(Al23換算、乾燥基準)のCATAPAL B(Sasol製)、390gの85%H3PO4水溶液、および純水を混合し、固形分濃度45%の混合スラリーを得た。混合スラリーは十分に撹拌し、実施例1と同様の条件にて噴霧乾燥し、微小球状粒子を調製した。得られた微小球状粒子を、静置し、昇温速度300℃/時間で530℃まで昇温し、530℃で2時間焼成し、FCC触媒用添加物Mを得た。FCC触媒用添加物Mの物性等を表1に示す。
Comparative Example 4
FCC catalyst additive K was prepared according to the description of the preparation method of sample B in Example 1 of JP-A-2002-535976. Specifically, 800 g (dry basis) of ZSM-5, 830 g (dry basis) of kaolin, 130 g (Al 2 O 3 equivalent, dry basis) of CATAPAL B (made by Sasol), 390 g of 85% H 3 PO 4 The aqueous solution and pure water were mixed to obtain a mixed slurry with a solid concentration of 45%. The mixed slurry was sufficiently stirred and spray-dried under the same conditions as in Example 1 to prepare microspheres. The resulting micro spherical particles were allowed to stand, heated to 530 ° C. at a temperature rising rate of 300 ° C./hour, and calcined at 530 ° C. for 2 hours to obtain an additive M for FCC catalyst. Physical properties and the like of the additive M for FCC catalyst are shown in Table 1.
 [測定方法ないし評価方法]
 実施例等における測定方法および評価試験方法は、以下の通りである。
 (各元素の含有量の測定方法)
 各元素の質量分析は、Naは原子吸光光度計、Na以外は誘導結合プラズマ分光分析装置にて化学分析を行った。具体的には、ゼオライト(ZSM-5)または触媒は硫酸とフッ化水素酸を加え加熱し、乾固させ、乾固物を濃塩酸に溶解し、水で濃度10~100質量ppmに希釈した溶液に調製し、株式会社 日立ハイテクサイエンス社製の原子吸光光度計(Z-2310)、(株)島津製作所製 誘導結合プラズマ分光分析装置(ICPS-8100)にて分析した。波長は、Na:589.6nm,Al:396.2nm,Si:251.6nm,P:178.3nmである。
[Measurement method or evaluation method]
The measuring method and the evaluation test method in Examples etc. are as follows.
(Method of measuring the content of each element)
The mass analysis of each element was carried out by chemical analysis using an atomic absorption spectrophotometer for Na and an inductively coupled plasma spectrometer except for Na. Specifically, zeolite (ZSM-5) or catalyst was added with sulfuric acid and hydrofluoric acid and heated to dryness, and the dried product was dissolved in concentrated hydrochloric acid and diluted with water to a concentration of 10 to 100 mass ppm The solution was prepared and analyzed using an atomic absorptiometer (Z-2310) manufactured by Hitachi High-Tech Science Co., Ltd. and an inductively coupled plasma spectrometer (ICPS-8100) manufactured by Shimadzu Corporation. The wavelengths are Na: 589.6 nm, Al: 396.2 nm, Si: 251.6 nm, P: 178.3 nm.
 (27Al-MAS NMR測定および31P-MAS NMR測定)
 FCC触媒用添加物を直径3.2mmのNMR固体用試料管に均一になるように充填し、NMR装置(アジレント製VNMR-600、磁場強度:14.1T(1H共鳴周波数:600MHz))にセットし、外部磁場に対してマジック角(54.7°)で20kHzの高速で回転させた。
( 27 Al-MAS NMR measurement and 31 P-MAS NMR measurement)
An additive for FCC catalyst is uniformly packed in a sample tube for NMR solid having a diameter of 3.2 mm, and then an NMR apparatus (VNMR-600 manufactured by Agilent, magnetic field strength: 14.1 T ( 1 H resonance frequency: 600 MHz)) It was set and rotated at a high speed of 20 kHz at a magic angle (54.7 °) with respect to the external magnetic field.
 27Al測定においては、化学シフト基準として1mol/L Al(NO33水溶液のピークを0ppmとした。シングルパルス法を用い、パルスのフリップ角を10°、パルス繰り返し時間を0.1sに設定した。 In 27 Al measurement, the peak of 1 mol / L Al (NO 3 ) 3 aqueous solution was set to 0 ppm as a chemical shift standard. Using the single pulse method, the flip angle of the pulse was set to 10 °, and the pulse repetition time was set to 0.1 s.
 31P測定においては化学シフト二次基準としてNH42PO4のピークを用い、1ppmとした。シングルパルス法を用い、パルスのフリップ角を90°、パルス繰り返し時間を11.5sに設定した。 In the 31 P measurement, the peak of NH 4 H 2 PO 4 was used as a chemical shift secondary reference, and it was 1 ppm. Using the single pulse method, the flip angle of the pulse was set to 90 °, and the pulse repetition time was set to 11.5 s.
 得られたスペクトルを、Originを用いて解析した。まず、スペクトルのベースライン補正を行った。次に各ピークをフォークト関数に分離した。27Al-MAS NMRは化学シフトが約-9ppm、約0ppm、約9ppm、約27ppm、約40ppm、約55ppm、約60ppmの7つのピークを関数に分離した。すべての関数の面積強度を計算し、面積の総和に対する各ピーク比率を計算することで各ピークの面積比を求めた。その内、添加した水酸化アルミニウムやベーマイトアルミナ等に由来する6配位Alに帰属される約9ppmの面積比を算出した。 The resulting spectrum was analyzed using Origin. First, baseline correction of the spectrum was performed. Each peak was then separated into Voigt functions. In 27 Al-MAS NMR, seven peaks having chemical shifts of about -9 ppm, about 0 ppm, about 9 ppm, about 27 ppm, about 40 ppm, about 55 ppm and about 60 ppm were separated into functions. The area ratio of each peak was determined by calculating the area intensity of all functions and calculating the ratio of each peak to the sum of the areas. Among them, the area ratio of about 9 ppm attributable to the 6-coordinated Al derived from the added aluminum hydroxide or boehmite alumina was calculated.
 31P-MAS NMRは化学シフトが約-6ppm、-18ppm、-25ppm、-30ppm、-37ppmの5つのピークを関数に分離し、同様の方法で各ピークの面積比を求めた。水酸化アルミニウムとリン成分との反応によって生成するベルリナイトに帰属される-25ppmの面積比とアモルファスリン酸アルミ等に帰属される-30ppmの面積比との比率を算出した。 In 31 P-MAS NMR, five peaks having chemical shifts of about −6 ppm, −18 ppm, −25 ppm, −30 ppm, and −37 ppm were separated into functions, and the area ratio of each peak was determined in the same manner. The ratio of the area ratio of -25 ppm attributed to verlinite generated by the reaction of aluminum hydroxide and the phosphorus component to the area ratio of -30 ppm attributed to amorphous aluminum phosphate etc. was calculated.
 (ゼオライト、水酸化アルミニウムの平均粒子径)
 試料の粒度分布の測定を、堀場製作所(株)製レーザー回折・散乱式粒度分布測定装置(LA-950V2)にて行った。具体的には、光線透過率が70~95%の範囲となるように試料を溶媒(水)に投入し、循環速度:5.0L/分、超音波照射:1分間、反復回数:15回の条件で測定した。メジアン径(D50)を平均粒子径として採用した。屈折率をゼオライトは1.46、水酸化アルミニウムは1.66として、測定を実施した。
(Average particle size of zeolite and aluminum hydroxide)
The particle size distribution of the sample was measured using a laser diffraction / scattering particle size distribution measuring apparatus (LA-950V2) manufactured by Horiba, Ltd. Specifically, the sample is placed in a solvent (water) so that the light transmittance is in the range of 70 to 95%, circulation rate: 5.0 L / min, ultrasonic irradiation: 1 minute, repetition number: 15 times It measured on condition of. The median diameter (D50) was adopted as the average particle diameter. The refractive index was measured at 1.46 for zeolite and 1.66 for aluminum hydroxide.
 (FCC触媒用添加物の平均粒子径)
 試料の粒度分布の測定を、堀場製作所(株)製レーザー回折・散乱式粒度分布測定装置(LA-300)にて行った。具体的には、光線透過率が70~95%の範囲となるように試料を溶媒(水)に投入し、循環速度:2.8L/分、超音波照射:3分間、反復回数:30回の条件で測定した。メジアン径(D50)を平均粒子径として採用した。
(Average particle size of additives for FCC catalyst)
The particle size distribution of the sample was measured by a laser diffraction / scattering type particle size distribution measuring apparatus (LA-300) manufactured by Horiba, Ltd. Specifically, the sample is placed in a solvent (water) so that the light transmittance is in the range of 70 to 95%, circulation rate: 2.8 L / min, ultrasonic irradiation: 3 minutes, repetition number: 30 times It measured on condition of. The median diameter (D50) was adopted as the average particle diameter.
 (FCC触媒用添加物の比表面積、細孔容積)
 比表面積(SA)、細孔径が50nm以下の細孔の細孔容積の測定は、マイクロトラック・ベル株式会社製のBELSORP-mini Ver2.5.6にて行った。具体的には触媒を500℃で1時間前処理した試料を用い、吸着ガスには窒素を用いて測定した。FCC触媒用添加物の比表面積(SA)はBET法、FCC触媒用添加物の細孔径が2nm以下のマイクロポアの容積はMP法、細孔径が2~50nmのメソポアの容積はBJH法にて算出した。
(Specific surface area and pore volume of additives for FCC catalyst)
The specific surface area (SA) and the pore volume of pores having a pore diameter of 50 nm or less were measured by BELSORP-mini Ver 2.5.6 manufactured by Microtrac Bell Inc. Specifically, the measurement was performed using a sample obtained by pretreating the catalyst at 500 ° C. for 1 hour, using nitrogen as an adsorption gas. The specific surface area (SA) of the additive for FCC catalyst is BET method, the volume of micropores with a pore diameter of 2 nm or less of additive for FCC catalyst is MP method, and the volume of mesopores with a pore diameter of 2 to 50 nm is BJH method Calculated.
 (アンモニア吸着量)
 アンモニア吸着量は、マイクロトラック・ベル株式会社のBELCAT Version2.5.5にて昇温脱離(TPD)法にて測定した。具体的にはFCC触媒用添加物を活性評価用に擬平衡化処理(Ni/V=2000ppm/4000ppm、810℃-12時間100%スチーミング)したものを500℃で1時間前処理して用いた。前処理した試料0.2gをTPD装置内にて500℃で1時間、ヘリウム流通下で熱処理し、その後100℃まで冷却した。100℃で30分間アンモニアを吸着させ、同温度、ヘリウム流通下で30分間脱気させた。その後100℃から500℃まで10℃/分で昇温する際のアンモニア脱離量をTCDにて検出し、その脱離量より、アンモニア吸着量を算出した。
(Ammonia adsorption amount)
The ammonia adsorption amount was measured by a temperature rising desorption (TPD) method using BELCAT Version 2.5.5 of Microtrac Bell Inc. Specifically, for the purpose of activity evaluation, an additive for FCC catalyst which has been subjected to pseudo-equilibration treatment (Ni / V = 2000 ppm / 4000 ppm, steaming at 810 ° C. for 12 hours for 100 hours) is pretreated at 500 ° C. for 1 hour It was. 0.2 g of the pretreated sample was heat treated in a TPD apparatus at 500 ° C. for 1 hour under helium flow, and then cooled to 100 ° C. Ammonia was adsorbed for 30 minutes at 100 ° C., and deaerated for 30 minutes under helium flow at the same temperature. Thereafter, the desorption amount of ammonia when the temperature was raised from 100 ° C. to 500 ° C. at 10 ° C./min was detected by TCD, and the ammonia adsorption amount was calculated from the desorption amount.
 (触媒性能)
 実施例等で製造されたFCC触媒用添加物A~JをACE-MAT(Advanced Cracking Evaluation - Micro Activity Test)を用い、同一原料油、同一反応条件下で触媒の評価試験を行った。触媒の評価試験を行う前に、各触媒は、ミッチェル法にてNi/V=2000ppm/4000ppm担持し、810℃で12時間、100℃スチーム雰囲気下で前処理をした。
(Catalyst performance)
The evaluation test of the catalyst was conducted under the same raw material oil and the same reaction conditions by using ACE-MAT (Advanced Cracking Evaluation-Micro Activity Test) for the additives A to J for FCC catalyst manufactured in the Examples and the like. Before conducting a catalyst evaluation test, each catalyst was loaded with Ni / V = 2000 ppm / 4000 ppm by the Mitchell method, and was pretreated at 810 ° C. for 12 hours in a 100 ° C. steam atmosphere.
 FCC平衡触媒に前処理したFCC触媒用添加物を、混合触媒中のFCC触媒用添加剤の量が2.4重量%の一定量となるようにブレントして混合触媒を調製し、ACE-MAT活性試験装置で混合触媒の評価(プロピレンの収量(質量%)の測定)をした。
 反応条件は、以下のとおりであった。
・反応温度:510℃
・原料油:脱硫減圧軽油(DSVGO)100質量%の油
・WHSV:8h-1
・触媒/油比:5質量%/質量%
 評価結果を表1に示す。
The mixed catalyst is prepared by blending the FCC catalyst additive pretreated to the FCC equilibrium catalyst so that the amount of the FCC catalyst additive in the mixed catalyst is a fixed amount of 2.4% by weight, and preparing the mixed catalyst, ACE-MAT The mixed catalyst was evaluated (measurement of the yield (% by mass) of propylene) in the activity test device.
The reaction conditions were as follows.
Reaction temperature: 510 ° C.
-Raw material oil: Desulfurized vacuum gas oil (DSVGO) 100% by mass oil-WHSV: 8h -1
・ Catalyst / oil ratio: 5% by mass /% by mass
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (2)

  1.  ペンタシル型ゼオライトおよび無機酸化物マトリックスを含む流動接触分解触媒用添加物であって、
     前記ペンタシル型ゼオライトの量が10~60質量%であり、
     リンをP25の質量に換算して5~20質量%含み、
     前記無機酸化物マトリックスがアルミナ成分を、Al23に換算したアルミニウムの量が2~20質量%(ただし、前記添加物の量を100質量%とする。)となる量で含み、
     下記式(1):
      0.02≦P(-25ppm)/P(-30ppm)≦0.40
                               …(1)
    〔式中、P(-25ppm)およびP(-30ppm)は、それぞれ31P-NMR測定における-25ppmのピーク面積比率および-30ppmのピーク面積比率である。〕
    が満たされる
    流動接触分解触媒用添加物。
    An additive for fluid catalytic cracking catalyst comprising pentasil type zeolite and an inorganic oxide matrix,
    The amount of the pentasil-type zeolite is 10 to 60% by mass,
    Contains 5 to 20% by mass of phosphorus in terms of the mass of P 2 O 5 ,
    The inorganic oxide matrix contains an alumina component in an amount such that the amount of aluminum converted to Al 2 O 3 is 2 to 20% by mass (provided that the amount of the additive is 100% by mass).
    Following formula (1):
    0.02 ≦ P (−25 ppm) / P (−30 ppm) ≦ 0.40
    ... (1)
    [Wherein, P (-25 ppm) and P (-30 ppm) are the peak area ratio of -25 ppm and the peak area ratio of -30 ppm in 31 P-NMR measurement, respectively. ]
    Additive for fluid catalytic cracking catalyst which is satisfied.
  2.  ペンタシル型ゼオライト、
     リンを含むバインダー原料、
     ギブサイトおよびギブサイトの焼成物からなる群から選ばれる少なくとも1種のアルミナ成分、
     無機酸化物(ただし、前記アルミナ成分を除く。)からなる増量材、および
     分散媒
    を含むスラリーであって、
     前記ペンタシル型ゼオライトの量が10~60質量%であり、
     前記リンを含むバインダー原料の量が、P25の質量に換算したリンの量が5~20質量%となる量であり、
     前記アルミナ成分の量が、Al23の質量に換算したアルミニウムの量が2~20質量%となる量である
    スラリー(ただし、前記スラリーの固形分の量を100質量%とする。)を、噴霧乾燥して粉末を得て、
     前記粉末を150℃以上/時間の昇温速度で加熱し、次いで500~750℃で熱処理する
    流動接触分解触媒用添加物の製造方法。
    Pentasil-type zeolite,
    Binder raw material containing phosphorus,
    At least one alumina component selected from the group consisting of gibbsite and a calcined product of gibbsite,
    A slurry comprising a filler comprising an inorganic oxide (but excluding the alumina component), and a dispersion medium,
    The amount of the pentasil-type zeolite is 10 to 60% by mass,
    The amount of the binder material containing phosphorus is an amount such that the amount of phosphorus converted to the mass of P 2 O 5 is 5 to 20 mass%,
    A slurry wherein the amount of the alumina component is 2 to 20% by mass of the amount of aluminum converted to the mass of Al 2 O 3 (provided that the amount of the solid content of the slurry is 100% by mass). Spray dry to obtain powder
    A method for producing a fluid catalytic cracking catalyst additive, wherein the powder is heated at a temperature rising rate of 150 ° C. or more / hour and then heat-treated at 500 to 750 ° C.
PCT/JP2018/046787 2017-12-28 2018-12-19 Additive for fluid catalytic cracking catalyst, and method for producing same WO2019131381A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019561574A JP7128844B2 (en) 2017-12-28 2018-12-19 Additive for fluid catalytic cracking catalyst and method for producing the same
SG11202005887PA SG11202005887PA (en) 2017-12-28 2018-12-19 Additive for fluid catalytic cracking catalyst, and method for producing the same
MYPI2020003239A MY196429A (en) 2017-12-28 2018-12-19 Additive for Fluid Catalytic Cracking Catalyst, and Method for Producing The Same
KR1020207017421A KR102574700B1 (en) 2017-12-28 2018-12-19 Additive for fluid catalytic cracking catalyst and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253647 2017-12-28
JP2017253647 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131381A1 true WO2019131381A1 (en) 2019-07-04

Family

ID=67063628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046787 WO2019131381A1 (en) 2017-12-28 2018-12-19 Additive for fluid catalytic cracking catalyst, and method for producing same

Country Status (5)

Country Link
JP (1) JP7128844B2 (en)
KR (1) KR102574700B1 (en)
MY (1) MY196429A (en)
SG (1) SG11202005887PA (en)
WO (1) WO2019131381A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020099863A (en) * 2018-12-21 2020-07-02 日揮触媒化成株式会社 Metal scavenger, method of producing metal scavenger, and fluid catalytic cracking catalyst
JP2020151684A (en) * 2019-03-22 2020-09-24 日揮触媒化成株式会社 Metal capture agent, method for producing metal capture agent, and fluid contact degradation catalyst
JP2021023856A (en) * 2019-08-01 2021-02-22 日揮触媒化成株式会社 Metal capture agent, method for producing metal capture agent, and fluid catalytic cracking catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534485A (en) * 2004-04-29 2007-11-29 エンゲルハード・コーポレーシヨン ZSM-5 additive
US20130131419A1 (en) * 2011-11-22 2013-05-23 Exxonmobil Research And Engineering Company Gibbsite catalytic cracking catalyst
CN107303503A (en) * 2016-04-18 2017-10-31 中国石油天然气股份有限公司 A kind of preparation method of catalytic cracking catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394992B2 (en) 2004-03-25 2010-01-06 日揮触媒化成株式会社 Catalyst composition for increasing gasoline octane number and / or lower olefin and fluid catalytic cracking process of hydrocarbons using the same
JP4685668B2 (en) 2006-03-14 2011-05-18 日揮触媒化成株式会社 Hydrocarbon catalytic catalytic cracking composition and process for producing the same
JP2017082345A (en) 2015-10-23 2017-05-18 玉川衛材株式会社 Mask manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534485A (en) * 2004-04-29 2007-11-29 エンゲルハード・コーポレーシヨン ZSM-5 additive
US20130131419A1 (en) * 2011-11-22 2013-05-23 Exxonmobil Research And Engineering Company Gibbsite catalytic cracking catalyst
CN107303503A (en) * 2016-04-18 2017-10-31 中国石油天然气股份有限公司 A kind of preparation method of catalytic cracking catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020099863A (en) * 2018-12-21 2020-07-02 日揮触媒化成株式会社 Metal scavenger, method of producing metal scavenger, and fluid catalytic cracking catalyst
JP7264635B2 (en) 2018-12-21 2023-04-25 日揮触媒化成株式会社 Vanadium scavenger, method for producing vanadium scavenger, and fluid catalytic cracking catalyst
JP2020151684A (en) * 2019-03-22 2020-09-24 日揮触媒化成株式会社 Metal capture agent, method for producing metal capture agent, and fluid contact degradation catalyst
JP7264681B2 (en) 2019-03-22 2023-04-25 日揮触媒化成株式会社 Vanadium scavenger, method for producing vanadium scavenger, and fluid catalytic cracking catalyst
JP2021023856A (en) * 2019-08-01 2021-02-22 日揮触媒化成株式会社 Metal capture agent, method for producing metal capture agent, and fluid catalytic cracking catalyst
JP7278168B2 (en) 2019-08-01 2023-05-19 日揮触媒化成株式会社 Vanadium scavenger and fluid catalytic cracking catalyst

Also Published As

Publication number Publication date
JPWO2019131381A1 (en) 2021-01-07
KR20200096242A (en) 2020-08-11
MY196429A (en) 2023-04-10
SG11202005887PA (en) 2020-07-29
KR102574700B1 (en) 2023-09-06
JP7128844B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP5039540B2 (en) Catalyst composition comprising metal phosphate bonded zeolite and method of use for catalytic cracking of hydrocarbons
JP5851031B2 (en) Catalyst additive in fluid catalytic cracking (FCC) and its production method
US7517827B2 (en) Process for preparation of liquefied petroleum gas selective cracking catalyst
JP2020508279A (en) Modified Y-type molecular sieve, method for producing the same, and catalyst containing the same
Vajglová et al. Synthesis and physicochemical characterization of beta zeolite–bentonite composite materials for shaped catalysts
KR102574700B1 (en) Additive for fluid catalytic cracking catalyst and method for producing the same
CN105016955A (en) Process for production of propylene
RU2624443C2 (en) Catalyst for catalytic cracking of hydrocarbons
JP2009221030A (en) Silica molded product
US20160216242A1 (en) Fcc catalyst additive and a method for its preparation
KR102408667B1 (en) Method of peptizing alumina for fluidizable catalysts
WO2021043017A1 (en) Auxiliary agent for reducing oil slurry and increasing yield of low-carbon olefins, preparation method therefor and application thereof
CN107971000A (en) A kind of assistant for calalytic cracking containing phosphorous Beta molecular sieves and preparation method thereof
US11517887B2 (en) Modified Y-type molecular sieve, catalytic cracking catalyst comprising the same, their preparation and application thereof
JP7046763B2 (en) Fluid cracking catalyst for hydrocarbon oil
US20230294083A1 (en) Fluid catalytic cracking catalyst composition for enhanced butylenes yields with metal passivation functionality
JP5426308B2 (en) Fluid catalytic cracking method
JP6564875B2 (en) Additive for fluid catalytic cracking catalyst for production of lower olefin and method for producing the same
JP2023156821A (en) Additive for fluid catalytic cracking catalysts, method for producing the same, additive mixture including the additive, and fluid catalytic cracking catalyst composition including the additive mixture
WO2014192070A1 (en) Catalyst for catalytic cracking of hydrocarbon, and process for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561574

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893366

Country of ref document: EP

Kind code of ref document: A1