WO2019130833A1 - Conductive material, conductive member, electrode leg, and biological information measurement electrode - Google Patents

Conductive material, conductive member, electrode leg, and biological information measurement electrode Download PDF

Info

Publication number
WO2019130833A1
WO2019130833A1 PCT/JP2018/041220 JP2018041220W WO2019130833A1 WO 2019130833 A1 WO2019130833 A1 WO 2019130833A1 JP 2018041220 W JP2018041220 W JP 2018041220W WO 2019130833 A1 WO2019130833 A1 WO 2019130833A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
biological information
conductive layer
base
conductive
Prior art date
Application number
PCT/JP2018/041220
Other languages
French (fr)
Japanese (ja)
Inventor
三森 健一
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2019562813A priority Critical patent/JP6821058B2/en
Publication of WO2019130833A1 publication Critical patent/WO2019130833A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]

Definitions

  • the present invention relates to a conductive material, a conductive material, an electrode leg, and an electrode for measuring biological information.
  • an electrode for measuring biological information
  • biological information such as brain waves, pulse waves, electrocardiograms, electromyography and body fat.
  • an electrode for measuring biological information is attached to a living body (skin), an electrical signal related to biological information is obtained by the electrode for measuring biological information, and biological information (for example, an electroencephalogram or the like) is measured.
  • an electrode which forms a conductive polymer film on the surface of a protrusion of the electrode to impart conductivity, and detects a biological signal (for example, , Patent Document 1).
  • the contact resistance (contact impedance) generated between the conductive polymer film and the living body is lower in the case where the conductive polymer film is wet with water than in the case where the conductive polymer film is not wet with water.
  • the conductive polymer film used for the electrode of Patent Document 1 has low hydrophilicity and poor wettability to water. Therefore, the conductive polymer membrane tends not to be in stable contact with the living body, and the conduction between the conductive polymer membrane and the living body tends to be difficult to stabilize. If the conduction between the conductive polymer film and the living body is not stable, it may not be possible to stably measure the biological information.
  • the biological information measurement electrode is used in contact with a living body, it is necessary to be clean at the time of use. Therefore, every time the biological information measurement electrode is used, generally, cleaning liquid such as alcohol is used to wipe off the moisture, dirt, etc. remaining on the surface of the electrode for the purpose of cleaning the biological information measurement electrode in advance. ing.
  • the conductive polymer film used for the electrode of Patent Document 1 is easily worn. Therefore, if you wipe the surface of the protrusion repeatedly when wiping off the water droplets or dirt remaining on the surface of the protrusion of the electrode, the conductive polymer film may be worn away and part of the conductive polymer film may be peeled off There is sex. As a result, since the conductive polymer film remaining on the surface of the protrusion and the living body do not contact stably, it becomes difficult for the conductive polymer film and the living body to conduct. On the other hand, when a part of the conductive polymer film peels off, the surface of the exposed protrusion comes in contact with the living body.
  • the contact impedance generated between the projection of the electrode and the skin tends to be higher than the contact impedance generated between the conductive polymer film and the skin. Therefore, when contact of the conductive polymer film with the living body is slight, it may not be possible to stably measure biological information.
  • An aspect of the present invention aims to provide a conductive material capable of stably measuring biological information.
  • One aspect of a conductive material according to the present invention is a conductive material provided on at least the surface of a biological information measuring electrode having a region capable of being in contact with a living body, which includes a fiber and a conductive polymer. .
  • Another aspect of the conductive material according to the present invention is a conductive material using the above-described conductive material, and is formed by including the fiber and a binder having the conductive polymer that bonds the fibers. And have a large number of pores.
  • Another aspect of the biological information measuring electrode according to the present invention is a biological information measuring electrode having a region capable of being in contact with a living body, and a conductive layer using the above-described conductive material is formed on the surface of the region.
  • the conductive layer includes the fibers dispersed in a matrix of a synthetic resin containing the conductive polymer.
  • One aspect of the conductive member according to the present invention can stably measure biological information.
  • One aspect of the conductive material according to the present invention can stably measure biological information.
  • One aspect of the biological information measuring electrode according to the present invention can improve the wear resistance of the conductive layer formed on the surface of the area that can be in contact with the living body. Thereby, biological information can be measured stably.
  • FIG. 2 is a cross-sectional view taken along line II of FIG. It is an optical microscope photograph which shows the state which installed the electrically conductive material on the carbon base material. It is the SEM photograph which expanded and looked at the electrically conductive material. It is a flowchart which shows the manufacturing method of the electrically-conductive material which concerns on 1st Embodiment. It is a perspective view of the electrode leg concerning 2nd Embodiment. It is II-II sectional drawing of FIG. It is a fragmentary sectional view which shows an example of the other structure of an electrode leg. It is a flowchart which shows the manufacturing method of the electrode leg concerning 2nd Embodiment.
  • FIG. 14 is a cross-sectional view taken along the line III-III in FIG. It is explanatory drawing which shows an example of the cross section of the front end groove part of a front-end
  • FIG. 1 It is explanatory drawing which shows the state which the liquid hold
  • FIG. 26 is a cross-sectional view taken along line IV-IV of FIG. It is a figure which shows an example which measures a test subject's brain waves using the test
  • FIG. 30 is a VV cross-sectional view of FIG. 29. It is a fragmentary sectional view of the electrode leg in which the base conductive layer was formed.
  • It is a flowchart which shows the manufacturing method of the electrode for biological information measurement which concerns on 4th Embodiment. It is a figure which shows an example of the state by which the raw material supply channel
  • FIG. 37 is a cross-sectional view taken along the line VI-VI of FIG. It is explanatory drawing which shows an example of the state which made the front-end
  • FIG. 45 is a cross-sectional view taken along line VII-VII of FIG. It is a fragmentary sectional view of the electrode leg in which the base conductive layer was formed. It is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 6th Embodiment. It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement.
  • FIG. 1 It is a perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. It is a VIII-VIII sectional view of FIG. It is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 7th Embodiment. It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. It is a figure which shows the test result of the abrasion resistance of the electrode for biological information measurement. It is a figure which shows the test result of the measurement precision of the electrode for biological information measurement.
  • the + Z axis direction may be referred to as the upper side
  • the ⁇ Z axis direction may be referred to as the lower side.
  • the conductive material according to the embodiment of the present invention is provided on the surface of at least a region of a biological information measurement electrode having a region capable of being in contact with a living body, and includes a fiber and a conductive polymer. According to the conductive member according to one embodiment, biological information can be stably measured.
  • the conductive material is used as a conductive material in the first embodiment, and is used as a conductive layer in the second to seventh embodiments. Each embodiment will be described below.
  • a living body refers to a human body or a living body other than the human body, and the tip of the electrode leg is brought into contact with the scalp, forehead, skin, and the like.
  • FIG. 1 is a perspective view of a conductive material according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • FIG. 3 is an optical micrograph showing a state in which the conductive material is placed on the carbon base CF
  • FIG. 4 is an SEM photograph showing the conductive material in an enlarged manner.
  • the dashed-dotted line in FIG. 1 and FIG. 2 shows the central axis J of a electrically conductive material.
  • the central axis J is an axis serving as a center when the conductive material is installed in a living body.
  • the electrically-conductive material 10 which concerns on this embodiment is formed in the surface of the front-end
  • the tip end portion 131 of the electrode leg 13 is formed in a curved shape having a rounded end, and is formed in a dome shape in FIGS. 1 and 2.
  • the conductive material 10 is formed in a dome shape so as to correspond to the shape of the tip portion 131.
  • the tip means the tip in contact with the living body and the peripheral region of the tip which may come in contact with the living body when the conductive material 10 is inclined, as shown in FIG. In 2, the entire outer surface of the conductive material 10 is obtained.
  • the tip end portion is referred to as “a region A capable of being in contact with a living body (hereinafter, referred to as“ region A ”)”.
  • the conductive material 10 is formed including a fiber and a binder, and has a large number of pores 11.
  • the conductive material 10 has a large number of pores 11 on its surface and inside, and is formed like a sponge.
  • the conductive material 10 is schematically illustrated as a film, but as shown in FIG. 3, the conductive material 10 is formed in a sponge shape having elasticity.
  • the pores 11 are schematically illustrated as black dots, but as shown in FIG. 4, there are innumerable fine gaps.
  • the conductive material 10 can hold a liquid containing water in the pores 11 by having the pores 11.
  • the liquid contained in the pores 11 may be any liquid other than water as long as it is a liquid that does not harm the living body, such as an electrolytic solution (saline solution).
  • a metal fiber made of metal such as Au, Pt, Ag, Cu, Al, Ni, Si, Co, Zr, Ti, W, or steel; Al 2 O 3 , NiO, SiO 2 metal oxide fibers composed of metal oxides such as TiO 2 , Ti 2 O 3 , ZnO, ZrO 2 , WO 3 , or Y 2 O 3 ; carbon fibers; SiC, ZrC, Al 4 C 3 , CaC 2.
  • Carbide fibers made of carbides such as WC, TiC, HfC, VC, TaC, or NbC; organic fibers such as polyester fibers can be used.
  • a fiber having an average thickness (average diameter) of 1 nm to 100 ⁇ m, preferably 1 nm to 30 ⁇ m, more preferably 1 nm to 5 ⁇ m is generally used. It is.
  • the thickness of the fiber can be determined using a light scattering device, a laser microscope, a scanning electron microscope (SEM) or the like. For example, observe the fiber with an SEM or the like, and measure the length in the direction orthogonal to the longitudinal direction of the predetermined number (for example, 10 to 200) of fibers arbitrarily selected (the length in the radial direction of the fiber) The average diameter is determined by calculating the average value.
  • the fiber is preferably a nanofiber.
  • nanofibers are intertwined better than fibers, and finer pores 11 are formed in those bound with a binder. Therefore, the liquid containing water can be retained in the pores 11 more.
  • nanofiber refers to the average diameter of 1 nm to 1000 nm, preferably 5 nm to 100 nm, more preferably 10 nm to 50 nm when the thickness of the nanofibers is represented by the equivalent circle diameter. .
  • the average diameter of the nanofibers can be obtained by measurement using the same method as in the case of measuring the thickness of the fibers.
  • the aspect ratio of the nanofibers is preferably 1: 100 to 1: 1000, more preferably 1: 100 to 1: 300. If the aspect ratio of the nanofibers is in the range of 1: 100 to 1: 1000, it is possible to suppress the dispersion failure in the coating layer (see the coating process described later) for forming the conductive material 10. As a result, the nanofibers in the conductive material 10 are uniformly present, and the strength of the conductive material 10 is enhanced.
  • the nanofibers are, for example, metal nanowires composed of the same kind of metal as the metal used for the above-mentioned metal fiber; metal oxide nanofibers composed of the same kind of metal as the metal used for the above-mentioned metal oxide fiber Carbon nanofibers, carbon nanotubes, carbon nanohorns, cellulose nanofibers, polyester nanofibers, etc. It can be formed using plastic nanofibers. Above all, in the present embodiment, it is preferable to use a cellulose nanofiber.
  • Cellulose nanofibers are cellulose nanofibers obtained by mechanically disintegrating water-insoluble natural cellulose fibers in the presence of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), Cellulose nanofibers (TEMPO oxidized cellulose nanofibers) obtained by allowing an oxidizing agent such as hypochlorous acid to act to advance the oxidation reaction, or cellulose obtained by hydrophobizing the surface of natural cellulose fibers There are nanofibers (surface hydrophobized cellulose nanofibers) and the like. In the present embodiment, a cellulose nanofiber obtained by mechanical disintegration treatment is preferable.
  • TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl
  • TEMPO oxidized cellulose nanofibers obtained by allowing an oxidizing agent such as hypochlorous acid to act to advance the oxidation reaction
  • cellulose obtained by hydrophobizing the surface of natural cellulose fibers There are nanofibers (surface hydrophobized cellulose nanofibers) and the like
  • TEMPO oxidized cellulose nanofibers it is considered that part of hydroxyl groups of cellulose nanofibers is substituted by carboxyl groups, and swelling when touched with water, and the strength of the conductive material 10 can not be maintained.
  • surface-hydrophobicized cellulose nanofibers if the hydrophobization proceeds too much, the hydrophilicity with water or the electrolyte solution may be lost, and the measurement may be unstable.
  • a cellulose nanofiber obtained by mechanical disintegration treatment a cellulose nanofiber (ACC cellulose nanofiber) obtained by cleaving a natural cellulose fiber by using an aqueous counter collision (ACC) method Is preferred.
  • the ACC method is a method of preparing a translucent aqueous dispersion by rapidly dispersing and dispersing natural cellulose fibers in water from the nano level to the molecular level.
  • dispersions of natural cellulose fibers are simultaneously sprayed from one pair of opposing nozzles toward one point under high pressure (for example, about 70 to 250 MPa) to cause jet streams to collide at high speed.
  • high pressure for example, about 70 to 250 MPa
  • the surface of the natural cellulose fiber is peeled off to be nanofibrillated (nano-refined), and the affinity with water, which is the carrier, is improved to finally bring about a state close to dissolution.
  • ACC cellulose nanofibers are obtained.
  • the hydroxyl groups on the fiber surface exhibit hydrophilicity, and the oxygen binding between cellulose molecules exhibits hydrophobicity.
  • ACC cellulose nanofibers have both hydrophilic and hydrophobic sites exposed on the fiber surface and have amphiphilic properties. Since ACC cellulose nanofibers have the above-mentioned properties, they can be dispersed more uniformly in an aqueous dispersion.
  • the conductive material 10 in which the ACC cellulose nanofibers are uniformly present and to obtain the stable conductive material 10 that does not absorb moisture and swell excessively. Therefore, the conductive material 10 containing ACC cellulose nanofibers can exhibit conductivity more stably and can have strength.
  • natural cellulose fibers pulp fibers such as bamboo, rattan or hemp, and wood pulp fibers such as softwood and hardwood can be used.
  • ACC cellulose nanofibers the ratio of the hydrophilic site to the hydrophobic site exposed on the fiber surface differs depending on the type of natural cellulose fiber used.
  • natural cellulose fibers in the case of natural cellulose fibers derived from bamboo, the proportion of hydrophobic sites exposed on the fiber surface is higher than that of hydrophilic sites, and it is thought that amphipathic characteristics appear strongly. Therefore, as natural cellulose fiber used as a raw material of ACC cellulose nanofiber, it is preferable to use natural cellulose fiber derived from bamboo.
  • the cellulose nanofibers may be used in the state of being dispersed in a solution or may be used in the form of powder.
  • the binder of the conductive material 10 functions as a binder for binding the fibers together, and includes a conductive polymer and a synthetic resin (binder resin).
  • the binder resin may not be contained when the binder is sufficient to bond the fibers with each other and the shape of the conductive material 10 can be maintained.
  • PEDOT / PSS polyacetylene, polyaniline, polythiophene in which polystyrenesulfonic acid (poly 4-styrene sulfonate; PSS) is doped to poly3,4-ethylenedioxythiophene (PEDOT) , Polyphenylene vinylene, or polypyrrole can be used.
  • PSS polystyrenesulfonic acid
  • PEDOT poly 3,4-ethylenedioxythiophene
  • PEDOT poly3,4-ethylenedioxythiophene
  • PEDOT polyphenylene vinylene
  • polypyrrole polypyrrole
  • thermosetting resin As binder resin of a binder, various resin, such as a thermoplastic resin, a thermosetting resin, and a photocurable resin, can be used.
  • a thermosetting resin is used.
  • a thermoplastic resin for example, polycarbonate resin, polyarylate resin, styrene-butadiene resin, styrene-acrylonitrile resin, styrene-maleic acid resin, acrylic acid resin, styrene-acrylic acid resin, polyethylene resin, ethylene-vinyl acetate resin , Chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer resin, vinyl chloride-vinyl acetate resin, alkyd resin, polyamide resin, urethane resin, polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyester resin, Or polyether resin.
  • thermosetting resin a silicone resin, an epoxy resin, a phenol resin, a urea resin, or a melamine resin is mentioned, for example.
  • a photocurable resin for example, an epoxy-acrylic acid resin (more specifically, an acrylic acid derivative adduct of an epoxy compound, etc.) or a urethane-acrylic acid resin (more specifically, a urethane compound) Acrylic acid derivative adducts) and the like.
  • resins with small curing shrinkage are preferable, and, for example, silicone resins are preferable.
  • One of these binder resins may be used alone, or two or more thereof may be used in combination.
  • a cellulose nanofiber is used as a fiber
  • PEDOT / PSS is used as a conductive polymer
  • a silicone resin is used as a binder resin.
  • the conductive material 10 can be used as a cellulose sponge body formed to include cellulose nanofibers and PEDOT / PSS.
  • the mixing ratio of binder to fiber is preferably in the range of 3: 7 to 9: 1. Within this range, the conductive material 10 can maintain conductivity and can reduce the amount of conductive polymer used.
  • the mixing ratio of the binder and the cellulose nanofiber is preferably in the range of 3: 7 to 9: 1, and in the range of 5: 5 to 8: 2 More preferable.
  • the conductive material 10 can maintain conductivity and can reduce the amount of conductive polymer used.
  • the cost of cellulose nanofibers is 1/10 or less of the cost of PEDOT / PSS, so the ratio of PEDOT / PSS used in the unit thickness of the conductive material 10 is It is lowered.
  • the average thickness of the conductive material 10 is preferably 1 ⁇ m to 30 ⁇ m. Within this range, conductivity can be provided, and when the conductive material 10 is provided at the tip end portion 131 of the electrode leg 13, an electrical signal transmitted from a living body can be stably energized. Moreover, since the conductive material 10 contains a fiber, the average thickness of the conductive material 10 can be easily made 10 ⁇ m or more. The thicker the average thickness of the conductive material 10, the higher the conductivity and the more durable the wear resistance. On the other hand, the thicker the average thickness of the conductive material 10, the more expensive the material cost and the process cost, and the balance should be taken into consideration to determine the upper limit average thickness.
  • the average thickness is more preferably 5 ⁇ m to 27 ⁇ m, still more preferably 10 ⁇ m to 25 ⁇ m, and most preferably about 20 ⁇ m.
  • the average thickness of the conductive material 10 refers to the average value of the thickness of the conductive material 10. For example, in the cross section of the conductive material 10, when several places (for example, six places) are measured in arbitrary places, the average value of the thickness of these measurement points is said. Further, in the present embodiment, the thickness refers to the length of the layer in the direction perpendicular to the contact surface of the conductive material 10.
  • the conductive material 10 configured as described above is formed of a fiber and a binder containing a binder resin and a conductive polymer. A large number of fibers are fixed by a binder and connected in a network, and a plurality of pores 11 are formed on the surface and inside of the conductive material 10, and the conductive material 10 is formed in a so-called sponge shape. Therefore, the conductive material 10 can contain a solution in the pores 11.
  • the conductive material 10 is provided on the surface of the tip portion 131 of the electrode leg 13 of the biological information measurement electrode and the solution is contained in the pores 11, the conductive material 10 is brought into contact with the surface of the living body.
  • the solution held in the pores 11 of the material 10 flows and spreads on the surface of the living body in contact with the conductive material 10.
  • the contact impedance between the living body and the conductive material 10 can be lowered, so that an electrical signal from the living body can be easily obtained. Therefore, the conductive material 10 can maintain electrical connection with the living body. Therefore, biological information can be stably measured by using the conductive material 10 for the electrode leg 13 of the biological information measurement electrode.
  • the conductive material 10 when the conductive material 10 is brought into contact with the scalp or forehead as a living body, the conductive material 10 includes a solution, so that even if the surface of the scalp or forehead is dry, the conductive material 10 can measure the contact impedance by electroencephalogram. (E.g., less than 200 k.OMEGA.). Therefore, if the conductive material 10 is used for the electrode leg 13 of the biological information measurement electrode, an electroencephalogram can be stably obtained, and thus the electroconductive material 10 can be suitably used for electroencephalogram measurement.
  • the fiber has higher strength than the binder and has high abrasion resistance. Therefore, when the conductive material 10 is attached to the tip end portion 131 of the electrode leg 13 of the biological information measurement electrode and used, even if the surface of the conductive material 10 is repeatedly rubbed during use or washing, the surface of the conductive material 10 is used. Can be suppressed.
  • the conductive material 10 has high elasticity.
  • the conductive material 10 is attached to the tip end portion 131 of the electrode leg 13 of the biological information measurement electrode and used, when the conductive material 10 comes in contact with a living body, the conductive material 10 elastically deforms. Thereby, since the pressing force on the living body is alleviated, the conductive material 10 can be brought into soft contact with the living body, and pain in the subject can be alleviated.
  • the conductive material 10 can be reliably contacted with the living body by being elastically deformed.
  • the conductive material 10 has a large number of pores 11 and is formed like a sponge.
  • the fibers contained in the conductive material 10 are auxiliaryly bonded with a cured product of a binder resin in addition to the conductive polymer. Therefore, the conductive material 10 can be made stronger than the case where the binder resin is not included. Therefore, the conductive material 10 can be made into an elastic body having an appropriate hardness while improving the wear resistance.
  • the conductive material 10 contains a fiber.
  • the conductive material 10 can reduce the amount of conductive polymer per unit thickness as compared to the case where the conductive material 10 does not include fiber, thereby reducing the necessary cost per unit layer. Therefore, the manufacturing cost of the conductive material 10 can be suppressed.
  • a biological information measurement electrode including a conductive material formed of metal can not be used for a subject having metal allergy.
  • the conductive material 10 is formed to include the binder, the user can receive the conductive material 10 even if the conductive material 10 is attached to the tip end portion 131 of the electrode leg 13 of the biological information measurement electrode and brought into contact with the living body. It does not cause metal allergy and is safe. Therefore, the conductive material 10 can be used safely for the subject.
  • the fibers included in the conductive material 10 are nanofibers
  • the nanofibers are closely connected to each other at a shorter distance, so that a smaller gap is likely to be formed between the nanofibers. Therefore, the conductive material 10 can have many smaller pores. As a result, the conductive material 10 can more easily contain the solution therein, so that the electrical connection with the living body can be stably maintained.
  • nanofibers can be more finely and uniformly present in the conductive material 10 than fibers. Therefore, since many nanofibers can be connected in more detail (entangled) in the conductive material 10 than fibers, the strength of the conductive material 10 can be increased. Therefore, the wear resistance of the conductive material 10 can be further improved.
  • the fiber contained in the conductive material 10 is a cellulose nanofiber
  • the cellulose nanofiber has high hydrophilicity, The solution can be more easily contained inside the material 10. Therefore, by using cellulose nanofibers as the fibers, the electrical connection with the living body can be maintained more stably. Moreover, since cellulose nanofibers have high resistance to alcohol, alcohol can be washed when washing the conductive material 10.
  • FIG. 5 is a flowchart showing a method of manufacturing a conductive material according to the present embodiment.
  • the method of manufacturing a conductive material according to the present embodiment includes a mixing step (step S11), a solidifying step (step S12), and a curing step (step S13). Each step will be described below.
  • step S11 mixing including a fiber, a binder (a conductive polymer and a thermosetting resin which is a binder resin) for bonding the fibers, and a solvent as a solvent for dispersing the fiber
  • a solution is prepared by adding fibers, a conductive polymer, and a thermosetting resin to a solvent and mixing them, and dispersing the fiber, the conductive polymer, and the thermosetting resin in the solvent.
  • a bead mill, a roll mill, a ball mill, or an ultrasonic disperser can be used for preparation of the mixed solution.
  • a dispersion medium consisting only of water, or a dispersion medium consisting of water and an organic solvent can be used.
  • the organic solvent include alcohols such as benzene and methanol. Further, in the dispersion medium, only one of the above-mentioned organic solvents may be contained, or two or more may be contained.
  • the content of the solvent in the mixed solution is preferably in the range of 80 to 95% by mass.
  • the mixing time of the fiber, conductive polymer, thermosetting resin, and solvent is preferably long to ensure the dispersibility of the fiber, conductive polymer, and thermosetting resin in the solvent, but production is preferable. It is set appropriately in consideration of the balance with the sex.
  • the mixed solution is dried using a lyophilization method to obtain a porous body having a large number of pores.
  • the solidification step (step S12) includes a freezing step (step S121) and a dehydration step (step S122).
  • lyophilization is a method of freezing a mixed solution and drying the mixed solution by reducing the pressure in the frozen state to sublime the solvent in the mixed solution.
  • step S121 In the freezing step (step S121) of the solidification step (step S12), after flowing the mixed solution into the mold, the mixed solution is frozen in a state of being put into the mold to freeze water contained in the mixed solution (cooling ).
  • the mold containing the mixed solution is placed under reduced pressure and under a cold atmosphere to freeze the solvent.
  • the freezing temperature of the mixed solution should be below the freezing point of the solvent in the mixed solution, preferably below -40.degree. C. and more preferably below -80.degree.
  • the pressure is preferably 100 Pa or less, more preferably 10 Pa or less, and still more preferably in a vacuum state. When the pressure exceeds 100 Pa, the solvent in the frozen mixed solution may be melted.
  • the freezing time of the mixed solution is preferably about 12 to 48 hours in order to ensure that the water contained in the mixed solution is cooled and to achieve the productivity of the porous body.
  • step S122 the solvent in the frozen mixed solution is sublimed under reduced pressure.
  • the solvent is removed in a state in which the fibers are bound by the conductive polymer, and the portion from which the solvent is removed becomes a large number of fine spaces.
  • a porous body having a large number of pores and containing an uncured binder resin is obtained.
  • the porous body is heated to cure the uncured binder resin contained in the porous body.
  • the temperature at which the porous body is heated may be any temperature at which the thermosetting resin which is the binder resin can be cured.
  • the temperature is preferably 80 to 200 ° C., and more preferably 100 to 150 ° C. More preferably, the temperature is 130 ° C.
  • the conductive material 10 having a large number of pores 11 is obtained.
  • the binder resin is a thermosetting resin
  • the porous body is heated in the curing step (step S13).
  • the binder resin is a photocurable resin
  • curing is performed.
  • the porous body is irradiated with ultraviolet light.
  • the binder resin is a thermoplastic resin
  • the binder resin is cured at the same time as the porous body is obtained in the solidification step (step S12), and thus the curing step (step S13) is omitted.
  • Electrode leg 20A according to a second embodiment An electrode leg 20A according to a second embodiment will be described.
  • the electrode leg 20A according to the present embodiment is obtained by attaching the conductive material 10 according to the first embodiment as the conductive layer (first conductive layer) 22 to the tip of the electrode leg 20A.
  • 6 is a perspective view of an electrode leg 20A according to a second embodiment
  • FIG. 7 is a cross-sectional view taken along the line II-II of FIG.
  • the electrode leg 20A according to the present embodiment, as shown in FIGS. 6 and 7, has an electrode base (base body) 21A and a conductive layer 22 on the surface of the tip portion 211 which is the region A of the electrode base 21A. .
  • the electrode base 21A of the electrode leg 20A is detachably attached to the biological information measurement electrode.
  • the electrode base 21A is formed in a cylindrical shape, and has a tip 211 capable of contacting the scalp at its tip.
  • the tip end portion 211 of the electrode base 21A is formed in a curved shape having a rounded end, and in the present embodiment, is formed in a dome shape.
  • the shape of the tip end portion 211 may be a conical shape having a rounded shape as another curved surface shape, or may be a flat shape having an end face which can be in contact with a living body.
  • the tip end portion 312a means the tip end in contact with the scalp which is a living body and the peripheral region of the tip which may come in contact with the living body when the electrode leg 20A is inclined.
  • the electrode substrate 21A can be formed using a conductive elastomer or an insulating material.
  • the insulating material refers to a material which does not have conductivity or which has extremely low conductivity.
  • the electrode base 21A is integrally formed of a conductive elastomer.
  • the type of the conductive elastomer is not particularly limited.
  • the conductive elastomer is obtained, for example, by melt mixing the conductive filler and the nonconductive elastomer.
  • the electrode base 21A has a low elastic modulus by being molded including a nonconductive elastomer having rubber elasticity. Therefore, when the electrode leg 20A is used as an electrode for measuring biological information, the electrode base 21A is easily deformed according to the uneven shape of the surface of the living body, so that contact with the living body can be ensured and the pressing force to the living body is alleviated. it can.
  • the type of the conductive filler described above is not particularly limited as long as it has conductivity.
  • the conductive filler carbon materials such as graphite, carbon black, carbon nanotubes, carbon nanohorns or carbon fibers (carbon fibers); aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, Examples thereof include metals such as titanium and nickel; and conductive ceramics such as a so-called ABO 3 type perovskite-type composite oxide, but the present invention is not limited thereto.
  • These conductive fillers may be used alone or in combination of two or more. From the viewpoint of durability, it is preferable to use a carbon material.
  • non-conductive elastomers examples include silicone rubber, ethylene propylene rubber, ethylene propylene diene rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, chloroprene rubber, acrylonitrile nitrile butadiene rubber, butyl rubber, urethane rubber, or Fluororubber etc. are mentioned. These may be used alone or in combination of two or more. Among these, in terms of durability and the like, it is preferable to use silicone rubber.
  • the insulating material which is not a conductive elastomer the above non-conductive elastomer, polypropylene (PP), polycarbonate (PC), ABS resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), Alternatively, liquid crystal polymer (LCP) or the like can be used.
  • PP polypropylene
  • PC polycarbonate
  • ABS resin polyethylene terephthalate
  • PET polybutylene terephthalate
  • PA polyamide
  • LCP liquid crystal polymer
  • the conductive layer 22 is provided on the surface of the tip end portion 211 of the electrode base 21A. As long as the conductive layer 22 is provided on the surface of the tip portion 211 which is the region A, the region to be formed is not limited. When the electrode base 21A is formed using a conductive elastomer, since the electrode base 21A can ensure conduction, the conductive layer 22 may be formed only on the surface of the tip end portion 211. When the electrode base 21A is formed of an insulating material, the conductive layer 22 may be provided on the entire surface of the electrode base 21A in order to ensure conduction of the electrode base 21A.
  • the conductive layer 22 is formed of the conductive material 10 according to the above-described first embodiment, and has a plurality of pores 221 on the surface and inside thereof.
  • the conductive layer 22 is formed on the tip end portion 211 of the electrode base 21A, and the solution is contained in the pores 221 of the conductive layer 22.
  • the conductive layer 22 is in contact with the surface of the living body, the solution held in the pores 221 of the conductive layer 22 flows to the surface of the living body. Conduction of the conductive layer 22 and the surface of the living body through the solution can significantly lower the contact impedance between the living body and the electrode leg 20A, so that it becomes easy to obtain an electrical signal from the living body, and the living body can be obtained. Can detect electrical signals of higher sensitivity. Therefore, since the electrode leg 20A can stably maintain the electrical connection with the living body, the biological information can be stably measured.
  • the conductive layer 22 is formed of the conductive material 10 according to the first embodiment described above, it has high wear resistance. Therefore, even when the conductive layer 22 on the surface of the tip end portion 211 of the electrode leg 20A is rubbed, the conductive layer 22 can be prevented from being scraped off during use or cleaning of the electrode leg 20A. Therefore, even when the electrode leg 20A is used for a biological information measurement electrode, the conductive layer 22 can stably contact with the living body at the contact portion with the living body, so that the conduction between the conductive layer 22 and the living body is stably maintained. be able to. Therefore, if the electrode leg 20A is used, the electrical connection between the tip end portion 211 of the electrode leg 20A and the living body can be maintained, so that an electrical signal from the living body can be stably obtained.
  • the conductive layer 22 is formed on the tip end portion 211 of the electrode base 21A, but may be formed on another portion of the electrode base 21A as long as it is formed on at least the tip end portion 211. It may be formed on the entire surface of For example, when the electrode base 21A is formed of an insulating material, the conductive layer 22 is formed on the entire surface of the electrode base 21A.
  • FIG. 8 is a view for explaining a modification of the electrode leg 20A according to the second embodiment, and is a partial cross-sectional view of the electrode leg corresponding to the II-II cross-sectional view of FIG.
  • a base conductive layer (second conductive layer) 23 electrically connected to the conductive layer 22 on the entire surface of the electrode base 21A.
  • a conductive polymer similar to the conductive layer 22 can be used as the conductive polymer contained in the base conductive layer 23.
  • the thickness of the base conductive layer 23 only needs to be conductive, and may be, for example, about 200 nm to 1 ⁇ m.
  • the base conductive layer 23 may be electrically connected to the electrode for biological measurement to which the electrode base 21A is connected, and may not be formed on the end face of the electrode base 21A opposite to the tip end portion 211.
  • FIG. 9 is a flowchart showing a method of manufacturing the electrode leg 20A according to the present embodiment.
  • step S21A a leg base manufacturing step of manufacturing the electrode base 21A having conductivity and a conductive layer at the tip portion 211 of the electrode base 21A.
  • step S22A a conductive layer
  • the electrode base 21A is formed using a material for forming the electrode base 21A.
  • a mold corresponding to the shape of the electrode base 21A is used.
  • the electrode base 21A can be formed by using the mold.
  • the conductive layer forming step (step S22A) includes a coating step (step S221) and a solidification step (step S222).
  • a fiber In the coating step (step S221) of the conductive layer forming step (step S22A), a fiber, a conductive polymer that bonds the fibers with one another, a thermosetting resin that is a binder resin, and a solvent as a solvent in which the fiber is dispersed
  • a thermosetting resin that is a binder resin
  • a solvent as a solvent in which the fiber is dispersed
  • the solidifying step (step S222) of the conductive layer forming step (step S22A) can be performed in the same manner as the solidifying step (step S12) of the method of manufacturing the conductive material of the first embodiment shown in FIG.
  • the conductive layer 22 having a large number of pores 221 can be formed on the tip end portion 211 of the electrode base 21A.
  • the electrode leg 20A in which the conductive layer 22 is formed at the tip end portion 211 of the electrode base 21A is obtained.
  • the electrode leg 20A provided with the conductive layer 22 having a large number of pores 221 inside and on the surface is obtained by drying the coating layer formed on the tip end portion 211 of the electrode base 21A using the freeze-drying method. It can be easily obtained.
  • the film thickness of the coating layer formed when the mixed solution is applied once to the tip end portion 211 does not include a fiber. It can be thicker than the thickness of the coating layer formed when the solution is applied once. Since the desired thickness of the conductive layer 22 can be obtained with a small number of application times of the mixed solution, the cost required for forming the application layer in the application step (step S221) can be reduced. In addition, by thickening the thickness of the conductive layer 22, the conductive layer 22 is worn even when the surface of the conductive layer 22 is abraded and worn when the electrode leg 20A is used for a biological information measurement electrode or when the electrode leg 20A is cleaned. It is possible to delay the time until it wears off from the surface of the tip portion 211. As a result, the life of the conductive layer 22 can be further extended.
  • the mixed solution containing cellulose nanofibers and a conductive polymer has good wettability to the electrode substrate 21A and high thixotropy. Therefore, when the conductive layer 22 is formed using a mixed solution containing cellulose nanofibers and a conductive polymer, the thickness of the coated layer formed when the mixed solution is applied to the tip portion 211 once is made thicker. be able to.
  • the film thickness of the coating layer formed in one application of the mixed solution is, for example, about 1.3 to 4 times the film thickness of the coating layer formed by coating a solution not containing cellulose nanofibers. It can be thickened.
  • the conductive layer 22 is formed only at the tip end portion 211 of the electrode base 21A, but in addition to the tip end portion 211, a part of the side surface of the electrode base 21A. Alternatively, the conductive layer 22 may be formed entirely.
  • the conductive layer 22 is formed by freeze-drying the coating layer applied to the tip end portion 211 of the electrode base 21A in the conductive layer forming step (step S22A), but the present invention is not limited thereto.
  • the conductive layer forming step (step S22A) for example, the conductive layer 22 prepared in advance may be attached to the tip end portion 211 of the electrode base 21A.
  • FIG. 10 is another flowchart showing the method of manufacturing the electrode leg according to the present embodiment. As shown in FIG. 10, the method of manufacturing the electrode leg according to the present embodiment includes a leg base producing step (step S21A) and a conductive layer forming step (step S22B).
  • the conductive layer 22 made of the conductive material 10 according to the first embodiment is attached to the tip end portion 211 of the electrode base 21A.
  • the conductive layer 22 is obtained by the method of manufacturing a conductive material according to the first embodiment.
  • the conductive layer 22 may be attached to the tip end portion 211 using an adhesive, or may be fitted and fixed to the tip end portion 211.
  • the electrode leg 20A is obtained by attaching the conductive layer 22 to the tip end portion 211 of the electrode base 21A.
  • FIG. 11 is another flowchart showing the method of manufacturing the electrode leg according to the present embodiment.
  • the method of manufacturing the electrode leg according to the present embodiment includes a leg base manufacturing step (step S21B) and a conductive layer forming step (step S22A).
  • the leg base producing step (step S21B) includes a leg base forming step (step S211) for forming the electrode base 21A, and a surface treatment step (step S212) for activating the surface of the tip end portion 211 of the electrode base 21A.
  • the electrode base 21A is formed using a material for forming the electrode base 21A.
  • the surface treatment step (step S212) the surface of the tip end portion 211 is subjected to activation treatment to improve the adhesion to the conductive layer 22. Details of the surface treatment step (step S212) will be described later in the surface treatment step (step S32) of the method for manufacturing the electrode leg 20B according to the third embodiment shown in FIG.
  • the conductive layer 22 is stably formed on the tip end portion 211 of the electrode base 21A by surface treating the tip end portion 211 of the electrode base 21A in advance before forming the conductive layer 22 on the tip end portion 211 of the electrode base 21A. it can.
  • the electrode base 21A is manufactured using a conductive material
  • the electrode base 21A and the conductive layer 22 are manufactured.
  • the underlying conductive layer 23 is formed between them.
  • the base conductive layer 23 containing a conductive polymer is formed on the surface of the electrode base 21A.
  • the base conductive layer 23 containing a conductive polymer on the surface of the electrode base 21A and the surface of the electrode base 21A is a leg base producing step (step S21A).
  • the conductive layer formation step (step S23) includes a coating step (step S231) and a solidification step (step S232).
  • the conductive layer forming step (step S23) is the same as the conductive layer forming step (step S22A) shown in FIG. 9 described above.
  • the applying step (step S231) and the solidifying step (step S232) are similar to the applying step (step S221) and the solidifying step (step S222) of the conductive layer forming step (step S22A) shown in FIG. 9 described above. is there. Even if the electrode base 21A is formed of an insulating material, the electrode base 21A ensures conduction between the conductive layer 22 and the base conductive layer 23 by forming the base conductive layer 23 on the surface of the electrode base 21A. be able to.
  • the electrode leg according to the present embodiment includes the groove (tip groove portion) 24A provided in the tip end portion 211 which is the region A in the electrode base 21A of the electrode leg 20A according to the second embodiment, and the tip portion 211 other than An auxiliary groove (side groove) 25 provided on the side surface 212 of the electrode leg 20B which is a portion is formed.
  • FIG. 13 is a perspective view showing the appearance of the electrode leg according to the third embodiment
  • FIG. 14 is a front view of the electrode leg according to the third embodiment
  • FIG. It is III sectional drawing.
  • the electrode leg 20B according to the present embodiment includes an electrode base 21B in place of the electrode base 21A shown in FIGS.
  • the electrode base 21B is provided on the electrode base 21A shown in FIGS. 6 and 7 with a groove (tip groove) 24A provided in the tip end portion 211 which is the region A and a side surface 212 of the electrode leg 20B which is a portion other
  • An auxiliary groove (side groove) 25 to be provided is formed.
  • the conductive layer 22 is formed on the surface of the distal end portion 211, and therefore is also formed on the surface of the distal end groove portion 24A.
  • the electrode leg 20B can hold the liquid in the tip groove 24A and the side groove 25 by providing the tip groove 24A and the side groove 25.
  • the liquid contained in the tip groove 24A and the side groove 25 may be the same liquid as the liquid contained in the pore 11.
  • the tip groove portion 24A is formed on the surface of the tip portion 211 of the electrode base 21B.
  • the tip groove portion 24A is formed in a cross shape when the tip portion 211 of the electrode leg 20B is viewed from the tip portion 211 in the + Z-axis direction.
  • the cross-sectional shape of the tip groove portion 24A is formed substantially in a U-shape in a cross-sectional view.
  • the cross-sectional shape of tip groove part 24A may be formed in the substantially V shape in the cross sectional view.
  • the width W1 (see FIG. 16) of the end groove 24A is preferably 10 ⁇ m to 120 ⁇ m. If the width W1 of the end groove 24A is in the above range, the liquid can be held in the end groove 24A even after the conductive layer 22 is formed in the end groove 24A. Further, if the conductive layer 22 is formed in the end groove 24A, for example, even if the end portion 211 of the electrode leg 20B is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter the end groove 24A. Can be reduced. In addition, if the width W1 is within the above range, since the width is smaller than the average thickness of the hair, the penetration of the hair into the tip groove 24A can be reduced. The width W1 of the tip groove 24A is more preferably 20 ⁇ m to 70 ⁇ m, and still more preferably 30 ⁇ m to 50 ⁇ m.
  • the width W1 refers to the maximum value (maximum width) of the width from the bottom of the tip groove 24A to the surface side. Even when the cross-sectional shape of the tip groove 24A is formed in a substantially V-shape in a cross-sectional view, the width W1 refers to the maximum width, that is, the value of the width on the surface of the tip 211.
  • the maximum depth H1 (see FIG. 16) of the tip groove 24A is preferably 10 ⁇ m to 500 ⁇ m. If the maximum depth H1 of the end groove 24A is within the above range, the end groove 24A can have a predetermined depth even if the conductive layer 22 is formed on the end 211 of the electrode leg 20B.
  • the maximum depth H1 of the tip groove 24A is 20 ⁇ m to 300 ⁇ m, and more preferably 30 to 150 ⁇ m.
  • a plurality of side grooves 25 are formed on the surface of the side 212 of the electrode leg 20B, which is a portion other than the tip 211, and communicate with at least a part of the tip groove 24A. There is.
  • the width W2 (see FIG. 17) of the side surface groove 25 is preferably 10 ⁇ m to 120 ⁇ m, similarly to the width W1 of the tip groove 24A. If the width W2 of the side groove 25 is 10 ⁇ m to 120 ⁇ m, the liquid can be held in the side groove 25 even if the conductive layer 22 is formed in the side groove 25 as shown in FIG. Also, if the conductive layer 22 is formed in the side groove 25, for example, even if the side 212 of the electrode leg 20B is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter into the side groove 25. It can be reduced.
  • width W2 when the width W2 is in the above range, the hair does not exceed the thickness of the hair, so that the penetration of the hair into the side groove 25 can be reduced.
  • the width W2 of the side groove 25 is more preferably 20 ⁇ m to 70 ⁇ m, and still more preferably 30 to 50 ⁇ m.
  • definition of the width W2 of the side surface groove part 25 is the same as the above-mentioned width W1, description is abbreviate
  • the maximum depth H2 (see FIG. 17) of the side groove 25 is preferably 10 ⁇ m to 500 ⁇ m, as in the case of the tip groove 24A. If the maximum depth H2 of the side groove 25 is within the above range, the tip groove 24A can have a predetermined depth even if the conductive layer 22 is formed on the side 212 of the electrode leg 20B.
  • the maximum depth H2 of the tip groove 24A is more preferably 20 ⁇ m to 300 ⁇ m, and still more preferably 30 ⁇ m to 150 ⁇ m.
  • the electrode leg 20B configured as described above has a plurality of tip grooves 24A on the surface of the tip portion 211 which is the region A, and the conductive layer 22 on the surface of the tip portion 211.
  • a part of the conductive layer 22 on the surface of the tip end portion 211 is gradually rubbed As a result, part of the conductive layer 22 may be peeled off until the tip end portion 211 is partially exposed. Even in such a case, in the electrode leg 20B, the conductive layer 22 formed on the surface of the tip groove 24A remains.
  • the conduction of the conductive layer 22 can be maintained at the contact portion between the conductive layer 22 formed on the surface of the tip groove 24A and the living body, the conduction between the conductive layer 22 and the living body can be stably maintained. Therefore, according to the electrode leg 20B, since the electrical connection between the tip portion 211 of the electrode base 21B and the living body can be maintained, the electrical signal from the living body can be stably obtained, and the living body information can be stably measured. be able to.
  • the liquid can be held by the capillary phenomenon in the tip groove 24A provided on the surface of the tip portion 211. Therefore, when measuring the biological information, when the tip end portion 211 is brought into contact with the living body, the liquid held in the tip groove portion 24A flows on the surface of the living body 26 in contact with the tip end portion 211 as shown in FIG. spread.
  • the biological information measurement electrode provided with the electrode leg 20B can measure biological information more stably.
  • the electrode leg 20B has a plurality of side grooves 25 on the side surface of the electrode base 21B, and the side grooves 25 communicate with at least a part of the tip groove 24A. Therefore, at the time of measurement of biological information, the liquid held by the tip groove 24A flows to the surface of the living body in contact with the tip 211, and the liquid held by the tip groove 24A is consumed. At that time, the liquid held in the side groove 25 flows to the tip groove 24A and is supplied to the surface of the living body. Thereby, the contact between the living body and the electrode leg 20B can be maintained while the contact impedance between the living body and the electrode leg 20B is kept low. Therefore, if the electrode leg 20B is used for a biological information measurement electrode, biological information can be measured more stably and continuously.
  • Electrode leg 20B Although an example of electrode leg 20B was shown, it is not limited to this. Below, some modifications of the electrode leg 20B are shown.
  • the front end groove 24A is formed in a cross shape when the front end portion 211 of the electrode base 21B is viewed in the + Z axial direction, but the front end groove 24A holds the liquid in the groove. It is sufficient that the shape can be
  • the distal end portion 211 of the electrode base 21B may be provided with a distal end groove portion 24B formed in a mesh shape, or the distal end formed in a dendritic shape as shown in FIG.
  • the groove 24C may be provided. As shown in FIGS.
  • the distal end groove portion 24B formed in a mesh shape at the distal end portion 211 or the distal end groove portion 24C formed in a dendritic shape by providing the distal end groove portion 24B formed in a mesh shape at the distal end portion 211 or the distal end groove portion 24C formed in a dendritic shape, the distal end groove portions 24B and 24C on the surface of the distal end portion 211
  • the liquid can be held more efficiently. Therefore, conduction between the conductive layer 22 and the living body can be maintained more stably. Further, when the tip end portion 211 comes in contact with a living body, the tip end portion 211 can stably maintain conduction between the conductive layer 22 on the surface of the tip end groove portions 24B and 24C and the living body in all directions. Therefore, biological information can be measured more stably even if the tip end portion 211 is moved in any direction along the living body.
  • the side surface groove 25 is formed on the surface of the side surface 212 of the electrode base 21B, but the side surface groove 25 is not formed if the tip groove 24A can sufficiently hold the liquid. May be Thereby, the electrode leg in which the some front end groove part 24A was formed in the front-end
  • FIG. 22 is a flowchart showing a method of manufacturing the electrode leg 20B according to the present embodiment.
  • the electrode base having conductivity is formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 211 which is the region A.
  • a side surface groove portion 25 is formed on the side surface 212, a leg base producing step (step S31A) for producing the electrode base 21B, a surface treatment step for activating the surface of the tip portion 211 of the electrode base 21B (step S32) And a conductive layer forming step (step S33) of forming the conductive layer 22 on the tip end portion 211 of the base 21B.
  • the electrode base 21B is formed using a material for forming the electrode base 21B, and a plurality of tip grooves 24A are formed on the surface of the tip end portion 211 which is the region A.
  • the side grooves 25 are formed in the
  • the electrode base 21B can be formed in the same manner as the forming step (step S21A) in the method of manufacturing the electrode leg 20A according to the second embodiment shown in FIG.
  • a mold corresponding to the shape of the electrode base 21B is used.
  • the mold is provided with a protrusion corresponding to the end groove 24A and the side groove 25.
  • the electrode base 21B can be formed, and the tip groove 24A and the side groove 25 can be simultaneously formed.
  • the surface of the tip portion 211 is activated using a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen.
  • a method of irradiating vacuum ultraviolet light excimer UV light
  • Excimer UV light is UV light having a wavelength of 240 nm or less in the atmosphere, and has a predetermined wavelength (central wavelength) depending on the type of discharge gas.
  • the dischargeable gas Ar 2 (wavelength 126 nm), Kr 2 (wavelength 146 nm), ArBr (wavelength 165 nm), Xe 2 (wavelength 172 nm), KrI (wavelength 191 nm), KrCl (wavelength 222 nm) or the like can be used. .
  • a radiation lamp emitting excimer UV light is, for example, a dielectric barrier discharge lamp sealed with Xe gas.
  • the dielectric barrier discharge lamp is in an excimer state (Xe 2 * ) in which Xe atoms are excited, and generates light with a wavelength of about 172 nm when it dissociates again into Xe atoms from this excimer state.
  • Xe 2 * excimer state
  • the surface of the portion of the electrode substrate 21B to which the excimer UV light is irradiated is modified to have a highly hydrophilic group (for example, a hydroxyl group (OH group), an aldehyde group (CHO group), a carboxyl group
  • a highly hydrophilic group for example, a hydroxyl group (OH group), an aldehyde group (CHO group), a carboxyl group
  • the surface of the tip end portion 211 of the electrode base 21B can be activated, and the surface of the tip end portion 211 can be made hydrophilic. Since the wettability to the water of the surface of the surface can be enhanced, only the tip end portion 211 can be activated easily, so that it can be effectively used when the electrode base 21B is formed of a conductive material.
  • the entire electrode base body 21B or the portion other than the tip end portion 211 of the electrode base body 21B may be exposed. It may be irradiated with UV light.
  • the entire surface of the electrode substrate 21B is plasma activated.
  • the entire surface of the electrode base 21B can be changed to hydrophilicity in addition to the surface of the tip end portion 211.
  • the wettability to the water of the whole surface of electrode base 21B including tip part 211 can be improved. Therefore, even when the electrode base 21B is formed of either a conductive material or an insulating material, it can be effectively used.
  • the conductive layer formation step (step S33) includes a coating step (step S331) and a solidification step (step S332).
  • the conductive layer forming step (step S33) is the same as the conductive layer forming step (step S22A) shown in FIG. 9 described above, and the coating step (step S331) and the solidifying step (step S332) are both described above.
  • the electrode leg 20B in which the conductive layer 22 is formed on the surface of the tip end portion 211 is obtained.
  • the electrode base 21B is simultaneously formed using a mold provided with a protrusion corresponding to the end groove 24A and the side groove 25. It is not limited.
  • the tip grooves 24A and the side grooves 25 may be formed simultaneously or separately.
  • the method of manufacturing the electrode leg 20B according to the present embodiment is, as shown in FIG. 23, a leg base producing step (step S31B) and a surface treatment step (step S32). And a conductive layer forming step (step S33).
  • the leg base manufacturing step (step S31B) includes a preparation step (step S311) of preparing an electrode base, and a groove forming step (step S312) of forming a plurality of tip grooves 24A and side grooves 25 in the electrode base.
  • the preparation step (step S311) the electrode substrate is manufactured using a molding method or the like to prepare the electrode substrate.
  • the groove forming step (step S312) the tip groove 24A and the side groove 25 are formed in the prepared electrode base.
  • the electrode base, the tip groove 24A and the side groove 25 can be formed separately.
  • the tip groove 24A and the side groove 25 may be formed separately.
  • the leg base manufacturing step (step S31C) includes a preparation step (step S311) of preparing an electrode base, a tip groove forming step (step S312) of forming a plurality of tip grooves 24A, and a side groove forming of side grooves 25. And (step S313). Thereby, the tip groove 24A and the side groove 25 can be separately formed in the electrode base.
  • the electrode for measuring biological information according to the present embodiment is for measuring biological information by bringing it into contact with a part of a living body.
  • the biological information measurement electrode according to the present embodiment includes the electrode leg 20A according to the second embodiment.
  • FIG. 25 is a perspective view showing the appearance of the biological information measurement electrode according to the fourth embodiment
  • FIG. 26 is another perspective view showing the appearance of the biological information measurement electrode according to the fourth embodiment
  • FIG. 27 is a cross-sectional view taken along the line IV-IV of FIG.
  • the biological information measurement electrode 30A according to the present embodiment has a base portion 31 and a terminal portion 33.
  • the alternate long and short dash line in FIGS. 25 to 27 is the central axis J of the conductive material 10 (see FIG. 1 etc.), and the central axis J corresponds to the central axis of the biological information measurement electrode 30A. It means an axis that is the center when the biological information measurement electrode 30A is installed on a living body.
  • the base portion 31 and the terminal portion 33 can be formed using a conductive elastomer or an insulating material used for forming the electrode base 21A of the electrode leg 20A according to the second embodiment described above.
  • the base portion 31 and the terminal portion 33 may be formed of the same material, or may be formed of different materials.
  • the base portion 31 and the terminal portion 33 are integrally formed of the same conductive elastomer. Therefore, the terminal portion 33 is conducted from the tip end portion 312a (described later) side of the electrode leg 20A.
  • the conductive elastomer can be obtained, for example, by melt mixing the conductive filler and the nonconductive elastomer.
  • the base portion 31 and the terminal portion 33 have a low elastic modulus by being molded including a nonconductive elastomer having rubber elasticity. Therefore, at the time of use of the electrode 30A for measuring biological information, the base 31 and the terminal 33 are easily deformed according to the uneven shape of the surface of the living body, so that the contact to the living body can be ensured and the pressing force to the living body is It can be relaxed.
  • the base portion 31 has a base portion 311 and a plurality of electrode legs 312A.
  • the base 311 is provided on the other side of the electrode leg 312A.
  • the base 311 is formed in a substantially circular shape in a plan view (when viewed from the + Z axis direction).
  • the base 311 has a projecting portion 311 a on the back surface (in the ⁇ Z axis direction) of the base 311.
  • Plural (eight in FIG. 25 to FIG. 27) protruding portions 311 a are annularly provided on the back surface of the base portion 311.
  • An electrode leg 312A is integrally formed at an end of the protruding portion 311a.
  • the number of projecting portions 311a is designed to match the number of electrode legs 312A.
  • the electrode leg 312A is extended from the projecting portion 311a of the base portion 311 in the ⁇ Z axis direction. As the electrode leg 312A, the electrode leg 20A according to the above-described second embodiment is used. The electrode leg 312A is separable from the base 311.
  • the terminal portion 33 is an upper surface of the base portion 311 of the base portion 31 and protrudes in the + Z-axis direction from a substantially central portion of the base portion 311 (a position through which the central axis J passes) in plan view, as shown in FIGS. Is provided.
  • a metal layer 35 is provided at the central portion of the terminal portion 33.
  • a metal such as gold, silver or copper is used.
  • Wirings 42 (see FIG. 28) of an inspection device 40 (see FIG. 28) described later are connected to the portions where the metal layer 35 is provided.
  • the terminal portion 33 is electrically connected to the base portion 31 on which the electrode leg 312A is integrally formed.
  • the terminal portion 33 is electrically connected to the tip end portion 312a which is the region A of the electrode leg 312A, and the information signal from the region A can be extracted.
  • a layer formed of a conductive material other than metal may be provided in the middle portion of the terminal portion 33.
  • the terminal unit 33 is connected to the measurement unit 43 (see FIG. 28). Specifically, the terminal portion 33 is connected to a wire 42 (see FIG. 28) or the like, and the wire 42 (see FIG. 28) and the measurement unit 43 (see FIG. 28) are connected.
  • the terminal unit 33 transmits an electrical signal from a living body (for example, scalp or forehead) obtained from the tip end portion 211 of the electrode leg 312A through the base portion 31 to the measurement unit 43 (see FIG. 28). , As an electroencephalogram).
  • FIG. 28 is a view showing an example of measuring an electroencephalogram of a subject using an inspection apparatus provided with a biological information measurement electrode 30A.
  • the inspection apparatus 40 includes a biological information measurement electrode 30A, a cap 41 that covers the head of the subject, a wire 42, a measurement unit 43, and a display unit 44.
  • the cap 41 has a hat or helmet shape so as to cover the subject's head, and is formed of synthetic resin, cloth or the like.
  • the biological information measurement electrodes 30A are provided at a plurality of locations (for example, 21 locations) on the cap 41 at predetermined intervals, and are attached to an arbitrary location of the subject's scalp 45.
  • the wire 42 is, for example, a lead wire, and one end thereof is connected to the terminal portion 33 and the other end is connected to the measurement portion 43.
  • the measurement unit 43 includes a power supply unit 431 and a signal analysis unit 432 that analyzes an electrical signal and measures an electroencephalogram as biological information.
  • the display unit 44 is a monitor and displays the electroencephalogram analyzed by the signal analysis unit 432.
  • the brain waves are classified into, for example, ⁇ wave (8 to 13 Hz), ⁇ wave (14 to 30 Hz), ⁇ wave (4 to 7 Hz), and ⁇ wave (0.5 to 3 Hz) according to the frequency.
  • the biological information measuring electrode 30A is fixed to the cap 41, and the tip end portion 211 of the electrode leg 312A is brought into contact with the scalp 45 via the conductive layer 22.
  • an electrical signal from the scalp 45 is transmitted from the scalp 45 through the conductive layer 22 to the tip portion 312a of the electrode leg 312A.
  • the transmitted electric signal is transmitted from the tip end portion 312 a through the base portion 31 in the order of the terminal portion 33, the wiring 42, and the measurement portion 43.
  • the signal analysis unit 432 analyzes the transmitted electric signal, and displays an electroencephalogram (for example, an ⁇ wave, a ⁇ wave, a ⁇ wave, etc.) 441 on the display unit 44.
  • the biological information measurement electrode 30A configured as described above has the conductive layer 22 on the surface of the tip end portion 312a which is the region A of the electrode leg 312A.
  • the conductive layer 22 is formed of the conductive material 10 (see FIGS. 1 and 2) according to the first embodiment. Therefore, the conductive layer 22 can include a solution in the pores 221 (see FIG. 6).
  • the conductive layer 22 can be provided on the surface of the tip end portion 312a of the electrode leg 312A of the biological information measurement electrode 30A.
  • the solution held in the pores 221 (see FIGS. 6 and 7) of the conductive layer 22 flows and spreads on the surface of the living body in contact with the conductive layer 22.
  • the conduction impedance between the living body and the conductive layer 22 can be lowered by bringing the conductive layer 22 and the surface of the living body into conduction through the solution, so that an electrical signal from the living body can be easily obtained. Therefore, since the biological information measurement electrode 30A can maintain electrical connection with the living body, biological information can be easily and stably measured.
  • the conductive layer 22 has high wear resistance. Therefore, even if the conductive layer 22 on the surface of the tip end portion 211 is rubbed by repeatedly using the biological information measurement electrode 30A, the conductive layer 22 on the surface of the tip end portion 312a can be suppressed from being scraped. Thus, the conductive layer 22 on the surface of the tip end portion 312a can stably contact the living body at the contact portion with the living body, so that the conduction between the conductive layer 22 and the living body can be stably maintained.
  • the biological information measuring electrode 30A since the electrical connection between the tip end portion 312a of the electrode leg 312A and the living body can be maintained, an electrical signal from the living body can be stably obtained, and the biological information is stabilized. Can be measured.
  • the electrode leg 312A is separable from the base 311, the electrode leg 312A attached with the conductive layer 22 can be easily replaced. Thereby, even if the measurement becomes unstable due to wear or the like, the conductive layer 22 of the tip end portion 312a of the electrode leg 312A can be replaced with the electrode leg 312A which can obtain the measurement of the biological information normally.
  • the base portion 31 and the terminal portion 33 are integrally formed, but the base portion 31 and the terminal portion 33 may be configured by separate members.
  • An example of the biological information measuring electrode 30A when the base portion 31 and the terminal portion 33 are constituted by separate members is shown in FIG. 29 and FIG.
  • FIG. 29 is a perspective view showing an example of another configuration of the biological information measurement electrode 30A
  • FIG. 30 is a cross-sectional view taken along the line VV of FIG.
  • the terminal portion 33 has a disk-shaped base portion 331 and a convex portion 332 protruding from the central portion of the base portion 331.
  • the terminal portion 33 is formed of a conductive material such as a metal material.
  • the terminal portion 33 is fixed and connected to the end portion 311b opposite to the side where the base portion 311 of the base portion 31 is continuous with the electrode leg 312A, for example, with a conductive adhesive or conductive paste (not shown). It is done. Thus, the terminal portion 33 is electrically connected to the base portion 31 integrally formed with the electrode leg 312A. Accordingly, the tip end portion 312 a of the electrode leg 312 A is electrically connected to the terminal portion 33 via the base portion 311 of the base portion 31.
  • the base portion 311 has the projecting portion 311a on the back surface side ( ⁇ Z axis direction side), but the projecting portion 311a is not provided, and the electrode leg 312A is continuously formed on the base portion 311 of the disc portion It may be done.
  • the base portion 31 integrally forms the base portion 311 and the electrode leg 312A, but the base portion 311 and the electrode leg 312A may be configured by separate members.
  • the base 311 and the electrode leg 312A are bound by a binding member made of a synthetic resin.
  • the binding member is one obtained by curing a synthetic resin such as an epoxy resin or a urethane resin.
  • the binding member may be an elastic synthetic resin such as rubber.
  • the conductive layer 22 is formed on the tip end portion 312a of the electrode leg 312A which is the region A, but it may be formed on at least the tip end portion 211 and may be formed on other portions of the base portion 31 Alternatively, it may be formed on the entire surface of the base portion 31 and the terminal portion 33.
  • the base portion 31 and the terminal portion 33 are formed of an insulating material, the base portion 31 and the terminal portion 33 are formed on the entire surface of the base portion 31 and the terminal portion 33.
  • the conductive polymer contained in the base conductive layer 51 the same conductive polymer as the conductive layer 22 can be used. Since the same conductive polymer as the conductive layer 22 is used as the conductive polymer, the description of the conductive polymer is omitted.
  • the thickness of the base conductive layer 51 may be any as long as conduction can be obtained, and may be, for example, about 200 nm to 1 ⁇ m.
  • FIG. 32 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment.
  • a forming step (step S41A) of forming the base portion 31 and the terminal portion 33, and activation processing of the surface of the tip portion 312a It includes a surface treatment step (step S42) and a conductive layer forming step (step S43A) of forming conductive layer 22 on the surface of tip portion 312a.
  • step S41A a surface treatment step of a conductive layer forming step of forming conductive layer 22 on the surface of tip portion 312a.
  • the base portion 31 and the terminal portion 33 are integrally molded using a material for forming the base portion 31 and the terminal portion 33.
  • the forming step is also referred to as a leg base producing step.
  • the base portion 31 and the terminal portion 33 are formed of the base portion 31 and the terminal portion 33 having desired shapes by a known molding method such as compression molding (compression molding), injection molding (injection molding), or extrusion molding (transfer molding). It can be molded. When these molding methods are used, a mold corresponding to the shapes of the base portion 31 and the terminal portion 33 is used. By using the mold, the base portion 31 and the terminal portion 33 can be simultaneously formed.
  • a known molding method such as compression molding (compression molding), injection molding (injection molding), or extrusion molding (transfer molding). It can be molded.
  • compression molding compression molding
  • injection molding injection molding
  • transfer molding extrusion molding
  • a raw material supply passage e.g., a spool, a runner, etc.
  • a raw material resin or metal
  • the raw material supply passage 52 in the case where the raw material supply passage 52 is connected to the terminal portion 33, at least a part of the raw material supply passage 52 is also used for the terminal portion 33 It is preferable to connect to When immersing at least a part of the base portion 31 and the terminal portion 33 in a solution containing a conductive polymer in the conductive layer forming step (step S13) described later, the raw material supply passage 52 serves as a grip of the base portion 31. It can be used as The raw material supply passage 52 is determined at which position of the product to perform suitable molding, and may be connected to the base 311 or the like of the base 31 other than the terminal 33 shown in FIG. .
  • the surface treatment step (step S42) can be performed in the same manner as the surface treatment step (step S32) of the method of manufacturing the electrode leg according to the above-described third embodiment shown in FIG.
  • the conductive layer forming step (step S43A) can be performed in the same manner as the conductive layer forming step (step S22A) of the method of manufacturing the electrode leg according to the above-described second embodiment shown in FIG.
  • the conductive layers 22 are formed on the surface of the tip portion 312a in a state in which the fibers are bound with the conductive polymer and the thermosetting resin, and have many pores. Do.
  • the conductive layer formation step (step S43) includes a coating step (step S431) and a solidification step (step S432).
  • a mixed solution containing a fiber and a conductive polymer is coated on at least the tip portion 312a to form a coated layer.
  • a method of applying the mixed solution to at least the tip portion 211 an immersion method of immersing at least the tip portion 312a in the mixed solution, a spray method of spraying the mixed solution to at least the tip portion 312a, or the like can be used.
  • the coating layer formed on the tip portion 312a is dried by heating at 120 to 130 ° C., for example, to cure the coating layer.
  • the conductive layer 22 is formed on the surfaces of the tip end portion 312a and the tip end groove portion 24A.
  • the conductive layer 22 may be formed on the surface of the tip portion 312a.
  • the biological information measurement electrode 30A in which the conductive layer 22 is formed on the surface of the tip end portion 312a is obtained.
  • the film thickness of the coating layer formed when the mixed solution is applied once to the tip end portion 211 is only the conductive polymer. It can be thicker than the film thickness of the coating layer formed when the solution containing it is applied once. Therefore, the cost required to produce a coating layer by a coating process (step S131) can be reduced. In addition, since the conductive layer 22 is thicker, the life of the conductive layer 22 can be further extended.
  • the fibers contained in the conductive layer 22 are cellulose nanofibers
  • a mixed solution containing cellulose nanofibers and a conductive polymer has good wettability to the base portion 31 and the terminal portion 33 and has high thixotropy. Therefore, when the conductive layer 22 is formed using a mixed solution containing cellulose nanofibers and a conductive polymer, the film thickness of the coated layer formed in one application of the mixed solution contains cellulose nanofibers.
  • the thickness can be, for example, about 1.3 to 4 times greater than the thickness of the coating layer formed by applying the solution without the solution.
  • step S41A in the molding step (step S41A), the base portion 31 and the terminal portion 33 are simultaneously formed integrally, but the present invention is not limited to this.
  • the base portion 31 and the terminal portion 33 may be separately molded and integrated.
  • a leg base forming step for forming the base portion 31 and the terminal portion 33
  • a binding step for bonding and integrating the base portion 31 and the terminal portion 33.
  • a known binding member can be used as a binding member used to bind the base portion 31 and the terminal portion 33 in the binding step (step S412).
  • synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
  • the conductive layer 22 may be formed at least on the surface of the tip portion 312a.
  • the conductive layer 22 is formed on the entire surface of the base portion 31 and the terminal portion 33.
  • base conductive layer 51 may be formed between base portion 31 and terminal portion 33 and conductive layer 22.
  • the base conductive layer 51 containing a conductive polymer is formed on the surfaces of the base portion 31 and the terminal portion 33. As shown in FIG.
  • step S41A the forming step (step S41A), the surface treatment step (step S42), and the surfaces of the base portion 31 and the terminal portion 33
  • step S43B A base conductive layer forming step (step S43B) of forming base conductive layer 51 containing a conductive polymer, and a conductive layer forming step (step S44) are included.
  • a solution containing a conductive polymer is applied to the surfaces of the base portion 31 and the terminal portion 33 to form a coating layer.
  • the method for forming the base conductive layer 51 can be performed in the same manner as the conductive layer forming step (step S22C) of FIG. 12 described above.
  • the conductive layer forming step (step S44) includes a coating step (step S441) and a solidification step (step S442).
  • the conductive layer formation step (step S44) is the same as the conductive layer formation step (step S43A) shown in FIG. 34 described above, and the application step (step S441) and the solidification step (step S442) are both described above.
  • the conductive layer 22 is formed by freeze-drying the coating layer applied to the tip end portion 211 of the electrode substrate 21A in the conductive layer forming step (step S43A), but the present invention is not limited thereto.
  • the electrode leg 312A prepared in advance may be attached to the projecting portion 311a of the base 311.
  • FIG. 36 is another flowchart showing the method of manufacturing the biological information measuring electrode according to the present embodiment. As shown in FIG.
  • an electrode main body manufacturing step (step S51) of manufacturing an electrode main body including a base portion 311 of a base portion 31 and a terminal portion 33 Connecting the electrode leg 312A to the base 311 (step S52).
  • the base 311 of the base portion 31 and the terminal portion 33 are formed using the same method as in the case of molding the base portion 31 and the terminal portion 33 in the molding step (step S41A). By integrally molding, the electrode body can be produced. Further, after the base portion 311 of the base portion 31 and the terminal portion 33 are separately formed, the end portion 311 b (see FIG. 30) of the base portion 311 and the terminal portion 33 are made of, for example, a conductive adhesive or The electrode body may be manufactured by connection using a conductive paste or the like.
  • an electrode leg 312A in which the conductive layer 22 is formed on the tip end portion 312a of the electrode base is manufactured in advance.
  • the electrode leg 312A can use the electrode leg 20A according to the second embodiment described above.
  • the biological information measurement electrode 30A can be obtained.
  • the biological information measurement electrode according to the present embodiment is the fourth embodiment shown in FIGS. 13 to 15 as the electrode leg 312A of the base portion 31 of the biological information measurement electrode 30A according to the fourth embodiment shown in FIGS.
  • the electrode leg 20B according to the third embodiment is used.
  • FIG. 37 is a perspective view showing the appearance of the biological information measurement electrode according to the fifth embodiment
  • FIGS. 38 and 39 are other views showing the appearance of the biological information measurement electrode according to the fifth embodiment
  • FIG. 40 is a perspective view
  • FIG. 40 is a cross-sectional view taken along the line VI-VI of FIG.
  • the biological information measurement electrode 30B according to this embodiment is the same as the one shown in FIGS. 25 to 27, except for the electrode leg 312A of the base 31 of the biological information measurement electrode 30A.
  • An electrode leg 312B according to a third embodiment shown in FIG. 15 is provided. That is, the biological information measurement electrode 30B has an electrode leg 312B having a tip groove 24A at the tip end 312a and a side groove 25 on the side surface 312b.
  • the biological information measurement electrode 30B immerses at least the tip portion 312a of the electrode leg 312B in the liquid in the container so that the tip groove 24A of the conductive layer 22 and the side groove 25 contain the liquid.
  • the biological information measurement electrode 30B By pulling up the electrode leg 312B from the immersion state in the liquid, fixing the biological information measurement electrode 30B to the cap 41 (see FIG. 28) in a state where the liquid is contained in the tip groove 24A and the side groove 25.
  • FIG. 28 shows that the liquid is contained in the tip groove 24A and the side groove 25.
  • the tip end 312a of the electrode leg 312B is brought into contact with the scalp 45 via the conductive layer 22.
  • an electrical signal from the scalp 45 is transmitted from the scalp 45 through the conductive layer 22 to the tip end 312a of the electrode leg 312B.
  • the transmitted electric signal is transmitted from the tip end portion 312a through the base portion 31 in the order of the terminal portion 33, the wiring 42 (see FIG. 28), and the measurement portion 43 (see FIG. 28).
  • the signal analysis unit 432 analyzes the transmitted electric signal, and an electroencephalogram (eg, ⁇ wave, ⁇ wave, ⁇ wave, etc.) 441 (see FIG. 28) on the display unit 44 (see FIG. 28).
  • the biological information measurement electrode 30B has a plurality of tip grooves 24A on the surface of the tip portion 312a which is the region A, and the conductive layer 22 on the surface of the tip portion 312a. Therefore, as described in the electrode leg 20A according to the second embodiment described above, by repeatedly using the biological information measurement electrode 30B, for example, as shown in FIG. 18, the conductive layer provided on the tip end portion 312a A part of 22 may be worn away gradually and may be scraped off until the tip 312a is partially exposed.
  • the biological information measurement electrode 30B can maintain the conduction with the living body at the contact portion between the conductive layer 22 formed on the surface of the tip groove 24A and the living body (for example, scalp and forehead) Therefore, the conduction between the conductive layer 22 and the living body can be stably maintained. Therefore, according to the biological information measurement electrode 30B, since the electrical connection between the tip end portion 312a of the electrode leg 312B and the living body can be maintained, an electrical signal from the living body can be stably obtained. EEG can be measured stably.
  • the capillary tube is formed in the tip groove 24A provided on the surface of the tip portion 312a which is the region A.
  • the phenomenon can hold the liquid. Therefore, for example, when measuring the electroencephalogram, when the tip end portion 312a is brought into contact with the scalp, the liquid held in the tip groove portion 24A flows on the surface of the scalp in contact with the tip end portion 211 as shown in FIG. Spread on the scalp. As a result, the area of conduction from the scalp to the conductive layer 22 is increased, and the contact impedance between the scalp and the biological information measurement electrode 30B can be further lowered. Thereby, the electroencephalogram can be measured more stably.
  • the biological information measurement electrode 30B has a plurality of side groove portions 25 on the side surface of the electrode leg 20B, and the side groove portion 25 is a tip groove portion In communication with at least a portion of 24A. Therefore, at the time of measuring an electroencephalogram, the liquid held in the tip groove 24A flows to the surface of the scalp in contact with the tip 211, and the liquid held in the tip groove 24A is consumed. At this time, the liquid held in the side groove 25 flows to the tip groove 24A and is supplied to the scalp. Thereby, the contact between the scalp and the biological information measuring electrode 30B can be maintained while the contact impedance between the scalp and the biological information measuring electrode 30B is kept low, so that the biological information can be continued more stably. Can be measured.
  • the tip groove portion 24A is formed in a cross shape when the tip portion 312a of the electrode leg 312B is viewed in the + Z axis direction, but with the electrode leg 20B according to the third embodiment described above Similarly, the end groove 24A may have a shape that can hold the liquid in the groove.
  • the tip end portion 312a when the tip end portion 312a of the electrode leg 312B is viewed in the + Z axial direction, the tip end portion 312a may be provided with a tip end groove portion 24B formed in a mesh shape.
  • a distal end groove 24C formed in a dendritic shape may be provided.
  • the distal end groove portion 24B formed in a mesh shape at the distal end portion 312a or the distal end groove portion 24C formed in a dendritic shape by providing the distal end groove portion 24B formed in a mesh shape at the distal end portion 312a or the distal end groove portion 24C formed in a dendritic shape, the distal end groove portions 24B and 24C on the surface of the distal end portion 312a.
  • the liquid can be held more efficiently. Therefore, the conduction between the conductive layer 60 and the scalp can be maintained more stably.
  • the tip end portion 312a contacts the scalp, the tip end portion 312a can stably maintain conduction between the conductive layer 60 on the surface of the tip end groove portions 24B and 24C and the scalp in any direction. Therefore, biological information can be measured more stably even if the tip end portion 312a is moved in any direction along the scalp.
  • the side surface groove 25 is formed on the surface of the side surface 312b of the electrode leg 312B, but as in the electrode leg 20B according to the third embodiment described above, water is sufficiently retained by the tip groove 24A.
  • the side groove 25 may not be formed, for example.
  • FIG. 42 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment.
  • the base portion 31 and the terminal portion 33 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 312a which is the region A.
  • step S61A A forming step for forming the side groove portion 25 in the side surface 312b, a surface treatment step (step S62) for activating the surface of the tip end portion 211, and a conductive layer 22 on the surface of the tip end portion 211 And a conductive layer forming step (step S63) to be formed.
  • step S61A A forming step for forming the side groove portion 25 in the side surface 312b
  • step S62 for activating the surface of the tip end portion 211
  • step S63 a conductive layer forming step
  • the forming step (step S61A) is the same as the forming step (step S41A) of the method for manufacturing the biological information measuring electrode according to the fourth embodiment described above shown in FIG. To mold. Further, in the same manner as the leg base manufacturing process (step S31A) of the method of manufacturing the electrode leg according to the above-described third embodiment shown in FIG.
  • the side groove portion 25 can be formed on the side surface 312 b.
  • the surface treatment step (step S62) can be performed in the same manner as the surface treatment step (step S32) of the method of manufacturing the electrode for measuring the electrode leg biological information according to the above-described third embodiment shown in FIG.
  • the conductive layer forming step (step S63) can be performed in the same manner as the conductive layer forming step (step S43A) of the method of manufacturing the biological information measuring electrode according to the above-described fourth embodiment shown in FIG.
  • the conductive layer formation step (step S63) includes a coating step (step S631) and a solidification step (step S632).
  • the conductive layer forming step (step S63) is the same as the conductive layer forming step (step S43A) shown in FIG. 32 described above.
  • the applying step (step S631) and the solidifying step (step S632) are the same as the applying step (step S431) and the solidifying step (step S432) of the conductive layer forming step (step S43A) shown in FIG. It can be carried out.
  • the living body provided with the electrode leg 312B in which the tip groove portion 24A is formed on the surface of the tip portion 312a and the side groove portion 25 is formed on the side surface 312b.
  • An information measurement electrode 30B can be obtained.
  • the tip groove 24A and the side groove 25 are simultaneously formed in the base portion 31 using a mold provided with a protrusion corresponding to the tip groove 24A and the side groove 25. But it is not limited to this. For example, after the base portion 31 and the terminal portion 33 are formed, the tip groove 24A and the side groove 25 may be formed simultaneously or separately.
  • the method of manufacturing the biological information measuring electrode includes a forming step (step S61B) and a surface treatment step (step S62). And a conductive layer forming step (step S63).
  • a preparation step step S611) of preparing the base portion 31 and the terminal portion 33
  • a tip groove portion forming step step S612 of forming the tip groove portion 24A in the tip portion 312a of the electrode leg
  • a side surface groove forming step step S613 of forming the side surface groove 25 on the side surface of the base.
  • the forming step (step S61B) can be performed in the same manner as the leg base producing step (step S31C) of the method of manufacturing the electrode leg shown in FIG.
  • the preparation step (step S611), the tip groove formation step (step S612), and the side groove formation step (step S613) are all the preparation steps (step S31C) of the leg base production step (step S31C) shown in FIG. It can carry out similarly to S311), a tip slot formation process (Step S312), and a side slot formation process (Step S313).
  • the conductive layer 22 is formed only at the tip end portion 312a of the electrode leg, but the conductive layer 22 may be formed at least at the tip end portion 312a. Alternatively, it may be formed on a portion other than the tip end portion 312 a of the base portion 31 or on the entire base portion 31 and the terminal portion 33.
  • the conductive material 10, the electrode legs 20A and 20B, and the biological information measurement electrodes 30A and 30B according to the first to fifth embodiments maintain the electrical connection with the living body and are obtained from the living body.
  • Biological information can be stably measured. Therefore, these can be used suitably for what makes various skin information, such as an electroencephalogram, a pulse wave, an electrocardiogram, an electromyography, a body fat, contact the skin, and measures it.
  • the living body includes a human body or a living body other than the human body, etc., but the conductive material 10, the electrode legs 20A and 20B, and the biological information measuring electrodes 30A and 30B according to the above embodiments are all for the human body. It can be particularly suitably used as
  • a biological information measurement electrode is formed by using the conductive layer 22 of the biological information measuring electrode 30A according to the fourth embodiment shown in FIGS. 25 to 27 in a matrix of a synthetic resin containing a conductive polymer. The fiber is changed to the conductive layer contained in a dispersed manner.
  • FIG. 44 is a perspective view showing the appearance of the biological information measurement electrode according to the sixth embodiment
  • FIG. 44 is another perspective view showing the appearance of the biological information measurement electrode according to the sixth embodiment
  • FIG. 45 is a cross-sectional view taken along the line VII-VII of FIG.
  • the biological information measurement electrode 30C according to the present embodiment is provided on the base portion 31 having the base 311 and the plurality of electrode legs 312A, and on the upper side (+ Z axis direction) of the base 311. And a conductive layer 60 provided on the surface of the electrode leg 312A.
  • the biological information measurement electrode 30C according to the present embodiment is the same as the above except that the configuration of the conductive layer 22A formed on the tip portion 312a of the biological information measurement electrode 30A according to the fourth embodiment is changed.
  • the configuration is the same as the biological information measurement electrode 30A according to the fourth embodiment, so only the configuration of the conductive layer 60 will be described.
  • the conductive layer 60 is provided on the surface of the tip end portion 312a of the electrode leg 312A.
  • the base portion 31 and the terminal portion 33 are integrally formed using a conductive elastomer, the conduction between the base portion 31 and the terminal portion 33 is secured. Therefore, the conductive layer 60 is formed only on the surface of the tip end portion 312a.
  • base portion 31 and terminal portion 33 are formed of an insulating material, conductive layer 60 ensures the conduction between base portion 31 and terminal portion 33, so that the entire surface of base portion 31 and terminal portion 33 is secured.
  • the conductive layer 60 is contained in a state in which fibers are dispersed in a matrix of a synthetic resin containing a conductive polymer. By dispersing the fibers in the synthetic resin matrix, the strength of the conductive layer 60 can be enhanced, and the thickness (layer thickness) of the conductive layer 60 can be increased.
  • the average thickness of the conductive layer 60 is preferably 1 to 30 ⁇ m, as in the case of the conductive material 10 of the first embodiment.
  • the details of the average thickness of the conductive layer 60 are the same as those of the conductive material 10 according to the first embodiment described above, and thus the details will be omitted.
  • the conductive polymer a conductive polymer similar to the conductive polymer of the binder contained in the conductive material 10 of the first embodiment can be used. Therefore, the details of the type of conductive polymer are omitted.
  • the fiber As the fiber, a fiber similar to the fiber included in the conductive material 10 of the first embodiment can be used. Therefore, the details of the type of fiber are omitted.
  • the mixing ratio of the conductive polymer to the fiber varies depending on the type of fiber used, but is preferably in the range of 2: 8 to 8: 2. Within this range, the conductive layer 60 can maintain conductivity while reducing the amount of conductive polymer used, and can maintain the layer strength of the conductive layer 40.
  • the definition of the fiber is as described in the first embodiment. Therefore, the description of the definition of the fiber is omitted.
  • the fiber is preferably a nanofiber.
  • the strength of the conductive layer 60 is higher because nanofibers can be dispersed more finely and uniformly in a matrix of a synthetic resin containing a conductive polymer than fibers.
  • nanofiber is as having demonstrated in said 1st Embodiment. Therefore, the description of the definition of nanofibers is omitted.
  • the aspect ratio of the nanofibers is preferably 1: 100 to 1: 1000, more preferably 1: 100 to 1: 300, as described in the first embodiment above. If the aspect ratio of the nanofibers is in the range of 1: 100 to 1: 1000, dispersion failure in the coated layer can be suppressed. As a result, since the nanofibers are uniformly present in the conductive layer 60, the strength of the conductive layer 60 can be increased.
  • the same nanofibers as the nanofibers included in the conductive material 10 of the first embodiment can be used. Therefore, the details of the nanofibers are omitted.
  • the mixing ratio of the conductive polymer to the cellulose nanofibers is preferably in the range of 2: 8 to 7: 3 and in the range of 3: 7 to 6: 4. It is more preferable that Within this range, the conductive layer 60 can maintain conductivity and can reduce the amount of conductive polymer used.
  • the conductive polymer is PEDOT / PSS
  • the cost of cellulose nanofibers is 1/10 or less of the cost of PEDOT / PSS, so the ratio of PEDOT / PSS used in the unit thickness of the conductive layer 60 is It is lowered.
  • the inspection apparatus 40 including the biological information measurement electrode 30C (FIG. 28)
  • the subject's EEG can be measured by using the reference).
  • the biological information measurement electrode 30C configured as described above has the conductive layer 60 on the surface of the tip portion 312a which is the region A.
  • the conductive layer 60 contains fibers dispersed in a matrix of a synthetic resin containing a conductive polymer. Since the conductive layer 60 can have high strength by containing a fiber, the wear resistance can be improved. Therefore, even if the conductive layer 60 on the surface of the tip end portion 312a is rubbed by repeatedly using the biological information measurement electrode 30C, it is possible to suppress scraping of the conductive layer 60 on the surface of the tip end portion 312a.
  • the conductive layer 60 on the surface of the tip end portion 312a can stably contact the living body at the contact portion with the living body, so that the conduction between the conductive layer 60 and the scalp can be stably maintained. Therefore, according to the biological information measurement electrode 30A, as in the biological information measurement electrode 30A according to the fourth embodiment described above, the electrical connection between the tip end portion 312a of the electrode leg 312A and the scalp can be maintained. It is possible to stably obtain an electrical signal from the above, and to stably measure an electroencephalogram as biological information.
  • the biological information measurement electrode 30C has the conductive layer 60 on the surface of the tip end portion 312a, so that the tip end portion 312a is in direct contact with the scalp as in the biological information measurement electrode 30A according to the fourth embodiment described above.
  • the contact impedance between the scalp and the biological information measurement electrode 30C can be lowered more than in the case where it is present.
  • the contact impedance with the living body can be further lowered, so that the electrical signal from the scalp can be easily obtained. Therefore, the electroencephalogram can be measured more stably.
  • the biological information measuring electrode 30C includes a fiber in the conductive layer 60, so that it has a unit as compared with a conductive layer made of only a conductive polymer, like the conductive material 10 according to the first embodiment described above. Since the amount of conductive polymer per thickness can be reduced, the cost required per unit layer can be reduced. Therefore, the manufacturing cost of the biological information measurement electrode 30C can be reduced.
  • the biological information measuring electrode formed of metal can not be used for a subject having metal allergy.
  • the biological information measuring electrode 30C is formed to include the conductive polymer in the conductive layer 60, so that even if the conductive layer 60 comes in contact with the scalp, a metal allergy is caused to the user. Not safe. Therefore, the biological information measurement electrode 30C can be used with confidence for all the subjects, as in the case of the conductive material 10 according to the first embodiment described above.
  • the biological information measuring electrode 30C can disperse the nanofibers more uniformly in the conductive layer 60 than the fiber, so the strength of the conductive layer 60 is higher. can do. Therefore, the wear resistance of the conductive layer 60 can be further improved.
  • the biological information measuring electrode 30C has high resistance to alcohol, so that the conductive layer 60 can be washed with alcohol.
  • the conductive layer 60 is formed on the tip end portion 312a of the electrode leg 312A which is the region A, but it may be formed on at least the tip end portion 312a. It may be formed on the entire surface of the base portion 31 and the terminal portion 33.
  • the base portion 31 and the terminal portion 33 are formed of an insulating material, the base portion 31 and the terminal portion 33 are formed on the entire surface of the base portion 31 and the terminal portion 33.
  • a base conductive layer 61 electrically connected to the conductive layer 60 is preferably formed on the entire surfaces of the base portion 31 and the terminal portion 33. Thereby, conduction between the tip end portion 312 a and the terminal portion 33 can be achieved. Since the same conductive polymer as the conductive layer 60 is used as the conductive polymer, the description of the conductive polymer is omitted.
  • the thickness of the base conductive layer 61 only needs to be conductive, and may be, for example, about 200 nm to 2 ⁇ m.
  • FIG. 48 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment.
  • a forming step (step S71) of forming the base portion 31 and the terminal portion 33 and activation processing of the surface of the tip portion 312a A surface treatment step (step S72), and a conductive layer formation step (step S73) of forming a conductive layer 60 containing a conductive polymer on the surface of the tip end portion 312a.
  • step S71 a forming step of forming the base portion 31 and the terminal portion 33 and activation processing of the surface of the tip portion 312a
  • a surface treatment step (step S72) A surface treatment step (step S72), and a conductive layer formation step (step S73) of forming a conductive layer 60 containing a conductive polymer on the surface of the tip end portion 312a.
  • the base portion 31 and the terminal portion 33 are integrally molded using a material for forming the base portion 31 and the terminal portion 33.
  • the base portion 31 and the terminal portion 33 can be performed in the same manner as the forming step (step S41A) of the method for manufacturing the biological information measuring electrode according to the above-described fourth embodiment shown in FIG.
  • the surface treatment step (step S72) can be performed in the same manner as the surface treatment step (step S32) of the method for manufacturing the biological information measuring electrode according to the third embodiment described above, shown in FIG.
  • a conductive layer 60 is formed on the surface of the tip portion 312a in which fibers are dispersed in a matrix of a synthetic resin containing a conductive polymer.
  • the conductive layer forming step (step S73) includes a coating step (step S731) and a drying step (step S732).
  • step S731 of the conductive layer forming step (step S73) is performed in the same manner as the application step (step S431) of the method of manufacturing the biological information measuring electrode according to the fourth embodiment described above shown in FIG. be able to.
  • step S732 of the conductive layer forming step (step S73) is performed in the same manner as the solidifying step (step S432) of the method of manufacturing the biological information measuring electrode according to the fourth embodiment described above shown in FIG. be able to.
  • the conductive layer 60 is formed on the surface of the tip end portion 312a, whereby the biological information measurement electrode 30C is obtained. Since the conductive layer 60 has high abrasion resistance, the conductive layer 60 on the surface of the tip portion 312a is used even if the biological information measurement electrode 30C is repeatedly used or cleaned to rub the conductive layer 60 on the surface of the tip portion 312a. It can suppress that 60 is scraped off. Therefore, since the conduction with the scalp can be stably maintained at the contact portion between the conductive layer 60 and the scalp, the electrical signal from the scalp can be stably obtained.
  • the film thickness of the coating layer formed when the mixed solution is applied once to the tip end portion 312a is a solution containing only the conductive polymer. It can be thicker than the thickness of the coating layer formed when it is applied once. The desired thickness of the conductive layer 60 can be obtained with a small number of application times of the mixed solution, so the cost required for the application step (step S731) can be reduced.
  • the conductive layer 60 is worn away and the surface of the tip portion 312a It can delay the time until it peels off. As a result, the life of the conductive layer 60 can be further extended.
  • the fibers contained in the conductive layer 60 are cellulose nanofibers
  • a mixed solution containing cellulose nanofibers and a conductive polymer has good wettability to the base portion 31 and the terminal portion 33 and has high thixotropy. Therefore, when the conductive layer 60 is formed using a mixed solution containing cellulose nanofibers and a conductive polymer, the thickness of the coated layer formed when the mixed solution is applied to the tip portion 312 a once is made thicker. be able to.
  • the film thickness of the coating layer formed in one application of the mixed solution is, for example, about 1.3 to 4 times the film thickness of the coating layer formed by coating a solution not containing cellulose nanofibers. It can be thickened.
  • the base portion 31 and the terminal portion 33 are simultaneously formed in the molding step (step S71), but the base portion 31 and the terminal portion 33 may be separately molded and integrated. .
  • the forming step (step S71) is a preparing step of preparing the base portion 31 and the terminal portion 33 (step S711), and a bonding step (step S712) for bonding and integrating the base portion 31 and the terminal portion 33 together.
  • a surface treatment step (step S72) for activating the surface of the tip portion 312a and a conductive layer 60 containing a conductive polymer and a fiber are formed on the surface of the tip portion 312a.
  • a conductive layer forming step (step S73) is performed.
  • the base portion 31 and the terminal portion 33 are integrated using a binding member.
  • a known binding member can be used as the binding member used for this binding.
  • synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
  • the conductive layer 60 is formed only at the tip end portion 312a of the base portion 31 in the conductive layer forming step (step S73), but the conductive layer 60 is formed at least at the tip end portion 312a.
  • the conductive layer 60 may be formed on the portion other than the tip end portion 312 a of the base portion 31 or on the entire base portion 31 and the terminal portion 33.
  • the conductive layer 60 may be formed at least on the surface of the tip portion 312a.
  • the conductive layer 60 is formed on the entire surface of the base 31 and the terminal 33.
  • base conductive layer 61 is formed between base 31 and terminal 33 and conductive layer 60 as shown in FIG. Is preferred.
  • the manufacturing method of the modification of the biological information measuring electrode according to the present embodiment includes the base conductive layer 61 containing a conductive polymer on the surfaces of the base portion 31 and the terminal portion 33.
  • the forming step (step S71), the surface treatment step (step S72), and the surfaces of the base portion 31 and the terminal portion 33 are electrically conductive.
  • a base conductive layer forming step (step S73) for forming a base conductive layer 61 containing a polymer, and a conductive layer forming step (step S74) are included.
  • the conductive layer forming step (step S74) is the same as the conductive layer forming step (step S73) of FIG. 48 described above.
  • a solution containing a conductive polymer is applied to the surfaces of the base portion 31 and the terminal portion 33 to form a coating layer.
  • the underlying conductive layer 61 can be formed by the same method as the conductive layer forming step (step S74).
  • a biological information measurement electrode according to a seventh embodiment will be described with reference to the drawings.
  • the biological information measurement electrode according to the present embodiment is the fourth embodiment shown in FIGS. 37 to 40 as the electrode leg 312A of the base 31 of the biological information measurement electrode 30C according to the sixth embodiment shown in FIGS.
  • the electrode leg 312B according to the fifth embodiment is used.
  • FIG. 51 is a perspective view showing the appearance of the biological information measurement electrode according to the seventh embodiment
  • FIGS. 52 and 53 are other views showing the appearance of the biological information measurement electrode according to the seventh embodiment
  • FIG. 54 is a perspective view
  • FIG. 54 is a cross-sectional view taken along the line III-III in FIG.
  • the biological information measurement electrode 30D according to the seventh embodiment is replaced with the electrode legs 312A of the base portion 31 of the biological information measurement electrode 30C shown in FIG.
  • An electrode leg 312B according to the sixth embodiment shown in FIG. 40 is provided.
  • the electrode leg 312B is, as shown in FIG. 51, a groove (tip groove) 24A provided in the tip end portion 312a which is the region A, and an auxiliary groove portion provided in the side surface 312b of the electrode leg 312A which is a portion other than the tip end portion 312a ( Side groove portion 25).
  • a groove (tip groove) 24A provided in the tip end portion 312a which is the region A
  • an auxiliary groove portion provided in the side surface 312b of the electrode leg 312A which is a portion other than the tip end portion 312a ( Side groove portion 25).
  • Side groove portion 25 As shown in FIG. 52, since the conductive layer 60 is formed on the surface of the tip end portion 312a, the conductive layer 60 is also formed on the surface of the tip groove portion 24A (see FIG. 16).
  • the electrode leg 312B can hold the liquid containing water in the tip groove 24A and the side groove 25 by providing the tip groove 24A and the side groove 25.
  • the inspection apparatus 40 including the biological information measurement electrode 30D (FIG. 28)
  • the subject's EEG can be measured by using the reference).
  • the biological information measurement electrode 30D configured as described above has a plurality of tip grooves 24A on the surface of the tip portion 312a which is the region A, and a conductive layer 60 on the surface of the tip portion 312a.
  • a part of the conductive layer 60 on the surface of the tip end portion 312a is gradually worn away and the tip end portion 312a is partially exposed.
  • a part of the conductive layer 60 may be peeled off until it is in the above state. Even in such a case, in the biological information measurement electrode 30D, the conductive layer 60 formed on the surface of the tip groove 24A remains.
  • the conduction of the conductive layer 60 can be maintained at the contact portion between the conductive layer 60 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 60 and the scalp can be stably maintained. Therefore, according to the biological information measurement electrode 30D, as in the biological information measurement electrode 30A according to the fourth embodiment described above, the electrical connection between the tip end portion 312a of the electrode leg 312B and the scalp can be maintained. It is possible to stably obtain an electrical signal from the above, and to stably measure an electroencephalogram as biological information.
  • the biological information measurement electrode 30D when the biological information measurement electrode 30D is immersed in the liquid, a capillary is formed in the tip groove 24A provided on the surface of the distal end portion 312a, which is the area A, like the biological information measurement electrode 30B according to the fifth embodiment described above. Water can be retained by the phenomenon. Therefore, when measuring the electroencephalogram, when the tip end portion 312a is brought into contact with the scalp, as shown in FIG. 18, the water held by the tip groove portion 24A flows on the surface of the scalp in contact with the tip end portion 312a spread. As a result, the area of conduction from the scalp to the conductive layer 60 is increased, so the contact impedance between the scalp and the biological information measurement electrode 30D can be further lowered. Thereby, the electroencephalogram can be measured more stably.
  • the living body information measurement electrode 30D has a plurality of side grooves 25 on the side surface of the electrode leg 312B, and the side grooves 25 communicate with at least a part of the tip groove 24A. Therefore, as with the electrode for measuring biological information 30B according to the fifth embodiment described above, when electroencephalogram is measured, the water held by the tip groove 24A flows to the surface of the scalp in contact with the tip 312a, and the tip groove 24A The water held at is consumed. At this time, the water held in the side groove 25 flows to the tip groove 24A and is supplied to the scalp. Thereby, the contact between the scalp and the biological information measuring electrode 30D can be maintained while the contact impedance between the scalp and the biological information measuring electrode 30D is kept low, so that the biological information can be continued more stably. Can be measured.
  • FIG. 55 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the seventh embodiment.
  • the base portion 31 and the terminal portion 33 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 312a which is the region A.
  • a conductive layer forming step step S83 of forming a conductive layer 60 containing Each step will be described below.
  • the base portion 31 and the terminal portion 33 are integrally molded using a material for forming the base portion 31 and the terminal portion 33, and a plurality of portions are formed on the surface of the tip portion 312a which is the region A.
  • the end groove 24A is formed, and the side groove 25 is formed on the side surface 312b.
  • the base portion 31 and the terminal portion 33 can be molded using a known molding method as in the molding step (step S71) in the method of manufacturing the biological information measuring electrode according to the sixth embodiment shown in FIG. .
  • a mold corresponding to the shapes of the base portion 31 and the terminal portion 33 is used.
  • the mold is provided with a protrusion corresponding to the end groove 24A and the side groove 25.
  • the surface of the tip end portion 312a is subjected to activation treatment.
  • the method of activating the surface of the distal end portion 312a can be the same method as the surface treatment step (step S72) in the method of manufacturing the biological information measuring electrode according to the sixth embodiment shown in FIG. , The description is omitted.
  • the conductive layer 50 is formed on the surface of the tip end portion 312a.
  • the method of forming the conductive layer 50 can be the same as the step of forming the conductive layer (step S73) in the method of manufacturing the biological information measuring electrode according to the sixth embodiment shown in FIG. Do.
  • the conductive layer 60 is formed on the surface of the tip end portion 312a, whereby the biological information measurement electrode 30D according to the present embodiment can be obtained.
  • the front end groove portion 24A is formed on the surface of the front end portion 312a, and the side surface groove portion 25 is formed on the side surface 312b. Therefore, even if the conductive layer 60 provided on the tip end portion 312a is worn and scraped for a long time by repeatedly using the biological information measurement electrode 30D, the conductive layer provided on the surface of the tip groove portion 24A 60 remain. Therefore, since the conduction with the scalp can be maintained at the contact portion between the conductive layer 60 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 60 and the scalp can be stably maintained. .
  • the base portion 31 and the terminal portion 33 are simultaneously formed using a mold provided with a protrusion corresponding to the tip groove portion 24A and the side surface groove portion 25. It is not limited to this.
  • the distal end groove 24A and the side groove 25 may be formed after the base portion 31 and the terminal portion 33 are separately molded and integrated.
  • the forming step (step S81) is a preparing step (step S811) of preparing the base portion 31 and the terminal portion 33.
  • a surface treatment step (step S82) for activating the surface of the tip end portion 312a and a conductive layer 60 containing a conductive polymer is formed on the surface of the tip end portion 312a.
  • a conductive layer forming step (step S83) is performed.
  • the base portion 31 and the terminal portion 33 in the above-described forming process (step S81) are integrated using a binding member.
  • a known binding member can be used as the binding member used for this binding.
  • synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
  • the biological information measurement electrodes 30C and 30D maintain electrical connection with the scalp and stably measure biological information (electroencephalograms) obtained from the scalp. can do. Therefore, the electrodes for measuring biological information 30C and 30D are suitable as electrodes for measuring biological information for measuring information of various living bodies such as pulse waves, electrocardiograms, myoelectric potentials, body fats, etc., in addition to brain waves. It can be used for In addition, although a living body includes a human body or a living body other than the human body, etc., the biological information measuring electrode according to each of the above embodiments can be particularly suitably used for the human body.
  • the conductive material is used as the conductive material 10 (see FIG. 1 and the like) in the first embodiment, and the conductive layer 22 (see FIG. 6 and the like) or the conductive layer 60 (the second to seventh embodiments). (See FIG. 44).
  • the conductive material 10 in the first embodiment, is formed by including a fiber and a binder having a conductive polymer that bonds the fibers. , And a large number of pores.
  • the conductive material 10 is the electrode legs 20A and 20B (see FIGS. 6 and 13) or the biological information measuring electrodes 30A and 30B (see FIGS. 25 and 37). (See FIG.
  • the conductive layer 60 contains a conductive polymer on the surface of the region A of the biological information measurement electrodes 30C and 30D (see FIG. 44 and FIG. 51).
  • the fibers are contained in a dispersed manner in the matrix of the synthetic resin.
  • the conductive material according to the first embodiment described above is a conductive material provided on the surface of at least the region of the biological information measuring electrode having a region capable of being in contact with a living body, It is formed to include a fiber and a binder resin having a conductive polymer that bonds the fibers, and has a large number of pores.
  • the biological information measurement electrode according to the sixth and seventh embodiments described above is a biological information measurement electrode having a region that can be in contact with a living body, A conductive layer in which fibers are dispersed and contained in a matrix of a synthetic resin containing a conductive polymer is formed on the surface of the region.
  • the method of manufacturing a conductive material according to the first embodiment is a method of manufacturing a conductive material provided on a surface of at least the region of a biological information measuring electrode having a region capable of being in contact with a living body, A mixing step of preparing a mixed solution containing a fiber, a conductive polymer bonding the fibers, and a solvent in which the fiber is dispersed; Solidifying the mixed solution by lyophilization to produce a porous body having a large number of pores; including.
  • a binder resin for binding the fibers to each other is mixed in the mixed solution, And a curing step of curing the binder resin in the porous body obtained by cooling and drying the mixed solution containing the binder resin.
  • the solvent is water containing water
  • the solidifying step is a cooling step of cooling water contained in the mixed solution;
  • the method of manufacturing an electrode leg according to the second embodiment described above is a method of manufacturing an electrode leg having at least the region capable of being in contact with a living body, A leg base producing step of producing an electrode base having conductivity; A conductive layer forming step of forming a conductive layer made of the conductive material obtained by using the method for producing a conductive material according to any one of the above, in the region of the electrode substrate; including.
  • the method of manufacturing an electrode leg according to the third embodiment described above is a method of manufacturing an electrode leg having at least a region capable of being in contact with a living body,
  • In the conductive layer forming step Applying a mixed solution of a fiber, a conductive polymer for binding the fibers, and a solvent in which the fiber is dispersed to at least the region to form a coating layer; Solidifying the coated layer by freeze-drying to produce a porous body having a large number of pores; including.
  • the leg base manufacturing step forms a plurality of grooves in the surface of the region.
  • the leg base manufacturing step forms a plurality of auxiliary groove portions on the surface of a portion other than the region,
  • the auxiliary groove communicates with at least a part of the groove.
  • the method of manufacturing a biological information measuring electrode according to the fourth or fifth embodiment is a method of manufacturing a biological information measuring electrode having a region capable of being in contact with a living body, A base portion comprising an electrode leg having at least the region on one side and a base provided on the other side of the electrode leg; A terminal portion electrically connected to the electrode leg; A forming step of integrally forming the electrode leg and the base; Forming a conductive layer in the area of the electrode leg; In the conductive layer forming step, Applying a mixed solution of a fiber, a conductive polymer for binding the fibers, and a solvent in which the fiber is dispersed to at least the region to form a coating layer; Solidifying the coated layer by freeze-drying to produce a porous body having a large number of pores; including.
  • the method of manufacturing a biological information measuring electrode according to the fourth or fifth other embodiment is a method of manufacturing a biological information measuring electrode having the region that can be in contact with a living body, A base portion comprising the electrode leg obtained by using the method for producing an electrode leg according to any one of the above, and a base provided on the other side of the electrode leg; A terminal portion electrically connected to the electrode leg; And connecting the electrode legs to the base.
  • a step of forming a base conductive layer which forms a base conductive layer electrically connected to the conductive layer on the surface of the base portion including.
  • the method of manufacturing a biological information measuring electrode according to the sixth or seventh embodiment is a method of manufacturing a biological information measuring electrode having a region capable of being in contact with a living body, A forming step of forming a base portion provided with the region; A conductive layer forming step of forming a conductive layer in which fibers are dispersed and contained in a matrix of a synthetic resin containing a conductive polymer on at least the surface of the region is included.
  • the method of manufacturing a biological information measuring electrode according to the sixth or seventh embodiment further includes a surface treatment step of activating the surface of at least the region after forming the base portion,
  • the surface treatment step is a step of plasma treating at least the surface of the region in a mixed gas containing Ar and oxygen, or a step of irradiating at least the surface of the region with excimer UV light.
  • the conductive layer forming step includes: Applying a mixed solution containing the conductive polymer and the fiber to at least the region to form a coated layer; Drying the area in which the coating layer is formed to cure the coating layer; including.
  • Example 1 (Preparation of electrodes for measuring biological information)
  • the base portion and the terminal portion are integrally formed by injection molding using a resin material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray DuPont), and then the tip portion of the electrode leg is Solution (A) containing 6 g of conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) and solution containing cellulose nanofiber 1 (nanoforest (registered trademark), manufactured by Chuetsu Pulp Industries Co., Ltd.) / After applying the solution which mixed 4 g and forming an application layer, the application layer was dried and hardened and the electric conduction layer was formed.
  • a resin material thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray DuPont
  • the solution (A) contains 1.0% by mass (wt%) of a conductive polymer and 5.0% by weight of a thermosetting resin. Moreover, 1.3 wt% of the cellulose nanofibers 1 are contained in the solution (B). (Evaluation of wear resistance) With the tip of the electrode leg of the biological information measurement electrode immersed in the electrolytic solution (0.1 M NaCl aqueous solution), the impedance of the tip was measured to evaluate the measurement accuracy of the biological information measurement electrode. The tip of the electrode leg was wiped with an alcohol-added Kimwipe, and then the tip was immersed in an electrolytic solution (0.1 M NaCl aqueous solution) to measure the impedance of the tip.
  • electrolytic solution 0.1 M NaCl aqueous solution
  • the frequency was 1 Hz to 1000 Hz. This cycle was performed once (cycle) for 100,000 cycles.
  • the measurement results are shown in FIG.
  • the impedance at the tip was 100 ⁇ or less at a frequency of 5 Hz or more, and hardly changed.
  • the conductive layer containing a predetermined amount of cellulose nanofibers is formed on the surface of the tip portion, the wear resistance of the conductive layer is improved, and the impedance hardly changes, and the electroencephalogram can be stably measured. It was confirmed that it was possible.
  • Example 2 (Preparation of electrodes for measuring biological information)
  • Example 2-1 An electrode for biological information measurement under the same conditions as in Example 1 was produced.
  • Embodiment 2-2 In Example 2-1, the addition amount of the solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 3 g, and cellulose nanofiber 1 (nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.) A conductive layer is formed on the tip of the electrode leg in the same manner as in Example 2-1 except that the amount of the solution (B) containing C.I) is changed to 7 g, and an electrode for measuring biological information is obtained. Made.
  • a conductive polymer PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.
  • cellulose nanofiber 1 nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.)
  • Example 2-3 the addition amount of a solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 4 g, and cellulose nanofiber 1 (nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.)
  • the addition amount of the solution (B) containing a company) was 6 g, and the addition amount of the solution (C) containing cellulose nanofibers 2 (cellenpia (registered trademark), Nippon Paper Industries Co., Ltd.) was changed to 1 g
  • a conductive layer was formed at the tip of the electrode leg in the same manner as in Example 2-1 except for the production of a biological information measuring electrode.
  • 1.2 wt% of the cellulose nanofibers 2 are contained in the solution (C).
  • Example 2-1 a conductive polymer (PEDOT / PSS, Shin-Etsu Polymer Co., Ltd.) was added without adding the solution (B) containing cellulose nanofiber 1 (nanoforest (registered trademark), manufactured by Chuetsu Pulp Industries, Ltd.).
  • a conductive layer was formed on the tip of the electrode leg, and the biological information was measured. An electrode was produced.
  • Example 2-1 the addition amount of the solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 10 g, and a cellulose nanofiber 2 (cellenpia (registered trademark), Nippon Paper Industries Co., Ltd.) A conductive layer is formed at the tip of the electrode leg in the same manner as in Example 2-1 except that the addition amount of the solution (C) containing A) is changed to 1 g, and an electrode for biological information measurement is produced. did.
  • a conductive polymer PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.
  • Example 2-1 the addition amount of the solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 1 g, and cellulose nanofiber 1 (nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.) A conductive layer is formed on the tip of the electrode leg in the same manner as in Example 3-1 except that the addition amount of the solution (B) containing C.I. Made.
  • a conductive polymer PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.
  • cellulose nanofiber 1 nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.)
  • the tip of the electrode leg of the electrode for measuring biological information is immersed in the electrolyte (0.1 M NaCl aqueous solution), the impedance of the tip in the electrolyte is measured, and the biological information is measured.
  • the measurement accuracy of the measurement electrode was evaluated.
  • the frequency of measurement was 0.5 Hz to 1000 Hz.
  • the measurement results are shown in FIG. In FIG. 58, the horizontal axis represents the measurement frequency (Hz) and the vertical axis represents the impedance ( ⁇ ), and the measurement results of Example 2-1 to Example 2-3 and Comparative Example 2-1 to Comparative Example 2-3 are shown. It shows.
  • the electrodes for measuring biological information of Examples 2-1 to 2-3 are for measuring biological information of Comparative Example 2-1 containing no fibers and Comparative Example 2-2 containing very few fibers. An impedance equivalent to that of the electrode was obtained.
  • the biological information measuring electrode of Example 2-1 had a value which is not different from the impedance of the biological information measuring electrode of Comparative Example 2-1 and Comparative Example 2-2.
  • the biological information measurement electrode of Comparative Example 2-3 containing a large amount of fiber, the conductivity of the conductive layer itself becomes too low, and the value of the impedance becomes high, which is considered unsuitable for measurement.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This conductive material is provided on at least the surface of a part of a biological information measurement electrode where a contact can be made with a living organism. The conductive material includes fibers and a conductive polymer. In addition, this conductive member uses the conductive material, is formed by including fibers and a binder that have a conductive polymer for binding the fibers, and has a large number of pores. Further, this biological information measurement electrode has an part that can come into contact with a living organism. A conductive layer that uses the conductive material is formed on a surface of the part, and the conductive layer includes fibers that are dispersed in a matrix of a synthetic resin containing the conductive polymer.

Description

導電材料、導電材、電極脚、および生体情報測定用電極Conductive material, conductive material, electrode leg, and electrode for measuring biological information
 本発明は、導電材料、導電材、電極脚、および生体情報測定用電極に関する。 The present invention relates to a conductive material, a conductive material, an electrode leg, and an electrode for measuring biological information.
 例えば、脳波、脈波、心電、筋電および体脂肪など生体情報の測定には、生体情報を測定するための電極(生体情報測定用電極)が用いられる。生体情報を測定する際には、生体情報測定用電極を生体(皮膚)に取り付けて、生体情報に関する電気信号を生体情報測定用電極で取得して、生体情報(例えば、脳波など)を測定する。 For example, an electrode (electrode for measuring biological information) for measuring biological information is used for measuring biological information such as brain waves, pulse waves, electrocardiograms, electromyography and body fat. When measuring biological information, an electrode for measuring biological information is attached to a living body (skin), an electrical signal related to biological information is obtained by the electrode for measuring biological information, and biological information (for example, an electroencephalogram or the like) is measured. .
 生体情報を測定する際には、生体情報測定用電極が生体と電気的に安定して接触していることが重要である。そのため、生体との接触の安定性を高めるため、種々の生体情報測定用電極が提案されている。 When measuring biological information, it is important that the biological information measuring electrode is in stable contact with the living body. Therefore, various electrodes for measuring biological information have been proposed in order to enhance the stability of contact with a living body.
 このような生体情報測定用電極の1つとして、例えば、電極の突起部の表面に導電性高分子膜を形成して導電性を付与し、生体信号を検出する電極が提案されている(例えば、特許文献1)。 As one of such biological information measurement electrodes, for example, an electrode is proposed which forms a conductive polymer film on the surface of a protrusion of the electrode to impart conductivity, and detects a biological signal (for example, , Patent Document 1).
日本国特開2016-36642号公報Japanese Patent Application Laid-Open No. 2016-36642
 導電性高分子膜と生体との間に生じる接触抵抗(接触インピーダンス)は、導電性高分子膜を水で濡らしている場合の方が導電性高分子膜を水で濡らしていない場合よりも低くなる傾向にある。そのため、導電性高分子膜を予め水など水溶液で湿らせることで、導電性高分子膜と生体との電気的接続はより安定して、生体の電気信号をより高感度で検出できる。 The contact resistance (contact impedance) generated between the conductive polymer film and the living body is lower in the case where the conductive polymer film is wet with water than in the case where the conductive polymer film is not wet with water. Tend to Therefore, by previously wetting the conductive polymer film with an aqueous solution such as water, the electrical connection between the conductive polymer film and the living body can be stabilized more stably, and the electrical signal of the living body can be detected with higher sensitivity.
 しかしながら、特許文献1の電極に用いられる導電性高分子膜は、親水性が低く、水に対する濡れ性が悪い。そのため、導電性高分子膜は、生体に安定して接触しにくく、導電性高分子膜と生体との導通が安定し難い傾向にある。導電性高分子膜と生体との導通が安定しないと、生体情報の測定を安定して行うことができなくなる可能性がある。 However, the conductive polymer film used for the electrode of Patent Document 1 has low hydrophilicity and poor wettability to water. Therefore, the conductive polymer membrane tends not to be in stable contact with the living body, and the conduction between the conductive polymer membrane and the living body tends to be difficult to stabilize. If the conduction between the conductive polymer film and the living body is not stable, it may not be possible to stably measure the biological information.
 また、生体情報測定用電極は、生体に接触させて使用するものであるため、使用時には清潔である必要がある。そのため、生体情報測定用電極を使用する度に、生体情報測定用電極を予め洗浄することを目的に、一般にアルコールなどの洗浄液で電極の表面に残っている水分や汚れなどを拭き取ることが行われている。 In addition, since the biological information measurement electrode is used in contact with a living body, it is necessary to be clean at the time of use. Therefore, every time the biological information measurement electrode is used, generally, cleaning liquid such as alcohol is used to wipe off the moisture, dirt, etc. remaining on the surface of the electrode for the purpose of cleaning the biological information measurement electrode in advance. ing.
 しかしながら、特許文献1の電極に用いられる導電性高分子膜は摩耗しやすい。そのため、電極の突起部の表面に残っている水滴や汚れなどを拭き取る際に突起部の表面を繰り返し擦ると、導電性高分子膜はすり減り、一部の導電性高分子膜が剥がれてしまう可能性がある。その結果、突起部の表面に残っている導電性高分子膜と生体とは安定して接触しなくなるため、導電性高分子膜と生体とが導通し難くなる。一方、一部の導電性高分子膜が剥がれることで、露出した突起部の表面が生体と接触することになる。電極の突起部と皮膚との間に生じる接触インピーダンスの方が導電性高分子膜と皮膚との間に生じる接触インピーダンスよりも高い傾向にある。そのため、導電性高分子膜の生体との接触が僅かになると、生体情報の測定を安定して行うことができなくなる可能性がある。 However, the conductive polymer film used for the electrode of Patent Document 1 is easily worn. Therefore, if you wipe the surface of the protrusion repeatedly when wiping off the water droplets or dirt remaining on the surface of the protrusion of the electrode, the conductive polymer film may be worn away and part of the conductive polymer film may be peeled off There is sex. As a result, since the conductive polymer film remaining on the surface of the protrusion and the living body do not contact stably, it becomes difficult for the conductive polymer film and the living body to conduct. On the other hand, when a part of the conductive polymer film peels off, the surface of the exposed protrusion comes in contact with the living body. The contact impedance generated between the projection of the electrode and the skin tends to be higher than the contact impedance generated between the conductive polymer film and the skin. Therefore, when contact of the conductive polymer film with the living body is slight, it may not be possible to stably measure biological information.
 本発明の一態様は、生体情報を安定して測定することができる導電材料を提供することを目的とする。 An aspect of the present invention aims to provide a conductive material capable of stably measuring biological information.
 本発明に係る導電材料の一態様は、生体と接触可能な領域を有する生体情報測定用電極の、少なくとも前記領域の表面に設けられる導電材料であって、ファイバと、導電性高分子とを含む。 One aspect of a conductive material according to the present invention is a conductive material provided on at least the surface of a biological information measuring electrode having a region capable of being in contact with a living body, which includes a fiber and a conductive polymer. .
 本発明に係る導電材の他の態様は、上記の導電材料を用いる導電材であって、前記ファイバと、前記ファイバ同士を結着する前記導電性高分子を有するバインダと、を含んで形成されており、多数の細孔を有する。 Another aspect of the conductive material according to the present invention is a conductive material using the above-described conductive material, and is formed by including the fiber and a binder having the conductive polymer that bonds the fibers. And have a large number of pores.
 本発明に係る生体情報測定用電極の他の態様は、生体と接触可能な領域を有する生体情報測定用電極であって、前記領域の表面には、上記の導電材料を用いる導電層が形成され、前記導電層は、前記導電性高分子を含有した合成樹脂のマトリックス中に前記ファイバを分散して含む。 Another aspect of the biological information measuring electrode according to the present invention is a biological information measuring electrode having a region capable of being in contact with a living body, and a conductive layer using the above-described conductive material is formed on the surface of the region. The conductive layer includes the fibers dispersed in a matrix of a synthetic resin containing the conductive polymer.
 本発明に係る導電部材の一態様は、生体情報を安定して測定することができる。本発明に係る導電材の一態様は、生体情報を安定して測定することができる。本発明に係る生体情報測定用電極の一態様は、生体と接触可能な領域の表面に形成される導電層の耐摩耗性を向上させることができる。これにより、生体情報を安定して測定することができる。 One aspect of the conductive member according to the present invention can stably measure biological information. One aspect of the conductive material according to the present invention can stably measure biological information. One aspect of the biological information measuring electrode according to the present invention can improve the wear resistance of the conductive layer formed on the surface of the area that can be in contact with the living body. Thereby, biological information can be measured stably.
第1の実施形態に係る導電材の斜視図である。It is a perspective view of the electrically-conductive material which concerns on 1st Embodiment. 図1のI-I断面図である。FIG. 2 is a cross-sectional view taken along line II of FIG. 導電材をカーボン基材上に設置した状態を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the state which installed the electrically conductive material on the carbon base material. 導電材を拡大して見たSEM写真である。It is the SEM photograph which expanded and looked at the electrically conductive material. 第1の実施形態に係る導電材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrically-conductive material which concerns on 1st Embodiment. 第2の実施形態に係る電極脚の斜視図である。It is a perspective view of the electrode leg concerning 2nd Embodiment. 図6のII-II断面図である。It is II-II sectional drawing of FIG. 電極脚の他の構成の一例を示す部分断面図である。It is a fragmentary sectional view which shows an example of the other structure of an electrode leg. 第2の実施形態に係る電極脚の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode leg concerning 2nd Embodiment. 電極脚の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of an electrode leg. 電極脚の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of an electrode leg. 電極脚の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of an electrode leg. 第3の実施形態に係る電極脚の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode leg concerning 3rd Embodiment. 電極脚の正面図である。It is a front view of an electrode leg. 図13のIII-III断面図である。FIG. 14 is a cross-sectional view taken along the line III-III in FIG. 先端部の先端溝部の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the front end groove part of a front-end | tip part. 電極脚の側面の補助溝部の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the auxiliary | assistant groove part of the side of an electrode leg. 先端部の導電層の一部が摩耗した状態を示す説明図である。It is an explanatory view showing the state where a part of electric conduction layer of a tip part wears. 先端溝部で保持されていた液体が広がる状態を示す説明図である。It is explanatory drawing which shows the state which the liquid hold | maintained by the front end groove part spreads. 電極脚の一端部に形成される溝部の他の一例を示す斜視図である。It is a perspective view which shows another example of the groove part formed in the one end part of an electrode leg. 電極脚の一端部に形成される溝部の他の一例を示す斜視図である。It is a perspective view which shows another example of the groove part formed in the one end part of an electrode leg. 第3の実施形態に係る電極脚の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode leg concerning 3rd Embodiment. 電極脚の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of an electrode leg. 電極脚の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of an electrode leg. 第4の実施形態に係る生体情報測定用電極の外観を示す斜視図である。It is a perspective view showing the appearance of the living body information measurement electrode concerning a 4th embodiment. 生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biological information measurement. 図25のIV-IV断面図である。FIG. 26 is a cross-sectional view taken along line IV-IV of FIG. 生体情報測定用電極を備えた検査装置を用いて被験者の脳波を測定する一例を示す図である。It is a figure which shows an example which measures a test subject's brain waves using the test | inspection apparatus provided with the electrode for biological information measurement. 生体情報測定用電極の他の構成の一例を示す斜視図である。It is a perspective view which shows an example of the other structure of the electrode for biological information measurement. 図29のV-V断面図である。FIG. 30 is a VV cross-sectional view of FIG. 29. 下地導電層が形成された電極脚の部分断面図である。It is a fragmentary sectional view of the electrode leg in which the base conductive layer was formed. 第4の実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode for biological information measurement which concerns on 4th Embodiment. 原料供給通路が端子部に固定されている状態の一例を示す図である。It is a figure which shows an example of the state by which the raw material supply channel | path is being fixed to the terminal part. 生体情報測定用電極の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of the electrode for biological information measurement. 生体情報測定用電極の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of the electrode for biological information measurement. 生体情報測定用電極の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of the electrode for biological information measurement. 第5の実施形態に係る生体情報測定用電極の外観を示す斜視図である。It is a perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 5th Embodiment. 生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biological information measurement. 生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biological information measurement. 図37のVI-VI断面図である。FIG. 37 is a cross-sectional view taken along the line VI-VI of FIG. 基体部の先端部を導電層を介して頭皮に接触させた状態の一例を示す説明図である。It is explanatory drawing which shows an example of the state which made the front-end | tip part of a base | substrate part contact the scalp via a conductive layer. 第5の本実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 5th this embodiment. 生体情報測定用電極の製造方法を示す他のフローチャートである。It is another flowchart which shows the manufacturing method of the electrode for biological information measurement. 第6の実施形態に係る生体情報測定用電極の外観を示す斜視図である。It is a perspective view showing the appearance of the living body information measurement electrode concerning a 6th embodiment. 第6の実施形態に係る生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the biological information measurement electrode which concerns on 6th Embodiment. 図44のVII-VII断面図である。FIG. 45 is a cross-sectional view taken along line VII-VII of FIG. 下地導電層が形成された電極脚の部分断面図である。It is a fragmentary sectional view of the electrode leg in which the base conductive layer was formed. 第6の実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 6th Embodiment. 生体情報測定用電極の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. 生体情報測定用電極の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. 第7の実施形態に係る生体情報測定用電極の外観を示す斜視図である。It is a perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. 第7の実施形態に係る生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. 第7の実施形態に係る生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 7th Embodiment. 図51のVIII-VIII断面図である。It is a VIII-VIII sectional view of FIG. 第7の実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 7th Embodiment. 生体情報測定用電極の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. 生体情報測定用電極の耐摩耗性の試験結果を示す図である。It is a figure which shows the test result of the abrasion resistance of the electrode for biological information measurement. 生体情報測定用電極の測定精度の試験結果を示す図である。It is a figure which shows the test result of the measurement precision of the electrode for biological information measurement.
 以下、本発明の実施形態について、詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。また、図面における各部材の縮尺は実際とは異なる場合がある。本明細書では、3軸方向(X軸方向、Y軸方向、Z軸方向)の3次元直交座標系を用い、生体情報測定用電極の中心軸Jに平行な方向をZ軸方向とし、中心軸Jに直交する面において、互いに直交する2つの方向のうち一方をX軸方向とし、他方をY軸方向とする。以下の説明において、+Z軸方向を上といい、-Z軸方向を下という場合がある。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to make an understanding of description easy, the same code | symbol is attached | subjected with respect to the same component in each drawing, and the overlapping description is abbreviate | omitted. In addition, the scale of each member in the drawings may be different from the actual one. In this specification, using a three-dimensional orthogonal coordinate system in three axial directions (X-axis direction, Y-axis direction, Z-axis direction), the direction parallel to the central axis J of the biological information measurement electrode is taken as the Z-axis direction. In the plane orthogonal to the axis J, one of two directions orthogonal to each other is taken as an X-axis direction, and the other as a Y-axis direction. In the following description, the + Z axis direction may be referred to as the upper side, and the −Z axis direction may be referred to as the lower side.
 本発明の実施形態に係る導電材料は、生体と接触可能な領域を有する生体情報測定用電極の、少なくとも領域の表面に設けられ、ファイバと、導電性高分子とを含むものである。一実施形態に係る導電部材によれば、生体情報を安定して測定することができる。導電材料は、第1の実施形態では導電材として用いられ、第2~第7の実施形態では導電層として用いられる。以下、各実施形態について説明する。 The conductive material according to the embodiment of the present invention is provided on the surface of at least a region of a biological information measurement electrode having a region capable of being in contact with a living body, and includes a fiber and a conductive polymer. According to the conductive member according to one embodiment, biological information can be stably measured. The conductive material is used as a conductive material in the first embodiment, and is used as a conductive layer in the second to seventh embodiments. Each embodiment will be described below.
[第1の実施形態]
<導電材>
 第1の実施形態に係る導電材について説明する。本実施形態では、一例として、生体に接触させて生体情報の測定を行う生体情報測定用電極の電極脚の先端部に取り付けられる場合について説明する。なお、生体とは、人体、又は人体以外の生物等をいい、電極脚の先端部を頭皮、額、皮膚などに接触させる。
First Embodiment
<Conductive material>
The conductive material according to the first embodiment will be described. In the present embodiment, as an example, the case of being attached to the tip of the electrode leg of the electrode for measuring biological information which is brought into contact with a living body to measure biological information will be described. Here, a living body refers to a human body or a living body other than the human body, and the tip of the electrode leg is brought into contact with the scalp, forehead, skin, and the like.
 図1は、本実施形態に係る導電材の斜視図であり、図2は、図1のI-I断面図である。図3は、導電材をカーボン基材CF上に設置した状態を示す光学顕微鏡写真であり、図4は、導電材を拡大して見たSEM写真である。なお、図1および図2中の一点鎖線は、導電材の中心軸Jを示す。中心軸Jとは、導電材を生体に設置した際の中心となる軸である。 FIG. 1 is a perspective view of a conductive material according to the present embodiment, and FIG. 2 is a cross-sectional view taken along the line II of FIG. FIG. 3 is an optical micrograph showing a state in which the conductive material is placed on the carbon base CF, and FIG. 4 is an SEM photograph showing the conductive material in an enlarged manner. In addition, the dashed-dotted line in FIG. 1 and FIG. 2 shows the central axis J of a electrically conductive material. The central axis J is an axis serving as a center when the conductive material is installed in a living body.
 図1および図2に示すように、本実施形態に係る導電材10は、生体情報測定用電極の電極脚13の生体と接触可能な領域である先端部131の表面に形成されている。電極脚13の先端部131は、先端に丸みがある曲面形状に形成されており、図1および図2では、ドーム形状に形成されている。導電材10は、先端部131の形状に対応するように、ドーム形状に形成されている。 As shown to FIG. 1 and FIG. 2, the electrically-conductive material 10 which concerns on this embodiment is formed in the surface of the front-end | tip part 131 which is an area | region which can contact with the biological body of the electrode leg 13 of the electrode for biological information measurement. The tip end portion 131 of the electrode leg 13 is formed in a curved shape having a rounded end, and is formed in a dome shape in FIGS. 1 and 2. The conductive material 10 is formed in a dome shape so as to correspond to the shape of the tip portion 131.
 本実施形態において、先端部とは、生体と接触する先端と、導電材10を傾斜させた時などに生体と接触する可能性のある、先端の周辺領域のことを意味し、図1および図2では、導電材10の外側表面の全体である。本明細書では、先端部を、「生体と接触可能な領域A(以下、「領域A」という)」とする。 In the present embodiment, the tip means the tip in contact with the living body and the peripheral region of the tip which may come in contact with the living body when the conductive material 10 is inclined, as shown in FIG. In 2, the entire outer surface of the conductive material 10 is obtained. In the present specification, the tip end portion is referred to as “a region A capable of being in contact with a living body (hereinafter, referred to as“ region A ”)”.
 導電材10は、ファイバとバインダとを含んで形成され、多数の細孔11を有する。導電材10は、その表面および内部に多数の細孔11を有し、スポンジ状に形成されている。なお、図1および図2では、導電材10を被膜状に模式化して図示しているが、導電材10は、図3に示すように、弾性を有したスポンジ状に形成されている。また、図1および図2では、細孔11を黒点で模式化して図示しているが、図4に示すように、無数の細かい空隙になっている。 The conductive material 10 is formed including a fiber and a binder, and has a large number of pores 11. The conductive material 10 has a large number of pores 11 on its surface and inside, and is formed like a sponge. In FIGS. 1 and 2, the conductive material 10 is schematically illustrated as a film, but as shown in FIG. 3, the conductive material 10 is formed in a sponge shape having elasticity. Further, in FIG. 1 and FIG. 2, the pores 11 are schematically illustrated as black dots, but as shown in FIG. 4, there are innumerable fine gaps.
 導電材10は、細孔11を有することで、細孔11内に水分を含む液体を保持することができる。なお、細孔11内に含まれる液体は、水の他に、電解液(食塩水)など生体に害を与えない液体であれば用いることができる。 The conductive material 10 can hold a liquid containing water in the pores 11 by having the pores 11. The liquid contained in the pores 11 may be any liquid other than water as long as it is a liquid that does not harm the living body, such as an electrolytic solution (saline solution).
 導電材10のファイバとしては、Au、Pt、Ag、Cu、Al、Ni、Si、Co、Zr、Ti、W、またはスチールなどの金属により構成された金属ファイバ;Al23、NiO、SiO2、TiO2、Ti23、ZnO、ZrO2、WO3、またはY23などの金属酸化物により構成された金属酸化物ファイバ;カーボンファイバ;SiC、ZrC、Al43、CaC2、WC、TiC、HfC、VC、TaC、またはNbCなどの炭化物により構成された炭化物系ファイバ;ポリエステル繊維などの有機繊維などを用いることができる。 As a fiber of the conductive material 10, a metal fiber made of metal such as Au, Pt, Ag, Cu, Al, Ni, Si, Co, Zr, Ti, W, or steel; Al 2 O 3 , NiO, SiO 2 metal oxide fibers composed of metal oxides such as TiO 2 , Ti 2 O 3 , ZnO, ZrO 2 , WO 3 , or Y 2 O 3 ; carbon fibers; SiC, ZrC, Al 4 C 3 , CaC 2. Carbide fibers made of carbides such as WC, TiC, HfC, VC, TaC, or NbC; organic fibers such as polyester fibers can be used.
 本明細書では、ファイバとは、ファイバの太さを円相当直径で表した場合、一般に、平均太さ(平均径)が1nm~100μm、好ましくは1nm~30μm、より好ましくは1nm~5μmのものである。ファイバの太さは、光散乱装置、レーザー顕微鏡、走査型電子顕微鏡(SEM)などを用いて求めることができる。例えば、SEMなどでファイバを観察し、任意に選んだ所定の数(例えば、10~200本)のファイバの長手方向に対して直交する方向の長さ(ファイバの径方向の長さ)を測定し、その平均値を算出することで、平均径が求められる。 In the present specification, when the fiber thickness is represented by a circle equivalent diameter, a fiber having an average thickness (average diameter) of 1 nm to 100 μm, preferably 1 nm to 30 μm, more preferably 1 nm to 5 μm is generally used. It is. The thickness of the fiber can be determined using a light scattering device, a laser microscope, a scanning electron microscope (SEM) or the like. For example, observe the fiber with an SEM or the like, and measure the length in the direction orthogonal to the longitudinal direction of the predetermined number (for example, 10 to 200) of fibers arbitrarily selected (the length in the radial direction of the fiber) The average diameter is determined by calculating the average value.
 ファイバは、ナノファイバであることが好ましい。ナノファイバは、ファイバよりも、ナノファイバー同士がよく絡み合い、バインダで結着されたものに、より細かい細孔11が形成される。このため、水分を含む液体を細孔11内により多く保持することができる。本明細書では、ナノファイバとは、ナノファイバの太さを円相当直径で表した場合、一般に、平均径は、1nm~1000nm、好ましくは5nm~100nm、より好ましくは10nm~50nmのものである。ナノファイバの平均径は、ファイバの太さを測定する場合と同様の方法を用いて測定することで求められる。 The fiber is preferably a nanofiber. In nanofibers, nanofibers are intertwined better than fibers, and finer pores 11 are formed in those bound with a binder. Therefore, the liquid containing water can be retained in the pores 11 more. In the present specification, the term “nanofiber” as used herein refers to the average diameter of 1 nm to 1000 nm, preferably 5 nm to 100 nm, more preferably 10 nm to 50 nm when the thickness of the nanofibers is represented by the equivalent circle diameter. . The average diameter of the nanofibers can be obtained by measurement using the same method as in the case of measuring the thickness of the fibers.
 ナノファイバのアスペクト比は、1:100~1:1000であることが好ましく、より好ましくは1:100~1:300である。ナノファイバのアスペクト比が1:100~1:1000の範囲内であれば、導電材10を形成する塗布層(後述する塗布工程を参照)中における分散不良を抑制することができる。この結果、導電材10中のナノファイバが均一に存在することとなり、導電材10の強度が高められる。 The aspect ratio of the nanofibers is preferably 1: 100 to 1: 1000, more preferably 1: 100 to 1: 300. If the aspect ratio of the nanofibers is in the range of 1: 100 to 1: 1000, it is possible to suppress the dispersion failure in the coating layer (see the coating process described later) for forming the conductive material 10. As a result, the nanofibers in the conductive material 10 are uniformly present, and the strength of the conductive material 10 is enhanced.
 ナノファイバは、例えば、上述の金属ファイバに用いられる金属と同じ種類の金属により構成される金属ナノワイヤ;上述の金属酸化物ファイバに用いられる金属と同じ種類の金属により構成される金属酸化物ナノファイバ;カーボンナノファイバ、カーボンナノチューブ、カーボンナノホーン;セルロースナノファイバ;ポリエステルナノファイバなどにより構成されたプラスチックナノファイバを用いて形成することができる。中でも、本実施形態では、セルロースナノファイバを用いることが好ましい。 The nanofibers are, for example, metal nanowires composed of the same kind of metal as the metal used for the above-mentioned metal fiber; metal oxide nanofibers composed of the same kind of metal as the metal used for the above-mentioned metal oxide fiber Carbon nanofibers, carbon nanotubes, carbon nanohorns, cellulose nanofibers, polyester nanofibers, etc. It can be formed using plastic nanofibers. Above all, in the present embodiment, it is preferable to use a cellulose nanofiber.
 セルロースナノファイバは、水に不溶な天然セルロース繊維を機械的に解繊処理して得られたセルロースナノファイバ、2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)の存在下、次亜塩素酸のような酸化剤を作用させて酸化反応を進行させることにより得られたセルロースナノファイバ(TEMPO酸化セルロースナノファイバ)、または天然セルロース繊維の表面を疎水化処理して得られたセルロースナノファイバ(表面疎水化セルロースナノファイバ)などがある。本実施形態では、機械的に解繊処理して得られたセルロースナノファイバが好ましい。例えば、TEMPO酸化セルロースナノファイバの場合は、セルロースナノファイバの水酸基の一部がカルボキシル基に置換されており、水に触れると膨潤し、導電材10の強度が保てないことが考えられる。また、表面疎水化セルロースナノファイバの場合、疎水化が進行しすぎると、水や電解液との親水性が失われ、測定が不安定になる虞が考えられる。 Cellulose nanofibers are cellulose nanofibers obtained by mechanically disintegrating water-insoluble natural cellulose fibers in the presence of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), Cellulose nanofibers (TEMPO oxidized cellulose nanofibers) obtained by allowing an oxidizing agent such as hypochlorous acid to act to advance the oxidation reaction, or cellulose obtained by hydrophobizing the surface of natural cellulose fibers There are nanofibers (surface hydrophobized cellulose nanofibers) and the like. In the present embodiment, a cellulose nanofiber obtained by mechanical disintegration treatment is preferable. For example, in the case of TEMPO oxidized cellulose nanofibers, it is considered that part of hydroxyl groups of cellulose nanofibers is substituted by carboxyl groups, and swelling when touched with water, and the strength of the conductive material 10 can not be maintained. Moreover, in the case of surface-hydrophobicized cellulose nanofibers, if the hydrophobization proceeds too much, the hydrophilicity with water or the electrolyte solution may be lost, and the measurement may be unstable.
 機械的に解繊処理して得られたセルロースナノファイバとしては、水中対向衝突(Aqueous Counter Collision:ACC)法を用いて、天然セルロース繊維を解裂して得られるセルロースナノファイバ(ACCセルロースナノファイバ)が好ましい。 As a cellulose nanofiber obtained by mechanical disintegration treatment, a cellulose nanofiber (ACC cellulose nanofiber) obtained by cleaving a natural cellulose fiber by using an aqueous counter collision (ACC) method Is preferred.
 ACC法は、天然セルロース繊維を、水中でナノレベルから分子レベルにいたるまで迅速に微細化・ナノ分散させ、半透明な水分散液を調製する方法である。ACC法では、天然セルロース繊維の分散液を対向する一対のノズルから同時に一点に向かって高圧(例えば、70~250MPa程度)で噴射して、噴射流を互いに高速で対向衝突させる。これにより、天然セルロース繊維の表面を引き剥がしてナノフィブリル化(ナノ微細化)し、キャリアーである水との親和性を向上させることにより、最終的には溶解に近い状態にする。ACC法を用いることで、天然セルロース繊維の繊維間の相互作用のみを解裂させてナノ微細化を行うため、セルロース分子の構造変化がなく、解裂に伴う重合度低下を最小限にした状態で、セルロースナノファイバが得られる。ACCセルロースナノファイバは、ファイバ表面の水酸基が親水性を示し、セルロース分子間を結合する酸素が疎水性を示す。よって、ACCセルロースナノファイバは、ファイバ表面に、親水性部位と疎水性部位との両方が露出し、両親媒性を有する。ACCセルロースナノファイバは、上記のような特性を有するため、水分散液中により均一に分散させることができる。その結果、ACCセルロースナノファイバが均一に存在する導電材10を得ることができると共に、水分を過剰に吸収して膨潤することが無い安定した導電材10を得ることができる。従って、ACCセルロースナノファイバを含む導電材10は、より安定して導電性を発揮することができると共に、強度を有することができる。 The ACC method is a method of preparing a translucent aqueous dispersion by rapidly dispersing and dispersing natural cellulose fibers in water from the nano level to the molecular level. In the ACC method, dispersions of natural cellulose fibers are simultaneously sprayed from one pair of opposing nozzles toward one point under high pressure (for example, about 70 to 250 MPa) to cause jet streams to collide at high speed. As a result, the surface of the natural cellulose fiber is peeled off to be nanofibrillated (nano-refined), and the affinity with water, which is the carrier, is improved to finally bring about a state close to dissolution. By using ACC method, only the interaction between the fibers of natural cellulose fiber is broken to perform nano-refining, there is no structural change of the cellulose molecule, and the state where the polymerization degree accompanied by the cleavage is minimized Thus, cellulose nanofibers are obtained. In ACC cellulose nanofibers, the hydroxyl groups on the fiber surface exhibit hydrophilicity, and the oxygen binding between cellulose molecules exhibits hydrophobicity. Thus, ACC cellulose nanofibers have both hydrophilic and hydrophobic sites exposed on the fiber surface and have amphiphilic properties. Since ACC cellulose nanofibers have the above-mentioned properties, they can be dispersed more uniformly in an aqueous dispersion. As a result, it is possible to obtain the conductive material 10 in which the ACC cellulose nanofibers are uniformly present, and to obtain the stable conductive material 10 that does not absorb moisture and swell excessively. Therefore, the conductive material 10 containing ACC cellulose nanofibers can exhibit conductivity more stably and can have strength.
 天然セルロース繊維としては、竹、藁、または麻などのパルプ繊維や、針葉樹や広葉樹などの木質のパルプ繊維を使用できる。ACCセルロースナノファイバの場合、用いる天然セルロース繊維の種類によってファイバ表面に露出する親水性部位と疎水性部位との割合が異なる。天然セルロース繊維の中でも、竹由来の天然セルロース繊維は、ファイバ表面に露出する疎水性部位の割合が親水性部位よりも高く、両親媒性の特徴が強く表れると考えられる。そのため、ACCセルロースナノファイバの原料として用いる天然セルロース繊維としては、竹由来の天然セルロース繊維を用いることが好ましい。 As natural cellulose fibers, pulp fibers such as bamboo, rattan or hemp, and wood pulp fibers such as softwood and hardwood can be used. In the case of ACC cellulose nanofibers, the ratio of the hydrophilic site to the hydrophobic site exposed on the fiber surface differs depending on the type of natural cellulose fiber used. Among natural cellulose fibers, in the case of natural cellulose fibers derived from bamboo, the proportion of hydrophobic sites exposed on the fiber surface is higher than that of hydrophilic sites, and it is thought that amphipathic characteristics appear strongly. Therefore, as natural cellulose fiber used as a raw material of ACC cellulose nanofiber, it is preferable to use natural cellulose fiber derived from bamboo.
 セルロースナノファイバは、溶液中に分散させた状態で使用してもよいし、粉末状にした状態で使用してもよい。 The cellulose nanofibers may be used in the state of being dispersed in a solution or may be used in the form of powder.
 導電材10のバインダは、ファイバ同士を結着するための結合材として機能し、導電性高分子と、合成樹脂(バインダ樹脂)とを含む。なお、バインダが導電性高分子だけでもファイバ同士を十分結着でき、導電材10の形状を保持できる場合などにおいては、バインダ樹脂は含まれていなくてもよい。 The binder of the conductive material 10 functions as a binder for binding the fibers together, and includes a conductive polymer and a synthetic resin (binder resin). The binder resin may not be contained when the binder is sufficient to bond the fibers with each other and the shape of the conductive material 10 can be maintained.
 バインダの導電性高分子としては、例えば、ポリ3、4-エチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(ポリ4-スチレンサルフォネート;PSS)をドープしたPEDOT/PSS、ポリアセチレン、ポリアニリン、ポリチオフェン、ポリフェニレンビニレン、またはポリピロールなどを用いることができる。中でも、生体との接触インピーダンスがより低く、高い導電性を有する点から、PEDOT/PSSを用いることが好ましい。 As the conductive polymer of the binder, for example, PEDOT / PSS, polyacetylene, polyaniline, polythiophene in which polystyrenesulfonic acid (poly 4-styrene sulfonate; PSS) is doped to poly3,4-ethylenedioxythiophene (PEDOT) , Polyphenylene vinylene, or polypyrrole can be used. Among them, it is preferable to use PEDOT / PSS in view of lower contact impedance with a living body and high conductivity.
 バインダのバインダ樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などの各種樹脂を用いることができる。本実施形態では、熱硬化性樹脂が用いられる。熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリアリレート樹脂、スチレン-ブタジエン樹脂、スチレン-アクリロニトリル樹脂、スチレン-マレイン酸樹脂、アクリル酸系樹脂、スチレン-アクリル酸樹脂、ポリエチレン樹脂、エチレン-酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリプロピレン樹脂、アイオノマー樹脂、塩化ビニル-酢酸ビニル樹脂、アルキド樹脂、ポリアミド樹脂、ウレタン樹脂、ポリスルホン樹脂、ジアリルフタレート樹脂、ケトン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、またはポリエーテル樹脂などが挙げられる。熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、またはメラミン樹脂が挙げられる。光硬化性樹脂としては、例えば、エポキシ-アクリル酸系樹脂(より具体的には、エポキシ化合物のアクリル酸誘導体付加物など)、またはウレタン-アクリル酸系樹脂(より具体的には、ウレタン化合物のアクリル酸誘導体付加物)などが挙げられる。これらの樹脂の中で、硬化収縮が小さい樹脂がよく、例えばシリコーン樹脂が好ましい。これらのバインダ樹脂は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 As binder resin of a binder, various resin, such as a thermoplastic resin, a thermosetting resin, and a photocurable resin, can be used. In the present embodiment, a thermosetting resin is used. As a thermoplastic resin, for example, polycarbonate resin, polyarylate resin, styrene-butadiene resin, styrene-acrylonitrile resin, styrene-maleic acid resin, acrylic acid resin, styrene-acrylic acid resin, polyethylene resin, ethylene-vinyl acetate resin , Chlorinated polyethylene resin, polyvinyl chloride resin, polypropylene resin, ionomer resin, vinyl chloride-vinyl acetate resin, alkyd resin, polyamide resin, urethane resin, polysulfone resin, diallyl phthalate resin, ketone resin, polyvinyl butyral resin, polyester resin, Or polyether resin. As a thermosetting resin, a silicone resin, an epoxy resin, a phenol resin, a urea resin, or a melamine resin is mentioned, for example. As a photocurable resin, for example, an epoxy-acrylic acid resin (more specifically, an acrylic acid derivative adduct of an epoxy compound, etc.) or a urethane-acrylic acid resin (more specifically, a urethane compound) Acrylic acid derivative adducts) and the like. Among these resins, resins with small curing shrinkage are preferable, and, for example, silicone resins are preferable. One of these binder resins may be used alone, or two or more thereof may be used in combination.
 本実施形態では、ファイバとしてセルロースナノファイバを用い、導電性高分子としてPEDOT/PSSを用い、バインダ樹脂としてシリコーン樹脂を用いるとする。この場合、導電材10は、セルロースナノファイバおよびPEDOT/PSSを含んで形成されたセルローススポンジ体として用いることができる。 In this embodiment, it is assumed that a cellulose nanofiber is used as a fiber, PEDOT / PSS is used as a conductive polymer, and a silicone resin is used as a binder resin. In this case, the conductive material 10 can be used as a cellulose sponge body formed to include cellulose nanofibers and PEDOT / PSS.
 バインダとファイバとの混合比は、3:7~9:1の範囲内であることが好ましい。この範囲内であれば、導電材10は、導電性を保つことができると共に、導電性高分子の使用量を低減できる。 The mixing ratio of binder to fiber is preferably in the range of 3: 7 to 9: 1. Within this range, the conductive material 10 can maintain conductivity and can reduce the amount of conductive polymer used.
 ファイバがセルロースナノファイバである場合、バインダとセルロースナノファイバとの混合比は、3:7~9:1の範囲内であることが好ましく、5:5~8:2の範囲内であることがより好ましい。この範囲内であれば、導電材10は、導電性を保つことができると共に、導電性高分子の使用量を低減できる。また、導電性高分子がPEDOT/PSSの場合、セルロースナノファイバの費用は、PEDOT/PSSの費用の1/10以下であるため、導電材10の単位厚みで使用されるPEDOT/PSSの比率が下げられる。 When the fiber is a cellulose nanofiber, the mixing ratio of the binder and the cellulose nanofiber is preferably in the range of 3: 7 to 9: 1, and in the range of 5: 5 to 8: 2 More preferable. Within this range, the conductive material 10 can maintain conductivity and can reduce the amount of conductive polymer used. When the conductive polymer is PEDOT / PSS, the cost of cellulose nanofibers is 1/10 or less of the cost of PEDOT / PSS, so the ratio of PEDOT / PSS used in the unit thickness of the conductive material 10 is It is lowered.
 導電材10の平均厚さは、1μm~30μmであることが好ましい。この範囲内であれば、導電性を有することができ、導電材10を電極脚13の先端部131に設けた場合、生体から伝達される電気信号を安定して通電させることができる。また、導電材10にファイバが含有されているので、導電材10の平均厚さを10μm以上にすることも容易にできる。導電材10の平均厚さが厚ければ厚いほど、導電性が高くなると共に、耐摩耗性の耐久性がより向上する。一方、導電材10の平均厚さが厚ければ厚いほど、材料費および工程費がよりかかり、そのバランスを考慮して上限の平均厚さを決めるのがよい。例えば、平均厚さは5μm~27μmであることがより好ましく、10μm~25μmであることがさらに好ましく、20μm程度に収めるのが最も好適である。なお、導電材10の平均厚さとは、導電材10の厚さの平均値をいう。例えば、導電材10の断面において、任意の場所で数カ所(例えば、6か所)測定した時、これらの測定箇所の厚さの平均値をいう。また、本実施形態において、厚さとは、導電材10の接触面に対して垂直方向の層の長さをいう。 The average thickness of the conductive material 10 is preferably 1 μm to 30 μm. Within this range, conductivity can be provided, and when the conductive material 10 is provided at the tip end portion 131 of the electrode leg 13, an electrical signal transmitted from a living body can be stably energized. Moreover, since the conductive material 10 contains a fiber, the average thickness of the conductive material 10 can be easily made 10 μm or more. The thicker the average thickness of the conductive material 10, the higher the conductivity and the more durable the wear resistance. On the other hand, the thicker the average thickness of the conductive material 10, the more expensive the material cost and the process cost, and the balance should be taken into consideration to determine the upper limit average thickness. For example, the average thickness is more preferably 5 μm to 27 μm, still more preferably 10 μm to 25 μm, and most preferably about 20 μm. The average thickness of the conductive material 10 refers to the average value of the thickness of the conductive material 10. For example, in the cross section of the conductive material 10, when several places (for example, six places) are measured in arbitrary places, the average value of the thickness of these measurement points is said. Further, in the present embodiment, the thickness refers to the length of the layer in the direction perpendicular to the contact surface of the conductive material 10.
 以上のように構成された導電材10は、ファイバと、バインダ樹脂および導電性高分子を含むバインダとにより形成されている。多数のファイバはバインダで固定され、網目状につながると共に、導電材10の表面および内部には複数の細孔11が形成され、導電材10は、いわゆるスポンジ状に形成されている。そのため、導電材10は、細孔11に溶液を含むことができる。 The conductive material 10 configured as described above is formed of a fiber and a binder containing a binder resin and a conductive polymer. A large number of fibers are fixed by a binder and connected in a network, and a plurality of pores 11 are formed on the surface and inside of the conductive material 10, and the conductive material 10 is formed in a so-called sponge shape. Therefore, the conductive material 10 can contain a solution in the pores 11.
 また、導電材10を生体情報測定用電極の電極脚13の先端部131の表面に設け、細孔11内に溶液を含ませた状態で、導電材10を生体の表面に接触させると、導電材10の細孔11内に保持された溶液が、導電材10と接触する生体の表面に流れて広がる。そして、導電材10と生体の表面とを溶液を介して導通させることで、生体と導電材10との間の接触インピーダンスを下げることができるので、生体からの電気信号が取得し易くなる。よって、導電材10は、生体と電気的に接続を維持できる。したがって、導電材10を生体情報測定用電極の電極脚13に用いることで、生体情報を安定して測定することができる。 Further, when the conductive material 10 is provided on the surface of the tip portion 131 of the electrode leg 13 of the biological information measurement electrode and the solution is contained in the pores 11, the conductive material 10 is brought into contact with the surface of the living body. The solution held in the pores 11 of the material 10 flows and spreads on the surface of the living body in contact with the conductive material 10. Then, by bringing the conductive material 10 and the surface of the living body into conduction through the solution, the contact impedance between the living body and the conductive material 10 can be lowered, so that an electrical signal from the living body can be easily obtained. Therefore, the conductive material 10 can maintain electrical connection with the living body. Therefore, biological information can be stably measured by using the conductive material 10 for the electrode leg 13 of the biological information measurement electrode.
 特に、導電材10を生体として頭皮や額に接触させる場合、導電材10は溶液を含むことで、頭皮や額の表面が乾燥していても、導電材10は、接触インピーダンスを脳波測定が可能な値(例えば、200kΩ未満)に低下させることができる。そのため、導電材10は、生体情報測定用電極の電極脚13に用いれば、脳波を安定して得ることができるので、脳波測定用として好適に用いることができる。 In particular, when the conductive material 10 is brought into contact with the scalp or forehead as a living body, the conductive material 10 includes a solution, so that even if the surface of the scalp or forehead is dry, the conductive material 10 can measure the contact impedance by electroencephalogram. (E.g., less than 200 k.OMEGA.). Therefore, if the conductive material 10 is used for the electrode leg 13 of the biological information measurement electrode, an electroencephalogram can be stably obtained, and thus the electroconductive material 10 can be suitably used for electroencephalogram measurement.
 また、ファイバは、バインダよりも高い強度を有し、耐摩耗性が高い。そのため、導電材10を生体情報測定用電極の電極脚13の先端部131に装着して使用する際に、導電材10の表面が使用時または洗浄時に繰り返し擦られても、導電材10の表面が削られるのを抑制することができる。 In addition, the fiber has higher strength than the binder and has high abrasion resistance. Therefore, when the conductive material 10 is attached to the tip end portion 131 of the electrode leg 13 of the biological information measurement electrode and used, even if the surface of the conductive material 10 is repeatedly rubbed during use or washing, the surface of the conductive material 10 is used. Can be suppressed.
 さらに、導電材10では、多数のファイバが網目状につながっていると共に、導電材10の表面および内部には複数の細孔11が形成されているため、導電材10は、高い弾性を有する。導電材10を生体情報測定用電極の電極脚13の先端部131に装着して使用する際、導電材10が生体に接触すると、導電材10は弾性変形する。これにより、生体への押圧力が緩和されるので、導電材10は生体にソフトに接触することができ、被験者に痛みが生じるのを緩和することができる。また、導電材10が生体に接触した際、導電材10は弾性変形することで、導電材10は生体と確実に接触することができる。 Furthermore, in the conductive material 10, a large number of fibers are connected in a mesh shape, and a plurality of pores 11 are formed on the surface and inside of the conductive material 10. Therefore, the conductive material 10 has high elasticity. When the conductive material 10 is attached to the tip end portion 131 of the electrode leg 13 of the biological information measurement electrode and used, when the conductive material 10 comes in contact with a living body, the conductive material 10 elastically deforms. Thereby, since the pressing force on the living body is alleviated, the conductive material 10 can be brought into soft contact with the living body, and pain in the subject can be alleviated. In addition, when the conductive material 10 contacts the living body, the conductive material 10 can be reliably contacted with the living body by being elastically deformed.
 導電材10は、多数の細孔11を有し、スポンジ状に形成されている。導電材10に含まれるファイバ同士は、導電性高分子の他に、バインダ樹脂の硬化物で補助的に接合されている。そのため、導電材10は、バインダ樹脂を含まない場合に比べてより強固とすることができる。よって、導電材10は、耐摩耗性を向上させつつ、適度な硬さを有する弾性体とすることができる。 The conductive material 10 has a large number of pores 11 and is formed like a sponge. The fibers contained in the conductive material 10 are auxiliaryly bonded with a cured product of a binder resin in addition to the conductive polymer. Therefore, the conductive material 10 can be made stronger than the case where the binder resin is not included. Therefore, the conductive material 10 can be made into an elastic body having an appropriate hardness while improving the wear resistance.
 導電材10は、ファイバを含んでいる。導電材10はファイバを含むことで、ファイバを含まない場合に比べて、単位厚み当たりの導電性高分子の量を減らすことができるため、単位層当たりの必要な費用を低減することができる。そのため、導電材10の製造費用を抑えることができる。 The conductive material 10 contains a fiber. The conductive material 10 can reduce the amount of conductive polymer per unit thickness as compared to the case where the conductive material 10 does not include fiber, thereby reducing the necessary cost per unit layer. Therefore, the manufacturing cost of the conductive material 10 can be suppressed.
 また、金属で形成されている導電材を備える生体情報測定用電極は、金属アレルギーを持つ被験者には用いることはできない。本実施形態では、導電材10はバインダを含んで形成しているため、導電材10を生体情報測定用電極の電極脚13の先端部131に装着して生体に接触させても、使用者に金属アレルギーを生じさせることはなく、安全である。よって、導電材10は、被験者に安心して使用することができる。 In addition, a biological information measurement electrode including a conductive material formed of metal can not be used for a subject having metal allergy. In the present embodiment, since the conductive material 10 is formed to include the binder, the user can receive the conductive material 10 even if the conductive material 10 is attached to the tip end portion 131 of the electrode leg 13 of the biological information measurement electrode and brought into contact with the living body. It does not cause metal allergy and is safe. Therefore, the conductive material 10 can be used safely for the subject.
 導電材10に含まれるファイバがナノファイバである場合、ナノファイバ同士はより短い距離で細かく多数つながることで、ナノファイバ同士の間により小さい隙間が形成され易くなる。そのため、導電材10は、より小さい細孔を多数有することができる。これにより、導電材10は、その内部に溶液をより含み易くすることができるので、生体との電気的な接続を安定して維持することができる。 When the fibers included in the conductive material 10 are nanofibers, the nanofibers are closely connected to each other at a shorter distance, so that a smaller gap is likely to be formed between the nanofibers. Therefore, the conductive material 10 can have many smaller pores. As a result, the conductive material 10 can more easily contain the solution therein, so that the electrical connection with the living body can be stably maintained.
 また、ナノファイバは、ファイバよりも、導電材10中により細かく均一に存在させることができる。そのため、ナノファイバはファイバよりも導電材10中によりいっそう細かく多数つながる(絡み合う)ことができるため、導電材10の強度をより高くすることができる。そのため、導電材10の耐摩耗性をより向上させることができる。 Also, nanofibers can be more finely and uniformly present in the conductive material 10 than fibers. Therefore, since many nanofibers can be connected in more detail (entangled) in the conductive material 10 than fibers, the strength of the conductive material 10 can be increased. Therefore, the wear resistance of the conductive material 10 can be further improved.
 導電材10に含まれるファイバがセルロースナノファイバである場合、導電材10を生体情報測定用電極の電極脚13の先端部131に装着しても、セルロースナノファイバは高い親水性を有するため、導電材10の内部に溶液をより一層含み易くすることができる。よって、ファイバとしてセルロースナノファイバを用いることで、生体との電気的な接続をより安定して維持することができる。また、セルロースナノファイバはアルコールに対して高い耐性を有するため、導電材10の洗浄時にアルコール洗浄することができる。 When the fiber contained in the conductive material 10 is a cellulose nanofiber, even if the conductive material 10 is attached to the tip portion 131 of the electrode leg 13 of the electrode for measuring biological information, the cellulose nanofiber has high hydrophilicity, The solution can be more easily contained inside the material 10. Therefore, by using cellulose nanofibers as the fibers, the electrical connection with the living body can be maintained more stably. Moreover, since cellulose nanofibers have high resistance to alcohol, alcohol can be washed when washing the conductive material 10.
<第1の実施形態に係る導電材の製造方法>
 次に、第1の実施形態に係る導電材の製造方法について説明する。図5は、本実施形態に係る導電材の製造方法を示すフローチャートである。図5に示すように、本実施形態に係る導電材の製造方法は、混合工程(ステップS11)と、固化工程(ステップS12)と、硬化工程(ステップS13)とを含む。以下、各工程について説明する。
<Method of Manufacturing Conductive Material According to First Embodiment>
Next, a method of manufacturing the conductive material according to the first embodiment will be described. FIG. 5 is a flowchart showing a method of manufacturing a conductive material according to the present embodiment. As shown in FIG. 5, the method of manufacturing a conductive material according to the present embodiment includes a mixing step (step S11), a solidifying step (step S12), and a curing step (step S13). Each step will be described below.
 まず、混合工程(ステップS11)では、ファイバと、ファイバ同士を結着するバインダ(導電性高分子およびバインダ樹脂である熱硬化性樹脂)と、ファイバが分散する溶媒としての溶剤と、を含む混合溶液を作製する。混合溶液は、ファイバ、導電性高分子、および熱硬化性樹脂を溶剤に添加して混合させ、ファイバ、導電性高分子、および熱硬化性樹脂を溶剤中に分散させることにより調整される。混合溶液の調整には、例えば、ビーズミル、ロールミル、ボールミル、または超音波分散器などを用いることができる。 First, in the mixing step (step S11), mixing including a fiber, a binder (a conductive polymer and a thermosetting resin which is a binder resin) for bonding the fibers, and a solvent as a solvent for dispersing the fiber Make a solution. The mixed solution is prepared by adding fibers, a conductive polymer, and a thermosetting resin to a solvent and mixing them, and dispersing the fiber, the conductive polymer, and the thermosetting resin in the solvent. For preparation of the mixed solution, for example, a bead mill, a roll mill, a ball mill, or an ultrasonic disperser can be used.
 溶剤は、水のみからなる分散媒、または水と有機溶剤とからなる分散媒を用いることができる。有機溶剤としては、例えば、ベンゼン、メタノールなどのアルコールが挙げられる。また、分散媒には、上記の有機溶剤のうちの一種のみが含有されていてもよいし、二種以上が含有されていてもよい。 As the solvent, a dispersion medium consisting only of water, or a dispersion medium consisting of water and an organic solvent can be used. Examples of the organic solvent include alcohols such as benzene and methanol. Further, in the dispersion medium, only one of the above-mentioned organic solvents may be contained, or two or more may be contained.
 混合溶液中の溶剤の含有量は、80~95質量%の範囲とすることが好ましい。混合物中における溶剤の含有量を上記範囲内に調整することにより、得られる多孔質体における細孔11の大きさ(細孔径)の分布を調整することができる。 The content of the solvent in the mixed solution is preferably in the range of 80 to 95% by mass. By adjusting the content of the solvent in the mixture within the above range, the distribution of the size (pore diameter) of the pores 11 in the obtained porous body can be adjusted.
 ファイバ、導電性高分子、熱硬化性樹脂、および溶剤の混合時間は、ファイバ、導電性高分子、および熱硬化性樹脂の溶剤中における分散性を確保する点から、長い方が好ましいが、生産性との兼ね合いを考慮して適宜設定される。 The mixing time of the fiber, conductive polymer, thermosetting resin, and solvent is preferably long to ensure the dispersibility of the fiber, conductive polymer, and thermosetting resin in the solvent, but production is preferable. It is set appropriately in consideration of the balance with the sex.
 次に、固化工程(ステップS12)では、混合溶液を凍結乾燥法を用いて乾燥させることで、多数の細孔を有する多孔質体を得る。固化工程(ステップS12)は、冷凍工程(ステップS121)と、脱水工程(ステップS122)とを含む。なお、凍結乾燥とは、混合溶液を凍結し、凍結状態のまま減圧して混合溶液中の溶剤を昇華させることによって、混合溶液を乾燥させる手法である。 Next, in the solidifying step (step S12), the mixed solution is dried using a lyophilization method to obtain a porous body having a large number of pores. The solidification step (step S12) includes a freezing step (step S121) and a dehydration step (step S122). In addition, lyophilization is a method of freezing a mixed solution and drying the mixed solution by reducing the pressure in the frozen state to sublime the solvent in the mixed solution.
 固化工程(ステップS12)の冷凍工程(ステップS121)では、混合溶液を金型に流した後、混合溶液を金型に入れた状態で冷凍し、混合溶液に含まれる水分を凍らせる(冷結させる)。混合溶液を含む金型を減圧下であって低温雰囲気下に置いて、溶剤を凍結させる。 In the freezing step (step S121) of the solidification step (step S12), after flowing the mixed solution into the mold, the mixed solution is frozen in a state of being put into the mold to freeze water contained in the mixed solution (cooling ). The mold containing the mixed solution is placed under reduced pressure and under a cold atmosphere to freeze the solvent.
 混合溶液の凍結温度は、混合溶液中の溶剤の凝固点以下としなければならず、-40℃以下であることが好ましく、-80℃以下であることがより好ましい。 The freezing temperature of the mixed solution should be below the freezing point of the solvent in the mixed solution, preferably below -40.degree. C. and more preferably below -80.degree.
 圧力は、100Pa以下であることが好ましく、10Pa以下であることがより好ましく、真空状態であることがさらに好ましい。圧力が100Paを超えると、凍結した混合溶液中の溶剤が融解してしまう可能性がある。 The pressure is preferably 100 Pa or less, more preferably 10 Pa or less, and still more preferably in a vacuum state. When the pressure exceeds 100 Pa, the solvent in the frozen mixed solution may be melted.
 混合溶液の冷凍時間は、混合溶液に含まれる水分を確実に冷結させると共に、多孔質体の生産性を図る点から、約12~48時間であることが好ましい。 The freezing time of the mixed solution is preferably about 12 to 48 hours in order to ensure that the water contained in the mixed solution is cooled and to achieve the productivity of the porous body.
 固化工程(ステップS12)の脱水工程(ステップS122)では、凍結した混合溶液中の溶剤を減圧下で昇華させる。これにより、ファイバ同士が導電性高分子で結着された状態で溶剤が除去され、溶剤が抜けた箇所は、多数の細かい空間となる。これにより、多数の細孔を有すると共に、未硬化のバインダ樹脂を含む多孔質体が得られる。 In the dehydration step (step S122) of the solidification step (step S12), the solvent in the frozen mixed solution is sublimed under reduced pressure. As a result, the solvent is removed in a state in which the fibers are bound by the conductive polymer, and the portion from which the solvent is removed becomes a large number of fine spaces. Thus, a porous body having a large number of pores and containing an uncured binder resin is obtained.
 硬化工程(ステップS13)では、孔質体を加熱して、多孔質体に含まれている未硬化のバインダ樹脂を硬化させる。多孔質体を加熱する温度としては、バインダ樹脂である熱硬化性樹脂が硬化可能な温度であればよく、例えば、80~200℃が好ましく、100~150℃とすることがより好ましく、120~130℃とすることがさらに好ましい。 In the curing step (step S13), the porous body is heated to cure the uncured binder resin contained in the porous body. The temperature at which the porous body is heated may be any temperature at which the thermosetting resin which is the binder resin can be cured. For example, the temperature is preferably 80 to 200 ° C., and more preferably 100 to 150 ° C. More preferably, the temperature is 130 ° C.
 以上のようにして、多数の細孔11を有する導電材10が得られる。 As described above, the conductive material 10 having a large number of pores 11 is obtained.
 本実施形態では、混合溶液を凍結乾燥法を用いて乾燥させることで、内部および表面に多数の細孔11を有する導電材10を容易に得ることができる。 In the present embodiment, by drying the mixed solution using a lyophilization method, it is possible to easily obtain the conductive material 10 having a large number of pores 11 inside and on the surface.
[第1の実施形態に係る導電材の製造方法の変形例]
 なお、本実施形態では、バインダ樹脂が熱硬化性樹脂であるため、硬化工程(ステップS13)では、多孔質体を加熱しているが、バインダ樹脂が光硬化性樹脂である場合には、硬化工程(ステップS13)では、多孔質体に紫外線を照射する。バインダ樹脂が熱可塑性樹脂である場合には、固化工程(ステップS12)で多孔質体が得られるのと同時にバインダ樹脂は硬化するため、硬化工程(ステップS13)は省略する。
[Modification of manufacturing method of conductive material according to the first embodiment]
In the present embodiment, since the binder resin is a thermosetting resin, the porous body is heated in the curing step (step S13). However, when the binder resin is a photocurable resin, curing is performed. In the step (step S13), the porous body is irradiated with ultraviolet light. When the binder resin is a thermoplastic resin, the binder resin is cured at the same time as the porous body is obtained in the solidification step (step S12), and thus the curing step (step S13) is omitted.
[第2の実施形態]
<電極脚>
 第2の実施形態に係る電極脚20Aについて説明する。本実施形態に係る電極脚20Aは、上記の第1の実施形態に係る導電材10を導電層(第1導電層)22として、電極脚20Aの先端部に取り付けたものである。図6は、第2の実施形態に係る電極脚20Aの斜視図であり、図7は、図6のII-II断面図である。
Second Embodiment
<Electrode leg>
An electrode leg 20A according to a second embodiment will be described. The electrode leg 20A according to the present embodiment is obtained by attaching the conductive material 10 according to the first embodiment as the conductive layer (first conductive layer) 22 to the tip of the electrode leg 20A. 6 is a perspective view of an electrode leg 20A according to a second embodiment, and FIG. 7 is a cross-sectional view taken along the line II-II of FIG.
 本実施形態に係る電極脚20Aは、図6および図7に示すように、電極基体(ベース体)21Aと、電極基体21Aの領域Aである先端部211の表面に導電層22と、を有する。 The electrode leg 20A according to the present embodiment, as shown in FIGS. 6 and 7, has an electrode base (base body) 21A and a conductive layer 22 on the surface of the tip portion 211 which is the region A of the electrode base 21A. .
 電極脚20Aの電極基体21Aは、生体情報測定用電極に着脱可能に取り付けられる。 The electrode base 21A of the electrode leg 20A is detachably attached to the biological information measurement electrode.
 電極基体21Aは、円柱状に形成されており、その先端に頭皮と接触可能な先端部211を有する。電極基体21Aの先端部211は、先端に丸みがある曲面形状に形成されており、本実施形態では、ドーム形状に形成されている。先端部211の形状は、他の曲面形状として丸みがある円錐形状でもよいし、生体に接触できる端面を有する平坦形状であってもよい。 The electrode base 21A is formed in a cylindrical shape, and has a tip 211 capable of contacting the scalp at its tip. The tip end portion 211 of the electrode base 21A is formed in a curved shape having a rounded end, and in the present embodiment, is formed in a dome shape. The shape of the tip end portion 211 may be a conical shape having a rounded shape as another curved surface shape, or may be a flat shape having an end face which can be in contact with a living body.
 先端部312aとは、上述の通り、生体である頭皮と接触する先端と、電極脚20Aを傾斜させた時などに生体と接触する可能性のある、先端の周辺領域のことを意味する。 As described above, the tip end portion 312a means the tip end in contact with the scalp which is a living body and the peripheral region of the tip which may come in contact with the living body when the electrode leg 20A is inclined.
 電極基体21Aは、導電性エラストマー、または絶縁材料を用いて形成することができる。なお、絶縁材料とは、導電性がないか導電性が極めて小さい材料をいう。本実施形態では、電極基体21Aは、導電性エラストマーで一体に形成されている。 The electrode substrate 21A can be formed using a conductive elastomer or an insulating material. Note that the insulating material refers to a material which does not have conductivity or which has extremely low conductivity. In the present embodiment, the electrode base 21A is integrally formed of a conductive elastomer.
 導電性エラストマーは、その種類は特に限定されるものではない。導電性エラストマーは、例えば、導電性フィラーと非導電性エラストマーとを溶融混合することで得られる。電極基体21Aは、ゴム弾性を有する非導電性エラストマーを含んで成形されることで、低い弾性率を有する。そのため、電極脚20Aを生体情報測定用電極に用いる際、電極基体21Aは生体の表面の凹凸形状に合わせて変形し易いので、生体への接触を確実にできると共に、生体への押圧力を緩和できる。 The type of the conductive elastomer is not particularly limited. The conductive elastomer is obtained, for example, by melt mixing the conductive filler and the nonconductive elastomer. The electrode base 21A has a low elastic modulus by being molded including a nonconductive elastomer having rubber elasticity. Therefore, when the electrode leg 20A is used as an electrode for measuring biological information, the electrode base 21A is easily deformed according to the uneven shape of the surface of the living body, so that contact with the living body can be ensured and the pressing force to the living body is alleviated. it can.
 上述の導電性フィラーとしては、導電性を有していれば、その種類は特に限定されるものではない。例えば、導電性フィラーとしては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノホーンまたはカーボンファイバ(炭素繊維)などのカーボン材料;アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、またはニッケルなどの金属;いわゆるABO3型のペロブスカイト型複合酸化物などの導電性セラミックスなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。耐久性の点から、カーボン材料を用いることが好ましい。 The type of the conductive filler described above is not particularly limited as long as it has conductivity. For example, as the conductive filler, carbon materials such as graphite, carbon black, carbon nanotubes, carbon nanohorns or carbon fibers (carbon fibers); aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, Examples thereof include metals such as titanium and nickel; and conductive ceramics such as a so-called ABO 3 type perovskite-type composite oxide, but the present invention is not limited thereto. These conductive fillers may be used alone or in combination of two or more. From the viewpoint of durability, it is preferable to use a carbon material.
 上述の非導電性エラストマーとしては、例えば、シリコーンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ニトリルゴム、クロロプレンゴム、アクリルニトリルブタジエンゴム、ブチルゴム、ウレタンゴム、またはフッ素ゴムなどが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中では、耐久性などの点から、シリコーンゴムを用いることが好ましい。 Examples of the above-mentioned non-conductive elastomers include silicone rubber, ethylene propylene rubber, ethylene propylene diene rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, chloroprene rubber, acrylonitrile nitrile butadiene rubber, butyl rubber, urethane rubber, or Fluororubber etc. are mentioned. These may be used alone or in combination of two or more. Among these, in terms of durability and the like, it is preferable to use silicone rubber.
 また、導電性エラストマーではない絶縁材料としては、上記の非導電性エラストマー、ポリプロピレン(PP)、ポリカーボネート(PC)、ABS樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、または液晶ポリマー(LCP)などを用いることができる。 Moreover, as the insulating material which is not a conductive elastomer, the above non-conductive elastomer, polypropylene (PP), polycarbonate (PC), ABS resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), Alternatively, liquid crystal polymer (LCP) or the like can be used.
 導電層22は、電極基体21Aの先端部211の表面に設けられている。導電層22は、領域Aである先端部211の表面に設けられていれば、その形成される領域は限定されない。電極基体21Aが導電性エラストマーを用いて形成されている場合には、電極基体21Aは導通を確保できるため、導電層22は、先端部211の表面にのみ形成されていればよい。電極基体21Aが絶縁材料で形成されている場合には、導電層22は、電極基体21Aの導通を確保するため、電極基体21Aの全面に設けられてもよい。 The conductive layer 22 is provided on the surface of the tip end portion 211 of the electrode base 21A. As long as the conductive layer 22 is provided on the surface of the tip portion 211 which is the region A, the region to be formed is not limited. When the electrode base 21A is formed using a conductive elastomer, since the electrode base 21A can ensure conduction, the conductive layer 22 may be formed only on the surface of the tip end portion 211. When the electrode base 21A is formed of an insulating material, the conductive layer 22 may be provided on the entire surface of the electrode base 21A in order to ensure conduction of the electrode base 21A.
 導電層22は、上記の第1の実施形態に係る導電材10で形成されるものであり、その表面および内部に、複数の細孔221を有する。 The conductive layer 22 is formed of the conductive material 10 according to the above-described first embodiment, and has a plurality of pores 221 on the surface and inside thereof.
 上記のような構成を有する電極脚20Aでは、電極基体21Aの先端部211に導電層22を形成し、導電層22の細孔221内に溶液を含ませる。導電層22を生体の表面に接触させると、導電層22の細孔221内に保持された溶液が生体の表面に流れる。導電層22と生体の表面とを溶液を介して導通させることで、生体と電極脚20Aとの間の接触インピーダンスを大幅に下げることができるので、生体からの電気信号が取得し易くなり、生体の電気信号をより高感度で検出できる。よって、電極脚20Aは、生体との電気的接続を安定して維持できるので、生体情報を安定して測定することができる。 In the electrode leg 20A having the above configuration, the conductive layer 22 is formed on the tip end portion 211 of the electrode base 21A, and the solution is contained in the pores 221 of the conductive layer 22. When the conductive layer 22 is in contact with the surface of the living body, the solution held in the pores 221 of the conductive layer 22 flows to the surface of the living body. Conduction of the conductive layer 22 and the surface of the living body through the solution can significantly lower the contact impedance between the living body and the electrode leg 20A, so that it becomes easy to obtain an electrical signal from the living body, and the living body can be obtained. Can detect electrical signals of higher sensitivity. Therefore, since the electrode leg 20A can stably maintain the electrical connection with the living body, the biological information can be stably measured.
 また、導電層22は、上述の第1の実施形態に係る導電材10で形成されているので、高い耐摩耗性を有する。そのため、電極脚20Aの使用時や洗浄時に、電極脚20Aの先端部211の表面の導電層22が擦られても、導電層22が削られるのを抑制することができる。よって、電極脚20Aを生体情報測定用電極に用いても、導電層22は、生体との接触部において生体と安定して接触できるので、導電層22と生体との導通を安定して維持することができる。したがって、電極脚20Aを用いれば、電極脚20Aの先端部211と生体との電気的接続を維持できるため、生体からの電気信号を安定して得ることができる。 Moreover, since the conductive layer 22 is formed of the conductive material 10 according to the first embodiment described above, it has high wear resistance. Therefore, even when the conductive layer 22 on the surface of the tip end portion 211 of the electrode leg 20A is rubbed, the conductive layer 22 can be prevented from being scraped off during use or cleaning of the electrode leg 20A. Therefore, even when the electrode leg 20A is used for a biological information measurement electrode, the conductive layer 22 can stably contact with the living body at the contact portion with the living body, so that the conduction between the conductive layer 22 and the living body is stably maintained. be able to. Therefore, if the electrode leg 20A is used, the electrical connection between the tip end portion 211 of the electrode leg 20A and the living body can be maintained, so that an electrical signal from the living body can be stably obtained.
[第2の実施形態に係る電極脚の変形例]
 導電層22は、電極基体21Aの先端部211に形成されているが、少なくとも先端部211に形成されていればよく、電極基体21Aの他の部分に形成されていてもよいし、電極基体21Aの全面に形成されていてもよい。例えば、電極基体21Aが絶縁材料で形成されている場合には、導電層22を電極基体21Aの全面に形成する。
[Modification of electrode leg according to the second embodiment]
The conductive layer 22 is formed on the tip end portion 211 of the electrode base 21A, but may be formed on another portion of the electrode base 21A as long as it is formed on at least the tip end portion 211. It may be formed on the entire surface of For example, when the electrode base 21A is formed of an insulating material, the conductive layer 22 is formed on the entire surface of the electrode base 21A.
 また、電極基体21Aが絶縁材料で形成されている場合には、他の構成も考えられる。図8は、第2の実施形態に係る電極脚20Aの変形例を説明した図であって、図6のII-II断面図に対応した電極脚の部分断面図である。図8に示すように、電極基体21Aの全面に、導電層22と電気的に接続された下地導電層(第2導電層)23を形成することが好ましい。これにより、電極基体21Aの表面全体に導通を取ることができる。下地導電層23に含まれる導電性高分子には、導電層22と同様の導電性高分子を使用することができる。下地導電層23の厚さは、導通が取れればよく、例えば、200nm~1μm程度であればよい。なお、図8では、下地導電層23は電極基体21Aが連結される生体測定用電極と導通が取れればよく、電極基体21Aの先端部211とは反対側の端面に形成しなくてもよい。 In addition, when the electrode base 21A is formed of an insulating material, other configurations can be considered. FIG. 8 is a view for explaining a modification of the electrode leg 20A according to the second embodiment, and is a partial cross-sectional view of the electrode leg corresponding to the II-II cross-sectional view of FIG. As shown in FIG. 8, it is preferable to form a base conductive layer (second conductive layer) 23 electrically connected to the conductive layer 22 on the entire surface of the electrode base 21A. Thus, the entire surface of the electrode base 21A can be electrically connected. A conductive polymer similar to the conductive layer 22 can be used as the conductive polymer contained in the base conductive layer 23. The thickness of the base conductive layer 23 only needs to be conductive, and may be, for example, about 200 nm to 1 μm. In FIG. 8, the base conductive layer 23 may be electrically connected to the electrode for biological measurement to which the electrode base 21A is connected, and may not be formed on the end face of the electrode base 21A opposite to the tip end portion 211.
<第2の実施形態に係る電極脚の製造方法>
 次に、第2の実施形態に係る電極脚20Aの製造方法について説明する。図9は、本実施形態に係る電極脚20Aの製造方法を示すフローチャートである。
<Method of Manufacturing Electrode Leg According to Second Embodiment>
Next, a method of manufacturing the electrode leg 20A according to the second embodiment will be described. FIG. 9 is a flowchart showing a method of manufacturing the electrode leg 20A according to the present embodiment.
 本実施形態に係る電極脚20Aの製造方法は、図9に示すように、導電性を有する電極基体21Aを作製する脚基体作製工程(ステップS21A)と、電極基体21Aの先端部211に導電層22を形成する導電層形成工程(ステップS22A)とを含む。
以下、各工程について説明する。
In the method of manufacturing the electrode leg 20A according to the present embodiment, as shown in FIG. 9, a leg base manufacturing step (step S21A) of manufacturing the electrode base 21A having conductivity and a conductive layer at the tip portion 211 of the electrode base 21A. And 22 forming a conductive layer (step S22A).
Each step will be described below.
 脚基体作製工程(ステップS21A)では、電極基体21Aを形成する材料を用いて、電極基体21Aを成形する。成形法を用いる際、電極基体21Aの形状に対応した金型が用いられる。前記金型を用いることで、電極基体21Aを成形できる。 In the leg base producing step (step S21A), the electrode base 21A is formed using a material for forming the electrode base 21A. When the molding method is used, a mold corresponding to the shape of the electrode base 21A is used. The electrode base 21A can be formed by using the mold.
 導電層形成工程(ステップS22A)は、塗布工程(ステップS221)と、固化工程(ステップS222)とを含む。 The conductive layer forming step (step S22A) includes a coating step (step S221) and a solidification step (step S222).
 導電層形成工程(ステップS22A)の塗布工程(ステップS221)では、ファイバと、ファイバ同士を結着する導電性高分子およびバインダ樹脂である熱硬化性樹脂と、ファイバが分散する溶媒として溶剤とを含む混合溶液を先端部211に塗布して塗布層を形成する。 In the coating step (step S221) of the conductive layer forming step (step S22A), a fiber, a conductive polymer that bonds the fibers with one another, a thermosetting resin that is a binder resin, and a solvent as a solvent in which the fiber is dispersed The mixed solution containing it is apply | coated to the front-end | tip part 211, and a coating layer is formed.
 導電層形成工程(ステップS22A)の固化工程(ステップS222)は、上述の、図5に示す第1の実施形態の導電材の製造方法の固化工程(ステップS12)と同様に行うことができる。固化工程(ステップS222)では、多数の細孔221を有する導電層22を電極基体21Aの先端部211に形成できる。 The solidifying step (step S222) of the conductive layer forming step (step S22A) can be performed in the same manner as the solidifying step (step S12) of the method of manufacturing the conductive material of the first embodiment shown in FIG. In the solidification step (step S222), the conductive layer 22 having a large number of pores 221 can be formed on the tip end portion 211 of the electrode base 21A.
 以上のようにして、導電層22を電極基体21Aの先端部211に形成した電極脚20Aが得られる。 As described above, the electrode leg 20A in which the conductive layer 22 is formed at the tip end portion 211 of the electrode base 21A is obtained.
 本実施形態では、電極基体21Aの先端部211に形成した塗布層を凍結乾燥法を用いて乾燥させることで、内部および表面に多数の細孔221を有する導電層22を備えた電極脚20Aを容易に得ることができる。 In the present embodiment, the electrode leg 20A provided with the conductive layer 22 having a large number of pores 221 inside and on the surface is obtained by drying the coating layer formed on the tip end portion 211 of the electrode base 21A using the freeze-drying method. It can be easily obtained.
 また、本実施形態では、導電層形成工程(ステップS22A)の塗布工程(ステップS221)において、混合溶液を先端部211に1回塗布した時に形成される塗布層の膜厚は、ファイバを含まない溶液を1回塗布した時に形成される塗布層の膜厚よりも厚くすることができる。導電層22の所望の厚さは、混合溶液の少ない塗布回数で得られるため、塗布工程(ステップS221)で塗布層を形成するために要する費用を低減できる。また、導電層22の厚さを厚くすることで、電極脚20Aを生体情報測定用電極に使用する際や電極脚20Aの洗浄時に導電層22の表面が擦られて磨耗しても、導電層22がすり減って先端部211の表面から剥がれてしまうまでの時間を遅らせることができる。この結果、導電層22の寿命をより伸ばすことができる。 Further, in the present embodiment, in the coating step (step S221) of the conductive layer forming step (step S22A), the film thickness of the coating layer formed when the mixed solution is applied once to the tip end portion 211 does not include a fiber. It can be thicker than the thickness of the coating layer formed when the solution is applied once. Since the desired thickness of the conductive layer 22 can be obtained with a small number of application times of the mixed solution, the cost required for forming the application layer in the application step (step S221) can be reduced. In addition, by thickening the thickness of the conductive layer 22, the conductive layer 22 is worn even when the surface of the conductive layer 22 is abraded and worn when the electrode leg 20A is used for a biological information measurement electrode or when the electrode leg 20A is cleaned. It is possible to delay the time until it wears off from the surface of the tip portion 211. As a result, the life of the conductive layer 22 can be further extended.
 導電層22に含まれるファイバがセルロースナノファイバである場合、セルロースナノファイバと導電性高分子とを含む混合溶液は、電極基体21Aへの濡れ性が良く、高いチクソ性を有する。そのため、セルロースナノファイバと導電性高分子とを含む混合溶液を用いて導電層22を形成する場合、前記混合溶液を先端部211に一回塗布した時に形成される塗布層の厚みをより厚くすることができる。前記混合溶液の1回の塗布で形成される塗布層の膜厚は、セルロースナノファイバを含まない溶液を塗布して形成される塗布層の膜厚よりも、例えば、1.3~4倍くらい厚くすることができる。 When the fibers contained in the conductive layer 22 are cellulose nanofibers, the mixed solution containing cellulose nanofibers and a conductive polymer has good wettability to the electrode substrate 21A and high thixotropy. Therefore, when the conductive layer 22 is formed using a mixed solution containing cellulose nanofibers and a conductive polymer, the thickness of the coated layer formed when the mixed solution is applied to the tip portion 211 once is made thicker. be able to. The film thickness of the coating layer formed in one application of the mixed solution is, for example, about 1.3 to 4 times the film thickness of the coating layer formed by coating a solution not containing cellulose nanofibers. It can be thickened.
[第2の実施形態に係る電極脚の製造方法の変形例]
 なお、本実施形態では、導電層形成工程(ステップS22A)は、電極基体21Aの先端部211にのみ導電層22を形成しているが、先端部211の他に電極基体21Aの側面の一部または全部に導電層22を形成してもよい。
[Modified Example of Method of Manufacturing Electrode Leg According to Second Embodiment]
In the present embodiment, in the conductive layer forming step (step S22A), the conductive layer 22 is formed only at the tip end portion 211 of the electrode base 21A, but in addition to the tip end portion 211, a part of the side surface of the electrode base 21A. Alternatively, the conductive layer 22 may be formed entirely.
 また、本実施形態では、導電層形成工程(ステップS22A)は、電極基体21Aの先端部211に塗布した塗布層を凍結乾燥して導電層22を形成しているが、これに限定されない。導電層形成工程(ステップS22A)では、例えば、予め作製した導電層22を電極基体21Aの先端部211に取り付けるようにしてもよい。この場合における電極脚の製造方法の一例を図10に示す。図10は、本実施形態に係る電極脚の製造方法を示す他のフローチャートである。図10に示すように、本実施形態に係る電極脚の製造方法は、脚基体作製工程(ステップS21A)と、導電層形成工程(ステップS22B)とを含む。導電層形成工程(ステップS22B)は、電極基体21Aの先端部211に、上記の第1の実施形態に係る導電材10からなる導電層22を取り付ける。導電層22は、上記の第1の実施形態に係る導電材の製造方法より得られる。導電層22は、例えば、先端部211に接着剤を用いて取り付けてもよいし、先端部211に嵌め込んで固定してもよい。電極基体21Aの先端部211に導電層22を取り付けることで、電極脚20Aが得られる。 Further, in the present embodiment, the conductive layer 22 is formed by freeze-drying the coating layer applied to the tip end portion 211 of the electrode base 21A in the conductive layer forming step (step S22A), but the present invention is not limited thereto. In the conductive layer forming step (step S22A), for example, the conductive layer 22 prepared in advance may be attached to the tip end portion 211 of the electrode base 21A. An example of a method of manufacturing the electrode leg in this case is shown in FIG. FIG. 10 is another flowchart showing the method of manufacturing the electrode leg according to the present embodiment. As shown in FIG. 10, the method of manufacturing the electrode leg according to the present embodiment includes a leg base producing step (step S21A) and a conductive layer forming step (step S22B). In the conductive layer forming step (step S22B), the conductive layer 22 made of the conductive material 10 according to the first embodiment is attached to the tip end portion 211 of the electrode base 21A. The conductive layer 22 is obtained by the method of manufacturing a conductive material according to the first embodiment. For example, the conductive layer 22 may be attached to the tip end portion 211 using an adhesive, or may be fitted and fixed to the tip end portion 211. The electrode leg 20A is obtained by attaching the conductive layer 22 to the tip end portion 211 of the electrode base 21A.
 また、電極基体21Aは、導電性を有する材料を用いて作製しているが、絶縁材料を用いて電極基体21Aを作製する際、絶縁材料を用いて作製した電極基体21Aの表面を表面処理した後、導電層22を形成するようにする。この場合における電極脚の製造方法の一例を図11に示す。図11は、本実施形態に係る電極脚の製造方法を示す他のフローチャートである。図11に示すように、本実施形態に係る電極脚の製造方法は、脚基体作製工程(ステップS21B)と、導電層形成工程(ステップS22A)とを含む。脚基体作製工程(ステップS21B)は、電極基体21Aを成形する脚基体成形工程(ステップS211)と、電極基体21Aの先端部211の表面を活性化処理する表面処理工程(ステップS212)とを含む。脚基体成形工程(ステップS211)では、電極基体21Aを形成する材料を用いて、電極基体21Aを形成する。表面処理工程(ステップS212)では、先端部211の表面を活性化処理して、導電層22との密着性を向上させる。表面処理工程(ステップS212)の詳細については、後述する、図24に示す第3の実施形態に係る電極脚20Bの製造方法の表面処理工程(ステップS32)において説明する。電極基体21Aの先端部211に導電層22を形成する前に予め電極基体21Aの先端部211を表面処理しておくことで、導電層22を電極基体21Aの先端部211に、安定して形成できる。 In addition, although the electrode base 21A is manufactured using a conductive material, when the electrode base 21A is manufactured using an insulating material, the surface of the electrode base 21A manufactured using an insulating material is surface treated Thereafter, the conductive layer 22 is formed. An example of the manufacturing method of the electrode leg in this case is shown in FIG. FIG. 11 is another flowchart showing the method of manufacturing the electrode leg according to the present embodiment. As shown in FIG. 11, the method of manufacturing the electrode leg according to the present embodiment includes a leg base manufacturing step (step S21B) and a conductive layer forming step (step S22A). The leg base producing step (step S21B) includes a leg base forming step (step S211) for forming the electrode base 21A, and a surface treatment step (step S212) for activating the surface of the tip end portion 211 of the electrode base 21A. . In the leg base forming step (step S211), the electrode base 21A is formed using a material for forming the electrode base 21A. In the surface treatment step (step S212), the surface of the tip end portion 211 is subjected to activation treatment to improve the adhesion to the conductive layer 22. Details of the surface treatment step (step S212) will be described later in the surface treatment step (step S32) of the method for manufacturing the electrode leg 20B according to the third embodiment shown in FIG. The conductive layer 22 is stably formed on the tip end portion 211 of the electrode base 21A by surface treating the tip end portion 211 of the electrode base 21A in advance before forming the conductive layer 22 on the tip end portion 211 of the electrode base 21A. it can.
 また、電極基体21Aは、導電性を有する材料を用いて作製されているが、絶縁材料を用いて電極基体21Aを作製する場合には、図8に示すように、電極基体21Aと導電層22との間に、下地導電層23を形成することが好ましい。この場合、本実施形態に係る生体情報測定用電極の製造方法は、電極基体21Aの表面に、導電性高分子を含有する下地導電層23を形成する。図12に示すように、本実施形態に係る生体情報測定用電極の製造方法は、脚基体作製工程(ステップS21A)と、電極基体21Aの表面に、導電性高分子を含有する下地導電層23を形成する下地導電層形成工程(ステップS22C)と、導電層形成工程(ステップS23)とを含む。導電層形成工程(ステップS23)は、塗布工程(ステップS231)および固化工程(ステップS232)を含む。導電層形成工程(ステップS23)は、上述の、図9に示す導電層形成工程(ステップS22A)と同様である。塗布工程(ステップS231)および固化工程(ステップS232)は、いずれも、上述の、図9に示す導電層形成工程(ステップS22A)の塗布工程(ステップS221)および固化工程(ステップS222)と同様である。電極基体21Aが絶縁材料で形成されていても、電極基体21Aの表面に下地導電層23を形成することで、電極基体21Aは、導電層22と下地導電層23との間で導通を確保することができる。 In addition, although the electrode base 21A is manufactured using a conductive material, when the electrode base 21A is manufactured using an insulating material, as shown in FIG. 8, the electrode base 21A and the conductive layer 22 are manufactured. Preferably, the underlying conductive layer 23 is formed between them. In this case, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the base conductive layer 23 containing a conductive polymer is formed on the surface of the electrode base 21A. As shown in FIG. 12, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the base conductive layer 23 containing a conductive polymer on the surface of the electrode base 21A and the surface of the electrode base 21A is a leg base producing step (step S21A). And a conductive layer forming step (step S23). The conductive layer formation step (step S23) includes a coating step (step S231) and a solidification step (step S232). The conductive layer forming step (step S23) is the same as the conductive layer forming step (step S22A) shown in FIG. 9 described above. The applying step (step S231) and the solidifying step (step S232) are similar to the applying step (step S221) and the solidifying step (step S222) of the conductive layer forming step (step S22A) shown in FIG. 9 described above. is there. Even if the electrode base 21A is formed of an insulating material, the electrode base 21A ensures conduction between the conductive layer 22 and the base conductive layer 23 by forming the base conductive layer 23 on the surface of the electrode base 21A. be able to.
[第3の実施形態]
<電極脚>
 第3の実施形態に係る電極脚について、図面を参照して説明する。本実施形態に係る電極脚は、上記の第2の実施形態に係る電極脚20Aの電極基体21Aに、領域Aである先端部211に設けられる溝部(先端溝部)24Aと、先端部211以外の部分である電極脚20Bの側面212に設けられる補助溝部(側面溝部)25とを形成したものである。
Third Embodiment
<Electrode leg>
An electrode leg according to a third embodiment will be described with reference to the drawings. The electrode leg according to the present embodiment includes the groove (tip groove portion) 24A provided in the tip end portion 211 which is the region A in the electrode base 21A of the electrode leg 20A according to the second embodiment, and the tip portion 211 other than An auxiliary groove (side groove) 25 provided on the side surface 212 of the electrode leg 20B which is a portion is formed.
 図13は、第3の実施形態に係る電極脚の外観を示す斜視図であり、図14は、第3の実施形態に係る電極脚の正面図であり、図15は、図13のIII-III断面図である。図13~図15に示すように、本実施形態に係る電極脚20Bは、図6および図7に示す電極基体21Aに代えて、電極基体21Bを備えたものである。電極基体21Bは、図6および図7に示す電極基体21Aに、領域Aである先端部211に設けられる溝部(先端溝部)24Aと、先端部211以外の部分である電極脚20Bの側面212に設けられる補助溝部(側面溝部)25とを形成したものである。導電層22は、先端部211の表面に形成されるものであるため、先端溝部24Aの表面にも形成されている。電極脚20Bは、先端溝部24Aおよび側面溝部25を備えることで、先端溝部24Aおよび側面溝部25内に液体を保持することができる。 FIG. 13 is a perspective view showing the appearance of the electrode leg according to the third embodiment, FIG. 14 is a front view of the electrode leg according to the third embodiment, and FIG. It is III sectional drawing. As shown in FIGS. 13 to 15, the electrode leg 20B according to the present embodiment includes an electrode base 21B in place of the electrode base 21A shown in FIGS. The electrode base 21B is provided on the electrode base 21A shown in FIGS. 6 and 7 with a groove (tip groove) 24A provided in the tip end portion 211 which is the region A and a side surface 212 of the electrode leg 20B which is a portion other An auxiliary groove (side groove) 25 to be provided is formed. The conductive layer 22 is formed on the surface of the distal end portion 211, and therefore is also formed on the surface of the distal end groove portion 24A. The electrode leg 20B can hold the liquid in the tip groove 24A and the side groove 25 by providing the tip groove 24A and the side groove 25.
 なお、先端溝部24Aおよび側面溝部25内に含まれる液体は、細孔11内に含まれる液体と同様の液体を用いることができる。 The liquid contained in the tip groove 24A and the side groove 25 may be the same liquid as the liquid contained in the pore 11.
 先端溝部24Aは、電極基体21Bの先端部211の表面に形成されている。本実施形態では、先端溝部24Aは、電極脚20Bの先端部211を先端部211から+Z軸方向に向かって見たとき、十字型に形成されている。 The tip groove portion 24A is formed on the surface of the tip portion 211 of the electrode base 21B. In the present embodiment, the tip groove portion 24A is formed in a cross shape when the tip portion 211 of the electrode leg 20B is viewed from the tip portion 211 in the + Z-axis direction.
 先端溝部24Aの断面形状は、図16に示すように、断面視において略U字状に形成されている。なお、先端溝部24Aの断面形状は、断面視において略V字状に形成されていてもよい。 As shown in FIG. 16, the cross-sectional shape of the tip groove portion 24A is formed substantially in a U-shape in a cross-sectional view. In addition, the cross-sectional shape of tip groove part 24A may be formed in the substantially V shape in the cross sectional view.
 先端溝部24Aの幅W1(図16参照)は、10μm~120μmであることが好ましい。先端溝部24Aの幅W1が上記範囲内であれば、先端溝部24Aに導電層22が形成された後でも、先端溝部24A内に液体を保持することができる。また、先端溝部24Aに導電層22が形成されていれば、例えば、アルコールを含んだキムワイプなどで電極脚20Bの先端部211を強く拭いても、キムワイプの繊維が先端溝部24A内に侵入するのを低減できる。また、幅W1が上記範囲内であれば、毛髪の平均の太さよりも小さいため、先端溝部24A内に毛髪が侵入するのを低減できる。先端溝部24Aの幅W1は、より好ましくは20μm~70μmであり、さらに好ましくは30μm~50μmである。 The width W1 (see FIG. 16) of the end groove 24A is preferably 10 μm to 120 μm. If the width W1 of the end groove 24A is in the above range, the liquid can be held in the end groove 24A even after the conductive layer 22 is formed in the end groove 24A. Further, if the conductive layer 22 is formed in the end groove 24A, for example, even if the end portion 211 of the electrode leg 20B is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter the end groove 24A. Can be reduced. In addition, if the width W1 is within the above range, since the width is smaller than the average thickness of the hair, the penetration of the hair into the tip groove 24A can be reduced. The width W1 of the tip groove 24A is more preferably 20 μm to 70 μm, and still more preferably 30 μm to 50 μm.
 なお、本実施形態では、幅W1(図16参照)とは、先端溝部24Aの底部から表面側までの幅の最大値(最大幅)をいう。先端溝部24Aの断面形状が、断面視において略V字状に形成されている場合でも、幅W1とは、最大幅、すなわち、先端部211の表面における幅の値をいう。 In the present embodiment, the width W1 (see FIG. 16) refers to the maximum value (maximum width) of the width from the bottom of the tip groove 24A to the surface side. Even when the cross-sectional shape of the tip groove 24A is formed in a substantially V-shape in a cross-sectional view, the width W1 refers to the maximum width, that is, the value of the width on the surface of the tip 211.
 先端溝部24Aの最大深さH1(図16参照)は、10μm~500μmであることが好ましい。先端溝部24Aの最大深さH1が上記範囲内であれば、電極脚20Bの先端部211に、導電層22を形成しても先端溝部24Aは所定の深さを有することができる。先端溝部24Aの最大深さH1は、20μm~300μmであり、さらに好ましくは30~150μmである。 The maximum depth H1 (see FIG. 16) of the tip groove 24A is preferably 10 μm to 500 μm. If the maximum depth H1 of the end groove 24A is within the above range, the end groove 24A can have a predetermined depth even if the conductive layer 22 is formed on the end 211 of the electrode leg 20B. The maximum depth H1 of the tip groove 24A is 20 μm to 300 μm, and more preferably 30 to 150 μm.
 側面溝部25は、図13~図15に示すように、先端部211以外の部分である、電極脚20Bの側面212の表面に複数形成されており、先端溝部24Aの少なくとも一部と連通している。 As shown in FIGS. 13 to 15, a plurality of side grooves 25 are formed on the surface of the side 212 of the electrode leg 20B, which is a portion other than the tip 211, and communicate with at least a part of the tip groove 24A. There is.
 側面溝部25の幅W2(図17参照)は、先端溝部24Aの幅W1と同様、10μm~120μmであることが好ましい。側面溝部25の幅W2が10μm~120μmであれば、図17に示すように、側面溝部25に導電層22が形成されても、側面溝部25内に液体を保持することができる。また、側面溝部25に導電層22が形成されていれば、例えば、アルコールを含んだキムワイプなどで電極脚20Bの側面212を強く拭いても、キムワイプの繊維が側面溝部25内に侵入するのを低減できる。また、幅W2が上記範囲内であれば、毛髪の太さを超えないため、毛髪が側面溝部25内に侵入するのを低減できる。側面溝部25の幅W2は、より好ましくは20μm~70μmであり、さらに好ましくは30~50μmである。なお、側面溝部25の幅W2の定義は、上述の幅W1と同様であるため、説明は省略する。 The width W2 (see FIG. 17) of the side surface groove 25 is preferably 10 μm to 120 μm, similarly to the width W1 of the tip groove 24A. If the width W2 of the side groove 25 is 10 μm to 120 μm, the liquid can be held in the side groove 25 even if the conductive layer 22 is formed in the side groove 25 as shown in FIG. Also, if the conductive layer 22 is formed in the side groove 25, for example, even if the side 212 of the electrode leg 20B is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter into the side groove 25. It can be reduced. In addition, when the width W2 is in the above range, the hair does not exceed the thickness of the hair, so that the penetration of the hair into the side groove 25 can be reduced. The width W2 of the side groove 25 is more preferably 20 μm to 70 μm, and still more preferably 30 to 50 μm. In addition, since the definition of the width W2 of the side surface groove part 25 is the same as the above-mentioned width W1, description is abbreviate | omitted.
 側面溝部25の最大深さH2(図17参照)は、先端溝部24Aと同様、10μm~500μmであることが好ましい。側面溝部25の最大深さH2が上記範囲内であれば、電極脚20Bの側面212に導電層22を形成しても先端溝部24Aは所定の深さを有することができる。先端溝部24Aの最大深さH2は、より好ましくは20μm~300μmであり、さらに好ましくは30μm~150μmである。 The maximum depth H2 (see FIG. 17) of the side groove 25 is preferably 10 μm to 500 μm, as in the case of the tip groove 24A. If the maximum depth H2 of the side groove 25 is within the above range, the tip groove 24A can have a predetermined depth even if the conductive layer 22 is formed on the side 212 of the electrode leg 20B. The maximum depth H2 of the tip groove 24A is more preferably 20 μm to 300 μm, and still more preferably 30 μm to 150 μm.
 以上のように構成された電極脚20Bは、領域Aである先端部211の表面に複数の先端溝部24Aを有すると共に、先端部211の表面に導電層22を有する。電極脚20Bを生体情報測定用電極に取り付けて、生体情報測定用電極を繰り返し長期間使用すると、例えば、図18に示すように、先端部211の表面の導電層22の一部が徐々に擦り減り、先端部211が部分的に露出する状態になるまで導電層22の一部が剥がれてしまう可能性がある。このような場合でも、電極脚20Bでは、先端溝部24Aの表面に形成された導電層22は残っている。そのため、導電層22の導通が、先端溝部24Aの表面に形成された導電層22と生体との接触部において維持できるため、導電層22と生体との導通を安定して維持することができる。よって、電極脚20Bによれば、電極基体21Bの先端部211と生体との電気的接続を維持できるため、生体からの電気信号を安定して得ることができ、生体情報を安定して測定することができる。 The electrode leg 20B configured as described above has a plurality of tip grooves 24A on the surface of the tip portion 211 which is the region A, and the conductive layer 22 on the surface of the tip portion 211. When the electrode leg 20B is attached to a biological information measurement electrode and the biological information measurement electrode is repeatedly used for a long time, for example, as shown in FIG. 18, a part of the conductive layer 22 on the surface of the tip end portion 211 is gradually rubbed As a result, part of the conductive layer 22 may be peeled off until the tip end portion 211 is partially exposed. Even in such a case, in the electrode leg 20B, the conductive layer 22 formed on the surface of the tip groove 24A remains. Therefore, since the conduction of the conductive layer 22 can be maintained at the contact portion between the conductive layer 22 formed on the surface of the tip groove 24A and the living body, the conduction between the conductive layer 22 and the living body can be stably maintained. Therefore, according to the electrode leg 20B, since the electrical connection between the tip portion 211 of the electrode base 21B and the living body can be maintained, the electrical signal from the living body can be stably obtained, and the living body information can be stably measured. be able to.
 また、電極脚20Bを液体に浸漬すると、先端部211の表面に設けた先端溝部24A内に毛細管現象により液体を保持することができる。そのため、生体情報を測定する際に、先端部211を生体に接触させると、図19に示すように、先端溝部24Aで保持されていた液体が先端部211と接触する生体26の表面に流れて広がる。生体26を液体を介して導電層22と導通させることで、生体26から導電層22に導通する面積が大きくなるため、生体26と電極脚20Bとの間の接触インピーダンスをより下げることができる。これにより、電極脚20Bを備えた生体情報測定用電極は、生体情報をより安定して測定することができる。 Further, when the electrode leg 20B is immersed in the liquid, the liquid can be held by the capillary phenomenon in the tip groove 24A provided on the surface of the tip portion 211. Therefore, when measuring the biological information, when the tip end portion 211 is brought into contact with the living body, the liquid held in the tip groove portion 24A flows on the surface of the living body 26 in contact with the tip end portion 211 as shown in FIG. spread. By bringing the living body 26 into conduction with the conductive layer 22 via the liquid, the area of conduction from the living body 26 to the conductive layer 22 is increased, so the contact impedance between the living body 26 and the electrode leg 20B can be further lowered. Thereby, the biological information measurement electrode provided with the electrode leg 20B can measure biological information more stably.
 さらに、電極脚20Bは、電極基体21Bの側面に側面溝部25を複数有しており、側面溝部25は先端溝部24Aの少なくとも一部と連通している。そのため、生体情報の測定時に、先端溝部24Aで保持されていた液体が先端部211と接触する生体の表面に流れ、先端溝部24Aで保持されていた液体が消費される。その際、側面溝部25に保持されていた液体が先端溝部24Aに流れて生体の表面に供給される。これにより、生体と電極脚20Bとの間の接触インピーダンスを低く抑えたまま、生体と電極脚20Bとの接触を維持することができる。よって、電極脚20Bを生体情報測定用電極に用いれば、生体情報をより安定して継続的に測定することができる。 Furthermore, the electrode leg 20B has a plurality of side grooves 25 on the side surface of the electrode base 21B, and the side grooves 25 communicate with at least a part of the tip groove 24A. Therefore, at the time of measurement of biological information, the liquid held by the tip groove 24A flows to the surface of the living body in contact with the tip 211, and the liquid held by the tip groove 24A is consumed. At that time, the liquid held in the side groove 25 flows to the tip groove 24A and is supplied to the surface of the living body. Thereby, the contact between the living body and the electrode leg 20B can be maintained while the contact impedance between the living body and the electrode leg 20B is kept low. Therefore, if the electrode leg 20B is used for a biological information measurement electrode, biological information can be measured more stably and continuously.
[第3の実施形態に係る電極脚の変形例]
 電極脚20Bの一例を示したが、これに限定されない。以下に、電極脚20Bの変形例をいくつか示す。
[Modification of electrode leg according to the third embodiment]
Although an example of electrode leg 20B was shown, it is not limited to this. Below, some modifications of the electrode leg 20B are shown.
 本実施形態では、先端溝部24Aは、電極基体21Bの先端部211を+Z軸方向に向かって見たとき、十字型に形成されているが、先端溝部24Aは、溝内に液体を保持することができる形状であればよい。例えば、図20に示すように、電極基体21Bの先端部211には、網目状に形成された先端溝部24Bが設けられていてもよいし、図21に示すように樹枝状に形成された先端溝部24Cが設けられていてもよい。図20および図21に示すように、先端部211に網目状に形成された先端溝部24Bまたは樹枝状に形成された先端溝部24Cを設けることで、先端部211の表面の先端溝部24Bおよび24Cに液体をより効率よく保持することができる。そのため、導電層22と生体との導通をより安定して維持することができる。また、先端部211が生体に接触した際、先端部211は、あらゆる方向に対して先端溝部24Bおよび24Cの表面の導電層22と生体との導通を安定して維持することができる。そのため、先端部211を生体に沿ってあらゆる方向に移動させても、生体情報をより安定して測定することができる。 In the present embodiment, the front end groove 24A is formed in a cross shape when the front end portion 211 of the electrode base 21B is viewed in the + Z axial direction, but the front end groove 24A holds the liquid in the groove. It is sufficient that the shape can be For example, as shown in FIG. 20, the distal end portion 211 of the electrode base 21B may be provided with a distal end groove portion 24B formed in a mesh shape, or the distal end formed in a dendritic shape as shown in FIG. The groove 24C may be provided. As shown in FIGS. 20 and 21, by providing the distal end groove portion 24B formed in a mesh shape at the distal end portion 211 or the distal end groove portion 24C formed in a dendritic shape, the distal end groove portions 24B and 24C on the surface of the distal end portion 211 The liquid can be held more efficiently. Therefore, conduction between the conductive layer 22 and the living body can be maintained more stably. Further, when the tip end portion 211 comes in contact with a living body, the tip end portion 211 can stably maintain conduction between the conductive layer 22 on the surface of the tip end groove portions 24B and 24C and the living body in all directions. Therefore, biological information can be measured more stably even if the tip end portion 211 is moved in any direction along the living body.
 本実施形態では、側面溝部25が電極基体21Bの側面212の表面に形成されているが、先端溝部24Aで十分、液体を保持することができる場合などには、側面溝部25は形成されていなくてもよい。これにより、先端部211に複数の先端溝部24Aが形成された電極脚を製造することができる。 In the present embodiment, the side surface groove 25 is formed on the surface of the side surface 212 of the electrode base 21B, but the side surface groove 25 is not formed if the tip groove 24A can sufficiently hold the liquid. May be Thereby, the electrode leg in which the some front end groove part 24A was formed in the front-end | tip part 211 can be manufactured.
<第3の実施形態に係る電極脚の製造方法>
 次に、第3の実施形態に係る電極脚20Bの製造方法について説明する。図22は、本実施形態に係る電極脚20Bの製造方法を示すフローチャートである。図22に示すように、本実施形態に係る電極脚20Bの製造方法は、導電性を有する電極基体を成形すると共に、領域Aである先端部211の表面に複数の先端溝部24Aを形成し、側面212に側面溝部25を形成し、電極基体21Bを作製する脚基体作製工程(ステップS31A)と、電極基体21Bの先端部211の表面を活性化処理する表面処理工程(ステップS32)と、電極基体21Bの先端部211に導電層22を形成する導電層形成工程(ステップS33)とを含む。以下、各工程について説明する。
<Method of Manufacturing Electrode Leg According to Third Embodiment>
Next, a method of manufacturing the electrode leg 20B according to the third embodiment will be described. FIG. 22 is a flowchart showing a method of manufacturing the electrode leg 20B according to the present embodiment. As shown in FIG. 22, in the method of manufacturing the electrode leg 20B according to the present embodiment, the electrode base having conductivity is formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 211 which is the region A. A side surface groove portion 25 is formed on the side surface 212, a leg base producing step (step S31A) for producing the electrode base 21B, a surface treatment step for activating the surface of the tip portion 211 of the electrode base 21B (step S32) And a conductive layer forming step (step S33) of forming the conductive layer 22 on the tip end portion 211 of the base 21B. Each step will be described below.
 脚基体作製工程(ステップS31A)では、電極基体21Bを形成する材料を用いて、電極基体21Bを成形すると共に、領域Aである先端部211の表面に複数の先端溝部24Aを形成し、側面212に側面溝部25を形成する。 In the leg base producing step (step S31A), the electrode base 21B is formed using a material for forming the electrode base 21B, and a plurality of tip grooves 24A are formed on the surface of the tip end portion 211 which is the region A. The side grooves 25 are formed in the
 電極基体21Bは、図9に示す第2の実施形態に係る電極脚20Aの製造方法における成形工程(ステップS21A)と同様に成形することができる。成形法を用いる際、電極基体21Bの形状に対応した金型が用いられる。金型には、先端溝部24Aおよび側面溝部25に対応した突部を設ける。前記金型を用いることで、電極基体21Bを成形すると共に、先端溝部24Aおよび側面溝部25を同時に形成することができる。 The electrode base 21B can be formed in the same manner as the forming step (step S21A) in the method of manufacturing the electrode leg 20A according to the second embodiment shown in FIG. When the molding method is used, a mold corresponding to the shape of the electrode base 21B is used. The mold is provided with a protrusion corresponding to the end groove 24A and the side groove 25. By using the mold, the electrode base 21B can be formed, and the tip groove 24A and the side groove 25 can be simultaneously formed.
 表面処理工程(ステップS32)では、エキシマによる真空紫外光(エキシマUV光)を照射する方法、またはArおよび酸素を含む混合ガス中でプラズマ処理する方法を用いて、先端部211の表面を活性化処理する。先端部211の表面を活性化処理することで、後述する導電層形成工程(ステップS33)において、先端部211と導電層22との密着性が向上させることができる。これにより、先端部211の洗浄や拭き取り等により物理的な力が加わった際に、導電層22が電極基体21B(主に、先端部211)から容易に剥がれることを防止できる。 In the surface treatment step (step S32), the surface of the tip portion 211 is activated using a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen. To process. By performing the activation process on the surface of the tip end portion 211, the adhesion between the tip end portion 211 and the conductive layer 22 can be improved in the later-described conductive layer forming step (step S33). Thereby, when physical force is applied by washing | cleaning of the tip part 211, wiping off, etc., it can prevent that the conductive layer 22 peels easily from electrode base 21B (mainly, tip part 211).
 エキシマUV光を照射する方法を用いる場合、先端部211の表面にエキシマUV光を照射する。エキシマUV光は、大気中で波長が240nm以下のUV光であり、放電性ガスの種類により、所定の波長(中心波長)を有する。放電性ガスとして、Ar2(波長126nm)、Kr2(波長146nm)、ArBr(波長165nm)、Xe2(波長172nm)、KrI(波長191nm)、またはKrCl(波長222nm)などを用いることができる。エキシマUV光を放射する照射ランプが、例えば、Xeガスを封入した誘電体バリヤ放電ランプであるとする。この場合、誘電体バリヤ放電ランプは、Xe原子が励起されたエキシマ状態(Xe2 *)となり、このエキシマ状態から再びXe原子に解離するときに波長約172nmの光を発生する。この波長172nmの光を酸素に照射することで、高濃度のオゾンが発生する。このオゾンの作用により、電極基体21BのうちエキシマUV光が照射される箇所の表面が改質され、親水性の高い基(例えば、水酸基(OH基)、アルデヒド基(CHO基)、カルボキシル基(COOH基)が形成される。これにより、電極基体21Bの先端部211の表面を活性化処理することができ、先端部211の表面を親水性に変化させることができる。この結果、先端部211の表面の水に対する濡れ性を高めることができる。そのため、先端部211のみを簡易に活性化処理することができるので、電極基体21Bが導電性材料で形成されている場合に有効に用いることができる。なお、少なくとも先端部211の表面を活性化処理できればよく、電極基体21Bの先端部211以外の部分や、電極基体21Bの全体にエキシマUV光を照射してもよい。 In the case of using a method of irradiating excimer UV light, the surface of the tip portion 211 is irradiated with excimer UV light. Excimer UV light is UV light having a wavelength of 240 nm or less in the atmosphere, and has a predetermined wavelength (central wavelength) depending on the type of discharge gas. As the dischargeable gas, Ar 2 (wavelength 126 nm), Kr 2 (wavelength 146 nm), ArBr (wavelength 165 nm), Xe 2 (wavelength 172 nm), KrI (wavelength 191 nm), KrCl (wavelength 222 nm) or the like can be used. . A radiation lamp emitting excimer UV light is, for example, a dielectric barrier discharge lamp sealed with Xe gas. In this case, the dielectric barrier discharge lamp is in an excimer state (Xe 2 * ) in which Xe atoms are excited, and generates light with a wavelength of about 172 nm when it dissociates again into Xe atoms from this excimer state. By irradiating the light of wavelength 172 nm to oxygen, high concentration ozone is generated. By the action of the ozone, the surface of the portion of the electrode substrate 21B to which the excimer UV light is irradiated is modified to have a highly hydrophilic group (for example, a hydroxyl group (OH group), an aldehyde group (CHO group), a carboxyl group As a result, the surface of the tip end portion 211 of the electrode base 21B can be activated, and the surface of the tip end portion 211 can be made hydrophilic. Since the wettability to the water of the surface of the surface can be enhanced, only the tip end portion 211 can be activated easily, so that it can be effectively used when the electrode base 21B is formed of a conductive material. In addition, it is sufficient if at least the surface of the tip end portion 211 can be activated, and the entire electrode base body 21B or the portion other than the tip end portion 211 of the electrode base body 21B may be exposed. It may be irradiated with UV light.
 Arおよび酸素を含む混合ガス中でプラズマ処理する方法を用いる場合、電極基体21Bの全体の表面がプラズマで活性化処理される。これにより、先端部211の表面以外に、電極基体21Bの全体の表面を親水性に変化させることができる。この結果、先端部211含め、電極基体21Bの全体の表面の水に対する濡れ性を高めることができる。そのため、電極基体21Bが導電性材料または絶縁材料のいずれで形成されている場合でも有効に用いることができる。 When using a method of plasma treatment in a mixed gas containing Ar and oxygen, the entire surface of the electrode substrate 21B is plasma activated. Thus, the entire surface of the electrode base 21B can be changed to hydrophilicity in addition to the surface of the tip end portion 211. As a result, the wettability to the water of the whole surface of electrode base 21B including tip part 211 can be improved. Therefore, even when the electrode base 21B is formed of either a conductive material or an insulating material, it can be effectively used.
 導電層形成工程(ステップS33)は、塗布工程(ステップS331)および固化工程(ステップS332)を含む。導電層形成工程(ステップS33)は、上述の、図9に示す導電層形成工程(ステップS22A)と同様であり、塗布工程(ステップS331)および固化工程(ステップS332)は、いずれも、上述の、図9に示す導電層形成工程(ステップS22A)の塗布工程(ステップS221)および固化工程(ステップS222)と同様である。そのため、導電層形成工程(ステップS33)では、先端部211の表面に、導電層22を形成する。 The conductive layer formation step (step S33) includes a coating step (step S331) and a solidification step (step S332). The conductive layer forming step (step S33) is the same as the conductive layer forming step (step S22A) shown in FIG. 9 described above, and the coating step (step S331) and the solidifying step (step S332) are both described above. The same as the coating step (step S221) and the solidifying step (step S222) of the conductive layer forming step (step S22A) shown in FIG. Therefore, in the conductive layer forming step (step S33), the conductive layer 22 is formed on the surface of the tip end portion 211.
 以上のようにして、先端部211の表面に導電層22を形成した電極脚20Bが得られる。 As described above, the electrode leg 20B in which the conductive layer 22 is formed on the surface of the tip end portion 211 is obtained.
[第3の実施形態に係る電極脚の製造方法の変形例]
 なお、本実施形態では、脚基体作製工程(ステップS31A)において、先端溝部24Aおよび側面溝部25に対応した突起を設けた金型を用いて、電極基体21Bを同時に形成しているが、これに限定されない。例えば、電極基体21Bを成形した後に、先端溝部24Aおよび側面溝部25を同時にまたは別々に形成してもよい。先端溝部24Aおよび側面溝部25を別々に形成する場合、本実施形態に係る電極脚20Bの製造方法は、図23に示すように、脚基体作製工程(ステップS31B)と、表面処理工程(ステップS32)と、導電層形成工程(ステップS33)とを含む。脚基体作製工程(ステップS31B)は、電極基体を準備する準備工程(ステップS311)と、前記電極基体に複数の先端溝部24Aおよび側面溝部25を形成する溝部形成工程(ステップS312)とを含む。準備工程(ステップS311)では、電極基体を成形法などを用いて作製し、電極基体を準備する。溝部形成工程(ステップS312)では、準備した電極基体に先端溝部24Aおよび側面溝部25を形成する。これにより、電極基体と、先端溝部24Aおよび側面溝部25を別々に形成することができる。
[Modified Example of Method of Manufacturing Electrode Leg According to Third Embodiment]
In the present embodiment, in the leg base manufacturing step (step S31A), the electrode base 21B is simultaneously formed using a mold provided with a protrusion corresponding to the end groove 24A and the side groove 25. It is not limited. For example, after the electrode base 21B is formed, the tip grooves 24A and the side grooves 25 may be formed simultaneously or separately. When the tip groove 24A and the side groove 25 are formed separately, the method of manufacturing the electrode leg 20B according to the present embodiment is, as shown in FIG. 23, a leg base producing step (step S31B) and a surface treatment step (step S32). And a conductive layer forming step (step S33). The leg base manufacturing step (step S31B) includes a preparation step (step S311) of preparing an electrode base, and a groove forming step (step S312) of forming a plurality of tip grooves 24A and side grooves 25 in the electrode base. In the preparation step (step S311), the electrode substrate is manufactured using a molding method or the like to prepare the electrode substrate. In the groove forming step (step S312), the tip groove 24A and the side groove 25 are formed in the prepared electrode base. Thus, the electrode base, the tip groove 24A and the side groove 25 can be formed separately.
 また、先端溝部24Aおよび側面溝部25は別々に形成してもよい。この場合、本実施形態に係る電極脚20Bの製造方法は、図24に示すように、脚基体作製工程(ステップS31C)と、表面処理工程(ステップS32)と、導電層形成工程(ステップS33)とを含む。脚基体作製工程(ステップS31C)は、電極基体を準備する準備工程(ステップS311)と、複数の先端溝部24Aを形成する先端溝部形成工程(ステップS312)と、側面溝部25を形成する側面溝部形成工程(ステップS313)とを含む。これにより、電極基体に、先端溝部24Aおよび側面溝部25を別々に形成することができる。 Further, the tip groove 24A and the side groove 25 may be formed separately. In this case, as shown in FIG. 24, in the method of manufacturing the electrode leg 20B according to the present embodiment, the leg base producing step (step S31C), the surface treatment step (step S32), and the conductive layer forming step (step S33) And. The leg base manufacturing step (step S31C) includes a preparation step (step S311) of preparing an electrode base, a tip groove forming step (step S312) of forming a plurality of tip grooves 24A, and a side groove forming of side grooves 25. And (step S313). Thereby, the tip groove 24A and the side groove 25 can be separately formed in the electrode base.
[第4の実施形態]
<生体情報測定用電極>
 第4の実施形態に係る生体情報測定用電極について説明する。本実施形態に係る生体情報測定用電極は、生体の一部に接触させて生体情報の測定を行うものである。本実施形態に係る生体情報測定用電極は、上記の第2の実施形態に係る電極脚20Aを有するものである。
Fourth Embodiment
<Electrode for measuring biological information>
A biological information measurement electrode according to a fourth embodiment will be described. The electrode for measuring biological information according to the present embodiment is for measuring biological information by bringing it into contact with a part of a living body. The biological information measurement electrode according to the present embodiment includes the electrode leg 20A according to the second embodiment.
 図25は、第4の実施形態に係る生体情報測定用電極の外観を示す斜視図であり、図26は、第4の実施形態に係る生体情報測定用電極の外観を示す他の斜視図であり、図27は、図25のIV-IV断面図である。図25~図27に示すように、本実施形態に係る生体情報測定用電極30Aは、基体部31と、端子部33とを有する。なお、図25~図27中の一点鎖線は、上述の通り、導電材10(図1等参照)の中心軸Jであり、この中心軸Jは、生体情報測定用電極30Aの中心軸をも意味し、生体情報測定用電極30Aを生体に設置した際の中心となる軸となる。 FIG. 25 is a perspective view showing the appearance of the biological information measurement electrode according to the fourth embodiment, and FIG. 26 is another perspective view showing the appearance of the biological information measurement electrode according to the fourth embodiment. FIG. 27 is a cross-sectional view taken along the line IV-IV of FIG. As shown in FIGS. 25 to 27, the biological information measurement electrode 30A according to the present embodiment has a base portion 31 and a terminal portion 33. As described above, the alternate long and short dash line in FIGS. 25 to 27 is the central axis J of the conductive material 10 (see FIG. 1 etc.), and the central axis J corresponds to the central axis of the biological information measurement electrode 30A. It means an axis that is the center when the biological information measurement electrode 30A is installed on a living body.
 基体部31および端子部33は、上述の第2の実施形態に係る電極脚20Aの電極基体21Aの形成に用いられる、導電性エラストマーまたは絶縁材料を用いて形成することができる。基体部31と端子部33とは、同一の材料で形成されていてもよいし、異なる材料で形成されていてもよい。本実施形態では、基体部31および端子部33は、同一の導電性エラストマーで一体に形成されている。そのため、電極脚20Aの先端部312a(後述する)側から端子部33まで導通している。 The base portion 31 and the terminal portion 33 can be formed using a conductive elastomer or an insulating material used for forming the electrode base 21A of the electrode leg 20A according to the second embodiment described above. The base portion 31 and the terminal portion 33 may be formed of the same material, or may be formed of different materials. In the present embodiment, the base portion 31 and the terminal portion 33 are integrally formed of the same conductive elastomer. Therefore, the terminal portion 33 is conducted from the tip end portion 312a (described later) side of the electrode leg 20A.
 基体部31および端子部33が導電性エラストマーを用いて形成される場合、導電性エラストマーは、例えば、導電性フィラーと非導電性エラストマーとを溶融混合することで得られる。基体部31と端子部33は、ゴム弾性を有する非導電性エラストマーを含んで成形されることで、低い弾性率を有する。そのため、生体情報測定用電極30Aの使用時に、基体部31と端子部33は生体の表面の凹凸形状に合わせて変形し易いので、生体への接触を確実にできると共に、生体への押圧力を緩和できる。 When the base portion 31 and the terminal portion 33 are formed using a conductive elastomer, the conductive elastomer can be obtained, for example, by melt mixing the conductive filler and the nonconductive elastomer. The base portion 31 and the terminal portion 33 have a low elastic modulus by being molded including a nonconductive elastomer having rubber elasticity. Therefore, at the time of use of the electrode 30A for measuring biological information, the base 31 and the terminal 33 are easily deformed according to the uneven shape of the surface of the living body, so that the contact to the living body can be ensured and the pressing force to the living body is It can be relaxed.
[基体部]
 基体部31は、基部311と、複数の電極脚312Aとを有する。
[Substrate]
The base portion 31 has a base portion 311 and a plurality of electrode legs 312A.
 基部311は、電極脚312Aの他方側に設けられている。基部311は、平面視(+Z軸方向から見たとき)において、略円形に形成されている。基部311は、基部311の裏面(-Z軸方向)に突設部311aを有する。突設部311aは、基部311の裏面に環状に複数(図25~図27では、8本)設けられている。突設部311aの端部に電極脚312Aが一体に成形されている。突設部311aの数は、電極脚312Aの数に合うように設計される。 The base 311 is provided on the other side of the electrode leg 312A. The base 311 is formed in a substantially circular shape in a plan view (when viewed from the + Z axis direction). The base 311 has a projecting portion 311 a on the back surface (in the −Z axis direction) of the base 311. Plural (eight in FIG. 25 to FIG. 27) protruding portions 311 a are annularly provided on the back surface of the base portion 311. An electrode leg 312A is integrally formed at an end of the protruding portion 311a. The number of projecting portions 311a is designed to match the number of electrode legs 312A.
 電極脚312Aは、基部311の突設部311aから-Z軸方向に向けて延設されている。電極脚312Aは、上記の第2の実施形態に係る電極脚20Aが用いられる。電極脚312Aは、基部311から分離可能である。 The electrode leg 312A is extended from the projecting portion 311a of the base portion 311 in the −Z axis direction. As the electrode leg 312A, the electrode leg 20A according to the above-described second embodiment is used. The electrode leg 312A is separable from the base 311.
[端子部]
 端子部33は、図25~図27に示すように、基体部31の基部311の上面であって、平面視において基部311の略中央部(中心軸Jが通る位置)から+Z軸方向に突出して設けられている。端子部33の中央部分には、金属層35が設けられている。金属層35としては、金、銀、または銅などの金属が用いられる。この金属層35が設けられた部分に、後述する検査装置40(図28参照)の配線42(図28参照)が接続される。端子部33は、電極脚312Aが一体に形成されている基体部31と電気的に接続される。そのため、端子部33は、電極脚312Aの領域Aである先端部312aと電気的に接続されることとなり、領域Aからの情報信号を取り出すことができる。なお、端子部33の中央部分には、金属以外の導電性を有する材料により形成された層を設けてもよい。
[Terminal]
The terminal portion 33 is an upper surface of the base portion 311 of the base portion 31 and protrudes in the + Z-axis direction from a substantially central portion of the base portion 311 (a position through which the central axis J passes) in plan view, as shown in FIGS. Is provided. A metal layer 35 is provided at the central portion of the terminal portion 33. As the metal layer 35, a metal such as gold, silver or copper is used. Wirings 42 (see FIG. 28) of an inspection device 40 (see FIG. 28) described later are connected to the portions where the metal layer 35 is provided. The terminal portion 33 is electrically connected to the base portion 31 on which the electrode leg 312A is integrally formed. Therefore, the terminal portion 33 is electrically connected to the tip end portion 312a which is the region A of the electrode leg 312A, and the information signal from the region A can be extracted. In the middle portion of the terminal portion 33, a layer formed of a conductive material other than metal may be provided.
 端子部33は、測定部43(図28参照)と接続されている。具体的には、端子部33は、配線42(図28参照)などに接続され、この配線42(図28参照)と測定部43(図28参照)とが接続されている。端子部33は、電極脚312Aの先端部211から基体部31を介して得られた生体(例えば、頭皮や額)からの電気信号を測定部43(図28参照)に伝え、生体情報(例えば、脳波)として測定される。 The terminal unit 33 is connected to the measurement unit 43 (see FIG. 28). Specifically, the terminal portion 33 is connected to a wire 42 (see FIG. 28) or the like, and the wire 42 (see FIG. 28) and the measurement unit 43 (see FIG. 28) are connected. The terminal unit 33 transmits an electrical signal from a living body (for example, scalp or forehead) obtained from the tip end portion 211 of the electrode leg 312A through the base portion 31 to the measurement unit 43 (see FIG. 28). , As an electroencephalogram).
 次に、本実施形態に係る生体情報測定用電極30Aを備えた検査装置を用いて被験者の生体情報として脳波を測定する場合の一例について説明する。図28は、生体情報測定用電極30Aを備えた検査装置を用いて被験者の脳波を測定する一例を示す図である。図28に示すように、検査装置40は、生体情報測定用電極30Aと、被験者の頭部にかぶせるキャップ41と、配線42と、測定部43と、表示部44とを有する。キャップ41は、被験者の頭部を覆うように帽子またはヘルメットの形状を有し、合成樹脂や布などで形成される。生体情報測定用電極30Aが、キャップ41に所定間隔で複数カ所(例えば、21か所)に設けられ、被験者の頭皮45の任意の場所に取り付けられる。配線42は、例えば、リード線などであり、一端が端子部33に接続され、他端が測定部43に接続される。測定部43は、電源部431、および電気信号を解析して、生体情報として脳波を測定する信号解析部432を有する。表示部44は、モニターであり、信号解析部432で解析された脳波を表示する。脳波は、その周波数により、例えば、α波(8~13Hz)、β波(14~30Hz)、θ波(4~7Hz)、δ波(0.5~3Hz)に分類される。 Next, an example of measuring an electroencephalogram as biological information of a subject using the inspection apparatus provided with the biological information measurement electrode 30A according to the present embodiment will be described. FIG. 28 is a view showing an example of measuring an electroencephalogram of a subject using an inspection apparatus provided with a biological information measurement electrode 30A. As shown in FIG. 28, the inspection apparatus 40 includes a biological information measurement electrode 30A, a cap 41 that covers the head of the subject, a wire 42, a measurement unit 43, and a display unit 44. The cap 41 has a hat or helmet shape so as to cover the subject's head, and is formed of synthetic resin, cloth or the like. The biological information measurement electrodes 30A are provided at a plurality of locations (for example, 21 locations) on the cap 41 at predetermined intervals, and are attached to an arbitrary location of the subject's scalp 45. The wire 42 is, for example, a lead wire, and one end thereof is connected to the terminal portion 33 and the other end is connected to the measurement portion 43. The measurement unit 43 includes a power supply unit 431 and a signal analysis unit 432 that analyzes an electrical signal and measures an electroencephalogram as biological information. The display unit 44 is a monitor and displays the electroencephalogram analyzed by the signal analysis unit 432. The brain waves are classified into, for example, α wave (8 to 13 Hz), β wave (14 to 30 Hz), θ wave (4 to 7 Hz), and δ wave (0.5 to 3 Hz) according to the frequency.
 生体情報測定用電極30Aをキャップ41に固定して、電極脚312Aの先端部211を導電層22を介して頭皮45に接触させる。電源部431を入れて、測定を開始すると、頭皮45からの電気信号が頭皮45から導電層22を介して電極脚312Aの先端部312aに伝えられる。伝達された電気信号は、先端部312aから基体部31を介して、端子部33、配線42、および測定部43の順に伝えられる。信号解析部432は、伝えられた電気信号を解析して、表示部44に脳波(例えば、α波、β波、θ波など)441を表示する。 The biological information measuring electrode 30A is fixed to the cap 41, and the tip end portion 211 of the electrode leg 312A is brought into contact with the scalp 45 via the conductive layer 22. When the power supply unit 431 is turned on and measurement is started, an electrical signal from the scalp 45 is transmitted from the scalp 45 through the conductive layer 22 to the tip portion 312a of the electrode leg 312A. The transmitted electric signal is transmitted from the tip end portion 312 a through the base portion 31 in the order of the terminal portion 33, the wiring 42, and the measurement portion 43. The signal analysis unit 432 analyzes the transmitted electric signal, and displays an electroencephalogram (for example, an α wave, a β wave, a θ wave, etc.) 441 on the display unit 44.
 以上のように構成された、生体情報測定用電極30Aは、電極脚312Aの領域Aである先端部312aの表面に導電層22を有する。導電層22は、第1の実施の形態に係る導電材10(図1および図2参照)で形成されている。そのため、導電層22は、細孔221(図6参照)に溶液を含むことができる。導電層22は、生体情報測定用電極30Aの電極脚312Aの先端部312aの表面に設けることができる。導電層22が生体の表面に接触すると、導電層22の細孔221(図6および図7参照)内に保持された溶液が、導電層22と接触する生体の表面に流れて広がる。そして、導電層22と生体の表面とを溶液を介して導通させることで、生体と導電層22との間の接触インピーダンスを下げることができるので、生体からの電気信号が取得し易くなる。よって、生体情報測定用電極30Aは、生体と電気的に接続を維持できるため、生体情報を容易に安定して測定することができる。 The biological information measurement electrode 30A configured as described above has the conductive layer 22 on the surface of the tip end portion 312a which is the region A of the electrode leg 312A. The conductive layer 22 is formed of the conductive material 10 (see FIGS. 1 and 2) according to the first embodiment. Therefore, the conductive layer 22 can include a solution in the pores 221 (see FIG. 6). The conductive layer 22 can be provided on the surface of the tip end portion 312a of the electrode leg 312A of the biological information measurement electrode 30A. When the conductive layer 22 contacts the surface of the living body, the solution held in the pores 221 (see FIGS. 6 and 7) of the conductive layer 22 flows and spreads on the surface of the living body in contact with the conductive layer 22. Then, the conduction impedance between the living body and the conductive layer 22 can be lowered by bringing the conductive layer 22 and the surface of the living body into conduction through the solution, so that an electrical signal from the living body can be easily obtained. Therefore, since the biological information measurement electrode 30A can maintain electrical connection with the living body, biological information can be easily and stably measured.
 また、導電層22は、高い耐摩耗性を有する。そのため、生体情報測定用電極30Aを繰り返し使用して、先端部211の表面の導電層22が擦られても、先端部312aの表面の導電層22が削られるのを抑制することができる。よって、先端部312aの表面の導電層22は、生体との接触部において生体と安定して接触できるので、導電層22と生体との導通を安定して維持することができる。したがって、生体情報測定用電極30Aによれば、電極脚312Aの先端部312aと生体との電気的接続を維持できるため、生体からの電気信号を安定して得ることができ、生体情報を安定して測定することができる。 In addition, the conductive layer 22 has high wear resistance. Therefore, even if the conductive layer 22 on the surface of the tip end portion 211 is rubbed by repeatedly using the biological information measurement electrode 30A, the conductive layer 22 on the surface of the tip end portion 312a can be suppressed from being scraped. Thus, the conductive layer 22 on the surface of the tip end portion 312a can stably contact the living body at the contact portion with the living body, so that the conduction between the conductive layer 22 and the living body can be stably maintained. Therefore, according to the biological information measuring electrode 30A, since the electrical connection between the tip end portion 312a of the electrode leg 312A and the living body can be maintained, an electrical signal from the living body can be stably obtained, and the biological information is stabilized. Can be measured.
 電極脚312Aは、基部311から分離可能であるため、導電層22を取り付けた電極脚312Aを容易に交換することができる。これにより、電極脚312Aの先端部312aの導電層22が磨耗などにより測定が不安定になっても、正常に生体情報の測定を取得できる電極脚312Aに交換することができる。 Since the electrode leg 312A is separable from the base 311, the electrode leg 312A attached with the conductive layer 22 can be easily replaced. Thereby, even if the measurement becomes unstable due to wear or the like, the conductive layer 22 of the tip end portion 312a of the electrode leg 312A can be replaced with the electrode leg 312A which can obtain the measurement of the biological information normally.
[第4の実施形態に係る生体情報測定用電極の変形例]
 生体情報測定用電極30Aの一例を示したが、これに限定されない。以下に、生体情報測定用電極30Aの変形例について説明する。
[Modified Example of Electrode for Measuring Biological Information According to Fourth Embodiment]
Although an example of the biological information measurement electrode 30A is shown, the present invention is not limited to this. Below, the modification of the electrode 30A for biometric information measurement is demonstrated.
 本実施形態では、基体部31と端子部33とは一体に形成されているが、基体部31と端子部33とは別々の部材で構成されていてもよい。基体部31と端子部33とを別々の部材で構成した時の生体情報測定用電極30Aの一例を図29および図30に示す。図29は、生体情報測定用電極30Aの他の構成の一例を示す斜視図であり、図30は、図29のV-V断面図である。図29および図30に示すように、端子部33は、円板形状の基部331と、基部331の中央部から突出した凸部332とを有する。端子部33は、金属材料等の導電性を有する材料により形成されている。端子部33は、基体部31の基部311が電極脚312Aと連続している側とは反対側の端部311bと、例えば、不図示の導電性接着剤や導電性ペーストなどにより固定して接続されている。これにより、端子部33は、電極脚312Aと一体で形成されている基体部31と電気的に接続される。従って、電極脚312Aの先端部312aは、基体部31の基部311を介して、端子部33と電気的に接続される。 In the present embodiment, the base portion 31 and the terminal portion 33 are integrally formed, but the base portion 31 and the terminal portion 33 may be configured by separate members. An example of the biological information measuring electrode 30A when the base portion 31 and the terminal portion 33 are constituted by separate members is shown in FIG. 29 and FIG. FIG. 29 is a perspective view showing an example of another configuration of the biological information measurement electrode 30A, and FIG. 30 is a cross-sectional view taken along the line VV of FIG. As shown in FIGS. 29 and 30, the terminal portion 33 has a disk-shaped base portion 331 and a convex portion 332 protruding from the central portion of the base portion 331. The terminal portion 33 is formed of a conductive material such as a metal material. The terminal portion 33 is fixed and connected to the end portion 311b opposite to the side where the base portion 311 of the base portion 31 is continuous with the electrode leg 312A, for example, with a conductive adhesive or conductive paste (not shown). It is done. Thus, the terminal portion 33 is electrically connected to the base portion 31 integrally formed with the electrode leg 312A. Accordingly, the tip end portion 312 a of the electrode leg 312 A is electrically connected to the terminal portion 33 via the base portion 311 of the base portion 31.
 本実施形態では、基部311は、その裏面(-Z軸方向側)に突設部311aを有するが、突設部311aを設けず、電極脚312Aが円板部分の基部311に連続して形成されてもよい。 In the present embodiment, the base portion 311 has the projecting portion 311a on the back surface side (−Z axis direction side), but the projecting portion 311a is not provided, and the electrode leg 312A is continuously formed on the base portion 311 of the disc portion It may be done.
 本実施形態では、基体部31は、基部311と電極脚312Aとを一体に成形しているが、基部311と電極脚312Aとを別々の部材で構成してもよい。このとき、基部311と電極脚312Aとは、合成樹脂からなる結着部材により結着する。なお、結着部材は、エポキシ樹脂、またはウレタン樹脂などの合成樹脂が硬化したものである。また、結着部材として、前記合成樹脂の他に、ゴムなどの弾性を有した合成樹脂でもよい。 In the present embodiment, the base portion 31 integrally forms the base portion 311 and the electrode leg 312A, but the base portion 311 and the electrode leg 312A may be configured by separate members. At this time, the base 311 and the electrode leg 312A are bound by a binding member made of a synthetic resin. The binding member is one obtained by curing a synthetic resin such as an epoxy resin or a urethane resin. In addition to the synthetic resin, the binding member may be an elastic synthetic resin such as rubber.
 導電層22は、領域Aである電極脚312Aの先端部312aに形成されているが、少なくとも先端部211に形成されていればよく、基体部31の他の部分に形成されていてもよいし、基体部31および端子部33の全面に形成されていてもよい。例えば、基体部31および端子部33が絶縁材料で形成されている場合には、基体部31と端子部33の全面に形成する。 The conductive layer 22 is formed on the tip end portion 312a of the electrode leg 312A which is the region A, but it may be formed on at least the tip end portion 211 and may be formed on other portions of the base portion 31 Alternatively, it may be formed on the entire surface of the base portion 31 and the terminal portion 33. For example, when the base portion 31 and the terminal portion 33 are formed of an insulating material, the base portion 31 and the terminal portion 33 are formed on the entire surface of the base portion 31 and the terminal portion 33.
 この場合、図31に示すように、基体部31と端子部33の全面に、導電層22と電気的に接続された下地導電層51を形成することが好ましい。これにより、先端部211と端子部33との間の導通を取ることができる。下地導電層51に含まれる導電性高分子には、導電層22と同様の導電性高分子を使用することができる。導電性高分子は、導電層22と同様の導電性高分子が使用されるため、導電性高分子の説明は省略する。下地導電層51の厚さは、導通が取れればよく、例えば、200nm~1μm程度であればよい。 In this case, as shown in FIG. 31, it is preferable to form a base conductive layer 51 electrically connected to the conductive layer 22 on the entire surface of the base portion 31 and the terminal portion 33. Thereby, conduction between the tip end portion 211 and the terminal portion 33 can be achieved. As the conductive polymer contained in the base conductive layer 51, the same conductive polymer as the conductive layer 22 can be used. Since the same conductive polymer as the conductive layer 22 is used as the conductive polymer, the description of the conductive polymer is omitted. The thickness of the base conductive layer 51 may be any as long as conduction can be obtained, and may be, for example, about 200 nm to 1 μm.
<第4の実施形態に係る生体情報測定用電極の製造方法>
 次に、第4の実施形態に係る生体情報測定用電極の製造方法について説明する。図32は、本実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。図32に示すように、本実施形態に係る生体情報測定用電極の製造方法は、基体部31および端子部33を成形する成形工程(ステップS41A)と、先端部312aの表面を活性化処理する表面処理工程(ステップS42)と、先端部312aの表面に、導電層22を形成する導電層形成工程(ステップS43A)とを含む。以下、各工程について説明する。
<Manufacturing Method of Biological Information Measuring Electrode According to Fourth Embodiment>
Next, a method of manufacturing the biological information measuring electrode according to the fourth embodiment will be described. FIG. 32 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment. As shown in FIG. 32, in the method of manufacturing the biological information measuring electrode according to this embodiment, a forming step (step S41A) of forming the base portion 31 and the terminal portion 33, and activation processing of the surface of the tip portion 312a. It includes a surface treatment step (step S42) and a conductive layer forming step (step S43A) of forming conductive layer 22 on the surface of tip portion 312a. Each step will be described below.
 成形工程(ステップS41A)では、基体部31および端子部33を形成する材料を用いて、基体部31および端子部33を一体に成形する。なお、成形工程は、脚基体作製工程ともいう。 In the molding step (step S41A), the base portion 31 and the terminal portion 33 are integrally molded using a material for forming the base portion 31 and the terminal portion 33. The forming step is also referred to as a leg base producing step.
 基体部31および端子部33は、圧縮成形(コンプレッション成形)、射出成形(インジェクション成形)、または押出成形(トランスファー成形)など公知の成形方法で、所望の形状を有する基体部31および端子部33を成形することができる。これらの成形法を用いる際、基体部31および端子部33の形状に対応した金型が用いられる。前記金型を用いることで、基体部31および端子部33を同時に成形することができる。 The base portion 31 and the terminal portion 33 are formed of the base portion 31 and the terminal portion 33 having desired shapes by a known molding method such as compression molding (compression molding), injection molding (injection molding), or extrusion molding (transfer molding). It can be molded. When these molding methods are used, a mold corresponding to the shapes of the base portion 31 and the terminal portion 33 is used. By using the mold, the base portion 31 and the terminal portion 33 can be simultaneously formed.
 射出成形法などを用いる場合、射出成形後、基体部31および端子部33を成形する原料(樹脂や金属など)が供給される原料供給通路(例えば、スプール、ランナーなど)が基体部31または端子部33に連結されている。例えば、図33に示すように、原料供給通路52が端子部33に連結されている場合、原料供給通路52の少なくともその一部は、基体部31および端子部33の成形後も、端子部33に連結しておくことが好ましい。後述する導電層形成工程(ステップS13)で、基体部31および端子部33の少なくとも一部を、導電性高分子を含む溶液に浸漬する際に、原料供給通路52は、基体部31の掴み手として用いることができる。なお、原料供給通路52は、好適な成形を行うために製品のどの位置にするか決まるもので、図33に示す端子部33以外に、基体部31の基部311などに連結されていてもよい。 In the case of using an injection molding method or the like, a raw material supply passage (e.g., a spool, a runner, etc.) to which a raw material (resin or metal) for molding the base portion 31 and the terminal portion 33 is supplied after injection molding is the base portion 31 or terminal It is connected to the part 33. For example, as shown in FIG. 33, in the case where the raw material supply passage 52 is connected to the terminal portion 33, at least a part of the raw material supply passage 52 is also used for the terminal portion 33 It is preferable to connect to When immersing at least a part of the base portion 31 and the terminal portion 33 in a solution containing a conductive polymer in the conductive layer forming step (step S13) described later, the raw material supply passage 52 serves as a grip of the base portion 31. It can be used as The raw material supply passage 52 is determined at which position of the product to perform suitable molding, and may be connected to the base 311 or the like of the base 31 other than the terminal 33 shown in FIG. .
 表面処理工程(ステップS42)は、図22に示す、上述の第3の実施形態に係る電極脚の製造方法の表面処理工程(ステップS32)と同様に行うことができる。 The surface treatment step (step S42) can be performed in the same manner as the surface treatment step (step S32) of the method of manufacturing the electrode leg according to the above-described third embodiment shown in FIG.
 導電層形成工程(ステップS43A)は、図9に示す、上述の第2の実施形態に係る電極脚の製造方法の導電層形成工程(ステップS22A)と同様に行うことができる。 The conductive layer forming step (step S43A) can be performed in the same manner as the conductive layer forming step (step S22A) of the method of manufacturing the electrode leg according to the above-described second embodiment shown in FIG.
 導電層形成工程(ステップS43A)では、先端部312aの表面に、ファイバ同士が導電性高分子および熱硬化性樹脂で結着された状態で形成され、多数の細孔を有する導電層22を形成する。導電層形成工程(ステップS43)は、塗布工程(ステップS431)と、固化工程(ステップS432)とを含む。 In the conductive layer forming step (step S43A), the conductive layers 22 are formed on the surface of the tip portion 312a in a state in which the fibers are bound with the conductive polymer and the thermosetting resin, and have many pores. Do. The conductive layer formation step (step S43) includes a coating step (step S431) and a solidification step (step S432).
 塗布工程(ステップS431)では、少なくとも先端部312aに、ファイバおよび導電性高分子を含む混合溶液を塗布して塗布層を形成する。前記混合溶液を少なくとも先端部211に塗布する方法としては、前記混合溶液に少なくとも先端部312aを浸漬する浸漬法、前記混合溶液を少なくとも先端部312aに吹き付けるスプレー法などを用いることができる。 In the coating step (step S431), a mixed solution containing a fiber and a conductive polymer is coated on at least the tip portion 312a to form a coated layer. As a method of applying the mixed solution to at least the tip portion 211, an immersion method of immersing at least the tip portion 312a in the mixed solution, a spray method of spraying the mixed solution to at least the tip portion 312a, or the like can be used.
 固化工程(ステップS432)では、先端部312aに形成された塗布層を、例えば、120~130℃で加熱して乾燥させ、塗布層を硬化させる。これにより、先端部312aおよび先端溝部24Aの表面に導電層22が形成される。本実施形態では、基体部31および端子部33が導電性エラストマーで形成されているため、導電層22は、先端部312aの表面に形成すればよい。 In the solidification step (step S432), the coating layer formed on the tip portion 312a is dried by heating at 120 to 130 ° C., for example, to cure the coating layer. Thereby, the conductive layer 22 is formed on the surfaces of the tip end portion 312a and the tip end groove portion 24A. In the present embodiment, since the base portion 31 and the terminal portion 33 are formed of a conductive elastomer, the conductive layer 22 may be formed on the surface of the tip portion 312a.
 以上のようにして、先端部312aの表面に導電層22が形成された生体情報測定用電極30Aが得られる。 As described above, the biological information measurement electrode 30A in which the conductive layer 22 is formed on the surface of the tip end portion 312a is obtained.
 本実施形態では、導電層形成工程(ステップS43)の塗布工程(ステップS431)において、混合溶液を先端部211に1回塗布した時に形成される塗布層の膜厚は、導電性高分子のみを含む溶液を1回塗布した時に形成される塗布層の膜厚よりも厚くすることができる。そのため、塗布工程(ステップS131)で塗布層を作製するために要する費用を低減することができる。また、導電層22はより厚くなるため、導電層22の寿命をより伸ばすことができる。 In the present embodiment, in the coating step (step S431) of the conductive layer forming step (step S43), the film thickness of the coating layer formed when the mixed solution is applied once to the tip end portion 211 is only the conductive polymer. It can be thicker than the film thickness of the coating layer formed when the solution containing it is applied once. Therefore, the cost required to produce a coating layer by a coating process (step S131) can be reduced. In addition, since the conductive layer 22 is thicker, the life of the conductive layer 22 can be further extended.
 導電層22に含まれるファイバがセルロースナノファイバである場合、セルロースナノファイバと導電性高分子とを含む混合溶液は、基体部31および端子部33への濡れ性が良く、高いチクソ性を有する。そのため、セルロースナノファイバと導電性高分子とを含む混合溶液を用いて導電層22を形成する場合、前記混合溶液の1回の塗布で形成される塗布層の膜厚は、セルロースナノファイバを含まない溶液を塗布して形成される塗布層の膜厚よりも、例えば、1.3~4倍くらい厚くすることができる。 When the fibers contained in the conductive layer 22 are cellulose nanofibers, a mixed solution containing cellulose nanofibers and a conductive polymer has good wettability to the base portion 31 and the terminal portion 33 and has high thixotropy. Therefore, when the conductive layer 22 is formed using a mixed solution containing cellulose nanofibers and a conductive polymer, the film thickness of the coated layer formed in one application of the mixed solution contains cellulose nanofibers. The thickness can be, for example, about 1.3 to 4 times greater than the thickness of the coating layer formed by applying the solution without the solution.
[第4の実施形態に係る生体情報測定用電極の製造方法の変形例]
 なお、本実施形態では、成形工程(ステップS41A)において、基体部31および端子部33を同時に一体で形成しているが、これに限定されない。例えば、基体部31および端子部33を、それぞれ、別々に成形して一体化させてもよい。この場合、本実施形態に係る生体情報測定用電極の製造方法は、図34に示すように、成形工程(ステップS41B)と、表面処理工程(ステップS42)と、導電層形成工程(ステップS43A)とを含む。成形工程(ステップS41B)は、基体部31および端子部33を成形する脚基体成形工程(ステップS411)と、基体部31および端子部33を結着して一体化する結着工程(ステップS412)とを含む。なお、結着工程(ステップS412)において、基体部31と端子部33とを結着するために使用する結着部材は、公知の結着部材を用いることができる。例えば、エポキシ樹脂、またはウレタン樹脂などの合成樹脂、ゴムなどの弾性を有した合成樹脂などを用いることができる。
[Modified Example of Method of Manufacturing Biological Information Measurement Electrode According to Fourth Embodiment]
In the present embodiment, in the molding step (step S41A), the base portion 31 and the terminal portion 33 are simultaneously formed integrally, but the present invention is not limited to this. For example, the base portion 31 and the terminal portion 33 may be separately molded and integrated. In this case, as shown in FIG. 34, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the forming step (step S41B), the surface treatment step (step S42), and the conductive layer forming step (step S43A) And. In the forming step (step S41B), a leg base forming step (step S411) for forming the base portion 31 and the terminal portion 33, and a binding step (step S412) for bonding and integrating the base portion 31 and the terminal portion 33. And. A known binding member can be used as a binding member used to bind the base portion 31 and the terminal portion 33 in the binding step (step S412). For example, synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
 本実施形態では、基体部31および端子部33が導電性エラストマーで形成されているため、導電層22は、少なくとも先端部312aの表面に形成すればよい。しかし、基体部31および端子部33が絶縁材料で形成されている場合には、導電層22は、基体部31および端子部33の全面に形成する。これにより、生体から得られる電気信号は、導電層22を介して、電極脚312Aの先端部312aから端子部33まで伝えられる。 In the present embodiment, since the base portion 31 and the terminal portion 33 are formed of a conductive elastomer, the conductive layer 22 may be formed at least on the surface of the tip portion 312a. However, when the base portion 31 and the terminal portion 33 are formed of an insulating material, the conductive layer 22 is formed on the entire surface of the base portion 31 and the terminal portion 33. Thereby, the electrical signal obtained from the living body is transmitted from the tip end portion 312a of the electrode leg 312A to the terminal portion 33 through the conductive layer 22.
 基体部31および端子部33が絶縁材料で形成される場合には、図31に示すように、基体部31および端子部33と導電層22との間に、下地導電層51を形成することが好ましい。この場合、本実施形態に係る生体情報測定用電極の製造方法は、基体部31および端子部33の表面に、導電性高分子を含有する下地導電層51を形成する。図35に示すように、本実施形態に係る生体情報測定用電極の製造方法は、成形工程(ステップS41A)と、表面処理工程(ステップS42)と、基体部31および端子部33の表面に、導電性高分子を含有する下地導電層51を形成する下地導電層形成工程(ステップS43B)と、導電層形成工程(ステップS44)とを含む。 When base portion 31 and terminal portion 33 are formed of an insulating material, as shown in FIG. 31, base conductive layer 51 may be formed between base portion 31 and terminal portion 33 and conductive layer 22. preferable. In this case, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the base conductive layer 51 containing a conductive polymer is formed on the surfaces of the base portion 31 and the terminal portion 33. As shown in FIG. 35, in the method of manufacturing the biological information measuring electrode according to this embodiment, the forming step (step S41A), the surface treatment step (step S42), and the surfaces of the base portion 31 and the terminal portion 33 A base conductive layer forming step (step S43B) of forming base conductive layer 51 containing a conductive polymer, and a conductive layer forming step (step S44) are included.
 下地導電層形成工程(ステップS43B)では、基体部31および端子部33の表面に、導電性高分子を含む溶液を塗布して塗布層を形成する。下地導電層51を形成する方法は、上述の図12の導電層形成工程(ステップS22C)と同様に行うことができる。 In the base conductive layer forming step (step S43B), a solution containing a conductive polymer is applied to the surfaces of the base portion 31 and the terminal portion 33 to form a coating layer. The method for forming the base conductive layer 51 can be performed in the same manner as the conductive layer forming step (step S22C) of FIG. 12 described above.
 導電層形成工程(ステップS44)は、塗布工程(ステップS441)および固化工程(ステップS442)を含む。導電層形成工程(ステップS44)は、上述の、図34に示す導電層形成工程(ステップS43A)と同様であり、塗布工程(ステップS441)および固化工程(ステップS442)は、いずれも、上述の、図34に示す導電層形成工程(ステップS43A)の塗布工程(ステップS431)および固化工程(ステップS432)と同様に行う。 The conductive layer forming step (step S44) includes a coating step (step S441) and a solidification step (step S442). The conductive layer formation step (step S44) is the same as the conductive layer formation step (step S43A) shown in FIG. 34 described above, and the application step (step S441) and the solidification step (step S442) are both described above. The same steps as the coating step (step S431) and the solidifying step (step S432) of the conductive layer forming step (step S43A) shown in FIG.
 本実施形態では、導電層形成工程(ステップS43A)は、電極基体21Aの先端部211に塗布した塗布層を凍結乾燥して導電層22を形成しているが、これに限定されない。例えば、予め作製した電極脚312Aを基部311の突設部311aに取り付けるようにしてもよい。この場合における生体情報測定用電極の製造方法の一例を図36に示す。図36は、本実施形態に係る生体情報測定用電極の製造方法を示す他のフローチャートである。図36に示すように、本実施形態に係る生体情報測定用電極の製造方法は、基体部31の基部311と、端子部33とからなる電極本体を作製する電極本体作製工程(ステップS51)と、電極脚312Aを基部311に連結する連結工程(ステップS52)とを含む。 In the present embodiment, the conductive layer 22 is formed by freeze-drying the coating layer applied to the tip end portion 211 of the electrode substrate 21A in the conductive layer forming step (step S43A), but the present invention is not limited thereto. For example, the electrode leg 312A prepared in advance may be attached to the projecting portion 311a of the base 311. An example of a method of manufacturing the biological information measuring electrode in this case is shown in FIG. FIG. 36 is another flowchart showing the method of manufacturing the biological information measuring electrode according to the present embodiment. As shown in FIG. 36, in the method of manufacturing a biological information measuring electrode according to this embodiment, an electrode main body manufacturing step (step S51) of manufacturing an electrode main body including a base portion 311 of a base portion 31 and a terminal portion 33 Connecting the electrode leg 312A to the base 311 (step S52).
 電極本体作製工程(ステップS51)は、成形工程(ステップS41A)において基体部31および端子部33を成形する場合と同様の方法を用いて、基体部31の基部311と、端子部33とを、一体で成形することで、電極本体を作製できる。また、基体部31の基部311と、端子部33とを別体として成形した後、基部311の端部311b(図30参照)と端子部33とを、例えば、不図示の導電性接着剤や導電性ペーストなどにより接続し、電極本体を作製してもよい。 In the electrode main body manufacturing step (step S51), the base 311 of the base portion 31 and the terminal portion 33 are formed using the same method as in the case of molding the base portion 31 and the terminal portion 33 in the molding step (step S41A). By integrally molding, the electrode body can be produced. Further, after the base portion 311 of the base portion 31 and the terminal portion 33 are separately formed, the end portion 311 b (see FIG. 30) of the base portion 311 and the terminal portion 33 are made of, for example, a conductive adhesive or The electrode body may be manufactured by connection using a conductive paste or the like.
 連結工程(ステップS52)では、予め、電極基体の先端部312aに導電層22を形成した電極脚312Aを作製する。電極脚312Aは、上記の第2の実施形態に係る電極脚20Aを用いることができる。基部311の突設部311aに電極脚312Aを連結することで、生体情報測定用電極30Aが得られる。 In the connection step (step S52), an electrode leg 312A in which the conductive layer 22 is formed on the tip end portion 312a of the electrode base is manufactured in advance. The electrode leg 312A can use the electrode leg 20A according to the second embodiment described above. By connecting the electrode leg 312A to the protruding portion 311a of the base 311, the biological information measurement electrode 30A can be obtained.
[第5の実施形態]
<生体情報測定用電極>
 第5の実施形態に係る生体情報測定用電極について、図面を参照して説明する。本実施形態に係る生体情報測定用電極は、図25~図27に示す第4の実施形態に係る生体情報測定用電極30Aの基体部31の電極脚312Aとして、図13~図15に示す第3の実施形態に係る電極脚20Bを用いたものである。
Fifth Embodiment
<Electrode for measuring biological information>
An electrode for measuring biological information according to a fifth embodiment will be described with reference to the drawings. The biological information measurement electrode according to the present embodiment is the fourth embodiment shown in FIGS. 13 to 15 as the electrode leg 312A of the base portion 31 of the biological information measurement electrode 30A according to the fourth embodiment shown in FIGS. The electrode leg 20B according to the third embodiment is used.
 図37は、第5の実施形態に係る生体情報測定用電極の外観を示す斜視図であり、図38および図39は、第5の実施形態に係る生体情報測定用電極の外観を示す他の斜視図であり、図40は、図37のVI-VI断面図である。図37~図40に示すように、本実施形態に係る生体情報測定用電極30Bは、図25~図27に示す生体情報測定用電極30Aの基体部31の電極脚312Aに代えて、図13~図15に示す第3の実施形態に係る電極脚312Bを備えたものである。すなわち、生体情報測定用電極30Bは、先端部312aに先端溝部24Aを備え、側面312bに側面溝部25を備えた電極脚312Bを有する。 FIG. 37 is a perspective view showing the appearance of the biological information measurement electrode according to the fifth embodiment, and FIGS. 38 and 39 are other views showing the appearance of the biological information measurement electrode according to the fifth embodiment. FIG. 40 is a perspective view, and FIG. 40 is a cross-sectional view taken along the line VI-VI of FIG. As shown in FIGS. 37 to 40, the biological information measurement electrode 30B according to this embodiment is the same as the one shown in FIGS. 25 to 27, except for the electrode leg 312A of the base 31 of the biological information measurement electrode 30A. An electrode leg 312B according to a third embodiment shown in FIG. 15 is provided. That is, the biological information measurement electrode 30B has an electrode leg 312B having a tip groove 24A at the tip end 312a and a side groove 25 on the side surface 312b.
 本実施形態に係る生体情報測定用電極30Bを備えた検査装置40(図28参照)を用いて被験者の脳波を測定する場合の一例について説明する。本実施形態では、生体情報測定用電極30Bは、予め、電極脚312Bの少なくとも先端部312aを容器中の液体に浸漬して、導電層22の先端溝部24Aおよび側面溝部25に液体を含有させる。液体中に浸漬状態から電極脚312Bを引き上げた後、先端溝部24Aおよび側面溝部25に液体が含有された状態で、生体情報測定用電極30Bをキャップ41(図28参照)に固定することで、図41に示すように、電極脚312Bの先端部312aを導電層22を介して頭皮45に接触させる。測定時には、頭皮45からの電気信号が頭皮45から導電層22を介して電極脚312Bの先端部312aに伝えられる。伝達された電気信号は、先端部312aから基体部31を介して、端子部33、配線42(図28参照)、および測定部43(図28参照)の順に伝えられ。信号解析部432(図28参照)は、伝えられた電気信号を解析して、表示部44(図28参照)に脳波(例えば、α波、β波、θ波など)441(図28参照)を表示する。 An example in the case of measuring a brain wave of a subject using an inspection apparatus 40 (see FIG. 28) provided with a biological information measurement electrode 30B according to the present embodiment will be described. In the present embodiment, the biological information measurement electrode 30B immerses at least the tip portion 312a of the electrode leg 312B in the liquid in the container so that the tip groove 24A of the conductive layer 22 and the side groove 25 contain the liquid. By pulling up the electrode leg 312B from the immersion state in the liquid, fixing the biological information measurement electrode 30B to the cap 41 (see FIG. 28) in a state where the liquid is contained in the tip groove 24A and the side groove 25. As shown in FIG. 41, the tip end 312a of the electrode leg 312B is brought into contact with the scalp 45 via the conductive layer 22. At the time of measurement, an electrical signal from the scalp 45 is transmitted from the scalp 45 through the conductive layer 22 to the tip end 312a of the electrode leg 312B. The transmitted electric signal is transmitted from the tip end portion 312a through the base portion 31 in the order of the terminal portion 33, the wiring 42 (see FIG. 28), and the measurement portion 43 (see FIG. 28). The signal analysis unit 432 (see FIG. 28) analyzes the transmitted electric signal, and an electroencephalogram (eg, α wave, β wave, θ wave, etc.) 441 (see FIG. 28) on the display unit 44 (see FIG. 28). Display
 よって、本実施の形態による生体情報測定用電極30Bは、領域Aである先端部312aの表面に複数の先端溝部24Aを有すると共に、先端部312aの表面に導電層22を有する。そのため、上述の、第2の実施形態に係る電極脚20Aにおいて説明した通り、生体情報測定用電極30Bを繰り返し使用することで、例えば、図18に示すように、先端部312aに設けた導電層22の一部が徐々に擦り減り、先端部312aが部分的に露出する状態になるまで削られてしまう可能性がある。このような場合でも、生体情報測定用電極30Bは、先端溝部24Aの表面に形成された導電層22と生体(例えば、頭皮や額)との接触部において生体との導通を維持することができるので、導電層22と生体との導通を安定して維持することができる。よって、生体情報測定用電極30Bによれば、電極脚312Bの先端部312aと生体との電気的接続を維持できるため、生体からの電気信号を安定して得ることができ、生体情報として、例えば脳波を安定して測定することができる。 Thus, the biological information measurement electrode 30B according to the present embodiment has a plurality of tip grooves 24A on the surface of the tip portion 312a which is the region A, and the conductive layer 22 on the surface of the tip portion 312a. Therefore, as described in the electrode leg 20A according to the second embodiment described above, by repeatedly using the biological information measurement electrode 30B, for example, as shown in FIG. 18, the conductive layer provided on the tip end portion 312a A part of 22 may be worn away gradually and may be scraped off until the tip 312a is partially exposed. Even in such a case, the biological information measurement electrode 30B can maintain the conduction with the living body at the contact portion between the conductive layer 22 formed on the surface of the tip groove 24A and the living body (for example, scalp and forehead) Therefore, the conduction between the conductive layer 22 and the living body can be stably maintained. Therefore, according to the biological information measurement electrode 30B, since the electrical connection between the tip end portion 312a of the electrode leg 312B and the living body can be maintained, an electrical signal from the living body can be stably obtained. EEG can be measured stably.
 また、上述の、第3の実施形態に係る電極脚20Bにおいて説明した通り、生体情報測定用電極30Bを液体に浸漬すると、領域Aである先端部312aの表面に設けた先端溝部24A内に毛細管現象により液体を保持することができる。そのため、例えば、脳波を測定する際に、先端部312aを頭皮に接触させると、図19に示すように、先端溝部24Aで保持されていた液体が先端部211と接触する頭皮の表面に流れて頭皮に広がる。この結果、頭皮から導電層22に導通する面積が大きくなるため、頭皮と生体情報測定用電極30Bとの間の接触インピーダンスをより下げることができる。これにより、脳波をより安定して測定することができる。 Further, as described in the electrode leg 20B according to the third embodiment described above, when the biological information measurement electrode 30B is immersed in the liquid, the capillary tube is formed in the tip groove 24A provided on the surface of the tip portion 312a which is the region A. The phenomenon can hold the liquid. Therefore, for example, when measuring the electroencephalogram, when the tip end portion 312a is brought into contact with the scalp, the liquid held in the tip groove portion 24A flows on the surface of the scalp in contact with the tip end portion 211 as shown in FIG. Spread on the scalp. As a result, the area of conduction from the scalp to the conductive layer 22 is increased, and the contact impedance between the scalp and the biological information measurement electrode 30B can be further lowered. Thereby, the electroencephalogram can be measured more stably.
 さらに、生体情報測定用電極30Bは、上述の、第3の実施形態に係る電極脚20Bにおいて説明した通り、電極脚20Bの側面に側面溝部25を複数有しており、側面溝部25は先端溝部24Aの少なくとも一部と連通している。そのため、脳波の測定時に、先端溝部24Aで保持されていた液体が先端部211と接触する頭皮の表面に流れ、先端溝部24Aで保持されていた液体が消費される。その際、側面溝部25に保持されていた液体が先端溝部24Aに流れて頭皮に供給される。これにより、頭皮と生体情報測定用電極30Bとの間の接触インピーダンスを低く抑えたまま、頭皮と生体情報測定用電極30Bとの接触を維持することができるため、生体情報をより安定して継続的に測定することができる。 Furthermore, as described in the electrode leg 20B according to the third embodiment described above, the biological information measurement electrode 30B has a plurality of side groove portions 25 on the side surface of the electrode leg 20B, and the side groove portion 25 is a tip groove portion In communication with at least a portion of 24A. Therefore, at the time of measuring an electroencephalogram, the liquid held in the tip groove 24A flows to the surface of the scalp in contact with the tip 211, and the liquid held in the tip groove 24A is consumed. At this time, the liquid held in the side groove 25 flows to the tip groove 24A and is supplied to the scalp. Thereby, the contact between the scalp and the biological information measuring electrode 30B can be maintained while the contact impedance between the scalp and the biological information measuring electrode 30B is kept low, so that the biological information can be continued more stably. Can be measured.
[第5の実施形態に係る生体情報測定用電極の変形例]
 生体情報測定用電極30Bの一例を示したが、これに限定されない。以下に、生体情報測定用電極30Bの変形例について説明する。
[Modification of electrode for measuring biological information according to the fifth embodiment]
Although an example of the biological information measurement electrode 30B is shown, the present invention is not limited to this. Below, the modification of the electrode 30B for biological information measurement is demonstrated.
 本実施形態では、先端溝部24Aは、電極脚312Bの先端部312aを+Z軸方向に向かって見たとき、十字型に形成されているが、上述の第3の実施形態に係る電極脚20Bと同様、先端溝部24Aは、溝内に液体を保持することができる形状であればよい。例えば、図20に示すように、電極脚312Bの先端部312aを+Z軸方向に向かって見たとき、先端部312aには、網目状に形成された先端溝部24Bが設けられていてもよいし、図21に示すように樹枝状に形成された先端溝部24Cが設けられていてもよい。図20および図21に示すように、先端部312aに網目状に形成された先端溝部24Bまたは樹枝状に形成された先端溝部24Cを設けることで、先端部312aの表面の先端溝部24Bおよび24Cに液体をより効率よく保持することができる。そのため、導電層60と頭皮との導通をより安定して維持することができる。また、先端部312aが頭皮に接触した際、先端部312aは、あらゆる方向に対して先端溝部24Bおよび24Cの表面の導電層60と頭皮との導通を安定して維持することができる。そのため、先端部312aを頭皮に沿ってあらゆる方向に移動させても、生体情報をより安定して測定することができる。 In the present embodiment, the tip groove portion 24A is formed in a cross shape when the tip portion 312a of the electrode leg 312B is viewed in the + Z axis direction, but with the electrode leg 20B according to the third embodiment described above Similarly, the end groove 24A may have a shape that can hold the liquid in the groove. For example, as shown in FIG. 20, when the tip end portion 312a of the electrode leg 312B is viewed in the + Z axial direction, the tip end portion 312a may be provided with a tip end groove portion 24B formed in a mesh shape. As shown in FIG. 21, a distal end groove 24C formed in a dendritic shape may be provided. As shown in FIGS. 20 and 21, by providing the distal end groove portion 24B formed in a mesh shape at the distal end portion 312a or the distal end groove portion 24C formed in a dendritic shape, the distal end groove portions 24B and 24C on the surface of the distal end portion 312a. The liquid can be held more efficiently. Therefore, the conduction between the conductive layer 60 and the scalp can be maintained more stably. In addition, when the tip end portion 312a contacts the scalp, the tip end portion 312a can stably maintain conduction between the conductive layer 60 on the surface of the tip end groove portions 24B and 24C and the scalp in any direction. Therefore, biological information can be measured more stably even if the tip end portion 312a is moved in any direction along the scalp.
 本実施形態では、側面溝部25が電極脚312Bの側面312bの表面に形成されているが、上述の第3の実施形態に係る電極脚20Bと同様、先端溝部24Aで十分、水を保持することができる場合などには、側面溝部25は形成されていなくてもよい。 In the present embodiment, the side surface groove 25 is formed on the surface of the side surface 312b of the electrode leg 312B, but as in the electrode leg 20B according to the third embodiment described above, water is sufficiently retained by the tip groove 24A. The side groove 25 may not be formed, for example.
<第5の実施形態に係る生体情報測定用電極の製造方法>
 次に、第5の実施形態に係る生体情報測定用電極の製造方法について説明する。図42は、本実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。図42に示すように、本実施形態に係る生体情報測定用電極の製造方法は、基体部31および端子部33を成形すると共に、領域Aである先端部312aの表面に複数の先端溝部24Aを形成し、側面312bに側面溝部25を形成する成形工程(ステップS61A)と、先端部211の表面を活性化処理する表面処理工程(ステップS62)と、先端部211の表面に、導電層22を形成する導電層形成工程(ステップS63)とを含む。以下、各工程について説明する。
<Manufacturing method of biological information measuring electrode according to the fifth embodiment>
Next, a method of manufacturing the biological information measuring electrode according to the fifth embodiment will be described. FIG. 42 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment. As shown in FIG. 42, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the base portion 31 and the terminal portion 33 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 312a which is the region A. A forming step (step S61A) for forming the side groove portion 25 in the side surface 312b, a surface treatment step (step S62) for activating the surface of the tip end portion 211, and a conductive layer 22 on the surface of the tip end portion 211 And a conductive layer forming step (step S63) to be formed. Each step will be described below.
 成形工程(ステップS61A)は、図32に示す、上述の第4の実施形態に係る生体情報測定用電極の製造方法の成形工程(ステップS41A)と同様にして、基体部31および端子部33を成形する。また、図22に示す、上述の第3の実施形態に係る電極脚の製造方法の脚基体作製工程(ステップS31A)と同様にして、先端部312aの表面に複数の先端溝部24Aを形成し、側面312bに側面溝部25を形成することができる。 The forming step (step S61A) is the same as the forming step (step S41A) of the method for manufacturing the biological information measuring electrode according to the fourth embodiment described above shown in FIG. To mold. Further, in the same manner as the leg base manufacturing process (step S31A) of the method of manufacturing the electrode leg according to the above-described third embodiment shown in FIG. The side groove portion 25 can be formed on the side surface 312 b.
 表面処理工程(ステップS62)は、図22に示す、上述の第3の実施形態に係る電極脚生体情報測定用電極の製造方法の表面処理工程(ステップS32)と同様に行うことができる。 The surface treatment step (step S62) can be performed in the same manner as the surface treatment step (step S32) of the method of manufacturing the electrode for measuring the electrode leg biological information according to the above-described third embodiment shown in FIG.
 導電層形成工程(ステップS63)は、図32に示す、上述の第4の実施形態に係る生体情報測定用電極の製造方法の導電層形成工程(ステップS43A)と同様に行うことができる。 The conductive layer forming step (step S63) can be performed in the same manner as the conductive layer forming step (step S43A) of the method of manufacturing the biological information measuring electrode according to the above-described fourth embodiment shown in FIG.
 導電層形成工程(ステップS63)は、塗布工程(ステップS631)および固化工程(ステップS632)を含む。導電層形成工程(ステップS63)は、上述の、図32に示す導電層形成工程(ステップS43A)と同様である。塗布工程(ステップS631)および固化工程(ステップS632)は、いずれも、上述の、図32に示す導電層形成工程(ステップS43A)の塗布工程(ステップS431)および固化工程(ステップS432)と同様に行うことができる。 The conductive layer formation step (step S63) includes a coating step (step S631) and a solidification step (step S632). The conductive layer forming step (step S63) is the same as the conductive layer forming step (step S43A) shown in FIG. 32 described above. The applying step (step S631) and the solidifying step (step S632) are the same as the applying step (step S431) and the solidifying step (step S432) of the conductive layer forming step (step S43A) shown in FIG. It can be carried out.
 よって、本実施形態に係る生体情報測定用電極の製造方法によれば、先端部312aの表面には先端溝部24Aが形成され、側面312bに側面溝部25が形成された電極脚312Bを備えた生体情報測定用電極30Bを得ることができる。 Therefore, according to the method of manufacturing the biological information measuring electrode according to the present embodiment, the living body provided with the electrode leg 312B in which the tip groove portion 24A is formed on the surface of the tip portion 312a and the side groove portion 25 is formed on the side surface 312b. An information measurement electrode 30B can be obtained.
[第5の実施形態に係る電極脚の製造方法の変形例]
 なお、本実施形態では、成形工程(ステップS61A)において、先端溝部24Aおよび側面溝部25に対応した突起を設けた金型を用いて、基体部31に先端溝部24Aおよび側面溝部25を同時に形成しているが、これに限定されない。例えば、基体部31および端子部33を成形した後に、先端溝部24Aおよび側面溝部25を同時にまたは別々に形成してもよい。
[Modified Example of Method of Manufacturing Electrode Leg According to Fifth Embodiment]
In the present embodiment, in the molding step (step S61A), the tip groove 24A and the side groove 25 are simultaneously formed in the base portion 31 using a mold provided with a protrusion corresponding to the tip groove 24A and the side groove 25. But it is not limited to this. For example, after the base portion 31 and the terminal portion 33 are formed, the tip groove 24A and the side groove 25 may be formed simultaneously or separately.
 先端溝部24Aおよび側面溝部25を別々に形成する場合、本実施形態に係る生体情報測定用電極の製造方法は、図43に示すように、成形工程(ステップS61B)と、表面処理工程(ステップS62)と、導電層形成工程(ステップS63)とを含む。成形工程(ステップS61B)は、基体部31および端子部33を準備する準備工程(ステップS611)と、電極脚の先端部312aに先端溝部24Aを形成する先端溝部形成工程(ステップS612)と、電極基体の側面に側面溝部25を形成する側面溝部形成工程(ステップS613)とを含む。 When the front end groove 24A and the side groove 25 are formed separately, as shown in FIG. 43, the method of manufacturing the biological information measuring electrode according to this embodiment includes a forming step (step S61B) and a surface treatment step (step S62). And a conductive layer forming step (step S63). In the forming step (step S61B), a preparation step (step S611) of preparing the base portion 31 and the terminal portion 33, a tip groove portion forming step (step S612) of forming the tip groove portion 24A in the tip portion 312a of the electrode leg, And a side surface groove forming step (step S613) of forming the side surface groove 25 on the side surface of the base.
 成形工程(ステップS61B)は、図24に示す電極脚の製造方法の脚基体作製工程(ステップS31C)と同様に行うことができる。準備工程(ステップS611)、先端溝部形成工程(ステップS612)、および側面溝部形成工程(ステップS613)は、いずれも、上述の、図24に示す脚基体作製工程(ステップS31C)の準備工程(ステップS311)、先端溝部形成工程(ステップS312)、および側面溝部形成工程(ステップS313)と同様に行うことができる。 The forming step (step S61B) can be performed in the same manner as the leg base producing step (step S31C) of the method of manufacturing the electrode leg shown in FIG. The preparation step (step S611), the tip groove formation step (step S612), and the side groove formation step (step S613) are all the preparation steps (step S31C) of the leg base production step (step S31C) shown in FIG. It can carry out similarly to S311), a tip slot formation process (Step S312), and a side slot formation process (Step S313).
 なお、導電層形成工程(ステップS63)において、電極脚の先端部312aにのみ導電層22を形成しているが、導電層22は少なくとも先端部312aに形成されていればよく、導電層22は、基体部31の先端部312a以外の部分、または基体部31および端子部33の全体に形成してもよい。 In the conductive layer forming step (step S63), the conductive layer 22 is formed only at the tip end portion 312a of the electrode leg, but the conductive layer 22 may be formed at least at the tip end portion 312a. Alternatively, it may be formed on a portion other than the tip end portion 312 a of the base portion 31 or on the entire base portion 31 and the terminal portion 33.
 以上のように、上記第1~第5の実施形態に係る導電材10、電極脚20Aおよび20B、ならびに生体情報測定用電極30Aおよび30Bは、生体との電気的接続を維持し、生体から得られる生体情報を安定して測定することができる。そのため、これらは、例えば、脳波、脈波、心電、筋電、体脂肪など様々な生体の情報を皮膚に接触させて測定するものに好適に用いることができる。また、生体とは、人体、又は人体以外の生物等を含むが、上記の各実施形態に係る導電材10、電極脚20Aおよび20B、ならびに生体情報測定用電極30Aおよび30Bは、いずれも人体用として特に好適に用いることができる。 As described above, the conductive material 10, the electrode legs 20A and 20B, and the biological information measurement electrodes 30A and 30B according to the first to fifth embodiments maintain the electrical connection with the living body and are obtained from the living body. Biological information can be stably measured. Therefore, these can be used suitably for what makes various skin information, such as an electroencephalogram, a pulse wave, an electrocardiogram, an electromyography, a body fat, contact the skin, and measures it. In addition, the living body includes a human body or a living body other than the human body, etc., but the conductive material 10, the electrode legs 20A and 20B, and the biological information measuring electrodes 30A and 30B according to the above embodiments are all for the human body. It can be particularly suitably used as
[第6の実施形態]
<生体情報測定用電極>
 第6の実施形態に係る生体情報測定用電極について説明する。本実施形態に係る生体情報測定用電極は、図25~図27に示す第4の実施形態に係る生体情報測定用電極30Aの導電層22を、導電性高分子を含有した合成樹脂のマトリックス中にファイバが分散して含まれている導電層に変更したものである。
Sixth Embodiment
<Electrode for measuring biological information>
A biological information measurement electrode according to a sixth embodiment will be described. The biological information measuring electrode according to the present embodiment is formed by using the conductive layer 22 of the biological information measuring electrode 30A according to the fourth embodiment shown in FIGS. 25 to 27 in a matrix of a synthetic resin containing a conductive polymer. The fiber is changed to the conductive layer contained in a dispersed manner.
 図44は、第6の実施形態に係る生体情報測定用電極の外観を示す斜視図であり、図44は、第6の実施形態に係る生体情報測定用電極の外観を示す他の斜視図であり、図45は、図44のVII-VII断面図である。 FIG. 44 is a perspective view showing the appearance of the biological information measurement electrode according to the sixth embodiment, and FIG. 44 is another perspective view showing the appearance of the biological information measurement electrode according to the sixth embodiment FIG. 45 is a cross-sectional view taken along the line VII-VII of FIG.
 図44~図46に示すように、本実施形態に係る生体情報測定用電極30Cは、基部311および複数の電極脚312Aを有する基体部31と、基部311の上側(+Z軸方向)に設けられた端子部33と、電極脚312Aの表面に設けられた導電層60とを備えている。本実施形態に係る生体情報測定用電極30Cは、上記の第4の実施形態に係る生体情報測定用電極30Aの先端部312aに形成される導電層22Aの構成を変更したこと以外は、上記の第4の実施形態に係る生体情報測定用電極30Aと同様であるため、導電層60の構成についてのみ説明する。 As shown in FIGS. 44 to 46, the biological information measurement electrode 30C according to the present embodiment is provided on the base portion 31 having the base 311 and the plurality of electrode legs 312A, and on the upper side (+ Z axis direction) of the base 311. And a conductive layer 60 provided on the surface of the electrode leg 312A. The biological information measurement electrode 30C according to the present embodiment is the same as the above except that the configuration of the conductive layer 22A formed on the tip portion 312a of the biological information measurement electrode 30A according to the fourth embodiment is changed. The configuration is the same as the biological information measurement electrode 30A according to the fourth embodiment, so only the configuration of the conductive layer 60 will be described.
[導電層]
 導電層60は、電極脚312Aの先端部312aの表面に設けられている。本実施形態では、基体部31および端子部33が導電性エラストマーを用いて一体に形成されているので、基体部31と端子部33との導通は確保されている。このため、導電層60は、先端部312aの表面にのみ形成している。なお、基体部31および端子部33が絶縁材料で形成されている場合には、導電層60は、基体部31と端子部33との導通を確保するため、基体部31および端子部33の全面に設けられる。
[Conductive layer]
The conductive layer 60 is provided on the surface of the tip end portion 312a of the electrode leg 312A. In the present embodiment, since the base portion 31 and the terminal portion 33 are integrally formed using a conductive elastomer, the conduction between the base portion 31 and the terminal portion 33 is secured. Therefore, the conductive layer 60 is formed only on the surface of the tip end portion 312a. When base portion 31 and terminal portion 33 are formed of an insulating material, conductive layer 60 ensures the conduction between base portion 31 and terminal portion 33, so that the entire surface of base portion 31 and terminal portion 33 is secured. Provided in
 導電層60は、導電性高分子を含有した合成樹脂のマトリックス中にファイバが分散した状態で含まれている。ファイバが合成樹脂のマトリックス中に分散して含まれることで、導電層60の強度が高められると共に、導電層60の厚み(層厚)を増加させることができる。 The conductive layer 60 is contained in a state in which fibers are dispersed in a matrix of a synthetic resin containing a conductive polymer. By dispersing the fibers in the synthetic resin matrix, the strength of the conductive layer 60 can be enhanced, and the thickness (layer thickness) of the conductive layer 60 can be increased.
 合成樹脂のマトリックスとして、導電性高分子のみで形成することも可能だが、適宜、他の合成樹脂を混在させて形成することもできる。他の合成樹脂として、上記の、第1の実施形態の導電材10に含まれるバインダと同様の樹脂を用いることができる。そのため、合成樹脂の詳細については省略する。 As a matrix of synthetic resin, although it is also possible to form only with a conductive polymer, it is possible to mix and form other synthetic resins as appropriate. As the other synthetic resin, a resin similar to the binder contained in the conductive material 10 of the first embodiment can be used. Therefore, the details of the synthetic resin are omitted.
 また、導電層60の平均厚さは、上記の、第1の実施形態の導電材10と同様、1~30μmであることが好ましい。導電層60の平均厚さの詳細は、上記の、第1の実施形態の導電材10と同様であるため、詳細は省略する。 The average thickness of the conductive layer 60 is preferably 1 to 30 μm, as in the case of the conductive material 10 of the first embodiment. The details of the average thickness of the conductive layer 60 are the same as those of the conductive material 10 according to the first embodiment described above, and thus the details will be omitted.
 導電性高分子としては、上記の、第1の実施形態の導電材10に含まれるバインダの導電性高分子と同様の導電性高分子を用いることができる。そのため、導電性高分子の種類の詳細については省略する。 As the conductive polymer, a conductive polymer similar to the conductive polymer of the binder contained in the conductive material 10 of the first embodiment can be used. Therefore, the details of the type of conductive polymer are omitted.
 ファイバとしては、上記の、第1の実施形態の導電材10に含まれるファイバと同様のファイバを用いることができる。そのため、ファイバの種類の詳細については省略する。 As the fiber, a fiber similar to the fiber included in the conductive material 10 of the first embodiment can be used. Therefore, the details of the type of fiber are omitted.
 導電性高分子とファイバとの混合比は、用いるファイバの種類に応じて種々変わるが、2:8~8:2の範囲内であることが好ましい。この範囲内であれば、導電層60は、導電性高分子の使用量を低減しつつ導電性を保つことができると共に、導電層の40の層強度を保つことができる。 The mixing ratio of the conductive polymer to the fiber varies depending on the type of fiber used, but is preferably in the range of 2: 8 to 8: 2. Within this range, the conductive layer 60 can maintain conductivity while reducing the amount of conductive polymer used, and can maintain the layer strength of the conductive layer 40.
 なお、ファイバの定義は、上記の、第1の実施形態において説明した通りである。そのため、ファイバの定義についての説明は省略する。 The definition of the fiber is as described in the first embodiment. Therefore, the description of the definition of the fiber is omitted.
 ファイバは、ナノファイバであることが好ましい。ナノファイバは、ファイバよりも、導電性高分子を含有した合成樹脂のマトリックス中により細かく均一に分散することができるので、導電層60の強度はより高くなる。 The fiber is preferably a nanofiber. The strength of the conductive layer 60 is higher because nanofibers can be dispersed more finely and uniformly in a matrix of a synthetic resin containing a conductive polymer than fibers.
 なお、ナノファイバの定義は、上記の、第1の実施形態において説明した通りである。そのため、ナノファイバの定義についての説明は省略する。 In addition, the definition of a nanofiber is as having demonstrated in said 1st Embodiment. Therefore, the description of the definition of nanofibers is omitted.
 ナノファイバのアスペクト比は、上記の、第1の実施形態において説明した通り、1:100~1:1000であることが好ましく、より好ましくは1:100~1:300である。ナノファイバのアスペクト比が1:100~1:1000の範囲内であれば、塗布層中における分散不良を抑制することができる。この結果、導電層60中にナノファイバが均一に存在することとなるため、導電層60の強度を高めることができる。 The aspect ratio of the nanofibers is preferably 1: 100 to 1: 1000, more preferably 1: 100 to 1: 300, as described in the first embodiment above. If the aspect ratio of the nanofibers is in the range of 1: 100 to 1: 1000, dispersion failure in the coated layer can be suppressed. As a result, since the nanofibers are uniformly present in the conductive layer 60, the strength of the conductive layer 60 can be increased.
 ナノファイバは、上記の、第1の実施形態の導電材10に含まれるナノファイバと同様のナノファイバを用いることができる。そのため、ナノファイバの詳細については省略する。 As the nanofibers, the same nanofibers as the nanofibers included in the conductive material 10 of the first embodiment can be used. Therefore, the details of the nanofibers are omitted.
 ナノファイバとしてセルロースナノファイバを用いる場合、導電性高分子とセルロースナノファイバとの混合比は、2:8~7:3の範囲内であることが好ましく、3:7~6:4の範囲内であることがより好ましい。この範囲内であれば、導電層60は、導電性を保つことができると共に、導電性高分子の使用量を低減できる。また、導電性高分子がPEDOT/PSSの場合、セルロースナノファイバの費用は、PEDOT/PSSの費用の1/10以下であるため、導電層60の単位厚みで使用されるPEDOT/PSSの比率が下げられる。 When using cellulose nanofibers as the nanofibers, the mixing ratio of the conductive polymer to the cellulose nanofibers is preferably in the range of 2: 8 to 7: 3 and in the range of 3: 7 to 6: 4. It is more preferable that Within this range, the conductive layer 60 can maintain conductivity and can reduce the amount of conductive polymer used. When the conductive polymer is PEDOT / PSS, the cost of cellulose nanofibers is 1/10 or less of the cost of PEDOT / PSS, so the ratio of PEDOT / PSS used in the unit thickness of the conductive layer 60 is It is lowered.
 生体情報測定用電極30Cを用いて被験者の脳波を測定する場合、上述の第4の実施形態において図28を用いて説明したように、生体情報測定用電極30Cを備えた検査装置40(図28参照)を用いることで、被験者の脳波を測定できる。 When measuring the brain waves of the subject using the biological information measurement electrode 30C, as described with reference to FIG. 28 in the fourth embodiment described above, the inspection apparatus 40 including the biological information measurement electrode 30C (FIG. 28) The subject's EEG can be measured by using the reference).
 以上のように構成された、生体情報測定用電極30Cは、領域Aである先端部312aの表面に導電層60を有する。導電層60は、導電性高分子を含有した合成樹脂のマトリックス中にファイバを分散した状態で含んでいる。導電層60は、ファイバを含むことで、強度を高くすることができるため、耐磨耗性を向上させることができる。そのため、生体情報測定用電極30Cを繰り返し使用して、先端部312aの表面の導電層60擦られても、先端部312aの表面の導電層60が削られるのを抑制することができる。よって、先端部312aの表面の導電層60は、生体との接触部において生体と安定して接触できるので、導電層60と頭皮との導通を安定して維持することができる。したがって、生体情報測定用電極30Aによれば、上述の第4の実施形態に係る生体情報測定用電極30Aと同様、電極脚312Aの先端部312aと頭皮との電気的接続を維持できるため、頭皮からの電気信号を安定して得ることができ、生体情報として脳波を安定して測定することができる。 The biological information measurement electrode 30C configured as described above has the conductive layer 60 on the surface of the tip portion 312a which is the region A. The conductive layer 60 contains fibers dispersed in a matrix of a synthetic resin containing a conductive polymer. Since the conductive layer 60 can have high strength by containing a fiber, the wear resistance can be improved. Therefore, even if the conductive layer 60 on the surface of the tip end portion 312a is rubbed by repeatedly using the biological information measurement electrode 30C, it is possible to suppress scraping of the conductive layer 60 on the surface of the tip end portion 312a. Thus, the conductive layer 60 on the surface of the tip end portion 312a can stably contact the living body at the contact portion with the living body, so that the conduction between the conductive layer 60 and the scalp can be stably maintained. Therefore, according to the biological information measurement electrode 30A, as in the biological information measurement electrode 30A according to the fourth embodiment described above, the electrical connection between the tip end portion 312a of the electrode leg 312A and the scalp can be maintained. It is possible to stably obtain an electrical signal from the above, and to stably measure an electroencephalogram as biological information.
 生体情報測定用電極30Cは、先端部312aの表面に導電層60を有することで、上述の第4の実施形態に係る生体情報測定用電極30Aと同様、先端部312aが頭皮と直接接触している場合よりも、頭皮と生体情報測定用電極30Cとの間の接触インピーダンスを下げることができる。 The biological information measurement electrode 30C has the conductive layer 60 on the surface of the tip end portion 312a, so that the tip end portion 312a is in direct contact with the scalp as in the biological information measurement electrode 30A according to the fourth embodiment described above. The contact impedance between the scalp and the biological information measurement electrode 30C can be lowered more than in the case where it is present.
 また、導電層60の表面に水分を含む溶液を付けた場合、生体との接触インピーダンスをより下げることができるので、頭皮からの電気信号が取得し易くなる。そのため、脳波をより安定して測定することができる。 In addition, when a solution containing water is attached to the surface of the conductive layer 60, the contact impedance with the living body can be further lowered, so that the electrical signal from the scalp can be easily obtained. Therefore, the electroencephalogram can be measured more stably.
 生体情報測定用電極30Cは、導電層60にファイバを含むことで、上述の第1の実施形態に係る導電材10と同様、導電性高分子のみで構成されている導電層に比べて、単位厚み当たりの導電性高分子の量を減らすことができるため、単位層当たりに必要な費用を低減することができる。そのため、生体情報測定用電極30Cの製造費用を抑えることができる。 The biological information measuring electrode 30C includes a fiber in the conductive layer 60, so that it has a unit as compared with a conductive layer made of only a conductive polymer, like the conductive material 10 according to the first embodiment described above. Since the amount of conductive polymer per thickness can be reduced, the cost required per unit layer can be reduced. Therefore, the manufacturing cost of the biological information measurement electrode 30C can be reduced.
 また、金属により形成されている生体情報測定用電極は、金属アレルギーを持つ被験者には用いることはできない。本実施形態では、生体情報測定用電極30Cは、導電層60を、導電性高分子を含んで形成しているため、導電層60が頭皮に接触しても使用者に金属アレルギーを生じさせることはなく、安全である。よって、生体情報測定用電極30Cは、上述の第1の実施形態に係る導電材10と同様、全ての被験者に安心して使用することができる。 Further, the biological information measuring electrode formed of metal can not be used for a subject having metal allergy. In the present embodiment, the biological information measuring electrode 30C is formed to include the conductive polymer in the conductive layer 60, so that even if the conductive layer 60 comes in contact with the scalp, a metal allergy is caused to the user. Not safe. Therefore, the biological information measurement electrode 30C can be used with confidence for all the subjects, as in the case of the conductive material 10 according to the first embodiment described above.
 生体情報測定用電極30Cは、導電層60含まれるファイバがナノファイバである場合、ナノファイバはファイバよりも導電層60中によりいっそう均一に分散させることができるため、導電層60の強度をより高くすることができる。そのため、導電層60の耐摩耗性をより向上させることができる。 When the fiber including the conductive layer 60 is a nanofiber, the biological information measuring electrode 30C can disperse the nanofibers more uniformly in the conductive layer 60 than the fiber, so the strength of the conductive layer 60 is higher. can do. Therefore, the wear resistance of the conductive layer 60 can be further improved.
 生体情報測定用電極30Cは、導電層60に含まれるファイバがセルロースナノファイバである場合、導電層60はアルコールに対して高い耐性を有するため、導電層60をアルコール洗浄することができる。 When the fiber contained in the conductive layer 60 is a cellulose nanofiber, the biological information measuring electrode 30C has high resistance to alcohol, so that the conductive layer 60 can be washed with alcohol.
[第6の実施形態に係る生体情報測定用電極の変形例]
 生体情報測定用電極30Cの一例を示したが、これに限定されない。以下に、生体情報測定用電極30Cの変形例について説明する。
[Modification of Electrode for Measuring Biological Information According to Sixth Embodiment]
Although an example of the biological information measurement electrode 30C is shown, the present invention is not limited to this. Hereinafter, a modification of the biological information measurement electrode 30C will be described.
 本実施形態では、導電層60は、領域Aである電極脚312Aの先端部312aに形成されているが、少なくとも先端部312aに形成されていればよく、基体部31の他の部分に形成されていてもよいし、基体部31および端子部33の全面に形成されてもいてもよい。例えば、基体部31および端子部33が絶縁材料で形成されている場合には、基体部31と端子部33の全面に形成する。 In the present embodiment, the conductive layer 60 is formed on the tip end portion 312a of the electrode leg 312A which is the region A, but it may be formed on at least the tip end portion 312a. It may be formed on the entire surface of the base portion 31 and the terminal portion 33. For example, when the base portion 31 and the terminal portion 33 are formed of an insulating material, the base portion 31 and the terminal portion 33 are formed on the entire surface of the base portion 31 and the terminal portion 33.
 この場合、図47に示すように、基体部31と端子部33の全面に、導電層60と電気的に接続された下地導電層61を形成することが好ましい。これにより、先端部312aと端子部33との間の導通を取ることができる。導電性高分子は、導電層60と同様の導電性高分子が使用されるため、導電性高分子の説明は省略する。下地導電層61の厚さは、導通が取れればよく、例えば、200nm~2μm程度であればよい。 In this case, as shown in FIG. 47, a base conductive layer 61 electrically connected to the conductive layer 60 is preferably formed on the entire surfaces of the base portion 31 and the terminal portion 33. Thereby, conduction between the tip end portion 312 a and the terminal portion 33 can be achieved. Since the same conductive polymer as the conductive layer 60 is used as the conductive polymer, the description of the conductive polymer is omitted. The thickness of the base conductive layer 61 only needs to be conductive, and may be, for example, about 200 nm to 2 μm.
<第6の実施形態に係る生体情報測定用電極の製造方法>
 次に、第6の実施形態に係る生体情報測定用電極の製造方法について説明する。図48は、本実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。
<Manufacturing Method of Biological Information Measuring Electrode According to Sixth Embodiment>
Next, a method of manufacturing the biological information measuring electrode according to the sixth embodiment will be described. FIG. 48 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment.
 本実施形態に係る生体情報測定用電極の製造方法は、図48に示すように、基体部31および端子部33を成形する成形工程(ステップS71)と、先端部312aの表面を活性化処理する表面処理工程(ステップS72)と、先端部312aの表面に、導電性高分子を含有する導電層60を形成する導電層形成工程(ステップS73)とを含む。以下、各工程について説明する。 In the method of manufacturing the biological information measuring electrode according to the present embodiment, as shown in FIG. 48, a forming step (step S71) of forming the base portion 31 and the terminal portion 33 and activation processing of the surface of the tip portion 312a A surface treatment step (step S72), and a conductive layer formation step (step S73) of forming a conductive layer 60 containing a conductive polymer on the surface of the tip end portion 312a. Each step will be described below.
 まず、成形工程(ステップS71)では、基体部31および端子部33を形成する材料を用いて、基体部31および端子部33を一体に成形する。 First, in the molding step (step S71), the base portion 31 and the terminal portion 33 are integrally molded using a material for forming the base portion 31 and the terminal portion 33.
 基体部31および端子部33は、図32に示す、上述の第4の実施形態に係る生体情報測定用電極の製造方法の成形工程(ステップS41A)と同様に行うことができる。 The base portion 31 and the terminal portion 33 can be performed in the same manner as the forming step (step S41A) of the method for manufacturing the biological information measuring electrode according to the above-described fourth embodiment shown in FIG.
 次に、表面処理工程(ステップS72)は、図22に示す、上述の第3の実施形態に係る生体情報測定用電極の製造方法の表面処理工程(ステップS32)と同様に行うことができる。 Next, the surface treatment step (step S72) can be performed in the same manner as the surface treatment step (step S32) of the method for manufacturing the biological information measuring electrode according to the third embodiment described above, shown in FIG.
 導電層形成工程(ステップS73)では、先端部312aの表面に、導電性高分子を含有した合成樹脂のマトリックス中にファイバが分散した状態で含まれる導電層60を形成する。導電層形成工程(ステップS73)は、塗布工程(ステップS731)と、乾燥工程(ステップS732)とを含む。 In the conductive layer forming step (step S73), a conductive layer 60 is formed on the surface of the tip portion 312a in which fibers are dispersed in a matrix of a synthetic resin containing a conductive polymer. The conductive layer forming step (step S73) includes a coating step (step S731) and a drying step (step S732).
 導電層形成工程(ステップS73)の塗布工程(ステップS731)は、図32に示す、上述の第4の実施形態に係る生体情報測定用電極の製造方法の塗布工程(ステップS431)と同様に行うことができる。 The application step (step S731) of the conductive layer forming step (step S73) is performed in the same manner as the application step (step S431) of the method of manufacturing the biological information measuring electrode according to the fourth embodiment described above shown in FIG. be able to.
 導電層形成工程(ステップS73)の乾燥工程(ステップS732)は、図32に示す、上述の第4の実施形態に係る生体情報測定用電極の製造方法の固化工程(ステップS432)と同様に行うことができる。 The drying step (step S732) of the conductive layer forming step (step S73) is performed in the same manner as the solidifying step (step S432) of the method of manufacturing the biological information measuring electrode according to the fourth embodiment described above shown in FIG. be able to.
 このように、先端部312aの表面に導電層60が形成されることで、生体情報測定用電極30Cが得られる。導電層60は高い耐磨耗性を有するので、生体情報測定用電極30Cを繰り返し使用したり洗浄して、先端部312aの表面の導電層60を擦っても、先端部312aの表面の導電層60が削られるのを抑制することができる。よって、導電層60と頭皮との接触部において頭皮との導通を安定して維持することができるので、頭皮からの電気信号を安定して得ることができる。 As described above, the conductive layer 60 is formed on the surface of the tip end portion 312a, whereby the biological information measurement electrode 30C is obtained. Since the conductive layer 60 has high abrasion resistance, the conductive layer 60 on the surface of the tip portion 312a is used even if the biological information measurement electrode 30C is repeatedly used or cleaned to rub the conductive layer 60 on the surface of the tip portion 312a. It can suppress that 60 is scraped off. Therefore, since the conduction with the scalp can be stably maintained at the contact portion between the conductive layer 60 and the scalp, the electrical signal from the scalp can be stably obtained.
 また、導電層形成工程(ステップS73)の塗布工程(ステップS731)において、混合溶液を先端部312aに1回塗布した時に形成される塗布層の膜厚は、導電性高分子のみを含む溶液を1回塗布した時に形成される塗布層の膜厚よりも厚くすることができる。導電層60の所望の厚さは、混合溶液の少ない塗布回数で得られるため、塗布工程(ステップS731)で要する費用を低減することができる。また、導電層60の厚さを厚くすることで、生体情報測定用電極30Cの使用や洗浄時に導電層60の表面が擦られて磨耗しても、導電層60がすり減って先端部312aの表面から剥がれてしまうまでの時間を遅らせることができる。この結果、導電層60の寿命をより伸ばすことができる。 In the coating step (step S731) of the conductive layer forming step (step S73), the film thickness of the coating layer formed when the mixed solution is applied once to the tip end portion 312a is a solution containing only the conductive polymer. It can be thicker than the thickness of the coating layer formed when it is applied once. The desired thickness of the conductive layer 60 can be obtained with a small number of application times of the mixed solution, so the cost required for the application step (step S731) can be reduced. Further, by thickening the thickness of the conductive layer 60, even if the surface of the conductive layer 60 is abraded and worn during use or cleaning of the biological information measuring electrode 30C, the conductive layer 60 is worn away and the surface of the tip portion 312a It can delay the time until it peels off. As a result, the life of the conductive layer 60 can be further extended.
 導電層60に含まれるファイバがセルロースナノファイバである場合、セルロースナノファイバと導電性高分子とを含む混合溶液は、基体部31および端子部33への濡れ性が良く、高いチクソ性を有する。そのため、セルロースナノファイバと導電性高分子とを含む混合溶液を用いて導電層60を形成する場合、前記混合溶液を先端部312aに一回塗布した時に形成される塗布層の厚みをより厚くすることができる。前記混合溶液の1回の塗布で形成される塗布層の膜厚は、セルロースナノファイバを含まない溶液を塗布して形成される塗布層の膜厚よりも、例えば、1.3~4倍くらい厚くすることができる。 When the fibers contained in the conductive layer 60 are cellulose nanofibers, a mixed solution containing cellulose nanofibers and a conductive polymer has good wettability to the base portion 31 and the terminal portion 33 and has high thixotropy. Therefore, when the conductive layer 60 is formed using a mixed solution containing cellulose nanofibers and a conductive polymer, the thickness of the coated layer formed when the mixed solution is applied to the tip portion 312 a once is made thicker. be able to. The film thickness of the coating layer formed in one application of the mixed solution is, for example, about 1.3 to 4 times the film thickness of the coating layer formed by coating a solution not containing cellulose nanofibers. It can be thickened.
[第6の実施形態に係る生体情報測定用電極の製造方法の変形例]
 一実施形態に係る生体情報測定用電極の製造方法の一例を示したが、これに限定されない。以下に、生体情報測定用電極の製造方法における変形例について説明する。
[Modified Example of Method of Manufacturing Biological Information Measurement Electrode According to Sixth Embodiment]
Although an example of the manufacturing method of the living body information measurement electrode concerning one embodiment was shown, it is not limited to this. Below, the modification in the manufacturing method of the electrode for biological information measurement is explained.
 本実施形態では、成形工程(ステップS71)において、基体部31および端子部33を同時に形成しているが、基体部31および端子部33を、それぞれ、別々に成形して一体化させてもよい。 In the present embodiment, the base portion 31 and the terminal portion 33 are simultaneously formed in the molding step (step S71), but the base portion 31 and the terminal portion 33 may be separately molded and integrated. .
 この場合、本実施形態に係る生体情報測定用電極の変形例の製造方法は、図49に示すように、成形工程(ステップS71)を、基体部31および端子部33を準備する準備工程(ステップS711)と、基体部31および端子部33を結着して一体化する結着工程(ステップS712)とで構成する。そして、本実施形態と同様に、先端部312aの表面を活性化処理する表面処理工程(ステップS72)と、先端部312aの表面に、導電性高分子とファイバを含有する導電層60を形成する導電層形成工程(ステップS73)とを行う。 In this case, as shown in FIG. 49, in the manufacturing method of the modification of the biological information measuring electrode according to the present embodiment, the forming step (step S71) is a preparing step of preparing the base portion 31 and the terminal portion 33 (step S711), and a bonding step (step S712) for bonding and integrating the base portion 31 and the terminal portion 33 together. Then, as in the present embodiment, a surface treatment step (step S72) for activating the surface of the tip portion 312a and a conductive layer 60 containing a conductive polymer and a fiber are formed on the surface of the tip portion 312a. A conductive layer forming step (step S73) is performed.
 上述の成形工程(ステップS71)の結着工程(ステップS712)においては、基体部31と端子部33とを結着部材を用いて一体化する。この結着するために使用する結着部材は、公知の結着部材を用いることができる。例えば、エポキシ樹脂、またはウレタン樹脂などの合成樹脂、ゴムなどの弾性を有した合成樹脂などを用いることができる。 In the binding step (step S712) of the above-described forming step (step S71), the base portion 31 and the terminal portion 33 are integrated using a binding member. A known binding member can be used as the binding member used for this binding. For example, synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
 また、本実施形態では、導電層形成工程(ステップS73)において、基体部31の先端部312aにのみ導電層60を形成しているが、導電層60は少なくとも先端部312aに形成されていればよく、導電層60は、基体部31の先端部312a以外の部分、または基体部31および端子部33の全体に形成してもよい。 Further, in the present embodiment, the conductive layer 60 is formed only at the tip end portion 312a of the base portion 31 in the conductive layer forming step (step S73), but the conductive layer 60 is formed at least at the tip end portion 312a. The conductive layer 60 may be formed on the portion other than the tip end portion 312 a of the base portion 31 or on the entire base portion 31 and the terminal portion 33.
 また、本実施形態では、基体部31および端子部33が導電性エラストマーで形成されているため、導電層60は、少なくとも先端部312aの表面に形成すればよい。基体部31および端子部33が絶縁材料で形成されている場合には、導電層60は、基体部31および端子部33の全面に形成する。これにより、頭皮から得られる電気信号は、導電層60を介して、電極脚312Aの先端部312aから端子部33まで伝えられる。 Further, in the present embodiment, since the base portion 31 and the terminal portion 33 are formed of a conductive elastomer, the conductive layer 60 may be formed at least on the surface of the tip portion 312a. When the base 31 and the terminal 33 are formed of an insulating material, the conductive layer 60 is formed on the entire surface of the base 31 and the terminal 33. Thereby, the electrical signal obtained from the scalp is transmitted from the tip end portion 312 a of the electrode leg 312 A to the terminal portion 33 through the conductive layer 60.
 また、基体部31および端子部33が絶縁材料で形成される場合には、図47に示すように、基体部31および端子部33と導電層60との間に、下地導電層61を形成することが好ましい。 When base 31 and terminal 33 are formed of an insulating material, base conductive layer 61 is formed between base 31 and terminal 33 and conductive layer 60 as shown in FIG. Is preferred.
 この場合、本実施形態に係る生体情報測定用電極の変形例の製造方法は、図50に示すように、基体部31および端子部33の表面に、導電性高分子を含有する下地導電層61を形成する。つまり、本実施形態に係る生体情報測定用電極の変形例の製造方法は、成形工程(ステップS71)と、表面処理工程(ステップS72)と、基体部31および端子部33の表面に、導電性高分子を含有する下地導電層61を形成する下地導電層形成工程(ステップS73)と、導電層形成工程(ステップS74)とを含む。導電層形成工程(ステップS74)は、上述の図48の導電層形成工程(ステップS73)と同様である。 In this case, as shown in FIG. 50, the manufacturing method of the modification of the biological information measuring electrode according to the present embodiment includes the base conductive layer 61 containing a conductive polymer on the surfaces of the base portion 31 and the terminal portion 33. Form That is, in the manufacturing method of the modification of the biological information measuring electrode according to the present embodiment, the forming step (step S71), the surface treatment step (step S72), and the surfaces of the base portion 31 and the terminal portion 33 are electrically conductive. A base conductive layer forming step (step S73) for forming a base conductive layer 61 containing a polymer, and a conductive layer forming step (step S74) are included. The conductive layer forming step (step S74) is the same as the conductive layer forming step (step S73) of FIG. 48 described above.
 下地導電層形成工程(ステップS73)では、基体部31および端子部33の表面に、導電性高分子を含む溶液を塗布して塗布層を形成する。下地導電層61を形成する方法は、導電層形成工程(ステップS74)と同様の形成方法を用いることができる。 In the base conductive layer forming step (step S73), a solution containing a conductive polymer is applied to the surfaces of the base portion 31 and the terminal portion 33 to form a coating layer. The underlying conductive layer 61 can be formed by the same method as the conductive layer forming step (step S74).
[第7の実施形態]
<生体情報測定用電極>
 第7の実施形態に係る生体情報測定用電極について、図面を参照して説明する。本実施形態に係る生体情報測定用電極は、図44~図46に示す第6の実施形態に係る生体情報測定用電極30Cの基体部31の電極脚312Aとして、図37~図40に示す第5の実施形態に係る電極脚312Bを用いたものである。
Seventh Embodiment
<Electrode for measuring biological information>
A biological information measurement electrode according to a seventh embodiment will be described with reference to the drawings. The biological information measurement electrode according to the present embodiment is the fourth embodiment shown in FIGS. 37 to 40 as the electrode leg 312A of the base 31 of the biological information measurement electrode 30C according to the sixth embodiment shown in FIGS. The electrode leg 312B according to the fifth embodiment is used.
 図51は、第7の実施形態に係る生体情報測定用電極の外観を示す斜視図であり、図52および図53は、第7の実施形態に係る生体情報測定用電極の外観を示す他の斜視図であり、図54は、図51のIII-III断面図である。 FIG. 51 is a perspective view showing the appearance of the biological information measurement electrode according to the seventh embodiment, and FIGS. 52 and 53 are other views showing the appearance of the biological information measurement electrode according to the seventh embodiment. FIG. 54 is a perspective view, and FIG. 54 is a cross-sectional view taken along the line III-III in FIG.
 図51~図54に示すように、第7の実施形態に係る生体情報測定用電極30Dは、図44に示す生体情報測定用電極30Cの基体部31の電極脚312Aに代えて、図37~図40に示す第6の実施形態に係る電極脚312Bを備えたものである。 As shown in FIGS. 51 to 54, the biological information measurement electrode 30D according to the seventh embodiment is replaced with the electrode legs 312A of the base portion 31 of the biological information measurement electrode 30C shown in FIG. An electrode leg 312B according to the sixth embodiment shown in FIG. 40 is provided.
 電極脚312Bは、図51に示すように、領域Aである先端部312aに設けられる溝部(先端溝部)24Aと、先端部312a以外の部分である電極脚312Aの側面312bに設けられる補助溝部(側面溝部)25とを有する。導電層60は、図52に示すように、先端部312aの表面に形成されているため、先端溝部24Aの表面にも形成されている(図16参照)。電極脚312Bは、先端溝部24Aおよび側面溝部25を備えることで、先端溝部24Aおよび側面溝部25内に水分を含む液体を保持することができる。 The electrode leg 312B is, as shown in FIG. 51, a groove (tip groove) 24A provided in the tip end portion 312a which is the region A, and an auxiliary groove portion provided in the side surface 312b of the electrode leg 312A which is a portion other than the tip end portion 312a ( Side groove portion 25). As shown in FIG. 52, since the conductive layer 60 is formed on the surface of the tip end portion 312a, the conductive layer 60 is also formed on the surface of the tip groove portion 24A (see FIG. 16). The electrode leg 312B can hold the liquid containing water in the tip groove 24A and the side groove 25 by providing the tip groove 24A and the side groove 25.
 生体情報測定用電極30Dを用いて被験者の脳波を測定する場合、上述の第4の実施形態において図28を用いて説明したように、生体情報測定用電極30Dを備えた検査装置40(図28参照)を用いることで、被験者の脳波を測定できる。 When measuring the brain waves of the subject using the biological information measurement electrode 30D, as described with reference to FIG. 28 in the fourth embodiment described above, the inspection apparatus 40 including the biological information measurement electrode 30D (FIG. 28) The subject's EEG can be measured by using the reference).
 以上のように構成された、生体情報測定用電極30Dは、領域Aである先端部312aの表面に複数の先端溝部24Aを有すると共に、先端部312aの表面に導電層60を有する。生体情報測定用電極30Dを繰り返し長期間使用することにより、例えば、図17に示すように、先端部312aの表面の導電層60の一部が徐々に擦り減り、先端部312aが部分的に露出する状態になるまで導電層60の一部が剥がれてしまう可能性がある。このような場合でも、生体情報測定用電極30Dでは、先端溝部24Aの表面に形成された導電層60は残っている。そのため、導電層60の導通が、先端溝部24Aの表面に形成された導電層60と頭皮との接触部において維持できるため、導電層60と頭皮との導通を安定して維持することができる。よって、生体情報測定用電極30Dによれば、上述の第4の実施形態に係る生体情報測定用電極30Aと同様、電極脚312Bの先端部312aと頭皮との電気的接続を維持できるため、頭皮からの電気信号を安定して得ることができ、生体情報として脳波を安定して測定することができる。 The biological information measurement electrode 30D configured as described above has a plurality of tip grooves 24A on the surface of the tip portion 312a which is the region A, and a conductive layer 60 on the surface of the tip portion 312a. By repeatedly using the biological information measuring electrode 30D for a long time, for example, as shown in FIG. 17, a part of the conductive layer 60 on the surface of the tip end portion 312a is gradually worn away and the tip end portion 312a is partially exposed. There is a possibility that a part of the conductive layer 60 may be peeled off until it is in the above state. Even in such a case, in the biological information measurement electrode 30D, the conductive layer 60 formed on the surface of the tip groove 24A remains. Therefore, since the conduction of the conductive layer 60 can be maintained at the contact portion between the conductive layer 60 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 60 and the scalp can be stably maintained. Therefore, according to the biological information measurement electrode 30D, as in the biological information measurement electrode 30A according to the fourth embodiment described above, the electrical connection between the tip end portion 312a of the electrode leg 312B and the scalp can be maintained. It is possible to stably obtain an electrical signal from the above, and to stably measure an electroencephalogram as biological information.
 また、生体情報測定用電極30Dを液体に浸漬すると、上述の第5の実施形態に係る生体情報測定用電極30Bと同様、領域Aである先端部312aの表面に設けた先端溝部24A内に毛細管現象により水を保持することができる。そのため、脳波を測定する際に、先端部312aを頭皮に接触させると、図18に示すように、先端溝部24Aで保持されていた水が先端部312aと接触する頭皮の表面に流れて頭皮に広がる。この結果、頭皮から導電層60に導通する面積が大きくなるため、頭皮と生体情報測定用電極30Dとの間の接触インピーダンスをより下げることができる。これにより、脳波をより安定して測定することができる。 In addition, when the biological information measurement electrode 30D is immersed in the liquid, a capillary is formed in the tip groove 24A provided on the surface of the distal end portion 312a, which is the area A, like the biological information measurement electrode 30B according to the fifth embodiment described above. Water can be retained by the phenomenon. Therefore, when measuring the electroencephalogram, when the tip end portion 312a is brought into contact with the scalp, as shown in FIG. 18, the water held by the tip groove portion 24A flows on the surface of the scalp in contact with the tip end portion 312a spread. As a result, the area of conduction from the scalp to the conductive layer 60 is increased, so the contact impedance between the scalp and the biological information measurement electrode 30D can be further lowered. Thereby, the electroencephalogram can be measured more stably.
 さらに、生体情報測定用電極30Dは、電極脚312Bの側面に側面溝部25を複数有しており、側面溝部25は先端溝部24Aの少なくとも一部と連通している。そのため、上述の第5の実施形態に係る生体情報測定用電極30Bと同様、脳波の測定時に、先端溝部24Aで保持されていた水が先端部312aと接触する頭皮の表面に流れ、先端溝部24Aで保持されていた水が消費される。その際、側面溝部25に保持されていた水が先端溝部24Aに流れて頭皮に供給される。これにより、頭皮と生体情報測定用電極30Dとの間の接触インピーダンスを低く抑えたまま、頭皮と生体情報測定用電極30Dとの接触を維持することができるため、生体情報をより安定して継続的に測定することができる。 Furthermore, the living body information measurement electrode 30D has a plurality of side grooves 25 on the side surface of the electrode leg 312B, and the side grooves 25 communicate with at least a part of the tip groove 24A. Therefore, as with the electrode for measuring biological information 30B according to the fifth embodiment described above, when electroencephalogram is measured, the water held by the tip groove 24A flows to the surface of the scalp in contact with the tip 312a, and the tip groove 24A The water held at is consumed. At this time, the water held in the side groove 25 flows to the tip groove 24A and is supplied to the scalp. Thereby, the contact between the scalp and the biological information measuring electrode 30D can be maintained while the contact impedance between the scalp and the biological information measuring electrode 30D is kept low, so that the biological information can be continued more stably. Can be measured.
<第7の実施形態に係る生体情報測定用電極の製造方法>
 次に、第7の実施形態に係る生体情報測定用電極の製造方法について説明する。図55は、第7の実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。
<Manufacturing Method of Biological Information Measurement Electrode According to Seventh Embodiment>
Next, a method of manufacturing the biological information measuring electrode according to the seventh embodiment will be described. FIG. 55 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the seventh embodiment.
 本実施形態に係る生体情報測定用電極の製造方法は、図55に示すように、基体部31および端子部33を成形すると共に、領域Aである先端部312aの表面に複数の先端溝部24Aを形成し、側面312bに側面溝部25を形成する成形工程(ステップS81)と、先端部312aの表面を活性化処理する表面処理工程(ステップS82)と、先端部312aの表面に、導電性高分子を含有する導電層60を形成する導電層形成工程(ステップS83)とを含む。以下、各工程について説明する。 In the method of manufacturing the biological information measuring electrode according to the present embodiment, as shown in FIG. 55, the base portion 31 and the terminal portion 33 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 312a which is the region A. Forming step (step S81) for forming the side groove portion 25 on the side surface 312b, surface treatment step (step S82) for activating the surface of the tip end portion 312a, conductive polymer on the surface of the tip end portion 312a And a conductive layer forming step (step S83) of forming a conductive layer 60 containing Each step will be described below.
 まず、成形工程(ステップS81)では、基体部31および端子部33を形成する材料を用いて、基体部31および端子部33を一体に成形すると共に、領域Aである先端部312aの表面に複数の先端溝部24Aを形成し、側面312bに側面溝部25を形成する。 First, in the forming step (step S81), the base portion 31 and the terminal portion 33 are integrally molded using a material for forming the base portion 31 and the terminal portion 33, and a plurality of portions are formed on the surface of the tip portion 312a which is the region A. The end groove 24A is formed, and the side groove 25 is formed on the side surface 312b.
 基体部31および端子部33は、図48に示す第6の実施形態に係る生体情報測定用電極の製造方法における成形工程(ステップS71)と同様、公知の成形方法を用いて成形することができる。これらの成形法を用いる際、基体部31および端子部33の形状に対応した金型が用いられる。金型には、先端溝部24Aおよび側面溝部25に対応した突部を設ける。前記金型を用いることで、基体部31および端子部33を同時に成形すると共に、先端溝部24Aおよび側面溝部25を同時に形成することができる。 The base portion 31 and the terminal portion 33 can be molded using a known molding method as in the molding step (step S71) in the method of manufacturing the biological information measuring electrode according to the sixth embodiment shown in FIG. . When these molding methods are used, a mold corresponding to the shapes of the base portion 31 and the terminal portion 33 is used. The mold is provided with a protrusion corresponding to the end groove 24A and the side groove 25. By using the mold, the base portion 31 and the terminal portion 33 can be simultaneously formed, and the tip groove portion 24A and the side surface groove portion 25 can be simultaneously formed.
 次に、表面処理工程(ステップS82)では、先端部312aの表面を活性化処理する。先端部312aの表面を活性化処理する方法は、図48に示す第6の実施形態に係る生体情報測定用電極の製造方法における表面処理工程(ステップS72)と同様の方法を用いることができるため、説明は省略する。 Next, in the surface treatment step (step S82), the surface of the tip end portion 312a is subjected to activation treatment. The method of activating the surface of the distal end portion 312a can be the same method as the surface treatment step (step S72) in the method of manufacturing the biological information measuring electrode according to the sixth embodiment shown in FIG. , The description is omitted.
 最後に、導電層形成工程(ステップS83)では、先端部312aの表面に導電層50を形成する。導電層50の形成方法は、図48に示す第6の実施形態に係る生体情報測定用電極の製造方法における導電層形成工程(ステップS73)と同様の方法を用いることができるため、説明は省略する。 Finally, in the conductive layer forming step (step S83), the conductive layer 50 is formed on the surface of the tip end portion 312a. The method of forming the conductive layer 50 can be the same as the step of forming the conductive layer (step S73) in the method of manufacturing the biological information measuring electrode according to the sixth embodiment shown in FIG. Do.
 このように、先端部312aの表面に導電層60が形成されることで、本実施形態に係る生体情報測定用電極30Dが得られる。先端部312aの表面には先端溝部24Aが形成され、側面312bに側面溝部25が形成されている。そのため、生体情報測定用電極30Dを繰り返し使用することで、先端部312aに設けた導電層60が長期間使用することで摩耗して削られても、先端溝部24Aの表面に設けられた導電層60は残っている。そのため、先端溝部24Aの表面に形成された導電層60と頭皮との接触部において頭皮との導通を維持することができるので、導電層60と頭皮との導通を安定して維持することができる。 As described above, the conductive layer 60 is formed on the surface of the tip end portion 312a, whereby the biological information measurement electrode 30D according to the present embodiment can be obtained. The front end groove portion 24A is formed on the surface of the front end portion 312a, and the side surface groove portion 25 is formed on the side surface 312b. Therefore, even if the conductive layer 60 provided on the tip end portion 312a is worn and scraped for a long time by repeatedly using the biological information measurement electrode 30D, the conductive layer provided on the surface of the tip groove portion 24A 60 remain. Therefore, since the conduction with the scalp can be maintained at the contact portion between the conductive layer 60 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 60 and the scalp can be stably maintained. .
[第7の実施形態に係る生体情報測定用電極の製造方法の変形例]
 一実施形態に係る生体情報測定用電極の製造方法の一例を示したが、これに限定されない。以下に、生体情報測定用電極の製造方法における変形例のいくつかについて、図56を用いて説明する。
[Modified Example of Method of Manufacturing Biological Information Measurement Electrode According to Seventh Embodiment]
Although an example of the manufacturing method of the living body information measurement electrode concerning one embodiment was shown, it is not limited to this. Hereinafter, some modified examples of the method of manufacturing the biological information measuring electrode will be described with reference to FIG.
 第7の実施形態では、成形工程(ステップS21)において、先端溝部24Aおよび側面溝部25に対応した突起を設けた金型を用いて、基体部31および端子部33を同時に形成しているが、これに限定されない。例えば、基体部31および端子部33を、それぞれ、別々に成形して一体化した後に、先端溝部24Aおよび側面溝部25を形成してもよい。 In the seventh embodiment, in the molding step (step S21), the base portion 31 and the terminal portion 33 are simultaneously formed using a mold provided with a protrusion corresponding to the tip groove portion 24A and the side surface groove portion 25. It is not limited to this. For example, the distal end groove 24A and the side groove 25 may be formed after the base portion 31 and the terminal portion 33 are separately molded and integrated.
 この場合、本実施形態に係る生体情報測定用電極の製造方法は、図56に示すように、成形工程(ステップS81)を、基体部31および端子部33を準備する準備工程(ステップS811)と、基体部31および端子部33を結着して一体化する結着工程(ステップS812)と、先端部312aの表面に複数の先端溝部24Aおよび側面溝部25を形成する溝部形成工程(ステップS813)とで構成する。そして、第7の実施形態と同様に、先端部312aの表面を活性化処理する表面処理工程(ステップS82)と、先端部312aの表面に、導電性高分子を含有する導電層60を形成する導電層形成工程(ステップS83)とを行う。 In this case, as shown in FIG. 56, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the forming step (step S81) is a preparing step (step S811) of preparing the base portion 31 and the terminal portion 33. A bonding step of bonding and integrating the base portion 31 and the terminal portion 33 (step S812), and a groove forming step of forming the plurality of tip grooves 24A and the side grooves 25 on the surface of the tip portion 312a (step S813) And consists of. Then, as in the seventh embodiment, a surface treatment step (step S82) for activating the surface of the tip end portion 312a and a conductive layer 60 containing a conductive polymer is formed on the surface of the tip end portion 312a. A conductive layer forming step (step S83) is performed.
 上述の成形工程(ステップS81)の基体部31と端子部33とを結着部材を用いて一体化する。この結着するために使用する結着部材は、公知の結着部材を用いることができる。例えば、エポキシ樹脂、またはウレタン樹脂などの合成樹脂、ゴムなどの弾性を有した合成樹脂などを用いることができる。 The base portion 31 and the terminal portion 33 in the above-described forming process (step S81) are integrated using a binding member. A known binding member can be used as the binding member used for this binding. For example, synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
 以上のように、上記第6および第7の実施形態に係る生体情報測定用電極30Cおよび30Dは、頭皮との電気的接続を維持し、頭皮から得られる生体情報(脳波)を安定して測定することができる。そのため、生体情報測定用電極30Cおよび30Dは、脳波以外に、例えば、脈波、心電、筋電、体脂肪など様々な生体の情報を皮膚に接触させて測定する生体情報測定用電極として好適に用いることができる。また、生体とは、人体、又は人体以外の生物等を含むが、上記の各実施形態に係る生体情報測定用電極は、人体用として特に好適に用いることができる。 As described above, the biological information measurement electrodes 30C and 30D according to the sixth and seventh embodiments maintain electrical connection with the scalp and stably measure biological information (electroencephalograms) obtained from the scalp. can do. Therefore, the electrodes for measuring biological information 30C and 30D are suitable as electrodes for measuring biological information for measuring information of various living bodies such as pulse waves, electrocardiograms, myoelectric potentials, body fats, etc., in addition to brain waves. It can be used for In addition, although a living body includes a human body or a living body other than the human body, etc., the biological information measuring electrode according to each of the above embodiments can be particularly suitably used for the human body.
 上記の通り、導電材料は、第1の実施形態では導電材10(図1等参照)として用いられ、第2~第7の実施形態では導電層22(図6等参照)又は導電層60(図44参照)として用いられている。上記のそれぞれの実施形態のうち、第1の実施形態では、導電材10(図1等参照)が、ファイバと、ファイバ同士を結着する導電性高分子を有するバインダと、を含んで形成され、多数の細孔を有するものである。この導電材10(図1参照)は、第2~第5の実施形態では電極脚20Aおよび20B(図6および図13等参照)または生体情報測定用電極30Aおよび30B(図25および図37等参照)の導電層22(図6等参照)としてそれぞれ用いられるものである。第6及び第7の実施形態では、導電層60(図44参照)が、生体情報測定用電極30Cおよび30D(図44および図51等参照)の領域Aの表面に、導電性高分子を含有した合成樹脂のマトリックス中にファイバが分散して含まれているものである。 As described above, the conductive material is used as the conductive material 10 (see FIG. 1 and the like) in the first embodiment, and the conductive layer 22 (see FIG. 6 and the like) or the conductive layer 60 (the second to seventh embodiments). (See FIG. 44). In each of the above embodiments, in the first embodiment, the conductive material 10 (see FIG. 1 and the like) is formed by including a fiber and a binder having a conductive polymer that bonds the fibers. , And a large number of pores. In the second to fifth embodiments, the conductive material 10 (see FIG. 1) is the electrode legs 20A and 20B (see FIGS. 6 and 13) or the biological information measuring electrodes 30A and 30B (see FIGS. 25 and 37). (See FIG. 6 etc.) of each. In the sixth and seventh embodiments, the conductive layer 60 (see FIG. 44) contains a conductive polymer on the surface of the region A of the biological information measurement electrodes 30C and 30D (see FIG. 44 and FIG. 51). The fibers are contained in a dispersed manner in the matrix of the synthetic resin.
 具体的には、上記の、第1の実施形態に係る導電材は、生体と接触可能な領域を有する生体情報測定用電極の、少なくとも前記領域の表面に設けられる導電材であって、
 ファイバと、前記ファイバ同士を結着する導電性高分子を有するバインダ樹脂と、を含んで形成されており、多数の細孔を有する。
Specifically, the conductive material according to the first embodiment described above is a conductive material provided on the surface of at least the region of the biological information measuring electrode having a region capable of being in contact with a living body,
It is formed to include a fiber and a binder resin having a conductive polymer that bonds the fibers, and has a large number of pores.
 上記の、第6及び第7の実施形態に係る生体情報測定用電極は、生体と接触可能な領域を有する生体情報測定用電極であって、
 前記領域の表面には、導電性高分子を含有した合成樹脂のマトリックス中にファイバが分散して含まれている導電層が形成されている。
The biological information measurement electrode according to the sixth and seventh embodiments described above is a biological information measurement electrode having a region that can be in contact with a living body,
A conductive layer in which fibers are dispersed and contained in a matrix of a synthetic resin containing a conductive polymer is formed on the surface of the region.
 上記の、第1の実施形態に係る導電材の製造方法は、生体と接触可能な領域を有する生体情報測定用電極の、少なくとも前記領域の表面に設けられる導電材の製造方法であって、
 ファイバと、該ファイバ同士を結着する導電性高分子と、前記ファイバが分散する溶媒とを含む混合溶液を作製する混合工程と、
 該混合溶液を凍結乾燥して、多数の細孔を有する多孔質体を作製する固化工程と、
を含む。
The method of manufacturing a conductive material according to the first embodiment is a method of manufacturing a conductive material provided on a surface of at least the region of a biological information measuring electrode having a region capable of being in contact with a living body,
A mixing step of preparing a mixed solution containing a fiber, a conductive polymer bonding the fibers, and a solvent in which the fiber is dispersed;
Solidifying the mixed solution by lyophilization to produce a porous body having a large number of pores;
including.
 上記の、導電材の製造方法は、前記混合工程では、前記混合溶液に前記ファイバ同士を結着するバインダ樹脂を混合し、
 前記バインダ樹脂を含む前記混合溶液を冷結乾燥して得られた多孔質体中の該バインダ樹脂を硬化させる硬化工程を含む。
In the method of manufacturing a conductive material as described above, in the mixing step, a binder resin for binding the fibers to each other is mixed in the mixed solution,
And a curing step of curing the binder resin in the porous body obtained by cooling and drying the mixed solution containing the binder resin.
 上記の、導電材の製造方法は、前記溶媒が水を含む水分であり、
 前記固化工程は、前記混合溶液の中に含まれる水分を冷結させる冷結工程と、
 冷結させた水分を真空下で昇華させる脱水工程と、
を含む。
In the above method for producing a conductive material, the solvent is water containing water,
The solidifying step is a cooling step of cooling water contained in the mixed solution;
A dehydration step of subliming the cooled water under vacuum;
including.
 上記の、第2の実施形態に係る電極脚の製造方法は、少なくとも、生体と接触可能な前記領域を有する電極脚の製造法であって、
 導電性を有する電極基体を作製する脚基体作製工程と、
 該電極基体の前記領域に、上記の、いずれかに記載の導電材の製造方法を用いて得られた該導電材からなる導電層を形成する導電層形成工程と、
を含む。
The method of manufacturing an electrode leg according to the second embodiment described above is a method of manufacturing an electrode leg having at least the region capable of being in contact with a living body,
A leg base producing step of producing an electrode base having conductivity;
A conductive layer forming step of forming a conductive layer made of the conductive material obtained by using the method for producing a conductive material according to any one of the above, in the region of the electrode substrate;
including.
 上記の、第3の実施形態に係る電極脚の製造方法は、少なくとも、生体と接触可能な領域を有する電極脚の製造法であって、
 導電性を有する電極基体を作製する脚基体作製工程と、
 該電極基体の前記領域に導電層を形成する導電層形成工程とを含み、
 前記導電層形成工程は、
 ファイバと、該ファイバ同士を結着する導電性高分子と、前記ファイバが分散する溶媒とが混合した混合溶液を少なくとも前記領域に塗布して塗布層を形成する塗布工程と、
 該塗布層を凍結乾燥して、多数の細孔を有する多孔質体を作製する固化工程と、
を含む。
The method of manufacturing an electrode leg according to the third embodiment described above is a method of manufacturing an electrode leg having at least a region capable of being in contact with a living body,
A leg base producing step of producing an electrode base having conductivity;
Forming a conductive layer in the region of the electrode substrate;
In the conductive layer forming step,
Applying a mixed solution of a fiber, a conductive polymer for binding the fibers, and a solvent in which the fiber is dispersed to at least the region to form a coating layer;
Solidifying the coated layer by freeze-drying to produce a porous body having a large number of pores;
including.
 上記の、第2又は第3の実施形態に係る電極脚の製造方法では、前記脚基体作製工程は、前記領域の表面に複数の溝部を形成する。 In the method of manufacturing an electrode leg according to the second or third embodiment, the leg base manufacturing step forms a plurality of grooves in the surface of the region.
 上記の、第2又は第3の実施形態に係る電極脚の製造方法では、前記脚基体作製工程は、前記領域以外の部分の表面に複数の補助溝部を形成し、
 該補助溝部が前記溝部の少なくとも一部と連通している。
In the method of manufacturing an electrode leg according to the second or third embodiment, the leg base manufacturing step forms a plurality of auxiliary groove portions on the surface of a portion other than the region,
The auxiliary groove communicates with at least a part of the groove.
 上記の、第4又は第5の実施形態に係る生体情報測定用電極の製造方法は、生体と接触可能な領域を有する生体情報測定用電極の製造方法であって、
 少なくとも前記領域を一方側に有する電極脚と該電極脚の他方側に設けられた基部とを備えた基体部と、
 前記電極脚に対して電気的に接続された端子部と、を有し、
 前記電極脚および前記基部を一体的に形成する成形工程と、
 前記電極脚の前記領域に導電層を形成する導電層形成工程とを含み、
 前記導電層形成工程は、
 ファイバと、該ファイバ同士を結着する導電性高分子と、前記ファイバが分散する溶媒とが混合した混合溶液を少なくとも前記領域に塗布して塗布層を形成する塗布工程と、
 該塗布層を凍結乾燥して、多数の細孔を有する多孔質体を作製する固化工程と、
を含む。
The method of manufacturing a biological information measuring electrode according to the fourth or fifth embodiment is a method of manufacturing a biological information measuring electrode having a region capable of being in contact with a living body,
A base portion comprising an electrode leg having at least the region on one side and a base provided on the other side of the electrode leg;
A terminal portion electrically connected to the electrode leg;
A forming step of integrally forming the electrode leg and the base;
Forming a conductive layer in the area of the electrode leg;
In the conductive layer forming step,
Applying a mixed solution of a fiber, a conductive polymer for binding the fibers, and a solvent in which the fiber is dispersed to at least the region to form a coating layer;
Solidifying the coated layer by freeze-drying to produce a porous body having a large number of pores;
including.
 上記の、第4又は第5の他の実施形態に係る生体情報測定用電極の製造方法は、生体と接触可能な前記領域を有する生体情報測定用電極の製造方法であって、
 上記の、のいずれかに記載の電極脚の製造方法を用いて得られた前記電極脚と該電極脚の他方側に設けられた基部とを備えた基体部と、
前記電極脚に対して電気的に接続された端子部と、を有し、
 前記電極脚を前記基部に連結する連結工程を含む。
The method of manufacturing a biological information measuring electrode according to the fourth or fifth other embodiment is a method of manufacturing a biological information measuring electrode having the region that can be in contact with a living body,
A base portion comprising the electrode leg obtained by using the method for producing an electrode leg according to any one of the above, and a base provided on the other side of the electrode leg;
A terminal portion electrically connected to the electrode leg;
And connecting the electrode legs to the base.
 上記の、第4又は第5の実施形態に係る生体情報測定用電極の製造方法は、前記基体部の表面に前記導電層と電気的に接続された下地導電層を形成する下地導電層形成工程を含む。 In the method of manufacturing the biological information measuring electrode according to the fourth or fifth embodiment, a step of forming a base conductive layer which forms a base conductive layer electrically connected to the conductive layer on the surface of the base portion. including.
 上記の、第6又は第7の実施形態に係る生体情報測定用電極の製造方法は、生体と接触可能な領域を有する生体情報測定用電極の製造方法であって、
 前記領域を備えた基体部を成形する成形工程と、
 少なくとも前記領域の表面に、導電性高分子を含有した合成樹脂のマトリックス中にファイバが分散して含まれている導電層を形成する導電層形成工程を含む。
The method of manufacturing a biological information measuring electrode according to the sixth or seventh embodiment is a method of manufacturing a biological information measuring electrode having a region capable of being in contact with a living body,
A forming step of forming a base portion provided with the region;
A conductive layer forming step of forming a conductive layer in which fibers are dispersed and contained in a matrix of a synthetic resin containing a conductive polymer on at least the surface of the region is included.
 上記の、第6又は第7の実施形態に係る生体情報測定用電極の製造方法は、前記基体部を成形した後、少なくとも前記領域の表面を活性化処理する表面処理工程をさらに含み、
 前記表面処理工程が、少なくとも前記領域の表面をArと酸素とを含む混合ガス中でプラズマ処理する工程、または少なくとも前記領域の表面にエキシマUV光を照射する工程である。
The method of manufacturing a biological information measuring electrode according to the sixth or seventh embodiment further includes a surface treatment step of activating the surface of at least the region after forming the base portion,
The surface treatment step is a step of plasma treating at least the surface of the region in a mixed gas containing Ar and oxygen, or a step of irradiating at least the surface of the region with excimer UV light.
 上記の、第6又は第7の実施形態に係る生体情報測定用電極の製造方法では、前記導電層形成工程が、
 少なくとも前記領域に、前記導電性高分子および前記ファイバを含む混合溶液を塗布して塗布層を形成する塗布工程と、
 前記塗布層が形成された前記領域を乾燥して、前記塗布層を硬化させる乾燥工程と、
を含む。
In the method of manufacturing a biological information measuring electrode according to the sixth or seventh embodiment, the conductive layer forming step includes:
Applying a mixed solution containing the conductive polymer and the fiber to at least the region to form a coated layer;
Drying the area in which the coating layer is formed to cure the coating layer;
including.
 以下、実施例および比較例を示して実施形態を更に具体的に説明するが、実施形態はこれらの実施例により限定されるものではない。 Hereinafter, although an Example and a comparative example are shown and an embodiment is more concretely described, an embodiment is not limited by these examples.
<実施例1>
(生体情報測定用電極の作製)
 基体部および端子部を樹脂材料(熱可塑性ポリエステルエラストマー,商品名:ハイトレル(登録商標)、東レ・デュポン社製)を用いて、射出成形法により、一体形成した後、電極脚の先端部に、導電性高分子(PEDOT/PSS、信越ポリマー社製)を含有した溶液(A)/6gとセルロースナノファイバ1(nanoforest(登録商標)、中越パルプ工業株式会社製)を含有した溶液(B)/4gとを混合した溶液を塗布して塗布層を形成した後、塗布層を乾燥して硬化させ、導電層を形成した。これにより、生体情報測定用電極を作製した。なお、溶液(A)には、導電性高分子が1.0質量%(wt%)、熱硬化性樹脂が5.0wt%含まれている。また、溶液(B)には、セルロースナノファイバ1が1.3wt%含まれている。
(耐摩耗性の評価)
 生体情報測定用電極の電極脚の先端部を電解液(0.1MのNaCl水溶液)に浸漬した状態で、先端部のインピーダンスを測定し、生体情報測定用電極の測定精度を評価した。電極脚の先端部をアルコールを付けたキムワイプで拭いた後、先端部を電解液(0.1MのNaCl水溶液)に浸漬して、先端部のインピーダンスを測定した。周波数は1Hz~1000Hzとした。このサイクルを1回(サイクル)として、100000サイクル行った。先端部のインピーダンスが低いほど、生体から得られる電気信号を高感度で検出することができるため、生体情報測定用電極の測定精度が高いことを示す。測定結果を図57に示す。
Example 1
(Preparation of electrodes for measuring biological information)
The base portion and the terminal portion are integrally formed by injection molding using a resin material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray DuPont), and then the tip portion of the electrode leg is Solution (A) containing 6 g of conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) and solution containing cellulose nanofiber 1 (nanoforest (registered trademark), manufactured by Chuetsu Pulp Industries Co., Ltd.) / After applying the solution which mixed 4 g and forming an application layer, the application layer was dried and hardened and the electric conduction layer was formed. Thus, an electrode for measuring biological information was produced. The solution (A) contains 1.0% by mass (wt%) of a conductive polymer and 5.0% by weight of a thermosetting resin. Moreover, 1.3 wt% of the cellulose nanofibers 1 are contained in the solution (B).
(Evaluation of wear resistance)
With the tip of the electrode leg of the biological information measurement electrode immersed in the electrolytic solution (0.1 M NaCl aqueous solution), the impedance of the tip was measured to evaluate the measurement accuracy of the biological information measurement electrode. The tip of the electrode leg was wiped with an alcohol-added Kimwipe, and then the tip was immersed in an electrolytic solution (0.1 M NaCl aqueous solution) to measure the impedance of the tip. The frequency was 1 Hz to 1000 Hz. This cycle was performed once (cycle) for 100,000 cycles. The lower the impedance at the tip, the higher the sensitivity with which an electrical signal obtained from a living body can be detected. This indicates that the measurement accuracy of the biological information measurement electrode is higher. The measurement results are shown in FIG.
 図57に示すように、先端部のインピーダンスの測定を100000サイクル繰り返しても、先端部のインピーダンスは、周波数が5Hz以上で、100Ω以下であり、殆ど変化しなかった。 As shown in FIG. 57, even when the measurement of the impedance at the tip was repeated 100,000 cycles, the impedance at the tip was 100 Ω or less at a frequency of 5 Hz or more, and hardly changed.
 よって、先端部の表面に、セルロースナノファイバを所定量含む導電層を形成すれば、導電層の耐摩耗性が向上するためで、インピーダンスは殆ど変化せず、脳波を安定して測定することができることが確認された。 Therefore, if the conductive layer containing a predetermined amount of cellulose nanofibers is formed on the surface of the tip portion, the wear resistance of the conductive layer is improved, and the impedance hardly changes, and the electroencephalogram can be stably measured. It was confirmed that it was possible.
<実施例2>
(生体情報測定用電極の作製)
[実施例2-1]
 実施例1と同様な条件の生体情報測定用電極を作製した。
Example 2
(Preparation of electrodes for measuring biological information)
Example 2-1
An electrode for biological information measurement under the same conditions as in Example 1 was produced.
[実施例2-2]
 実施例2-1において、導電性高分子(PEDOT/PSS、信越ポリマー社製)を含有した溶液(A)の添加量を3gとし、セルロースナノファイバ1(nanoforest(登録商標)、中越パルプ工業株式会社製)を含有した溶液(B)の添加量を7gに変更したこと以外は、実施例2-1と同様にして、電極脚の先端部に導電層を形成し、生体情報測定用電極を作製した。
Embodiment 2-2
In Example 2-1, the addition amount of the solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 3 g, and cellulose nanofiber 1 (nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.) A conductive layer is formed on the tip of the electrode leg in the same manner as in Example 2-1 except that the amount of the solution (B) containing C.I) is changed to 7 g, and an electrode for measuring biological information is obtained. Made.
[実施例2-3]
 実施例2-1において、導電性高分子(PEDOT/PSS、信越ポリマー社製)を含有した溶液(A)の添加量を4gとし、セルロースナノファイバ1(nanoforest(登録商標)、中越パルプ工業株式会社製)を含有した溶液(B)の添加量を6gとし、セルロースナノファイバ2(cellenpia(登録商標)、日本製紙株式会社製)を含有した溶液(C)の添加量を1gに変更したこと以外は、実施例2-1と同様にして、電極脚の先端部に導電層を形成し、生体情報測定用電極を作製した。なお、溶液(C)には、セルロースナノファイバ2が1.2wt%含まれている。
Example 2-3
In Example 2-1, the addition amount of a solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 4 g, and cellulose nanofiber 1 (nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.) The addition amount of the solution (B) containing a company) was 6 g, and the addition amount of the solution (C) containing cellulose nanofibers 2 (cellenpia (registered trademark), Nippon Paper Industries Co., Ltd.) was changed to 1 g A conductive layer was formed at the tip of the electrode leg in the same manner as in Example 2-1 except for the production of a biological information measuring electrode. In addition, 1.2 wt% of the cellulose nanofibers 2 are contained in the solution (C).
[比較例2-1]
 実施例2-1において、セルロースナノファイバ1(nanoforest(登録商標)、中越パルプ工業株式会社製)を含有した溶液(B)を添加せずに、導電性高分子(PEDOT/PSS、信越ポリマー社製)を含有した溶液(A)のみ(添加量10g)を含む溶液を用いたこと以外は、実施例2-1と同様にして、電極脚の先端部に導電層を形成し、生体情報測定用電極を作製した。
Comparative Example 2-1
In Example 2-1, a conductive polymer (PEDOT / PSS, Shin-Etsu Polymer Co., Ltd.) was added without adding the solution (B) containing cellulose nanofiber 1 (nanoforest (registered trademark), manufactured by Chuetsu Pulp Industries, Ltd.). In the same manner as in Example 2-1, except that the solution (A) containing only the solution (A) containing (addition amount 10 g) was used, a conductive layer was formed on the tip of the electrode leg, and the biological information was measured. An electrode was produced.
[比較例2-2]
 実施例2-1において、導電性高分子(PEDOT/PSS、信越ポリマー社製)を含有した溶液(A)の添加量を10gとし、セルロースナノファイバ2(cellenpia(登録商標)、日本製紙株式会社製)を含有した溶液(C)の添加量を1gに変更したこと以外は、実施例2-1と同様にして、電極脚の先端部に導電層を形成し、生体情報測定用電極を作製した。
Comparative Example 2-2
In Example 2-1, the addition amount of the solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 10 g, and a cellulose nanofiber 2 (cellenpia (registered trademark), Nippon Paper Industries Co., Ltd.) A conductive layer is formed at the tip of the electrode leg in the same manner as in Example 2-1 except that the addition amount of the solution (C) containing A) is changed to 1 g, and an electrode for biological information measurement is produced. did.
[比較例2-3]
 実施例2-1において、導電性高分子(PEDOT/PSS、信越ポリマー社製)を含有した溶液(A)の添加量を1gとし、セルロースナノファイバ1(nanoforest(登録商標)、中越パルプ工業株式会社製)を含有した溶液(B)の添加量を9gに変更したこと以外は、実施例3-1と同様にして、電極脚の先端部に導電層を形成し、生体情報測定用電極を作製した。
Comparative Example 2-3
In Example 2-1, the addition amount of the solution (A) containing a conductive polymer (PEDOT / PSS, manufactured by Shin-Etsu Polymer Co., Ltd.) is 1 g, and cellulose nanofiber 1 (nanoforest (registered trademark), Chuetsu Pulp Industrial Co., Ltd.) A conductive layer is formed on the tip of the electrode leg in the same manner as in Example 3-1 except that the addition amount of the solution (B) containing C.I. Made.
(生体との接触性の評価)
 生体情報測定用電極の皮膚(額)との接触性の評価は、インピーダンスを測定することによって行った。
(Evaluation of contact with living body)
The evaluation of the contact of the electrode for measuring biological information with the skin (forehead) was performed by measuring the impedance.
 接触の安定性の評価として、生体情報測定用電極の電極脚の先端部を電解液(0.1MのNaCl水溶液)に浸漬して、電解液中における先端部のインピーダンスを測定し、生体情報測定用電極の測定精度を評価した。測定の周波数は0.5Hz~1000Hzとした。その測定結果を図58に示す。図58は、横軸が測定周波数(Hz)、縦軸がインピーダンス(Ω)で、実施例2-1~実施例2-3、および比較例2-1~比較例2-3の測定結果を示している。 As the evaluation of the contact stability, the tip of the electrode leg of the electrode for measuring biological information is immersed in the electrolyte (0.1 M NaCl aqueous solution), the impedance of the tip in the electrolyte is measured, and the biological information is measured. The measurement accuracy of the measurement electrode was evaluated. The frequency of measurement was 0.5 Hz to 1000 Hz. The measurement results are shown in FIG. In FIG. 58, the horizontal axis represents the measurement frequency (Hz) and the vertical axis represents the impedance (Ω), and the measurement results of Example 2-1 to Example 2-3 and Comparative Example 2-1 to Comparative Example 2-3 are shown. It shows.
 先端部のインピーダンスが低いほど、生体から得られる電気信号を高感度で検出することができるため、生体情報測定用電極の測定精度が高いことを示す。また、周波数が低い側でインピーダンスがより低ければ、一般的に測定に用いられる周波数(10Hz~30Hz)において、安定して精度良く測定することができる。 The lower the impedance at the tip, the higher the sensitivity with which an electrical signal obtained from a living body can be detected. This indicates that the measurement accuracy of the biological information measurement electrode is higher. Also, if the impedance is lower at the lower frequency side, stable and accurate measurement can be performed at the frequency (10 Hz to 30 Hz) generally used for measurement.
(生体との接触性の評価結果)
 図58に示すように、実施例2-1~実施例2-3の生体情報測定用電極は、ファイバを含有しない比較例2-1およびファイバが極めて少ない比較例2-2の生体情報測定用電極と、同等のインピーダンスが得られた。特に、実施例2-1の生体情報測定用電極は、比較例2-1および比較例2-2の生体情報測定用電極のインピーダンスと変わらない値が得られた。一方、ファイバを多く含む比較例2-3の生体情報測定用電極は、導電層自体の導電率が低くなりすぎて、インピーダンスの値が高くなり、測定に不向きであると云える。
(Evaluation result of contact with living body)
As shown in FIG. 58, the electrodes for measuring biological information of Examples 2-1 to 2-3 are for measuring biological information of Comparative Example 2-1 containing no fibers and Comparative Example 2-2 containing very few fibers. An impedance equivalent to that of the electrode was obtained. In particular, the biological information measuring electrode of Example 2-1 had a value which is not different from the impedance of the biological information measuring electrode of Comparative Example 2-1 and Comparative Example 2-2. On the other hand, in the biological information measurement electrode of Comparative Example 2-3 containing a large amount of fiber, the conductivity of the conductive layer itself becomes too low, and the value of the impedance becomes high, which is considered unsuitable for measurement.
 よって、先端部の表面に導電層にセルロースナノファイバを所定量含んで形成しても、生体情報測定用電極のインピーダンスが小さくなるので、脳波を安定して測定することができることが確認された。 Therefore, it has been confirmed that even if a predetermined amount of cellulose nanofibers is formed on the surface of the tip portion in the conductive layer, the impedance of the biological information measurement electrode is reduced, so that the electroencephalogram can be stably measured.
 以上の通り、実施形態を説明したが、上記の各実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although embodiment was described, said each embodiment is shown as an example, and this invention is not limited by the said embodiment. The above embodiments can be implemented in other various forms, and various combinations, omissions, replacements, changes, and the like can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
 本出願は、2017年12月27日に日本国特許庁に出願した特願2017-252508号および2017年12月27日に日本国特許庁に出願した特願2017-252509号に基づく優先権を主張するものであり、特願2017-252508号および特願2017-252509号の全内容を本出願に援用する。 The present application is based on Japanese Patent Application No. 2017-252508 filed on Dec. 27, 2017, and Japanese Patent Application No. 2017-252509 filed on Dec. 27, 2017. It is claimed that the entire contents of Japanese Patent Application Nos. 2017-252508 and 2017-252509 are incorporated into the present application.
 10 導電材
 11 細孔
 13、20A、20B、312A、312B 電極脚
 21A、21B 電極基体
 131、211、312a 先端部
 212、312b 側面
 22、60 導電層
 23、51、61 下地導電層
 24A、24B、24C 溝部(先端溝部)
 25 補助溝部(側面溝部)
 30A、30B、30C、30D 生体情報測定用電極
 31 基体部
 311、331 基部
 311a 突設部
 33 端子部
 A 領域
 H1、H2 最大深さ
 W1、W2 幅
REFERENCE SIGNS LIST 10 conductive material 11 pore 13, 20A, 20B, 312A, 312B electrode leg 21A, 21B electrode base 131, 211, 312a tip 212, 312b side 22, 60 conductive layer 23, 51, 61 base conductive layer 24A, 24B, 24C groove (tip groove)
25 Auxiliary groove (side groove)
30A, 30B, 30C, 30D Electrodes 31 for measuring biological information 31 base part 311, 331 base part 311a protruding part 33 terminal part A area H1, H2 maximum depth W1, W2 width

Claims (17)

  1.  生体と接触可能な領域を有する生体情報測定用電極の、少なくとも前記領域の表面に設けられる導電材料であって、
     ファイバと、導電性高分子とを含むことを特徴とする導電材料。
    A conductive material provided on a surface of at least a region of a biological information measuring electrode having a region capable of being in contact with a living body,
    A conductive material comprising a fiber and a conductive polymer.
  2.  請求項1に記載の導電材料を用いる導電材であって、
     前記ファイバと、前記ファイバ同士を結着する前記導電性高分子を有するバインダと、を含んで形成されており、
     多数の細孔を有することを特徴とする導電材。
    A conductive material using the conductive material according to claim 1, wherein
    It is formed to include the fiber and a binder having the conductive polymer that bonds the fibers together,
    A conductive material characterized by having a large number of pores.
  3.  前記導電材は、弾性を有することを特徴とする請求項2に記載の導電材。 The conductive material according to claim 2, wherein the conductive material has elasticity.
  4.  前記ファイバは、ナノファイバであることを特徴とする請求項2または3に記載の導電材。 The conductive material according to claim 2, wherein the fiber is a nanofiber.
  5.  前記ナノファイバは、セルロースナノファイバであることを特徴とする請求項4に記載の導電材。 The conductive material according to claim 4, wherein the nanofibers are cellulose nanofibers.
  6.  少なくとも、生体と接触可能な前記領域を一方側に有する電極脚であって、
     請求項2ないし請求項5のいずれか一項に記載の導電材からなる導電層が、少なくとも前記領域に形成されていることを特徴とする電極脚。
    An electrode leg having at least the region capable of being in contact with a living body on one side,
    An electrode leg, wherein a conductive layer made of the conductive material according to any one of claims 2 to 5 is formed at least in the region.
  7.  前記電極脚の表面に前記導電層と電気的に接続された下地導電層が形成されていることを特徴とする請求項6に記載の電極脚。 The electrode leg according to claim 6, wherein a base conductive layer electrically connected to the conductive layer is formed on the surface of the electrode leg.
  8.  前記領域の表面に、複数の溝部が形成されることを特徴とする請求項6または7に記載の電極脚。 The electrode leg according to claim 6 or 7, wherein a plurality of grooves are formed on the surface of the region.
  9.  前記領域以外の部分の表面に複数の補助溝部が形成され、
     該補助溝部は、前記溝部の少なくとも一部と連通していることを特徴とする請求項8に記載の電極脚。
    A plurality of auxiliary grooves are formed on the surface of the portion other than the region,
    The electrode leg according to claim 8, wherein the auxiliary groove communicates with at least a part of the groove.
  10.  請求項6ないし請求項9のいずれか一項に記載の電極脚と該電極脚の他方側に設けられた基部とを備えた基体部と、
     前記電極脚に対して電気的に接続された端子部と、
    を有することを特徴とする生体情報測定用電極。
    A base portion comprising the electrode leg according to any one of claims 6 to 9 and a base provided on the other side of the electrode leg,
    A terminal portion electrically connected to the electrode leg;
    An electrode for biological information measurement characterized by having.
  11.  前記電極脚が前記基部から分離可能であることを特徴とする請求項10に記載の生体情報測定用電極。 The biological information measuring electrode according to claim 10, wherein the electrode leg is separable from the base.
  12.  生体と接触可能な領域を有する生体情報測定用電極であって、
     前記領域の表面には、請求項1に記載の導電材料を用いる導電層が形成され、
     前記導電層は、前記導電性高分子を含有した合成樹脂のマトリックス中に前記ファイバを分散して含むことを特徴とする生体情報測定用電極。
    An electrode for measuring biological information, having a region accessible to a living body,
    A conductive layer using the conductive material according to claim 1 is formed on the surface of the region,
    The electrode for measuring biological information, wherein the conductive layer includes the fibers dispersed in a matrix of a synthetic resin containing the conductive polymer.
  13.  前記ファイバが、ナノファイバであることを特徴とする請求項12に記載する生体情報測定用電極。 The biological information measuring electrode according to claim 12, wherein the fiber is a nanofiber.
  14.  前記ナノファイバが、セルロースナノファイバである請求項13に記載の生体情報測定用電極。 The biological information measuring electrode according to claim 13, wherein the nanofiber is a cellulose nanofiber.
  15.  前記領域の表面には、複数の溝部が形成される請求項12ないし請求項14のいずれか一項に記載の生体情報測定用電極。 The biological information measuring electrode according to any one of claims 12 to 14, wherein a plurality of grooves are formed on the surface of the region.
  16.  前記領域以外の部分の表面に複数の補助溝部が形成され、
     前記補助溝部は、前記溝部の少なくとも一部と連通している請求項15に記載の生体情報測定用電極。
    A plurality of auxiliary grooves are formed on the surface of the portion other than the region,
    The biological information measuring electrode according to claim 15, wherein the auxiliary groove communicates with at least a part of the groove.
  17.  前記領域を備えた基体部と、
     前記領域に対して電気的に接続された端子部と、
    を有する請求項12ないし請求項16のいずれか一項に記載の生体情報測定用電極。
    A base portion provided with the area;
    A terminal portion electrically connected to the region;
    The biological information measuring electrode according to any one of claims 12 to 16, which has
PCT/JP2018/041220 2017-12-27 2018-11-06 Conductive material, conductive member, electrode leg, and biological information measurement electrode WO2019130833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562813A JP6821058B2 (en) 2017-12-27 2018-11-06 Electrodes for measuring biological information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017252509 2017-12-27
JP2017-252509 2017-12-27
JP2017-252508 2017-12-27
JP2017252508 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019130833A1 true WO2019130833A1 (en) 2019-07-04

Family

ID=67067071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041220 WO2019130833A1 (en) 2017-12-27 2018-11-06 Conductive material, conductive member, electrode leg, and biological information measurement electrode

Country Status (2)

Country Link
JP (1) JP6821058B2 (en)
WO (1) WO2019130833A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034857A1 (en) * 2020-08-14 2022-02-17 公立大学法人大阪 Composite film, sensor element comprising said composite film, body fat percentage measuring device, and electrochemical cell device, and wearable measuring device comprising said sensor element
WO2023145565A1 (en) * 2022-01-26 2023-08-03 住友ベークライト株式会社 Flexible sheet electrode, wearable bioelectrode, and biosensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216766A (en) * 2012-04-06 2013-10-24 Nagoya Univ Conductive composition
WO2017183463A1 (en) * 2016-04-18 2017-10-26 東レ株式会社 Electrically conductive fiber structure, electrode member, and method for manufacturing electrically conductive fiber structure
JP2017202288A (en) * 2015-11-30 2017-11-16 東海光学株式会社 Brain activity measuring electrode, head-worn device using electrode, and brain activity measuring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216766A (en) * 2012-04-06 2013-10-24 Nagoya Univ Conductive composition
JP2017202288A (en) * 2015-11-30 2017-11-16 東海光学株式会社 Brain activity measuring electrode, head-worn device using electrode, and brain activity measuring system
WO2017183463A1 (en) * 2016-04-18 2017-10-26 東レ株式会社 Electrically conductive fiber structure, electrode member, and method for manufacturing electrically conductive fiber structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034857A1 (en) * 2020-08-14 2022-02-17 公立大学法人大阪 Composite film, sensor element comprising said composite film, body fat percentage measuring device, and electrochemical cell device, and wearable measuring device comprising said sensor element
WO2023145565A1 (en) * 2022-01-26 2023-08-03 住友ベークライト株式会社 Flexible sheet electrode, wearable bioelectrode, and biosensor

Also Published As

Publication number Publication date
JPWO2019130833A1 (en) 2020-10-22
JP6821058B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
Cho et al. Soft bioelectronics based on nanomaterials
Jan et al. Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials
Wang et al. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics
WO2019130833A1 (en) Conductive material, conductive member, electrode leg, and biological information measurement electrode
Ng et al. Micro-spike EEG electrode and the vacuum-casting technology for mass production
Min et al. Tough Carbon Nanotube‐Implanted Bioinspired Three‐Dimensional Electrical Adhesive for Isotropically Stretchable Water‐Repellent Bioelectronics
US20150367122A1 (en) Patterned carbon nanotube electrode
Yang et al. Materials for dry electrodes for the electroencephalography: advances, challenges, perspectives
WO2016136629A1 (en) Brain wave measurement electrode
US11849540B2 (en) Elastic printed conductors
US20220080187A1 (en) Mixed Ionic Electronic Conductors: Devices, Systems and Methods of Use
CN115337011A (en) Metal-coated hydrogel electrode and preparation method thereof
JP5288098B2 (en) Brush hair material, method for producing the same, and brush
Alsharif et al. 3D printed dry electrodes for electrophysiological signal monitoring: A review
JP6917032B2 (en) Resin molded products and their manufacturing methods
Kim et al. Advances in ultrathin soft sensors, integrated materials, and manufacturing technologies for enhanced monitoring of human physiological signals
TW201903006A (en) Method for producing cosmetic film
JP2022137320A (en) Biological information measurement electrode
Xing et al. Opportunities and challenges for flexible and printable electrodes in electroencephalography
KR20180109459A (en) Method for manufacturing dry electrode based on elastic nanofiber web
CN110740867A (en) Support, use of support, method for activating support and method for producing support
JP2021137192A (en) Biological information measuring electrode
JP2022012318A (en) Biomedical electrode
WO2019130832A1 (en) Biological information measurement electrode and method for manufacturing biological information measurement electrode
JPH1148678A (en) Coating applicator for high viscosity coating liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895285

Country of ref document: EP

Kind code of ref document: A1