WO2019131376A1 - Organic sample observation method and observation system - Google Patents

Organic sample observation method and observation system Download PDF

Info

Publication number
WO2019131376A1
WO2019131376A1 PCT/JP2018/046769 JP2018046769W WO2019131376A1 WO 2019131376 A1 WO2019131376 A1 WO 2019131376A1 JP 2018046769 W JP2018046769 W JP 2018046769W WO 2019131376 A1 WO2019131376 A1 WO 2019131376A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
sample
organic
electron beam
infrared
Prior art date
Application number
PCT/JP2018/046769
Other languages
French (fr)
Japanese (ja)
Inventor
小椋 俊彦
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2019131376A1 publication Critical patent/WO2019131376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides

Definitions

  • the present invention relates to an observation method and an observation system for obtaining information reflecting the composition of an organic sample, and more particularly to an observation method and an observation system obtaining information reflecting the composition distribution of an organic sample from infrared absorption.
  • An optical microscope is widely used for surface observation of various samples.
  • optical microscopes using infrared rays having a longer wavelength or the like have been proposed (for example, Patent Document 1).
  • an infrared (IR) microscope has also been proposed which condenses infrared light onto an observation sample with an aperture or the like, detects transmitted light or reflected light with a semiconductor detector, and gives qualitative analysis or quantitative analysis of minute parts.
  • Patent Document 2 discloses an observation system in which a Fourier transform infrared spectrophotometer (FTIR) is combined with an infrared microscope that performs microspectroscopy in an infrared wavelength region.
  • FTIR Fourier transform infrared spectrophotometer
  • the irradiation position of the infrared light flux is determined based on the visible light image of the area including the analysis position on the sample surface, and this is irradiated to the area of about 15 ⁇ m square to perform microspectroscopic light There is.
  • Patent Document 3 and Non-patent Document 1 soft X-rays generated by irradiating a thin metal thin film with an electron beam are irradiated to an observation sample and soft X-rays transmitted are detected, and organisms containing moisture are detected. Describes how to provide an internal view of the sample.
  • soft X-rays it is possible to observe a water-containing observation sample (a biological sample or a sample in a solution) as it is, and since the wavelength is shorter than visible light, high resolution observation beyond an optical microscope It is said that it is possible.
  • Patent Document 4 and Non-Patent Document 2 as in the above-mentioned Patent Document 3 and Non-Patent Document 1, the biological sample in the aqueous solution is not subjected to staining treatment by generating potential fluctuation using an electron beam irradiation apparatus. Describes what can be observed with high contrast.
  • a heavy metal thin film formed on the upper surface of the insulating thin film having pressure resistance is irradiated with an electron beam to form a local potential change, and the potential fluctuation causes an attenuation state when passing through the observation sample as an image It observes.
  • the dielectric constant of water is as high as about 80 and the potential change is well transmitted
  • the dielectric constant of the biological sample is as low as about 2 to 3 to inhibit the transmission of the potential change, so observation with high contrast can be obtained It is
  • the image observation is performed without staining processing of bacteria, virus, protein or protein complex in water or aqueous solution, and as it is alive It becomes possible. Also in this case, even if it is attempted to incorporate an infrared microscope for composition analysis, it is difficult to guide the optical path to the observation sample because there is a plate to be irradiated that receives electron beam irradiation.
  • the present invention has been made in view of the above situation, and the object of the present invention is an observation method for obtaining information reflecting the composition from infrared absorption of an organic sample with high sensitivity while being simple. And providing an observation system.
  • an aqueous solution containing an organic substance sample is interposed between opposing main surfaces of a pair of first and second insulating thin films, and the pair of opposing surfaces of the first insulating thin film
  • the conductive thin film provided on the outer main surface is irradiated with an electron beam to be locally heated, and the intensity of infrared rays transmitted through the second insulating thin film is measured by an infrared sensor as information reflecting the composition of the organic substance sample It is characterized by
  • the electron beam may be scan-irradiated along the conductive thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
  • the infrared sensors are arranged in an array to be opposed to the second insulating thin film, and each detection signal from this is calculated based on the mutual position with the irradiation position of the electron beam to the conductive thin film.
  • Processing may be performed to obtain three-dimensional information including the composition distribution of the organic sample. According to this invention, it is possible to obtain three-dimensional information including the composition distribution of the organic substance sample with high sensitivity while being simple.
  • the infrared sensor may be provided with filters having different transmission wavelengths to obtain an absorbance spectrum. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
  • the conductive thin film may be characterized by being made of a single substance of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium, or an alloy containing the same.
  • the first and second insulating thin films may be made of a silicon nitride thin film, a silicon oxide thin film, or a polyimide thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
  • a pair of first and second insulating thin films capable of interposing an aqueous solution containing an organic substance sample between opposing main surfaces of the organic substance sample;
  • An electron beam irradiated portion including a conductive thin film provided on an outer major surface forming a pair with the opposite major surface and capable of locally heating by irradiating an electron beam thereto, and the second as information reflecting the composition of the organic sample
  • an infrared sensor for measuring the intensity of infrared rays transmitted through the insulating thin film.
  • the apparatus may include an irradiation control unit which scans and irradiates the electron beam along the conductive thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
  • the infrared sensors are arranged in an array to be opposed to the second insulating thin film, and each detection signal from this is calculated based on the mutual position with the irradiation position of the electron beam to the conductive thin film. It may be characterized by having an operation part which processes and obtains three-dimensional information including composition distribution of the organic matter sample. According to this invention, it is possible to obtain three-dimensional information reflecting the composition distribution from the infrared absorption of the organic substance sample with high sensitivity while being simple.
  • the conductive thin film may be characterized by being made of a single substance of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium, or an alloy containing the same.
  • the first and second insulating thin films may be made of a silicon nitride thin film, a silicon oxide thin film, or a polyimide thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
  • the infrared sensor may include filters having different transmission wavelengths to obtain an absorbance spectrum. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
  • the observation system 1 of the organic substance sample includes a sample chamber 2 which can be evacuated to a predetermined degree of vacuum, and is in communication with it and emits electrons from an electron source 30 near the top of the housing 3 above it.
  • the wire 31 is appropriately guided to a predetermined position of the observation holder 10 in the sample chamber 2 while passing through the diaphragm 32, and the conductive thin film 13 (see FIG. 2) to be described later is locally heated by the irradiated electron beam 31 to To generate an observation of the organic matter sample 18 (see FIG. 2).
  • the electron source 30 is a field emission type electron gun.
  • the traveling direction of the emitted electron beam 31 can be changed by the polarizing plate 33, and the electron beam 31 can be scanned and irradiated on the observation holder 10 (irradiation control unit).
  • the electron source 30 may be configured to be able to irradiate the electron beam 31 whose output changes in a pulse shape of a predetermined frequency onto the observation holder 10 by using the function generator 34.
  • a sample exchange chamber 41 is provided in the sample chamber 2 with an openable shutter 40 interposed therebetween, and a stage provided in the sample chamber 2 using the sample exchange rod 42 while maintaining the degree of vacuum in the sample chamber 2
  • the observation holder 10 is removable above 20.
  • a measuring unit A described later is provided on the insulating insulating casing 21 of the stage 20, and the signal from the measuring unit A can be extracted to the outside of the sample chamber 2.
  • the signal is amplified by the amplifier 23 (see FIG. 2) incorporated in the measurement unit A, guided to the frequency separation device 35, separated in frequency, and output to the composition analysis device 36.
  • the frequency separation device 35 receives the reference signal of the output change of the electron beam described above from the function generator 34.
  • a DC power supply 37 for the operation of the amplifier 23 and the like is connected to the measurement unit A.
  • the observation holder 10 includes an outer frame 11 having windows at the top and bottom, and a pair of first insulating thin film 12a and second insulating thin film 12b closing the upper and lower windows from the inside.
  • the insulating thin film 12a closing the upper window holds the aqueous solution 18b containing the organic sample 18 from the upper side by the lower side (opposing main surface) from the upper side, and the conductive thin film 13 is laminated on the upper side (outside main surface) Ru.
  • the insulating thin film 12 b closing the lower window holds the aqueous solution 18 b containing the organic sample 18 from the lower side by the upper side surface (opposing main surface).
  • the main surfaces of the insulating thin films 12a and 12b are opposed to each other, and the organic sample 18 and the aqueous solution 18b are interposed between each other.
  • the insulating thin films 12a and 12b are in contact with the inner surface of the observation holder 10 by an O-ring 17 and a packing not shown, respectively, and the inside is sealed against the vacuum outside the observation holder 10 to It can be held.
  • the insulating thin films 12a and 12b have a strength sufficient to withstand these pressure differences.
  • a thin silicon nitride thin film having high pressure resistance it is preferable to use a thin silicon oxide thin film having high pressure resistance.
  • a silicon oxide thin film, a polyimide thin film, and the like can also be suitably used.
  • the conductive thin film 13 may be provided on the outer major surface of the insulating thin film 12a and irradiated with the electron beam 31 to be locally heated, thereby generating an infrared ray by such heating.
  • the lower the thermal conductivity of the metal the higher the temperature of the region irradiated with the electron beam, and the larger the detection signal can be obtained. Therefore, a metal having a low thermal conductivity is more preferable.
  • a single element of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium, an alloy containing the same, or the like can be used.
  • the measuring unit A of the stage 20 includes an infrared sensor 22 connected to the amplifier 23 to receive the infrared light transmitted through the insulating thin films 12 a and 12 b.
  • the amplifier 23 can amplify a detection signal based on the infrared intensity received by the infrared sensor 22 and output it to the frequency separation device 35 through the connector 24 as described above. Further, the amplifier 23 and the power supply 37 are connected via the connector 24.
  • the measuring unit A may further include a potential measurement terminal 25 capable of receiving a potential change due to the irradiation of the electron beam 31 to the conductive thin film 13. Thus, such potential changes can be transmitted through the insulating thin films 12a and 12b and can be received via the organic sample 18 and / or the aqueous solution 18b having different dielectric constants.
  • the observation system 1 to which the observation holder 10 is attached has an electron beam irradiation unit, and after evacuating the sample chamber 2 to a predetermined degree of vacuum, the electron beam 31 is emitted from the electron source 30.
  • the output of the electron beam 31 can be changed in a pulse shape by the control signal from the function generator 34.
  • the electron beam 31 may be chopped by the polarizing plate 33 to perform frequency modulation.
  • an element requiring frequency modulation such as a pyroelectric infrared sensor or a sensor based on thermoelectromotive force such as a thermopile can be used as the infrared sensor 22 and this contributes to the improvement of detection sensitivity and the reduction of noise.
  • the electron beam 31 irradiated toward the observation holder 10 is made incident on the conductive thin film 13 from the window of the observation holder 10 and absorbed, and the incident portion is locally heated.
  • Such local heating generates infrared light from the conductive thin film 13, and the insulating thin film 12 a, the organic sample 18 and the layer of the aqueous solution 18 b, and the insulating thin film 12 b are sequentially transmitted or partially absorbed, and infrared light intensity is measured by the infrared sensor 22. It is detected. That is, it is possible to obtain information reflecting the composition of the organic sample 18 based on the infrared absorption detected by the organic sample 18 and the like.
  • the infrared sensor 22 detects infrared rays at different detection angles.
  • the two-dimensional image is an inclined image in which the images directed to the respective detection angles are continuous.
  • a potential image of the organic substance sample 18 can be obtained also from the potential change received by the above-described potential measurement terminal 25, and combined with the infrared image, analysis of the organic substance sample 18 in more detail can also be performed.
  • infrared light is obtained by local heating at the irradiation position of the electron beam 31 irradiated to the conductive thin film 13, its generation source (light source) can be made very small, and high-definition information can be obtained by the infrared sensor 22. Can be obtained by Furthermore, there is no need for an optical system for focusing infrared light optically or a precise mechanism for optical scanning. That is, it is possible to obtain information with high sensitivity infrared light with a simple configuration.
  • the observation system 1 of the organic substance sample it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
  • the observation holder 10 a is formed by arranging a plurality of infrared sensors 22 in an array on the measurement unit A. Thereby, a plurality of infrared images can be obtained by one electron beam scan. That is, the above-described two-dimensional image obtained by scanning can be obtained by each of the infrared sensors 22.
  • the detection angle of infrared rays is calculated based on the mutual position of each infrared sensor 22 and the irradiation position of the electron beam 31, and three-dimensional information ( It is also possible to use calculation processing to obtain data) (calculation unit).
  • the infrared filter 22 a may be disposed on the upper surface of the infrared sensor 22. By making the transmission wavelengths different for each of the infrared filters 22a, it is possible to obtain absorbance spectra of different infrared wavelengths and to obtain two-dimensional images separately.
  • an infrared absorption spectrum can be calculated from the plurality of obtained two-dimensional images, and the composition of the organic sample 18 can be analyzed in more detail.
  • a biological sample such as a cell
  • proteins and oil components are contained inside.
  • proteins and oil components produce unique absorption spectra in the infrared region, it is possible to analyze the composition distribution in cells by obtaining the absorption spectra.
  • an electrode with a thin tip is brought close to the upper surface of the conductive thin film 13 and a voltage is applied to the conductive thin film 13 to generate a current. It can also be heated. For example, local heating can be made to be a minute spot of about 10 nm by setting the tip of the electrode to about 10 nm in diameter.
  • the observation holder 10 can be placed in the atmosphere. That is, a simple structure with low airtightness can be obtained for both the observation holder and the entire observation system of the organic substance sample.
  • observation system 10 observation holder 12a, 12b insulating thin film 13 conductive thin film 18 organic sample 18 b aqueous solution 31 electron beam

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Provided are an observation method and an observation system for acquiring, with high sensitivity and simplicity, information reflecting the composition of an organic sample from infrared absorption thereof. The observation system includes: a pair of first and second insulating thin films, between the opposing main surfaces of which an aqueous solution containing an organic sample can be interposed; an electron beam irradiation unit that irradiates, with an electron beam, a conductive thin film provided to the outer main surface making a pair with the opposing main surface of the first insulating thin film so as to be able to perform local heating for the conductive thin film; and an infrared sensor that measures the intensity distribution of infrared rays transmitted through the second insulating film, as information reflecting the composition of the organic sample. The observation method includes: interposing an aqueous solution containing an organic sample between the opposing main surfaces of a pair of first and second insulating thin films; irradiating, with an electron beam, a conductive thin film provided to the outer main surface making a pair with the opposing main surface of the first insulating thin film so as to perform local heating for the conductive thin film; and measuring the intensity distribution of infrared rays transmitted through the second insulating film, as information reflecting the composition of the organic sample.

Description

有機物試料の観察方法及び観察システムMethod and system for observing organic matter sample
 本発明は、有機物試料の組成を反映した情報を得るための観察方法及び観察システムに関し、特に、赤外吸収から有機物試料の組成分布を反映した情報を得る観察方法及び観察システムに関する。 The present invention relates to an observation method and an observation system for obtaining information reflecting the composition of an organic sample, and more particularly to an observation method and an observation system obtaining information reflecting the composition distribution of an organic sample from infrared absorption.
 各種試料の表面観察に光学顕微鏡が広く用いられている。また、可視光だけではなく、波長のより長い赤外線などを用いた光学顕微鏡も提案されている(例えば、特許文献1)。一方、赤外線をアパーチャなどで観察試料に集光させ、その透過光又は反射光を半導体検出器で検知し微小部の定性分析又は定量分析を与える赤外(IR)顕微鏡も提案されている。 An optical microscope is widely used for surface observation of various samples. In addition, not only visible light but also optical microscopes using infrared rays having a longer wavelength or the like have been proposed (for example, Patent Document 1). On the other hand, an infrared (IR) microscope has also been proposed which condenses infrared light onto an observation sample with an aperture or the like, detects transmitted light or reflected light with a semiconductor detector, and gives qualitative analysis or quantitative analysis of minute parts.
 例えば、特許文献2では、フーリエ変換赤外分光光度計(FTIR)に赤外線波長領域における顕微分光を行う赤外顕微鏡を組み合わせた観察システムを開示している。かかる観察システムでは、試料表面上の分析位置を含む領域の可視光画像に基づき、赤外光束の照射位置を決定し、15μm角程度の領域にこれを照射して顕微分光を行うようになっている。 For example, Patent Document 2 discloses an observation system in which a Fourier transform infrared spectrophotometer (FTIR) is combined with an infrared microscope that performs microspectroscopy in an infrared wavelength region. In this observation system, the irradiation position of the infrared light flux is determined based on the visible light image of the area including the analysis position on the sample surface, and this is irradiated to the area of about 15 μm square to perform microspectroscopic light There is.
 ところで、特許文献3及び非特許文献1では、薄い金属薄膜に電子線を照射して発生する軟X線を観察試料に照射して透過してくる軟X線を検出し、水分を含んだ生物試料の内部観察を与える方法について述べている。軟X線を利用することで水分を含んだ観察試料(生物試料や溶液中の試料)をそのままの状態で観察でき、且つ、波長が可視光よりも短いため、光学顕微鏡以上の高分解能観察が可能であるとしている。 By the way, in Patent Document 3 and Non-patent Document 1, soft X-rays generated by irradiating a thin metal thin film with an electron beam are irradiated to an observation sample and soft X-rays transmitted are detected, and organisms containing moisture are detected. Describes how to provide an internal view of the sample. By using soft X-rays, it is possible to observe a water-containing observation sample (a biological sample or a sample in a solution) as it is, and since the wavelength is shorter than visible light, high resolution observation beyond an optical microscope It is said that it is possible.
 また、特許文献4及び非特許文献2では、上記した特許文献3及び非特許文献1と同様に、電子線照射装置を用いて電位変動を生じさせることで、水溶液中の生物試料を染色処理なしに高いコントラストで観察できることについて述べている。ここでは、耐圧性を有する絶縁性薄膜の上面に形成された重金属薄膜に電子線を照射して局所的な電位変化を形成させ、この電位変動が観察試料を透過する際の減衰状態を画像として観察するのである。水の比誘電率は約80と高く電位変化を良好に透過する一方、生物試料の比誘電率は2~3程度と低く電位変化の透過を阻害することから、高いコントラストでの観察を得られるのである。 Further, in Patent Document 4 and Non-Patent Document 2, as in the above-mentioned Patent Document 3 and Non-Patent Document 1, the biological sample in the aqueous solution is not subjected to staining treatment by generating potential fluctuation using an electron beam irradiation apparatus. Describes what can be observed with high contrast. Here, a heavy metal thin film formed on the upper surface of the insulating thin film having pressure resistance is irradiated with an electron beam to form a local potential change, and the potential fluctuation causes an attenuation state when passing through the observation sample as an image It observes. While the dielectric constant of water is as high as about 80 and the potential change is well transmitted, the dielectric constant of the biological sample is as low as about 2 to 3 to inhibit the transmission of the potential change, so observation with high contrast can be obtained It is
特開2011-107326号公報JP, 2011-107326, A 特開2017-151373号公報JP, 2017-151373, A 特開2011-174784号公報JP, 2011-174784, A 特開2014-203733号公報JP 2014-203733 A
 ゴムや樹脂(プラスチック)、繊維、生物体からなる有機物試料の画像観察とともに、観察視野の内部組成の分析や、より広範囲の3次元的な組成分析が求められることもある。かかる場合、赤外顕微鏡を画像観察用の顕微鏡に組み込むことも考慮されるが、光学的に赤外線を収束させる光学系や、光学走査のための精密な機構が必要となる。 Along with image observation of an organic matter sample consisting of rubber, resin (plastic), fiber, and living body, analysis of the internal composition of the observation field of view and wider three-dimensional compositional analysis may be required. In such a case, it is considered to incorporate an infrared microscope into a microscope for image observation, but an optical system for focusing infrared rays optically and a precise mechanism for optical scanning are required.
 また、上記した電子線照射装置を利用した顕微鏡システムによれば、水又は水溶液中のバクテリア、ウイルス、タンパク質、若しくは、タンパク質複合体などを染色加工せず、且つ、生きたそのままで画像観察をすることが可能となる。この場合においても、組成分析のための赤外顕微鏡を組み込もうとしても、電子線照射を受ける被照射プレートがあって、光学経路を観察試料まで導くことが難しい。 In addition, according to the microscope system using the above-mentioned electron beam irradiation apparatus, the image observation is performed without staining processing of bacteria, virus, protein or protein complex in water or aqueous solution, and as it is alive It becomes possible. Also in this case, even if it is attempted to incorporate an infrared microscope for composition analysis, it is difficult to guide the optical path to the observation sample because there is a plate to be irradiated that receives electron beam irradiation.
 本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、簡便でありながら高い感度で有機物試料の赤外吸収からその組成を反映した情報を得る観察方法及び観察システムを提供することにある。 The present invention has been made in view of the above situation, and the object of the present invention is an observation method for obtaining information reflecting the composition from infrared absorption of an organic sample with high sensitivity while being simple. And providing an observation system.
 本発明による有機物試料の観察方法は、一対の第1及び第2絶縁性薄膜の対向主面の間に有機物試料を含む水溶液を介在させ、前記第1絶縁性薄膜の前記対向主面と対をなす外側主面に与えられた導電性薄膜に電子線を照射し局所加熱させ、前記有機物試料の組成を反映した情報として前記第2絶縁性薄膜を透過してくる赤外線の強度を赤外線センサで測定することを特徴とする。 In the method of observing an organic substance sample according to the present invention, an aqueous solution containing an organic substance sample is interposed between opposing main surfaces of a pair of first and second insulating thin films, and the pair of opposing surfaces of the first insulating thin film The conductive thin film provided on the outer main surface is irradiated with an electron beam to be locally heated, and the intensity of infrared rays transmitted through the second insulating thin film is measured by an infrared sensor as information reflecting the composition of the organic substance sample It is characterized by
 かかる発明によれば、簡便でありながら高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
 上記した発明において、前記導電性薄膜に沿って前記電子線を走査照射することを特徴としてもよい。かかる発明によれば、簡便でありながら高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 In the above-described invention, the electron beam may be scan-irradiated along the conductive thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
 上記した発明において、前記赤外線センサをアレイ状に配置して前記第2絶縁性薄膜に対向させこれからの各検出信号を前記導電性薄膜への前記電子線の照射位置との相互位置に基づいて演算処理し前記有機物試料の組成分布を含む3次元情報を得ることを特徴としてもよい。かかる発明によれば、簡便でありながら高い感度で有機物試料の組成分布を含む3次元情報を得られるのである。 In the above-described invention, the infrared sensors are arranged in an array to be opposed to the second insulating thin film, and each detection signal from this is calculated based on the mutual position with the irradiation position of the electron beam to the conductive thin film. Processing may be performed to obtain three-dimensional information including the composition distribution of the organic sample. According to this invention, it is possible to obtain three-dimensional information including the composition distribution of the organic substance sample with high sensitivity while being simple.
 上記した発明において、前記赤外線センサに透過波長の異なるフィルタを与えて吸光度スペクトルを得ることを特徴としてもよい。かかる発明によれば、簡便でありながら高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 In the above-described invention, the infrared sensor may be provided with filters having different transmission wavelengths to obtain an absorbance spectrum. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
 上記した発明において、前記導電性薄膜は、マンガン、タングステン、タンタル、金、プラチナ、銀、銅、鉄、チタン、オスミウムの単体若しくはこれを含む合金からなることを特徴としてもよい。また、前記第1及び第2絶縁性薄膜は、窒化シリコン薄膜、酸化シリコン薄膜、ポリイミド薄膜からなることを特徴としてもよい。かかる発明によれば、簡便でありながらより高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 In the above-described invention, the conductive thin film may be characterized by being made of a single substance of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium, or an alloy containing the same. The first and second insulating thin films may be made of a silicon nitride thin film, a silicon oxide thin film, or a polyimide thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
 また、本発明による有機物試料の観察システムは、前記有機物試料の対向主面の間に有機物試料を含む水溶液を介在させ得る一対の第1及び第2絶縁性薄膜と、前記第1絶縁性薄膜の前記対向主面と対をなす外側主面に与えられた導電性薄膜を含みこれに電子線を照射し局所加熱させ得る電子線照射部と、前記有機物試料の組成を反映した情報として前記第2絶縁性薄膜を透過してくる赤外線の強度を測定する赤外線センサと、を含むことを特徴とする。 Further, according to the observation system of an organic substance sample according to the present invention, a pair of first and second insulating thin films capable of interposing an aqueous solution containing an organic substance sample between opposing main surfaces of the organic substance sample; An electron beam irradiated portion including a conductive thin film provided on an outer major surface forming a pair with the opposite major surface and capable of locally heating by irradiating an electron beam thereto, and the second as information reflecting the composition of the organic sample And an infrared sensor for measuring the intensity of infrared rays transmitted through the insulating thin film.
 かかる発明によれば、簡便でありながら高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple.
 上記した発明において、前記導電性薄膜に沿って前記電子線を走査照射する照射制御部を含むことを特徴としてもよい。かかる発明によれば、簡便でありながらより高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 In the invention described above, the apparatus may include an irradiation control unit which scans and irradiates the electron beam along the conductive thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
 上記した発明において、前記赤外線センサをアレイ状に配置して前記第2絶縁性薄膜に対向させこれからの各検出信号を前記導電性薄膜への前記電子線の照射位置との相互位置に基づいて演算処理し前記有機物試料の組成分布を含む3次元情報を得る演算部を有することを特徴としてもよい。かかる発明によれば、簡便でありながら高い感度で有機物試料の赤外吸収からその組成分布を反映した3次元情報を得られるのである。 In the above-described invention, the infrared sensors are arranged in an array to be opposed to the second insulating thin film, and each detection signal from this is calculated based on the mutual position with the irradiation position of the electron beam to the conductive thin film. It may be characterized by having an operation part which processes and obtains three-dimensional information including composition distribution of the organic matter sample. According to this invention, it is possible to obtain three-dimensional information reflecting the composition distribution from the infrared absorption of the organic substance sample with high sensitivity while being simple.
 上記した発明において、前記導電性薄膜は、マンガン、タングステン、タンタル、金、プラチナ、銀、銅、鉄、チタン、オスミウムの単体若しくはこれを含む合金からなることを特徴としてもよい。また、前記第1及び第2絶縁性薄膜は、窒化シリコン薄膜、酸化シリコン薄膜、ポリイミド薄膜からなることを特徴としてもよい。かかる発明によれば、簡便でありながらより高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 In the above-described invention, the conductive thin film may be characterized by being made of a single substance of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium, or an alloy containing the same. The first and second insulating thin films may be made of a silicon nitride thin film, a silicon oxide thin film, or a polyimide thin film. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
 上記した発明において、前記赤外線センサは透過波長の異なるフィルタを含み、吸光度スペクトルを得ることを特徴としてもよい。かかる発明によれば、簡便でありながらより高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。 In the above-described invention, the infrared sensor may include filters having different transmission wavelengths to obtain an absorbance spectrum. According to this invention, it is possible to obtain information reflecting the composition from the infrared absorption of the organic matter sample with high sensitivity while being simple.
本発明による1つの実施例における有機物試料のブロック図である。It is a block diagram of the organic matter sample in one Example by this invention. 有機物試料の観察システムの要部の断面図である。It is sectional drawing of the principal part of the observation system of an organic substance sample. 他の有機物試料の観察システムの要部の断面図である。It is sectional drawing of the principal part of the observation system of another organic substance sample. 有機物試料の赤外線画像の例である。It is an example of the infrared image of an organic matter sample. 有機物試料の赤外線画像と波長による吸光度の例である。It is an example of the infrared image of an organic substance sample, and the light absorbency by a wavelength.
 以下に、本発明による有機物試料の観察システム及び観察方法の1つの実施例について、図1及び図2を用いて説明する。 Below, one Example of the observation system of the organic substance sample by this invention and the observation method is described using FIG.1 and FIG.2.
 図1に示すように、有機物試料の観察システム1は、所定の真空度まで排気可能な試料室2を備え、これと連通しその上にある筐体3の頂部近傍にある電子源30から電子線31を適宜、絞り32を通過させながら試料室2内の観察ホルダ10の所定位置上に導くとともに、照射した電子線31によって後述する導電性薄膜13(図2参照)を局所加熱して赤外線を発生させて有機物試料18(図2参照)の観察を行おうとする装置である。 As shown in FIG. 1, the observation system 1 of the organic substance sample includes a sample chamber 2 which can be evacuated to a predetermined degree of vacuum, and is in communication with it and emits electrons from an electron source 30 near the top of the housing 3 above it. The wire 31 is appropriately guided to a predetermined position of the observation holder 10 in the sample chamber 2 while passing through the diaphragm 32, and the conductive thin film 13 (see FIG. 2) to be described later is locally heated by the irradiated electron beam 31 to To generate an observation of the organic matter sample 18 (see FIG. 2).
 電子源30は電界放出(フィールドエミッション)型の電子銃である。出射した電子線31は偏光板33によってその進行方向を変化させることが可能であり、電子線31を観察ホルダ10上で走査照射できる(照射制御部)。また、電子源30は、ファンクションジェネレータ34を用いることで、所定の周波数のパルス状に出力変化する電子線31を観察ホルダ10の上に照射できるようにしてもよい。 The electron source 30 is a field emission type electron gun. The traveling direction of the emitted electron beam 31 can be changed by the polarizing plate 33, and the electron beam 31 can be scanned and irradiated on the observation holder 10 (irradiation control unit). In addition, the electron source 30 may be configured to be able to irradiate the electron beam 31 whose output changes in a pulse shape of a predetermined frequency onto the observation holder 10 by using the function generator 34.
 試料室2には開閉自在のシャッタ40を挟んで試料交換室41が設けられており、試料室2内の真空度を維持したまま試料交換棒42を用いて試料室2内に設けられたステージ20の上に観察ホルダ10を脱着可能である。ステージ20の絶縁性の絶縁性筐体21上には後述する測定部Aが設けられており、測定部Aからの信号を試料室2の外部に取り出し可能である。かかる信号は、測定部Aに内蔵されるアンプ23(図2参照)によって増幅されて周波数分離装置35に導かれ、周波数分離されて組成解析装置36に出力される。周波数分離装置35は、ファンクションジェネレータ34から上記した電子線の出力変化のリファレンス信号を入力される。また、測定部Aには、アンプ23等の動作のためのDC電源37が接続される。 A sample exchange chamber 41 is provided in the sample chamber 2 with an openable shutter 40 interposed therebetween, and a stage provided in the sample chamber 2 using the sample exchange rod 42 while maintaining the degree of vacuum in the sample chamber 2 The observation holder 10 is removable above 20. A measuring unit A described later is provided on the insulating insulating casing 21 of the stage 20, and the signal from the measuring unit A can be extracted to the outside of the sample chamber 2. The signal is amplified by the amplifier 23 (see FIG. 2) incorporated in the measurement unit A, guided to the frequency separation device 35, separated in frequency, and output to the composition analysis device 36. The frequency separation device 35 receives the reference signal of the output change of the electron beam described above from the function generator 34. Further, a DC power supply 37 for the operation of the amplifier 23 and the like is connected to the measurement unit A.
 図2に示すように、観察ホルダ10は、上下に窓を有する外枠体11と、かかる上下の窓を内部からそれぞれ閉塞する一対の第1絶縁性薄膜12a及び第2絶縁性薄膜12bを含む。上側の窓を閉塞する絶縁性薄膜12aは、有機物試料18を含む水溶液18bを上側からその下側面(対向主面)で保持し、その上側面(外側主面)に導電性薄膜13を積層される。また、下の窓を閉塞する絶縁性薄膜12bは、有機物試料18を含む水溶液18bを下側からその上側面(対向主面)で保持する。つまり、絶縁性薄膜12a及び12bは、互いにその主面を対向させて、互いの間に有機物試料18を水溶液18bとともに介在させている。また、絶縁性薄膜12a及び12bは、それぞれOリング17や図示しないパッキン等によって観察ホルダ10の内面に接しており、観察ホルダ10の外部の真空に対して内部を密閉して、内部の気圧を保持可能である。 As shown in FIG. 2, the observation holder 10 includes an outer frame 11 having windows at the top and bottom, and a pair of first insulating thin film 12a and second insulating thin film 12b closing the upper and lower windows from the inside. . The insulating thin film 12a closing the upper window holds the aqueous solution 18b containing the organic sample 18 from the upper side by the lower side (opposing main surface) from the upper side, and the conductive thin film 13 is laminated on the upper side (outside main surface) Ru. In addition, the insulating thin film 12 b closing the lower window holds the aqueous solution 18 b containing the organic sample 18 from the lower side by the upper side surface (opposing main surface). That is, the main surfaces of the insulating thin films 12a and 12b are opposed to each other, and the organic sample 18 and the aqueous solution 18b are interposed between each other. The insulating thin films 12a and 12b are in contact with the inner surface of the observation holder 10 by an O-ring 17 and a packing not shown, respectively, and the inside is sealed against the vacuum outside the observation holder 10 to It can be held.
 ここで、絶縁性薄膜12a及び12bは、これらの圧力差に耐え得るだけの強度を有する。例えば、薄く耐圧性の高い窒化シリコン薄膜を用いることが好ましい。また、酸化シリコン薄膜、ポリイミド薄膜なども好適に用いることができる。 Here, the insulating thin films 12a and 12b have a strength sufficient to withstand these pressure differences. For example, it is preferable to use a thin silicon nitride thin film having high pressure resistance. In addition, a silicon oxide thin film, a polyimide thin film, and the like can also be suitably used.
 また、導電性薄膜13は、絶縁性薄膜12aの外側主面に与えられて、電子線31を照射されて局所加熱され、かかる加熱によって赤外線を発生させるものであればよい。ここで、熱伝導度の低い金属ほど電子線を照射した領域の温度が上がり易く、検出信号を大きく得られるため、低い熱伝導度を有する金属の方がより好ましい。例えば、マンガン、タングステン、タンタル、金、プラチナ、銀、銅、鉄、チタン、オスミウムの単体若しくはこれを含む合金などを用いることができる。 The conductive thin film 13 may be provided on the outer major surface of the insulating thin film 12a and irradiated with the electron beam 31 to be locally heated, thereby generating an infrared ray by such heating. Here, the lower the thermal conductivity of the metal, the higher the temperature of the region irradiated with the electron beam, and the larger the detection signal can be obtained. Therefore, a metal having a low thermal conductivity is more preferable. For example, a single element of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium, an alloy containing the same, or the like can be used.
 ステージ20の測定部Aは、アンプ23に接続されて、絶縁性薄膜12a及び12bを透過してきた赤外線を受信する赤外線センサ22を含む。アンプ23は赤外線センサ22の受光した赤外線強度に基づく検出信号を増幅して、コネクタ24を介して、上記したように周波数分離装置35に出力できる。また、コネクタ24を介して、アンプ23と電源37とを接続している。なお、測定部Aには、さらに導電性薄膜13への電子線31の照射による電位変化を受信できる電位測定端子25を含んでいてもよい。これによって、かかる電位変化を絶縁性薄膜12a及び12bを透過させ、誘電率の異なる有機物試料18及び/又は水溶液18bを介して受信できる。 The measuring unit A of the stage 20 includes an infrared sensor 22 connected to the amplifier 23 to receive the infrared light transmitted through the insulating thin films 12 a and 12 b. The amplifier 23 can amplify a detection signal based on the infrared intensity received by the infrared sensor 22 and output it to the frequency separation device 35 through the connector 24 as described above. Further, the amplifier 23 and the power supply 37 are connected via the connector 24. The measuring unit A may further include a potential measurement terminal 25 capable of receiving a potential change due to the irradiation of the electron beam 31 to the conductive thin film 13. Thus, such potential changes can be transmitted through the insulating thin films 12a and 12b and can be received via the organic sample 18 and / or the aqueous solution 18b having different dielectric constants.
 次に、有機物試料の観察システム1の使用方法について、図1及び図2を用いて説明する。 Next, the usage method of the observation system 1 of an organic substance sample is demonstrated using FIG.1 and FIG.2.
 図1を参照すると、観察ホルダ10を取り付けた観察システム1は、電子線照射部を有し、試料室2を所定の真空度まで排気した後に、電子源30から電子線31を出射させる。電子線31は、ファンクションジェネレータ34からの制御信号により、その出力をパルス状に変化させることができる。この場合、偏光板33によって電子線31をチョッピングして周波数変調をかければよい。この場合、赤外線センサ22として焦電赤外線センサなどの周波数変調を必要とする素子や、サーモパイルのような熱起電力によるセンサを使用できて、検出感度の向上やノイズの低減に寄与する。なお、赤外線のみで測定する場合など、出力を一定とする電子線を照射するようにしてもよい。 Referring to FIG. 1, the observation system 1 to which the observation holder 10 is attached has an electron beam irradiation unit, and after evacuating the sample chamber 2 to a predetermined degree of vacuum, the electron beam 31 is emitted from the electron source 30. The output of the electron beam 31 can be changed in a pulse shape by the control signal from the function generator 34. In this case, the electron beam 31 may be chopped by the polarizing plate 33 to perform frequency modulation. In this case, an element requiring frequency modulation such as a pyroelectric infrared sensor or a sensor based on thermoelectromotive force such as a thermopile can be used as the infrared sensor 22 and this contributes to the improvement of detection sensitivity and the reduction of noise. In addition, when measuring only with infrared rays, you may make it irradiate the electron beam which makes output fixed.
 再び、図2を参照すると、観察ホルダ10に向けて照射された電子線31は観察ホルダ10の窓から導電性薄膜13に入射して吸収され、入射した部位を局所加熱させる。かかる局所加熱によって導電性薄膜13から赤外線が発生し、絶縁性薄膜12a、有機物試料18及び水溶液18bの層、絶縁性薄膜12bを順に透過し又は一部を吸収されて赤外線センサ22によって赤外線強度が検出される。つまり、有機物試料18による赤外吸収に基づいて、検出される赤外線の強度などによって、有機物試料18の組成を反映した情報を得ることができる。例えば、電子線31を導電性薄膜13に沿って走査することで、有機物試料18の組成に関わる情報を含む赤外線による2次元画像を得たりすることができる。なお、電子線31を走査することによって局所加熱される位置が変わるので、赤外線センサ22では異なる検出角度で赤外線を検出することになる。そして、かかる2次元画像は、それぞれの検出角度の方を向いた画像を連続させた傾斜画像となる。 Again referring to FIG. 2, the electron beam 31 irradiated toward the observation holder 10 is made incident on the conductive thin film 13 from the window of the observation holder 10 and absorbed, and the incident portion is locally heated. Such local heating generates infrared light from the conductive thin film 13, and the insulating thin film 12 a, the organic sample 18 and the layer of the aqueous solution 18 b, and the insulating thin film 12 b are sequentially transmitted or partially absorbed, and infrared light intensity is measured by the infrared sensor 22. It is detected. That is, it is possible to obtain information reflecting the composition of the organic sample 18 based on the infrared absorption detected by the organic sample 18 and the like. For example, by scanning the electron beam 31 along the conductive thin film 13, it is possible to obtain a two-dimensional infrared image including information on the composition of the organic sample 18. In addition, since the position heated locally is changed by scanning the electron beam 31, the infrared sensor 22 detects infrared rays at different detection angles. The two-dimensional image is an inclined image in which the images directed to the respective detection angles are continuous.
 また、上記した電位測定端子25によって受信した電位変化からも有機物試料18の電位画像を得るなどして、赤外線画像と併せることで、より詳細な有機物試料18についての分析を行うこともできる。 In addition, a potential image of the organic substance sample 18 can be obtained also from the potential change received by the above-described potential measurement terminal 25, and combined with the infrared image, analysis of the organic substance sample 18 in more detail can also be performed.
 特に、赤外線は導電性薄膜13に照射された電子線31の照射位置での局所加熱によって得るため、その発生源(光源)を非常に小さくすることができて、高精細な情報を赤外線センサ22によって得ることができる。さらに、光学的に赤外線を収束させる光学系や、光学走査のための精密な機構を必要としない。つまり、高い感度の赤外線による情報を簡便な構成で得ることができる。 In particular, since infrared light is obtained by local heating at the irradiation position of the electron beam 31 irradiated to the conductive thin film 13, its generation source (light source) can be made very small, and high-definition information can be obtained by the infrared sensor 22. Can be obtained by Furthermore, there is no need for an optical system for focusing infrared light optically or a precise mechanism for optical scanning. That is, it is possible to obtain information with high sensitivity infrared light with a simple configuration.
 以上のように、有機物試料の観察システム1によれば、簡便でありながら高い感度で有機物試料の赤外吸収からその組成を反映した情報を得られるのである。特に、水溶液中の有機物試料(材料)や生物試料をそのままで、簡便に、しかも染色処理や固定処理を施すことなく、高い分解能で分析できる。 As described above, according to the observation system 1 of the organic substance sample, it is possible to obtain information reflecting the composition from the infrared absorption of the organic substance sample with high sensitivity while being simple. In particular, it is possible to analyze an organic sample (material) or a biological sample in an aqueous solution as it is, with high resolution without any staining process or fixation process.
 次に、有機物試料の観察システムに用いる観察ホルダの変形例について図3乃至図5を用いて説明する。 Next, modified examples of the observation holder used in the observation system of the organic substance sample will be described using FIGS. 3 to 5.
 図3に示すように、観察ホルダ10aは複数の赤外線センサ22を測定部Aにアレイ状に並べて形成させたものである。これによって、1回の電子線走査によって複数の赤外線画像を得ることができる。つまり、走査によって得られる上記した2次元画像を、赤外線センサ22のそれぞれによって得ることができる。 As shown in FIG. 3, the observation holder 10 a is formed by arranging a plurality of infrared sensors 22 in an array on the measurement unit A. Thereby, a plurality of infrared images can be obtained by one electron beam scan. That is, the above-described two-dimensional image obtained by scanning can be obtained by each of the infrared sensors 22.
 図4を併せて参照すると、複数の2次元画像を得ることによって、それぞれの赤外線センサ22と電子線31の照射位置との相互位置によって赤外線の検出角度を算出しこれに基づいて3次元情報(データ)を得る演算処理によることもできる(演算部)。 Referring also to FIG. 4, by obtaining a plurality of two-dimensional images, the detection angle of infrared rays is calculated based on the mutual position of each infrared sensor 22 and the irradiation position of the electron beam 31, and three-dimensional information ( It is also possible to use calculation processing to obtain data) (calculation unit).
 また、赤外線センサ22の上面には赤外線フィルタ22aを配置してもよい。赤外線フィルタ22aのそれぞれについて、透過波長を異なるものとすることで、異なる赤外線波長の吸光度スペクトルを得られ、2次元画像を別個に得ることができる。 Further, the infrared filter 22 a may be disposed on the upper surface of the infrared sensor 22. By making the transmission wavelengths different for each of the infrared filters 22a, it is possible to obtain absorbance spectra of different infrared wavelengths and to obtain two-dimensional images separately.
 例えば、図5に示すように、得られた複数の2次元画像から赤外線吸収スペクトルを計算し、有機物試料18の組成をさらに詳細に分析することもできる。有機物試料18として細胞などの生物試料を用いた場合、内部にタンパク質や油成分を含む。そして、タンパク質や油成分は赤外線領域で特異な吸収スペクトルを生じるため、その吸収スペクトルを得ることで、細胞内の組成分布を分析できる。 For example, as shown in FIG. 5, an infrared absorption spectrum can be calculated from the plurality of obtained two-dimensional images, and the composition of the organic sample 18 can be analyzed in more detail. When a biological sample such as a cell is used as the organic substance sample 18, proteins and oil components are contained inside. And, since proteins and oil components produce unique absorption spectra in the infrared region, it is possible to analyze the composition distribution in cells by obtaining the absorption spectra.
 なお、電子線を照射する上記したシステムではなく、導電性薄膜13の上面に先端を細く尖らせた電極を近接させて、導電性薄膜13に対して電圧を印加して電流を発生させて局所加熱するようにすることもできる。例えば、電極の先端を直径10nm程度とすることで、局所加熱を10nm程度の微小なスポットとし得る。この場合、電子線を使用しないため、観察ホルダ10を大気中に設置することができる。すなわち、観察ホルダ及び有機物試料の観察システム全体の双方について気密性の低いより簡便な構造にできる。 Note that instead of the above-described system for irradiating an electron beam, an electrode with a thin tip is brought close to the upper surface of the conductive thin film 13 and a voltage is applied to the conductive thin film 13 to generate a current. It can also be heated. For example, local heating can be made to be a minute spot of about 10 nm by setting the tip of the electrode to about 10 nm in diameter. In this case, since the electron beam is not used, the observation holder 10 can be placed in the atmosphere. That is, a simple structure with low airtightness can be obtained for both the observation holder and the entire observation system of the organic substance sample.
 以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the embodiment according to the present invention and the modification based on this have been described above, the present invention is not necessarily limited thereto, and the person skilled in the art deviates from the subject matter of the present invention or the appended claims. Various alternative embodiments and modifications may be found without the need to do so.
  1  観察システム
 10  観察ホルダ
 12a、12b 絶縁性薄膜 
 13  導電性薄膜
 18  有機物試料
 18b 水溶液
 31  電子線
 
 

 
1 observation system 10 observation holder 12a, 12b insulating thin film
13 conductive thin film 18 organic sample 18 b aqueous solution 31 electron beam


Claims (12)

  1.  一対の第1及び第2絶縁性薄膜の対向主面の間に有機物試料を含む水溶液を介在させ、前記第1絶縁性薄膜の前記対向主面と対をなす外側主面に与えられた導電性薄膜に電子線を照射し局所加熱させ、前記有機物試料の組成を反映した情報として前記第2絶縁性薄膜を透過してくる赤外線の強度を赤外線センサで測定することを特徴とする有機物試料の観察方法。 An aqueous solution containing an organic matter sample is interposed between the opposed major surfaces of the pair of first and second insulating thin films, and conductivity provided to the outer major surface paired with the opposed major surface of the first insulating thin film The thin film is irradiated with an electron beam to be locally heated, and the intensity of infrared rays transmitted through the second insulating thin film is measured by an infrared sensor as information reflecting the composition of the organic sample, and the observation of the organic sample Method.
  2.  前記導電性薄膜に沿って前記電子線を走査照射することを特徴とする請求項1記載の有機物試料の観察方法。 The method according to claim 1, wherein the electron beam is scanned and irradiated along the conductive thin film.
  3.  前記赤外線センサをアレイ状に配置して前記第2絶縁性薄膜に対向させこれからの各検出信号を前記導電性薄膜への前記電子線の照射位置との相互位置に基づいて演算処理し前記有機物試料の組成分布を含む3次元情報を得ることを特徴とする請求項2記載の有機物試料の観察方法。 The infrared sensors are arranged in an array and are opposed to the second insulating thin film, and each detection signal therefrom is processed based on the mutual position with the irradiation position of the electron beam to the conductive thin film, and the organic sample 3. A method of observing an organic material sample according to claim 2, wherein three-dimensional information including the composition distribution of is obtained.
  4.  前記赤外線センサは、透過波長の異なるフィルタを含み、吸光度スペクトルを得ることを特徴とする請求項1記載の有機物試料の観察方法。 The method according to claim 1, wherein the infrared sensor includes filters having different transmission wavelengths to obtain an absorbance spectrum.
  5.  前記導電性薄膜は、マンガン、タングステン、タンタル、金、プラチナ、銀、銅、鉄、チタン、オスミウムの単体若しくはこれを含む合金からなることを特徴とする請求項1記載の有機物試料の観察方法。 The method for observing an organic sample according to claim 1, wherein the conductive thin film is made of a simple substance of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium or an alloy containing the same.
  6.  前記第1及び第2絶縁性薄膜は、窒化シリコン薄膜、酸化シリコン薄膜、ポリイミド薄膜からなることを特徴とする請求項1記載の有機物試料の観察方法。 The method according to claim 1, wherein the first and second insulating thin films comprise a silicon nitride thin film, a silicon oxide thin film, and a polyimide thin film.
  7.  有機物試料の観察システムであって、
     対向主面の間に前記有機物試料を含む水溶液を介在させ得る一対の第1及び第2絶縁性薄膜と、
     前記第1絶縁性薄膜の前記対向主面と対をなす外側主面に与えられた導電性薄膜を含みこれに電子線を照射し局所加熱させ得る電子線照射部と、
     前記有機物試料の組成を反映した情報として前記第2絶縁性薄膜を透過してくる赤外線の強度を測定する赤外線センサと、を含むことを特徴とする有機物試料の観察システム。
    An observation system for organic matter samples,
    A pair of first and second insulating thin films in which an aqueous solution containing the organic substance sample can be interposed between opposing main surfaces;
    An electron beam irradiator including a conductive thin film provided on an outer major surface paired with the opposed major surface of the first insulating thin film, which can be locally heated by irradiating the conductive thin film with this
    An infrared sensor for measuring the intensity of infrared rays transmitted through the second insulating thin film as information reflecting the composition of the organic sample, and a system for observing an organic sample.
  8.  前記導電性薄膜に沿って前記電子線を走査照射する照射制御部を含むことを特徴とする請求項7記載の有機物試料の観察システム。 8. The observation system of an organic substance sample according to claim 7, further comprising an irradiation control unit for scanning and irradiating the electron beam along the conductive thin film.
  9.  前記赤外線センサをアレイ状に配置して前記第2絶縁性薄膜に対向させこれからの各検出信号を前記導電性薄膜への前記電子線の照射位置との相互位置に基づいて演算処理し前記有機物試料の組成分布を含む3次元情報を得る演算部を有することを特徴とする請求項8記載の有機物試料の観察システム。 The infrared sensors are arranged in an array and are opposed to the second insulating thin film, and each detection signal therefrom is processed based on the mutual position with the irradiation position of the electron beam to the conductive thin film, and the organic sample The observation system of the organic matter sample according to claim 8, further comprising: an operation unit for obtaining three-dimensional information including the composition distribution of
  10.  前記赤外線センサは透過波長の異なるフィルタを含み、吸光度スペクトルを得ることを特徴とする請求項7記載の有機物試料の観察システム。 The system according to claim 7, wherein the infrared sensor includes filters of different transmission wavelengths to obtain an absorbance spectrum.
  11.  前記導電性薄膜は、マンガン、タングステン、タンタル、金、プラチナ、銀、銅、鉄、チタン、オスミウムの単体若しくはこれを含む合金からなることを特徴とする請求項7記載の有機物試料の観察システム。 The system for observing an organic sample according to claim 7, wherein the conductive thin film is made of a simple substance of manganese, tungsten, tantalum, gold, platinum, silver, copper, iron, titanium, osmium or an alloy containing the same.
  12.  前記第1及び第2絶縁性薄膜は、窒化シリコン薄膜、酸化シリコン薄膜、ポリイミド薄膜からなることを特徴とする請求項7記載の有機物試料の観察システム。
     
     
     
    8. The system for observing an organic material sample according to claim 7, wherein the first and second insulating thin films are made of a silicon nitride thin film, a silicon oxide thin film, and a polyimide thin film.


PCT/JP2018/046769 2017-12-28 2018-12-19 Organic sample observation method and observation system WO2019131376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253657 2017-12-28
JP2017253657A JP2019120526A (en) 2017-12-28 2017-12-28 Method and device for observing organic sample

Publications (1)

Publication Number Publication Date
WO2019131376A1 true WO2019131376A1 (en) 2019-07-04

Family

ID=67067339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046769 WO2019131376A1 (en) 2017-12-28 2018-12-19 Organic sample observation method and observation system

Country Status (2)

Country Link
JP (1) JP2019120526A (en)
WO (1) WO2019131376A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204114B2 (en) * 2019-06-27 2023-01-16 株式会社大一商会 game machine
JP7204117B2 (en) * 2019-06-27 2023-01-16 株式会社大一商会 game machine
JP7204120B2 (en) * 2019-06-27 2023-01-16 株式会社大一商会 game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031515A (en) * 2013-07-31 2015-02-16 独立行政法人物質・材料研究機構 Near-field optical observation apparatus, sample-containing environmental cell manufacturing method, scanning electron optical microscope, and method of using scanning electron optical microscope
WO2016024503A1 (en) * 2014-08-12 2016-02-18 株式会社村田製作所 Gas measurement apparatus, multiple-device substrate, manufacturing methods therefor, and methods for manufacturing infrared light source and pyroelectric infrared sensor
WO2017065135A1 (en) * 2015-10-16 2017-04-20 国立研究開発法人産業技術総合研究所 Method of observing organic specimen, and observation holder and observation stage used therein
WO2017154936A1 (en) * 2016-03-09 2017-09-14 国立研究開発法人産業技術総合研究所 Dielectric constant microscope and method of observing organic specimen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031515A (en) * 2013-07-31 2015-02-16 独立行政法人物質・材料研究機構 Near-field optical observation apparatus, sample-containing environmental cell manufacturing method, scanning electron optical microscope, and method of using scanning electron optical microscope
WO2016024503A1 (en) * 2014-08-12 2016-02-18 株式会社村田製作所 Gas measurement apparatus, multiple-device substrate, manufacturing methods therefor, and methods for manufacturing infrared light source and pyroelectric infrared sensor
WO2017065135A1 (en) * 2015-10-16 2017-04-20 国立研究開発法人産業技術総合研究所 Method of observing organic specimen, and observation holder and observation stage used therein
WO2017154936A1 (en) * 2016-03-09 2017-09-14 国立研究開発法人産業技術総合研究所 Dielectric constant microscope and method of observing organic specimen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Cathode luminescence emitted in Y2O3:Eu3+ thin film as light source for super-resolution optical microscope", THE JOURNAL OF THE INSTITUTRE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 68, no. 8, pages J344 - J347 *
"Development of new visualizing technology of the liquid samples based on scanning electron microscopy", OLEOSCIENCE, vol. 15, no. 11, November 2015 (2015-11-01), pages 511 - 516 *
"Infrared imaging detectors, optical detectors and its usage, second printing", ASSOCIATION PUBLISHING CENTER, vol. 3, no. 6, 1 September 1991 (1991-09-01) - 30 November 1994 (1994-11-30), pages 134 - 139 *

Also Published As

Publication number Publication date
JP2019120526A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
US20220349818A1 (en) Depth-resolved mid-infrared photothermal imaging of living cells and organisms with sub-micron spatial resolution
WO2019131376A1 (en) Organic sample observation method and observation system
US11592391B2 (en) Photothermal imaging device and system
Nasse et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams
EP2157415B1 (en) Microscopy imaging system and method employing stimulated Raman spectroscopy as a contrast mechanism
US20020074500A1 (en) Diagnostic apparatus using terahertz radiation
KR20100063112A (en) Spectrometer for measuring moving sample material and the method
US20120305774A1 (en) Measuring Device and Measuring Method That Use Pulsed Electromagnetic Wave
US20100033723A1 (en) Photoacoustic microcantilevers
CA2591306A1 (en) Apparatus for depth-selective raman spectroscopy
EP3746769B1 (en) Device and method for mid-infrared microscopy and analysis
US11454605B2 (en) Image forming method and impedance microscope
KR102143484B1 (en) Dual mode microscope stystem
Carter et al. Vibrational spectroscopic mapping and imaging of tissues and cells
Bedolla et al. Effects of soft X-ray radiation damage on paraffin-embedded rat tissues supported on ultralene: a chemical perspective
CN112326585A (en) Infrared spectrum device and detection method for rapidly detecting powdery mildew of strawberries
JP2016145815A (en) Information acquisition device and information acquisition method
WO2017065135A1 (en) Method of observing organic specimen, and observation holder and observation stage used therein
US11650160B2 (en) Three-dimensional raman image mapping measuring device for flowable sample
Romani et al. Toward an assessment of cleaning treatments onto nineteenth–twentieth-century photographs by using a multi-analytic approach
KR101955187B1 (en) High resolution ambient mass spectrometric imaging system for analysis of living biomaterials
Patel et al. A review on photoacoustic spectroscopy
Pleitez et al. Mid-infrared optoacoustic microscopy with label-free chemical contrast in living cells and tissues
US10004398B2 (en) Device for determining a condition of an organ and method of operating the same
WO2020052785A1 (en) Particle analysis method and apparatus for a spectrometry-based particle analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896684

Country of ref document: EP

Kind code of ref document: A1