WO2019131378A1 - Copper powder manufacturing method, copper powder obtained using said manufacturing method, resin composition containing said copper powder, method for forming cured product of said resin composition, and said cured product - Google Patents

Copper powder manufacturing method, copper powder obtained using said manufacturing method, resin composition containing said copper powder, method for forming cured product of said resin composition, and said cured product Download PDF

Info

Publication number
WO2019131378A1
WO2019131378A1 PCT/JP2018/046782 JP2018046782W WO2019131378A1 WO 2019131378 A1 WO2019131378 A1 WO 2019131378A1 JP 2018046782 W JP2018046782 W JP 2018046782W WO 2019131378 A1 WO2019131378 A1 WO 2019131378A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
group
resin composition
resin
copper
Prior art date
Application number
PCT/JP2018/046782
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 縫田
仁 細川
森田 博
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2019561572A priority Critical patent/JP7162617B2/en
Publication of WO2019131378A1 publication Critical patent/WO2019131378A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to a method for producing a copper powder, a copper powder obtained by the method, a resin composition containing the copper powder and a specific resin, a method for forming a cured product of the resin composition, and the resin composition It relates to the cured product.
  • the copper powder of the present invention can be used as a conductive material for various applications such as, for example, a conductive filler for conductive paste used for forming an electric circuit or forming an external electrode of a ceramic capacitor. It is a powder.
  • Copper powder is used as a conductive material for various applications, for example, a material for forming electrodes and circuits of electronic parts and the like, and various proposals have been made for a method of producing copper powder.
  • a copper oxide slurry obtained by adding a hydrazine and / or a hydrazine compound to a copper hydroxide slurry is reductively precipitated on a copper powder with the hydrazine and / or the hydrazine compound, and the copper powder is alcohol
  • a process for producing copper powder is disclosed by treating with and then treating with a fatty acid-containing solution.
  • Patent Document 2 discloses a suspension containing copper suboxide particles by adding an alkali hydroxide to a mixture of a copper salt aqueous solution having divalent copper ions and a reducing saccharide which is a first reducing agent. Obtaining the first step, adding a second reducing agent to the suspension containing the copper suboxide particles to obtain a suspension containing the copper suboxide particles and the copper ultrafine particles, the copper suboxide particles Discloses a method for producing a copper powder including a step 2-2 of forming copper fine particles by adding one or more reducing agents selected from a hydrazine compound or ascorbic acid to a suspension containing copper and ultrafine copper particles. . Further, paragraph [0058] of Patent Document 2 discloses that sodium borohydride is preferably used as the second reducing agent used in the step 2-1.
  • an object of the present invention is to produce a cured resin having a low volume resistance of the coating film, containing at least one resin selected from the group consisting of copper powder and phenol resin, epoxy resin, polyester resin and acrylic resin. It is an object of the present invention to provide a resin composition that can be used and a method for producing a copper powder.
  • the present invention comprises the first step of reducing copper particles in water using at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride; Treating the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol; a second step; treating the copper particles obtained in the second step with an ether compound And the third step of treating with at least one solvent selected from the group consisting of alcohol compounds; the copper particles obtained in the third step are brought into contact with a compound represented by the following general formula (1) A process of 4;
  • X 1 represents an alkyl or alkenyl group having 14 to 20 carbon atoms
  • X 2 represents an alkyl group having 1 to 5 carbon atoms
  • M represents a titanium atom, a zirconium atom or a hafnium atom
  • a represents an integer of 1 to 3
  • the present invention also includes (A) a copper powder obtained by the method for producing a copper powder according to the present invention [hereinafter, sometimes abbreviated as (A) component] and (B) phenolic resin, epoxy resin, polyester resin and acrylic It is a resin composition containing at least one resin selected from the group consisting of resins [hereinafter, may be abbreviated as component (B)].
  • the coating film formed by the resin composition containing the copper powder obtained by the present invention and at least one resin selected from the group consisting of phenol resin, epoxy resin, polyester resin and acrylic resin has a volume after curing Low resistance and excellent conductivity. And in this invention, the copper powder used in order to manufacture the said resin composition can be manufactured.
  • the method for producing a copper powder according to the present invention comprises the step of reducing copper particles in water using at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride A second step of treating the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol; a copper particle obtained in the second step; A third step of treating with at least one solvent selected from the group consisting of ether compounds and alcohol compounds; contacting the copper particles obtained in the third step with the compound represented by the above general formula (1) A fourth step of In addition, since a copper powder and a copper particle do not have a clear difference, in this specification, it describes as a copper particle in each process, and describes a final product as a copper powder.
  • water refers to tap water, ion-exchanged water, pure water, ultrapure water, RO water (reverse osmosis water) and the like. Among these, it is preferable to use pure water or ultrapure water.
  • the first step uses copper particles in water using at least one compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride. It is a step of reducing treatment.
  • the copper particles used in the first step are not particularly limited, and known general copper particles can be used. Further, the particle size of the copper particles is not particularly limited. For example, when used as a filler in a composition with a resin such as a phenol resin described later, copper particles having an average particle diameter of about several nm to several hundreds of ⁇ m can be used. It is preferred to use ⁇ m copper particles.
  • the average particle diameter of the copper particles can be determined as a particle diameter (D 50 ) that is 50% cumulative in the volume-based particle size distribution using a particle size distribution measuring device by laser light diffraction method.
  • the copper particles used in the first step are oxidized by air oxidation or the like, it is desirable to treat the copper particles in advance using an aqueous solution in which an inorganic acid or an organic acid is dissolved.
  • an aqueous solution in which sulfuric acid is dissolved is preferably used.
  • the reduction treatment method using at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride in water of copper particles which is carried out in the first step.
  • Well-known general methods can be used. For example, it is preferable to add copper particles to water beforehand to prepare a 10% by mass to 40% by mass copper slurry, and add at least one selected from the above-mentioned borohydride compounds to this copper slurry.
  • the reaction temperature during the reduction treatment is preferably 10 ° C. to 80 ° C., more preferably 15 ° C. to 70 ° C., and particularly preferably 20 ° C. to 50 ° C.
  • the reduction treatment time is preferably 10 minutes to 300 minutes, and particularly preferably 30 minutes to 90 minutes.
  • the concentration of the borohydride compound used in the reduction treatment in the aqueous solution is preferably in the range of 0.1 mass% to 5 mass% with respect to the amount of copper particles, and is 0.5 mass% to 2 mass%. Is particularly preferred.
  • copper particles reduced with sodium borohydride are after curing of a coating film formed of a resin composition comprising a phenol resin, an epoxy resin, a polyester resin and an acrylic resin described later It is preferable because the volume resistance value of
  • the second step of the present invention is a step of treating (for example, washing) the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol.
  • a process liquid used for this process it is preferable to use at least water, and it is particularly preferable to use only water.
  • the processing method performed in the second step is not particularly limited, and can be processed by a known method in general.
  • the copper particles obtained in the first step can be brought into contact with water at 5 ° C. to 90 ° C. or water vapor.
  • contact with water at a temperature of 10.degree. C. to 50.degree. C. is desirable.
  • a contact method it is preferable to adopt a method of immersing copper particles in water or a method of spraying water on copper particles.
  • the third step of the present invention is a step of treating the copper particles obtained in the second step with at least one solvent selected from the group consisting of an ether compound and an alcohol compound.
  • the ether compound used in the third step include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
  • examples of the alcohol compound used in the third step include methanol, ethanol, propanol, 2-propanol, 1-butanol, isobutanol, 2-butanol, tert-butanol, pentanol, isopentanol, 2- Pentanol, neopentanol, tertiary pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol Methylcyclohexanol, methylcycloheptanol, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, pro Lengucol monoe
  • tetrahydrofuran, methanol, ethanol, propanol or 2-propanol when used, it comprises the copper powder obtained by the production method of the present invention, and the phenol resin, epoxy resin, polyester resin and acrylic resin described later. It is preferable because it can form a cured product having a low volume resistance value after curing of a coating film and excellent in conductivity, which is formed of a resin composition containing at least one resin selected from the group, and among them, a cured product having excellent conductivity can be produced. It is particularly preferred to use 2-propanol. However, a solvent different from the treatment liquid used in the second step is used.
  • the treatment (for example, washing) method to be performed in the third step is not particularly limited, and can be treated by a well-known general method.
  • the copper particles obtained in the second step are contacted with at least one solvent selected from the group consisting of an ether compound and an alcohol compound at 5 ° C. to 90 ° C., or these vapors to be present in the copper particles. It is sufficient if water can be removed.
  • a contact method it is preferable to adopt a method of immersing copper particles in these solvents, a method of spraying these solvents on copper particles, or the like.
  • the fourth step of the present invention is a step of bringing the copper particles obtained in the third step into contact with the compound represented by the above general formula (1).
  • X 1 represents an alkyl group having 14 to 20 carbon atoms or an alkenyl group
  • X 2 represents an alkyl group having 1 to 5 carbon atoms
  • M represents a titanium atom, a zirconium atom or hafnium Represents an atom.
  • Examples of the alkyl group having 14 to 20 carbon atoms represented by X 1 include hexadecyl group, heptadecyl group, octadecyl group, 2-heptylundecyl group, 16-methylheptadecyl group, 2- (4,4-dimethyl-) 2-pentyl) -5,7,7-trimethyloctyl group etc. can be mentioned.
  • examples of the alkenyl group having 14 to 20 carbon atoms include 9-octadecenyl group, 9-hexadecenyl group, 9,11,13-octadecatrienyl group, 8-heptadecenyl group and the like.
  • Examples of the organic acid (X 1 COOH) giving a portion of an alkyl group or an alkenyl group having 14 to 20 carbon atoms represented by X 1 in the general formula (1) include, for example, palmitic acid, margaric acid, stearic acid, isostearine Acid, oleic acid, palmitoleic acid, eleostearic acid and the like can be mentioned.
  • the organic acid has 18 carbon atoms, that is, when X 1 is an alkyl group having 17 carbon atoms or an alkenyl group, the resin composition containing the obtained copper powder was used. It is particularly preferable because a cured product having a low volume resistance after curing of the coating film and excellent conductivity can be produced.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by X 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, secondary butyl group, tertiary butyl group, isobutyl group, etc. Can be mentioned.
  • the alcohol compound (X 2 OH) giving a part of the alkyl group having 1 to 5 carbon atoms represented by X 2 in the general formula (1) is methanol, ethanol, n-propanol, 2-propanol, n-butanol And secondary butanol, tertiary butanol, isobutyl alcohol and the like.
  • X 2 is an alkyl group having 3 or 4 carbon atoms
  • the volume resistance value after curing of the coating film formed of the obtained resin composition containing copper powder is low, and the conductivity is improved. It is particularly preferable because excellent cured products can be produced.
  • the compound represented by the said General formula (1) can be manufactured by a well-known general manufacturing method. For example, it can be obtained by reacting tetrakis alkoxide titanium, tetrakis alkoxide zirconium, tetrakis alkoxide hafnium or the like with a carboxylic acid having a corresponding structure at an arbitrary molar ratio.
  • a carboxylic acid having a corresponding structure at an arbitrary molar ratio.
  • S-151 the above compound No. 91
  • ZR-152 the above compound No. 106) (made by Nippon Soda Co., Ltd.), etc.
  • the method for bringing the copper particles obtained in the third step into contact with the compound represented by the general formula (1) is not particularly limited.
  • the copper particles obtained in the third step And the compound represented by the above general formula (1) are directly combined (method I) or obtained in the third step in a solution in which the compound represented by the above general formula (1) is dissolved in a solvent
  • Method of immersing copper particles method II
  • method of spraying a solution obtained by dissolving a compound represented by the above general formula (1) in a solvent onto copper particles obtained in the third step (method III)
  • immersing the copper particles obtained in the third step in at least one liquid selected from the group consisting of water, ether and alcohol, and then represented by the above general formula (1) in the liquid And the like Methodhod IV) of adding a compound.
  • method II and method IV are preferable because copper powder of high productivity and stable quality can be produced, and copper powder produced using method IV is obtained. It is preferable because the volume resistance value after curing of the coating film formed from the resin composition of the copper powder and the phenol resin, epoxy resin, polyester resin and acrylic resin described later is particularly low.
  • the copper powder [component (A)] produced through the above-described first to fourth steps is selected from the group consisting of the copper powder, and the phenol resin, epoxy resin, polyester resin and acrylic resin described later.
  • a coating film is formed of a resin composition containing at least one resin [component (B)]
  • the volume resistance value after curing of the coating compounded the copper powder obtained by another manufacturing method It has a specific feature that is lower than that of the above and has excellent conductivity. In order to investigate this reason, the present applicant attempted to specify the characteristics of copper powder by performing surface analysis and electrical property analysis on the copper powder obtained by the manufacturing method of the present invention described above.
  • the difference with the copper powder obtained by the other manufacturing method as shown in the below-mentioned comparative example can not be found, and it is obtained by the manufacturing method of the present invention in the present powder analysis technology which the applicant has. It was not possible to define the properties, properties, shape, etc. of the copper powder itself, and it was not possible to find out the reason why only the copper powder obtained by the production method of the present invention has specific properties.
  • the resin composition of the present invention is selected from the group consisting of the copper powder [component (A)] produced through the above-mentioned first to fourth steps and a phenol resin, an epoxy resin, a polyester resin and an acrylic resin. It is characterized in that it contains at least one resin [component (B)].
  • the component (A) used in the resin composition of the present invention is a copper powder produced by the above-mentioned production method.
  • the concentration of the component (A) in the resin composition of the present invention is not particularly limited and can be suitably changed according to the shape and thickness of the desired cured resin, but the conductivity is good. Therefore, the concentration of the component (A) in the resin composition of the present invention is preferably 20% by mass to 95% by mass, more preferably 50% by mass to 95% by mass, and 75% by mass to 95% by mass. % Is particularly preferred.
  • the component (B) used in the resin composition of the present invention is at least one resin selected from the group consisting of phenol resins, epoxy resins, polyester resins and acrylic resins.
  • the phenol resin is not particularly limited, and a well-known general phenol resin can be used.
  • a novolac type phenol resin, a resol type phenol resin, or the like can be used. Among them, it is preferable to use a resol type phenolic resin.
  • a commercial item can also be used, for example, powdery phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name: Resin top, PGA-4528, PGA-2473, PGA-4704, PGA-4504, Sumitomo Bakelite Co., Ltd., Brand name: Sumilight resin PR-UFC-504, PR-EPN, PR-ACS-100, PR-ACS-150, PR-12687, PR-13355, PR-16382, PR-217, PR-310, PR- 311, PR-50064, PR-50099, PR-50102, PR-50252, PR-50395, PR-50590, PR-50590B, PR-50699, PR-50869, PR-51316, PR-51326B, PR-51350B, PR-5510, PR-51541 B, PR-5179 , PR-51820, PR-51939, PR-53153, PR-53364, PR-53497, PR-53724, PR-53769, PR-53804, PR-54364, PR-5
  • an epoxy resin is not specifically limited, either, A well-known epoxy resin can be used.
  • the epoxy resin include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcine, pyrocatechol, phloroglucinol and the like; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis (ortho cresol) , Ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (ortho cresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumyl) Benzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, Polyglycidyl ether compounds of polygly
  • Epoxides of cyclic olefin compounds such as sun carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate; epoxidized conjugated diene polymers such as epoxidized polybutadiene, epoxidized styrene-butadiene copolymer, tri Heterocyclic compounds such as glycidyl isocyanurate can be mentioned.
  • polyvalent active hydrogen compounds such as polyhydric phenols, polyamines, carbonyl group-containing compounds, and polyphosphates are used. It may be of high molecular weight.
  • the polyester resin is not particularly limited as long as it is an esterification reaction of a polybasic acid component and a polyhydric alcohol component.
  • the polybasic acid component include one or more dibasic acids such as diphenolic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, fumaric acid, adipic acid, azelaic acid, sebacic acid, dimer acid, etc.
  • lower alkyl esters of these acids are mainly used, and, if necessary, monobasic acids such as benzoic acid, crotonic acid, p-tert-butylbenzoic acid, trimellitic anhydride, methylcyclohexenic carboxylic acid, anhydride
  • monobasic acids such as benzoic acid, crotonic acid, p-tert-butylbenzoic acid, trimellitic anhydride, methylcyclohexenic carboxylic acid, anhydride
  • trimellitic anhydride methylcyclohexenic carboxylic acid
  • anhydride trimellitic anhydride
  • methylcyclohexenic carboxylic acid anhydride
  • anhydride A trivalent or higher polybasic acid such as pyromellitic acid is used in combination.
  • Commercially available products may also be used.
  • Toyobo Co., Ltd. trade names: Byron 300, 500, 560, 600, 630, 650, 670, Byron GK130, 140, 150, 190, 330, 590, 680, 780, 810, 890, 200, 226, 240, 245, 270, 280, 290, 296, 660, 660 Same as 885, Byron GK 250, 360, 640, 880, Unitika Co., Ltd., trade name: Erie Ter UE-3220, 3500, 3210, 3215, 3216, 3620, 3240, 3250, 3300, UE-3200, 9200, 3201, 3203, 3350, 3370, 3380, 3600, 3980, 660, the 3690, the 9600, the 9800, manufactured by Toagosei Co., Ltd., product name: Aron Melt PES-310, the 318, the 334, the 316, such as the 360, and the like.
  • the number average molecular weight is 10,000 to 50,000 and the glass transition point is -35 ° C to 35 ° C in vapor pressure osmometry (VPO method).
  • the polyester resin which is formed by the resin composition with the copper particles obtained according to the present invention, has a low volume resistance after curing of the coating film and can produce a cured product excellent in conductivity.
  • a polyester resin having a number average molecular weight in the range of 15,000 to 40,000 and a glass transition temperature in the range of 0 ° C. to 35 ° C. is particularly preferable.
  • the glass transition temperature is a temperature which can be measured by a DSC method (Suggested Scanning Calorimetry) according to ASTM 3418/82.
  • the acrylic resin is also not particularly limited, and known general acrylic resins can be used. It may be synthesized by a polymerization reaction using an acrylate compound or a methacrylate compound as a raw material, or may be obtained from a commercial product. As a commercial item of acrylic resin, for example, Mitsubishi Rayon Co., Ltd. product name: Acripet MD, VH, MF, V, Negami Industrial Co., Ltd.
  • acrylic resins having a weight average molecular weight of 10,000 to 100,000 and a glass transition temperature in the range of 0 ° C. to 100 ° C. are the same as copper particles obtained by the present invention.
  • the number average molecular weight is preferably in the range of 20,000 to 80,000 because a cured product having a low volume resistance after curing of the coating film formed of the resin composition and excellent conductivity can be produced.
  • An acrylic resin having a glass transition temperature in the range of 10 ° C. to 90 ° C. is particularly preferable.
  • the glass transition temperature is a temperature which can be measured by a DSC method (Suggested Scanning Calorimetry) according to ASTM 3418/82.
  • the weight average molecular weight in this specification means the weight average molecular weight of polystyrene conversion measured by gel permeation chromatography analysis which used tetrahydrofuran as a solvent.
  • the "weight average molecular weight” in the present specification is sometimes referred to as “mass average molecular weight” in the technical field to which the present invention belongs, but is the same.
  • the concentration of the component (B) in the resin composition of the present invention is not particularly limited and can be suitably changed according to the shape and thickness of the desired cured resin, but the conductivity is good. Therefore, the concentration of the component (B) in the resin composition of the present invention is preferably 5% by mass to 80% by mass, more preferably 5% by mass to 50% by mass, and 5% by mass to 25% by mass. % Is particularly preferred.
  • the solvent for example, water or an organic solvent can be used.
  • an organic solvent for example, alcohol solvents, diol solvents, ketone solvents, ester solvents, ether solvents, aliphatic or alicyclic hydrocarbon solvents, aromatic hydrocarbon solvents, cyano group Hydrocarbon solvents, halogenated aromatic hydrocarbon solvents, other solvents, and the like.
  • alcohol solvents include methanol, ethanol, propanol, 2-propanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, 3Pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcyclohepta Nord, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl Ether, diethylene glycol monomethyl ether
  • diol solvents examples include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3 -Methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl- 1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexaned
  • ketone solvents include acetone, ethyl methyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl hexyl ketone, ethyl butyl ketone, diethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl Ketone, cyclohexanone, methyl cyclohexanone and the like can be mentioned.
  • ester solvents for example, methyl formate, ethyl formate, methyl acetate, ethyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, tert-butyl acetate, tert-butyl acetate, amyl acetate, iso-amyl acetate, tert-amyl acetate, Phenyl acetate, methyl propionate, ethyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, sec-butyl propionate, tert-butyl propionate, amyl propionate, isoamyl propionate, iso-amyl propionate, tert-amyl propionate Acid phenyl, methyl 2-ethylhexanoate, e
  • ether solvents examples include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
  • aliphatic or alicyclic hydrocarbon solvents examples include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, solvent naphtha, turpentine oil, D-limonene, pinene, and mineral spirits.
  • aliphatic or alicyclic hydrocarbon solvents include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, solvent naphtha, turpentine oil, D-limonene, pinene, and mineral spirits.
  • solvent naphtha turpentine oil
  • D-limonene pinene
  • mineral spirits mineral spirits.
  • aromatic hydrocarbon solvents examples include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene and tetralin.
  • hydrocarbon solvents having a cyano group examples include acetonitrile, 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1 And 6,6-dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene and the like.
  • halogenated aromatic hydrocarbon solvents examples include carbon tetrachloride, chloroform, trichloroethylene, methylene chloride and the like.
  • organic solvents include, for example, N-methyl-2-pyrrolidone, dimethylsulfoxide, dimethylformamide, aniline, triethylamine and pyridine.
  • a commercial item can also be used for the said antioxidant, for example, dibutyl hydroxytoluene, Irganox 1010, Irganox 1035FF, Irganox 565 [BASF Japan KK-made] etc. are mentioned.
  • the amount of the antioxidant used is preferably 0.0001% by mass to 10% by mass.
  • a commercial item can also be used for the said silane coupling agent, For example, epoxy-type [KBM403, KBM303: Shin-Etsu Chemical Co., Ltd. product made], vinyl-type [KBM1003: Shin-Etsu Chemical Co., Ltd. product], acrylic system silane Coupling agents [KBM 503: manufactured by Shin-Etsu Chemical Co., Ltd.], 3-ethyl (triethoxysilylpropoxymethyl) oxetane [TESOX: manufactured by Toagosei Co., Ltd.], and the like.
  • the amount of the silane coupling agent used is preferably 0.0001% by mass to 10% by mass.
  • the method of forming the cured product of the present invention comprises the steps of applying the resin composition of the present invention described above onto a substrate, and heating the substrate coated with the resin composition of the present invention to cure the cured product. And a curing step to form.
  • the temperature of the curing step is preferably in the range of 50 ° C. to 200 ° C. because a cured product having good conductivity can be obtained, and the range of 100 ° C. to 200 ° C. is particularly preferable.
  • the heating time in the curing step is preferably in the range of 1 minute to 300 minutes, and more preferably in the range of 10 minutes to 60 minutes.
  • the substrate or the substrate coated with the resin composition of the present invention is maintained at 50 ° C. to 150 ° C. as needed, and a drying step of volatilizing low boiling point components such as organic solvents is further included.
  • Examples of the substrate in the present invention include resin substrates, glass substrates, ceramic substrates and the like.
  • Examples of the material of the resin substrate include polyimide, polyester, aramid, polyethylene terephthalate (PET), Teflon (registered trademark) and the like, and examples of the material of the ceramic substrate include alumina and alumina-zirconia.
  • a glass epoxy substrate, a glass composite substrate, etc. are mentioned.
  • a spin coat method As a coating method in the above-mentioned coating process, a spin coat method, a dip method, a spray coat method, a mist coat method, a flow coat method, a curtain coat method, a roll coat method, a knife coat method, a bar coat method, a slit coat method, a screen A printing method, a gravure printing method, an offset printing method, an inkjet method, a brush coating etc. can be mentioned.
  • the above-mentioned application process to an arbitrary process can be repeated multiple times. For example, all the steps from the coating step to the curing step may be repeated a plurality of times, and the coating step and the drying step may be repeated a plurality of times.
  • a conductive layer, an electrode film, wiring etc. can be mentioned.
  • Example 1 Copper particles [volume cumulative average particle size (D 50 ): 1.6 ⁇ m] were added to pure water to make a 20 mass% copper slurry. Then, 1 mass% of sodium borohydride was added with respect to a copper particle, and it stirred at 25 degreeC for 1 hour (1st process). After that, washing with pure water at a temperature of 20 ° C. (second step) and further washing with 2-propanol at a temperature of 20 ° C., the pure water is replaced with 2-propanol, and 20 mass% copper slurry (3rd step).
  • the compound No. No. 91 was added as it is to 1.0% by mass with respect to the mass of the copper particles, whereby the copper particles were added to the compound No. 91 was contacted (fourth step). Thereafter, the copper particles are separated and dried to obtain an example copper powder No. 1 powder. I got one.
  • Example 2 The compound used in the fourth step is No.
  • Example copper powder No. 1 was prepared in the same manner as in Example 1 except that the No. 92 was used. I got two.
  • Example 3 The compound used in the fourth step is No.
  • Example copper powder No. 1 was prepared in the same manner as in Example 1 except that it was changed to No. 106. I got three.
  • Comparative Example 1 Comparative copper powder 1 was obtained in the same manner as in Example 1 except that the compound used in the fourth step was changed to stearic acid.
  • Comparative Example 2 Example 1 and Example 1 except that the compound used in the fourth step is changed to tetraisopropyl bis (dioctyl phosphite) titanate [product made by Ajinomoto Finetech Co., Ltd., trade name: Prenact 41B), which is a titanate coupling agent. Comparative copper powder 2 was obtained in the same manner.
  • Comparative Example 3 Example 1 and Example 1 except that the compound used in the fourth step is changed to tetraoctyl bis (ditridecyl phosphite) titanate [Ajinomoto Finetechto Co., Ltd. product name: Prenact 46B], which is a titanate coupling agent. Comparative copper powder 3 was obtained in the same manner.
  • Comparative Examples 4 to 9 Each component was mixed so as to obtain the composition shown in Table 1, to produce resin compositions (comparative resin compositions 1 to 6).
  • B-1 Bisphenol A liquid epoxy resin (made by ADEKA, trade name: Adeka resin EP-4005) and resol type phenol resin (made by Sumitomo Bakelite, trade name: PR-50232) were mixed at a weight ratio of 2: 8 blend.
  • B-2 Resole-type xylene resin modified with phenols (Fudoh, trade name: PR-1440)
  • diethylene glycol monobutyl ether was used as a solvent for adjusting the film thickness of each composition. Thereafter, heat baking is carried out at 150 ° C. for 30 minutes in the air, whereby a thin film example cured product No. 1 is obtained. I got 1 to 8.
  • Comparative Examples 11 to 15 Using the comparative compositions 1 to 6, coating by a bar coating method was performed on a PET film so as to have a film thickness of 10 ⁇ m to 20 ⁇ m. In addition, diethylene glycol monobutyl ether was used as a solvent for adjusting the film thickness of each composition. Thereafter, heat baking was performed at 150 ° C. for 30 minutes in the air to obtain thin film comparative cured products 1 to 6.
  • Example Cured product No. The volume resistance values of 1 to 8 and comparative cured products 1 to 6 were measured with a high-precision resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., product name: Loresta GP) using a four-terminal four-probe method. The results are shown in Table 2.
  • Evaluation Examples 1 to 8 show lower volume resistance than Comparative Evaluation Examples 1 to 6, and Example Cured Product No. 1 was obtained.
  • Nos. 1 to 8 are comparative cured product Nos. It has been found that the conductivity is superior to 1 to 5.

Abstract

The present invention provides: a method for manufacturing copper powder that can be used as a starting material for a coating, which, when cured, exhibits a low volume resistance value; said copper powder; a resin composition containing said copper powder; a method for forming a cured product; and a cured product. More specifically, the present invention provides: a copper powder manufacturing method comprising a step for subjecting copper particles to a reduction treatment in water using at least one substance selected from the group consisting of potassium borohydride, sodium borohydride, and lithium borohydride, a step for treating the copper particles with at least one substance selected from the group consisting of water, methanol and ethanol, a step for treating the copper particles with at least one substance selected from the group consisting of ether compounds and alcohol compounds, and a step for bringing the copper particles into contact with a compound represented by general formula (1); a copper powder obtained using said manufacturing method; a resin composition containing said copper powder; a method for forming a cured product of said resin composition; and a cured product. (1): (In the formula, X1 represents an alkenyl group or an alkyl group having 14-20 carbon atoms, X2 represents an alkyl group having 1-5 carbon atoms, M represents a titanium atom, a zirconium atom, or a hafnium atom, and a represents an integer of 1-3.)

Description

銅粉の製造方法、該製造方法により得られた銅粉、該銅粉を含有する樹脂組成物、該樹脂組成物の硬化物を形成する方法および該硬化物Method for producing copper powder, copper powder obtained by the method, resin composition containing the copper powder, method for forming a cured product of the resin composition, and the cured product
 本発明は、銅粉の製造方法および、該製造方法により得られた銅粉、該銅粉と特定の樹脂を含有する樹脂組成物、該樹脂組成物の硬化物を形成する方法および該樹脂組成物の硬化物に関する。より具体的には、本発明の銅粉は、例えば、電気回路の形成や、セラミックコンデンサの外部電極の形成などに用いられる導電性ペースト用導電フィラーなど、各種用途の導電材として使用可能な銅粉である。 The present invention relates to a method for producing a copper powder, a copper powder obtained by the method, a resin composition containing the copper powder and a specific resin, a method for forming a cured product of the resin composition, and the resin composition It relates to the cured product. More specifically, the copper powder of the present invention can be used as a conductive material for various applications such as, for example, a conductive filler for conductive paste used for forming an electric circuit or forming an external electrode of a ceramic capacitor. It is a powder.
 銅粉は各種用途の導電材、例えば電子部品等の電極や回路を形成するための材料として用いられており、銅粉の製造方法について様々な提案がなされている。
 例えば、特許文献1には、水酸化銅スラリーにヒドラジンおよび/またはヒドラジン化合物を添加して得られた酸化銅スラリーを、ヒドラジンおよび/またはヒドラジン化合物によって銅粉末に還元析出させ、この銅粉末をアルコールで処理し、さらに脂肪酸含有溶液で処理することによる銅粉末の製造方法が開示されている。
Copper powder is used as a conductive material for various applications, for example, a material for forming electrodes and circuits of electronic parts and the like, and various proposals have been made for a method of producing copper powder.
For example, in Patent Document 1, a copper oxide slurry obtained by adding a hydrazine and / or a hydrazine compound to a copper hydroxide slurry is reductively precipitated on a copper powder with the hydrazine and / or the hydrazine compound, and the copper powder is alcohol A process for producing copper powder is disclosed by treating with and then treating with a fatty acid-containing solution.
 また、特許文献2には、二価の銅イオンを有する銅塩水溶液と第一還元剤である還元性の糖類との混合物に水酸化アルカリを添加して亜酸化銅粒子を含む懸濁液を得る第1工程、前記亜酸化銅粒子を含む懸濁液に第二還元剤を添加して亜酸化銅粒子と銅超微粒子を含む懸濁液を得る第2-1工程、前記亜酸化銅粒子と銅超微粒子を含む懸濁液にヒドラジン化合物またはアスコルビン酸から選ばれる1種以上の還元剤を添加して銅微粒子を生成させる第2-2工程を含む銅粉末の製造方法が開示されている。また、特許文献2の段落[0058]には、第2-1工程で用いる第二還元剤として、水素化ホウ素ナトリウムを用いることが好ましいことが開示されている。 Further, Patent Document 2 discloses a suspension containing copper suboxide particles by adding an alkali hydroxide to a mixture of a copper salt aqueous solution having divalent copper ions and a reducing saccharide which is a first reducing agent. Obtaining the first step, adding a second reducing agent to the suspension containing the copper suboxide particles to obtain a suspension containing the copper suboxide particles and the copper ultrafine particles, the copper suboxide particles Discloses a method for producing a copper powder including a step 2-2 of forming copper fine particles by adding one or more reducing agents selected from a hydrazine compound or ascorbic acid to a suspension containing copper and ultrafine copper particles. . Further, paragraph [0058] of Patent Document 2 discloses that sodium borohydride is preferably used as the second reducing agent used in the step 2-1.
特開昭62-099406号公報Japanese Patent Application Laid-Open No. 62-099406 国際公開第2014/104032号International Publication No. 2014/104032
 しかしながら、上記特許文献1および2に開示されているような従来から知られている銅粉の製造方法を用いて製造された銅粉を、フェノール樹脂などの樹脂と組み合わせて樹脂組成物とし、これを用いて塗膜を形成し、硬化させた場合、塗膜の体積抵抗値が高く、導電性が悪くなってしまうことが問題となっていた。 However, a copper powder produced using a conventionally known method for producing copper powder as disclosed in Patent Documents 1 and 2 is combined with a resin such as a phenol resin to obtain a resin composition, When a coating film is formed using this and cured, the volume resistance value of the coating film is high, and there is a problem that the conductivity becomes worse.
 従って、本発明の目的は、銅粉とフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂を含有し、塗膜の体積抵抗値の低い樹脂硬化物を製造することができる樹脂組成物および銅粉の製造方法を提供することにある。 Therefore, an object of the present invention is to produce a cured resin having a low volume resistance of the coating film, containing at least one resin selected from the group consisting of copper powder and phenol resin, epoxy resin, polyester resin and acrylic resin. It is an object of the present invention to provide a resin composition that can be used and a method for producing a copper powder.
 本発明者等は、上記課題を克服するために鋭意検討を重ねた結果、特定の製造方法を用いて製造した銅粉を用いることで上記課題を解決しうることを知見し、本発明に到達したものである。
 すなわち、本発明は、銅粒子を水中で水素化ホウ素カリウム、水素化ホウ素ナトリウムおよび水素化ホウ素リチウムからなる群から選ばれる少なくとも1種の水素化ホウ素化合物を用いて還元処理する第1の工程;第1の工程で得られた前記銅粒子を、水、メタノールおよびエタノールからなる群から選ばれる少なくとも1種で処理する第2の工程;第2の工程で得られた前記銅粒子を、エーテル化合物およびアルコール化合物からなる群から選ばれる少なくとも1種の溶剤で処理する第3の工程;第3の工程で得られた前記銅粒子を、下記一般式(1)で表される化合物に接触させる第4の工程;を含む銅粉の製造方法である。
The present inventors have intensively studied to overcome the above problems, and as a result, they find that the above problems can be solved by using copper powder produced using a specific production method, and reach the present invention. It is
That is, the present invention comprises the first step of reducing copper particles in water using at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride; Treating the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol; a second step; treating the copper particles obtained in the second step with an ether compound And the third step of treating with at least one solvent selected from the group consisting of alcohol compounds; the copper particles obtained in the third step are brought into contact with a compound represented by the following general formula (1) A process of 4;
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、X1は炭素原子数14~20のアルキル基またはアルケニル基を表し、X2は炭素原子数1~5のアルキル基を表し、Mはチタン原子、ジルコニウム原子またはハフニウム原子を表し、aは1~3の整数を表す。) (Wherein, X 1 represents an alkyl or alkenyl group having 14 to 20 carbon atoms, X 2 represents an alkyl group having 1 to 5 carbon atoms, and M represents a titanium atom, a zirconium atom or a hafnium atom, a represents an integer of 1 to 3)
 また、本発明は、(A)本発明の銅粉の製造方法によって得られた銅粉[以下、(A)成分と略す場合がある]および(B)フェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂[以下、(B)成分と略す場合がある]を含有する樹脂組成物である。 The present invention also includes (A) a copper powder obtained by the method for producing a copper powder according to the present invention [hereinafter, sometimes abbreviated as (A) component] and (B) phenolic resin, epoxy resin, polyester resin and acrylic It is a resin composition containing at least one resin selected from the group consisting of resins [hereinafter, may be abbreviated as component (B)].
 本発明により得られた銅粉と、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂を含有する樹脂組成物により形成された塗膜は、硬化後の体積抵抗値が低く、導電性に優れている。そして、本発明では、上記樹脂組成物を製造するために用いられる銅粉を製造することができる。 The coating film formed by the resin composition containing the copper powder obtained by the present invention and at least one resin selected from the group consisting of phenol resin, epoxy resin, polyester resin and acrylic resin has a volume after curing Low resistance and excellent conductivity. And in this invention, the copper powder used in order to manufacture the said resin composition can be manufactured.
 以下、本発明をさらに具体的に説明する。
 本発明の銅粉の製造方法は、銅粒子を水中で水素化ホウ素カリウム、水素化ホウ素ナトリウムおよび水素化ホウ素リチウムからなる群から選ばれる少なくとも1種の水素化ホウ素化合物を用いて還元処理する第1の工程;第1の工程で得られた前記銅粒子を、水、メタノールおよびエタノールからなる群から選ばれる少なくとも1種で処理する第2の工程;第2の工程で得られた銅粒子を、エーテル化合物およびアルコール化合物からなる群から選ばれる少なくとも1種の溶剤で処理する第3の工程;第3の工程で得られた銅粒子を、上記一般式(1)で表される化合物に接触させる第4の工程;を含む。なお、銅粉と銅粒子は明確な違いがないため、本明細書においては、各工程中は銅粒子と表記し、最終生成物を銅粉と表記する。また、本発明の全工程において、水とは、水道水、イオン交換水、純水、超純水、RO水(逆浸透水)等を指すものとする。これらの中でも、純水または超純水を用いることが好ましい。
Hereinafter, the present invention will be described more specifically.
The method for producing a copper powder according to the present invention comprises the step of reducing copper particles in water using at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride A second step of treating the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol; a copper particle obtained in the second step; A third step of treating with at least one solvent selected from the group consisting of ether compounds and alcohol compounds; contacting the copper particles obtained in the third step with the compound represented by the above general formula (1) A fourth step of In addition, since a copper powder and a copper particle do not have a clear difference, in this specification, it describes as a copper particle in each process, and describes a final product as a copper powder. In all the processes of the present invention, water refers to tap water, ion-exchanged water, pure water, ultrapure water, RO water (reverse osmosis water) and the like. Among these, it is preferable to use pure water or ultrapure water.
 ここで、本発明の製造方法において、上記第1の工程は、銅粒子を水中で水素化ホウ素カリウム、水素化ホウ素ナトリウムおよび水素化ホウ素リチウムからなる群から選ばれる少なくとも1種の化合物を用いて還元処理する工程である。 Here, in the production method of the present invention, the first step uses copper particles in water using at least one compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride. It is a step of reducing treatment.
 第1の工程で用いられる銅粒子は、特に限定されるものではなく、周知一般の銅粒子を用いることができる。また、銅粒子の粒径は特に限定されるものではない。例えば、後述するフェノール樹脂などの樹脂との組成物にフィラーとして用いる場合には、平均粒径が数nm~数百μm程度の銅粒子を用いることができ、平均粒径が数nm~数十μmの銅粒子を用いることが好ましい。なお、銅粒子の平均粒径は、レーザー光回折法による粒子径分布測定装置を用いて、体積基準の粒度分布における累積50%となる粒子径(D50)として求めることができる。 The copper particles used in the first step are not particularly limited, and known general copper particles can be used. Further, the particle size of the copper particles is not particularly limited. For example, when used as a filler in a composition with a resin such as a phenol resin described later, copper particles having an average particle diameter of about several nm to several hundreds of μm can be used. It is preferred to use μm copper particles. The average particle diameter of the copper particles can be determined as a particle diameter (D 50 ) that is 50% cumulative in the volume-based particle size distribution using a particle size distribution measuring device by laser light diffraction method.
 また、第1の工程で用いられる銅粒子が空気酸化などにより酸化されている場合には、無機酸や有機酸を溶解させた水溶液を用いて、あらかじめ銅粒子を処理しておくことが望ましい。なお、水溶液としては、例えば硫酸を溶解させた水溶液を用いることが好ましい。 When the copper particles used in the first step are oxidized by air oxidation or the like, it is desirable to treat the copper particles in advance using an aqueous solution in which an inorganic acid or an organic acid is dissolved. As the aqueous solution, for example, an aqueous solution in which sulfuric acid is dissolved is preferably used.
 第1の工程で行われる、銅粒子の水中での水素化ホウ素カリウム、水素化ホウ素ナトリウムおよび水素化ホウ素リチウムからなる群から選ばれる少なくとも1種の水素化ホウ素化合物を用いた還元処理方法は、周知一般の方法を用いることができる。例えば、銅粒子をあらかじめ水に添加し、10質量%~40質量%濃度の銅スラリーを調製し、この銅スラリーに、上記水素化ホウ素化合物から選ばれる少なくとも1種を添加することが好ましい。 The reduction treatment method using at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride in water of copper particles, which is carried out in the first step, Well-known general methods can be used. For example, it is preferable to add copper particles to water beforehand to prepare a 10% by mass to 40% by mass copper slurry, and add at least one selected from the above-mentioned borohydride compounds to this copper slurry.
 また、還元処理中の反応温度は、10℃~80℃が好ましく、15℃~70℃がより好ましく、20℃~50℃が特に好ましい。還元処理時間は、10分~300分が好ましく、30分~90分であることが特に好ましい。また、還元処理に用いる水素化ホウ素化合物の水溶液中の濃度は、銅粒子の量に対して0.1質量%~5質量%の範囲であることが好ましく、0.5質量%~2質量%であることが特に好ましい。上記水素化ホウ素化合物のなかでも、水素化ホウ素ナトリウムを用いて還元処理した銅粒子は、後述するフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂との樹脂組成物から形成される塗膜の硬化後の体積抵抗値が低いことから好ましい。 Further, the reaction temperature during the reduction treatment is preferably 10 ° C. to 80 ° C., more preferably 15 ° C. to 70 ° C., and particularly preferably 20 ° C. to 50 ° C. The reduction treatment time is preferably 10 minutes to 300 minutes, and particularly preferably 30 minutes to 90 minutes. The concentration of the borohydride compound used in the reduction treatment in the aqueous solution is preferably in the range of 0.1 mass% to 5 mass% with respect to the amount of copper particles, and is 0.5 mass% to 2 mass%. Is particularly preferred. Among the above-mentioned borohydride compounds, copper particles reduced with sodium borohydride are after curing of a coating film formed of a resin composition comprising a phenol resin, an epoxy resin, a polyester resin and an acrylic resin described later It is preferable because the volume resistance value of
 本発明の第2の工程は、上記第1の工程で得られた銅粒子を、水、メタノールおよびエタノールからなる群から選ばれる少なくとも1種で処理(例えば、洗浄)する工程である。この処理に用いる処理液としては、少なくとも水を使用することが好ましく、水のみを使用することが特に好ましい。第2の工程で行われる処理方法は、特に限定されるものではなく、周知一般の方法で処理することができる。例えば、処理液として水を用いる場合には、第1の工程で得られた銅粒子を5℃~90℃の水や、水蒸気と接触させることによって行うことができる。特に、温度10℃~50℃の水と接触させることが望ましく、接触方法としては、銅粒子を水中に浸漬する方法や、銅粒子に水を噴霧する方法を採用することが好ましい。 The second step of the present invention is a step of treating (for example, washing) the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol. As a process liquid used for this process, it is preferable to use at least water, and it is particularly preferable to use only water. The processing method performed in the second step is not particularly limited, and can be processed by a known method in general. For example, when water is used as the treatment liquid, the copper particles obtained in the first step can be brought into contact with water at 5 ° C. to 90 ° C. or water vapor. In particular, contact with water at a temperature of 10.degree. C. to 50.degree. C. is desirable. As a contact method, it is preferable to adopt a method of immersing copper particles in water or a method of spraying water on copper particles.
 本発明の第3の工程は、第2の工程で得られた銅粒子を、エーテル化合物およびアルコール化合物からなる群から選ばれる少なくとも1種の溶剤で処理する工程である。第3の工程で用いられるエーテル化合物としては、例えば、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等が挙げられる。また、第3の工程で用いられるアルコール化合物としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール、1-ブタノール、イソブタノール、2-ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2-ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2-ヘキサノール、ヘプタノール、2-ヘプタノール、オクタノール、2―エチルヘキサノール、2-オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングルコールモノエチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、2-(N,N-ジメチルアミノ)エタノール、3(N,N-ジメチルアミノ)プロパノール、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。これらのなかでも、テトラヒドロフラン、メタノール、エタノール、プロパノール、2-プロパノールを用いた場合は、本発明の製造方法により得られた銅粉と、後述するフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂を含有する樹脂組成物により形成された、塗膜の硬化後の体積抵抗値が低く、導電性に優れた硬化物を製造することができることから好ましく、なかでも、2-プロパノールを用いることが特に好ましい。ただし、第2工程で用いた処理液とは異なる溶剤を用いる。 The third step of the present invention is a step of treating the copper particles obtained in the second step with at least one solvent selected from the group consisting of an ether compound and an alcohol compound. Examples of the ether compound used in the third step include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like. In addition, examples of the alcohol compound used in the third step include methanol, ethanol, propanol, 2-propanol, 1-butanol, isobutanol, 2-butanol, tert-butanol, pentanol, isopentanol, 2- Pentanol, neopentanol, tertiary pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol Methylcyclohexanol, methylcycloheptanol, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, pro Lengucol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, 2- (N, N-dimethylamino) ethanol, 3 (N, N-dimethyl) Amino) propanol, ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3-methyl-1 2,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl-1,3- (1,2-hexane) Hex ), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexane Dimethanol etc. are mentioned. Among these, when tetrahydrofuran, methanol, ethanol, propanol or 2-propanol is used, it comprises the copper powder obtained by the production method of the present invention, and the phenol resin, epoxy resin, polyester resin and acrylic resin described later. It is preferable because it can form a cured product having a low volume resistance value after curing of a coating film and excellent in conductivity, which is formed of a resin composition containing at least one resin selected from the group, and among them, a cured product having excellent conductivity can be produced. It is particularly preferred to use 2-propanol. However, a solvent different from the treatment liquid used in the second step is used.
 第3の工程で行われる処理(例えば、洗浄)方法は、特に限定されるものではなく、周知一般の方法で処理することができる。例えば、第2の工程で得られた銅粒子を5℃~90℃のエーテル化合物およびアルコール化合物からなる群から選ばれる少なくとも1種の溶剤や、これらの蒸気と接触させ、銅粒子中に存在する水分を除去できればよい。なかでも、10℃~50℃のエーテル化合物およびアルコール化合物からなる群から選ばれる少なくとも1種の溶剤と接触させることが望ましい。接触方法としては、銅粒子をこれらの溶剤中に浸漬する方法や、銅粒子にこれらの溶剤を噴霧する方法等を採用することが好ましい。 The treatment (for example, washing) method to be performed in the third step is not particularly limited, and can be treated by a well-known general method. For example, the copper particles obtained in the second step are contacted with at least one solvent selected from the group consisting of an ether compound and an alcohol compound at 5 ° C. to 90 ° C., or these vapors to be present in the copper particles. It is sufficient if water can be removed. Among them, it is desirable to contact with at least one solvent selected from the group consisting of an ether compound and an alcohol compound at 10 ° C. to 50 ° C. As a contact method, it is preferable to adopt a method of immersing copper particles in these solvents, a method of spraying these solvents on copper particles, or the like.
 本発明の第4の工程は、第3の工程で得られた銅粒子を、上記一般式(1)で表される化合物に接触させる工程である。上記一般式(1)において、X1は炭素原子数14~20のアルキル基またはアルケニル基を表し、X2は炭素原子数1~5のアルキル基を表し、Mはチタン原子、ジルコニウム原子またはハフニウム原子を表す。
 X1で表される炭素原子数14~20のアルキル基としては、ヘキサデシル基、ヘプタデシル基、オクタデシル基、2-ヘプチルウンデシル基、16-メチルヘプタデシル基、2-(4,4-ジメチル-2-ペンチル)-5,7,7-トリメチルオクチル基などを挙げることができる。また、炭素原子数14~20のアルケニル基としては、9-オクタデセニル基、9-ヘキサデセニル基、9,11,13-オクタデカトリエニル基、8-ヘプタデセニル基などを挙げることができる。一般式(1)においてX1で表される炭素原子数14~20のアルキル基またはアルケニル基の部分を与える有機酸(X1COOH)としては、例えば、パルミチン酸、マルガリン酸、ステアリン酸、イソステアリン酸、オレイン酸、パルミトレイン酸、エレオステアリン酸などを挙げることができる。なかでも、この有機酸の炭素原子数が18の場合、すなわち、X1が炭素原子数17のアルキル基またはアルケニル基である場合は、得られた銅粉を含有する樹脂組成物により形成された塗膜の硬化後の体積抵抗値が低く、導電性に優れた硬化物を製造することができることから特に好ましい。
The fourth step of the present invention is a step of bringing the copper particles obtained in the third step into contact with the compound represented by the above general formula (1). In the above general formula (1), X 1 represents an alkyl group having 14 to 20 carbon atoms or an alkenyl group, X 2 represents an alkyl group having 1 to 5 carbon atoms, and M represents a titanium atom, a zirconium atom or hafnium Represents an atom.
Examples of the alkyl group having 14 to 20 carbon atoms represented by X 1 include hexadecyl group, heptadecyl group, octadecyl group, 2-heptylundecyl group, 16-methylheptadecyl group, 2- (4,4-dimethyl-) 2-pentyl) -5,7,7-trimethyloctyl group etc. can be mentioned. Further, examples of the alkenyl group having 14 to 20 carbon atoms include 9-octadecenyl group, 9-hexadecenyl group, 9,11,13-octadecatrienyl group, 8-heptadecenyl group and the like. Examples of the organic acid (X 1 COOH) giving a portion of an alkyl group or an alkenyl group having 14 to 20 carbon atoms represented by X 1 in the general formula (1) include, for example, palmitic acid, margaric acid, stearic acid, isostearine Acid, oleic acid, palmitoleic acid, eleostearic acid and the like can be mentioned. Among them, when the organic acid has 18 carbon atoms, that is, when X 1 is an alkyl group having 17 carbon atoms or an alkenyl group, the resin composition containing the obtained copper powder was used. It is particularly preferable because a cured product having a low volume resistance after curing of the coating film and excellent conductivity can be produced.
 X2で表される炭素原子数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、第2ブチル基、第3ブチル基、イソブチル基などを挙げることができる。
 一般式(1)においてX2で表される炭素原子数1~5のアルキル基の部分を与えるアルコール化合物(X2OH)としては、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、第2ブタノール、第3ブタノール、イソブチルアルコールなどを挙げることができる。なかでも、X2が炭素原子数3または4のアルキル基である場合は、得られた銅粉を含有する樹脂組成物により形成された塗膜の硬化後の体積抵抗値が低く、導電性に優れた硬化物を製造することができることから特に好ましい。
Examples of the alkyl group having 1 to 5 carbon atoms represented by X 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, secondary butyl group, tertiary butyl group, isobutyl group, etc. Can be mentioned.
The alcohol compound (X 2 OH) giving a part of the alkyl group having 1 to 5 carbon atoms represented by X 2 in the general formula (1) is methanol, ethanol, n-propanol, 2-propanol, n-butanol And secondary butanol, tertiary butanol, isobutyl alcohol and the like. Among them, when X 2 is an alkyl group having 3 or 4 carbon atoms, the volume resistance value after curing of the coating film formed of the obtained resin composition containing copper powder is low, and the conductivity is improved. It is particularly preferable because excellent cured products can be produced.
 上記一般式(1)で表される化合物の好ましい具体例としては、例えば、下記化合物No.1~No.108が挙げられる。「iPr」はイソプロピル基を表し、「nBu」はn-ブチル基を表す。 As preferable specific examples of the compound represented by the above general formula (1), for example, the following compound No. 1 to No. 108 can be mentioned. "IPr" represents an isopropyl group, and "nBu" represents an n-butyl group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(1)で表される化合物は、周知一般の製造方法で製造することができる。例えば、テトラキスアルコキシドチタン、テトラキスアルコキシドジルコニウム、テトラキスアルコキシドハフニウムなどに、対応する構造のカルボン酸を任意のモル比で反応させることで得ることができる。市販品として、例えば、S-151(上記化合物No.91)、S-152、(上記化合物No.92)、ZR-152(上記化合物No.106)(日本曹達社製)などを挙げることができる。 The compound represented by the said General formula (1) can be manufactured by a well-known general manufacturing method. For example, it can be obtained by reacting tetrakis alkoxide titanium, tetrakis alkoxide zirconium, tetrakis alkoxide hafnium or the like with a carboxylic acid having a corresponding structure at an arbitrary molar ratio. As commercially available products, for example, S-151 (the above compound No. 91), S-152, (the above compound No. 92), ZR-152 (the above compound No. 106) (made by Nippon Soda Co., Ltd.), etc. may be mentioned. it can.
 第3の工程で得られた銅粒子を、上記一般式(1)で表される化合物に接触させる方法としては、特に限定されるものではなく、例えば、第3の工程で得られた銅粒子と上記一般式(1)で表される化合物を直接混ぜ合わせる方法(方法I)や、上記一般式(1)で表される化合物を溶媒に溶解させた溶液に第3の工程で得られた銅粒子を浸漬させる方法(方法II)や、上記一般式(1)で表される化合物を溶媒に溶解させた溶液を、第3の工程で得られた銅粒子に噴霧する方法(方法III)や、水、エーテルまたはアルコールからなる群から選ばれる少なくとも1種の液体中に、第3の工程で得られた銅粒子を浸漬させた後、この液体中に上記一般式(1)で表される化合物を添加する方法(方法IV)などを挙げることができる。なかでも、方法IIや、方法IVを用いた場合は高い生産性で安定した品質の銅粉を製造することができることから好ましく、方法IVを用いて製造した銅粉を使用した場合は、得られた銅粉と後述するフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂との樹脂組成物から形成される塗膜の硬化後の体積抵抗値が特に低いことから好ましい。 The method for bringing the copper particles obtained in the third step into contact with the compound represented by the general formula (1) is not particularly limited. For example, the copper particles obtained in the third step And the compound represented by the above general formula (1) are directly combined (method I) or obtained in the third step in a solution in which the compound represented by the above general formula (1) is dissolved in a solvent Method of immersing copper particles (method II) or method of spraying a solution obtained by dissolving a compound represented by the above general formula (1) in a solvent onto copper particles obtained in the third step (method III) And immersing the copper particles obtained in the third step in at least one liquid selected from the group consisting of water, ether and alcohol, and then represented by the above general formula (1) in the liquid And the like (Method IV) of adding a compound. Among them, method II and method IV are preferable because copper powder of high productivity and stable quality can be produced, and copper powder produced using method IV is obtained. It is preferable because the volume resistance value after curing of the coating film formed from the resin composition of the copper powder and the phenol resin, epoxy resin, polyester resin and acrylic resin described later is particularly low.
 上述の第1の工程ないし第4の工程を経て製造された銅粉[(A)成分]は、該銅粉と、後述のフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂[(B)成分]とを含有する樹脂組成物により塗膜を形成すると、塗膜の硬化後の体積抵抗値が、他の製造方法により得られた銅粉を配合した場合に比して低く、導電性に優れたものとなる特異的な特徴を有する。この理由を探るため、本出願人は、上記本発明の製造方法により得られた銅粉について、表面分析や電気特性分析を行い、その形状やパラメーターで銅粉の特徴を規定することを試みたが、後述の比較例に示すような他の製造方法で得られた銅粉との差異を見出すことができず、本出願人が有する現状の粉体分析技術では、本発明の製造方法により得られた銅粉自体の特性、性質、形状等を規定することはできず、本発明の製造方法により得られた銅粉のみが特異的な特性を有する理由を見出すことはできなかった。 The copper powder [component (A)] produced through the above-described first to fourth steps is selected from the group consisting of the copper powder, and the phenol resin, epoxy resin, polyester resin and acrylic resin described later. When a coating film is formed of a resin composition containing at least one resin [component (B)], the volume resistance value after curing of the coating compounded the copper powder obtained by another manufacturing method It has a specific feature that is lower than that of the above and has excellent conductivity. In order to investigate this reason, the present applicant attempted to specify the characteristics of copper powder by performing surface analysis and electrical property analysis on the copper powder obtained by the manufacturing method of the present invention described above. However, the difference with the copper powder obtained by the other manufacturing method as shown in the below-mentioned comparative example can not be found, and it is obtained by the manufacturing method of the present invention in the present powder analysis technology which the applicant has. It was not possible to define the properties, properties, shape, etc. of the copper powder itself, and it was not possible to find out the reason why only the copper powder obtained by the production method of the present invention has specific properties.
 次に、本発明の樹脂組成物について説明する。
 本発明の樹脂組成物は、上述の第1の工程ないし第4の工程を経て製造された銅粉[(A)成分]およびフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂[(B)成分]を含有することを特徴とするものである。
Next, the resin composition of the present invention will be described.
The resin composition of the present invention is selected from the group consisting of the copper powder [component (A)] produced through the above-mentioned first to fourth steps and a phenol resin, an epoxy resin, a polyester resin and an acrylic resin. It is characterized in that it contains at least one resin [component (B)].
 本発明の樹脂組成物に用いられる(A)成分は上述の製造方法によって製造された銅粉である。本発明の樹脂組成物中の(A)成分の濃度は、特に限定されるものではなく、所望とする樹脂硬化物の形状や厚さに応じて適宜変更することができるが、導電性が良好であることから、本発明の樹脂組成物中の(A)成分の濃度が20質量%~95質量%であることが好ましく、50質量%~95質量%がより好ましく、75質量%~95質量%であることが特に好ましい。 The component (A) used in the resin composition of the present invention is a copper powder produced by the above-mentioned production method. The concentration of the component (A) in the resin composition of the present invention is not particularly limited and can be suitably changed according to the shape and thickness of the desired cured resin, but the conductivity is good. Therefore, the concentration of the component (A) in the resin composition of the present invention is preferably 20% by mass to 95% by mass, more preferably 50% by mass to 95% by mass, and 75% by mass to 95% by mass. % Is particularly preferred.
 本発明の樹脂組成物に用いられる(B)成分はフェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂である。
 ここで、フェノール樹脂は、特に限定されるものではなく、周知一般のフェノール樹脂を使用することができ、例えば、ノボラック型フェノール樹脂や、レゾール型フェノール樹脂などを用いることができる。なかでも、レゾール型フェノール樹脂を用いることが好ましい。なお、市販品も使用することができ、例えば、粉末状フェノール樹脂(群栄化学社製、商品名:レヂトップ、PGA-4528、PGA-2473、PGA-4704、PGA-4504、住友ベークライト社製、商品名:スミライトレジンPR-UFC-504、PR-EPN、PR-ACS-100、PR-ACS-150、PR-12687、PR-13355、PR-16382、PR-217、PR-310、PR-311、PR-50064、PR-50099、PR-50102、PR-50252、PR-50395、PR-50590、PR-50590B、PR-50699、PR-50869、PR-51316、PR-51326B、PR-51350B、PR-51510、PR-51541B、PR-51794、PR-51820、PR-51939、PR-53153、PR-53364、PR-53497、PR-53724、PR-53769、PR-53804、PR-54364、PR-54458A、PR-54545、PR-55170、PR-8000、PR-FTZ-1、PR-FTZ-15)、フレーク状フェノール樹脂(住友ベークライト社製、商品名:スミライトレジンPR-12686R、PR-13349、PR-50235A、PR-51363F、PR-51494G、PR-51618G、PR-53194、PR-53195、PR-54869、PR-F-110、PR-F-143、PR-F-151F、PR-F-85G、PR-HF-3、PR-HF-6)、液状フェノール樹脂(住友ベークライト社製、商品名:スミライトレジンPR-50087、PR-50607B、PR-50702、PR-50781、PR-51138C、PR-51206、PR-51663、PR-51947A、PR-53123、PR-53338、PR-53365、PR-53717、PR-54135、PR-54313、PR-54562、PR-55345、PR-940、PR-9400、PR-967)、レゾール型液状フェノール樹脂(群栄化学社製、商品名:レヂトップPL-4826、PL-2390、PL-4690、PL-3630、PL-4222、PL-4246、PL-2211、PL-3224、PL-4329、PL-5208、住友ベークライト社製、商品名:スミライトレジンPR-50273、PR-51206、PR-51781、PR-53056、PR-53311、PR-53416、PR-53570、PR-54387)、微粒状フェノール樹脂(エアウオーター社製、商品名:ベルパール、R800、R700、R600、R200、R100、S830、S870、S890、S895、S290,S190)、真球状フェノール樹脂(群栄化学社製、商品名:マリリンGU-200、FM-010、FM-150、HF-008、HF-015、HF-075、HF-300、HF-500、HF-1500)、固形フェノール樹脂(群栄化学社製、商品名:レヂトップPS-2601、PS-2607、PS-2655、PS-2768、PS-2608、PS-4609、PSM-2222、PSK-2320、PS-6132)などを挙げることができる。
The component (B) used in the resin composition of the present invention is at least one resin selected from the group consisting of phenol resins, epoxy resins, polyester resins and acrylic resins.
Here, the phenol resin is not particularly limited, and a well-known general phenol resin can be used. For example, a novolac type phenol resin, a resol type phenol resin, or the like can be used. Among them, it is preferable to use a resol type phenolic resin. In addition, a commercial item can also be used, for example, powdery phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name: Resin top, PGA-4528, PGA-2473, PGA-4704, PGA-4504, Sumitomo Bakelite Co., Ltd., Brand name: Sumilight resin PR-UFC-504, PR-EPN, PR-ACS-100, PR-ACS-150, PR-12687, PR-13355, PR-16382, PR-217, PR-310, PR- 311, PR-50064, PR-50099, PR-50102, PR-50252, PR-50395, PR-50590, PR-50590B, PR-50699, PR-50869, PR-51316, PR-51326B, PR-51350B, PR-5510, PR-51541 B, PR-5179 , PR-51820, PR-51939, PR-53153, PR-53364, PR-53497, PR-53724, PR-53769, PR-53804, PR-54364, PR-54458A, PR-5545, PR-55170, PR -8000, PR-FTZ-1, PR-FTZ-15), flaky phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name: SUMILITE RESIN PR-12686R, PR-13349, PR-50235A, PR-51363F, PR- 51494G, PR-51618G, PR-53194, PR-53195, PR-54869, PR-F-110, PR-F-143, PR-F-151F, PR-F-85G, PR-HF-3, PR- HF-6), liquid phenolic resin (Sumitomo Bakelite Product name: SUMILITE RESIN PR-50087, PR-50607B, PR-50702, PR-50781, PR-51138C, PR-51206, PR-51663, PR-51947A, PR-53123, PR-53338, PR- 53365, PR-53717, PR-54135, PR-54313, PR-54562, PR-55345, PR-940, PR-9400, PR-967), resol type liquid phenolic resin (manufactured by Gunei Chemical Co., Ltd., trade name: Product name: Sumi Top PL-4826, PL-2390, PL-4690, PL-3630, PL-4222, PL-4246, PL-2211, PL-3224, PL-4329, PL-5208, manufactured by Sumitomo Bakelite Co., Ltd. Light resin PR-50273, PR-512 06, PR-51781, PR-53056, PR-53311, PR-53416, PR-53570, PR-54387), fine-grained phenolic resin (manufactured by Air Water Co., Ltd., trade name: Bellpearl, R800, R700, R600, R200, R100, S830, S870, S890, S895, S290, S190), spherical spherical resin (manufactured by Gunei Chemical Co., Ltd., trade name: Marilyn GU-200, FM-010, FM-150, HF-008, HF-015, HF-075, HF-300, HF-500, HF-1500) Solid phenol resin (manufactured by Gunei Chemical Co., Ltd., trade name: Resin top PS-2601, PS-2607, PS-2655, PS-2768, PS-2608 , PS-4609, PSM-2222, PSK-2320, PS-61 2), and the like.
 また、エポキシ樹脂も特に限定されるものではなく、公知なエポキシ樹脂を用いることができる。上記エポキシ樹脂としては、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物等の多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類およびグリシジルメタクリレートの単独重合体または共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタンジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物があげられる。また、これらのエポキシ樹脂は、末端にイソシアネート基を有するプレポリマーによって内部架橋されたものであっても、多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等の多価の活性水素化合物によって高分子量化されたものであってもよい。 Moreover, an epoxy resin is not specifically limited, either, A well-known epoxy resin can be used. Examples of the epoxy resin include polyglycidyl ether compounds of mononuclear polyhydric phenol compounds such as hydroquinone, resorcine, pyrocatechol, phloroglucinol and the like; dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis (ortho cresol) , Ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (ortho cresol), tetrabromobisphenol A, 1,3-bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumyl) Benzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as xybisphenol, phenol novolak, ortho cresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcinol novolak, terpene phenol; ethylene glycol, propylene glycol, butylene glycol, hexanediol , Polyglycidyl ethers of polyhydric alcohols such as polyglycol, thiodiglycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, bisphenol A-ethylene oxide adduct; maleic acid, fumaric acid, itaconic acid, succinic acid, glutaric acid Suberic acid, adipic acid, azelaic acid, sebacic acid, dimer acid, trimer acid, phthalic acid Glycidyl esters of aliphatic, aromatic or alicyclic polybasic acids such as isophthalic acid, terephthalic acid, trimellitic acid, trimesic acid, pyromellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylenetetrahydrophthalic acid and the like Homopolymers or copolymers of glycidyl methacrylate; epoxy compounds having a glycidyl amino group such as N, N-diglycidyl aniline, bis (4- (N-methyl-N-glycidyl amino) phenyl) methane, diglycidyl ortho toluidine, etc. Vinylcyclohexene diepoxide, dicyclopentanediene diepoxide, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-6-methylcyclohexene Epoxides of cyclic olefin compounds such as sun carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate; epoxidized conjugated diene polymers such as epoxidized polybutadiene, epoxidized styrene-butadiene copolymer, tri Heterocyclic compounds such as glycidyl isocyanurate can be mentioned. In addition, even if these epoxy resins are internally crosslinked by a prepolymer having an isocyanate group at an end, polyvalent active hydrogen compounds such as polyhydric phenols, polyamines, carbonyl group-containing compounds, and polyphosphates are used. It may be of high molecular weight.
 また、ポリエステル樹脂も特に限定されるものではなく、多塩基酸成分と多価アルコール成分とをエステル化反応させたものであればよい。多塩基酸成分としては、例えば、ジフェノール酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、フマル酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、などの1 種以上の二塩基酸および、これらの酸の低級アルキルエステル化物が主として用いられ、必要に応じて、安息香酸、クロトン酸、p-t-ブチル安息香酸などの一塩基酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸、無水ピロメリット酸などの3 価以上の多塩基酸などが併用される。なお、市販品も使用することができ、例えば、東洋紡績(株)、商品名:バイロン300、同500、同560、同600、同630、同650、同670、バイロンGK130、同140、同150、同190、同330、同590、同680、同780、同810、同890、同200、同226、同240、同245、同270、同280、同290、同296、同660、同885、バイロンGK250、同360、同640、同880、ユニチカ(株)製、商品名:エリーテルUE-3220、同3500、同3210、同3215、同3216、同3620、同3240、同3250、同3300、同UE-3200、同9200、同3201、同3203、同3350、同3370、同3380、同3600、同3980、同3660、同3690、同9600、同9800、東亞合成(株)製、商品名:アロンメルトPES-310、同318、同334、同316、同360などが挙げられる。 Further, the polyester resin is not particularly limited as long as it is an esterification reaction of a polybasic acid component and a polyhydric alcohol component. Examples of the polybasic acid component include one or more dibasic acids such as diphenolic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, fumaric acid, adipic acid, azelaic acid, sebacic acid, dimer acid, etc. In addition, lower alkyl esters of these acids are mainly used, and, if necessary, monobasic acids such as benzoic acid, crotonic acid, p-tert-butylbenzoic acid, trimellitic anhydride, methylcyclohexenic carboxylic acid, anhydride A trivalent or higher polybasic acid such as pyromellitic acid is used in combination. Commercially available products may also be used. For example, Toyobo Co., Ltd., trade names: Byron 300, 500, 560, 600, 630, 650, 670, Byron GK130, 140, 150, 190, 330, 590, 680, 780, 810, 890, 200, 226, 240, 245, 270, 280, 290, 296, 660, 660 Same as 885, Byron GK 250, 360, 640, 880, Unitika Co., Ltd., trade name: Erie Ter UE-3220, 3500, 3210, 3215, 3216, 3620, 3240, 3250, 3300, UE-3200, 9200, 3201, 3203, 3350, 3370, 3380, 3600, 3980, 660, the 3690, the 9600, the 9800, manufactured by Toagosei Co., Ltd., product name: Aron Melt PES-310, the 318, the 334, the 316, such as the 360, and the like.
 なお、上記ポリエステル樹脂の中でも、蒸気圧浸透法(Vapor Pressure Osmometry法:VPO法)での数平均分子量10,000~50,000の範囲であり、ガラス転移点が-35℃~35℃の範囲であるポリエステル樹脂は、本発明によって得られた銅粒子との樹脂組成物により形成された、塗膜の硬化後の体積抵抗値が低く、導電性に優れた硬化物を製造することができることから好ましく、数平均分子量15,000~40,000の範囲であり、ガラス転移点が0℃~35℃の範囲であるポリエステル樹脂が特に好ましい。上記ガラス転移点は、ASTM3418/82に従ってDSC法(示唆走査熱量測定)によって測定できる温度である。 Among the above polyester resins, the number average molecular weight is 10,000 to 50,000 and the glass transition point is -35 ° C to 35 ° C in vapor pressure osmometry (VPO method). The polyester resin, which is formed by the resin composition with the copper particles obtained according to the present invention, has a low volume resistance after curing of the coating film and can produce a cured product excellent in conductivity. A polyester resin having a number average molecular weight in the range of 15,000 to 40,000 and a glass transition temperature in the range of 0 ° C. to 35 ° C. is particularly preferable. The glass transition temperature is a temperature which can be measured by a DSC method (Suggested Scanning Calorimetry) according to ASTM 3418/82.
 さらに、アクリル樹脂もまた特に限定されるものではなく、周知一般のアクリル樹脂を使用することができる。アクリレート化合物やメタクリレート化合物を原料として重合反応により合成をしてもよいし、市販製品から入手してもよい。アクリル樹脂の市販品としては、例えば、三菱レイヨン(株)製、商品名:アクリペットMD、VH、MF、V、根上工業(株)製、商品名:ハイパールM-4003、M-4005、M-4006、M-4202、M-5000、M-5001、M-4501、三菱レイヨン(株)製、商品名:ダイヤナールBR-50、BR-52、BR-53、BR-60、BR-64、BR-73、BR-75、BR-77、BR-79、BR-80、BR-82、BR-83、BR-85、BR-87、BR-88、BR-90、BR-93、BR-95、BR-100、BR-101、BR-102、BR-105、BR-106、BR-107、BR-108、BR-112、BR-113、BR-115、BR-116、BR-117、BR-118等などが挙げられるが、これらに限定されるものではない。 Furthermore, the acrylic resin is also not particularly limited, and known general acrylic resins can be used. It may be synthesized by a polymerization reaction using an acrylate compound or a methacrylate compound as a raw material, or may be obtained from a commercial product. As a commercial item of acrylic resin, for example, Mitsubishi Rayon Co., Ltd. product name: Acripet MD, VH, MF, V, Negami Industrial Co., Ltd. product name: Brand name: HYPER M-4003, M-4005, M -4006, M-4202, M-5000, M-5001, M-4501, manufactured by Mitsubishi Rayon Co., Ltd., trade name: Dianal BR-50, BR-52, BR-53, BR-60, BR-64 , BR-73, BR-75, BR-77, BR-79, BR-80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR -95, BR-100, BR-101, BR-102, BR-105, BR-106, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117 , BR Such as 118 and the like, but not limited thereto.
 なお、上記アクリル樹脂の中でも、重量平均分子量10,000~100,000の範囲であり、ガラス転移点が0℃~100℃の範囲であるアクリル樹脂は、本発明によって得られた銅粒子との樹脂組成物により形成された、塗膜の硬化後の体積抵抗値が低く、導電性に優れた硬化物を製造することができることから好ましく、数平均分子量20,000~80,000の範囲であり、ガラス転移点が10℃~90℃の範囲であるアクリル樹脂が特に好ましい。上記ガラス転移点は、ASTM3418/82に従ってDSC法(示唆走査熱量測定)によって測定できる温度である。なお、本明細書における重量平均分子量は、溶媒としてテトラヒドロフランを用いたゲル浸透クロマトグラフィー分析によって測定した、ポリスチレン換算の重量平均分子量をいう。本明細書における「重量平均分子量」は、本発明が属する技術分野において「質量平均分子量」と呼ばれる場合もあるが、同義である。 Among the above-mentioned acrylic resins, acrylic resins having a weight average molecular weight of 10,000 to 100,000 and a glass transition temperature in the range of 0 ° C. to 100 ° C. are the same as copper particles obtained by the present invention. The number average molecular weight is preferably in the range of 20,000 to 80,000 because a cured product having a low volume resistance after curing of the coating film formed of the resin composition and excellent conductivity can be produced. An acrylic resin having a glass transition temperature in the range of 10 ° C. to 90 ° C. is particularly preferable. The glass transition temperature is a temperature which can be measured by a DSC method (Suggested Scanning Calorimetry) according to ASTM 3418/82. In addition, the weight average molecular weight in this specification means the weight average molecular weight of polystyrene conversion measured by gel permeation chromatography analysis which used tetrahydrofuran as a solvent. The "weight average molecular weight" in the present specification is sometimes referred to as "mass average molecular weight" in the technical field to which the present invention belongs, but is the same.
 本発明の樹脂組成物中の(B)成分の濃度は、特に限定されるものではなく、所望とする樹脂硬化物の形状や厚さに応じて適宜変更することができるが、導電性が良好であることから、本発明の樹脂組成物中の(B)成分の濃度が5質量%~80質量%であることが好ましく、5質量%~50質量%がより好ましく、5質量%~25質量%であることが特に好ましい。 The concentration of the component (B) in the resin composition of the present invention is not particularly limited and can be suitably changed according to the shape and thickness of the desired cured resin, but the conductivity is good. Therefore, the concentration of the component (B) in the resin composition of the present invention is preferably 5% by mass to 80% by mass, more preferably 5% by mass to 50% by mass, and 5% by mass to 25% by mass. % Is particularly preferred.
 なお、本発明の効果を損なわない限り、上記の樹脂組成物に、その他の溶剤、酸化防止剤、シランカップリング剤などを配合することができる。 In addition, other solvents, an antioxidant, a silane coupling agent, etc. can be mix | blended with said resin composition, unless the effect of this invention is impaired.
 上記溶剤としては、例えば、水や有機溶剤を用いることができる。ここで、有機溶剤としては、例えば、アルコール系溶剤、ジオール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族または脂環族炭化水素系溶剤、芳香族炭化水素系溶剤、シアノ基を有する炭化水素系溶剤、ハロゲン化芳香族炭化水素系溶剤、その他の溶剤等が挙げることができる。 As the solvent, for example, water or an organic solvent can be used. Here, as an organic solvent, for example, alcohol solvents, diol solvents, ketone solvents, ester solvents, ether solvents, aliphatic or alicyclic hydrocarbon solvents, aromatic hydrocarbon solvents, cyano group Hydrocarbon solvents, halogenated aromatic hydrocarbon solvents, other solvents, and the like.
 アルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール、1-ブタノール、イソブタノール、2-ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2-ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2-ヘキサノール、ヘプタノール、2-ヘプタノール、オクタノール、2―エチルヘキサノール、2-オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングルコールモノエチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、2-(N,N-ジメチルアミノ)エタノール、3(N,N-ジメチルアミノ)プロパノール等が挙げられる。 Examples of alcohol solvents include methanol, ethanol, propanol, 2-propanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, 3Pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcyclohepta Nord, benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl Ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, 2- (N, N-dimethylamino) ethanol, 3 (N, N-dimethylamino) propanol, etc. It can be mentioned.
 ジオール系溶剤としては、例えば、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。 Examples of diol solvents include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3 -Methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl- 1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
 ケトン系溶剤としては、例えば、アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルヘキシルケトン、エチルブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。 Examples of ketone solvents include acetone, ethyl methyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl hexyl ketone, ethyl butyl ketone, diethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl Ketone, cyclohexanone, methyl cyclohexanone and the like can be mentioned.
 エステル系溶剤としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチル、酢酸第3ブチル、酢酸アミル、酢酸イソアミル、酢酸第3アミル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸第2ブチル、プロピオン酸第3ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸第3アミル、プロピオン酸フェニル、2-エチルヘキサン酸メチル、2-エチルヘキサン酸エチル、2-エチルヘキサン酸プロピル、2-エチルヘキサン酸イソプロピル、2-エチルヘキサン酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ第2ブチルエーテルアセテート、エチレングリコールモノイソブチルエーテルアセテート、エチレングリコールモノ第3ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ第2ブチルエーテルアセテート、プロピレングリコールモノイソブチルエーテルアセテート、プロピレングリコールモノ第3ブチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールモノエチルエーテルアセテート、ブチレングリコールモノプロピルエーテルアセテート、ブチレングリコールモノイソプロピルエーテルアセテート、ブチレングリコールモノブチルエーテルアセテート、ブチレングリコールモノ第2ブチルエーテルアセテート、ブチレングリコールモノイソブチルエーテルアセテート、ブチレングリコールモノ第3ブチルエーテルアセテート、アセト酢酸メチル、アセト酢酸エチル、オキソブタン酸メチル、オキソブタン酸エチル、γ-ラクトン、マロン酸ジメチル、コハク酸ジメチル、プロピレングリコールジアセテート、δ-ラクトン等が挙げられる。 As ester solvents, for example, methyl formate, ethyl formate, methyl acetate, ethyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, tert-butyl acetate, tert-butyl acetate, amyl acetate, iso-amyl acetate, tert-amyl acetate, Phenyl acetate, methyl propionate, ethyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, sec-butyl propionate, tert-butyl propionate, amyl propionate, isoamyl propionate, iso-amyl propionate, tert-amyl propionate Acid phenyl, methyl 2-ethylhexanoate, ethyl 2-ethylhexanoate, propyl 2-ethylhexanoate, isopropyl 2-ethylhexanoate, butyl 2-ethylhexanoate, methyl lactate, ethyl lactate, methyl methoxypropionate, Methyl toxoxypropionate, ethyl methoxypropionate, ethyl ethoxypropionate, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, ethylene glycol monoisopropyl ether acetate, ethylene glycol mono Butyl ether acetate, ethylene glycol monosecondary butyl ether acetate, ethylene glycol monoisobutyl ether acetate, ethylene glycol monosecondary butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl Ether acetate, propylene glycol monoisopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol monosecondary butyl ether acetate, propylene glycol monoisobutyl ether acetate, propylene glycol mono tertiary butyl ether acetate, butylene glycol monomethyl ether acetate, butylene glycol monoethyl ether Acetate, butylene glycol monopropyl ether acetate, butylene glycol monoisopropyl ether acetate, butylene glycol monobutyl ether acetate, butylene glycol mono-secondary butyl ether acetate, butylene glycol monoisobutyl ether acetate, butylene glycol mono-first 3 butyl ether acetate, methyl acetoacetate, ethyl acetoacetate, methyl oxobutanoate, ethyl oxobutanoate, γ-lactone, dimethyl malonate, dimethyl succinate, propylene glycol diacetate, δ-lactone and the like.
 エーテル系溶剤としては、例えば、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等が挙げられる。 Examples of the ether solvents include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
 脂肪族または脂環族炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、デカリン、ソルベントナフサ、テレピン油、D-リモネン、ピネン、ミネラルスピリット、コスモ松山石油(株)製、商品名:スワゾール#310、エクソン化学(株)製、商品名:ソルベッソ#100等が挙げられる。 Examples of aliphatic or alicyclic hydrocarbon solvents include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, solvent naphtha, turpentine oil, D-limonene, pinene, and mineral spirits. And Cosmo Matsuyama Oil Co., Ltd., trade name: Swazole # 310, Exxon Chemical Co., Ltd., trade name: Solvesso # 100, and the like.
 芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、ジエチルベンゼン、クメン、イソブチルベンゼン、シメン、テトラリンが挙げられる。 Examples of aromatic hydrocarbon solvents include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene and tetralin.
 シアノ基を有する炭化水素系溶剤としては、例えば、アセトニトリル、1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等が挙げられる。 Examples of hydrocarbon solvents having a cyano group include acetonitrile, 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1 And 6,6-dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene and the like.
 ハロゲン化芳香族炭化水素系溶剤としては、例えば、四塩化炭素、クロロホルム、トリクロロエチレン、塩化メチレン等が挙げられる。 Examples of the halogenated aromatic hydrocarbon solvents include carbon tetrachloride, chloroform, trichloroethylene, methylene chloride and the like.
 その他の有機溶剤としては、例えば、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、アニリン、トリエチルアミン、ピリジンが挙げられる。 Other organic solvents include, for example, N-methyl-2-pyrrolidone, dimethylsulfoxide, dimethylformamide, aniline, triethylamine and pyridine.
 上記酸化防止剤は、市販品を使用することもでき、例えば、ジブチルヒドロキシトルエン、イルガノックス1010、イルガノックス1035FF、イルガノックス565[BASFジャパン(株)製]などが挙げられる。なお、酸化防止剤の使用量は、0.0001質量%~10質量%が好ましい。 A commercial item can also be used for the said antioxidant, for example, dibutyl hydroxytoluene, Irganox 1010, Irganox 1035FF, Irganox 565 [BASF Japan KK-made] etc. are mentioned. The amount of the antioxidant used is preferably 0.0001% by mass to 10% by mass.
 上記シランカップリング剤は、市販品を使用することもでき、例えばエポキシ系[KBM403、KBM303:信越化学工業(株)製]、ビニル系[KBM1003:信越化学工業(株)製]、アクリル系シランカップリング剤[KBM503:信越化学工業(株)製]、3-エチル(トリエトキシシリルプロポキシメチル)オキセタン[TESOX:東亞合成(株)製]などが挙げられる。シランカップリング剤の使用量は、0.0001質量%~10質量%が好ましい。 A commercial item can also be used for the said silane coupling agent, For example, epoxy-type [KBM403, KBM303: Shin-Etsu Chemical Co., Ltd. product made], vinyl-type [KBM1003: Shin-Etsu Chemical Co., Ltd. product], acrylic system silane Coupling agents [KBM 503: manufactured by Shin-Etsu Chemical Co., Ltd.], 3-ethyl (triethoxysilylpropoxymethyl) oxetane [TESOX: manufactured by Toagosei Co., Ltd.], and the like. The amount of the silane coupling agent used is preferably 0.0001% by mass to 10% by mass.
 次に、上述の本発明の樹脂組成物を用いる硬化物の形成方法について説明する。
 本発明の硬化物を形成する方法は、これまでに説明した本発明の樹脂組成物を基体上に塗布する塗布工程と、本発明の樹脂組成物が塗布された基体を加熱して硬化物を形成する硬化工程とを有する。硬化工程の温度は50℃~200℃の範囲が、導電性の良好な硬化物を得ることができることから好ましく、100℃~200℃の範囲が特に好ましい。硬化工程における加熱時間は1分~300分の範囲が好ましく、10分~60分の範囲が好ましい。なお、必要に応じて硬化工程の前に、基体または本発明の樹脂組成物が塗布された基体を50℃~150℃に保持し、有機溶剤等の低沸点成分を揮発させる乾燥工程をさらに有してもよい。
Next, a method of forming a cured product using the above-described resin composition of the present invention will be described.
The method of forming the cured product of the present invention comprises the steps of applying the resin composition of the present invention described above onto a substrate, and heating the substrate coated with the resin composition of the present invention to cure the cured product. And a curing step to form. The temperature of the curing step is preferably in the range of 50 ° C. to 200 ° C. because a cured product having good conductivity can be obtained, and the range of 100 ° C. to 200 ° C. is particularly preferable. The heating time in the curing step is preferably in the range of 1 minute to 300 minutes, and more preferably in the range of 10 minutes to 60 minutes. In addition, before the curing step, the substrate or the substrate coated with the resin composition of the present invention is maintained at 50 ° C. to 150 ° C. as needed, and a drying step of volatilizing low boiling point components such as organic solvents is further included. You may
 本発明における基体として、樹脂基板、ガラス基板、セラミック基板等が挙げられる。樹脂基板の材質としてはポリイミド、ポリエステル、アラミド、ポリエチレンテレフタレート(PET)、テフロン(登録商標)等が挙げられ、セラミック基板の材質としてはアルミナ、アルミナジルコニア等が挙げられる。また、ガラス基板の種類としてはガラスエポキシ基板、ガラス・コンポジット基板等が挙げられる。 Examples of the substrate in the present invention include resin substrates, glass substrates, ceramic substrates and the like. Examples of the material of the resin substrate include polyimide, polyester, aramid, polyethylene terephthalate (PET), Teflon (registered trademark) and the like, and examples of the material of the ceramic substrate include alumina and alumina-zirconia. Moreover, as a kind of glass substrate, a glass epoxy substrate, a glass composite substrate, etc. are mentioned.
 上記の塗布工程における塗布方法としては、スピンコート法、ディップ法、スプレーコート法、ミストコート法、フローコート法、カーテンコート法、ロールコート法、ナイフコート法、バーコート法、スリットコート法、スクリーン印刷法、グラビア印刷法、オフセット印刷法、インクジェット法、刷毛塗り等を挙げることができる。 As a coating method in the above-mentioned coating process, a spin coat method, a dip method, a spray coat method, a mist coat method, a flow coat method, a curtain coat method, a roll coat method, a knife coat method, a bar coat method, a slit coat method, a screen A printing method, a gravure printing method, an offset printing method, an inkjet method, a brush coating etc. can be mentioned.
 また、必要な膜厚を得るために、上記の塗布工程から任意の工程までを複数繰り返すことができる。例えば、塗布工程から硬化工程の全ての工程を複数回繰り返してもよく、塗布工程と乾燥工程を複数回繰り返すこともできる。 Moreover, in order to obtain a required film thickness, the above-mentioned application process to an arbitrary process can be repeated multiple times. For example, all the steps from the coating step to the curing step may be repeated a plurality of times, and the coating step and the drying step may be repeated a plurality of times.
 上述のようにして形成された本発明の硬化物の用途としては、導電層、電極膜、配線などを挙げることができる As a use of the cured | curing material of this invention formed as mentioned above, a conductive layer, an electrode film, wiring etc. can be mentioned.
 以下、実施例および比較例により本発明を詳細に説明するが、これらによって本発明が限定されるものではないことを理解されたい。 Hereinafter, the present invention will be described in detail by way of Examples and Comparative Examples, but it should be understood that the present invention is not limited thereto.
[銅粉の製造]
<実施例1>
 銅粒子[体積累積平均粒径(D50):1.6μm]を純水に加え、20質量%銅スラリーとした。その後、水素化ホウ素ナトリウムを銅粒子に対し1質量%添加して25℃で1時間攪拌した(第1の工程)。その後、温度20℃の純水を用いて洗浄し(第2の工程)、さらに温度20℃の2-プロパノールで洗浄することで、純水を2-プロパノールで置換し、20質量%銅スラリーとした(第3の工程)。ここへ、化合物No.91をそのまま銅粒子の質量に対し1.0質量%添加することで、銅粒子を化合物No.91に接触させた(第4の工程)。その後、銅粒子を分離し、これを乾燥させて実施例銅粉No.1を得た。
[Production of copper powder]
Example 1
Copper particles [volume cumulative average particle size (D 50 ): 1.6 μm] were added to pure water to make a 20 mass% copper slurry. Then, 1 mass% of sodium borohydride was added with respect to a copper particle, and it stirred at 25 degreeC for 1 hour (1st process). After that, washing with pure water at a temperature of 20 ° C. (second step) and further washing with 2-propanol at a temperature of 20 ° C., the pure water is replaced with 2-propanol, and 20 mass% copper slurry (3rd step). Here, the compound No. No. 91 was added as it is to 1.0% by mass with respect to the mass of the copper particles, whereby the copper particles were added to the compound No. 91 was contacted (fourth step). Thereafter, the copper particles are separated and dried to obtain an example copper powder No. 1 powder. I got one.
<実施例2>
 第4の工程で用いる化合物をNo.92に変更した以外は、実施例1と同様の方法で、実施例銅粉No.2を得た。
Example 2
The compound used in the fourth step is No. Example copper powder No. 1 was prepared in the same manner as in Example 1 except that the No. 92 was used. I got two.
<実施例3>
 第4の工程で用いる化合物をNo.106に変更した以外は、実施例1と同様の方法で、実施例銅粉No.3を得た。
Example 3
The compound used in the fourth step is No. Example copper powder No. 1 was prepared in the same manner as in Example 1 except that it was changed to No. 106. I got three.
<比較例1>
 第4の工程で用いる化合物をステアリン酸に変更した以外は、実施例1と同様の方法で、比較銅粉1を得た。
Comparative Example 1
Comparative copper powder 1 was obtained in the same manner as in Example 1 except that the compound used in the fourth step was changed to stearic acid.
<比較例2>
 第4の工程で用いる化合物をチタネート系カップリング剤であるテトライソプロピルビス(ジオクチルホスファイト)チタネート[味の素ファインテクト(株)製、商品名:プレンアクト41B)]に変更した以外は、実施例1と同様の方法で、比較銅粉2を得た。
Comparative Example 2
Example 1 and Example 1 except that the compound used in the fourth step is changed to tetraisopropyl bis (dioctyl phosphite) titanate [product made by Ajinomoto Finetech Co., Ltd., trade name: Prenact 41B), which is a titanate coupling agent. Comparative copper powder 2 was obtained in the same manner.
<比較例3>
 第4の工程で用いる化合物をチタネート系カップリング剤であるテトラオクチルビス(ジトリデシルホスファイト)チタネート[味の素ファインテクト(株)製、商品名:プレンアクト46B]に変更した以外は、実施例1と同様の方法で、比較銅粉3を得た。
Comparative Example 3
Example 1 and Example 1 except that the compound used in the fourth step is changed to tetraoctyl bis (ditridecyl phosphite) titanate [Ajinomoto Finetechto Co., Ltd. product name: Prenact 46B], which is a titanate coupling agent. Comparative copper powder 3 was obtained in the same manner.
[樹脂組成物の調製]
<実施例11~23>
 表1に示す組成となるように各成分を混合し、樹脂組成物(実施例樹脂組成物No.1~8)を製造した。
[Preparation of Resin Composition]
Examples 11 to 23
Each component was mixed so as to obtain the composition shown in Table 1, and resin compositions (Example resin compositions No. 1 to 8) were produced.
<比較例4~9>
 表1に示す組成となるように各成分を混合し、樹脂組成物(比較樹脂組成物1~6)を製造した。
Comparative Examples 4 to 9
Each component was mixed so as to obtain the composition shown in Table 1, to produce resin compositions (comparative resin compositions 1 to 6).
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表中、
B-1:ビスフェノールA型液状エポキシ樹脂(ADEKA社製、商品名:アデカレジンEP-4005)とレゾール型フェノール樹脂(住友ベークライト社製、商品名:PR-50232)を重量比2:8で混合した混合物。
B-2:フェノール類で変性したレゾールタイプのキシレン樹脂(フドー社製、商品名:PR-1440)
In the table,
B-1: Bisphenol A liquid epoxy resin (made by ADEKA, trade name: Adeka resin EP-4005) and resol type phenol resin (made by Sumitomo Bakelite, trade name: PR-50232) were mixed at a weight ratio of 2: 8 blend.
B-2: Resole-type xylene resin modified with phenols (Fudoh, trade name: PR-1440)
<実施例12~19>
 実施例樹脂組成物No.1~8を用いて、PETフィルム上に膜厚が10μm~20μmとなるようにバーコート法による塗布を行った。なお、ジエチレングリコールモノブチルエーテルを各組成物の膜厚の調整するための溶媒として用いた。その後大気中にて150℃で30分間加熱焼成を行うことで、薄膜状の実施例硬化物No.1~8を得た。
Examples 12 to 19
Example Resin Composition No. Using 1 to 8, coating by a bar coating method was performed on a PET film so as to have a film thickness of 10 μm to 20 μm. In addition, diethylene glycol monobutyl ether was used as a solvent for adjusting the film thickness of each composition. Thereafter, heat baking is carried out at 150 ° C. for 30 minutes in the air, whereby a thin film example cured product No. 1 is obtained. I got 1 to 8.
<比較例11~15>
 比較組成物1~6を用いて、PETフィルム上に膜厚が10μm~20μmとなるようにバーコート法による塗布を行った。なお、ジエチレングリコールモノブチルエーテルを各組成物の膜厚の調整するための溶媒として用いた。その後大気中にて150℃で30分間加熱焼成を行うことで、薄膜状の比較硬化物1~6を得た。
Comparative Examples 11 to 15
Using the comparative compositions 1 to 6, coating by a bar coating method was performed on a PET film so as to have a film thickness of 10 μm to 20 μm. In addition, diethylene glycol monobutyl ether was used as a solvent for adjusting the film thickness of each composition. Thereafter, heat baking was performed at 150 ° C. for 30 minutes in the air to obtain thin film comparative cured products 1 to 6.
<評価例>
 実施例硬化物No.1~8および比較硬化物1~6について、体積抵抗値を4端子4探針法を用いた高精度抵抗率計(三菱化学アナリテック社製、製品名:ロレスタGP)で測定した。結果を表2に示す。
<Example of evaluation>
Example Cured product No. The volume resistance values of 1 to 8 and comparative cured products 1 to 6 were measured with a high-precision resistivity meter (Mitsubishi Chemical Analytech Co., Ltd., product name: Loresta GP) using a four-terminal four-probe method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表2の結果より、評価例1~8は、比較評価例1~6よりも低い体積抵抗値を示し、実施例硬化物No.1~8は、比較硬化物No.1~5よりも優れた導電性を有することがわかった。 From the results of Table 2, Evaluation Examples 1 to 8 show lower volume resistance than Comparative Evaluation Examples 1 to 6, and Example Cured Product No. 1 was obtained. Nos. 1 to 8 are comparative cured product Nos. It has been found that the conductivity is superior to 1 to 5.

Claims (6)

  1.  銅粒子を水中で、水素化ホウ素カリウム、水素化ホウ素ナトリウムおよび水素化ホウ素リチウムからなる群から選ばれる少なくとも1種の水素化ホウ素化合物を用いて還元処理する第1の工程;
     第1の工程で得られた前記銅粒子を、水、メタノールおよびエタノールからなる群から選ばれる少なくとも1種で処理する第2の工程; 
     第2の工程で得られた前記銅粒子を、エーテル化合物およびアルコール化合物からなる群から選ばれる少なくとも1種の溶剤で処理する第3の工程;および
     第3の工程で得られた前記銅粒子を、一般式(1)で表される化合物に接触させる第4の工程;を含む銅粉の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1は炭素原子数14~20のアルキル基またはアルケニル基を表し、X2は炭素原子数1~5のアルキル基を表し、Mはチタン原子、ジルコニウム原子またはハフニウム原子を表し、aは1~3の整数を表す。)
    A first step of reducing the copper particles in water with at least one borohydride compound selected from the group consisting of potassium borohydride, sodium borohydride and lithium borohydride;
    A second step of treating the copper particles obtained in the first step with at least one selected from the group consisting of water, methanol and ethanol;
    A third step of treating the copper particles obtained in the second step with at least one solvent selected from the group consisting of an ether compound and an alcohol compound; and the copper particles obtained in the third step The 4th process made to contact the compound represented with General formula (1); The manufacturing method of the copper powder.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, X 1 represents an alkyl or alkenyl group having 14 to 20 carbon atoms, X 2 represents an alkyl group having 1 to 5 carbon atoms, and M represents a titanium atom, a zirconium atom or a hafnium atom, a represents an integer of 1 to 3)
  2.  前記第4の工程において、前記第3の工程における前記溶剤中に前記銅粒子を浸漬させた状態で、一般式(1)で表される前記化合物を添加し、前記銅粒子を前記化合物に接触させる
     請求項1に記載の銅粉の製造方法。
    In the fourth step, in a state in which the copper particles are immersed in the solvent in the third step, the compound represented by the general formula (1) is added, and the copper particles are brought into contact with the compound The manufacturing method of the copper powder of Claim 1.
  3.  請求項1に記載の製造方法により得られた銅粉。 The copper powder obtained by the manufacturing method of Claim 1.
  4.  (A)請求項3に記載の銅粉;および
     (B)フェノール樹脂、エポキシ樹脂、ポリエステル樹脂およびアクリル樹脂からなる群から選ばれる少なくとも1種の樹脂を含有する樹脂組成物。
    A resin composition comprising (A) the copper powder according to claim 3; and (B) at least one resin selected from the group consisting of a phenol resin, an epoxy resin, a polyester resin and an acrylic resin.
  5.  請求項4に記載の樹脂組成物を基体上に塗布する塗布工程;および
     樹脂組成物が塗布された基体を大気中、50℃~200℃、1分~300分の条件下で加熱して硬化させる硬化工程;を含む硬化物を形成する方法。
    A coating step of coating the resin composition according to claim 4 on a substrate; and curing by heating the substrate coated with the resin composition in the air at 50 ° C. to 200 ° C., for 1 minute to 300 minutes A curing step;
  6.  請求項4に記載の樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the resin composition according to claim 4.
PCT/JP2018/046782 2017-12-28 2018-12-19 Copper powder manufacturing method, copper powder obtained using said manufacturing method, resin composition containing said copper powder, method for forming cured product of said resin composition, and said cured product WO2019131378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019561572A JP7162617B2 (en) 2017-12-28 2018-12-19 A method for producing a copper powder, a copper powder obtained by the production method, a resin composition containing the copper powder, a method for forming a cured product of the resin composition, and the cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253344 2017-12-28
JP2017-253344 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131378A1 true WO2019131378A1 (en) 2019-07-04

Family

ID=67063619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046782 WO2019131378A1 (en) 2017-12-28 2018-12-19 Copper powder manufacturing method, copper powder obtained using said manufacturing method, resin composition containing said copper powder, method for forming cured product of said resin composition, and said cured product

Country Status (3)

Country Link
JP (1) JP7162617B2 (en)
TW (1) TWI801476B (en)
WO (1) WO2019131378A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018880A (en) * 2008-04-01 2010-01-28 Dowa Electronics Materials Co Ltd Copper powder for conductive paste, and method for producing the same
JP2018135564A (en) * 2017-02-22 2018-08-30 住友金属鉱山株式会社 Tin-coated copper powder, method for manufacturing the same, and conductive paste

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010018880A (en) * 2008-04-01 2010-01-28 Dowa Electronics Materials Co Ltd Copper powder for conductive paste, and method for producing the same
JP2018135564A (en) * 2017-02-22 2018-08-30 住友金属鉱山株式会社 Tin-coated copper powder, method for manufacturing the same, and conductive paste

Also Published As

Publication number Publication date
JP7162617B2 (en) 2022-10-28
TW201936297A (en) 2019-09-16
TWI801476B (en) 2023-05-11
JPWO2019131378A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP6174106B2 (en) Conductive paste and method for producing conductive film
EP2305402B1 (en) Method for producing silver-containing powder and conductive paste using the same
JP5707582B2 (en) Water-based metal surface treatment agent and metal material treated with the treatment agent
EP2880105A1 (en) Ink composition and circuit board and method for producing the same
WO2013108701A1 (en) Conductive filler of flake form
EP3232445A1 (en) Silver paste, and conductive molded article obtained using same
CN104364290A (en) Curable resin composition, resin composition, resin sheet formed by using said curable resin composition and resin composition, and hardener for said curable resin composition and resin composition
TWI548640B (en) A zinc oxide film forming composition, and a method for producing a zinc oxide film
WO2014132794A1 (en) Plating primer composition, method for manufacturing plated article, and plated article
KR102337047B1 (en) Manufacturing method of copper powder, resin composition, method of forming a cured product, and cured product
TWI494389B (en) Electrically conductive paste and metal thin film
JP7162617B2 (en) A method for producing a copper powder, a copper powder obtained by the production method, a resin composition containing the copper powder, a method for forming a cured product of the resin composition, and the cured product
JP2014231536A (en) Resin composition and adhesive
WO2015122430A1 (en) Method for producing metal nanoparticles
CN114222796A (en) Epoxy resin composition, gas barrier film, and laminate
WO2022249879A1 (en) Composition, method for producing cured product, and cured product
JP6387280B2 (en) Composition for forming copper film and method for producing copper film using the same
JP2009001615A (en) Coating liquid for forming ink receiving film, ink receiving film, laminated substrate and wiring material
TWI716424B (en) Resin composition and hardened product
TW202237696A (en) Electric conductive polymer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895312

Country of ref document: EP

Kind code of ref document: A1