WO2019131075A1 - Transmission device, point group data collection system, and computer program - Google Patents

Transmission device, point group data collection system, and computer program Download PDF

Info

Publication number
WO2019131075A1
WO2019131075A1 PCT/JP2018/045211 JP2018045211W WO2019131075A1 WO 2019131075 A1 WO2019131075 A1 WO 2019131075A1 JP 2018045211 W JP2018045211 W JP 2018045211W WO 2019131075 A1 WO2019131075 A1 WO 2019131075A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
data
point cloud
measurement data
point
Prior art date
Application number
PCT/JP2018/045211
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 高木
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019131075A1 publication Critical patent/WO2019131075A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present disclosure relates to a transmitter, a point cloud data acquisition system, and a computer program.
  • This application claims priority based on Japanese Patent Application No. 2017-247288 filed on Dec. 25, 2017, and incorporates all the contents described in the aforementioned Japanese application.
  • Patent Document 1 a system that assists driving of a vehicle such as a car using measurement data measured by a sensor such as a camera.
  • the transmission device transmits measurement data at a plurality of measurement points measured by sensors installed on a roadside or a vehicle to a server, and the server detects a vehicle or a pedestrian. , And update of dynamic information such as a moving object for driving assistance of the vehicle.
  • the transmission device of the present disclosure uses a sensor that measures the distance to a measurement point of a static object and the distance to a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass. Measurement of measurement points included in a predetermined area from a point cloud data acquisition unit that acquires point cloud data including measurement data at a plurality of measured measurement points, and the point cloud data acquired by the point cloud data acquisition unit It has a measurement data removal unit that removes data, and a point cloud data transmission unit that sends the point cloud data after the measurement data has been removed by the measurement data removal unit to a server.
  • the point cloud data collection system of the present disclosure includes the above-described transmission device, and a server that receives, from the transmission device, point cloud data including measurement data at a plurality of measurement points measured by sensors.
  • the computer program of the present disclosure measures the distance to a measurement point of a static object, and the distance to a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass.
  • a measurement data removal unit that removes measurement data of points and a point cloud data transmission unit that transmits the point cloud data after the measurement data is removed by the measurement data removal unit to a server.
  • the present disclosure can not only be realized as a transmission apparatus provided with such a characteristic processing unit, but also a point cloud data transmission method in which a process executed by a characteristic processing unit included in the transmission apparatus is a step.
  • a characteristic processing unit included in the transmission apparatus is a step.
  • the present disclosure can also be implemented as a semiconductor integrated circuit that implements part or all of the transmission device.
  • FIG. 1 is an overall configuration diagram of a wireless communication system according to an embodiment of the present disclosure. It is a figure which shows an example of the measurement area
  • Measurement data at such measurement points are transmitted from the transmitting device to the server although they do not contribute to the update of the dynamic information.
  • LiDAR Laser Imaging Detection and Rang
  • LiDAR Laser Imaging Detection and Rang
  • a laser irradiated to a building or the ground a laser irradiated to a vehicle or pedestrian is It is often small. Therefore, there is a lot of useless measurement data for updating the dynamic information, which causes an increase in the amount of communication traffic and an increase in the processing load on the server.
  • the object of the present disclosure is to provide a transmitter, a point cloud data collection system and a computer program capable of transmitting measurement data to a server for efficient dynamic information update while reducing the amount of communication traffic to the server. It is to provide.
  • measurement data for efficient dynamic information update can be transmitted to a server while reducing the amount of communication traffic to the server.
  • a transmission device is a distance to a measurement point of a static object, and a distance to a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass. Included in a predetermined area from a point cloud data acquisition unit that acquires point cloud data including measurement data at a plurality of measurement points measured by a sensor that measures the point cloud data and the point cloud data acquired by the point cloud data acquisition unit And a point cloud data transmission unit for transmitting to the server the point cloud data after the measurement data is removed by the measurement data removal unit.
  • the predetermined area As an area of a stationary object such as a building or a static measurement point such as the ground, it is possible to prevent transmission of useless measurement data to the server. This makes it possible to transmit measurement data for efficient dynamic information update to the server while reducing the amount of communication traffic to the server.
  • the static object includes the ground
  • the measurement data removal unit removes measurement data of measurement points on the ground from the point cloud data acquired by the point cloud data acquisition unit.
  • the sensor is a radar sensor that measures the distance to each measurement point
  • the point cloud data acquisition unit includes, as the measurement data, the distance to each measurement point in the plurality of measurement points.
  • the point cloud data is acquired, and the measurement data removal unit calculates the height of each measurement point from the point cloud data acquired by the point cloud data acquisition unit, and the calculated height is a predetermined height threshold
  • the following measurement data may be removed as measurement data of the measurement point on the ground.
  • the measurement data of the measurement point on the ground can be specified with high accuracy.
  • the sensor is a radar sensor that measures the distance to each measurement point
  • the point cloud data acquisition unit includes, as the measurement data, the distance to each measurement point in the plurality of measurement points.
  • the point data is acquired, and the measurement data removal unit determines that the height of the plane applied to the measurement point calculated based on the point cloud data acquired by the point cloud data acquisition unit is equal to or less than a predetermined height threshold.
  • measurement data of measurement points constituting the plane may be removed as measurement data of measurement points on the ground.
  • the measurement data of the measurement point on the ground can be specified with high accuracy.
  • the senor is a radar sensor that measures a distance to each measurement point
  • the point cloud data acquisition unit is a distance from each of the measurement points to each measurement point and a reflection from each measurement point.
  • the point cloud data including the light intensity as the measurement data is acquired, and the measurement data removing unit measures the measurement points whose reflected light intensity satisfies a predetermined condition based on the reflected light intensities from the respective measurement points. Data may be removed as measurement data of the measurement point on the ground.
  • the reflected light intensity of the laser reflected by the asphalt is known in advance, it can be determined from the reflected light intensity whether or not the measurement point is a road paved with asphalt. For this reason, according to this configuration, measurement data of measurement points included in a road paved with asphalt can be identified with high accuracy.
  • the sensor is a radar sensor that measures the distance to each measurement point
  • the point cloud data acquisition unit includes, as the measurement data, the distance to each measurement point in the plurality of measurement points.
  • the point cloud data is acquired, and the measurement data removing unit determines that the variation of the curvature of the locus of the measurement point calculated based on the point cloud data acquired by the point cloud data acquisition unit is within a predetermined range.
  • measurement data of measurement points constituting the locus may be removed as measurement data of measurement points on the ground.
  • the radar sensor can measure the distance to the object by scanning the object while moving the laser along the circumference around the rotation axis. Therefore, when the object is the ground, the locus of the measurement points calculated based on the point cloud data is along the circumference. For this reason, according to this configuration, when the locus along the circumference is specified, it can be determined that the measurement point constituting the locus is a measurement point on the ground. Thereby, the measurement data of the measurement point on the ground can be specified with high accuracy.
  • the senor may be installed on the road side of the road on which the vehicle travels.
  • the said measurement data removal part may remove the measurement data of the measurement point contained in the predetermined angle range on the basis of the said sensor.
  • the direction of a fixed object such as a building where a vehicle or a pedestrian can not pass may be known in advance. Therefore, according to this configuration, by defining the direction in which the vehicle or the pedestrian can not pass as the predetermined angle range, measurement data of the measurement points included in the predetermined angle range may not be transmitted to the server.
  • the transmission device described above further includes an area information storage unit storing the predetermined angle range
  • the measurement data removal unit further includes the predetermined information stored in the area information storage unit. The measurement data may be removed based on an angle range.
  • the transmission device described above further includes an area information acquisition unit that acquires the predetermined angle range, and the measurement data removal unit is based on the predetermined angle range acquired by the area information acquisition unit.
  • the measurement data may be removed.
  • the sensor may be installed in a vehicle.
  • the measurement data removal unit may remove measurement data of measurement points existing at predetermined position coordinates.
  • the position of fixed objects such as buildings which vehicles and pedestrians can not pass may be known in advance. According to this configuration, by setting coordinates of a position at which a vehicle or a pedestrian can not pass as predetermined position coordinates, measurement data of measurement points present at the position coordinates can be prevented from being transmitted to the server. .
  • the measurement data removal unit may remove measurement data of measurement points included in a graphic area defined by predetermined position coordinates.
  • An area such as a fixed object such as a building where a vehicle or a pedestrian can not pass may be known in advance.
  • an area where vehicles and pedestrians can not pass is indicated by a graphic area defined by predetermined position coordinates, and measurement data of measurement points included in the graphic area is not transmitted to the server. be able to.
  • the area which can not pass by a vehicle or a pedestrian can be defined by a graphic area, so that the area can be defined with a small amount of information.
  • the transmission device described above further includes an area information storage unit storing the predetermined position coordinates
  • the measurement data removal unit further includes the predetermined information stored in the area information storage unit. The measurement data may be removed based on position coordinates.
  • the transmission device described above further includes an area information acquisition unit for acquiring the predetermined position coordinates from an external device, and the measurement data removal unit is configured to acquire the predetermined information acquired by the area information acquisition unit.
  • the measurement data may be removed based on position coordinates.
  • the senor may be a LiDAR radar sensor.
  • the image processing apparatus further comprises an image sensor for capturing the images of the static object and the moving object, and the measurement data removal unit is removed by the measurement data removal unit from the image captured by the image sensor.
  • the image data of the restricted area corresponding to the point cloud data may be removed.
  • a point cloud data collection system receives point group data including measurement data at a plurality of measurement points measured by sensors from the above-described transmission device and the transmission device. And a server.
  • the point cloud data collection system includes the transmitting device described above. Therefore, the same operation and effect as the above-described transmission apparatus can be achieved.
  • a computer program relates to a computer, a distance to a measurement point of a static object, and a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass.
  • the point cloud data acquisition unit acquires point cloud data including measurement data at a plurality of measurement points measured by a sensor that measures the distance to the point, and the point cloud data acquired by the point cloud data acquisition unit is predetermined
  • the measurement data removal unit removing measurement data of measurement points included in the area Make it work.
  • the computer can function as the above-described transmission device. Therefore, the same operation and effect as the above-described transmission apparatus can be achieved.
  • FIG. 1 is an overall configuration diagram of a wireless communication system according to an embodiment of the present disclosure.
  • the wireless communication system according to the present embodiment is a point cloud data collection system for collecting point cloud data including measurement data at a plurality of measurement points measured by sensors installed on a roadside or a vehicle.
  • a server 5 that communicates with the base station 4 via a network in a wired or wireless manner.
  • the base station 4 comprises at least one of a macrocell base station, a microcell base station, and a picocell base station.
  • the server 5 is, for example, a general-purpose server capable of software-defined networking (SDN).
  • the base station 4 and a relay device such as a repeater (not shown) are made of transport equipment capable of SDN.
  • the network virtualization technology represented by the above-mentioned SDN is a basic concept of the "fifth generation mobile communication system” (hereinafter abbreviated as "5G” (5th Generation)) whose standardization is currently underway. Therefore, the wireless communication system of the present embodiment is made of, for example, 5G.
  • the camera 1C is an image sensor that captures an image of a predetermined imaging area.
  • the camera 1C may be either monocular or compound eye.
  • the LiDAR 1 L emits a laser to each measurement point while scanning multiple measurement points, and measures the distance to each measurement point based on the time from the emission of the laser to the reception of the reflected light.
  • various sensors such as a millimeter wave radar, a laser radar, and an ultrasonic wave radar, can be used instead of LiDAR 1L or together with LiDAR 1L.
  • FIG. 2 is a diagram showing an example of a measurement region of LiDAR.
  • the LiDAR 1L irradiates the laser to each measurement point while rotating the laser irradiation unit 360 ° around the rotation axis (eg, vertical axis), and receives the reflected light of the laser from the measurement point.
  • the LiDAR 1L measures the distance to each measurement point based on the time (reflection time) from the irradiation of the laser to the reception of the reflected light.
  • the LiDAR 1L can measure the distances to a plurality of measurement points included in the measurement region 11 of 360 ° around the LiDAR 1L.
  • the transmitting device 6 has a wireless communication function, and transmits sensor information including measurement data measured by various sensors such as the camera 1C or LiDAR 1L installed on a road.
  • the vehicle 2 includes an on-vehicle device 3 having a wireless communication function.
  • the in-vehicle device 3 functions as a transmission device, and is configured to include various sensors such as a camera and a LiDAR.
  • the vehicles 2 include not only ordinary passenger cars but also public vehicles such as route buses and emergency vehicles.
  • the vehicle 2 may be not only a four-wheeled vehicle but also a two-wheeled vehicle (bike).
  • the drive system of the vehicle 2 may be any of an engine drive, an electric motor drive, and a hybrid system.
  • the driving method of the vehicle 2 may be either normal driving in which the passenger performs operations such as acceleration / deceleration or steering wheel steering, and automatic driving in which the software executes the operation.
  • FIG. 3 is a block diagram showing an example of the configuration of the server 5.
  • the server 5 includes a control unit 51 including a central processing unit (CPU), a read only memory (ROM) 53, a random access memory (RAM) 54, a storage unit 55, and a communication unit. And 56.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the control unit 51 reads out and executes one or a plurality of programs stored in advance in the ROM 53 to the RAM 54 to control the operation of each hardware, and causes the computer device to function as the server 5 capable of communicating with the base station 4. . That is, the control unit 51 includes the information generation unit 52 as a functional processing unit realized by executing a program.
  • the RAM 54 is composed of volatile memory elements such as SRAM (Static RAM) or DRAM (Dynamic RAM), and temporarily stores programs executed by the control unit 51 and data necessary for the execution.
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • the storage unit 55 is configured by a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory) or a magnetic storage device such as a hard disk.
  • a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory) or a magnetic storage device such as a hard disk.
  • the communication unit 56 is a communication device that executes communication processing compatible with 5G, and communicates with the base station 4 via the network.
  • the communication unit 56 transmits the information provided from the control unit 51 to an external device via the network, and gives the information received via the network to the control unit 51.
  • the storage unit 55 of the server 5 stores a dynamic information map (hereinafter, also simply referred to as “map”) M.
  • the map M is a collection (virtual database) of data in which dynamic information that changes from moment to moment is superimposed on a high-definition digital map that is static information.
  • the digital information constituting the map M includes the following "dynamic information”, “semi-dynamic information”, “semi-static information”, and "static information”.
  • “Dynamic information” ( ⁇ 1 second) refers to dynamic data that requires a delay time of less than 1 second.
  • position information of moving objects such as vehicles and pedestrians
  • signal information which are used as ITS (Intelligent Transport Systems) prefetch information
  • ITS Intelligent Transport Systems
  • Quasi-dynamic information ( ⁇ 1 minute) is quasi-dynamic data for which a delay time of less than 1 minute is required.
  • accident information, congestion information, and short-range weather information correspond to quasi-dynamic information.
  • Quasi-static information ( ⁇ 1 hour) refers to quasi-static data that allows a delay time of less than 1 hour.
  • traffic regulation information, road construction information, and wide area weather information correspond to quasi-static information.
  • “Static information” ( ⁇ 1 month) is static data that allows a delay time of 1 month or less.
  • road surface information, lane information, and three-dimensional structure data correspond to static information.
  • the control unit 51 updates the dynamic information of the map M stored in the storage unit 55 every predetermined update cycle (dynamic information update process).
  • the information generation unit 52 of the control unit 51 detects sensor information including various measurement data measured by the vehicle 2, the camera 1C, the LiDAR 1L, and the like in the service area of the server 5 at predetermined update cycles. They are collected from the vehicle 2 and the transmitting device 6 or the like. The information generation unit 52 updates the dynamic information of the map M based on the collected sensor information.
  • control unit 51 When the control unit 51 receives a request message for dynamic information from the on-vehicle apparatus 3 of the vehicle 2 or a communication terminal possessed by a user, the control unit 51 receives the latest dynamic information from the on-vehicle transmission source of the request message for each predetermined distribution cycle. It distributes to the device 3 or the communication terminal (distribution process of dynamic information).
  • the information generation unit 52 of the control unit 51 collects traffic information and weather information of each place in the service area from the traffic control center, the private meteorological service support center, etc., and based on the collected information, the semi dynamic information of the map M And update semi-static information.
  • FIG. 4 is a block diagram showing an example of the configuration of the in-vehicle apparatus 3.
  • the on-vehicle device 3 of the vehicle 2 includes a control unit (ECU: Electronic Control Unit) 31, a GPS receiver 32, a vehicle speed sensor 33, a gyro sensor 34, a storage unit 35, and a display 36. , A speaker 37, an input device 38, a camera 39, a LiDAR 40, and a communication unit 41.
  • ECU Electronic Control Unit
  • the communication unit 41 functions as a point cloud data transmission unit that transmits point cloud data after measurement data has been removed by the measurement data removal unit 31b of the control unit 31 described later, and for example, wireless communication processing compatible with 5G is possible It consists of a communicator.
  • the communication unit 41 may be a wireless communication device installed in the vehicle 2 or a portable terminal carried by the passenger into the vehicle 2.
  • the portable terminal of the passenger temporarily becomes an on-vehicle wireless communication device by being connected to the in-vehicle LAN (Local Area Network) of the vehicle 2.
  • LAN Local Area Network
  • the control unit 31 includes a computer device that performs route search of the vehicle 2 and controls the other electronic devices 32 to 41.
  • the control unit 31 obtains the vehicle position of the own vehicle from the GPS signal periodically acquired by the GPS receiver 32.
  • the control unit 31 complements the GPS signal by using together the GPS complementary signal or the GPS reinforcement signal received by the receiver that receives the signal transmitted from the quasi-zenith satellite (not shown), or the vehicle of the own vehicle The position may be corrected.
  • the control unit 31 complements the vehicle position and orientation based on the input signals of the vehicle speed sensor 33 and the gyro sensor 34, and grasps the accurate current position and orientation of the vehicle 2.
  • the GPS receiver 32, the vehicle speed sensor 33, and the gyro sensor 34 are sensors that measure the current position, speed, and direction of the vehicle 2.
  • the storage unit 35 includes a map database.
  • the map database provides the control unit 31 with road map data.
  • the road map data includes link data and node data, and is stored in a recording medium such as a DVD, a CD-ROM, a memory card, or an HDD.
  • the storage unit 35 reads necessary road map data from the recording medium and provides the control unit 31 with the road map data.
  • the display 36 and the speaker 37 are output devices for notifying the user who is a passenger of the vehicle 2 of various information generated by the control unit 31.
  • the display 36 displays an input screen for route search, a map image around the vehicle, route information to a destination, and the like.
  • the speaker 37 voice-outputs an announcement or the like for guiding the vehicle 2 to a destination. These output devices can also notify the passenger of the provided information received by the communication unit 41.
  • the input device 38 is a device for the passenger of the vehicle 2 to perform various input operations.
  • the input device 38 includes a combination of an operation switch provided on the handle, a joystick, and a touch panel provided on the display 36.
  • a voice recognition device that receives input by voice recognition of a passenger may be used as the input device 38.
  • the input signal generated by the input device 38 is transmitted to the control unit 31.
  • the camera 39 is an image sensor that captures an image in front of the vehicle 2.
  • the camera 39 may be either monocular or compound eye.
  • the LiDAR 40 comprises a sensor that detects an object present around the vehicle 2.
  • the LiDAR 40 emits a laser to each measurement point while scanning a plurality of measurement points, and measures the distance to each measurement point based on the reflection time of the laser.
  • various sensors such as a millimeter wave radar, a laser radar, and an ultrasonic wave radar, can be used instead of the LiDAR 40 or together with the LiDAR 40.
  • the control unit 31 can execute driving support control for causing the display 36 to output a warning for a passenger while driving or performing forced braking intervention based on measurement data by the camera 39 and the LiDAR 40. .
  • the control unit 31 is configured by an arithmetic processing unit such as a microcomputer that executes various control programs stored in the storage unit 35.
  • the control unit 31 executes the control program to display a map image on the display 36, and calculates a route from the departure point to the destination (including the position of the relay point, if any).
  • Various navigation functions such as a function of guiding the vehicle 2 to a destination according to the calculated route can be performed.
  • control unit 31 includes a point cloud data acquisition unit 31a, a measurement data removal unit 31b, and an area information acquisition unit 31c as functional processing units realized by executing various control programs.
  • the point cloud data acquisition unit 31 a acquires point cloud data including measurement data of a plurality of measurement points by the camera 39 or the LiDAR 40 from the camera 39 or the LiDAR 40.
  • the measurement data removal unit 31b removes measurement data of measurement points included in a predetermined area from the point cloud data acquired by the point cloud data acquisition unit 31a.
  • the removal method of the measurement data by the measurement data removal part 31b is mentioned later.
  • the area information acquisition unit 31 c acquires, from the server 5 via the communication unit 41, information on the area that is the target of measurement data removal by the measurement data removal unit 31 b.
  • the acquired area information is stored in the storage unit 35, and is used for measurement data removal by the measurement data removal unit 31b.
  • the control unit 31 can execute the following processes in communication with the server 5. 1) Request message transmission processing 2) Dynamic information reception processing 3) Communication packet transmission processing
  • the transmission process of the request message is a process of transmitting to the server 5 a control packet that requests distribution of dynamic information of the map M, which the server 5 sequentially updates.
  • the control packet includes the vehicle ID of the own vehicle.
  • the server 5 When the server 5 receives the request message including the predetermined vehicle ID, the server 5 distributes the dynamic information at a predetermined distribution cycle to the communication unit 41 of the vehicle 2 having the vehicle ID of the transmission source.
  • the process of receiving dynamic information is a process of receiving dynamic information distributed to the server 5 by the server 5.
  • the transmission process of the communication packet in the vehicle 2 is a process of transmitting a communication packet of sensor information including the measurement data measured by the camera 39 or the LiDAR 40 to the server 5.
  • the transmission process of the communication packet is performed within the distribution cycle of the dynamic information by the server 5.
  • the sensor information includes point cloud data including measurement data of a plurality of measurement points by the camera 39 or LiDAR 40, position information of the vehicle 2 (latitude information and longitude information of the vehicle 2), speed information of the vehicle 2, azimuth information of the vehicle 2 And so on.
  • the point cloud data includes image data including luminance values at a plurality of measurement points captured by the camera 39, distance data to each of a plurality of measurement points measured by the LiDAR 40, and emitted from the LiDAR 40 to each measurement point
  • the irradiation direction information of the laser horizontal angle and vertical angle of the irradiation direction of the laser
  • reflected light intensity information from each measurement point of the laser and the like are included.
  • measurement data at some measurement points in the point cloud data are removed by the measurement data removal unit 31 b.
  • the control unit 31 transmits the communication packet including the vehicle ID of the own vehicle to the server 5.
  • the control unit 31 executes driving support control for causing the display 36 to output a warning for a passenger in operation or performing forced braking intervention based on dynamic information received from the server 5 or the like. You can also.
  • the storage unit 35 includes the above-described map database and also functions as an area information storage unit, and stores area information used for removing measurement data by the measurement data removing unit 31b.
  • the area information may be acquired by the area information acquisition unit 31 c or may be stored in advance in the storage unit 35.
  • FIG. 5 is a block diagram showing an example of the transmission device 6 installed on the roadside.
  • the transmission device 6 includes a control unit 61, a storage unit 62, and a communication unit 63.
  • Control unit 61 includes a CPU, a ROM, a RAM, and the like. The control unit 61 reads out and executes the program stored in the storage unit 62 and controls the overall operation of the transmission device 6.
  • the control unit 61 includes a point cloud data acquisition unit 61a, a measurement data removal unit 61b, and an area information acquisition unit 61c as functional processing units realized by executing a program.
  • the point cloud data acquisition unit 61a acquires point cloud data including measurement data of a plurality of measurement points by the camera 1C or LiDAR 1L from the camera 1C or LiDAR 1L.
  • the measurement data removal unit 61b removes measurement data of measurement points included in a predetermined area from the point cloud data acquired by the point cloud data acquisition unit 61a. A method of removing measurement data by the measurement data removing unit 61b will be described later.
  • the area information acquisition unit 61 c acquires, from the server 5 via the communication unit 63, information on the area that is the target of measurement data removal by the measurement data removal unit 61 b.
  • the acquired area information is stored in the storage unit 62, and is used for measurement data removal by the measurement data removal unit 61b.
  • the storage unit 62 includes a hard disk, a non-volatile memory, and the like, and stores various computer programs and data.
  • the storage unit 62 stores a sensor ID which is identification information of the transmission device 6.
  • the sensor ID is made of, for example, a user ID unique to the owner of the transmission device 6 or a MAC address.
  • the storage unit 62 functions as an area information storage unit, and stores area information used for removing measurement data by the measurement data removing unit 61b.
  • the area information may be acquired by the area information acquisition unit 61c, or may be stored in advance in the storage unit 62.
  • the communication unit 63 functions as a point cloud data transmission unit that transmits point cloud data after measurement data has been removed by the measurement data removal unit 61b of the control unit 61, and for example, a wireless communication device capable of 5G communication processing It consists of.
  • the transmitting device 6 can communicate with the server 5.
  • the control unit 61 can execute transmission processing of a communication packet in communication with the server 5.
  • the transmission process of the communication packet by the transmission device 6 is a process of transmitting a communication packet including the sensor information measured by the camera 1 C or the LiDAR 1 L to the server 5.
  • the transmission process of the communication packet is performed within the distribution cycle of the dynamic information by the server 5.
  • the sensor information includes point cloud data including measurement data of a plurality of measurement points by the camera 1C or LiDAR 1L, positional information of the camera 1C or LiDAR 1L (latitude information and longitude information of the camera 1C or LiDAR 1L), and the like.
  • positional information of the camera 1C or LiDAR 1L latitude information and longitude information of the camera 1C or LiDAR 1L
  • the server 5 knows the position of the camera 1C or the LiDAR 1L in advance, the position information may not be transmitted to the server 5.
  • the point cloud data includes image data including luminance values at a plurality of measurement points captured by a camera 1C, distance data to each of a plurality of measurement points measured by LiDAR 1L, and emitted from LiDAR 1L to each measurement point
  • the irradiation direction information of the laser horizontal angle and vertical angle of the irradiation direction of the laser
  • reflected light intensity information from each measurement point of the laser and the like are included.
  • the control unit 61 transmits the communication packet including the sensor ID to the server 5.
  • the LiDAR 1L can measure the distance from the LiDAR 1L to a plurality of measurement points included in the measurement area 11.
  • the measurement area 11 includes fixed objects such as a building 9 and a tree 10 in addition to the vehicle 2 and the pedestrian 7 to be measured.
  • the distance data to the fixed object is static information that does not change with the passage of time, and thus is unnecessary information for the update processing of the dynamic information in the server 5. Therefore, the transmission device 6 does not transmit the distance data to these fixed objects to the server 5.
  • FIG. 6 is a diagram for describing a limited area for limiting transmission of distance data measured by LiDAR installed on the roadside.
  • the restricted area 12 indicated by the solid line is provided in the measurement area 11 indicated by the broken line, and the transmitting device 6 does not transmit to the server 5 the distance data measured at the measurement points in the restricted area 12 Let's do it. That is, the measurement data removal unit 61b of the transmission device 6 removes the distance data measured at the measurement points in the restricted area 12 from the point cloud data measured by the LiDAR 1L. The transmitting device 6 transmits point cloud data to the server 5 after the distance data of the measurement points in the restricted area 12 is removed.
  • the restricted area 12 is area information used for removing measurement data from the measurement data stored in the storage unit 62 by the measurement data removing unit 61b, and is defined by an angle. For example, when the right direction of LiDAR 1L is 0 °, the restricted area 12 can be defined as the range of 0 ° to 90 °.
  • the information of the restricted area 12 may be stored in advance in the storage unit 62 (functioning as an area information storage unit) of the transmission device 6.
  • the information of the restricted area 12 may be acquired by the area information acquisition unit 61 c and stored in the storage unit 62.
  • the restricted area 13 indicated by a solid line is provided in the measurement area 11 indicated by a broken line, and the transmitting device 6 does not transmit to the server 5 distance data measured at measurement points in the restricted area 13 Let's do it. That is, the measurement data removal unit 61b of the transmission device 6 removes the distance data measured at the measurement point in the restricted area 13 from the point cloud data measured by the LiDAR 1L. The transmitting device 6 transmits point cloud data to the server 5 after the distance data of the measurement points in the restricted area 13 is removed.
  • the restricted area 13 is area information used for removing measured data by the measured data removing unit 61b from the measured data stored in the storage unit 62, and the coordinates (latitude of each position included in the restricted area 13) Information and longitude information).
  • the information of the restricted area 13 may be stored in advance in the storage unit 62 (functioning as an area information storage unit) of the transmission device 6. Further, the information of the restricted area 13 may be acquired by the area information acquisition unit 61 c and stored in the storage unit 62.
  • the restricted area 12 or 13 may be used to remove an image captured by the camera 1C. That is, the measurement data removal unit 61b may remove the image data of the restricted area 12 or 13 in the video.
  • the transmitting device 6 also does not transmit distance data to fixed objects such as the building 9 and the tree 10 as the on-vehicle device 3 does.
  • FIG. 7 is a diagram for describing a limited area for limiting transmission of distance data measured by LiDAR installed in a vehicle.
  • the LiDAR 40 mounted on the vehicle 2 can measure the distance from the LiDAR 40 to a plurality of measurement points included in the measurement area 11.
  • fixed objects such as a building 9 and a tree 10 exist on the roadside of the road on which the vehicle 2 travels.
  • the restriction area 13 indicated by a solid line is provided, and the on-vehicle apparatus 3 does not transmit the distance data measured at the measurement point in the restriction area 13 to the server 5. That is, the measurement data removal unit 31b of the in-vehicle device 3 removes the distance data measured at the measurement point in the restricted area 13 from the point cloud data measured by the LiDAR 40.
  • the in-vehicle device 3 transmits point cloud data to the server 5 after the distance data of the measurement point in the restricted area 13 is removed.
  • the restricted area 13 is area information used for removing measurement data stored in the storage unit 35 by the measurement data removing unit 31 b, and is defined by the coordinates (latitude information and longitude information) of each position included in the restricted area 13 Be done.
  • the information of the restricted area 13 may be stored in advance in the storage unit 35 (functioning as an area information storage unit) of the in-vehicle device 3.
  • the information of the restricted area 13 may be acquired by the area information acquisition unit 31 c and stored in the storage unit 35.
  • the restricted area 13 may be defined by predetermined position coordinates.
  • the restricted area 13 may be defined by position coordinates of vertexes of the polygon.
  • the restricted area 13 may be defined by the center coordinates and the radius of the circle.
  • the restricted area 13 may be defined by the central coordinates of the ellipse, the major and minor axes, and a vector indicating the major axis direction of the ellipse.
  • Such definition of the restricted area 13 using predetermined position coordinates can also be used for the definition of the restricted area 13 in the transmission device 6.
  • the restricted area 13 may be used to remove an image captured by the camera 39. That is, the measurement data removal unit 31b may remove the image data of the restricted area 13 in the video.
  • FIG. 8 is a diagram for explaining static information.
  • most of the distance data is distance data to measurement points on the ground such as the road 8.
  • the distance data to the measurement point on the ground is also static information which does not change with the passage of time, like the distance data to the fixed object.
  • the transmitting device 6 does not transmit the distance data to the measurement point on the ground to the server 5.
  • the in-vehicle device 3 of the vehicle 2 does not transmit the distance data to the measurement point on the ground to the server 5.
  • detection methods 1 to 4 will be described as processing for detecting measurement points on the ground.
  • the measurement data removal unit 61b or 31b calculates the height of each measurement point from the point cloud data measured by the LiDAR 1L or 40. Since the position of LiDAR 1L or 40, the distance to the measurement point, and the direction of the measurement point are known, the measurement data removal unit 61b or 31b can calculate the height of the measurement point.
  • the measurement data removal unit 61b or 31b removes measurement data whose calculated height is less than or equal to a predetermined height threshold as measurement data of measurement points on the ground.
  • the measurement data removal unit 61b or 31b calculates position coordinates of each measurement point from the point cloud data measured by the LiDAR 1L or 40. Since the position of LiDAR 1L or 40, the distance to the measurement point, and the direction of the measurement point are known, the measurement data removal unit 61b or 31b can calculate the position coordinates of the measurement point.
  • the measurement data removal unit 61b or 31b detects a plane by fitting a plane to position coordinates of a plurality of measurement points calculated from point cloud data, using a RANSAC (Random Sampling Consensus) algorithm. This makes it possible to detect a plane such as the ground or a wall of a building. When the height of the detected plane is equal to or less than a predetermined height threshold, the measurement data removing unit 61b or 31b measures the measurement data of the measurement points that constitute the plane (measurement of the measurement point that is the source of the plane Data) is removed as measurement data of measurement points on the ground.
  • RANSAC Random Sampling Consensus
  • the measurement data removal unit 61 b or 31 b determines, for each measurement point, whether or not the reflected light intensity of the measurement point is included in a predetermined range of the reflected light intensity of asphalt.
  • the measurement data removal unit 61b or 31b removes measurement data of measurement points having reflected light intensity included in the range of reflected light intensity of asphalt as measurement data of measurement points on the ground.
  • the measurement data removal unit 61b or 31b calculates position coordinates of each measurement point from the point cloud data measured by the LiDAR 1L or 40. Since the position of LiDAR 1L or 40, the distance to the measurement point, and the direction of the measurement point are known, the measurement data removal unit 61b or 31b can calculate the position coordinates of the measurement point.
  • FIGS. 9 and 10 are diagrams in which position coordinates of measurement points calculated from point cloud data measured by LiDAR 1L or 40 are plotted on a two-dimensional plane. That is, FIG. 9 and FIG. 10 are the figures which looked at each measurement point from the predetermined viewpoint. In FIG. 9 and FIG. 10, measurement points are indicated by black points.
  • the LiDAR 1L or 40 irradiates while moving the laser in the circumferential direction, and detects the distance to each measurement point. For this reason, when the plane is scanned by a laser, the locus of the measurement point has an arc shape.
  • the measurement data removal unit 61b or 31b has the variation of the curvature of the locus of the measurement point calculated based on the point cloud data within a predetermined range, and the length of the locus is equal to or more than a predetermined length threshold When the above condition is satisfied, the measurement data of the measurement points constituting the trajectory is removed as the measurement data of the measurement points on the ground.
  • the variation of curvature within a predetermined range means that, for example, the ratio or difference between the maximum value and the minimum value of the curvature in the locus is included within a predetermined threshold range.
  • the trajectories 101 and 102 are removed as measurement data of measurement points on the ground because the above conditions are satisfied.
  • the measurement point 103 which comprises the vehicle 2 is shown by FIG. 9, since the measurement point 103 does not satisfy the said conditions, it is not removed.
  • the trajectories 104 and 105 are removed as measurement data of measurement points on the ground because the above conditions are satisfied.
  • the measurement point 106 which comprises the pedestrian 7 is shown by FIG. 10, since the measurement point 106 does not satisfy the said conditions, it is not removed.
  • the on-vehicle apparatus 3 or the transmission apparatus 6 removes measurement data of measurement points on the ground using at least one of the detection methods 1 to 4 described above.
  • FIG. 11 is a sequence diagram showing an example of dynamic information update processing and distribution processing executed by the cooperation of the LiDAR 1L, the transmission device 6, the in-vehicle apparatus 3 and the server 5.
  • the dynamic information is updated at predetermined intervals by repeating the sequence shown in FIG. 11 at predetermined intervals (for example, at intervals of 100 msec).
  • the LiDAR 40 measures distances to a plurality of measurement points around the LiDAR 40, transmits point cloud data including measurement data of the plurality of measurement points in a communication packet, and transmits it to the transmission device 6 (S1).
  • the transmitter 6 receives the communication packet from the LiDAR 40.
  • the transmission device 6 removes measurement data of measurement points included in the predetermined area from the point cloud data included in the received communication packet (S2).
  • FIG. 12 is a detailed flowchart of the measurement data removal process (step S2 in FIG. 11).
  • the transmission device 6 calculates the position coordinates of the measurement point based on the distance to the measurement point indicated by the measurement data of each measurement point (S11).
  • the transmitting device 6 determines whether or not there are measurement points on the ground among the plurality of measurement points (S12). If there are measurement points on the ground (YES in S12), the transmitting device 6 removes the measurement points on the ground (S13).
  • the transmitting device 6 determines whether or not there are measurement points in the restricted area 12 indicated by the predetermined angle range as shown in FIG. 6 among the plurality of measurement points (S14). If there are measurement points in the restricted area 12 (YES in S14), the transmitting device 6 removes the measurement points in the restricted area 12 (S15). The processes of steps S14 and S15 may not be performed in the on-vehicle apparatus 3.
  • the transmission device 6 determines whether or not the measurement points in the restricted area 13 defined by the predetermined coordinates as shown in FIG. 6 or 7 exist among the plurality of measurement points (S16). If there are measurement points in the restricted area 13 (YES in S16), the transmitting device 6 removes the measurement points in the restricted area 13 (S17).
  • the transmission device 6 transmits point cloud data after the measurement data of the measurement points included in the predetermined area is removed, to the server 5 (S3).
  • the server 5 updates the dynamic information of the map M based on the point cloud data received from the transmitting device 6 (S4). For example, the server 5 detects a moving object such as the vehicle 2 or the pedestrian 7 existing on the map based on the point cloud data. The server 5 updates the dynamic information of the map M by updating the position of the moving object on the map M or superimposing the newly appearing moving object on the map M based on the detection result.
  • the on-vehicle apparatus 3 of the vehicle 2 transmits a control packet requesting distribution of dynamic information of the map M to the server 5 as a request message (S5).
  • the server 5 receives the request message from the in-vehicle apparatus 3 of the vehicle 2, and transmits the dynamic information of the map M to the in-vehicle apparatus 3 of the vehicle 2 that is the transmission source of the request message (S6).
  • the in-vehicle device 3 of the vehicle 2 receives the dynamic information.
  • the server 5 it is possible to prevent the measurement data of the measurement points included in the predetermined area in the point cloud data from being transmitted to the server 5. Therefore, by setting the predetermined area as the area of the measurement point of a stationary object such as a fixed object such as a building or the ground, it is possible to prevent transmission of useless measurement data to the server 5 . Thereby, the amount of communication traffic from the on-vehicle apparatus 3 or the transmitting apparatus 6 to the server 5 can be reduced.
  • the server 5 can also receive point cloud data from which measurement data of static information has been removed. Therefore, the server 5 can efficiently update the dynamic information.
  • LiDAR 1L or LiDAR 40 When LiDAR 1L or LiDAR 40 is attached downward, most of the measurement points measured by LiDAR are the ground.
  • the in-vehicle device 3 or the transmitting device 6 transmits point cloud data from which measurement data of measurement points on the ground has been removed to the server 5. Therefore, the amount of communication traffic from the in-vehicle apparatus 3 or the transmitting apparatus 6 to the server 5 can be effectively reduced.
  • the in-vehicle device 3 transmits, to the server 5, point cloud data from which measurement data of measurement points included in a predetermined angle range which a vehicle or a pedestrian can not pass is removed.
  • point cloud data from which measurement data of measurement points included in a predetermined angle range which a vehicle or a pedestrian can not pass is removed.
  • the in-vehicle apparatus 3 or the transmission apparatus 6 transmits point cloud data to the server 5 by removing measurement data of measurement points existing at predetermined position coordinates.
  • the server 5 by setting the coordinates of a position at which a vehicle or a pedestrian can not pass as predetermined position coordinates, it is possible to prevent the measurement data of measurement points present at the position coordinates from being transmitted to the server.
  • region can be defined with little information content by showing the area
  • the on-vehicle device 3 or the transmitting device 6 may store in advance the above-described predetermined angle range or predetermined position coordinates. Thereby, measurement data can be removed even when such data can not be received from an external device.
  • the on-vehicle device 3 or the transmitting device 6 may receive the predetermined angle range or the predetermined position coordinates described above from an external device such as the server 5 or the like. As a result, even when the area where the vehicle 2 or the pedestrian 7 can not pass changes, the measurement data can be removed immediately in response to the change.
  • point cloud data is transmitted from the in-vehicle device 3 or the transmission device 6 to the server 5 in the above-described embodiment
  • the device to which the point cloud data is transmitted is not limited to the server 5.
  • point cloud data is wirelessly transmitted from one on-vehicle apparatus 3 to another on-vehicle apparatus 3 having the function. You may The point cloud data may be transmitted wirelessly from the transmitting device 6 to the on-vehicle device 3 having the function.
  • the system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • a computer program is stored in the RAM.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • the present disclosure may be the method described above.
  • the present disclosure may be a computer program that implements these methods by a computer.
  • the computer program may be recorded in a computer readable non-transitory recording medium, such as an HDD, a CD-ROM, a semiconductor memory, and the like.
  • the present disclosure may transmit the computer program via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.

Abstract

A transmission device comprising: a point group data acquisition unit for acquiring point group data that includes measurement data for a plurality of measurement points as measured by a sensor; a measurement data removal unit for removing, from the point group data acquired by the point group data acquisition unit, measurement data for measurement points included in a prescribed region; and a point group data transmission unit for transmitting to a server the point group data from which the measurement data has been removed by the measurement data removal unit.

Description

送信装置、点群データ収集システムおよびコンピュータプログラムTransmitter, point cloud data acquisition system and computer program
 本開示は、送信装置、点群データ収集システムおよびコンピュータプログラムに関する。
 本出願は、2017年12月25日出願の日本出願第2017-247288号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a transmitter, a point cloud data acquisition system, and a computer program.
This application claims priority based on Japanese Patent Application No. 2017-247288 filed on Dec. 25, 2017, and incorporates all the contents described in the aforementioned Japanese application.
 従来、カメラ等のセンサにより計測された計測データを用いて、自動車等の車両の運転支援を行うシステムが提案されている(例えば、特許文献1参照)。 Conventionally, there has been proposed a system that assists driving of a vehicle such as a car using measurement data measured by a sensor such as a camera (see, for example, Patent Document 1).
 このようなシステムにおいては、一般的に、路側または車両に設置されたセンサにより計測された複数の計測点における計測データを、送信装置がサーバに送信し、サーバにおいて、車両や歩行者を検出し、車両の運転支援のための移動物体等の動的情報の更新が行われる。 In such a system, in general, the transmission device transmits measurement data at a plurality of measurement points measured by sensors installed on a roadside or a vehicle to a server, and the server detects a vehicle or a pedestrian. , And update of dynamic information such as a moving object for driving assistance of the vehicle.
国際公開第2010/119496号International Publication No. 2010/119496
 (1)本開示の送信装置は、静的な対象物の計測点までの距離、および車両または歩行者が通過することのできる領域内の移動物体の計測点までの距離、を計測するセンサにより計測された複数の計測点における計測データを含む点群データを取得する点群データ取得部と、前記点群データ取得部が取得した前記点群データから、所定の領域に含まれる計測点の計測データを除去する計測データ除去部と、前記計測データ除去部により前記計測データが除去された後の前記点群データを、サーバに送信する点群データ送信部とを備える。 (1) The transmission device of the present disclosure uses a sensor that measures the distance to a measurement point of a static object and the distance to a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass. Measurement of measurement points included in a predetermined area from a point cloud data acquisition unit that acquires point cloud data including measurement data at a plurality of measured measurement points, and the point cloud data acquired by the point cloud data acquisition unit It has a measurement data removal unit that removes data, and a point cloud data transmission unit that sends the point cloud data after the measurement data has been removed by the measurement data removal unit to a server.
 (17)本開示の点群データ収集システムは、上述の送信装置と、前記送信装置から、センサにより計測された複数の計測点における計測データを含む点群データを受信するサーバとを備える。 (17) The point cloud data collection system of the present disclosure includes the above-described transmission device, and a server that receives, from the transmission device, point cloud data including measurement data at a plurality of measurement points measured by sensors.
 (18)本開示のコンピュータプログラムは、コンピュータを、静的な対象物の計測点までの距離、および車両または歩行者が通過することのできる領域内の移動物体の計測点までの距離、を計測するセンサにより計測された複数の計測点における計測データを含む点群データを取得する点群データ取得部と、前記点群データ取得部が取得した前記点群データから、所定の領域に含まれる計測点の計測データを除去する計測データ除去部と、前記計測データ除去部により前記計測データが除去された後の前記点群データを、サーバに送信する点群データ送信部として機能させる。 (18) The computer program of the present disclosure measures the distance to a measurement point of a static object, and the distance to a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass. Measurement included in a predetermined area from a point cloud data acquisition unit that acquires point cloud data including measurement data at a plurality of measurement points measured by a plurality of sensors and the point cloud data acquired by the point cloud data acquisition unit A measurement data removal unit that removes measurement data of points and a point cloud data transmission unit that transmits the point cloud data after the measurement data is removed by the measurement data removal unit to a server.
 なお、本開示は、このような特徴的な処理部を備える送信装置として実現することができるだけでなく、送信装置に含まれる特徴的な処理部が実行する処理をステップとする点群データ送信方法として実現することができる。また、本開示は、送信装置の一部または全部を実現する半導体集積回路として実現することもできる。 In addition, the present disclosure can not only be realized as a transmission apparatus provided with such a characteristic processing unit, but also a point cloud data transmission method in which a process executed by a characteristic processing unit included in the transmission apparatus is a step. Can be realized as The present disclosure can also be implemented as a semiconductor integrated circuit that implements part or all of the transmission device.
本開示の実施形態に係る無線通信システムの全体構成図である。1 is an overall configuration diagram of a wireless communication system according to an embodiment of the present disclosure. LiDARの計測領域の一例を示す図である。It is a figure which shows an example of the measurement area | region of LiDAR. サーバの構成の一例を示すブロック図である。It is a block diagram showing an example of composition of a server. 車載装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a vehicle-mounted apparatus. 路側に設置された送信装置の一例を示すブロック図である。It is a block diagram which shows an example of the transmission apparatus installed in the roadside. 路側に設置されたLiDARが計測した距離データの送信を制限するための制限領域について説明するための図である。It is a figure for demonstrating the restriction | limiting area | region for restrict | limiting transmission of the distance data which LiDAR installed in the roadside measured. 車両に設置されたLiDARが計測した距離データの送信を制限するための制限領域について説明するための図である。It is a figure for demonstrating the restriction | limiting area | region for restrict | limiting transmission of the distance data which LiDAR installed in the vehicle measured. 静的情報について説明するための図である。It is a figure for demonstrating static information. LiDARが計測した点群データから算出された計測点の位置座標を2次元平面上にプロットした図である。It is the figure which plotted the position coordinate of the measurement point calculated from the point cloud data which LiDAR measured on a two-dimensional plane. LiDARが計測した点群データから算出された計測点の位置座標を2次元平面上にプロットした図である。It is the figure which plotted the position coordinate of the measurement point calculated from the point cloud data which LiDAR measured on a two-dimensional plane. LiDAR、送信装置、車載装置およびサーバの協働により実行される、動的情報の更新処理および配信処理の一例を示すシーケンス図である。It is a sequence diagram which shows an example of the update process and distribution process of dynamic information performed by cooperation of LiDAR, a transmitter, an in-vehicle device, and a server. 計測データの除去処理(図11のステップS2)の詳細なフローチャートである。It is a detailed flowchart of the removal process (step S2 of FIG. 11) of measurement data.
開示を実施するための形態Mode for carrying out the disclosure
[本開示が解決しようとする課題]
 センサの計測領域内には、建物や木などの固定物や地面などのように、静的な対象物の計測点も多く含まれる。このような計測点における計測データは、動的情報の更新に寄与しないにもかかわらず、送信装置からサーバに送信される。
[Problems to be solved by the present disclosure]
In the measurement area of the sensor, many measurement points of static objects such as fixed objects such as buildings and trees and the ground are included. Measurement data at such measurement points are transmitted from the transmitting device to the server although they do not contribute to the update of the dynamic information.
 このため、送信装置からサーバへの通信トラフィックが増大するとともに、サーバの処理負荷を高める原因となっている。 As a result, communication traffic from the transmitter to the server is increased, and the processing load on the server is increased.
 特に、センサとしてLiDAR(Laser Imaging Detection and Rang)方式のレーダセンサ(以下、「LiDAR」と言う)を用いた場合に、このような問題が顕著となる。つまり、LiDARは左右方向および上下方向の広い範囲にレーザを照射することができるため、計測可能範囲が広いものの、多くのレーザは建物や地面に照射され、車両や歩行者に照射されるレーザはわずかである場合が多い。このため、動的情報の更新のためには無駄な計測データが多く、通信トラフィック量の増大およびサーバの処理負荷を高める原因となっている。 Such a problem is particularly noticeable when a LiDAR (Laser Imaging Detection and Rang) radar sensor (hereinafter referred to as "LiDAR") is used as the sensor. That is, since LiDAR can irradiate a laser in a wide range in the left and right direction and the up and down direction, although a measurable range is wide, many lasers are irradiated to a building or the ground, and a laser irradiated to a vehicle or pedestrian is It is often small. Therefore, there is a lot of useless measurement data for updating the dynamic information, which causes an increase in the amount of communication traffic and an increase in the processing load on the server.
 本開示の目的は、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することのできる送信装置、点群データ収集システムおよびコンピュータプログラムを提供することにある。 The object of the present disclosure is to provide a transmitter, a point cloud data collection system and a computer program capable of transmitting measurement data to a server for efficient dynamic information update while reducing the amount of communication traffic to the server. It is to provide.
[本開示の効果]
 本開示によると、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。
[Effect of the present disclosure]
According to the present disclosure, measurement data for efficient dynamic information update can be transmitted to a server while reducing the amount of communication traffic to the server.
 [本開示明の実施形態の概要]
 最初に本開示の実施形態の概要を列記して説明する。
 (1)本開示の一実施形態に係る送信装置は、静的な対象物の計測点までの距離、および車両または歩行者が通過することのできる領域内の移動物体の計測点までの距離、を計測するセンサにより計測された複数の計測点における計測データを含む点群データを取得する点群データ取得部と、前記点群データ取得部が取得した前記点群データから、所定の領域に含まれる計測点の計測データを除去する計測データ除去部と、前記計測データ除去部により前記計測データが除去された後の前記点群データを、サーバに送信する点群データ送信部とを備える。
[Summary of Embodiments of the Present Disclosure]
First, the summary of the embodiment of the present disclosure will be listed and described.
(1) A transmission device according to an embodiment of the present disclosure is a distance to a measurement point of a static object, and a distance to a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass. Included in a predetermined area from a point cloud data acquisition unit that acquires point cloud data including measurement data at a plurality of measurement points measured by a sensor that measures the point cloud data and the point cloud data acquired by the point cloud data acquisition unit And a point cloud data transmission unit for transmitting to the server the point cloud data after the measurement data is removed by the measurement data removal unit.
 この構成によると、点群データのうち、所定の領域に含まれる計測点の計測データをサーバに送信しないようにすることができる。このため、所定の領域を、建物などの固定物や地面などの静的な計測点の領域とすることにより、サーバに対して無駄な計測データを送信しないようにすることができる。これにより、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。 According to this configuration, it is possible not to transmit measurement data of measurement points included in a predetermined area in the point cloud data to the server. Therefore, by setting the predetermined area as an area of a stationary object such as a building or a static measurement point such as the ground, it is possible to prevent transmission of useless measurement data to the server. This makes it possible to transmit measurement data for efficient dynamic information update to the server while reducing the amount of communication traffic to the server.
 (2)好ましくは、前記静的な対象物は地面を含み、前記計測データ除去部は、前記点群データ取得部が取得した前記点群データから、地面上の計測点の計測データを除去する。 (2) Preferably, the static object includes the ground, and the measurement data removal unit removes measurement data of measurement points on the ground from the point cloud data acquired by the point cloud data acquisition unit. .
 路側や車両に下向きにセンサが取り付けられているような場合には、センサが計測する計測点の大部分は地面である。このため、この構成によると、地面上の計測点の計測データをサーバに送信しないようにすることができるため、サーバへの通信トラフィック量を効果的に減少させることができる。 When the sensor is attached to the roadside or the vehicle downward, most of the measurement points measured by the sensor are on the ground. Therefore, according to this configuration, it is possible to prevent the measurement data of the measurement points on the ground from being transmitted to the server, so that the communication traffic amount to the server can be effectively reduced.
 (3)また、前記センサは、各計測点までの距離を計測するレーダセンサであり、前記点群データ取得部は、前記複数の計測点における各計測点までの距離を前記計測データとして含む前記点群データを取得し、前記計測データ除去部は、前記点群データ取得部が取得した前記点群データから、各計測点の高さを算出し、算出された高さが所定の高さ閾値以下の計測データを、前記地面上の計測点の計測データとして除去してもよい。 (3) Further, the sensor is a radar sensor that measures the distance to each measurement point, and the point cloud data acquisition unit includes, as the measurement data, the distance to each measurement point in the plurality of measurement points. The point cloud data is acquired, and the measurement data removal unit calculates the height of each measurement point from the point cloud data acquired by the point cloud data acquisition unit, and the calculated height is a predetermined height threshold The following measurement data may be removed as measurement data of the measurement point on the ground.
 この構成によると、レーダセンサにより計測された計測点の高さが所定の高さ閾値以下の場合に、当該計測点が地面の位置に存在すると判断することができる。これにより、地面上の計測点の計測データを高精度で特定することができる。 According to this configuration, when the height of the measurement point measured by the radar sensor is equal to or less than the predetermined height threshold value, it can be determined that the measurement point is present on the ground. Thereby, the measurement data of the measurement point on the ground can be specified with high accuracy.
 (4)また、前記センサは、各計測点までの距離を計測するレーダセンサであり、前記点群データ取得部は、前記複数の計測点における各計測点までの距離を前記計測データとして含む前記点群データを取得し、前記計測データ除去部は、前記点群データ取得部が取得した前記点群データに基づいて算出される計測点に当てはめられる平面の高さが所定の高さ閾値以下の場合に、当該平面を構成する計測点の計測データを、前記地面上の計測点の計測データとして除去してもよい。 (4) Further, the sensor is a radar sensor that measures the distance to each measurement point, and the point cloud data acquisition unit includes, as the measurement data, the distance to each measurement point in the plurality of measurement points. The point data is acquired, and the measurement data removal unit determines that the height of the plane applied to the measurement point calculated based on the point cloud data acquired by the point cloud data acquisition unit is equal to or less than a predetermined height threshold. In this case, measurement data of measurement points constituting the plane may be removed as measurement data of measurement points on the ground.
 この構成によると、レーダセンサにより計測された計測点に当てはめられた平面の高さが所定の高さ閾値以下の場合に、当該平面が地面であると判断することができる。これにより、地面上の計測点の計測データを高精度で特定することができる。 According to this configuration, when the height of the plane applied to the measurement point measured by the radar sensor is equal to or less than the predetermined height threshold, it can be determined that the plane is the ground. Thereby, the measurement data of the measurement point on the ground can be specified with high accuracy.
 (5)また、前記センサは、各計測点までの距離を計測するレーダセンサであり、前記点群データ取得部は、前記複数の計測点における各計測点までの距離と各計測点からの反射光強度とを前記計測データとして含む前記点群データを取得し、前記計測データ除去部は、各計測点からの反射光強度に基づいて、当該反射光強度が所定の条件を満たす計測点の計測データを、前記地面上の計測点の計測データとして除去してもよい。 (5) Further, the sensor is a radar sensor that measures a distance to each measurement point, and the point cloud data acquisition unit is a distance from each of the measurement points to each measurement point and a reflection from each measurement point. The point cloud data including the light intensity as the measurement data is acquired, and the measurement data removing unit measures the measurement points whose reflected light intensity satisfies a predetermined condition based on the reflected light intensities from the respective measurement points. Data may be removed as measurement data of the measurement point on the ground.
 アスファルトで反射されたレーザの反射光強度が事前に分かっている場合には、当該反射光強度から、計測点がアスファルトで舗装された道路であるか否かを判断することができる。このため、この構成によると、アスファルトで舗装された道路に含まれる計測点の計測データを高精度で特定することができる。 When the reflected light intensity of the laser reflected by the asphalt is known in advance, it can be determined from the reflected light intensity whether or not the measurement point is a road paved with asphalt. For this reason, according to this configuration, measurement data of measurement points included in a road paved with asphalt can be identified with high accuracy.
 (6)また、前記センサは、各計測点までの距離を計測するレーダセンサであり、前記点群データ取得部は、前記複数の計測点における各計測点までの距離を前記計測データとして含む前記点群データを取得し、前記計測データ除去部は、前記点群データ取得部が取得した前記点群データに基づいて算出される計測点の軌跡の曲率の変動が所定範囲内であり、かつ当該軌跡の長さが所定の長さ閾値以上の場合に、当該軌跡を構成する計測点の計測データを、前記地面上の計測点の計測データとして除去してもよい。 (6) Further, the sensor is a radar sensor that measures the distance to each measurement point, and the point cloud data acquisition unit includes, as the measurement data, the distance to each measurement point in the plurality of measurement points. The point cloud data is acquired, and the measurement data removing unit determines that the variation of the curvature of the locus of the measurement point calculated based on the point cloud data acquired by the point cloud data acquisition unit is within a predetermined range. When the length of the locus is equal to or greater than a predetermined length threshold, measurement data of measurement points constituting the locus may be removed as measurement data of measurement points on the ground.
 レーダセンサは、回転軸を中心にレーザを円周に沿って移動させながら対象物を走査することにより対象物までの距離を計測することができる。このため、対象物が地面の場合には、点群データに基づいて算出される計測点の軌跡は、円周に沿ったものとなる。このため、この構成によると、円周に沿った軌跡を特定した場合には、当該軌跡を構成する計測点は地面上の計測点であると判断することができる。これにより、地面上の計測点の計測データを高精度で特定することができる。 The radar sensor can measure the distance to the object by scanning the object while moving the laser along the circumference around the rotation axis. Therefore, when the object is the ground, the locus of the measurement points calculated based on the point cloud data is along the circumference. For this reason, according to this configuration, when the locus along the circumference is specified, it can be determined that the measurement point constituting the locus is a measurement point on the ground. Thereby, the measurement data of the measurement point on the ground can be specified with high accuracy.
 (7)また、前記センサは、前記車両が走行する道路の路側に設置されていてもよい。 (7) Further, the sensor may be installed on the road side of the road on which the vehicle travels.
 この構成によると、路側に設置されたセンサにより、車両や歩行者などの移動物体を検出する際に、サーバに対して無駄な計測データを送信しないようにすることができる。 According to this configuration, when a moving object such as a vehicle or a pedestrian is detected by the sensor installed on the roadside, it is possible not to transmit useless measurement data to the server.
 (8)また、前記計測データ除去部は、前記センサを基準とした所定の角度範囲内に含まれる計測点の計測データを除去してもよい。 (8) Moreover, the said measurement data removal part may remove the measurement data of the measurement point contained in the predetermined angle range on the basis of the said sensor.
 センサが路側に設置されている場合には、車両や歩行者が通過することのできない建物などの固定物等の方向が事前に分かっている場合がある。このため、この構成によると、車両や歩行者が通過することのできない方向を所定の角度範囲として定義しておくことにより、所定の角度範囲に含まれる計測点の計測データをサーバに送信しないようにすることができる。 In the case where the sensor is installed on the roadside, the direction of a fixed object such as a building where a vehicle or a pedestrian can not pass may be known in advance. Therefore, according to this configuration, by defining the direction in which the vehicle or the pedestrian can not pass as the predetermined angle range, measurement data of the measurement points included in the predetermined angle range may not be transmitted to the server. Can be
 (9)また、上述の送信装置は、さらに、前記所定の角度範囲を記憶している領域情報記憶部を備え、前記計測データ除去部は、前記領域情報記憶部に記憶されている前記所定の角度範囲に基づいて前記計測データを除去してもよい。 (9) Further, the transmission device described above further includes an area information storage unit storing the predetermined angle range, and the measurement data removal unit further includes the predetermined information stored in the area information storage unit. The measurement data may be removed based on an angle range.
 この構成によると、車両や歩行者が通過することのできない方向を示す角度範囲を事前に領域情報記憶部に記憶させておくことができる。これにより、外部装置から角度範囲を受信することができない場合であっても、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。 According to this configuration, it is possible to store in advance in the area information storage unit an angle range indicating a direction in which a vehicle or a pedestrian can not pass. Thus, even if the angle range can not be received from the external device, the measurement data for efficient dynamic information update is transmitted to the server while reducing the communication traffic amount to the server. Can.
 (10)また、上述の送信装置は、さらに、前記所定の角度範囲を取得する領域情報取得部を備え、前記計測データ除去部は、前記領域情報取得部が取得した前記所定の角度範囲に基づいて前記計測データを除去してもよい。 (10) Further, the transmission device described above further includes an area information acquisition unit that acquires the predetermined angle range, and the measurement data removal unit is based on the predetermined angle range acquired by the area information acquisition unit. The measurement data may be removed.
 この構成によると、車両や歩行者が通過することのできない方向を示す角度範囲を外部装置から取得し、取得した角度範囲に基づいて計測データを除去することができる。このため、車両や歩行者が通過することのできない方向が変化した場合であっても、当該変化に即座に対応して、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。 According to this configuration, it is possible to acquire from the external device an angle range indicating a direction in which a vehicle or a pedestrian can not pass, and to remove measurement data based on the acquired angle range. Therefore, even if the direction in which the vehicle or pedestrian can not pass changes, the amount of communication traffic to the server can be reduced promptly in response to the change, and efficient dynamic information Measurement data for updating can be sent to the server.
 (11)また、前記センサは、車両に設置されていてもよい。 (11) The sensor may be installed in a vehicle.
 この構成によると、車両に設置されたセンサにより、車両や歩行者などの移動物体を検出する際に、サーバに対して無駄な計測データを送信しないようにすることができる。 According to this configuration, when a moving object such as a vehicle or a pedestrian is detected by the sensor installed in the vehicle, it is possible to prevent transmission of useless measurement data to the server.
 (12)また、前記計測データ除去部は、所定の位置座標に存在する計測点の計測データを除去してもよい。 (12) Further, the measurement data removal unit may remove measurement data of measurement points existing at predetermined position coordinates.
 車両や歩行者が通過することのできない建物などの固定物等の位置が事前に分かっている場合がある。この構成によると、車両や歩行者が通過することのできない位置の座標を所定の位置座標とすることにより、当該位置座標に存在する計測点の計測データをサーバに送信しないようにすることができる。 The position of fixed objects such as buildings which vehicles and pedestrians can not pass may be known in advance. According to this configuration, by setting coordinates of a position at which a vehicle or a pedestrian can not pass as predetermined position coordinates, measurement data of measurement points present at the position coordinates can be prevented from being transmitted to the server. .
 (13)また、前記計測データ除去部は、所定の位置座標で定義される図形領域に含まれる計測点の計測データを除去してもよい。 (13) Further, the measurement data removal unit may remove measurement data of measurement points included in a graphic area defined by predetermined position coordinates.
 車両や歩行者が通過することのできない建物などの固定物等の領域が事前に分かっている場合がある。この構成によると、車両や歩行者が通過することのできない領域を、所定の位置座標で定義される図形領域で示し、当該図形領域に含まれる計測点の計測データをサーバに送信しないようにすることができる。車両や歩行者が通過することのできない領域を図形領域で示すことにより、少ない情報量で当該領域を定義することができる。 An area such as a fixed object such as a building where a vehicle or a pedestrian can not pass may be known in advance. According to this configuration, an area where vehicles and pedestrians can not pass is indicated by a graphic area defined by predetermined position coordinates, and measurement data of measurement points included in the graphic area is not transmitted to the server. be able to. The area which can not pass by a vehicle or a pedestrian can be defined by a graphic area, so that the area can be defined with a small amount of information.
 (14)また、上述の送信装置は、さらに、前記所定の位置座標を記憶している領域情報記憶部を備え、前記計測データ除去部は、前記領域情報記憶部に記憶されている前記所定の位置座標に基づいて前記計測データを除去してもよい。 (14) Further, the transmission device described above further includes an area information storage unit storing the predetermined position coordinates, and the measurement data removal unit further includes the predetermined information stored in the area information storage unit. The measurement data may be removed based on position coordinates.
 この構成によると、車両や歩行者が通過することのできない位置または領域を示す位置座標を事前に領域情報記憶部に記憶させておくことができる。これにより、外部装置からこのような位置座標を受信することができない場合であっても、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。 According to this configuration, it is possible to store in advance in the area information storage unit position coordinates indicating a position or an area where a vehicle or a pedestrian can not pass. As a result, even if such position coordinates can not be received from an external device, measurement data for efficient dynamic information update is sent to the server while reducing the amount of communication traffic to the server. Can be sent.
 (15)また、上述の送信装置は、さらに、外部装置から、前記所定の位置座標を取得する領域情報取得部を備え、前記計測データ除去部は、前記領域情報取得部が取得した前記所定の位置座標に基づいて前記計測データを除去してもよい。 (15) Further, the transmission device described above further includes an area information acquisition unit for acquiring the predetermined position coordinates from an external device, and the measurement data removal unit is configured to acquire the predetermined information acquired by the area information acquisition unit. The measurement data may be removed based on position coordinates.
 この構成によると、車両や歩行者が通過することのできない位置または領域を示す位置座標を外部装置から取得し、取得した位置座標に基づいて計測データを除去することができる。このため、車両や歩行者が通過することのできない領域等が変化した場合であっても、当該変化に即座に対応して、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。 According to this configuration, it is possible to acquire from the external device position coordinates indicating a position or an area where a vehicle or a pedestrian can not pass, and to remove measurement data based on the acquired position coordinates. For this reason, even if the area where vehicles and pedestrians can not pass changes, it is possible to respond to the change immediately and reduce the amount of communication traffic to the server, while efficiently performing dynamic information. Measurement data for updating of can be sent to the server.
 (16)また、前記センサは、LiDAR方式のレーダセンサであってもよい。 (16) Further, the sensor may be a LiDAR radar sensor.
 この構成によると、センサとしてLiDAR方式のセンサを用いた場合に、サーバへの通信トラフィック量を減少させつつ、効率的な動的情報の更新のための計測データをサーバへ送信することができる。 According to this configuration, when a LiDAR sensor is used as the sensor, it is possible to transmit measurement data for efficiently updating dynamic information to the server while reducing the amount of communication traffic to the server.
 (17)また、前記静的な対象物および前記移動物体の映像を取り込む画像センサを更に備え、前記計測データ除去部は、前記画像センサによって取り込まれた映像から、前記計測データ除去部によって除去される前記点群データに対応する制限領域の画像データを除去する構成であっても良い。 (17) The image processing apparatus further comprises an image sensor for capturing the images of the static object and the moving object, and the measurement data removal unit is removed by the measurement data removal unit from the image captured by the image sensor. The image data of the restricted area corresponding to the point cloud data may be removed.
 この構成によると、静的な対象物及び移動物体の映像から、制限領域に対応する情報として余分な画像データを除去することができる。 According to this configuration, it is possible to remove extra image data as information corresponding to the restricted area from the image of the static object and the moving object.
 (18)本開示の他の実施形態に係る点群データ収集システムは、上述の送信装置と、前記送信装置から、センサにより計測された複数の計測点における計測データを含む点群データを受信するサーバとを備える。 (18) A point cloud data collection system according to another embodiment of the present disclosure receives point group data including measurement data at a plurality of measurement points measured by sensors from the above-described transmission device and the transmission device. And a server.
 この構成によると、点群データ収集システムは、上述の送信装置を含む。このため、上述の送信装置と同様の作用および効果を奏することができる。 According to this configuration, the point cloud data collection system includes the transmitting device described above. Therefore, the same operation and effect as the above-described transmission apparatus can be achieved.
 (19)本開示の他の実施形態に係るコンピュータプログラムは、コンピュータを、静的な対象物の計測点までの距離、および車両または歩行者が通過することのできる領域内の移動物体の計測点までの距離、を計測するセンサにより計測された複数の計測点における計測データを含む点群データを取得する点群データ取得部と、前記点群データ取得部が取得した前記点群データから、所定の領域に含まれる計測点の計測データを除去する計測データ除去部と、前記計測データ除去部により前記計測データが除去された後の前記点群データを、サーバに送信する点群データ送信部として機能させる。 (19) A computer program according to another embodiment of the present disclosure relates to a computer, a distance to a measurement point of a static object, and a measurement point of a moving object in an area through which a vehicle or a pedestrian can pass. The point cloud data acquisition unit acquires point cloud data including measurement data at a plurality of measurement points measured by a sensor that measures the distance to the point, and the point cloud data acquired by the point cloud data acquisition unit is predetermined As a point cloud data transmission unit that transmits the point cloud data after the measurement data has been removed by the measurement data removal unit to the server, the measurement data removal unit removing measurement data of measurement points included in the area Make it work.
 この構成によると、コンピュータを、上述の送信装置として機能させることができる。このため、上述の送信装置と同様の作用および効果を奏することができる。 According to this configuration, the computer can function as the above-described transmission device. Therefore, the same operation and effect as the above-described transmission apparatus can be achieved.
 [本願開示の実施形態の詳細]
 以下、本開示の実施形態について、図面を用いて詳細に説明する。なお、以下で説明する実施形態は、いずれも本開示の好ましい一具体例を示すものである。以下の実施形態で示される数値、形状、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本開示は、請求の範囲によって特定される。よって、以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、本開示の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
[Details of the embodiment of the present disclosure]
Hereinafter, embodiments of the present disclosure will be described in detail using the drawings. The embodiments described below each show a preferable specific example of the present disclosure. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, order of steps, and the like described in the following embodiments are merely examples, and are not intended to limit the present disclosure. The present disclosure is specified by the claims. Therefore, among the components in the following embodiments, components that are not described in the independent claim indicating the top concept of the present disclosure are not necessarily required to achieve the problems of the present disclosure, but are more preferable. It is described as constituting a form.
 [1.無線通信システムの全体構成]
 図1は、本開示の実施形態に係る無線通信システムの全体構成図である。
 図1に示すように、本実施形態の無線通信システムは、路側または車両に設置されたセンサにより計測された複数の計測点における計測データを含む点群データを収集するための点群データ収集システムとして機能し、カメラ1CまたはLiDAR1Lに接続された無線通信が可能な複数の送信装置6と、無線通信が可能な車両2と、送信装置6および車両2と無線通信する1または複数の基地局4と、基地局4とネットワークを介して有線または無線で通信するサーバ5とを備える。
[1. Overall configuration of wireless communication system]
FIG. 1 is an overall configuration diagram of a wireless communication system according to an embodiment of the present disclosure.
As shown in FIG. 1, the wireless communication system according to the present embodiment is a point cloud data collection system for collecting point cloud data including measurement data at a plurality of measurement points measured by sensors installed on a roadside or a vehicle. And one or more base stations 4 for wireless communication with the plurality of transmitting devices 6 capable of wireless communication connected to the camera 1 C or LiDAR 1 L, the vehicles 2 capable of wireless communication, the transmitting devices 6 and the vehicles 2 And a server 5 that communicates with the base station 4 via a network in a wired or wireless manner.
 基地局4は、マクロセル基地局、マイクロセル基地局、およびピコセル基地局のうちの少なくとも1つよりなる。 The base station 4 comprises at least one of a macrocell base station, a microcell base station, and a picocell base station.
 本実施形態の無線通信システムにおいて、サーバ5は、例えば、SDN(Software-Defined Networking)が可能な汎用サーバよりなる。また、基地局4および図示しないリピータなどの中継装置は、SDNが可能なトランスポート機器によりなる。 In the wireless communication system of the present embodiment, the server 5 is, for example, a general-purpose server capable of software-defined networking (SDN). The base station 4 and a relay device such as a repeater (not shown) are made of transport equipment capable of SDN.
 上記のSDNに代表されるネットワーク仮想化技術は、現時点で規格化が進行中の「第5世代移動通信システム」(以下、「5G」(5th Generation)と略記する。)の基本コンセプトである。したがって、本実施形態の無線通信システムは、例えば5Gよりなる。 The network virtualization technology represented by the above-mentioned SDN is a basic concept of the "fifth generation mobile communication system" (hereinafter abbreviated as "5G" (5th Generation)) whose standardization is currently underway. Therefore, the wireless communication system of the present embodiment is made of, for example, 5G.
 カメラ1Cは、所定の撮影エリアの映像を取り込む画像センサよりなる。カメラ1Cは、単眼または複眼のいずれでもよい。 The camera 1C is an image sensor that captures an image of a predetermined imaging area. The camera 1C may be either monocular or compound eye.
 LiDAR1Lは、複数の計測点を走査しながら、各計測点に対してレーザを出射し、レーザを出射してから反射光を受光するまでの時間に基づいて、各計測点までの距離を計測する。なお、LiDAR1Lの代わりに、または、LiDAR1Lとともに、ミリ波レーダや、レーザレーダ、超音波レーダなどの各種センサを用いることができる。 The LiDAR 1 L emits a laser to each measurement point while scanning multiple measurement points, and measures the distance to each measurement point based on the time from the emission of the laser to the reception of the reflected light. . In addition, various sensors, such as a millimeter wave radar, a laser radar, and an ultrasonic wave radar, can be used instead of LiDAR 1L or together with LiDAR 1L.
 図2は、LiDARの計測領域の一例を示す図である。
 LiDAR1Lは、レーザ照射部を回転軸(例えば鉛直軸)中心に360°回転させながら、各計測点にレーザを照射し、計測点からのレーザの反射光を受光する。LiDAR1Lは、レーザを照射してから反射光を受光するまでの時間(反射時間)に基づいて、各計測点までの距離を計測する。これにより、例えば、図2に示すように、LiDAR1Lは、LiDAR1Lの周囲360°の計測領域11に含まれる複数の計測点までの距離を計測することができる。
FIG. 2 is a diagram showing an example of a measurement region of LiDAR.
The LiDAR 1L irradiates the laser to each measurement point while rotating the laser irradiation unit 360 ° around the rotation axis (eg, vertical axis), and receives the reflected light of the laser from the measurement point. The LiDAR 1L measures the distance to each measurement point based on the time (reflection time) from the irradiation of the laser to the reception of the reflected light. Thereby, for example, as shown in FIG. 2, the LiDAR 1L can measure the distances to a plurality of measurement points included in the measurement region 11 of 360 ° around the LiDAR 1L.
 送信装置6は、無線通信機能を有し、道路に設置されたカメラ1CまたはLiDAR1Lなどの各種センサが計測した計測データを含むセンサ情報を送信する。 The transmitting device 6 has a wireless communication function, and transmits sensor information including measurement data measured by various sensors such as the camera 1C or LiDAR 1L installed on a road.
 車両2は、無線通信機能を有する車載装置3を含む。車載装置3は、送信装置として機能し、カメラ、LiDARなどの各種センサを含んで構成される。 The vehicle 2 includes an on-vehicle device 3 having a wireless communication function. The in-vehicle device 3 functions as a transmission device, and is configured to include various sensors such as a camera and a LiDAR.
 車両2には、通常の乗用車だけでなく、路線バスや緊急車両などの公共車両も含まれる。また、車両2は、四輪車だけでなく、二輪車(バイク)であってもよい。 The vehicles 2 include not only ordinary passenger cars but also public vehicles such as route buses and emergency vehicles. The vehicle 2 may be not only a four-wheeled vehicle but also a two-wheeled vehicle (bike).
 車両2の駆動方式は、エンジン駆動、電気モータ駆動、およびハイブリッド方式のいずれでもよい。車両2の運転方式は、搭乗者が加減速やハンドル操舵などの操作を行う通常運転、およびその操作をソフトウェアが実行する自動運転のいずれでもよい。 The drive system of the vehicle 2 may be any of an engine drive, an electric motor drive, and a hybrid system. The driving method of the vehicle 2 may be either normal driving in which the passenger performs operations such as acceleration / deceleration or steering wheel steering, and automatic driving in which the software executes the operation.
 [2.サーバの構成]
 図3は、サーバ5の構成の一例を示すブロック図である。
[2. Server configuration]
FIG. 3 is a block diagram showing an example of the configuration of the server 5.
 図3に示すように、サーバ5は、CPU(Central Processing Unit)などを含む制御部51と、ROM(Read Only Memory)53と、RAM(Random Access Memory)54と、記憶部55と、通信部56とを備える。 As shown in FIG. 3, the server 5 includes a control unit 51 including a central processing unit (CPU), a read only memory (ROM) 53, a random access memory (RAM) 54, a storage unit 55, and a communication unit. And 56.
 制御部51は、ROM53に予め記憶された1または複数のプログラムをRAM54に読み出して実行することにより、各ハードウェアの動作を制御し、コンピュータ装置を基地局4と通信可能なサーバ5として機能させる。つまり、制御部51は、プログラムを実行することにより実現される機能な処理部として、情報生成部52を備える。 The control unit 51 reads out and executes one or a plurality of programs stored in advance in the ROM 53 to the RAM 54 to control the operation of each hardware, and causes the computer device to function as the server 5 capable of communicating with the base station 4. . That is, the control unit 51 includes the information generation unit 52 as a functional processing unit realized by executing a program.
 RAM54は、SRAM(Static RAM)またはDRAM(Dynamic RAM)などの揮発性のメモリ素子で構成され、制御部51が実行するプログラムおよびその実行に必要なデータを一時的に記憶する。 The RAM 54 is composed of volatile memory elements such as SRAM (Static RAM) or DRAM (Dynamic RAM), and temporarily stores programs executed by the control unit 51 and data necessary for the execution.
 記憶部55は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子、または、ハードディスクなどの磁気記憶装置などにより構成されている。 The storage unit 55 is configured by a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory) or a magnetic storage device such as a hard disk.
 通信部56は、5G対応の通信処理を実行する通信装置よりなり、ネットワークを介して基地局4と通信する。通信部56は、制御部51から与えられた情報を、ネットワークを介して外部装置に送信するとともに、ネットワークを介して受信した情報を制御部51に与える。 The communication unit 56 is a communication device that executes communication processing compatible with 5G, and communicates with the base station 4 via the network. The communication unit 56 transmits the information provided from the control unit 51 to an external device via the network, and gives the information received via the network to the control unit 51.
 図3に示すように、サーバ5の記憶部55は、動的情報マップ(以下、単に「マップ」ともいう。)Mを記憶している。 As shown in FIG. 3, the storage unit 55 of the server 5 stores a dynamic information map (hereinafter, also simply referred to as “map”) M.
 マップMは、静的情報である高精細のデジタル地図に対して、時々刻々と変化する動的情報を重畳させたデータの集合体(仮想的なデータベース)である。マップMを構成するデジタル情報には、下記の「動的情報」、「准動的情報」、「准静的情報」、および「静的情報」が含まれる。 The map M is a collection (virtual database) of data in which dynamic information that changes from moment to moment is superimposed on a high-definition digital map that is static information. The digital information constituting the map M includes the following "dynamic information", "semi-dynamic information", "semi-static information", and "static information".
 「動的情報」(~1秒)は、1秒以内の遅延時間が要求される動的なデータのことである。例えば、ITS(Intelligent Transport Systems)先読み情報として活用される、移動物体(車両および歩行者など)の位置情報、および信号情報などが動的情報に該当する。 “Dynamic information” (̃1 second) refers to dynamic data that requires a delay time of less than 1 second. For example, position information of moving objects (such as vehicles and pedestrians) and signal information, which are used as ITS (Intelligent Transport Systems) prefetch information, correspond to dynamic information.
 「准動的情報」(~1分)は、1分以内の遅延時間が要求される准動的なデータのことである。例えば、事故情報、渋滞情報、および狭域気象情報などが准動的情報に該当する。 “Quasi-dynamic information” (̃1 minute) is quasi-dynamic data for which a delay time of less than 1 minute is required. For example, accident information, congestion information, and short-range weather information correspond to quasi-dynamic information.
 「准静的情報」(~1時間)は、1時間以内の遅延時間が許容される准静的なデータのことである。例えば、交通規制情報、道路工事情報、および広域気象情報などが准静的情報に該当する。 “Quasi-static information” (̃1 hour) refers to quasi-static data that allows a delay time of less than 1 hour. For example, traffic regulation information, road construction information, and wide area weather information correspond to quasi-static information.
 「静的情報」(~1カ月)は、1カ月以内の遅延時間が許容される静的なデータのことである。例えば、路面情報、車線情報、および3次元構造物データなどが静的情報に該当する。 “Static information” (̃1 month) is static data that allows a delay time of 1 month or less. For example, road surface information, lane information, and three-dimensional structure data correspond to static information.
 制御部51は、記憶部55に格納されたマップMの動的情報を、所定の更新周期ごとに更新する(動的情報の更新処理)。 The control unit 51 updates the dynamic information of the map M stored in the storage unit 55 every predetermined update cycle (dynamic information update process).
 具体的には、制御部51の情報生成部52は、所定の更新周期ごとに、サーバ5のサービスエリア内で車両2やカメラ1C、LiDAR1Lなどが計測した各種の計測データを含むセンサ情報を、車両2や送信装置6などから収集する。情報生成部52は、収集したセンサ情報に基づいてマップMの動的情報を更新する。 Specifically, the information generation unit 52 of the control unit 51 detects sensor information including various measurement data measured by the vehicle 2, the camera 1C, the LiDAR 1L, and the like in the service area of the server 5 at predetermined update cycles. They are collected from the vehicle 2 and the transmitting device 6 or the like. The information generation unit 52 updates the dynamic information of the map M based on the collected sensor information.
 制御部51は、車両2の車載装置3や、ユーザが所持する通信端末から動的情報の要求メッセージを受信すると、所定の配信周期ごとに、最新の動的情報を要求メッセージの送信元の車載装置3または通信端末に配信する(動的情報の配信処理)。 When the control unit 51 receives a request message for dynamic information from the on-vehicle apparatus 3 of the vehicle 2 or a communication terminal possessed by a user, the control unit 51 receives the latest dynamic information from the on-vehicle transmission source of the request message for each predetermined distribution cycle. It distributes to the device 3 or the communication terminal (distribution process of dynamic information).
 制御部51の情報生成部52は、交通管制センターおよび民間気象業務支援センターなどからサービスエリア内の各地の交通情報および気象情報を収集し、収集した情報に基づいて、マップMの准動的情報および准静的情報を更新する。 The information generation unit 52 of the control unit 51 collects traffic information and weather information of each place in the service area from the traffic control center, the private meteorological service support center, etc., and based on the collected information, the semi dynamic information of the map M And update semi-static information.
 [3.車載装置の構成]
 図4は、車載装置3の構成の一例を示すブロック図である。
[3. Configuration of in-vehicle device]
FIG. 4 is a block diagram showing an example of the configuration of the in-vehicle apparatus 3.
 図4に示すように、車両2の車載装置3は、制御部(ECU:Electronic Control Unit)31と、GPS受信機32と、車速センサ33と、ジャイロセンサ34と、記憶部35と、ディスプレイ36と、スピーカ37と、入力デバイス38と、カメラ39と、LiDAR40と、通信部41とを備える。 As shown in FIG. 4, the on-vehicle device 3 of the vehicle 2 includes a control unit (ECU: Electronic Control Unit) 31, a GPS receiver 32, a vehicle speed sensor 33, a gyro sensor 34, a storage unit 35, and a display 36. , A speaker 37, an input device 38, a camera 39, a LiDAR 40, and a communication unit 41.
 通信部41は、後述する制御部31の計測データ除去部31bによって計測データが除去された後の点群データを送信する点群データ送信部として機能し、例えば5G対応の通信処理が可能な無線通信機よりなる。なお、通信部41は、車両2に既設の無線通信機であってもよいし、搭乗者が車両2に持ち込んだ携帯端末であってもよい。 The communication unit 41 functions as a point cloud data transmission unit that transmits point cloud data after measurement data has been removed by the measurement data removal unit 31b of the control unit 31 described later, and for example, wireless communication processing compatible with 5G is possible It consists of a communicator. The communication unit 41 may be a wireless communication device installed in the vehicle 2 or a portable terminal carried by the passenger into the vehicle 2.
 搭乗者の携帯端末は、車両2の車内LAN(Local Area Network)に接続されることにより、一時的に車載の無線通信機となる。 The portable terminal of the passenger temporarily becomes an on-vehicle wireless communication device by being connected to the in-vehicle LAN (Local Area Network) of the vehicle 2.
 制御部31は、車両2の経路探索および他の電子機器32~41の制御などを行うコンピュータ装置よりなる。制御部31は、GPS受信機32が定期的に取得するGPS信号により自車両の車両位置を求める。なお、制御部31は、図示しない準天頂衛星から送信される信号を受信する受信機が受信したGPS補完信号またはGPS補強信号を合わせて用いることで、GPS信号を補完したり、自車両の車両位置を補正したりしてもよい。 The control unit 31 includes a computer device that performs route search of the vehicle 2 and controls the other electronic devices 32 to 41. The control unit 31 obtains the vehicle position of the own vehicle from the GPS signal periodically acquired by the GPS receiver 32. The control unit 31 complements the GPS signal by using together the GPS complementary signal or the GPS reinforcement signal received by the receiver that receives the signal transmitted from the quasi-zenith satellite (not shown), or the vehicle of the own vehicle The position may be corrected.
 制御部31は、車速センサ33およびジャイロセンサ34の入力信号に基づいて、車両位置および方位を補完し、車両2の正確な現在位置および方位を把握する。 The control unit 31 complements the vehicle position and orientation based on the input signals of the vehicle speed sensor 33 and the gyro sensor 34, and grasps the accurate current position and orientation of the vehicle 2.
 GPS受信機32、車速センサ33およびジャイロセンサ34は、車両2の現在位置、速度および向きを計測するセンサ類である。 The GPS receiver 32, the vehicle speed sensor 33, and the gyro sensor 34 are sensors that measure the current position, speed, and direction of the vehicle 2.
 記憶部35は、地図データベースを備える。地図データベースは、制御部31に道路地図データを提供する。道路地図データは、リンクデータやノードデータを含み、DVD、CD-ROM、メモリカード、またはHDDなどの記録媒体に格納されている。記憶部35は、記録媒体から必要な道路地図データを読み出して制御部31に提供する。 The storage unit 35 includes a map database. The map database provides the control unit 31 with road map data. The road map data includes link data and node data, and is stored in a recording medium such as a DVD, a CD-ROM, a memory card, or an HDD. The storage unit 35 reads necessary road map data from the recording medium and provides the control unit 31 with the road map data.
 ディスプレイ36とスピーカ37は、制御部31が生成した各種情報を車両2の搭乗者であるユーザに通知するための出力装置である。 The display 36 and the speaker 37 are output devices for notifying the user who is a passenger of the vehicle 2 of various information generated by the control unit 31.
 具体的には、ディスプレイ36は、経路探索の際の入力画面、自車周辺の地図画像および目的地までの経路情報などを表示する。スピーカ37は、車両2を目的地に誘導するためのアナウンスなどを音声出力する。これらの出力装置は、通信部41が受信した提供情報を搭乗者に通知することもできる。 Specifically, the display 36 displays an input screen for route search, a map image around the vehicle, route information to a destination, and the like. The speaker 37 voice-outputs an announcement or the like for guiding the vehicle 2 to a destination. These output devices can also notify the passenger of the provided information received by the communication unit 41.
 入力デバイス38は、車両2の搭乗者が各種の入力操作を行うためデバイスである。入力デバイス38は、ハンドルに設けた操作スイッチ、ジョイスティック、およびディスプレイ36に設けたタッチパネルなどの組み合わせよりなる。 The input device 38 is a device for the passenger of the vehicle 2 to perform various input operations. The input device 38 includes a combination of an operation switch provided on the handle, a joystick, and a touch panel provided on the display 36.
 搭乗者の音声認識によって入力を受け付ける音声認識装置を、入力デバイス38とすることもできる。入力デバイス38が生成した入力信号は、制御部31に送信される。 A voice recognition device that receives input by voice recognition of a passenger may be used as the input device 38. The input signal generated by the input device 38 is transmitted to the control unit 31.
 カメラ39は、車両2の前方の映像を取り込む画像センサよりなる。カメラ39は、単眼または複眼のいずれでもよい。LiDAR40は、車両2の周囲に存在する物体を検出するセンサよりなる。LiDAR40は、複数の計測点を走査しながら、各計測点に対してレーザを出射し、レーザの反射時間に基づいて、各計測点までの距離を計測する。なお、LiDAR40の代わりに、または、LiDAR40とともに、ミリ波レーダや、レーザレーダ、超音波レーダなどの各種センサを用いることができる。 The camera 39 is an image sensor that captures an image in front of the vehicle 2. The camera 39 may be either monocular or compound eye. The LiDAR 40 comprises a sensor that detects an object present around the vehicle 2. The LiDAR 40 emits a laser to each measurement point while scanning a plurality of measurement points, and measures the distance to each measurement point based on the reflection time of the laser. In addition, various sensors, such as a millimeter wave radar, a laser radar, and an ultrasonic wave radar, can be used instead of the LiDAR 40 or together with the LiDAR 40.
 制御部31は、カメラ39およびLiDAR40による計測データに基づいて、運転中の搭乗者に対する注意喚起をディスプレイ36に出力させたり、強制的なブレーキ介入を行ったりする運転支援制御を実行することができる。 The control unit 31 can execute driving support control for causing the display 36 to output a warning for a passenger while driving or performing forced braking intervention based on measurement data by the camera 39 and the LiDAR 40. .
 制御部31は、記憶部35に格納された各種の制御プログラムを実行する、マイクロコンピュータなどの演算処理装置により構成されている。 The control unit 31 is configured by an arithmetic processing unit such as a microcomputer that executes various control programs stored in the storage unit 35.
 制御部31は、上記制御プログラムを実行することにより、ディスプレイ36に地図画像を表示させる機能、出発地から目的地までの経路(中継地がある場合はその位置を含む。)を算出する機能、算出した経路に従って車両2を目的地まで誘導する機能など、各種のナビゲーション機能を実行可能である。 The control unit 31 executes the control program to display a map image on the display 36, and calculates a route from the departure point to the destination (including the position of the relay point, if any). Various navigation functions such as a function of guiding the vehicle 2 to a destination according to the calculated route can be performed.
 また、制御部31は、各種の制御プログラムを実行することにより実現される機能的な処理部として、点群データ取得部31aと、計測データ除去部31bと、領域情報取得部31cとを備える。 Further, the control unit 31 includes a point cloud data acquisition unit 31a, a measurement data removal unit 31b, and an area information acquisition unit 31c as functional processing units realized by executing various control programs.
 点群データ取得部31aは、カメラ39またはLiDAR40から、カメラ39またはLiDAR40による複数の計測点の計測データを含む点群データを取得する。 The point cloud data acquisition unit 31 a acquires point cloud data including measurement data of a plurality of measurement points by the camera 39 or the LiDAR 40 from the camera 39 or the LiDAR 40.
 計測データ除去部31bは、点群データ取得部31aが取得した点群データから、所定の領域に含まれる計測点の計測データを除去する。計測データ除去部31bによる計測データの除去方法については後述する。 The measurement data removal unit 31b removes measurement data of measurement points included in a predetermined area from the point cloud data acquired by the point cloud data acquisition unit 31a. The removal method of the measurement data by the measurement data removal part 31b is mentioned later.
 領域情報取得部31cは、計測データ除去部31bによる計測データの除去の対象となる領域の情報を、通信部41を介してサーバ5より取得する。取得した領域情報は、記憶部35に記憶され、計測データ除去部31bによる計測データ除去に用いられる。 The area information acquisition unit 31 c acquires, from the server 5 via the communication unit 41, information on the area that is the target of measurement data removal by the measurement data removal unit 31 b. The acquired area information is stored in the storage unit 35, and is used for measurement data removal by the measurement data removal unit 31b.
 制御部31は、サーバ5との通信において、以下の各処理を実行可能である。
 1)要求メッセージの送信処理
 2)動的情報の受信処理
 3)通信パケットの送信処理
The control unit 31 can execute the following processes in communication with the server 5.
1) Request message transmission processing 2) Dynamic information reception processing 3) Communication packet transmission processing
 要求メッセージの送信処理とは、サーバ5が逐次更新するマップMの動的情報の配信を要求する制御パケットを、サーバ5に送信する処理のことである。制御パケットには、自車両の車両IDが含まれる。 The transmission process of the request message is a process of transmitting to the server 5 a control packet that requests distribution of dynamic information of the map M, which the server 5 sequentially updates. The control packet includes the vehicle ID of the own vehicle.
 サーバ5は、所定の車両IDを含む要求メッセージを受信すると、送信元の車両IDを有する車両2の通信部41宛てに、動的情報を所定の配信周期で配信する。 When the server 5 receives the request message including the predetermined vehicle ID, the server 5 distributes the dynamic information at a predetermined distribution cycle to the communication unit 41 of the vehicle 2 having the vehicle ID of the transmission source.
 動的情報の受信処理とは、自装置に宛ててサーバ5が配信した動的情報を、受信する処理のことである。 The process of receiving dynamic information is a process of receiving dynamic information distributed to the server 5 by the server 5.
 車両2における通信パケットの送信処理とは、カメラ39またはLiDAR40により計測された計測データを含むセンサ情報の通信パケットを、サーバ5宛に送信する処理のことである。通信パケットの送信処理は、サーバ5による動的情報の配信周期内に行われる。 The transmission process of the communication packet in the vehicle 2 is a process of transmitting a communication packet of sensor information including the measurement data measured by the camera 39 or the LiDAR 40 to the server 5. The transmission process of the communication packet is performed within the distribution cycle of the dynamic information by the server 5.
 センサ情報には、カメラ39またはLiDAR40による複数の計測点の計測データを含む点群データ、車両2の位置情報(車両2の緯度情報および経度情報)、車両2の速度情報、車両2の方位情報などが含まれる。 The sensor information includes point cloud data including measurement data of a plurality of measurement points by the camera 39 or LiDAR 40, position information of the vehicle 2 (latitude information and longitude information of the vehicle 2), speed information of the vehicle 2, azimuth information of the vehicle 2 And so on.
 点群データには、カメラ39が撮像した複数の計測点における輝度値を含む画像データ、LiDAR40により計測された複数の計測点の各々までの距離データ、各計測点に対してLiDAR40から出射されるレーザの照射方向情報(レーザの照射方向の水平角および垂直角)、当該レーザの各計測点からの反射光強度情報などが含まれる。なお、点群データのうち、一部の計測点における計測データは、計測データ除去部31bにより除去されている。 The point cloud data includes image data including luminance values at a plurality of measurement points captured by the camera 39, distance data to each of a plurality of measurement points measured by the LiDAR 40, and emitted from the LiDAR 40 to each measurement point The irradiation direction information of the laser (horizontal angle and vertical angle of the irradiation direction of the laser), reflected light intensity information from each measurement point of the laser, and the like are included. In addition, measurement data at some measurement points in the point cloud data are removed by the measurement data removal unit 31 b.
 制御部31は、通信パケットに自車両の車両IDを含めて、サーバ5宛に送信する。 The control unit 31 transmits the communication packet including the vehicle ID of the own vehicle to the server 5.
 制御部31は、サーバ5などから受信した動的情報に基づいて、運転中の搭乗者に対する注意喚起をディスプレイ36に出力させたり、強制的なブレーキ介入を行ったりする運転支援制御を実行することもできる。 The control unit 31 executes driving support control for causing the display 36 to output a warning for a passenger in operation or performing forced braking intervention based on dynamic information received from the server 5 or the like. You can also.
 記憶部35は、上述した地図データベースを備える他、領域情報記憶部として機能し、計測データ除去部31bによる計測データの除去に用いられる領域情報を記憶する。領域情報は、領域情報取得部31cが取得したものであってもよいし、予め記憶部35に記憶されていてもよい。 The storage unit 35 includes the above-described map database and also functions as an area information storage unit, and stores area information used for removing measurement data by the measurement data removing unit 31b. The area information may be acquired by the area information acquisition unit 31 c or may be stored in advance in the storage unit 35.
 [4.路側センサの構成]
 図5は、路側に設置された送信装置6の一例を示すブロック図である。
[4. Roadside sensor configuration]
FIG. 5 is a block diagram showing an example of the transmission device 6 installed on the roadside.
 図5に示すように、送信装置6は、制御部61と、記憶部62と、通信部63とを備える。 As shown in FIG. 5, the transmission device 6 includes a control unit 61, a storage unit 62, and a communication unit 63.
 制御部61は、CPU、ROMおよびRAMなどを含む。制御部61は、記憶部62に記憶されたプログラムを読み出して実行し、送信装置6の全体の動作を制御する。 Control unit 61 includes a CPU, a ROM, a RAM, and the like. The control unit 61 reads out and executes the program stored in the storage unit 62 and controls the overall operation of the transmission device 6.
 制御部61は、プログラムを実行することにより実現される機能な処理部として、点群データ取得部61aと、計測データ除去部61bと、領域情報取得部61cとを備える。 The control unit 61 includes a point cloud data acquisition unit 61a, a measurement data removal unit 61b, and an area information acquisition unit 61c as functional processing units realized by executing a program.
 点群データ取得部61aは、カメラ1CまたはLiDAR1Lから、カメラ1CまたはLiDAR1Lによる複数の計測点の計測データを含む点群データを取得する。 The point cloud data acquisition unit 61a acquires point cloud data including measurement data of a plurality of measurement points by the camera 1C or LiDAR 1L from the camera 1C or LiDAR 1L.
 計測データ除去部61bは、点群データ取得部61aが取得した点群データから、所定の領域に含まれる計測点の計測データを除去する。計測データ除去部61bによる計測データの除去方法について後述する。 The measurement data removal unit 61b removes measurement data of measurement points included in a predetermined area from the point cloud data acquired by the point cloud data acquisition unit 61a. A method of removing measurement data by the measurement data removing unit 61b will be described later.
 領域情報取得部61cは、計測データ除去部61bによる計測データの除去の対象となる領域の情報を、通信部63を介してサーバ5より取得する。取得した領域情報は、記憶部62に記憶され、計測データ除去部61bによる計測データ除去に用いられる。 The area information acquisition unit 61 c acquires, from the server 5 via the communication unit 63, information on the area that is the target of measurement data removal by the measurement data removal unit 61 b. The acquired area information is stored in the storage unit 62, and is used for measurement data removal by the measurement data removal unit 61b.
 記憶部62は、ハードディスクや不揮発性のメモリなどより構成され、各種のコンピュータプログラムやデータを記憶する。記憶部62は、送信装置6の識別情報であるセンサIDを記憶している。センサIDは、例えば、送信装置6の所有者固有のユーザIDやMACアドレスなどよりなる。 The storage unit 62 includes a hard disk, a non-volatile memory, and the like, and stores various computer programs and data. The storage unit 62 stores a sensor ID which is identification information of the transmission device 6. The sensor ID is made of, for example, a user ID unique to the owner of the transmission device 6 or a MAC address.
 また、記憶部62は、領域情報記憶部として機能し、計測データ除去部61bによる計測データの除去に用いられる領域情報を記憶する。領域情報は、領域情報取得部61cが取得したものであってもよいし、予め記憶部62に記憶されていてもよい。 Further, the storage unit 62 functions as an area information storage unit, and stores area information used for removing measurement data by the measurement data removing unit 61b. The area information may be acquired by the area information acquisition unit 61c, or may be stored in advance in the storage unit 62.
 通信部63は、制御部61の計測データ除去部61bによって計測データが除去された後の点群データを送信する点群データ送信部として機能し、例えば5G対応の通信処理が可能な無線通信機よりなる。 The communication unit 63 functions as a point cloud data transmission unit that transmits point cloud data after measurement data has been removed by the measurement data removal unit 61b of the control unit 61, and for example, a wireless communication device capable of 5G communication processing It consists of.
 したがって、送信装置6は、サーバ5と通信することができる。 Therefore, the transmitting device 6 can communicate with the server 5.
 制御部61は、サーバ5との通信において、通信パケットの送信処理を実行可能である。 The control unit 61 can execute transmission processing of a communication packet in communication with the server 5.
 送信装置6による通信パケットの送信処理とは、カメラ1CまたはLiDAR1Lにより計測されたセンサ情報を含む通信パケットを、サーバ5宛に送信する処理のことである。通信パケットの送信処理は、サーバ5による動的情報の配信周期内に行われる。 The transmission process of the communication packet by the transmission device 6 is a process of transmitting a communication packet including the sensor information measured by the camera 1 C or the LiDAR 1 L to the server 5. The transmission process of the communication packet is performed within the distribution cycle of the dynamic information by the server 5.
 センサ情報には、カメラ1CまたはLiDAR1Lによる複数の計測点の計測データを含む点群データ、カメラ1CまたはLiDAR1Lの位置情報(カメラ1CまたはLiDAR1Lの緯度情報および経度情報)などが含まれる。なお、サーバ5が、カメラ1CまたはLiDAR1Lの位置を事前に知っている場合には、上記位置情報をサーバ5に送信しなくてもよい。 The sensor information includes point cloud data including measurement data of a plurality of measurement points by the camera 1C or LiDAR 1L, positional information of the camera 1C or LiDAR 1L (latitude information and longitude information of the camera 1C or LiDAR 1L), and the like. When the server 5 knows the position of the camera 1C or the LiDAR 1L in advance, the position information may not be transmitted to the server 5.
 点群データには、カメラ1Cが撮像した複数の計測点における輝度値を含む画像データ、LiDAR1Lにより計測された複数の計測点の各々までの距離データ、各計測点に対してLiDAR1Lから出射されるレーザの照射方向情報(レーザの照射方向の水平角および垂直角)、当該レーザの各計測点からの反射光強度情報などが含まれる。
 制御部61は、通信パケットにセンサIDを含めて、サーバ5宛に送信する。
The point cloud data includes image data including luminance values at a plurality of measurement points captured by a camera 1C, distance data to each of a plurality of measurement points measured by LiDAR 1L, and emitted from LiDAR 1L to each measurement point The irradiation direction information of the laser (horizontal angle and vertical angle of the irradiation direction of the laser), reflected light intensity information from each measurement point of the laser, and the like are included.
The control unit 61 transmits the communication packet including the sensor ID to the server 5.
 [5.計測データの除去処理について]
 次に、車載装置3または送信装置6による計測データの除去処理について詳細に説明する。
[5. About removal processing of measurement data]
Next, the process of removing measurement data by the on-vehicle apparatus 3 or the transmitting apparatus 6 will be described in detail.
 〔5-1.送信装置6による計測データの除去処理について〕
 図2を用いて説明したように、LiDAR1Lは、計測領域11に含まれる複数の計測点までのLiDAR1Lからの距離を計測することができる。しかしながら、計測領域11には、計測対象とされる車両2や歩行者7などの他に、建物9や木10などの固定物が含まれる。これらの固定物までの距離データは、時間経過によって変化することのない静的情報であるため、サーバ5における動的情報の更新処理には不必要な情報である。このため、送信装置6は、これらの固定物までの距離データをサーバ5に送信しない。
[5-1. About Removal Processing of Measurement Data by Transmission Device 6]
As described with reference to FIG. 2, the LiDAR 1L can measure the distance from the LiDAR 1L to a plurality of measurement points included in the measurement area 11. However, the measurement area 11 includes fixed objects such as a building 9 and a tree 10 in addition to the vehicle 2 and the pedestrian 7 to be measured. The distance data to the fixed object is static information that does not change with the passage of time, and thus is unnecessary information for the update processing of the dynamic information in the server 5. Therefore, the transmission device 6 does not transmit the distance data to these fixed objects to the server 5.
 図6は、路側に設置されたLiDARが計測した距離データの送信を制限するための制限領域について説明するための図である。 FIG. 6 is a diagram for describing a limited area for limiting transmission of distance data measured by LiDAR installed on the roadside.
 図2に示したように、LiDAR1Lの右上方向には建物9などの固定物が存在する。このため、図6に示すように、破線で示す計測領域11に実線で示す制限領域12を設け、送信装置6は、制限領域12内の計測点で計測された距離データをサーバ5に送信しないようにする。つまり、送信装置6の計測データ除去部61bが、LiDAR1Lが計測した点群データから、制限領域12内の計測点で計測された距離データを除去する。送信装置6は、制限領域12内の計測点の距離データが除去された後の、点群データをサーバ5に送信する。 As shown in FIG. 2, a fixed object such as a building 9 is present in the upper right direction of the LiDAR 1L. Therefore, as shown in FIG. 6, the restricted area 12 indicated by the solid line is provided in the measurement area 11 indicated by the broken line, and the transmitting device 6 does not transmit to the server 5 the distance data measured at the measurement points in the restricted area 12 Let's do it. That is, the measurement data removal unit 61b of the transmission device 6 removes the distance data measured at the measurement points in the restricted area 12 from the point cloud data measured by the LiDAR 1L. The transmitting device 6 transmits point cloud data to the server 5 after the distance data of the measurement points in the restricted area 12 is removed.
 制限領域12は、記憶部62に記憶されている計測データの中からの、計測データ除去部61bによる計測データの除去に用いられる領域情報であり、角度により定義される。例えば、LiDAR1Lの右方向を0°方向とした場合には、制限領域12は、0°~90°の範囲と定義することができる。制限領域12の情報は、送信装置6の記憶部62(領域情報記憶部として機能する)に事前に記憶されていてもよい。また、制限領域12の情報は、領域情報取得部61cが取得して、記憶部62に記憶したものであってもよい。 The restricted area 12 is area information used for removing measurement data from the measurement data stored in the storage unit 62 by the measurement data removing unit 61b, and is defined by an angle. For example, when the right direction of LiDAR 1L is 0 °, the restricted area 12 can be defined as the range of 0 ° to 90 °. The information of the restricted area 12 may be stored in advance in the storage unit 62 (functioning as an area information storage unit) of the transmission device 6. The information of the restricted area 12 may be acquired by the area information acquisition unit 61 c and stored in the storage unit 62.
 また、図2に示したように、LiDAR1Lの左方向および下方向には木10などの固定物が存在する。このため、図6に示すように、破線で示す計測領域11に実線で示す制限領域13を設け、送信装置6は、制限領域13内の計測点で計測された距離データをサーバ5に送信しないようにする。つまり、送信装置6の計測データ除去部61bが、LiDAR1Lが計測した点群データから、制限領域13内の計測点で計測された距離データを除去する。送信装置6は、制限領域13内の計測点の距離データが除去された後の、点群データをサーバ5に送信する。 In addition, as shown in FIG. 2, fixed objects such as trees 10 exist in the left direction and the lower direction of LiDAR 1L. Therefore, as shown in FIG. 6, the restricted area 13 indicated by a solid line is provided in the measurement area 11 indicated by a broken line, and the transmitting device 6 does not transmit to the server 5 distance data measured at measurement points in the restricted area 13 Let's do it. That is, the measurement data removal unit 61b of the transmission device 6 removes the distance data measured at the measurement point in the restricted area 13 from the point cloud data measured by the LiDAR 1L. The transmitting device 6 transmits point cloud data to the server 5 after the distance data of the measurement points in the restricted area 13 is removed.
 制限領域13は、記憶部62に記憶されている計測データの中からの、計測データ除去部61bによる計測データの除去に用いられる領域情報であり、制限領域13に含まれる各位置の座標(緯度情報および経度情報)により定義される。制限領域13の情報は、送信装置6の記憶部62(領域情報記憶部として機能する)に事前に記憶されていてもよい。また、制限領域13の情報は、領域情報取得部61cが取得して、記憶部62に記憶したものであってもよい。 The restricted area 13 is area information used for removing measured data by the measured data removing unit 61b from the measured data stored in the storage unit 62, and the coordinates (latitude of each position included in the restricted area 13) Information and longitude information). The information of the restricted area 13 may be stored in advance in the storage unit 62 (functioning as an area information storage unit) of the transmission device 6. Further, the information of the restricted area 13 may be acquired by the area information acquisition unit 61 c and stored in the storage unit 62.
 なお、制限領域12または13は、カメラ1Cにより撮影された映像の除去に用いられてもよい。つまり、計測データ除去部61bは、映像のうち、制限領域12または13の画像データを除去してもよい。 The restricted area 12 or 13 may be used to remove an image captured by the camera 1C. That is, the measurement data removal unit 61b may remove the image data of the restricted area 12 or 13 in the video.
 〔5-2.車載装置3による計測データの除去処理について〕
 送信装置6も、車載装置3と同様に、建物9や木10などの固定物までの距離データを送信しない。
5-2. About Removal Processing of Measurement Data by On-vehicle Device 3]
The transmitting device 6 also does not transmit distance data to fixed objects such as the building 9 and the tree 10 as the on-vehicle device 3 does.
 図7は、車両に設置されたLiDARが計測した距離データの送信を制限するための制限領域について説明するための図である。 FIG. 7 is a diagram for describing a limited area for limiting transmission of distance data measured by LiDAR installed in a vehicle.
 車両2に搭載されたLiDAR40は、計測領域11に含まれる複数の計測点までのLiDAR40からの距離を計測することができる。しかしながら、車両2が走行する道路の路側などには、建物9や木10などの固定物が存在する。このため、図7に示すように、実線で示す制限領域13を設け、車載装置3は、制限領域13内の計測点で計測された距離データをサーバ5に送信しないようにする。つまり、車載装置3の計測データ除去部31bが、LiDAR40が計測した点群データから、制限領域13内の計測点で計測された距離データを除去する。車載装置3は、制限領域13内の計測点の距離データが除去された後の、点群データをサーバ5に送信する。 The LiDAR 40 mounted on the vehicle 2 can measure the distance from the LiDAR 40 to a plurality of measurement points included in the measurement area 11. However, fixed objects such as a building 9 and a tree 10 exist on the roadside of the road on which the vehicle 2 travels. For this reason, as shown in FIG. 7, the restriction area 13 indicated by a solid line is provided, and the on-vehicle apparatus 3 does not transmit the distance data measured at the measurement point in the restriction area 13 to the server 5. That is, the measurement data removal unit 31b of the in-vehicle device 3 removes the distance data measured at the measurement point in the restricted area 13 from the point cloud data measured by the LiDAR 40. The in-vehicle device 3 transmits point cloud data to the server 5 after the distance data of the measurement point in the restricted area 13 is removed.
 制限領域13は、計測データ除去部31bによる記憶部35に記憶されている計測データの除去に用いられる領域情報であり、制限領域13に含まれる各位置の座標(緯度情報および経度情報)により定義される。制限領域13の情報は、車載装置3の記憶部35(領域情報記憶部として機能する)に事前に記憶されていてもよい。また、制限領域13の情報は、領域情報取得部31cが取得して、記憶部35に記憶したものであってもよい。 The restricted area 13 is area information used for removing measurement data stored in the storage unit 35 by the measurement data removing unit 31 b, and is defined by the coordinates (latitude information and longitude information) of each position included in the restricted area 13 Be done. The information of the restricted area 13 may be stored in advance in the storage unit 35 (functioning as an area information storage unit) of the in-vehicle device 3. In addition, the information of the restricted area 13 may be acquired by the area information acquisition unit 31 c and stored in the storage unit 35.
 なお、制限領域13が所定の図形で示される場合には、制限領域13を、所定の位置座標で定義してもよい。例えば、制限領域13が多角形の場合には、制限領域13を、多角形の頂点の位置座標で定義してもよい。また、制限領域13が円形の場合には、制限領域13を、円の中心座標と半径で定義してもよい。さらに、制限領域13が楕円形の場合には、制限領域13を、楕円の中心座標、長径および短径と、楕円の長径方向を示すベクトルとで定義してもよい。このような、所定の位置座標を用いた制限領域13の定義は、送信装置6における制限領域13の定義にも用いることができる。 When the restricted area 13 is indicated by a predetermined figure, the restricted area 13 may be defined by predetermined position coordinates. For example, in the case where the restricted area 13 is a polygon, the restricted area 13 may be defined by position coordinates of vertexes of the polygon. When the restricted area 13 is circular, the restricted area 13 may be defined by the center coordinates and the radius of the circle. Furthermore, when the restricted area 13 is elliptical, the restricted area 13 may be defined by the central coordinates of the ellipse, the major and minor axes, and a vector indicating the major axis direction of the ellipse. Such definition of the restricted area 13 using predetermined position coordinates can also be used for the definition of the restricted area 13 in the transmission device 6.
 なお、制限領域13は、カメラ39により撮影された映像の除去に用いられてもよい。つまり、計測データ除去部31bは、映像のうち、制限領域13の画像データを除去してもよい。 The restricted area 13 may be used to remove an image captured by the camera 39. That is, the measurement data removal unit 31b may remove the image data of the restricted area 13 in the video.
 〔5-3.地面上の計測点の計測データの除去処理について〕
 図8は、静的情報について説明するための図である。
 図8に示すように、距離データの多くは、道路8などの地面上の計測点までの距離データである。地面上の計測点までの距離データも、固定物までの距離データと同様に、時間経過によって変化することのない静的情報である。このため、送信装置6は、地面上の計測点までの距離データをサーバ5に送信しない。同様に、車両2の車載装置3も、地面上の計測点までの距離データをサーバ5に送信しない。
 以下、地面上の計測点を検出する処理として、検出方法1~4を説明する。
[5-3. About removal processing of measurement data of measurement points on the ground]
FIG. 8 is a diagram for explaining static information.
As shown in FIG. 8, most of the distance data is distance data to measurement points on the ground such as the road 8. The distance data to the measurement point on the ground is also static information which does not change with the passage of time, like the distance data to the fixed object. For this reason, the transmitting device 6 does not transmit the distance data to the measurement point on the ground to the server 5. Similarly, the in-vehicle device 3 of the vehicle 2 does not transmit the distance data to the measurement point on the ground to the server 5.
Hereinafter, detection methods 1 to 4 will be described as processing for detecting measurement points on the ground.
 <検出方法1>
 計測データ除去部61bまたは31bは、LiDAR1Lまたは40が計測した点群データから、各計測点の高さを算出する。LiDAR1Lまたは40の位置と、計測点までの距離と、計測点の方向とが分かっているため、計測データ除去部61bまたは31bは、計測点の高さを算出することができる。
<Detection method 1>
The measurement data removal unit 61b or 31b calculates the height of each measurement point from the point cloud data measured by the LiDAR 1L or 40. Since the position of LiDAR 1L or 40, the distance to the measurement point, and the direction of the measurement point are known, the measurement data removal unit 61b or 31b can calculate the height of the measurement point.
 計測データ除去部61bまたは31bは、算出した高さが所定の高さ閾値以下の計測データを、地面上の計測点の計測データとして除去する。 The measurement data removal unit 61b or 31b removes measurement data whose calculated height is less than or equal to a predetermined height threshold as measurement data of measurement points on the ground.
 <検出方法2>
 計測データ除去部61bまたは31bは、LiDAR1Lまたは40が計測した点群データから、各計測点の位置座標を算出する。LiDAR1Lまたは40の位置と、計測点までの距離と、計測点の方向とが分かっているため、計測データ除去部61bまたは31bは、計測点の位置座標を算出することができる。
<Detection method 2>
The measurement data removal unit 61b or 31b calculates position coordinates of each measurement point from the point cloud data measured by the LiDAR 1L or 40. Since the position of LiDAR 1L or 40, the distance to the measurement point, and the direction of the measurement point are known, the measurement data removal unit 61b or 31b can calculate the position coordinates of the measurement point.
 計測データ除去部61bまたは31bは、RANSAC(Random Sampling Consensus)アルゴリズムを用いて、点群データから算出された複数の計測点の位置座標に平面を当てはめることにより、平面を検出する。これにより、地面や建物の壁などの平面を検出することができる。計測データ除去部61bまたは31bは、検出した平面の高さが所定の高さ閾値以下の場合に、当該平面を構成する計測点の計測データ(当該平面の検出の元となった計測点の計測データ)を、地面上の計測点の計測データとして除去する。 The measurement data removal unit 61b or 31b detects a plane by fitting a plane to position coordinates of a plurality of measurement points calculated from point cloud data, using a RANSAC (Random Sampling Consensus) algorithm. This makes it possible to detect a plane such as the ground or a wall of a building. When the height of the detected plane is equal to or less than a predetermined height threshold, the measurement data removing unit 61b or 31b measures the measurement data of the measurement points that constitute the plane (measurement of the measurement point that is the source of the plane Data) is removed as measurement data of measurement points on the ground.
 <検出方法3>
 計測データ除去部61bまたは31bは、各計測点について、当該計測点の反射光強度が予め定められたアスファルトの反射光強度の範囲内に含まれているか否かを判断する。計測データ除去部61bまたは31bは、アスファルトの反射光強度の範囲内に含まれる反射光強度を有する計測点の計測データを、地面上の計測点の計測データとして除去する。
<Detection method 3>
The measurement data removal unit 61 b or 31 b determines, for each measurement point, whether or not the reflected light intensity of the measurement point is included in a predetermined range of the reflected light intensity of asphalt. The measurement data removal unit 61b or 31b removes measurement data of measurement points having reflected light intensity included in the range of reflected light intensity of asphalt as measurement data of measurement points on the ground.
 <検出方法4>
 計測データ除去部61bまたは31bは、LiDAR1Lまたは40が計測した点群データから、各計測点の位置座標を算出する。LiDAR1Lまたは40の位置と、計測点までの距離と、計測点の方向とが分かっているため、計測データ除去部61bまたは31bは、計測点の位置座標を算出することができる。
<Detection method 4>
The measurement data removal unit 61b or 31b calculates position coordinates of each measurement point from the point cloud data measured by the LiDAR 1L or 40. Since the position of LiDAR 1L or 40, the distance to the measurement point, and the direction of the measurement point are known, the measurement data removal unit 61b or 31b can calculate the position coordinates of the measurement point.
 図9および図10は、LiDAR1Lまたは40が計測した点群データから算出された計測点の位置座標を2次元平面上にプロットした図である。つまり、図9および図10は、予め定められた視点から各計測点を見た図である。図9および図10において、計測点は黒点で示されている。LiDAR1Lまたは40は、レーザを円周方向に動かしながら照射し、各計測点までの距離を検出する。このため、レーザで平面を走査した場合には、計測点の軌跡は円弧形状を有することとなる。 FIGS. 9 and 10 are diagrams in which position coordinates of measurement points calculated from point cloud data measured by LiDAR 1L or 40 are plotted on a two-dimensional plane. That is, FIG. 9 and FIG. 10 are the figures which looked at each measurement point from the predetermined viewpoint. In FIG. 9 and FIG. 10, measurement points are indicated by black points. The LiDAR 1L or 40 irradiates while moving the laser in the circumferential direction, and detects the distance to each measurement point. For this reason, when the plane is scanned by a laser, the locus of the measurement point has an arc shape.
 したがって、計測データ除去部61bまたは31bは、点群データに基づいて算出された計測点の軌跡の曲率の変動が所定範囲内であり、かつ当該軌跡の長さが所定の長さ閾値以上であるという条件を満たす場合に、当該軌跡を構成する計測点の計測データを、地面上の計測点の計測データとして除去する。ここで、曲率の変動が所定範囲内とは、例えば、軌跡における曲率の最大値と最小値との比または差が所定の閾値範囲内に含まれていることを言う。 Therefore, the measurement data removal unit 61b or 31b has the variation of the curvature of the locus of the measurement point calculated based on the point cloud data within a predetermined range, and the length of the locus is equal to or more than a predetermined length threshold When the above condition is satisfied, the measurement data of the measurement points constituting the trajectory is removed as the measurement data of the measurement points on the ground. Here, the variation of curvature within a predetermined range means that, for example, the ratio or difference between the maximum value and the minimum value of the curvature in the locus is included within a predetermined threshold range.
 例えば、図9においては、軌跡101や102は、上記条件を満たすため、地面上の計測点の計測データとして除去される。なお、図9には、車両2を構成する計測点103が示されているが、計測点103は、上記条件を満たさないため、除去されない。 For example, in FIG. 9, the trajectories 101 and 102 are removed as measurement data of measurement points on the ground because the above conditions are satisfied. Although the measurement point 103 which comprises the vehicle 2 is shown by FIG. 9, since the measurement point 103 does not satisfy the said conditions, it is not removed.
 また、図10においては、軌跡104や105は、上記条件を満たすため、地面上の計測点の計測データとして除去される。なお、図10には、歩行者7を構成する計測点106が示されているが、計測点106は、上記条件を満たさないため、除去されない。 Further, in FIG. 10, the trajectories 104 and 105 are removed as measurement data of measurement points on the ground because the above conditions are satisfied. In addition, although the measurement point 106 which comprises the pedestrian 7 is shown by FIG. 10, since the measurement point 106 does not satisfy the said conditions, it is not removed.
 車載装置3または送信装置6は、上記した検出方法1~4の少なくとも1つの方法を用いて地面上の計測点の計測データを除去する。 The on-vehicle apparatus 3 or the transmission apparatus 6 removes measurement data of measurement points on the ground using at least one of the detection methods 1 to 4 described above.
 [6.動的情報の更新処理および配信処理]
 図11は、LiDAR1L、送信装置6、車載装置3およびサーバ5の協働により実行される、動的情報の更新処理および配信処理の一例を示すシーケンス図である。図11に示されるシーケンスを所定間隔(例えば、100msec間隔)で繰り返すことにより、所定間隔で動的情報が更新される。
[6. Dynamic Information Update Processing and Delivery Processing]
FIG. 11 is a sequence diagram showing an example of dynamic information update processing and distribution processing executed by the cooperation of the LiDAR 1L, the transmission device 6, the in-vehicle apparatus 3 and the server 5. The dynamic information is updated at predetermined intervals by repeating the sequence shown in FIG. 11 at predetermined intervals (for example, at intervals of 100 msec).
 LiDAR40は、LiDAR40の周囲の複数の計測点までの距離を計測し、複数の計測点の計測データを含む点群データを、通信パケットに含めて送信装置6に送信する(S1)。送信装置6は、LiDAR40から、当該通信パケットを受信する。 The LiDAR 40 measures distances to a plurality of measurement points around the LiDAR 40, transmits point cloud data including measurement data of the plurality of measurement points in a communication packet, and transmits it to the transmission device 6 (S1). The transmitter 6 receives the communication packet from the LiDAR 40.
 送信装置6は、受信した通信パケットに含まれる点群データから、所定の領域に含まれる計測点の計測データを除去する(S2)。 The transmission device 6 removes measurement data of measurement points included in the predetermined area from the point cloud data included in the received communication packet (S2).
 図12は、計測データの除去処理(図11のステップS2)の詳細なフローチャートである。 FIG. 12 is a detailed flowchart of the measurement data removal process (step S2 in FIG. 11).
 送信装置6は、各計測点の計測データが示す計測点までの距離に基づいて、計測点の位置座標を算出する(S11)。 The transmission device 6 calculates the position coordinates of the measurement point based on the distance to the measurement point indicated by the measurement data of each measurement point (S11).
 送信装置6は、複数の計測点の中に地面上の計測点が存在するか否かを判断する(S12)。地面上の計測点が存在する場合には(S12でYES)、送信装置6は、地面上の計測点を除去する(S13)。 The transmitting device 6 determines whether or not there are measurement points on the ground among the plurality of measurement points (S12). If there are measurement points on the ground (YES in S12), the transmitting device 6 removes the measurement points on the ground (S13).
 送信装置6は、複数の計測点の中に、図6に示したような所定の角度範囲で示される制限領域12内の計測点が存在するか否かを判断する(S14)。制限領域12内の計測点が存在する場合には(S14でYES)、送信装置6は、制限領域12内の計測点を除去する(S15)。なお、ステップS14およびS15の処理は、車載装置3においては実行されなくてもよい。 The transmitting device 6 determines whether or not there are measurement points in the restricted area 12 indicated by the predetermined angle range as shown in FIG. 6 among the plurality of measurement points (S14). If there are measurement points in the restricted area 12 (YES in S14), the transmitting device 6 removes the measurement points in the restricted area 12 (S15). The processes of steps S14 and S15 may not be performed in the on-vehicle apparatus 3.
 送信装置6は、複数の計測点の中に、図6または図7に示したような所定の座標により定義される制限領域13内の計測点が存在するか否かを判断する(S16)。制限領域13内の計測点が存在する場合には(S16でYES)、送信装置6は、制限領域13内の計測点を除去する(S17)。 The transmission device 6 determines whether or not the measurement points in the restricted area 13 defined by the predetermined coordinates as shown in FIG. 6 or 7 exist among the plurality of measurement points (S16). If there are measurement points in the restricted area 13 (YES in S16), the transmitting device 6 removes the measurement points in the restricted area 13 (S17).
 再度図11を参照して、送信装置6は、所定の領域に含まれる計測点の計測データが除去された後の点群データを、サーバ5に送信する(S3)。 Referring again to FIG. 11, the transmission device 6 transmits point cloud data after the measurement data of the measurement points included in the predetermined area is removed, to the server 5 (S3).
 サーバ5は、送信装置6から受信した点群データに基づいて、マップMの動的情報を更新する(S4)。例えば、サーバ5は、点群データに基づいて、マップ上に存在する車両2または歩行者7などの移動物体を検出する。サーバ5は、検出結果に基づいて、マップM上の移動物体の位置を更新したり、新たに出現した移動物体をマップM上に重畳させることにより、マップMの動的情報を更新する。 The server 5 updates the dynamic information of the map M based on the point cloud data received from the transmitting device 6 (S4). For example, the server 5 detects a moving object such as the vehicle 2 or the pedestrian 7 existing on the map based on the point cloud data. The server 5 updates the dynamic information of the map M by updating the position of the moving object on the map M or superimposing the newly appearing moving object on the map M based on the detection result.
 車両2の車載装置3は、マップMの動的情報の配信を要求する制御パケットを要求メッセージとしてサーバ5に送信する(S5)。 The on-vehicle apparatus 3 of the vehicle 2 transmits a control packet requesting distribution of dynamic information of the map M to the server 5 as a request message (S5).
 サーバ5は、車両2の車載装置3から要求メッセージを受け取り、要求メッセージの送信元である車両2の車載装置3に対して、マップMの動的情報を送信する(S6)。車両2の車載装置3は、当該動的情報を受信する。 The server 5 receives the request message from the in-vehicle apparatus 3 of the vehicle 2, and transmits the dynamic information of the map M to the in-vehicle apparatus 3 of the vehicle 2 that is the transmission source of the request message (S6). The in-vehicle device 3 of the vehicle 2 receives the dynamic information.
 なお、上記した動的情報の更新処理および配信処理の説明では、LiDAR1L、送信装置6、車載装置3およびサーバ5の協働による処理について説明したが、LiDAR1Lおよび送信装置6の代わりに、LiDAR40および車載装置3をそれぞれ用いてもよい。 In the above description of the dynamic information update process and the distribution process, the process by cooperation of LiDAR 1L, transmitting device 6, in-vehicle device 3 and server 5 has been described, but instead of LiDAR 1L and transmitting device 6, LiDAR 40 and The in-vehicle devices 3 may be used respectively.
 以上説明したように、本開示の実施形態によると、点群データのうち、所定の領域に含まれる計測点の計測データをサーバ5に送信しないようにすることができる。このため、所定の領域を、建物などの固定物や地面などの静的な対象物の計測点の領域とすることにより、サーバ5に対して無駄な計測データを送信しないようにすることができる。これにより、車載装置3または送信装置6からサーバ5への通信トラフィック量を減少させることができる。また、サーバ5は、静的情報の計測データが除去された点群データを受信することができる。このため、サーバ5は、動的情報を効率的に更新することができる。 As described above, according to the embodiment of the present disclosure, it is possible to prevent the measurement data of the measurement points included in the predetermined area in the point cloud data from being transmitted to the server 5. Therefore, by setting the predetermined area as the area of the measurement point of a stationary object such as a fixed object such as a building or the ground, it is possible to prevent transmission of useless measurement data to the server 5 . Thereby, the amount of communication traffic from the on-vehicle apparatus 3 or the transmitting apparatus 6 to the server 5 can be reduced. The server 5 can also receive point cloud data from which measurement data of static information has been removed. Therefore, the server 5 can efficiently update the dynamic information.
 なお、LiDAR1LやLiDAR40が下向きに取り付けられているような場合には、LiDARが計測する計測点の大部分は地面である。車載装置3または送信装置6は、地面上の計測点の計測データを除去した点群データをサーバ5に送信している。このため、車載装置3または送信装置6からサーバ5への通信トラフィック量を効果的に減少させることができる。 When LiDAR 1L or LiDAR 40 is attached downward, most of the measurement points measured by LiDAR are the ground. The in-vehicle device 3 or the transmitting device 6 transmits point cloud data from which measurement data of measurement points on the ground has been removed to the server 5. Therefore, the amount of communication traffic from the in-vehicle apparatus 3 or the transmitting apparatus 6 to the server 5 can be effectively reduced.
 また、車載装置3は、車両や歩行者が通過することのできない所定の角度範囲に含まれる計測点の計測データを除去した点群データをサーバ5に送信している。これにより、路側に設置されたLiDAR1Lにより車両2や歩行者7などの移動物体までの距離を検出する際に、サーバ5に対して無駄な計測データを送信しないようにすることができる。 In addition, the in-vehicle device 3 transmits, to the server 5, point cloud data from which measurement data of measurement points included in a predetermined angle range which a vehicle or a pedestrian can not pass is removed. As a result, when the distance to a moving object such as the vehicle 2 or the pedestrian 7 is detected by the LiDAR 1L installed on the roadside, it is possible to prevent transmission of useless measurement data to the server 5.
 また、車載装置3または送信装置6は、所定の位置座標に存在する計測点の計測データを除去して点群データをサーバ5に送信している。このように、車両や歩行者が通過することのできない位置の座標を所定の位置座標とすることにより、当該位置座標に存在する計測点の計測データをサーバに送信しないようにすることができる。 Further, the in-vehicle apparatus 3 or the transmission apparatus 6 transmits point cloud data to the server 5 by removing measurement data of measurement points existing at predetermined position coordinates. As described above, by setting the coordinates of a position at which a vehicle or a pedestrian can not pass as predetermined position coordinates, it is possible to prevent the measurement data of measurement points present at the position coordinates from being transmitted to the server.
 また、車両2や歩行者7が通過することのできない領域を、所定の位置座標で定義される図形領域で示すことにより、少ない情報量で当該領域を定義することができる。 Moreover, the area | region can be defined with little information content by showing the area | region which the vehicle 2 and the pedestrian 7 can not pass by the figure area | region defined by the predetermined | prescribed position coordinate.
 また、上記した所定の角度範囲または所定の位置座標は、車載装置3または送信装置6が予め記憶していてもよい。これにより、外部装置からこのようなデータを受信することができない場合であっても、計測データを除去することができる。 Moreover, the on-vehicle device 3 or the transmitting device 6 may store in advance the above-described predetermined angle range or predetermined position coordinates. Thereby, measurement data can be removed even when such data can not be received from an external device.
 また、上述した所定の角度範囲または所定の位置座標は、車載装置3または送信装置6が、サーバ5などの外部装置から受信してもよい。これにより、車両2や歩行者7が通過することのできない領域等が変化した場合であっても、当該変化に即座に対応して計測データの除去を行うことができる。 In addition, the on-vehicle device 3 or the transmitting device 6 may receive the predetermined angle range or the predetermined position coordinates described above from an external device such as the server 5 or the like. As a result, even when the area where the vehicle 2 or the pedestrian 7 can not pass changes, the measurement data can be removed immediately in response to the change.
 以上、本開示の実施形態に係る無線通信システムについて説明したが、本開示は、この実施形態に限定されるものではない。 Although the wireless communication system according to the embodiment of the present disclosure has been described above, the present disclosure is not limited to this embodiment.
 例えば、上述の実施形態では、車載装置3または送信装置6からサーバ5へ点群データを送信するものとしたが、点群データを送信する対象の装置はサーバ5に限定されるものではない。例えば、マップMの動的情報を更新する機能が車載装置3に備わっている場合には、ある車載装置3から、当該機能を備える他の車載装置3に対して、点群データを無線により送信してもよい。また、送信装置6から当該機能を備える車載装置3に対して、点群データを無線により送信してもよい。 For example, although point cloud data is transmitted from the in-vehicle device 3 or the transmission device 6 to the server 5 in the above-described embodiment, the device to which the point cloud data is transmitted is not limited to the server 5. For example, when the on-vehicle apparatus 3 has a function of updating the dynamic information of the map M, point cloud data is wirelessly transmitted from one on-vehicle apparatus 3 to another on-vehicle apparatus 3 having the function. You may The point cloud data may be transmitted wirelessly from the transmitting device 6 to the on-vehicle device 3 having the function.
 上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSIから構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。 Some or all of the components constituting each of the above-described devices may be configured as one system LSI. The system LSI is a super-multifunctional LSI manufactured by integrating a plurality of components on one chip, and more specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. . A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
 また、本開示は、上記に示す方法であるとしてもよい。また、本開示は、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよい。 Also, the present disclosure may be the method described above. In addition, the present disclosure may be a computer program that implements these methods by a computer.
 さらに、本開示は、上記コンピュータプログラムをコンピュータ読取可能な非一時的な記録媒体、例えば、HDD、CD-ROM、半導体メモリなどに記録したものとしてもよい。 Furthermore, in the present disclosure, the computer program may be recorded in a computer readable non-transitory recording medium, such as an HDD, a CD-ROM, a semiconductor memory, and the like.
 また、本開示は、上記コンピュータプログラムを、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。 Furthermore, the present disclosure may transmit the computer program via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, data broadcasting, and the like.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present disclosure is indicated not by the meaning described above but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
1C  カメラ
1L  LiDAR
2   車両
3   車載装置
4   基地局
5   サーバ
6   送信装置
11  計測領域
12  制限領域
13  制限領域
31  制御部
31a 点群データ取得部
31b 計測データ除去部
31c 領域情報取得部
32  GPS受信機
33  車速センサ
34  ジャイロセンサ
35  記憶部
36  ディスプレイ
37  スピーカ
38  入力デバイス
39  カメラ
40  LiDAR
41  通信部
51  制御部
52  情報生成部
53  ROM
54  RAM
55  記憶部
56  通信部
61  制御部
61a 点群データ取得部
61b 計測データ除去部
61c 領域情報取得部
62  記憶部
63  通信部
101 軌跡
103 計測点
104 軌跡
106 計測点
 
1C Camera 1L LiDAR
Reference Signs List 2 vehicle 3 in-vehicle apparatus 4 base station 5 server 6 transmission apparatus 11 measurement area 12 restriction area 13 restriction area 31 control unit 31 a point group data acquisition unit 31 b measurement data removal unit 31 c area information acquisition unit 32 GPS receiver 33 vehicle speed sensor 34 gyro Sensor 35 Memory unit 36 Display 37 Speaker 38 Input device 39 Camera 40 LiDAR
41 communication unit 51 control unit 52 information generation unit 53 ROM
54 RAM
55 storage unit 56 communication unit 61 control unit 61a point cloud data acquisition unit 61b measurement data removal unit 61c area information acquisition unit 62 storage unit 63 communication unit 101 locus 103 measurement point 104 locus 106 measurement point

Claims (19)

  1.  静的な対象物の計測点までの距離、および車両または歩行者が通過することのできる領域内の移動物体の計測点までの距離、を計測するセンサにより計測された複数の計測点における計測データを含む点群データを取得する点群データ取得部と、
     前記点群データ取得部が取得した前記点群データから、所定の領域に含まれる計測点の計測データを除去する計測データ除去部と、
     前記計測データ除去部により前記計測データが除去された後の前記点群データを、サーバに送信する点群データ送信部とを備える、送信装置。
    Measurement data at multiple measurement points measured by sensors that measure the distance to the measurement point of the static object and the distance to the measurement point of the moving object within the area where the vehicle or pedestrian can pass A point cloud data acquisition unit that acquires point cloud data including
    A measurement data removal unit that removes measurement data of measurement points included in a predetermined area from the point cloud data acquired by the point cloud data acquisition unit;
    And a point cloud data transmission unit that transmits the point cloud data after the measurement data is removed by the measurement data removal unit to a server.
  2.  前記静的な対象物は地面を含み、
     前記計測データ除去部は、前記点群データ取得部が取得した前記点群データから、地面上の計測点の計測データを除去する、請求項1に記載の送信装置。
    The static object comprises the ground,
    The transmission device according to claim 1, wherein the measurement data removal unit removes measurement data of measurement points on the ground from the point cloud data acquired by the point cloud data acquisition unit.
  3.  前記センサは、各計測点までの距離を計測するレーダセンサであり、
     前記点群データ取得部は、前記複数の計測点における各計測点までの距離を前記計測データとして含む前記点群データを取得し、
     前記計測データ除去部は、前記点群データ取得部が取得した前記点群データから、各計測点の高さを算出し、算出された高さが所定の高さ閾値以下の計測データを、前記地面上の計測点の計測データとして除去する、請求項2に記載の送信装置。
    The sensor is a radar sensor that measures the distance to each measurement point,
    The point cloud data acquisition unit acquires the point cloud data including, as the measurement data, the distances to the respective measurement points in the plurality of measurement points,
    The measurement data removal unit calculates the height of each measurement point from the point cloud data acquired by the point cloud data acquisition unit, and the calculated height is less than or equal to a predetermined height threshold. The transmitter according to claim 2, wherein the transmitter is removed as measurement data of a measurement point on the ground.
  4.  前記センサは、各計測点までの距離を計測するレーダセンサであり、
     前記点群データ取得部は、前記複数の計測点における各計測点までの距離を前記計測データとして含む前記点群データを取得し、
     前記計測データ除去部は、前記点群データ取得部が取得した前記点群データに基づいて算出される計測点に当てはめられる平面の高さが所定の高さ閾値以下の場合に、当該平面を構成する計測点の計測データを、前記地面上の計測点の計測データとして除去する、請求項2に記載の送信装置。
    The sensor is a radar sensor that measures the distance to each measurement point,
    The point cloud data acquisition unit acquires the point cloud data including, as the measurement data, the distances to the respective measurement points in the plurality of measurement points,
    The measurement data removal unit configures the plane when the height of the plane applied to the measurement point calculated based on the point cloud data acquired by the point cloud data acquisition unit is equal to or less than a predetermined height threshold. The transmission device according to claim 2, wherein measurement data of a measurement point to be measured is removed as measurement data of a measurement point on the ground.
  5.  前記センサは、各計測点までの距離を計測するレーダセンサであり、
     前記点群データ取得部は、前記複数の計測点における各計測点までの距離と各計測点からの反射光強度とを前記計測データとして含む前記点群データを取得し、
     前記計測データ除去部は、各計測点からの反射光強度に基づいて、当該反射光強度が所定の条件を満たす計測点の計測データを、前記地面上の計測点の計測データとして除去する、請求項2に記載の送信装置。
    The sensor is a radar sensor that measures the distance to each measurement point,
    The point cloud data acquisition unit acquires the point cloud data including the distance to each measurement point at the plurality of measurement points and the reflected light intensity from each measurement point as the measurement data,
    The measurement data removal unit removes measurement data of a measurement point whose reflected light intensity satisfies a predetermined condition as measurement data of the measurement point on the ground based on the reflected light intensity from each measurement point. The transmitter according to Item 2.
  6.  前記センサは、各計測点までの距離を計測するレーダセンサであり、
     前記点群データ取得部は、前記複数の計測点における各計測点までの距離を前記計測データとして含む前記点群データを取得し、
     前記計測データ除去部は、前記点群データ取得部が取得した前記点群データに基づいて算出される計測点の軌跡の曲率の変動が所定範囲内であり、かつ当該軌跡の長さが所定の長さ閾値以上の場合に、当該軌跡を構成する計測点の計測データを、前記地面上の計測点の計測データとして除去する、請求項2に記載の送信装置。
    The sensor is a radar sensor that measures the distance to each measurement point,
    The point cloud data acquisition unit acquires the point cloud data including, as the measurement data, the distances to the respective measurement points in the plurality of measurement points,
    The measurement data removal unit has a variation in curvature of a locus of the measurement point calculated based on the point cloud data acquired by the point cloud data acquisition unit within a predetermined range, and the length of the locus is predetermined. The transmission device according to claim 2, wherein when the length threshold is exceeded, the measurement data of the measurement points constituting the trajectory is removed as the measurement data of the measurement points on the ground.
  7.  前記センサは、前記車両が走行する道路の路側に設置されている、請求項1~請求項6のいずれか1項に記載の送信装置。 The transmitting device according to any one of claims 1 to 6, wherein the sensor is installed on a roadside of a road on which the vehicle travels.
  8.  前記計測データ除去部は、前記センサを基準とした所定の角度範囲内に含まれる計測点の計測データを除去する、請求項7に記載の送信装置。 The transmission device according to claim 7, wherein the measurement data removal unit removes measurement data of measurement points included in a predetermined angle range based on the sensor.
  9.  さらに、
     前記所定の角度範囲を記憶している領域情報記憶部を備え、
     前記計測データ除去部は、前記領域情報記憶部に記憶されている前記所定の角度範囲に基づいて前記計測データを除去する、請求項8に記載の送信装置。
    further,
    An area information storage unit storing the predetermined angle range;
    The transmission device according to claim 8, wherein the measurement data removal unit removes the measurement data based on the predetermined angle range stored in the area information storage unit.
  10.  さらに、
     外部装置から、前記所定の角度範囲を取得する領域情報取得部を備え、
     前記計測データ除去部は、前記領域情報取得部が取得した前記所定の角度範囲に基づいて前記計測データを除去する、請求項8に記載の送信装置。
    further,
    An area information acquisition unit for acquiring the predetermined angle range from an external device;
    The transmission device according to claim 8, wherein the measurement data removal unit removes the measurement data based on the predetermined angle range acquired by the area information acquisition unit.
  11.  前記センサは、前記車両に設置されている、請求項1~請求項6のいずれか1項に記載の送信装置。 The transmitter according to any one of claims 1 to 6, wherein the sensor is installed in the vehicle.
  12.  前記計測データ除去部は、所定の位置座標に存在する計測点の計測データを除去する、請求項7または請求項11に記載の送信装置。 The transmission device according to claim 7, wherein the measurement data removal unit removes measurement data of measurement points existing at predetermined position coordinates.
  13.  前記計測データ除去部は、所定の位置座標で定義される図形領域に含まれる計測点の計測データを除去する、請求項7または請求項11に記載の送信装置。 The transmission device according to claim 7, wherein the measurement data removal unit removes measurement data of measurement points included in a graphic area defined by predetermined position coordinates.
  14.  さらに、
     前記所定の位置座標を記憶している領域情報記憶部を備え、
     前記計測データ除去部は、前記領域情報記憶部に記憶されている前記所定の位置座標に基づいて前記計測データを除去する、請求項12または請求項13に記載の送信装置。
    further,
    An area information storage unit storing the predetermined position coordinates;
    The transmission device according to claim 12, wherein the measurement data removal unit removes the measurement data based on the predetermined position coordinate stored in the area information storage unit.
  15.  さらに、
     外部装置から、前記所定の位置座標を取得する領域情報取得部を備え、
     前記計測データ除去部は、前記領域情報取得部が取得した前記所定の位置座標に基づいて前記計測データを除去する、請求項12または請求項13に記載の送信装置。
    further,
    An area information acquisition unit for acquiring the predetermined position coordinates from an external device;
    The transmission device according to claim 12, wherein the measurement data removal unit removes the measurement data based on the predetermined position coordinate acquired by the area information acquisition unit.
  16.  前記センサは、LiDAR方式のレーダセンサである、請求項1~請求項15のいずれか1項に記載の送信装置。 The transmitter according to any one of claims 1 to 15, wherein the sensor is a LiDAR radar sensor.
  17.  前記静的な対象物および前記移動物体の映像を取り込む画像センサを更に備え、
     前記計測データ除去部は、
     前記画像センサによって取り込まれた映像から、前記計測データ除去部によって除去される前記点群データに対応する制限領域の画像データを除去する、
     請求項8~10及び請求項12~15のいずれか1項に記載の送信装置。
    The image processing apparatus further comprises an image sensor for capturing an image of the static object and the moving object,
    The measurement data removal unit
    The image data of the restricted area corresponding to the point cloud data to be removed by the measurement data removing unit is removed from the image captured by the image sensor.
    The transmitter according to any one of claims 8 to 10 and claims 12 to 15.
  18.  請求項1~17のいずれか1項に記載の送信装置と、
     前記送信装置から、センサにより計測された複数の計測点における計測データを含む点群データを受信するサーバとを備える、点群データ収集システム。
    The transmitter according to any one of claims 1 to 17;
    A point cloud data collection system, comprising: a server that receives point cloud data including measurement data at a plurality of measurement points measured by sensors from the transmission device.
  19.  コンピュータを、
     静的な対象物の計測点までの距離、および車両または歩行者が通過することのできる領域内の移動物体の計測点までの距離、を計測するセンサにより計測された複数の計測点における計測データを含む点群データを取得する点群データ取得部と、
     前記点群データ取得部が取得した前記点群データから、所定の領域に含まれる計測点の計測データを除去する計測データ除去部と、
     前記計測データ除去部により前記計測データが除去された後の前記点群データを、サーバに送信する点群データ送信部として機能させるための、コンピュータプログラム。
     
    Computer,
    Measurement data at multiple measurement points measured by sensors that measure the distance to the measurement point of the static object and the distance to the measurement point of the moving object within the area where the vehicle or pedestrian can pass A point cloud data acquisition unit that acquires point cloud data including
    A measurement data removal unit that removes measurement data of measurement points included in a predetermined area from the point cloud data acquired by the point cloud data acquisition unit;
    A computer program for causing the point cloud data, from which the measurement data has been removed by the measurement data removing unit, to be transmitted to a server as a point cloud data transmitting unit.
PCT/JP2018/045211 2017-12-25 2018-12-10 Transmission device, point group data collection system, and computer program WO2019131075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-247288 2017-12-25
JP2017247288A JP2021043475A (en) 2017-12-25 2017-12-25 Transmitter, point-group data collecting system, and computer program

Publications (1)

Publication Number Publication Date
WO2019131075A1 true WO2019131075A1 (en) 2019-07-04

Family

ID=67063533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045211 WO2019131075A1 (en) 2017-12-25 2018-12-10 Transmission device, point group data collection system, and computer program

Country Status (2)

Country Link
JP (1) JP2021043475A (en)
WO (1) WO2019131075A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021019653A1 (en) * 2019-07-29 2021-02-04
JP2021147129A (en) * 2020-03-17 2021-09-27 Jfeエンジニアリング株式会社 Management device, management method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205179B2 (en) * 2018-11-19 2023-01-17 株式会社Ihi Monitoring system
WO2023063208A1 (en) * 2021-10-15 2023-04-20 学校法人 芝浦工業大学 Image sensor data control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046449A1 (en) * 2011-09-30 2013-04-04 トヨタ自動車株式会社 Driving assistance system
JP2015197329A (en) * 2014-03-31 2015-11-09 三菱重工業株式会社 Data transmission system, data transmission apparatus, data transmission method and data transmission program
JP2017090239A (en) * 2015-11-10 2017-05-25 パイオニア株式会社 Information processing device, control method, program, and storage media
JP2018092472A (en) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 Distributed data processing system, center server, edge server, mobile terminal, and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046449A1 (en) * 2011-09-30 2013-04-04 トヨタ自動車株式会社 Driving assistance system
JP2015197329A (en) * 2014-03-31 2015-11-09 三菱重工業株式会社 Data transmission system, data transmission apparatus, data transmission method and data transmission program
JP2017090239A (en) * 2015-11-10 2017-05-25 パイオニア株式会社 Information processing device, control method, program, and storage media
JP2018092472A (en) * 2016-12-06 2018-06-14 トヨタ自動車株式会社 Distributed data processing system, center server, edge server, mobile terminal, and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021019653A1 (en) * 2019-07-29 2021-02-04
WO2021019653A1 (en) * 2019-07-29 2021-02-04 日本電信電話株式会社 Relay server, relay method, and relay program
JP7279793B2 (en) 2019-07-29 2023-05-23 日本電信電話株式会社 Relay server, relay method and relay program
US11917008B2 (en) 2019-07-29 2024-02-27 Nippon Telegraph And Telephone Corporation Relay server, relay method, and relay program
JP2021147129A (en) * 2020-03-17 2021-09-27 Jfeエンジニアリング株式会社 Management device, management method, and program
JP7459582B2 (en) 2020-03-17 2024-04-02 Jfeエンジニアリング株式会社 Management device, management method, and program

Also Published As

Publication number Publication date
JP2021043475A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US10349011B2 (en) System and method for improved obstacle awareness in using a V2X communications system
US10613547B2 (en) System and method for improved obstacle awareness in using a V2X communications system
US10229590B2 (en) System and method for improved obstable awareness in using a V2X communications system
CN108738021B (en) Communication system, in-vehicle device, and recording medium on which program is recorded
CN107731001B (en) Communication method and server
US10810807B2 (en) Data collection system and data center
WO2019131075A1 (en) Transmission device, point group data collection system, and computer program
WO2017145650A1 (en) In-vehicle device and road anomaly warning system
US20210014643A1 (en) Communication control device, communication control method, and computer program
US9373255B2 (en) Method and system for producing an up-to-date situation depiction
JP6687169B2 (en) Information generating device, information generating method, computer program, and wireless communication system
US10917808B2 (en) Extra-vehicular communication device, onboard device, onboard communication system, communication control method, and communication control program
JP6841263B2 (en) Travel plan generator, travel plan generation method, and control program
CN111724616B (en) Method and device for acquiring and sharing data based on artificial intelligence
US20230030446A1 (en) Remote driving method, apparatus, and system, device, and medium
CN111497853B (en) System and method for sensor diagnostics
JP2023536062A (en) Techniques for managing data delivery in V2X environments
CN114041176A (en) Security performance evaluation device, security performance evaluation method, information processing device, and information processing method
JP2019079453A (en) Information generation system, information generation apparatus, information generation method, and computer program
JP2020091652A (en) Information providing system, server, and computer program
CN114937351B (en) Motorcade control method and device, storage medium, chip, electronic equipment and vehicle
JP2019079454A (en) Vehicle control system, function notification apparatus, function notification method, and computer program
JP7401217B2 (en) Base station, traffic communication system, and traffic management method
US20240127633A1 (en) Dynamic autonomous vehicle modem orchestration
JP2024017804A (en) In-vehicle equipment, roadside equipment, road-to-vehicle communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP