WO2019131334A1 - Soot blower device and boiler - Google Patents

Soot blower device and boiler Download PDF

Info

Publication number
WO2019131334A1
WO2019131334A1 PCT/JP2018/046598 JP2018046598W WO2019131334A1 WO 2019131334 A1 WO2019131334 A1 WO 2019131334A1 JP 2018046598 W JP2018046598 W JP 2018046598W WO 2019131334 A1 WO2019131334 A1 WO 2019131334A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
blower
tube
bank
boiler
Prior art date
Application number
PCT/JP2018/046598
Other languages
French (fr)
Japanese (ja)
Inventor
三紀 下郡
康裕 竹井
康 横山
須藤 誠
貴士 出井
智裕 松尾
杉山 友章
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020207018863A priority Critical patent/KR102403110B1/en
Publication of WO2019131334A1 publication Critical patent/WO2019131334A1/en
Priority to PH12020500562A priority patent/PH12020500562A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/54De-sludging or blow-down devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • the present invention relates to a sootblower apparatus for removing ash attached to a heat transfer tube and a boiler equipped with the sootblower apparatus.
  • Patent Documents 1 to 4 are known as a sootblower for removing solid ash particles, such as pulverized coal, from which solid fuel particles such as pulverized coal are burned.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-183069
  • the spray medium is sprayed from the large diameter spray port in the gap between the heat transfer tubes (8)
  • a spray medium is sprayed from the small diameter spray nozzle onto the tube surface (surface) of the heat transfer tube (8) to remove the ash of the heat transfer tube (8), and transfer it by ash erosion by the ash caught in the jet.
  • Techniques have been described to reduce the wear of the heat pipe (8).
  • the structure as which the bare tube in which the fin is not provided is used as a heat exchanger tube (8) is described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-132934
  • a furnace (100) of a boiler is constituted of a heat transfer tube group such as a superheater (54), an evaporator (55), and a coal saving device (56).
  • a heat transfer tube group such as a superheater (54), an evaporator (55), and a coal saving device (56).
  • a heat transfer tube group such as a superheater (54), an evaporator (55), and a coal saving device (56).
  • JP, 2007-183069, A ("0004"-"0008", FIG. 2, FIG. 4) JP-A-2001-132934 ("0002"-[0006], FIG. 7) JP 2002-115806 A Japanese Utility Model Application Publication No. 61-165302
  • a tube group panel including a bare tube called a bare tube and a fin tube having fins attached to the outer periphery of the bare tube (see Patent Documents 3 and 4) It consists of And the ash adhering to a tube group panel is removed by the soot blower.
  • the soot blower may be simply referred to as “SB”.
  • FIG. 6 is an explanatory view of a range where ash is removed by the soot blower.
  • SB rotates and reciprocates in the furnace while rotating
  • SB sprays steam (spray medium) while rotating the range in which ash is generally removed by SB is as shown in FIG.
  • the shape is concentric with the injection port 02 of the soot blower (SB) 01 as a center.
  • SB effective range The range from which the ash is removed by this SB01
  • the radius Rb of the concentric circle that becomes the SB effective range is referred to as "SB reach distance”.
  • the SB effective range is determined by the ease of ash and the strength of the jet. For example, the index of the ease of removing ash is taken as the sintering strength, and the strength of the jet against this is taken as the ash removing power. If the ash removal power by SB01 is large relative to the sintering strength of the deposited ash, the ash can be removed, and if small, the ash can not be removed, and the ash remains on the heat transfer tube 011.
  • FIG. 7 is an explanatory view of a jet flow injected by the soot blower.
  • the jet flow ejected from the nozzle toward the space spreads through the initial area including the core area, the development area, and the velocity distribution becomes flat in the width direction.
  • the jet diffused in the width direction collides with the surface of the heat transfer tube and spreads the tube surface in the horizontal direction (mainly in the direction of the tube axis). Ash is removed.
  • the dynamic pressure (Pt) generated by this horizontal velocity component corresponds to the removal force of SB.
  • Dynamic pressure Pt (ash removal power by SB) is determined by a plurality of parameters shown below.
  • the dynamic pressure Pt is stronger in the initial region and decreases as the jet spreads, but this degree is not only the condition on the SB side, but also the positional relationship between the SB and the heat transfer tube, the heat transfer tube diameter, and the tube pitch (the heat transfer tubes It also depends on the conditions of the heat transfer tube side such as interval).
  • the range in which the condition of Formula (2) is satisfied is the SB effective range of the radius Rb shown in FIG.
  • the ash removing power Pt also depends on the SB nozzle, a plurality of parameters on the heat transfer tube side, and the degree of sintering of the deposited ash. For example, when low-grade coal is used in a boiler, or the temperature of combustion gas is high and the sintering strength of ash is high, the conventional ash removal power Pt narrows the SB effective range and removes ash It becomes difficult.
  • FIG. 8 is an explanatory view of a problem of the conventional soot blower
  • FIG. 8 (A) is an explanatory view when the SB effective range is narrow
  • FIG. 8 (B) is an explanatory view when the SB effective range is wide.
  • FIG. 8A when the SB effective range 012 is narrow with respect to the heat transfer pipe 011, a region (a) in which the SB does not reach occurs, which causes a problem that ash tends to remain.
  • measures such as increasing the SB injection pressure Pj or increasing the number of SBs It will be necessary.
  • This invention makes it a technical subject to suppress abrasion of a heat exchanger tube, suppressing the fall of the efficiency which removes ash, when removing the whole ashes of a heat exchanger tube.
  • the horizontal heat transfer tubes having the horizontal axis as the tube axis are stacked in the vertical direction, and the stacked heat transfer tubes are arranged in multiple rows in the horizontal direction to form a bank formed inside the boiler
  • a soot blower device that sprays the spray medium from the upper surface side and the lower surface side of the bank to remove ash, and a plurality of blower nozzles that spray the spray medium inserted from the boiler wall face above and below the bank
  • the heat transfer tubes, which are installed so as to be movable in the horizontal direction, respectively, and which form the banks are finned heat transfer tubes having fins in a direction intersecting the tube axis, and the blower nozzle above the bank and the blower nozzle below the bank Are disposed so as to move in mutually displaced positions in a horizontal plane.
  • the invention according to claim 2 is the soot blower apparatus according to claim 1, wherein the moving direction of the plurality of blower nozzles is a direction intersecting with the direction of the tube axis of the heat transfer tube.
  • the invention according to claim 3 is the sootblower apparatus according to claim 1, wherein the moving directions of the plurality of blower nozzles are parallel to the axial direction of the heat transfer tube.
  • the invention according to claim 4 is directed to a plurality of banks formed by arranging a plurality of horizontal heat transfer tubes stacked in the vertical direction, the heat transfer tubes having the horizontal direction as the tube axis, and the banks facing each other.
  • It is a sootblower apparatus which sprays a spray medium from the upper surface side and lower surface side of a bank and removes ash, and a plurality of blower nozzles which spray the spray medium inserted from a boiler wall face are horizontal direction above the bank (blower nozzle And a heat transfer tube forming at least one of the plurality of banks, in a direction intersecting the tube axis).
  • a finned heat transfer tube provided with fins, wherein the blower nozzle above the bank and the blower nozzle below the bank are displaced from each other in the horizontal plane. Further comprising the placed sootblower device to a boiler characterized by.
  • the invention according to claim 5 is the boiler according to claim 4, characterized in that the moving directions of the plurality of blower nozzles are in a direction intersecting with the direction of the tube axis of the heat transfer tube.
  • the invention according to claim 6 is the boiler according to claim 4, characterized in that the moving directions of the plurality of blower nozzles are parallel to the axial direction of the heat transfer tube.
  • the invention according to claim 7 is characterized in that the blower nozzle on the upper surface side spaced apart along the tube axis direction and the blower nozzle on the upper surface side are disposed at an intermediate position between the blower nozzles on the upper surface side. It is a boiler according to claim 4, further comprising: a blower nozzle on the lower surface side.
  • the invention according to claim 8 is the boiler according to claim 4, characterized in that the heat transfer pipe and the soot blower apparatus disposed on the downstream side in the flow direction of the combustion gas are provided in the furnace.
  • the jet blown from the blower nozzle to the finned heat transfer pipe is restricted in spreading of the jet to the pipe axis as compared with the case without the fin, and the divided jet Is given directivity in the blowing direction. Therefore, the area with sufficient ash removal capacity expands in the spray direction. Therefore, even if the blower nozzle is not installed to face the both sides across the heat transfer tube, the blower nozzle disposed on one side across the heat transfer tube and the blower nozzle disposed on the other side across the heat transfer tube are By disposing at a position shifted with respect to the tube axis direction, it is possible to remove the entire ash of the heat transfer tube. Therefore, it is not necessary to increase the injection pressure of the jet while suppressing the decrease in the efficiency of removing the ash, and the wear of the heat transfer tube can be suppressed.
  • the blower nozzle on the lower surface side is disposed at an intermediate position between the blower nozzles on the upper surface side, so that the entire area of the heat transfer tube can be obtained. It is easy to cover evenly and it is easy to remove whole ash efficiently.
  • FIG. 1 is a schematic explanatory view of a boiler according to an embodiment of the present invention
  • FIG. 1 (A) is a general view
  • FIG. 1 (B) is a plan view
  • FIG. 2 is an explanatory view of the bank portion (heat exchanger) and the soot blower of the first embodiment
  • FIG. 3 is an explanatory view of the heat transfer tube of Example 1
  • FIG. 3 (A) is an explanatory view of a heat transfer tube formed of a bare tube
  • FIG. 3 (B) is an explanatory view of a heat transfer tube formed of a fin tube. It is.
  • FIG. 1 is a schematic explanatory view of a boiler according to an embodiment of the present invention
  • FIG. 1 (A) is a general view
  • FIG. 1 (B) is a plan view
  • FIG. 2 is an explanatory view of the bank portion (heat exchanger) and the soot blower of the first embodiment.
  • FIG. 3 is an explanatory view of the
  • FIG. 4 is an explanatory view of the arrangement of the soot blower, the configuration of the heat transfer tube and the range in which the ash removal is possible
  • FIG. 4 (A) is an explanatory view of the case where the heat transfer tube is bare and the soot blower is square arrangement
  • FIG. FIG. 4 is an explanatory view in the case where the heat transfer tubes are in a square arrangement with fin tubes
  • FIG. 4C is an explanatory view in the case where the heat transfer tubes are bare tubes and the soot blower is in a staggered arrangement.
  • FIG. 5 is an explanatory view of a modified example.
  • FIG. 6 is an explanatory view of a range where ash is removed by the soot blower.
  • FIG. 7 is an explanatory view of a jet flow injected by the soot blower.
  • FIG. 8 is an explanatory view of a problem of the conventional soot blower, and FIG. 8 (A) is an explanatory view when the SB effective range is narrow, and FIG. 8 (B) is an explanatory view when the SB effective range is wide.
  • FIG. 1 is a schematic explanatory view of a boiler according to an embodiment of the present invention
  • FIG. 1 (A) is a general view
  • FIG. 1 (B) is a plan view.
  • a boiler furnace may be expressed as a "can”.
  • the furnace 2 in the pulverized coal fired boiler 1 according to the first embodiment of the present invention, the furnace 2 has a water pipe portion 3 provided with a burner or the like (not shown).
  • the furnace 2 has a can front wall 2a, a can rear wall 2b, and side walls 2c and 2d.
  • Suspended heat transfer parts 4, 5 and 6 are arranged on the ceiling of the furnace 2 along the flow direction of the combustion gas burned by the burner, and a bank (heat transfer pipe) is disposed on the can rear wall 2b side. Groups, heat exchangers) 7, 8, 9, 10 are arranged.
  • FIG. 2 is an explanatory view of the bank portion (heat exchanger) and the soot blower of the first embodiment.
  • the banks 7 to 10 of the first embodiment extend along the longitudinal direction Yb (the direction toward the can front wall 2 a and the can rear wall 2 b, the tube axis direction) of the furnace 2 intersecting the flow direction Ya of the combustion gas. It is comprised by the heat exchanger tube 21 arrange
  • FIG. 3 is an explanatory view of the heat transfer tube of Example 1
  • FIG. 3 (A) is an explanatory view of a heat transfer tube formed of a bare tube
  • FIG. 3 (B) is an explanatory view of a heat transfer tube formed of a fin tube.
  • the heat transfer tubes 21 in the upstream suspended heat transfer sections (heat exchangers) 4 to 6 are configured by bare tubes (bare tubes) 22 as shown in FIG. 3A.
  • at least one bank of the heat exchangers 7 to 10 on the downstream side is constituted by a fin tube 23 in which a fin 23 b is supported on the outer surface of the tube main body 23 a.
  • the fins 23b are formed in a spiral shape in the tube axis direction Yb. Therefore, the fins 23 b are supported crossing (in the first embodiment, inclining) the tube axis direction Yb.
  • FIG. 1 An example of the SB arrangement is shown in FIG. 1.
  • a soot blower device 31 is arranged on the upstream side or downstream side of the flow direction Ya of the combustion gas.
  • the soot blower apparatus 31 has a blower nozzle 32 which extends along the width direction of the furnace 2 and is movable along the width direction of the furnace. Therefore, when removing the ash, the blower nozzle 32 moves (enters) while rotating from the side walls 2 c and 2 d toward the inside of the furnace 2 and then moves (exits) to the outside.
  • a plurality of soot blower devices 31a for the upstream suspended heat transfer portions (heat exchangers) 4 to 6 are arranged at intervals in the vertical direction.
  • the soot blower apparatus 31b for the banks (heat exchangers) 7 to 10 on the downstream side has a horizontal direction (can front wall 2a, can rear wall 2b) intersecting the tube axis direction Yb.
  • the blower nozzle 32b of the downstream soot blower device 31b burns the banks 7 to 10 and the blower nozzles 32b1 disposed on the upstream side (one side, the upper surface side) of the flow direction Ya of the combustion gas with respect to the banks 7 to 10.
  • the blower nozzle 32b2 disposed on the downstream side (the other side, the lower surface side) of the gas flow direction Ya is disposed at a position shifted with respect to the tube axial direction Yb.
  • the downstream blower nozzle 32b2 is disposed at an intermediate position between the upstream blower nozzles 32b1 in the axial direction Yb. Therefore, the downstream blower nozzles 32b2 are in a so-called staggered arrangement.
  • Example 1 In the pulverized coal burning boiler 1 of Example 1 having the above-described configuration, at least one bank of the banks 7 to 10 disposed on the can rear side (downstream side) is configured by the fin tube 23, and the corresponding soot blower device 31b The blower nozzles 32b are arranged in a staggered manner.
  • FIG. 3A when steam is sprayed onto the bare tube 22 from the soot blower device 31a, the jet (steam) that collides with the surface of the bare tube 22 has a tube axial direction Yb and a downstream direction (suspension direction of the jet). It spreads in the heat transfer part (the thickness direction of the heat exchangers 4 to 6).
  • FIG. 3A when steam is sprayed onto the bare tube 22 from the soot blower device 31a, the jet (steam) that collides with the surface of the bare tube 22 has a tube axial direction Yb and a downstream direction (suspension direction of the jet). It spreads in the
  • the jet flow blown from the sootblower device 31b to the fin tube 23 has directivity in the blowout direction (thickness direction of the banks (heat exchangers 7 to 10)) intersecting the pipe axial direction Yb. Is granted.
  • the SB standoff distance Ls (the distance from the SB injection port to the heat transfer tube 21 closest to the fin tube 23), the bank thickness Tb, and the SB nozzle pitch Xlp
  • Ls k1 ⁇ Tb formula (3)
  • Ls k2 ⁇ Xlp equation (4)
  • k1 is 0.10 ⁇ k1 ⁇ 1.83, and desirably 0.15 ⁇ k1 ⁇ 0.89.
  • k2 is in the range of 0.08 ⁇ k2 ⁇ 1.26, and desirably 0.13 ⁇ k2 ⁇ 1.04.
  • k1 when k1 is smaller than the lower limit, the distance from the blower nozzle 32b of the SB device 31b to the heat transfer pipe 21 (fin tube 23) is too short, and the energy of the jet becomes excessively high, and entrains the deposited ash. Ash erosion may occur.
  • k1 is larger than the upper limit, the distance between the blower nozzle 32b of the SB device 31b and the heat transfer tube 21 is long, the jet stream hardly reaches, and problems such as the ash removal can not be performed sufficiently occur.
  • k2 is smaller than the lower limit, it means that the distance from the blower nozzle 32b of the SB device 31b to the heat transfer tube 21 is too short or the distance between the blower nozzles 32b is too long.
  • the ash between the blower nozzles 32b tends to remain without being removed.
  • k2 is larger than the upper limit, it means that the distance between the blower nozzle 32b of the SB device 31b and the heat transfer tube 21 is too long or the distance between the blower nozzles 32b is too short.
  • jets from the adjacent blower nozzle 32b interfere with each other, resulting in overlapping and wasted waste, or SB effective ranges overlap and energy of the jets is excessively concentrated, resulting in deposited ash Cause problems such as causing ash erosion.
  • FIG. 4 is an explanatory view of the arrangement of the soot blower, the configuration of the heat transfer tube and the range in which the ash removal is possible
  • FIG. 4 (A) is an explanatory view of the case where the heat transfer tube is a bare tube and the blower nozzle is a square arrangement
  • FIG. 4 is an explanatory view in the case where the heat transfer tubes are in a fin tube and in a square arrangement
  • FIG. 4C is an explanatory view in the case where the heat transfer tubes are a bare tube and the blower nozzles are in a staggered arrangement.
  • the blower nozzles are squarely arranged using bare tubes, as shown in FIG.
  • the wear of the heat transfer tubes 21 can be suppressed while suppressing the decrease in the efficiency of removing ash without increasing the number of the soot blower apparatuses 31.
  • the waste of can also be reduced.
  • by making it possible to efficiently remove ash it is also possible to increase the mixed burning rate of low-grade coal such as sub-bituminous coal in the furnace 2, which also contributes to reduction in operation cost. Do.
  • FIG. 5 is an explanatory view of a modified example.
  • the blower nozzles 32b1 and 32b2 are disposed one by one on the side and disposed at a position deviated with respect to the tube axial direction Yb, so-called offset arrangement. With such a configuration, it is possible to obtain the same function and effect as those of the first embodiment.
  • the downstream blower nozzle 32b2 is disposed at an intermediate position between the upstream blower nozzles 32b1 in the axial direction Yb.
  • the present invention is not limited to this.
  • the position of the blower nozzle 32b2 can also be changed to a position suitable for ash removal, such as being arranged apart from the axial direction of the tube, or arranged so as to be packed.
  • the soot blower apparatus 31 exemplarily has a configuration movable in the direction intersecting with the tube axis direction, but is not limited thereto. For example, it is also possible to move along a (parallel) direction along the tube axis direction.

Abstract

Provided is a soot blower device (31b) that removes ash by ejecting a spray medium toward banks (7-10) in which horizontally-oriented heat transfer tubes (21) are stacked in the vertical direction and a plurality of the heat transfer tubes (21) are aligned in the lateral direction. The soot blower device (31) is characterized by the following: blower nozzles (32) are installed above and below the banks (7-10) so as to be capable of moving in the horizontal direction; the heat transfer tubes (21) are finned heat transfer tubes (21) provided with fins (23b); and a blower nozzle (32b1) above the banks (7-10) and a blower nozzle (32b2) below the banks (7-10) are disposed so as to move through positions which are deviated from each other within the horizontal plane. Due to this configuration, when removing ash from all of the heat transfer tubes, a decrease in the ash removal efficiency is suppressed and wear of the heat transfer tubes is suppressed.

Description

スートブロワ装置およびボイラSoot blower apparatus and boiler
 本発明は、伝熱管に付着した灰を除去するスートブロワ装置およびスートブロワ装置を備えたボイラに関する。 The present invention relates to a sootblower apparatus for removing ash attached to a heat transfer tube and a boiler equipped with the sootblower apparatus.
 石炭を粉砕した微粉炭等の固体燃料粒子を燃焼させるボイラにおいて、伝熱管に付着した灰を除去するスートブロワに関し、下記の特許文献1~4に記載の技術が公知である。 The following Patent Documents 1 to 4 are known as a sootblower for removing solid ash particles, such as pulverized coal, from which solid fuel particles such as pulverized coal are burned.
 特許文献1(特開2007-183069号公報)には、噴霧媒体を噴霧する噴霧ノズルを有するスートブロワにおいて、伝熱管(8)どうしの間隙には、大径の噴霧口から噴霧媒体を噴霧し、伝熱管(8)の管面(表面)には、小径の噴霧口から噴霧媒体を噴霧することで、伝熱管(8)の灰を除去しつつ、噴流に巻き込まれた灰によるアッシュエロージョンで伝熱管(8)が摩耗することを低減する技術が記載されている。なお、特許文献1に記載の構成では、伝熱管(8)として、フィンが設けられていない裸管が使用される構成が記載されている。 According to Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-183069), in a sootblower having a spray nozzle for spraying a spray medium, the spray medium is sprayed from the large diameter spray port in the gap between the heat transfer tubes (8), A spray medium is sprayed from the small diameter spray nozzle onto the tube surface (surface) of the heat transfer tube (8) to remove the ash of the heat transfer tube (8), and transfer it by ash erosion by the ash caught in the jet. Techniques have been described to reduce the wear of the heat pipe (8). In addition, in the structure of patent document 1, the structure as which the bare tube in which the fin is not provided is used as a heat exchanger tube (8) is described.
 特許文献2(特開2001-132934号公報)には、ボイラの火炉(100)において、過熱器(54)や蒸発器(55)、節炭器(56)等の伝熱管群で構成された熱交換器に対して、灰を除去するスートブロワが多数設置された構成が記載されている。 In Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-132934), a furnace (100) of a boiler is constituted of a heat transfer tube group such as a superheater (54), an evaporator (55), and a coal saving device (56). For the heat exchanger, a configuration in which a large number of soot blowers for removing ash is installed is described.
特開2007-183069号公報(「0004」-「0008」、図2、図4)JP, 2007-183069, A ("0004"-"0008", FIG. 2, FIG. 4) 特開2001-132934号公報(「0002」-[0006]、図7)JP-A-2001-132934 ("0002"-[0006], FIG. 7) 特開2002-115806号公報JP 2002-115806 A 実開昭61-165302号公報Japanese Utility Model Application Publication No. 61-165302
 特許文献1,2に記載の構成のように、熱交換器では、ベアチューブと呼ばれる裸管や、裸管の外周にフィンを付けたフィンチューブ(特許文献3,4参照)からなる管群パネルで構成される。そして、管群パネルに付着する灰をスートブロワで除去している。なお、以下の説明において、スートブロワを、単に「SB」と表記する場合がある。 As in the configurations described in Patent Documents 1 and 2, in the heat exchanger, a tube group panel including a bare tube called a bare tube and a fin tube having fins attached to the outer periphery of the bare tube (see Patent Documents 3 and 4) It consists of And the ash adhering to a tube group panel is removed by the soot blower. In the following description, the soot blower may be simply referred to as “SB”.
 図6はスートブロワで灰が除去される範囲の説明図である。
 特許文献1記載のように、SBは回転しながら火炉内を往復するが、SBが回転しながら蒸気(噴霧媒体)を噴射するため、一般的にSBで灰が除去される範囲は、図6に示すように、スートブロワ(SB)01の噴射口02を中心とした同心円状となる。このSB01によって灰が除去される範囲を、本願明細書では「SB有効範囲」と呼び、SB有効範囲となる同心円の半径Rbを、「SB到達距離」と呼ぶ。
FIG. 6 is an explanatory view of a range where ash is removed by the soot blower.
As described in Patent Document 1, although SB rotates and reciprocates in the furnace while rotating, since SB sprays steam (spray medium) while rotating, the range in which ash is generally removed by SB is as shown in FIG. As shown in the figure, the shape is concentric with the injection port 02 of the soot blower (SB) 01 as a center. The range from which the ash is removed by this SB01 is referred to as "SB effective range" in the present specification, and the radius Rb of the concentric circle that becomes the SB effective range is referred to as "SB reach distance".
 SB有効範囲は、灰のとれやすさと噴流の強さによって決まる。灰の取れやすさの指標を例えば焼結強度とし、これに対する噴流の強さを灰除去力とする。堆積灰の焼結強度に対してSB01による灰除去力が大きい場合は灰を除去でき、小さい場合は灰を除去できず、灰が伝熱管011上に残る。 The SB effective range is determined by the ease of ash and the strength of the jet. For example, the index of the ease of removing ash is taken as the sintering strength, and the strength of the jet against this is taken as the ash removing power. If the ash removal power by SB01 is large relative to the sintering strength of the deposited ash, the ash can be removed, and if small, the ash can not be removed, and the ash remains on the heat transfer tube 011.
 図7はスートブロワで噴射される噴流の説明図である。
 図7において、ノズルから空間に向けて噴出された噴流は、コア領域を含む初期領域、発達領域を経て広がり、幅方向に平坦な速度分布になることが知られている。SBノズルから噴流を伝熱管群に向けて噴出した場合、幅方向に拡散した噴流が伝熱管の表面に衝突し、管表面を水平方向(主に管軸方向)に広がることで管上の堆積灰が除去される。この水平方向の速度成分で生じる動圧(Pt)がSBの除去力に相当する。
FIG. 7 is an explanatory view of a jet flow injected by the soot blower.
In FIG. 7, it is known that the jet flow ejected from the nozzle toward the space spreads through the initial area including the core area, the development area, and the velocity distribution becomes flat in the width direction. When a jet is spouted from the SB nozzle toward the heat transfer tube group, the jet diffused in the width direction collides with the surface of the heat transfer tube and spreads the tube surface in the horizontal direction (mainly in the direction of the tube axis). Ash is removed. The dynamic pressure (Pt) generated by this horizontal velocity component corresponds to the removal force of SB.
 動圧Pt(SBによる灰除去力)は以下に示す複数のパラメータによって決定される。なお、動圧Ptは初期領域ほど強く、噴流の拡散に伴い減少するが、この程度はSB側の条件だけでなく、SBと伝熱管の位置関係および伝熱管直径、管ピッチ(伝熱管どうしの間隔)等の伝熱管側の条件にも依存する。
 Pt=f(Dj,Pj,Ls,X1,X2,Dt,F) …式(1)
 ここで、Dj:SBノズルの口径、Pj:噴射圧、Ls:SBノズル噴射口から伝熱管までの距離(SBスタンドオフ距離)、X1:管群のガス流れ方向の管ピッチ、X2:管群の水平方向管ピッチ、Dt:伝熱管径、F:伝熱管形状に依存するパラメータ、とする。すなわち、動圧Ptは、これら各パラメータの関数fで表される。
Dynamic pressure Pt (ash removal power by SB) is determined by a plurality of parameters shown below. The dynamic pressure Pt is stronger in the initial region and decreases as the jet spreads, but this degree is not only the condition on the SB side, but also the positional relationship between the SB and the heat transfer tube, the heat transfer tube diameter, and the tube pitch (the heat transfer tubes It also depends on the conditions of the heat transfer tube side such as interval).
Pt = f (Dj, Pj, Ls, X1, X2, Dt, F * ) Formula (1)
Here, Dj: diameter of SB nozzle, Pj: injection pressure, Ls: distance from SB nozzle injection port to heat transfer pipe (SB standoff distance), X1: pipe pitch in the gas flow direction of pipe group, X2: pipe group Horizontal pipe pitch, Dt: Heat transfer tube diameter, F * : Parameter dependent on heat transfer tube shape. That is, the dynamic pressure Pt is represented by a function f of these parameters.
 灰を除去するためには、堆積灰の焼結強度Pashよりも、噴流の灰除去力Ptが高くなければならないことから、灰が除去される条件は、以下の式(2)で示される。
 Pt>Pash …式(2)
Since the ash removal power Pt of the jet must be higher than the sintering strength P ash of the deposited ash in order to remove the ash, the condition under which the ash is removed is expressed by the following equation (2) .
Pt> P ash ... Formula (2)
 式(2)の条件が成り立つ範囲が、図6に示す半径RbのSB有効範囲である。式(2)から分かるように、灰除去力Ptは、SBノズル、伝熱管側の複数のパラメータおよび堆積灰の焼結度合いにも依存する。例えば、ボイラにおいて、低品位炭を使用したり、燃焼ガスの温度が高く、灰の焼結強度が高くなった場合、従来通りの灰除去力Ptでは、SB有効範囲が狭まり、灰を除去することが困難となる。 The range in which the condition of Formula (2) is satisfied is the SB effective range of the radius Rb shown in FIG. As understood from the equation (2), the ash removing power Pt also depends on the SB nozzle, a plurality of parameters on the heat transfer tube side, and the degree of sintering of the deposited ash. For example, when low-grade coal is used in a boiler, or the temperature of combustion gas is high and the sintering strength of ash is high, the conventional ash removal power Pt narrows the SB effective range and removes ash It becomes difficult.
 図8は従来のスートブロワの問題点の説明図であり、図8(A)はSB有効範囲が狭い場合の説明図、図8(B)はSB有効範囲が広い場合の説明図である。
 図8(A)において、伝熱管011に対して、SB有効範囲012が狭い場合、SBが届かない領域(a)が発生して、灰が残りやすい問題が発生する。炭種やガス温度の影響で除灰が困難な場合においても従来通りのSB有効範囲012を確保するには、例えば、SB噴射圧Pjを増加させる、あるいは、SBの台数を増やす等の対策が必要になる。
 SB噴射圧Pjを増加させると、蒸気消費量増加(=効率低下、蒸気の無駄遣い)の問題があり、SBの台数の増加は初期コスト増加および効率低下に繋がる問題がある。
FIG. 8 is an explanatory view of a problem of the conventional soot blower, and FIG. 8 (A) is an explanatory view when the SB effective range is narrow, and FIG. 8 (B) is an explanatory view when the SB effective range is wide.
In FIG. 8A, when the SB effective range 012 is narrow with respect to the heat transfer pipe 011, a region (a) in which the SB does not reach occurs, which causes a problem that ash tends to remain. In order to secure the conventional SB effective range 012 even when the ash removal is difficult due to the influence of coal type and gas temperature, for example, measures such as increasing the SB injection pressure Pj or increasing the number of SBs It will be necessary.
When the SB injection pressure Pj is increased, there is a problem of an increase in steam consumption (= a decrease in efficiency, a waste of steam), and an increase in the number of SB leads to an increase in initial cost and a decrease in efficiency.
 一方、SB噴射圧Pjを増加させる等で、SB有効範囲が過剰になった場合、蒸気の無駄遣いのほか、図8(B)に示すように、SBに近い伝熱管011aにおいて、噴流の動圧Ptが強すぎて摩耗(スチームエロージョン、スチームカット)したり、伝熱管011が過剰にSB噴流にさらされることで、噴流に巻き込まれた灰によるアッシュエロージョン(灰を含む噴流による摩耗)が起きる恐れがある。 On the other hand, when the SB effective range becomes excessive by increasing the SB injection pressure Pj, etc., in addition to the waste of steam, as shown in FIG. 8B, in the heat transfer pipe 011a near SB, the dynamic pressure of the jet flow Pt is too strong and may be worn out (steam erosion, steam cut), or the heat transfer tube 011 may be excessively exposed to the SB jet, so that ash erosion by the ash caught in the jet (wear by the jet containing ash) may occur. There is.
 本発明は、伝熱管の全体の灰を除去する際に、灰を除去する効率の低下を抑制しつつ、伝熱管の摩耗を抑制することを技術的課題とする。 This invention makes it a technical subject to suppress abrasion of a heat exchanger tube, suppressing the fall of the efficiency which removes ash, when removing the whole ashes of a heat exchanger tube.
 上記本発明の課題は、下記の構成を採用することにより達成できる。
 請求項1に記載の発明は、水平方向を管軸とする横置きの伝熱管が上下方向に積層され、当該積層された伝熱管を横方向に複数列並べてボイラ内部に形成されるバンクに向けて、当該バンクの上面側と下面側から噴霧媒体を噴射して灰を除去するスートブロワ装置であって、ボイラ壁面から挿入される前記噴霧媒体を噴射する複数のブロワノズルが、前記バンク上方と下方においてそれぞれ水平方向に移動可能に設置され、前記バンクを形成する前記伝熱管は、前記管軸に交差する向きにフィンを備えたフィン付き伝熱管であり、前記バンク上方のブロワノズルと前記バンク下方のブロワノズルとが水平面内において互いにずれた位置を移動するように配置されてなることを特徴とするスートブロワ装置である。
The object of the present invention can be achieved by adopting the following configuration.
According to the first aspect of the present invention, the horizontal heat transfer tubes having the horizontal axis as the tube axis are stacked in the vertical direction, and the stacked heat transfer tubes are arranged in multiple rows in the horizontal direction to form a bank formed inside the boiler A soot blower device that sprays the spray medium from the upper surface side and the lower surface side of the bank to remove ash, and a plurality of blower nozzles that spray the spray medium inserted from the boiler wall face above and below the bank The heat transfer tubes, which are installed so as to be movable in the horizontal direction, respectively, and which form the banks are finned heat transfer tubes having fins in a direction intersecting the tube axis, and the blower nozzle above the bank and the blower nozzle below the bank Are disposed so as to move in mutually displaced positions in a horizontal plane.
 請求項2に記載の発明は、前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向に対して、交差する方向であることを特徴とする請求項1に記載のスートブロワ装置である。 The invention according to claim 2 is the soot blower apparatus according to claim 1, wherein the moving direction of the plurality of blower nozzles is a direction intersecting with the direction of the tube axis of the heat transfer tube.
 請求項3に記載の発明は、前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向と平行であることを特徴とする請求項1に記載のスートブロワ装置である。 The invention according to claim 3 is the sootblower apparatus according to claim 1, wherein the moving directions of the plurality of blower nozzles are parallel to the axial direction of the heat transfer tube.
 請求項4に記載の発明は、水平方向を管軸とする横置きの伝熱管を上下方向に積層したものを横方向に複数列並べて形成された複数のバンクと、前記バンクに向けて、当該バンクの上面側と下面側から噴霧媒体を噴射して灰を除去するスートブロワ装置であって、ボイラ壁面から挿入される前記噴霧媒体を噴射する複数のブロワノズルが前記バンク上方と下方それぞれ水平方向(ブロワノズルの管軸方向)を往復移動可能に設置されるスートブロワ装置と、を備えたボイラにおいて、前記複数のバンクのうち、少なくとも一つのバンクを形成する前記伝熱管は、前記管軸に交差する向きにフィンを備えたフィン付き伝熱管であり、当該バンク上方のブロワノズルと当該バンク下方のブロワノズルとが水平面内において互いにずれた位置を移動するように配置されたスートブロワ装置を備えたことを特徴とするボイラである。 The invention according to claim 4 is directed to a plurality of banks formed by arranging a plurality of horizontal heat transfer tubes stacked in the vertical direction, the heat transfer tubes having the horizontal direction as the tube axis, and the banks facing each other. It is a sootblower apparatus which sprays a spray medium from the upper surface side and lower surface side of a bank and removes ash, and a plurality of blower nozzles which spray the spray medium inserted from a boiler wall face are horizontal direction above the bank (blower nozzle And a heat transfer tube forming at least one of the plurality of banks, in a direction intersecting the tube axis). A finned heat transfer tube provided with fins, wherein the blower nozzle above the bank and the blower nozzle below the bank are displaced from each other in the horizontal plane. Further comprising the placed sootblower device to a boiler characterized by.
 請求項5に記載の発明は、前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向に対して、交差する方向であることを特徴とする請求項4に記載のボイラである。 The invention according to claim 5 is the boiler according to claim 4, characterized in that the moving directions of the plurality of blower nozzles are in a direction intersecting with the direction of the tube axis of the heat transfer tube.
 請求項6に記載の発明は、前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向と平行であることを特徴とする請求項4に記載のボイラである。 The invention according to claim 6 is the boiler according to claim 4, characterized in that the moving directions of the plurality of blower nozzles are parallel to the axial direction of the heat transfer tube.
 請求項7に記載の発明は、前記管軸方向に沿って間隔を空けて配置された前記上面側のブロワノズルと、前記管軸方向において、前記上面側のブロワノズルどうしの中間の位置に配置された前記下面側のブロワノズルと、を備えたことを特徴とする請求項4に記載のボイラである。 The invention according to claim 7 is characterized in that the blower nozzle on the upper surface side spaced apart along the tube axis direction and the blower nozzle on the upper surface side are disposed at an intermediate position between the blower nozzles on the upper surface side. It is a boiler according to claim 4, further comprising: a blower nozzle on the lower surface side.
 請求項8に記載の発明は、火炉において、燃焼ガスの流れ方向の下流側に配置された前記伝熱管および前記スートブロワ装置、を備えたことを特徴とする請求項4に記載のボイラである。 The invention according to claim 8 is the boiler according to claim 4, characterized in that the heat transfer pipe and the soot blower apparatus disposed on the downstream side in the flow direction of the combustion gas are provided in the furnace.
 請求項1,4に記載の発明によれば、フィン付きの伝熱管に対してブロワノズルから吹き付けられた噴流は、フィン無の場合に比べると管軸への噴流の広がりが制約され、その分噴流には吹き付け方向への指向性が付与される。したがって、灰除去能力が十分な領域が吹き付け方向に拡大する。よって、伝熱管を挟んで両側に対向するようにブロワノズルを設置しなくても、伝熱管を挟んで一方側に配置されたブロワノズルと、伝熱管を挟んで他方側に配置されたブロワノズルとが、前記管軸方向に対してずれた位置に配置することで、伝熱管の全体の灰を除去することができる。したがって、灰を除去する効率の低下を抑制しつつ、噴流の噴射圧を高くする必要がなくなって、伝熱管の摩耗を抑制することができる。 According to the invention as set forth in claims 1 and 4, the jet blown from the blower nozzle to the finned heat transfer pipe is restricted in spreading of the jet to the pipe axis as compared with the case without the fin, and the divided jet Is given directivity in the blowing direction. Therefore, the area with sufficient ash removal capacity expands in the spray direction. Therefore, even if the blower nozzle is not installed to face the both sides across the heat transfer tube, the blower nozzle disposed on one side across the heat transfer tube and the blower nozzle disposed on the other side across the heat transfer tube are By disposing at a position shifted with respect to the tube axis direction, it is possible to remove the entire ash of the heat transfer tube. Therefore, it is not necessary to increase the injection pressure of the jet while suppressing the decrease in the efficiency of removing the ash, and the wear of the heat transfer tube can be suppressed.
 請求項2,5に記載の発明によれば、請求項1または4に記載の発明の効果に加えて、ブロワノズルが管軸方向に交差する方向に移動する構成において、灰を除去する効率の低下を抑制しつつ、伝熱管の摩耗を抑制することができる。
 請求項3,6に記載の発明によれば、請求項1または4に記載の発明の効果に加えて、ブロワノズルが管軸方向に平行な方向に移動する構成において、灰を除去する効率の低下を抑制しつつ、伝熱管の摩耗を抑制することができる。
According to the invention as set forth in claims 2 and 5, in addition to the effect of the invention as set forth in claim 1 or 4, in the configuration in which the blower nozzle moves in the direction crossing the tube axial direction, the efficiency of removing ash is reduced. The wear of the heat transfer tube can be suppressed while suppressing the
According to the invention as set forth in claims 3 and 6, in addition to the effect of the invention as set forth in claim 1 or 4, in the configuration in which the blower nozzle moves in a direction parallel to the tube axial direction, the efficiency of removing ash is reduced. The wear of the heat transfer tube can be suppressed while suppressing the
 請求項7に記載の発明によれば、上記請求項4に記載の発明の効果に加えて、下面側のブロワノズルを上面側のブロワノズルどうしの中間の位置に配置することで、伝熱管の全域をムラ無くカバーしやすく、全体の灰を効率的に除去しやすい。 According to the seventh aspect of the invention, in addition to the effects of the fourth aspect, the blower nozzle on the lower surface side is disposed at an intermediate position between the blower nozzles on the upper surface side, so that the entire area of the heat transfer tube can be obtained. It is easy to cover evenly and it is easy to remove whole ash efficiently.
 請求項8に記載の発明によれば、上記請求項4に記載の発明の効果に加えて、燃焼ガスが低温となる火炉の下流側において、伝熱管に付着する灰を効率的に除去することができる。 According to the invention as set forth in claim 8, in addition to the effect of the invention as set forth in claim 4, on the downstream side of the furnace where the combustion gas is at a low temperature, the ash adhering to the heat transfer tube is efficiently removed. Can.
図1は本発明の一実施例であるボイラの概略説明図であり、図1(A)は全体図、図1(B)は平面図である。FIG. 1 is a schematic explanatory view of a boiler according to an embodiment of the present invention, FIG. 1 (A) is a general view, and FIG. 1 (B) is a plan view. 図2は実施例1のバンク部(熱交換器)およびスートブロワの説明図である。FIG. 2 is an explanatory view of the bank portion (heat exchanger) and the soot blower of the first embodiment. 図3は実施例1の伝熱管の説明図であり、図3(A)はベアチューブで構成された伝熱管の説明図、図3(B)はフィンチューブで構成された伝熱管の説明図である。FIG. 3 is an explanatory view of the heat transfer tube of Example 1, FIG. 3 (A) is an explanatory view of a heat transfer tube formed of a bare tube, and FIG. 3 (B) is an explanatory view of a heat transfer tube formed of a fin tube. It is. 図4はスートブロワの配置と伝熱管の構成と除灰可能な範囲との説明図であり、図4(A)は伝熱管が裸管でスートブロワが正方配置の場合の説明図、図4(B)は伝熱管がフィンチューブで正方配置の場合の説明図、図4(C)は伝熱管が裸管でスートブロワが千鳥配置の場合の説明図である。FIG. 4 is an explanatory view of the arrangement of the soot blower, the configuration of the heat transfer tube and the range in which the ash removal is possible, and FIG. 4 (A) is an explanatory view of the case where the heat transfer tube is bare and the soot blower is square arrangement, FIG. FIG. 4 is an explanatory view in the case where the heat transfer tubes are in a square arrangement with fin tubes, and FIG. 4C is an explanatory view in the case where the heat transfer tubes are bare tubes and the soot blower is in a staggered arrangement. 図5は変更例の説明図である。FIG. 5 is an explanatory view of a modified example. 図6はスートブロワで灰が除去される範囲の説明図である。FIG. 6 is an explanatory view of a range where ash is removed by the soot blower. 図7はスートブロワで噴射される噴流の説明図である。FIG. 7 is an explanatory view of a jet flow injected by the soot blower. 図8は従来のスートブロワの問題点の説明図であり、図8(A)はSB有効範囲が狭い場合の説明図、図8(B)はSB有効範囲が広い場合の説明図である。FIG. 8 is an explanatory view of a problem of the conventional soot blower, and FIG. 8 (A) is an explanatory view when the SB effective range is narrow, and FIG. 8 (B) is an explanatory view when the SB effective range is wide.
 以下に、本発明の実施の形態を示す。 Hereinafter, embodiments of the present invention will be described.
 図1は本発明の一実施例であるボイラの概略説明図であり、図1(A)は全体図、図1(B)は平面図である。
 なお、本願明細書及び請求の範囲において、ボイラ火炉のことを「缶」と表現する場合がある。
 図1において、本発明の実施例1の微粉炭焚ボイラ1では、火炉2は、図示しないバーナ等が設置された水管部3を有する。火炉2は、缶前壁2aや缶後壁2b、側壁2c,2dを有する。火炉2の天井部には、バーナで燃焼された燃焼ガスの流れ方向に沿って、吊下げ伝熱部4,5,6が配置され、缶後壁2b側には、バンク(bank:伝熱管群、熱交換器)7,8,9,10が配置されている。
FIG. 1 is a schematic explanatory view of a boiler according to an embodiment of the present invention, FIG. 1 (A) is a general view, and FIG. 1 (B) is a plan view.
In the present specification and claims, a boiler furnace may be expressed as a "can".
In FIG. 1, in the pulverized coal fired boiler 1 according to the first embodiment of the present invention, the furnace 2 has a water pipe portion 3 provided with a burner or the like (not shown). The furnace 2 has a can front wall 2a, a can rear wall 2b, and side walls 2c and 2d. Suspended heat transfer parts 4, 5 and 6 are arranged on the ceiling of the furnace 2 along the flow direction of the combustion gas burned by the burner, and a bank (heat transfer pipe) is disposed on the can rear wall 2b side. Groups, heat exchangers) 7, 8, 9, 10 are arranged.
 図2は実施例1のバンク部(熱交換器)およびスートブロワの説明図である。
 図2において、実施例1のバンク7~10は、燃焼ガスの流れ方向Yaに交差する火炉2の前後方向Yb(缶前壁2a、缶後壁2bに向かう方向、管軸方向)に沿って繰り返し往復するように配置された伝熱管21により構成されている。伝熱管21の内部には、熱媒の一例としての蒸気が流動している。
FIG. 2 is an explanatory view of the bank portion (heat exchanger) and the soot blower of the first embodiment.
In FIG. 2, the banks 7 to 10 of the first embodiment extend along the longitudinal direction Yb (the direction toward the can front wall 2 a and the can rear wall 2 b, the tube axis direction) of the furnace 2 intersecting the flow direction Ya of the combustion gas. It is comprised by the heat exchanger tube 21 arrange | positioned so that it may reciprocate repeatedly. In the inside of the heat transfer tube 21, steam as an example of a heat medium is flowing.
 図3は実施例1の伝熱管の説明図であり、図3(A)はベアチューブで構成された伝熱管の説明図、図3(B)はフィンチューブで構成された伝熱管の説明図である。
 実施例1では、上流側の吊下げ伝熱部(熱交換器)4~6における伝熱管21は、図3(A)に示すように、裸管(ベアチューブ)22で構成されている。また、下流側の熱交換器7~10の少なくとも一つのバンクは管本体23aの外面にフィン23bが支持されたフィンチューブ23で構成されている。フィン23bは、管軸方向Ybに対して螺旋状に構成されている。よって、フィン23bは、管軸方向Ybに対して交差(実施例1では傾斜)して支持されている。
FIG. 3 is an explanatory view of the heat transfer tube of Example 1, FIG. 3 (A) is an explanatory view of a heat transfer tube formed of a bare tube, and FIG. 3 (B) is an explanatory view of a heat transfer tube formed of a fin tube. It is.
In the first embodiment, the heat transfer tubes 21 in the upstream suspended heat transfer sections (heat exchangers) 4 to 6 are configured by bare tubes (bare tubes) 22 as shown in FIG. 3A. Further, at least one bank of the heat exchangers 7 to 10 on the downstream side is constituted by a fin tube 23 in which a fin 23 b is supported on the outer surface of the tube main body 23 a. The fins 23b are formed in a spiral shape in the tube axis direction Yb. Therefore, the fins 23 b are supported crossing (in the first embodiment, inclining) the tube axis direction Yb.
 図1にSB配置の一例を示すが、各熱交換器4~10には、燃焼ガスの流れ方向Yaの上流側または下流側に、スートブロワ装置31が配置されている。スートブロワ装置31は、火炉2の幅方向に沿って延び、且つ、火炉の幅方向に沿って移動可能なブロワノズル32を有する。したがって、灰を除去する際には、ブロワノズル32が側壁2c,2dから火炉2の内部に向けて回転しながら移動(進入)した後、外部に向けて移動(退出)する。
 図1において、上流側の吊下げ伝熱部(熱交換器)4~6用のスートブロワ装置31aは、上下方向に間隔をあけて複数配置されている。
An example of the SB arrangement is shown in FIG. 1. In each of the heat exchangers 4 to 10, a soot blower device 31 is arranged on the upstream side or downstream side of the flow direction Ya of the combustion gas. The soot blower apparatus 31 has a blower nozzle 32 which extends along the width direction of the furnace 2 and is movable along the width direction of the furnace. Therefore, when removing the ash, the blower nozzle 32 moves (enters) while rotating from the side walls 2 c and 2 d toward the inside of the furnace 2 and then moves (exits) to the outside.
In FIG. 1, a plurality of soot blower devices 31a for the upstream suspended heat transfer portions (heat exchangers) 4 to 6 are arranged at intervals in the vertical direction.
 図1、図2において、実施例1では、下流側のバンク(熱交換器)7~10用のスートブロワ装置31bは、管軸方向Ybに交差する水平方向(缶前壁2a、缶後壁2bに向かう方向)に間隔をあけて複数配置されている。下流側のスートブロワ装置31bのブロワノズル32bは、バンク7~10に対して燃焼ガスの流れ方向Yaの上流側(一方側、上面側)に配置されたブロワノズル32b1と、バンク7~10に対して燃焼ガスの流れ方向Yaの下流側(他方側、下面側)に配置されたブロワノズル32b2とが、管軸方向Ybに対してずれた位置に配置されている。特に、実施例1では、管軸方向Ybに対して、上流側のブロワノズル32b1どうしの中間の位置に、下流側のブロワノズル32b2が配置されている。したがって、下流側のブロワノズル32b2は、いわゆる、千鳥配置となっている。 1 and 2, in the first embodiment, the soot blower apparatus 31b for the banks (heat exchangers) 7 to 10 on the downstream side has a horizontal direction (can front wall 2a, can rear wall 2b) intersecting the tube axis direction Yb. In the direction of The blower nozzle 32b of the downstream soot blower device 31b burns the banks 7 to 10 and the blower nozzles 32b1 disposed on the upstream side (one side, the upper surface side) of the flow direction Ya of the combustion gas with respect to the banks 7 to 10. The blower nozzle 32b2 disposed on the downstream side (the other side, the lower surface side) of the gas flow direction Ya is disposed at a position shifted with respect to the tube axial direction Yb. In particular, in the first embodiment, the downstream blower nozzle 32b2 is disposed at an intermediate position between the upstream blower nozzles 32b1 in the axial direction Yb. Therefore, the downstream blower nozzles 32b2 are in a so-called staggered arrangement.
(実施例1の作用)
 前記構成を備えた実施例1の微粉炭焚ボイラ1では、缶後側(下流側)に配置されたバンク7~10の少なくとも一つのバンクは、フィンチューブ23で構成され、対応するスートブロワ装置31bのブロワノズル32bは千鳥配置となっている。
 図3(A)において、裸管22にスートブロワ装置31aから蒸気が吹き付けられると、裸管22の表面に衝突した噴流(蒸気)は、管軸方向Ybおよび噴流の吹き付け方向の下流方向(吊下げ伝熱部(熱交換器4~6)の厚さ方向)に広がる。これに対して、図3(B)に示すように、フィンチューブ23にブロワノズル32bからの蒸気が吹き付けられると、フィンチューブ23で管軸方向Ybへの広がりが抑制される(図3(B)参照)。したがって、実施例1では、スートブロワ装置31bからフィンチューブ23に吹き付けられた噴流には、管軸方向Ybに交差する噴出し方向(バンク(熱交換器7~10)の厚さ方向)に指向性が付与される。
(Operation of Example 1)
In the pulverized coal burning boiler 1 of Example 1 having the above-described configuration, at least one bank of the banks 7 to 10 disposed on the can rear side (downstream side) is configured by the fin tube 23, and the corresponding soot blower device 31b The blower nozzles 32b are arranged in a staggered manner.
In FIG. 3A, when steam is sprayed onto the bare tube 22 from the soot blower device 31a, the jet (steam) that collides with the surface of the bare tube 22 has a tube axial direction Yb and a downstream direction (suspension direction of the jet). It spreads in the heat transfer part (the thickness direction of the heat exchangers 4 to 6). On the other hand, as shown in FIG. 3B, when the steam from the blower nozzle 32b is sprayed to the fin tube 23, the fin tube 23 suppresses the expansion in the tube axial direction Yb (FIG. 3B). reference). Therefore, in the first embodiment, the jet flow blown from the sootblower device 31b to the fin tube 23 has directivity in the blowout direction (thickness direction of the banks (heat exchangers 7 to 10)) intersecting the pipe axial direction Yb. Is granted.
 図2において、実施例1の下流側のスートブロワ装置31bでは、噴出し方向に指向性が付与されるため、噴流の減衰が遅く、よって、灰除去力Ptは十分な領域41が噴出し方向(熱交換器7~10の厚さ方向)に拡大する。したがって、図2に示すように、千鳥配置された下流側のスートブロワ装置31bで伝熱管21の全体をむら無く除灰することが可能である。 In FIG. 2, in the soot blower apparatus 31b on the downstream side of the first embodiment, directivity is imparted in the ejection direction, so that the jet attenuation is slow, and the ash removal power Pt is in the ejection direction In the thickness direction of the heat exchangers 7 to 10). Therefore, as shown in FIG. 2, it is possible to uniformly remove the entire heat transfer tube 21 by the downstream soot blower devices 31 b arranged in a staggered manner.
 特に、実施例1の下流側のスートブロワ装置31bでは、フィンチューブ23に対して、SBスタンドオフ距離Ls(SB噴射口から最も近い伝熱管21までの距離)、バンク厚さTb、SBノズルピッチXlpの関係が式(3)、(4)を満たすように設定されている。
Ls=k1・Tb …式(3)
Ls=k2・Xlp …式(4)
 なお、k1は、0.10<k1<1.83であり、0.15<k1<0.89が望ましい。また、k2は、0.08<k2<1.26であり、0.13<k2<1.04が望ましい。
In particular, in the soot blower apparatus 31b on the downstream side of the first embodiment, the SB standoff distance Ls (the distance from the SB injection port to the heat transfer tube 21 closest to the fin tube 23), the bank thickness Tb, and the SB nozzle pitch Xlp The relationship of is set to satisfy the equations (3) and (4).
Ls = k1 · Tb formula (3)
Ls = k2 · Xlp equation (4)
In addition, k1 is 0.10 <k1 <1.83, and desirably 0.15 <k1 <0.89. Further, k2 is in the range of 0.08 <k2 <1.26, and desirably 0.13 <k2 <1.04.
 ここで、k1が下限よりも小さい場合、SB装置31bのブロワノズル32bから伝熱管21(フィンチューブ23)までの距離が近すぎて、噴流のエネルギーが過度に高くなって、堆積灰を巻き込んでのアッシュエロージョンが生じる可能性がある。また、k1が上限よりも大きい場合は、SB装置31bのブロワノズル32bと伝熱管21の距離が遠く、噴流が届きにくくなり、灰除去が十分に行えない等の問題が生じる。さらに、k2が下限よりも小さい場合は、SB装置31bのブロワノズル32bから伝熱管21までの距離が近すぎるか、ブロワノズル32bどうしの距離が遠すぎることを意味しており、前者であればアッシュエロージョンが発生しやすく、後者であればブロワノズル32b間の灰が除去されずに残りやすい問題がある。また、k2が上限よりも大きい場合、SB装置31bのブロワノズル32bと伝熱管21との距離が遠すぎるか、ブロワノズル32b間の距離が近すぎることを意味しており、前者であれば噴流のエネルギーが低くて十分に灰を除去できず、後者であれば隣接したブロワノズル32bからの噴流が干渉、重複して無駄になったり、SB有効範囲が重なって噴流のエネルギーが過度に集中して堆積灰を巻き込んでのアッシュエロージョンを引き起こしたり等の問題が生じる。 Here, when k1 is smaller than the lower limit, the distance from the blower nozzle 32b of the SB device 31b to the heat transfer pipe 21 (fin tube 23) is too short, and the energy of the jet becomes excessively high, and entrains the deposited ash. Ash erosion may occur. When k1 is larger than the upper limit, the distance between the blower nozzle 32b of the SB device 31b and the heat transfer tube 21 is long, the jet stream hardly reaches, and problems such as the ash removal can not be performed sufficiently occur. Furthermore, if k2 is smaller than the lower limit, it means that the distance from the blower nozzle 32b of the SB device 31b to the heat transfer tube 21 is too short or the distance between the blower nozzles 32b is too long. In the latter case, the ash between the blower nozzles 32b tends to remain without being removed. Further, when k2 is larger than the upper limit, it means that the distance between the blower nozzle 32b of the SB device 31b and the heat transfer tube 21 is too long or the distance between the blower nozzles 32b is too short. In the latter case, jets from the adjacent blower nozzle 32b interfere with each other, resulting in overlapping and wasted waste, or SB effective ranges overlap and energy of the jets is excessively concentrated, resulting in deposited ash Cause problems such as causing ash erosion.
 図4はスートブロワの配置と伝熱管の構成と除灰可能な範囲との説明図であり、図4(A)は伝熱管が裸管でブロワノズルが正方配置の場合の説明図、図4(B)は伝熱管がフィンチューブで正方配置の場合の説明図、図4(C)は伝熱管が裸管でブロワノズルが千鳥配置の場合の説明図である。
 なお、従来技術のように、裸管を使用してブロワノズルを正方配置された構成では、図4(A)に示すように、4つのブロワノズル021から離れた領域022で灰が残る問題がある。また、この灰が残る領域022をなくすために、噴射圧を高くすると、図8(B)において説明したように、エロージョンの懸念が高くなる。
FIG. 4 is an explanatory view of the arrangement of the soot blower, the configuration of the heat transfer tube and the range in which the ash removal is possible, and FIG. 4 (A) is an explanatory view of the case where the heat transfer tube is a bare tube and the blower nozzle is a square arrangement. FIG. 4 is an explanatory view in the case where the heat transfer tubes are in a fin tube and in a square arrangement, and FIG. 4C is an explanatory view in the case where the heat transfer tubes are a bare tube and the blower nozzles are in a staggered arrangement.
As in the prior art, in the configuration in which the blower nozzles are squarely arranged using bare tubes, as shown in FIG. 4A, there is a problem that ash remains in the area 022 apart from the four blower nozzles 021. In addition, if the injection pressure is increased to eliminate the region 022 in which the ash remains, as described in FIG. 8B, the concern of erosion increases.
 また、フィンチューブを使用してブロワノズルを正方配置した構成では、図4(B)に示すように、灰が残る領域022が発生すると共に、十分な噴射圧がある範囲が重複する領域023が広くなる。よって、重複領域023が広くなると、無駄に消費される蒸気が多くなると共に、エロージョンが進みやすくなる問題もある。
 さらに、裸管を使用してブロワノズルが千鳥配置された構成では、図4(C)に示すように、灰が残る領域022が広くなる問題もある。
Further, in the configuration in which the blower nozzles are arranged squarely using fin tubes, as shown in FIG. 4B, a region 022 in which ash remains is generated, and a region 023 in which a range in which a sufficient injection pressure is overlapped is wide. Become. Therefore, when the overlapping area 023 becomes wide, there is a problem that the amount of the vapor consumed wastefully increases and the erosion easily progresses.
Furthermore, in the configuration in which the blower nozzles are arranged in a staggered manner using a bare tube, there is a problem that the area 022 in which the ash remains becomes wide, as shown in FIG. 4 (C).
 よって、実施例1の下流側のスートブロワ装置31bでは、スートブロワ装置31の台数を増やさなくても、灰を除去する効率の低下を抑制しつつ、伝熱管21の摩耗を抑制することができ、蒸気の無駄も少なくすることができる。また、実施例1のように、効率的な除灰が可能な構成とすることで、火炉2において、亜瀝青炭等の低品位炭の混焼率の増加も可能となり、運用コストの低減にも貢献する。また、これまで灰付着に対する課題が多かった低品位炭等の活用促進が可能となる。 Therefore, in the soot blower apparatus 31b on the downstream side of the first embodiment, the wear of the heat transfer tubes 21 can be suppressed while suppressing the decrease in the efficiency of removing ash without increasing the number of the soot blower apparatuses 31. The waste of can also be reduced. In addition, as in the first embodiment, by making it possible to efficiently remove ash, it is also possible to increase the mixed burning rate of low-grade coal such as sub-bituminous coal in the furnace 2, which also contributes to reduction in operation cost. Do. In addition, it will be possible to promote the use of low-grade coal, etc. for which there have been many problems with ash deposition.
 図5は変更例の説明図である。
 図5において、熱交換器7~10の管軸方向Ybの長さが短い場合は、図2に示す千鳥配置ではなく、図5に示すように、熱交換器7~10の上流側と下流側にブロワノズル32b1,32b2が1つずつ配置され、且つ、管軸方向Ybに対してはずれた位置に配置される構成、いわゆるオフセット配置とすることも可能である。このような構成とすることでも、実施例1と同様の作用効果を奏することが可能である。
FIG. 5 is an explanatory view of a modified example.
In FIG. 5, when the length in the tube axial direction Yb of the heat exchangers 7 to 10 is short, the upstream side and the downstream side of the heat exchangers 7 to 10 are not arranged as shown in FIG. It is also possible to adopt a configuration in which the blower nozzles 32b1 and 32b2 are disposed one by one on the side and disposed at a position deviated with respect to the tube axial direction Yb, so-called offset arrangement. With such a configuration, it is possible to obtain the same function and effect as those of the first embodiment.
(その他の変更例)
 以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲で、種々の変更を行うことが可能である。本発明の変更例(H01)~(H03)を下記に例示する。
(H01)前記実施例において、フィン23bを螺旋状とする構成を例示したがこれに限定されない。例えば、円板状または多角板状のフィンを、管軸方向Ybに対して間隔をあけて複数配置する構成とすることも可能である。このとき、管軸方向Ybに対して直交するように配置することも可能であるし、傾斜するように配置することも可能である。
(Other change example)
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, In the range of the summary of this invention described in the claim, various changes may be made. It is possible. Modifications (H01) to (H03) of the present invention are exemplified below.
(H01) Although the fin 23b has a spiral shape in the above embodiment, the invention is not limited to this. For example, a plurality of disk-shaped or polygonal plate-shaped fins may be provided at intervals in the tube axis direction Yb. At this time, it is also possible to arrange so as to be orthogonal to the tube axis direction Yb, and it is also possible to arrange so as to be inclined.
(H02)前記実施例において、管軸方向Ybに対して、下流側のブロワノズル32b2を上流側のブロワノズル32b1どうしの中間の位置に配置する構成を例示したがこれに限定されない。熱交換器7~10の管軸方向の長さや、伝熱管21どうしの位置関係や間隔、折り返し部分の位置や長さ、曲率半径等に応じて、灰の溜まりやすい位置が偏ったりする場合には、ブロワノズル32b2の位置も管軸方向に対して離して配置したり、詰めて配置したり等、灰の除去に適切な位置に変更可能である。
(H03)前記実施例において、スートブロワ装置31は管軸方向に対して交差する方向に移動可能な構成を例示したが、これに限定されない。例えば、管軸方向に沿った(平行な)方向に沿って移動する構成とすることも可能である。
(H02) In the above embodiment, the downstream blower nozzle 32b2 is disposed at an intermediate position between the upstream blower nozzles 32b1 in the axial direction Yb. However, the present invention is not limited to this. When the position where ash is likely to be accumulated is biased according to the length in the tube axis direction of the heat exchangers 7 to 10, the positional relationship and interval between the heat transfer tubes 21, the position and length of the folded portion, the curvature radius, etc. The position of the blower nozzle 32b2 can also be changed to a position suitable for ash removal, such as being arranged apart from the axial direction of the tube, or arranged so as to be packed.
(H03) In the above embodiment, the soot blower apparatus 31 exemplarily has a configuration movable in the direction intersecting with the tube axis direction, but is not limited thereto. For example, it is also possible to move along a (parallel) direction along the tube axis direction.
1…ボイラ、
2…火炉、
21…伝熱管、
23a…管本体、
23b…フィン、
31b…スートブロワ装置、
31b1…一方側に配置されたブロワノズル、
31b2…他方側に配置されたブロワノズル、
Yb…管軸方向。
1 ... boiler,
2 ... furnace,
21 ... heat transfer tube,
23a ... tube body,
23b ... Fin,
31b: soot blower device,
31b1 ... a blower nozzle disposed on one side,
31b2 ... a blower nozzle disposed on the other side,
Yb ... tube axis direction.

Claims (8)

  1.  水平方向を管軸とする横置きの伝熱管が上下方向に積層され、当該積層された伝熱管を横方向に複数列並べてボイラ内部に形成されるバンクに向けて、当該バンクの上面側と下面側から噴霧媒体を噴射して灰を除去するスートブロワ装置であって、
     ボイラ壁面から挿入される前記噴霧媒体を噴射する複数のブロワノズルが、前記バンク上方と下方においてそれぞれ水平方向に移動可能に設置され、
     前記バンクを形成する前記伝熱管は、前記管軸に交差する向きにフィンを備えたフィン付き伝熱管であり、
     前記バンク上方のブロワノズルと前記バンク下方のブロワノズルとが水平面内において互いにずれた位置を移動するように配置されてなること
     を特徴とするスートブロワ装置。
    Horizontally arranged heat transfer tubes having a horizontal axis as a tube axis are vertically stacked, and the stacked heat transfer tubes are arranged side by side in a plurality of rows and directed to a bank formed inside the boiler, the upper surface side and the lower surface of the bank What is claimed is: 1. A sootblower apparatus for ejecting a spray medium from the side to remove ash.
    A plurality of blower nozzles for injecting the spray medium, which are inserted from the boiler wall, are horizontally movably installed above and below the bank,
    The heat transfer tubes forming the banks are finned heat transfer tubes provided with fins in a direction intersecting the tube axis,
    A soot blower apparatus characterized in that the blower nozzle above the bank and the blower nozzle below the bank are arranged to move in mutually offset positions in a horizontal plane.
  2.  前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向に対して、交差する方向であること
     を特徴とする請求項1に記載のスートブロワ装置。
    The sootblower apparatus according to claim 1, wherein the moving direction of the plurality of blower nozzles is a direction intersecting the direction of the tube axis of the heat transfer tube.
  3.  前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向と平行であること
     を特徴とする請求項1に記載のスートブロワ装置。
    The soot blower apparatus according to claim 1, wherein the moving directions of the plurality of blower nozzles are parallel to the axial direction of the heat transfer tube.
  4.  水平方向を管軸とする横置きの伝熱管を上下方向に積層したものを横方向に複数列並べて形成された複数のバンクと、
     前記バンクに向けて、当該バンクの上面側と下面側から噴霧媒体を噴射して灰を除去するスートブロワ装置であって、ボイラ壁面から挿入される前記噴霧媒体を噴射する複数のブロワノズルが前記バンク上方と下方それぞれ水平方向を往復移動可能に設置されるスートブロワ装置と、
     を備えたボイラにおいて、
     前記複数のバンクのうち、少なくとも一つのバンクを形成する前記伝熱管は、前記管軸に交差する向きにフィンを備えたフィン付き伝熱管であり、
     当該バンク上方のブロワノズルと当該バンク下方のブロワノズルとが水平面内において互いにずれた位置を移動するように配置されたスートブロワ装置、
     を備えたことを特徴とするボイラ。
    A plurality of banks formed by arranging a plurality of horizontal heat transfer tubes stacked in the vertical direction, the horizontal heat transfer tubes being the tube axis;
    It is a soot blower apparatus which sprays a spray medium from the upper surface side and the lower surface side of the bank toward the bank to remove ash, and a plurality of blower nozzles that spray the spray medium inserted from a boiler wall face is above the bank And a soot blower installed so as to be capable of reciprocating in the horizontal direction respectively and
    In a boiler equipped with
    The heat transfer tube forming at least one of the plurality of banks is a finned heat transfer tube having fins in a direction intersecting the tube axis,
    The soot blower apparatus arranged so that the blower nozzle above the bank and the blower nozzle below the bank move at mutually offset positions in a horizontal plane,
    The boiler characterized by having.
  5.  前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向に対して、交差する方向であること
     を特徴とする請求項4に記載のボイラ。
    The boiler according to claim 4, wherein a moving direction of the plurality of blower nozzles is a direction intersecting with a direction of a tube axis of the heat transfer tube.
  6.  前記複数のブロワノズルの移動方向が前記伝熱管の管軸方向と平行であること
     を特徴とする請求項4に記載のボイラ。
    The moving direction of said several blower nozzle is parallel to the pipe-axis direction of the said heat exchanger tube. The boiler of Claim 4 characterized by these.
  7.  前記管軸方向に沿って間隔を空けて配置された前記上面側のブロワノズルと、
     前記管軸方向において、前記上面側のブロワノズルどうしの中間の位置に配置された前記下面側のブロワノズルと、
     を備えたことを特徴とする請求項4に記載のボイラ。
    The blower nozzle on the upper surface side spaced apart along the tube axis direction;
    The lower surface side blower nozzle disposed at a position between the upper surface side blower nozzles in the tube axis direction;
    The boiler according to claim 4, further comprising:
  8.  火炉において、燃焼ガスの流れ方向の下流側に配置された前記伝熱管および前記スートブロワ装置、
     を備えたことを特徴とする請求項4に記載のボイラ。
    In the furnace, the heat transfer tube and the sootblower apparatus disposed downstream of the flow direction of the combustion gas,
    The boiler according to claim 4, further comprising:
PCT/JP2018/046598 2017-12-25 2018-12-18 Soot blower device and boiler WO2019131334A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207018863A KR102403110B1 (en) 2017-12-25 2018-12-18 Soot Blower Units and Boilers
PH12020500562A PH12020500562A1 (en) 2017-12-25 2020-06-23 Soot blower device and boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-247859 2017-12-25
JP2017247859A JP6814727B2 (en) 2017-12-25 2017-12-25 boiler

Publications (1)

Publication Number Publication Date
WO2019131334A1 true WO2019131334A1 (en) 2019-07-04

Family

ID=67063613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046598 WO2019131334A1 (en) 2017-12-25 2018-12-18 Soot blower device and boiler

Country Status (4)

Country Link
JP (1) JP6814727B2 (en)
KR (1) KR102403110B1 (en)
PH (1) PH12020500562A1 (en)
WO (1) WO2019131334A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828853A (en) * 1994-07-18 1996-02-02 Kawasaki Heavy Ind Ltd Soot blower apparatus
JP2000304238A (en) * 1999-04-16 2000-11-02 Ishikawajima Harima Heavy Ind Co Ltd Soot blower
JP2002317919A (en) * 2001-04-19 2002-10-31 Kubota Corp Heat exchange apparatus
JP2003014397A (en) * 2001-06-27 2003-01-15 Babcock Hitachi Kk Soot blower
JP2008224185A (en) * 2007-03-15 2008-09-25 Babcock Hitachi Kk Soot blower device and boiler device having this device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165302A (en) 1985-01-17 1986-07-26 Nippon Kayaku Co Ltd Production of granules for agricultural and horticultural purposes
JP2001132934A (en) 1999-11-04 2001-05-18 Babcock Hitachi Kk Soot blower for boiler and control method thereof
JP2002115806A (en) 2000-10-05 2002-04-19 Ishikawajima Harima Heavy Ind Co Ltd Structure of economizer of boiler
JP4906352B2 (en) 2006-01-10 2012-03-28 バブコック日立株式会社 Soot blower equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828853A (en) * 1994-07-18 1996-02-02 Kawasaki Heavy Ind Ltd Soot blower apparatus
JP2000304238A (en) * 1999-04-16 2000-11-02 Ishikawajima Harima Heavy Ind Co Ltd Soot blower
JP2002317919A (en) * 2001-04-19 2002-10-31 Kubota Corp Heat exchange apparatus
JP2003014397A (en) * 2001-06-27 2003-01-15 Babcock Hitachi Kk Soot blower
JP2008224185A (en) * 2007-03-15 2008-09-25 Babcock Hitachi Kk Soot blower device and boiler device having this device

Also Published As

Publication number Publication date
KR102403110B1 (en) 2022-05-30
JP2019113263A (en) 2019-07-11
JP6814727B2 (en) 2021-01-20
KR20200089746A (en) 2020-07-27
PH12020500562A1 (en) 2021-05-17

Similar Documents

Publication Publication Date Title
CA2664769C (en) Burner, and combustion equipment and boiler comprising burner
JP5730024B2 (en) Spray nozzle and combustion apparatus having spray nozzle
JP2008212846A (en) Water flow mechanism of wet electrostatic dust precipitator
US10591154B2 (en) Combustion burner and boiler
RU2627866C2 (en) Valve for controlling solid phase in fluidized layer with high reliability
BRPI1003902A2 (en) fluidized circulation bed (cfb) with furnace secondary air flow nozzles
KR102126663B1 (en) Exhaust gas treatment device
WO2019131334A1 (en) Soot blower device and boiler
US20160376986A1 (en) Dual Purpose Heat Transfer Surface Device
CA2163842C (en) Low nox integrated boiler-burner apparatus
JP2012102910A (en) Vacuum type water warmer
JP2020525750A (en) Heat transfer element for rotary heat exchanger
WO2019168059A1 (en) Exhaust gas treatment device
JP6513422B2 (en) Combustion burner, boiler, and method of burning fuel gas
EP1847774B1 (en) A fluidized bed boiler and a grate element for the same
JP7285685B2 (en) Furnaces and boilers equipped therewith
JP5788167B2 (en) Heat exchanger and vacuum water heater
KR101672092B1 (en) Heat exchange tube module
US20230089621A1 (en) Heat exchanger
JP6053815B2 (en) Spray nozzle, burner with spray nozzle and combustion apparatus with burner
JPS6287720A (en) Soot blower device
US5799724A (en) Trapezoidal deflectors for heat exchanger tubes
CN114776484A (en) Device for strengthening impact heat exchange and weakening transverse flow and application
JP6373058B2 (en) Tube group boiler
CN103438442A (en) Wear preventing device for water-cooled wall wear area of circulating fluidized bed boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018863

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18895553

Country of ref document: EP

Kind code of ref document: A1