WO2019130832A1 - Biological information measurement electrode and method for manufacturing biological information measurement electrode - Google Patents

Biological information measurement electrode and method for manufacturing biological information measurement electrode Download PDF

Info

Publication number
WO2019130832A1
WO2019130832A1 PCT/JP2018/041219 JP2018041219W WO2019130832A1 WO 2019130832 A1 WO2019130832 A1 WO 2019130832A1 JP 2018041219 W JP2018041219 W JP 2018041219W WO 2019130832 A1 WO2019130832 A1 WO 2019130832A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological information
tip
electrode
groove
region
Prior art date
Application number
PCT/JP2018/041219
Other languages
French (fr)
Japanese (ja)
Inventor
三森 健一
佐藤 弘樹
高橋 功
真由子 林田
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2019562812A priority Critical patent/JPWO2019130832A1/en
Publication of WO2019130832A1 publication Critical patent/WO2019130832A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present invention relates to a biological information measurement electrode and a method of manufacturing a biological information measurement electrode.
  • an electrode for measuring biological information
  • biological information such as brain waves, pulse waves, electrocardiograms, myoelectricity, body fat and the like.
  • an electrode for measuring biological information is attached to a living body (skin) with hair or body hair, and an electrical signal related to biological information is obtained by the electrode for measuring biological information, and biological information (for example, brain waves) Etc).
  • Electrodes for measuring biological information for example, by forming a conductive polymer film on the surface of the protrusion of the electrode, conductivity is provided to the protrusion to ensure conduction between the electrode and the living body.
  • an electrode for detecting a biological signal has been proposed (for example, Patent Document 1).
  • the biological information measurement electrode Since the biological information measurement electrode is used in contact with a living body, it needs to be clean at the time of use. Therefore, every time the biological information measurement electrode is used, the biological information measurement electrode is cleaned in advance by wiping off the water, dirt and the like remaining on the surface of the electrode with a cleaning liquid such as alcohol.
  • the conductive polymer film used for the electrode of Patent Document 1 is easily worn. Therefore, if you wipe the surface of the protrusion repeatedly when wiping off the water droplets or dirt remaining on the surface of the protrusion of the electrode, the conductive polymer film may be worn away and part of the conductive polymer film may be peeled off There is sex. As a result, since the conductive polymer film remaining on the surface of the protrusion and the living body do not contact stably, it becomes difficult for the conductive polymer film and the living body to conduct. On the other hand, when a part of the conductive polymer film peels off, the surface of the exposed protrusion comes in contact with the living body.
  • the contact resistance (contact impedance) generated between the projection of the electrode and the skin tends to be higher than the contact impedance generated between the conductive polymer film and the skin. Therefore, when contact of the conductive polymer film with the living body is slight, it may not be possible to stably measure biological information.
  • An aspect of the present invention aims to provide a biological information measurement electrode capable of stably measuring biological information.
  • the biological information measuring electrode according to an aspect of the present invention is a biological information measuring electrode having a region capable of being in contact with a living body, and a plurality of grooves are formed on the surface of the region, and the conductive high A conductive layer containing molecules is formed.
  • the biological information measurement electrode according to one aspect of the present invention can stably measure biological information.
  • FIG. 2 is a cross-sectional view taken along line II of FIG. It is explanatory drawing which shows an example of the cross section of the front end groove part of a front-end
  • FIG. 17 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 17 is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 1st Embodiment. It is a figure which shows an example of the state by which the raw material supply channel
  • FIG. 16 is a diagram showing measurement results of impedance when the biological information measurement electrode of Example 2-1 is used. It is a figure which shows the measurement result of the impedance at the time of using the electrode for biological information measurement of Comparative Example 2-2.
  • FIG. 16 is a diagram showing measurement results of impedance when the biological information measurement electrode of Example 2-1 is used. It is a figure which shows the measurement result of the impedance at the time of using the electrode for biological information measurement of Comparative Example 2-2.
  • FIG. 17 is a view showing measurement results of time until the potential falls to 300 k ⁇ or less when using the electrodes for biological information measurement of Examples 3-1 to 3-4 and Comparative Example 3-1.
  • FIG. 16 is a view showing measurement results of time until the potential drops to 300 k ⁇ or less when using the electrodes for measuring biological information of Examples 4-1 to 4-18 and Comparative Example 4-1.
  • FIG. 16 is a graph showing measurement results of resistance when using the electrodes for measuring biological information of Examples 5-1 and 5-2 and Comparative Example 5-1.
  • the + Z axis direction may be referred to as the upper side
  • the ⁇ Z axis direction may be referred to as the lower side.
  • the biological information measurement electrode according to the first embodiment will be described.
  • measurement of biological information will be described by bringing an electrode for measuring biological information into contact with a scalp or a forehead that is a part of a living body.
  • the electrode for measuring biological information according to the present embodiment may be any electrode for measuring biological information by bringing it into contact with a part of a living body. It may be a measure of The living body means a human body or a living thing other than the human body.
  • FIG. 1 is a perspective view showing the appearance of the biological information measurement electrode according to the present embodiment
  • FIGS. 2 and 3 are other perspective views showing the appearance of the biological information measurement electrode according to the present embodiment
  • 4 is a front view of the biological information measuring electrode according to the present embodiment
  • FIG. 5 is a cross-sectional view taken along the line II in FIG.
  • FIG. 6 is an explanatory view showing an example of the cross section of the tip groove portion of the tip portion of the electrode leg
  • FIG. 7 is an explanatory view showing an example of the cross section of the auxiliary groove portion on the side surface of the electrode leg.
  • 1 to 5 indicate the central axis J of the biological information measurement electrode.
  • the central axis J is an axis at the center when the biological information measurement electrode is installed on a living body.
  • the biological information measuring electrode 10 is provided on the base portion 20 having the base portion 21 and the plurality of electrode legs 22 and on the upper side (+ Z axis direction) of the base portion 21 as shown in FIGS.
  • the terminal portion 30 and the conductive layer 40 provided on the surface of the electrode leg 22 are configured.
  • a conductive elastomer or an insulating material can be used as a material for forming the base portion 20 and the terminal portion 30 .
  • the insulating material refers to a material which does not have conductivity or which has extremely low conductivity.
  • the base portion 20 and the terminal portion 30 may be formed of the same material or may be formed of different materials. In the present embodiment, the base portion 20 and the terminal portion 30 are integrally formed of the same conductive elastomer. Accordingly, the terminal portion 30 is electrically connected to the tip end portion 221 (described later) of the electrode leg 22.
  • the type of the conductive elastomer is not particularly limited.
  • the conductive elastomer is obtained, for example, by melt mixing the conductive filler and the nonconductive elastomer.
  • the base portion 20 and the terminal portion 30 have a low elastic modulus by being molded including a nonconductive elastomer having rubber elasticity. Therefore, at the time of use of the electrode 10 for measuring biological information, since the base 20 and the terminal 30 are easily deformed into the uneven shape of the scalp and forehead, contact with the scalp and forehead can be ensured, and pressing on the scalp and forehead It can relieve pressure.
  • the type of the conductive filler described above is not particularly limited as long as it has conductivity.
  • the conductive filler carbon materials such as graphite, carbon black, carbon nanotubes, carbon nanohorns or carbon fibers (carbon fibers); aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, Examples thereof include metals such as titanium and nickel; and conductive ceramics such as a so-called ABO 3 type perovskite-type composite oxide, but the present invention is not limited thereto.
  • These conductive fillers may be used alone or in combination of two or more. From the viewpoint of durability, it is preferable to use a carbon material.
  • non-conductive elastomers examples include silicone rubber, ethylene propylene rubber, ethylene propylene diene rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, chloroprene rubber, acrylonitrile nitrile butadiene rubber, butyl rubber, urethane rubber, or Fluororubber etc. are mentioned. These may be used alone or in combination of two or more. Among these, in terms of durability and the like, it is preferable to use silicone rubber.
  • the insulating material which is not a conductive elastomer the above non-conductive elastomer, polypropylene (PP), polycarbonate (PC), ABS resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA) or A liquid crystal polymer (LCP) or the like can be used.
  • PP polypropylene
  • PC polycarbonate
  • ABS resin polyethylene terephthalate
  • PET polybutylene terephthalate
  • PA polyamide
  • LCP liquid crystal polymer
  • the base 20 has a base 21 and a plurality of electrode legs 22 as shown in FIGS.
  • the base 21 is formed in a substantially circular shape in a plan view (when viewed from the + Z axis direction).
  • the base 21 has a projecting portion 211 on the back surface ( ⁇ Z axis direction side) of the base 21.
  • a plurality of (eight in FIGS. 1 to 5) projecting portions 211 are provided on the back surface of the base 21 and are disposed in an annular shape.
  • An electrode leg 22 is integrally formed at an end of the protruding portion 211.
  • the number of projecting portions 211 is designed to match the number of electrode legs 22.
  • the structure which the electrode leg 22 formed continuously with the base 21 of a disc part may be sufficient, without providing the protrusion part 211.
  • the electrode leg 22 is extended from the projecting portion 211 of the base 21 in the ⁇ Z axis direction.
  • the electrode leg 22 is formed in a cylindrical shape, and has a tip 221 capable of contacting the scalp at its tip.
  • the distal end portion 221 is formed in a curved shape having a rounded end, and in the present embodiment, is formed in a dome shape.
  • the shape of the tip portion 221 may be a rounded conical shape as another curved surface shape, or may be a flat shape having an end face that can be in contact with the scalp.
  • the tip portion 221 is a portion formed in a dome shape, and the tip which comes in contact with the scalp as a living body and the tip which may come in contact with the living body when the electrode 10 for measuring biological information is inclined. It means the surrounding area of In the present embodiment, the tip end portion 221 is referred to as “a region A capable of being in contact with a living body (hereinafter, referred to as“ a region A ”)”.
  • the electrode leg 22 includes a groove (tip groove portion) 24A provided in the tip end portion 221 which is the region A, and an auxiliary groove portion (side groove portion) 25 which is provided in the side surface 222 of the electrode leg 22 which is a portion other Have.
  • the electrode leg 22 can hold the liquid containing water in the tip groove 24A and the side groove 25 by providing the tip groove 24A and the side groove 25.
  • the liquid contained in the tip groove 24A and the side groove 25 may be any liquid other than water as long as it is a liquid such as an electrolytic solution (saline solution) which does not harm the living body.
  • an electrolytic solution saline solution
  • the front end groove 24 A is formed on the surface of the front end 221 of the electrode leg 22.
  • four tip groove portions 24A are formed radially at equal angles so as to form a cross shape when the tip portion 221 of the electrode leg 22 is viewed from the tip portion 221 in the + Z axial direction.
  • the cross-sectional shape of the tip groove portion 24A is formed in a substantially U shape in a cross-sectional view.
  • the cross-sectional shape of tip groove part 24A may be formed in the substantially V shape in the cross sectional view.
  • the width W1 (see FIG. 6) of the tip groove 24A is preferably 10 ⁇ m to 450 ⁇ m. If the width W1 of the tip groove 24A is in the above range, the liquid can be held in the tip groove 24A even after the conductive layer 40 is formed in the tip groove 24A. In addition, if the conductive layer 40 is formed in the tip groove 24A, for example, even if the tip 221 of the electrode leg 22 is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter the tip groove 24A. Can be reduced. In addition, if the width W1 is within the above range, since the width is smaller than the average thickness of the hair, the penetration of the hair into the tip groove 24A can be reduced.
  • the width W1 of the tip groove portion 24A is more preferably 20 ⁇ m to 120 ⁇ m, still more preferably 30 ⁇ m to 70 ⁇ m, and most preferably 40 ⁇ m to 50 ⁇ m.
  • the width W1 refers to the maximum value (maximum width) of the width from the bottom of the tip groove 24A to the surface side. Even when the cross-sectional shape of the tip groove 24A is formed in a substantially V-shape in a cross-sectional view, the width W1 refers to the maximum width, that is, the value of the width on the surface of the tip 221.
  • the maximum depth H1 (see FIG. 6) of the tip groove 24A is preferably 10 ⁇ m to 500 ⁇ m. If the maximum depth H1 of the end groove 24A is in the above range, the end groove 24A can have a predetermined depth even if the conductive layer 40 is formed on the end 221 of the electrode leg 22.
  • the maximum depth H1 of the tip groove 24A is more preferably 20 ⁇ m to 300 ⁇ m, and still more preferably 30 ⁇ m to 150 ⁇ m.
  • a plurality of side grooves 25 are formed on the surface of the side surface 222 of the electrode leg 22, which is a portion other than the tip 221, communicating with at least a part of the tip groove 24A. There is.
  • the width W2 (see FIG. 7) of the side surface groove 25 is preferably 10 to 120 ⁇ m, similarly to the width W1 of the tip groove 24A. If the width W2 of the side surface groove 25 is 10 to 120 ⁇ m, even if the conductive layer 40 is formed in the side surface groove 25, the liquid can be held in the side surface groove 25. Also, if the conductive layer 40 is formed in the side groove 25, for example, even if the side 222 of the electrode leg 22 is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter into the side groove 25. It can be reduced.
  • width W2 when the width W2 is in the above range, the hair does not exceed the thickness of the hair, so that the penetration of the hair into the side groove 25 can be reduced.
  • the width W2 of the side face groove 25 is more preferably 20 to 70 ⁇ m, and still more preferably 30 to 50 ⁇ m.
  • definition of the width W2 of the side surface groove part 25 is the same as the above-mentioned width W1, description is abbreviate
  • the maximum depth H2 (see FIG. 7) of the side surface groove 25 is preferably 10 to 500 ⁇ m, similarly to the tip groove 24A. If the maximum depth H2 of the side surface groove 25 is within the above range, even if the conductive layer 40 is formed on the side surface 222 of the electrode leg 22, the tip groove 24A can have a predetermined depth.
  • the maximum depth H2 of the tip groove 24A is more preferably 20 to 300 ⁇ m, and still more preferably 30 to 150 ⁇ m.
  • the terminal portion 30 is an upper surface of the base portion 21 of the base portion 20 as shown in FIGS. 1 to 5 and protrudes in the + Z-axis direction from a substantially central portion of the base portion 21 (a position through which the central axis J passes) in plan view. Is provided.
  • a metal layer 31 is provided at the central portion of the terminal portion 30.
  • the conducting wire 52 of the inspection apparatus mentioned later is connected to the part in which this metal layer 31 was provided (refer FIG. 8).
  • the terminal portion 30 is electrically connected to the base portion 20 in which the electrode leg 22 is integrally formed, the terminal portion 30 and the tip portion 221 which is the region A of the electrode leg 22 are electrically connected.
  • the biological information signal (electrical signal) from the area A can be extracted.
  • metal such as gold, silver, or copper is preferably used as the metal layer 31, a layer made of a material having conductivity other than metal may be provided in the central portion of the terminal portion 30. Good.
  • the terminal part 30 is mentioned later, it is connected with the measurement part 53 (refer FIG. 8).
  • the terminal portion 30 is connected to a conducting wire 52 (see FIG. 8) or the like, and the conducting wire 52 (see FIG. 8) and the measuring unit 53 (see FIG. 8) are connected.
  • the terminal unit 30 transmits a biological information signal (electric signal) from the scalp obtained from the tip end portion 221 of the electrode leg 22 through the base unit 20 to the measurement unit 53 (see FIG. 8), and biological information (for example, an electroencephalogram) Measured as).
  • the conductive layer 40 is provided on the surface of the tip end portion 221 of the electrode leg 22.
  • the base portion 20 and the terminal portion 30 are integrally formed using a conductive elastomer, the conduction between the base portion 20 and the terminal portion 30 is secured. Therefore, the conductive layer 40 is formed only on the surface of the tip portion 221.
  • conductive layer 40 ensures the entire surface of base portion 20 and terminal portion 30 to ensure conduction between base portion 20 and terminal portion 30.
  • the conductive layer 40 also contains a conductive polymer.
  • a conductive polymer for example, PEDOT / PSS, polyacetylene, polyaniline, polythiophene, polythiophene, polyphenylene in which polystyrene sulfonic acid (poly 4-styrene sulfonate; PSS) is doped to poly3,4-ethylenedioxythiophene (PEDOT) Vinylene or polypyrrole can be used.
  • PEDOT polystyrene sulfonic acid
  • PEDOT poly3,4-ethylenedioxythiophene
  • Vinylene or polypyrrole it is preferable to use PEDOT / PSS in view of lower contact impedance with a living body and high conductivity.
  • the average thickness of the conductive layer 40 is preferably 3 to 5 ⁇ m. If it is in this range, it can have conductivity, and can electrically conduct the electric signal transmitted from the scalp stably.
  • the average thickness of the conductive layer 40 refers to the average value of the thickness of the conductive layer 40. For example, in the cross section of the conductive layer 40, when several places (for example, about six places) are measured in arbitrary places, the average value of the thickness of these measurement places is said. Further, in the present embodiment, the thickness refers to the length of the layer in the direction perpendicular to the contact surface of the conductive layer 40.
  • FIG. 8 is a view showing an example of measuring an electroencephalogram of a subject using an inspection apparatus provided with the biological information measuring electrode 10.
  • FIG. 9 is an explanatory view showing an example of a state in which the tip end portion 221 of the base portion 20 is in contact with the scalp 55 via the conductive layer 40.
  • FIG. 10 is an explanatory view showing a state in which a part of the conductive layer 40 of the tip end portion 221 is worn.
  • FIG. 11 is an explanatory view showing a state in which the liquid held by the end groove 24A spreads.
  • the inspection apparatus 50 includes the biological information measurement electrode 10, a cap 51 that covers the head of the subject, a lead 52, a measurement unit 53, and a display unit 54.
  • the cap 51 has the shape of a hat or a helmet so as to cover the subject's head, and is formed of synthetic resin, cloth or the like.
  • the biological information measuring electrodes 10 are provided at a plurality of locations (for example, 21 locations) on the cap 51 at predetermined intervals, and are attached to an arbitrary location of the scalp 55 of the subject.
  • the conducting wire 52 is, for example, a lead wire, and one end is connected to the terminal unit 30 and the other end is connected to the measuring unit 53.
  • the measurement unit 53 includes a power supply unit 531 and a signal analysis unit 532 that analyzes an electrical signal and measures an electroencephalogram as biological information.
  • the display unit 54 is a monitor and displays the electroencephalogram 541 analyzed by the signal analysis unit 532.
  • the brain waves 541 are classified into, for example, ⁇ wave (8 to 13 Hz), ⁇ wave (14 to 30 Hz), ⁇ wave (4 to 7 Hz), and ⁇ wave (0.5 to 3 Hz) according to the frequency.
  • the tip portion 221 of the electrode leg 22 is previously dipped in the liquid in the container, and the tip groove portion 24A of the conductive layer 40 and the side groove portion 25 contain the liquid. Even when the electrode leg 22 is pulled up from the immersion state in the liquid, the liquid is held in the tip groove 24A and the side groove 25 by capillary action. Thereafter, the distal end groove portion 24A and the side surface groove portion 25 are fixed to the cap 51 in a state of containing the liquid, thereby contacting the distal end portion 221 of the electrode leg 22 with the scalp 55 via the conductive layer 40 as shown in FIG.
  • an electrical signal from the scalp is transmitted from the scalp 55 to the tip portion 221 of the electrode leg 22 through the conductive layer 40.
  • the transmitted electric signal is transmitted from the tip end portion 221 through the base portion 20 in the order of the terminal portion 30, the lead 52, and the measuring portion 53.
  • the signal analysis unit 532 analyzes the transmitted electric signal, and displays an electroencephalogram (for example, an ⁇ wave, a ⁇ wave, a ⁇ wave, etc.) 541 on the display unit 54.
  • the biological information measuring electrode 10 configured as described above has a plurality of tip grooves 24A on the surface of the tip 221 which is the region A, and the conductive layer 40 on the surface of the tip 221.
  • part of the conductive layer 40 may be peeled off until Even in such a case, in the biological information measuring electrode 10, the conductive layer 40 formed on the surface of the tip groove 24A remains.
  • the conduction of the conductive layer 40 can be maintained at the contact portion between the conductive layer 40 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 40 and the scalp can be stably maintained. Therefore, according to the electrode 10 for measuring biological information, since the electrical connection between the tip portion 221 of the electrode leg 22 and the scalp can be maintained, an electrical signal from the scalp can be stably obtained, and an electroencephalogram can be obtained as biological information. It can be measured stably.
  • the biological information measuring electrode 10 has the conductive layer 40 on the surface of the tip portion 221, so that it is more between the scalp and the biological information measuring electrode 10 than when the tip portion 221 is in direct contact with the scalp. Can reduce the contact impedance of
  • the liquid can be held by capillary action in the tip groove 24A provided on the surface of the tip portion 221 which is the region A. Therefore, when measuring the electroencephalogram, when the tip end portion 221 is brought into contact with the scalp, as shown in FIG. 11, the liquid held in the tip groove portion 24A flows on the surface of the scalp in contact with the tip end portion 221 to the scalp. spread. As a result, the area of conduction from the scalp to the conductive layer 40 is increased, so the contact impedance between the scalp and the biological information measuring electrode 10 can be further lowered. Thereby, the electroencephalogram can be measured more stably.
  • the biological information measuring electrode 10 has a plurality of side grooves 25 on the side surface of the electrode leg 22, and the side grooves 25 communicate with at least a part of the tip groove 24A. Therefore, at the time of measurement of the electroencephalogram, the liquid held in the tip groove 24A flows to the surface of the scalp in contact with the tip 221, and the liquid held in the tip groove 24A is consumed. At this time, the liquid held in the side groove 25 flows to the tip groove 24A and is supplied to the scalp. Thereby, the contact between the scalp and the biological information measuring electrode 10 can be maintained while the contact impedance between the scalp and the biological information measuring electrode 10 is kept low, so that the biological information can be continued more stably. Can be measured.
  • the electrode for measuring biological information formed of metal can not be used for a subject with metal allergy because the contact surface of the electrode with the subject is metal and may cause metal allergy to the subject. .
  • the conductive layer 40 is formed to contain a conductive polymer, even if the conductive layer 40 contacts the scalp, it does not cause metal allergy to the subject, which is safe. Therefore, the biological information measurement electrode 10 can be used with confidence for all subjects.
  • the tip groove portion 24A is radially formed on the tip portion 221 so as to become a cross shape when the tip portion 221 of the electrode leg 22 is viewed in the + Z axial direction, but the tip groove portion 24A is And any shape that can hold the liquid in the groove.
  • the tip groove portion 24A is And any shape that can hold the liquid in the groove.
  • FIG. 12 when the tip end portion 221 of the electrode leg 22 is viewed in the + Z axial direction, six tip groove portions 24B may be formed at the same angle in the radial direction.
  • the tip end portion 221 may be provided with a tip end groove portion 24C formed in a mesh shape.
  • FIG. 12 when the tip end portion 221 of the electrode leg 22 is viewed in the + Z axial direction, the tip end portion 221 may be provided with a tip end groove portion 24C formed in a mesh shape.
  • a distal end groove 24D formed in a dendritic shape may be provided. As shown in FIG. 12 to FIG. 14, even when the distal end groove portion 24B formed radially, the distal end groove portion 24C formed in a mesh shape, or the distal end groove portion 24D formed in a dendritic shape are provided in the distal end portion 221, The liquid can be more efficiently held in the tip grooves 24B to 24D on the surface of the tip 221. Therefore, the conduction between the conductive layer 40 and the scalp can be maintained more stably. In addition, when the tip end portion 221 contacts the scalp, the tip end portion 221 can stably maintain the conduction between the conductive layer 40 on the surface of the tip end groove portions 24B to 24D and the scalp in any direction. Therefore, biological information can be measured more stably even if the tip 221 is moved in any direction along the scalp.
  • the distal end groove portion 24A is formed in the distal end portion 221 of the electrode leg 22, but as shown in FIG. 15, the recessed portion 26 may be formed in the distal end portion 221 of the electrode leg 22. Even when the recessed portion 26 is provided in the tip end portion 221, the liquid can be more efficiently held in the recessed portion 26 in the surface of the tip end portion 221, so that the conduction between the conductive layer 40 and the scalp can be maintained more stably. . In addition, when the tip end portion 221 contacts the scalp, the tip end portion 221 can stably maintain conduction between the conductive layer 40 on the surface of the depression portion 26 and the scalp in all directions. Therefore, biological information can be measured more stably even if the tip portion 221 is moved in any direction along the scalp.
  • the width of the recess 26 is preferably 10 ⁇ m to 450 ⁇ m, more preferably 20 ⁇ m to 120 ⁇ m, still more preferably 30 ⁇ m to 70 ⁇ m, and most preferably 40 ⁇ m to 50 ⁇ m, as in the tip groove 24A.
  • the reason why the width of the recess 26 is preferably 10 ⁇ m to 450 ⁇ m is the same reason as the tip groove 24A.
  • variety of the hollow part 26 is a diameter in planar view of a front end, when the hollow part 26 is circular. If the recess 26 is elliptical, it is the diameter of the tip in plan view. The average value of the major and minor axes of the recess 26 is taken as the width of the recess 26.
  • the maximum depth of the recess 26 is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 300 ⁇ m, and still more preferably 30 ⁇ m to 150 ⁇ m, as in the tip groove 24A.
  • the reason why the maximum depth of the recess 26 is preferably 10 ⁇ m to 500 ⁇ m is the same reason as the tip groove 24A.
  • the base portion 20 and the terminal portion 30 are integrally formed, but the base portion 20 and the terminal portion 30 may be configured by separate members.
  • One example of the biological information measuring electrode 10 when the base portion 20 and the terminal portion 30 are constituted by separate members is shown in FIG. 16 and FIG.
  • FIG. 16 is a perspective view showing an example of another configuration of the biological information measuring electrode 10
  • FIG. 17 is a cross-sectional view taken along the line II-II of FIG.
  • the terminal portion 30 has a disc-shaped base portion 301 and a convex portion 302 protruding from the central portion of the base portion 301.
  • the terminal portion 30 is formed of a conductive material such as a metal material.
  • the terminal portion 30 is fixed and connected to an end portion 21a opposite to the side where the base portion 21 of the base portion 20 is continuous with the electrode leg 22, for example, with a conductive adhesive or conductive paste (not shown). It is done.
  • the terminal portion 30 is electrically connected to the base portion 20 formed integrally with the electrode leg 22. Therefore, the tip end portion 221 of the electrode leg 22 is electrically connected to the terminal portion 30 via the base portion 21 of the base portion 20.
  • the base portion 20 integrally forms the base portion 21 and the electrode leg 22, but the base portion 21 and the electrode leg 22 may be configured by separate members.
  • the base 21 and the electrode leg 22 are bound by a binding member made of synthetic resin.
  • the binding member is one obtained by curing a synthetic resin such as an epoxy resin or a urethane resin.
  • the binding member may be an elastic synthetic resin such as rubber.
  • the side surface groove 25 is formed on the surface of the side surface 222 of the electrode leg 22.
  • the side surface groove 25 is not formed if the tip groove 24A can sufficiently hold the liquid. May be
  • the conductive layer 40 is formed at the tip end portion 221 of the electrode leg 22 which is the region A, but may be formed at another portion of the base portion 20 as long as it is formed at least at the tip end portion 221. Alternatively, it may be formed on the entire surface of the base portion 20 and the terminal portion 30. For example, when the base portion 20 and the terminal portion 30 are formed of an insulating material, forming the entire surface of the base portion 20 and the terminal portion 30 further stabilizes the conduction from the tip portion 221 to the terminal portion 30. be able to.
  • FIG. 18 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment.
  • FIG. 19 is a view showing an example of a state where the raw material supply passage 61 used at the time of molding is fixed to the terminal portion 30. As shown in FIG.
  • the base portion 20 and the terminal portion 30 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 221 which is the region A.
  • a conductive layer forming step (step S13) of forming a conductive layer 40 containing Each step will be described below.
  • the base portion 20 and the terminal portion 30 are integrally molded using a material for forming the base portion 20 and the terminal portion 30, and a plurality of tip groove portions 24A are formed on the surface of the tip portion 221.
  • a material for forming the base portion 20 and the terminal portion 30 is integrally molded using a material for forming the base portion 20 and the terminal portion 30, and a plurality of tip groove portions 24A are formed on the surface of the tip portion 221.
  • a plurality of tip groove portions 24A are formed on the surface of the tip portion 221.
  • the base portion 20 and the terminal portion 30 are made of the base portion 20 and the terminal portion 30 having desired shapes by a known molding method such as compression molding (compression molding), injection molding (injection molding), or extrusion molding (transfer molding). It can be molded.
  • a mold corresponding to the shapes of the base portion 20 and the terminal portion 30 is used.
  • the mold is provided with a protrusion corresponding to the end groove 24A and the side groove 25.
  • the raw material supply passage e.g., a spool, a runner, etc.
  • the raw material such as resin or metal
  • the terminal unit 30 it is connected to the terminal unit 30.
  • the raw material supply passage 61 when the raw material supply passage 61 is connected to the terminal portion 30, at least a part of the raw material supply passage 61 can be used for the terminal portion 30 even after the base portion 20 and the terminal portion 30 are formed.
  • the raw material supply passage 61 serves as a grip for the base portion 20. It can be used as The raw material supply passage 61 is determined at which position of the product to perform suitable molding, and may be connected to the base 21 or the like of the base 20 other than the terminal 30 shown in FIG. .
  • the surface of the tip portion 221 is applied using a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen.
  • a method of irradiating vacuum ultraviolet light excimer UV light
  • excimer UV light is UV light having a wavelength of 240 nm or less in the atmosphere, and has a predetermined wavelength (central wavelength) depending on the type of discharge gas.
  • the dischargeable gas Ar 2 (wavelength 126 nm), Kr 2 (wavelength 146 nm), ArBr (wavelength 165 nm), Xe 2 (wavelength 172 nm), KrI (wavelength 191 nm), KrCl (wavelength 222 nm) or the like can be used. .
  • a radiation lamp emitting excimer UV light is, for example, a dielectric barrier discharge lamp sealed with Xe gas.
  • the dielectric barrier discharge lamp is in an excimer state (Xe 2 * ) in which Xe atoms are excited, and generates light with a wavelength of about 172 nm when it dissociates again into Xe atoms from this excimer state.
  • Xe 2 * excimer state
  • the surface of the portion to which the excimer UV light is irradiated among the base portion 20 and the terminal portion 30 is modified, and a highly hydrophilic group (for example, a hydroxyl group (OH group), an aldehyde group (CHO group)
  • a highly hydrophilic group for example, a hydroxyl group (OH group), an aldehyde group (CHO group)
  • a carboxyl group (COOH group) is formed, whereby the surface of the tip portion 221 of the base portion 20 can be activated, and the surface of the tip portion 221 can be made hydrophilic.
  • the wettability to the liquid of the surface of tip part 221 can be improved.For this reason, only the tip part 221 can be activated easily by the method of irradiating excimer UV light, so the base part 20 and the terminal part 30 can be effectively used in the case where it is formed of a conductive material, It is sufficient if at least the surface of the tip portion 221 can be activated, 221 and portions other than may be irradiated with excimer UV light the entire base portion 20 and the terminal portion 30.
  • the entire surface of the base portion 20 and the terminal portion 30 is plasma activated.
  • the entire surface of the base portion 20 and the terminal portion 30 can be changed to hydrophilicity in addition to the surface of the tip portion 221.
  • the wettability to the liquid of the whole surface of base part 20 and terminal area 30 including tip part 221 can be improved. Therefore, even when the base portion 20 and the terminal portion 30 are formed of either a conductive material or an insulating material, it can be effectively used.
  • the conductive layer 40 containing a conductive polymer is formed on the surface of the tip portion 221.
  • the conductive layer forming step (step S13) includes a coating step (step S131) and a drying step (step S132).
  • a solution containing a conductive polymer is applied to at least the tip portion 221 to form a coating layer.
  • a method of applying a solution containing a conductive polymer to at least the tip portion 221 an immersion method of immersing at least the tip portion 221 in a solution containing a conductive polymer, a solution containing a conductive polymer at least at the tip portion 221 A spray method or the like can be used.
  • the applied layer formed on the tip portion 221 is dried to cure the applied layer.
  • the conductive layer 40 is formed on the surfaces of the tip end portion 221 and the tip end groove portion 24A.
  • the conductive layer 40 may be formed on the surface of the tip portion 221.
  • the conductive layer 40 is formed on the surface of the tip portion 221, whereby the biological information measurement electrode 10 is obtained. Therefore, by repeatedly using the biological information measurement electrode 10, the conductive layer 40 provided on the surface of the tip groove 24A remains even if the conductive layer 40 provided on the tip 221 is worn and scraped off. Therefore, since the conduction with the scalp can be maintained at the contact portion between the conductive layer 40 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 40 and the scalp can be stably maintained. .
  • the base portion 20 and the terminal portion 30 are simultaneously formed using a mold provided with a protrusion corresponding to the tip groove portion 24A and the side surface groove portion 25. It is not limited.
  • the tip groove 24A and the side groove 25 may be formed after the base portion 20 and the terminal portion 30 are separately molded and integrated, respectively.
  • the forming step (step S11) is a preparing step (step S111) of preparing the base portion 20 and the terminal portion 30.
  • a forming process step S13).
  • the base portion 20 and the terminal portion 30 are integrated using a binding member.
  • a known binding member can be used as the binding member used for this binding.
  • synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
  • the conductive layer 40 is formed only at the tip end portion 221 of the base portion 20, but the conductive layer 40 is formed at least at the tip end portion 221.
  • the conductive layer 40 may be formed on the portion other than the tip end portion 221 of the base portion 20, or on the whole of the base portion 20 and the terminal portion 30.
  • the conductive layer 40 since the base portion 20 and the terminal portion 30 are formed of a conductive elastomer, the conductive layer 40 may be formed at least on the surface of the tip portion 221, but the base portion 20 and the terminal portion 30 are insulated. When formed of a material, the conductive layer 40 is formed on the entire surface of the base portion 20 and the terminal portion 30. Thereby, the electrical signal obtained from the scalp is transmitted from the tip end portion 221 of the electrode leg 22 to the terminal portion 30 through the conductive layer 40.
  • the biological information measuring electrode according to the present embodiment is the same as the first above except that the material for forming the base portion 20 and the terminal portion 30 of the biological information measuring electrode 10 according to the first embodiment is changed. Since it is the same as that of the electrode 10 for measuring biological information according to the embodiment of the present invention, only the configurations of the base portion 20, the terminal portion 30, and the conductive layer 40 will be described in the present embodiment.
  • the configuration of the biological information measurement electrode according to the present embodiment will be described with reference to FIGS. 1 to 5 showing the biological information measurement electrode 10 according to the first embodiment.
  • the base portion 20 and the terminal portion 30 of the biological information measuring electrode according to the present embodiment are formed of a resin material containing a carbon material, and the resin material is used as a matrix (matrix), and the carbon material is contained in the resin material. It is a composite material.
  • the base portion 20 and the terminal portion 30 may be formed of the same material or may be formed of different materials. In the present embodiment, the base portion 20 and the terminal portion 30 are integrally formed of the same material by injection molding. Accordingly, the terminal portion 30 is electrically connected to the tip end portion 221 (described later) of the electrode leg 22.
  • thermoplastic resin is suitably used as the above-mentioned resin material.
  • the thermoplastic resin is not particularly limited, and, for example, polyamide (for example, nylon 6, nylon 66), polycarbonate, polyoxymethylene, polyphenylene sulfide, polyphenylene ether, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate) And polyethylene, polypropylene, polystyrene, polymethyl methacrylate, AS resin and ABS resin. These may be used singly or in combination of two or more.
  • the thermoplastic resin it is preferable to use polyamide, polycarbonate, polyphenylene sulfide, polyester, or polypropylene from the viewpoint of weatherability, moldability, strength, cost and the like.
  • the carbon material described above can impart conductivity to the base portion 20 and the terminal portion 30, and can make the base portion 20 and the terminal portion 30 lightweight and flexible.
  • As the carbon material graphite, carbon black, carbon nanotube, carbon nanohorn or carbon fiber (carbon fiber) or the like is used.
  • a carbon material may be used individually by 1 type, and may use 2 or more types together.
  • a carbon fiber is roughly divided into a PAN system and a pitch system due to the difference in starting materials, but any type may be used, and they may be used in combination.
  • a carbon fiber is used as the carbon material, one having an average thickness (average diameter) of about 5 ⁇ m to 10 ⁇ m and an average length of about 50 ⁇ m to 200 ⁇ m is preferably used. If the average diameter is in the range of 5 ⁇ m to 10 ⁇ m and the average length is in the range of 50 ⁇ m to 200 ⁇ m, the resin material can be easily dispersed.
  • the thickness of the carbon fiber can be determined by a known measurement method using a light scattering device, a laser microscope, a scanning electron microscope (SEM) or the like.
  • a carbon fiber is observed with an SEM or the like, and a length in a direction orthogonal to the longitudinal direction of a predetermined number (for example, 10 to 200) of carbon fibers arbitrarily selected (a length in a radial direction of the carbon fiber
  • the average diameter can be determined by measuring) and calculating the average value thereof.
  • the content ratio of the thermoplastic resin and the carbon material is preferably 10 parts by mass to 40 parts by mass, and 20 parts by mass to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin. More preferable.
  • the carbon material is 20 parts by mass to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin, the formability of the base portion 20 and the terminal portion 30 is improved and the shapes of the base portion 20 and the terminal portion 30 are It can be maintained stably.
  • the conductive layer 40 is provided on the surface of the tip end portion 221 of the electrode leg 22.
  • the base portion 20 and the terminal portion 30 are integrally formed using a conductive composite material containing a carbon material in a resin material, the conduction between the base portion 20 and the terminal portion 30 is secured. ing. Therefore, the conductive layer 40 is formed only on the surface of the tip end portion 221 (a portion corresponding to the region A).
  • the conductive layer 40 ensures conduction between the base portion 20 including the region A and the terminal portion 30, It is provided on the entire surface of the base portion 20 and the terminal portion 30.
  • the base portion 20 including the tip portion 221 and the terminal portion 30 are formed of a resin material including a carbon material. Therefore, the biological information measurement electrode according to the present embodiment can be made lighter and more flexible.
  • the metal film is heavier than the conductive polymer film etc. When worn on the head, etc., it may give a feeling of weight and give the subject a sense of tension.
  • the base portion 20 and the terminal portion 30 can be formed of a resin material containing a carbon material, and can be made lighter and more flexible, according to the present embodiment.
  • the biological information measuring electrode according to the present embodiment can be made lighter by, for example, 56% than an electrode of the same size in which the base portion is formed of metal and the surface is gold-plated.
  • the conductive layer 40 is formed to include the conductive polymer. . Therefore, even if the conductive layer 40 contacts the scalp, it does not cause metal allergy to the subject, which is safe. Therefore, the biological information measurement electrode according to the present embodiment can be used with confidence for all subjects.
  • thermoplastic resin is used as the resin material for the base portion 20 and the terminal portion 30.
  • a resin material other than a thermoplastic resin such as a nonconductive elastomer may be used.
  • a nonconductive elastomer for example, silicone rubber, ethylene propylene rubber, ethylene propylene diene rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, chloroprene rubber, acrylonitrile nitrile butadiene rubber, butyl rubber, urethane rubber, or fluororubber Etc. These may be used alone or in combination of two or more.
  • the base portion 20 and the terminal portion 30 are formed to include a nonconductive elastomer having rubber elasticity, and thus have a low elastic modulus. Therefore, at the time of use of the biological information measurement electrode according to the present embodiment, the base 20 and the terminal 30 are easily deformed into the uneven shape of the scalp and forehead, so that contact with the scalp and forehead can be ensured, The pressure on the forehead can be alleviated.
  • the base portion 20 and the terminal portion 30 are formed to include a carbon material, but may further include a conductive filler.
  • Conductive fillers other than carbon materials include metals such as aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, or nickel; and so-called ABO 3 type perovskite-type composite oxides Although conductive ceramics etc. are mentioned, it is not limited to these. These conductive fillers may be used alone or in combination of two or more.
  • the base portion 20 and the terminal portion 30 are formed in the molding step S11 of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG.
  • the material to be molded is changed, and a polishing process is provided between the molding process S11 and the surface treatment process S12.
  • FIG. 21 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment. An example of a state in which the raw material supply passage 61 used at the time of molding is fixed to the terminal portion 30 is shown in FIG.
  • the base portion 20 and the terminal portion 30 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 221 which is the region A.
  • step S21 the material for forming the base portion 20 and the terminal portion 30 in the forming step S11 of the method for manufacturing the biological information measuring electrode according to the first embodiment shown in FIG.
  • a resin material containing a carbon material is used.
  • the base portion 20 and the terminal portion 30 are integrally molded using a resin material containing a carbon material, and a plurality of tip grooves 24A are formed on the surface of the tip portion 221.
  • the side grooves 25 are formed.
  • the other contents such as the forming method of the base portion 20 and the terminal portion 30 are the same as the forming step S11 of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG. I omit it.
  • the surface of the tip portion 221 is polished.
  • the proportion near the surface of the tip portion 221 does not contain the carbon material but contains the resin material There may be a high layer (skin layer). Since the skin layer does not contain a carbon material or the content thereof is very small even if it is contained, the conduction of the base portion 20 and the terminal portion 30 can not be achieved or the conduction becomes difficult.
  • the surface of the tip end portion 221 is polished to remove the skin layer present on the surface of the tip end portion 221, whereby the tip end portion 221 can be stably conductive.
  • step S21 On the surfaces of the base portion 20 and the terminal portion 30 obtained in the forming step (step S21), there are places where a part of the carbon material protrudes.
  • the carbon material protruding from the surface of the tip portion 221 is scraped off.
  • the surface of the tip end portion 221 can be made flat or the surface unevenness can be reduced.
  • the carbon material protruding from the surface of the tip portion 221 suppresses damage to the surface of the living body be able to.
  • the surface of the tip portion 221 is applied using a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen.
  • a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen is the same as the surface treatment step (step S12) of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG.
  • the conductive layer 40 containing a conductive polymer is formed on the surface of the tip portion 221.
  • the conductive layer forming step (step S24) includes a coating step (step S241) and a drying step (step S242).
  • the conductive layer forming step (step S24) is the same as the conductive layer forming step (step S14) of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG. Do.
  • the base portion 20 including the tip portion 221 and the terminal portion 30 are formed by a resin material including a carbon material
  • the obtained biological information measuring electrode is obtained. Since the biological information measuring electrode can be made more lightweight and flexible, even when the biological information measuring electrode is attached to the head of the subject, it is possible to reduce the giving of a feeling of weight or the like. Thereby, it is possible to measure an electroencephalogram as biological information without giving a subject a certain sense of tension or the like.
  • the biological information measuring electrode can be made, for example, 56% lighter than an electrode of the same size in which the base portion is formed of metal and the surface is gold-plated.
  • the base portion 20 and the terminal portion 30 are simultaneously formed using a mold provided with a protrusion corresponding to the tip groove portion 24A and the side surface groove portion 25. It is not limited. For example, after the base portion 20 and the terminal portion 30 are separately molded and integrated respectively, the tip groove 24A and the side groove 25 may be formed later.
  • the forming step (step S21) is a preparing step (step S211) of preparing the base portion 20 and the terminal portion 30.
  • a bonding step of bonding and integrating the base portion 20 and the terminal portion 30 (step S212), and a groove forming step of forming the plurality of tip grooves 24A and the side grooves 25 on the surface of the tip portion 221 (step S213) And consists of.
  • step S22 for polishing the surface of the tip 221
  • step S23 for activating the surface of the tip 221
  • step S24 a conductive layer forming step
  • the base portion 20 and the terminal portion 30 are integrated using a binding member.
  • a known binding member can be used as the binding member used for this binding.
  • synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
  • the bonding step (step S212) before bonding the base portion 20 and the terminal portion 30, the surface of the base portion 20 to be bonded to the terminal portion 30 is polished in advance to form the surface of the surface. While removing the skin layer which exists near, it is preferable to shave off the carbon material which protrudes from the surface of the said surface.
  • the conduction between the base portion 20 and the terminal portion 30 can be stably maintained, and the bonding force between the base portion 20 and the terminal portion 30 can be strengthened.
  • step S213 a plurality of tip grooves 24A and side grooves 25 are formed on the surface of the tip portion 221 using a laser beam, a cutting jig, or the like. At this time, the skin layer on the surface of the tip groove 24A and the side groove 25 is removed since the width and the depth are reduced sufficiently. Therefore, the tip groove 24A and the side groove 25 and the conductive layer 40 can be stably maintained in conduction.
  • the polishing step (step S22) is included, the surface of the tip portion 221 is polished, for example, when there is no skin layer near the surface of the tip portion 221 or little effect of the skin layer occurs. It may be omitted if it is not necessary.
  • the biological information measuring electrode according to the present embodiment has the width W1 and the maximum depth H1 of the distal end groove 24A of the distal end 221 of the electrode leg 22 of the biological information measuring electrode 10 according to the first embodiment described above changed.
  • the other components are the same as those of the biological information measuring electrode 10 according to the first embodiment described above, and therefore, in the present embodiment, only the tip groove 24A will be described.
  • the configuration of the biological information measurement electrode according to the present embodiment will be described with reference to FIGS. 1 to 6 showing the biological information measurement electrode 10 according to the first embodiment.
  • the width W1 of the tip groove portion 24A formed in the tip portion 221 of the base portion 20 is preferably 200 ⁇ m to 450 ⁇ m. If the width W1 of the distal end groove 24A is in the above range, the scalp can easily bite into the distal end groove 24A, and can easily follow the shape of the surface of the scalp.
  • the width W1 of the tip groove portion 24A is more preferably 250 ⁇ m to 400 ⁇ m, and still more preferably 300 ⁇ m to 350 ⁇ m.
  • the maximum depth H1 of the tip groove 24A is preferably 100 ⁇ m to 250 ⁇ m.
  • the width W1 of the distal end groove 24A is as wide as 200 ⁇ m to 450 ⁇ m, and the scalp is apt to bite. If the maximum depth H1 of the end groove 24A is in the above range, a sufficient depth can be secured even if the scalp bites into the end groove 24A. Further, even if the conductive layer 40 is formed at the tip end portion 221 of the electrode leg 22, the tip groove portion 24A can ensure a predetermined depth. Furthermore, the variation in time until the contact impedance drops to a predetermined value (for example, 300 k ⁇ ) or less can be reduced by the position of the tip groove 24A. In the present embodiment, the maximum depth H1 of the tip groove 24A is more preferably more than 100 ⁇ m and not more than 230 ⁇ m, and still more preferably 150 ⁇ m to 210 ⁇ m.
  • the biological information measuring electrode 10 When the tip portion 221 is brought into contact with the scalp, the biological information measuring electrode 10 according to the first embodiment described above has a high amount of moisture held in the scalp, such as when the scalp is wet, etc.
  • the liquid held by the tip groove 24A may not flow to the surface of the scalp in contact with the tip 221.
  • the scalp when the pressing force of the tip 221 against the scalp is high, the scalp is soft, so the scalp blocks the tip groove 24A, and the liquid held in the tip groove 24A contacts the tip 221 on the surface of the scalp. It may not flow.
  • the width W1 and the maximum depth H1 of the tip groove 24A on the surface of the tip portion 221 are within the predetermined range as described above.
  • the scalp can easily bite into the tip groove 24A, the contact area between the surface of the tip 221 and the scalp can be increased. Therefore, the contact impedance between the scalp and the biological information measurement electrode 10 can be further lowered, and the electroencephalogram can be measured more stably.
  • the width W1 and the maximum depth H1 of the tip groove portion 24A on the surface of the tip portion 221 are within the predetermined range as described above, to thereby obtain the surface of the living body. Even if the tip end portion 221 is brought into contact with a plurality of times, a change in the contact area between the surface of the tip end portion 221 and the scalp can be suppressed. Therefore, when electroencephalograms are measured a plurality of times, even if the tip portion 221 of the biological information measurement electrode according to this embodiment is brought into contact with the surface of the scalp every measurement, variation in the measured values of the electroencephalograms obtained is suppressed. Can increase the reliability of the obtained electroencephalogram measurements.
  • the electrodes for measuring biological information according to each of the above embodiments maintain electrical connection with the scalp and can stably measure biological information (brain waves) obtained from the scalp.
  • it can be suitably used as an electrode for measuring biological information in which information of various living bodies such as pulse wave, electrocardiogram, myoelectricity, body fat, etc. is brought into contact with the skin and measured.
  • a living body includes a human body or a living body other than the human body, etc.
  • the biological information measuring electrode according to each of the above embodiments can be particularly suitably used for the human body.
  • Example 1-1 [Production of electrodes for measuring biological information]
  • the base portion and the terminal portion are integrally formed by injection molding using an insulating material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray DuPont), and then a cross is formed at the tip of the base portion.
  • the tip groove of the mold (groove width: 400 ⁇ m, height: 500 ⁇ m) was formed.
  • a solution containing a conductive polymer PEDOT / PSS
  • PEDOT / PSS a conductive polymer
  • Example 1-2 The same procedure as in Example 1-1 was followed, except that the shape of the tip groove formed at the tip of the electrode leg was changed to a mesh shape.
  • Example 1-1 The same procedure as in Example 1-1 was carried out except that no groove was formed at the tip of the electrode leg.
  • FIG. 23 shows the measurement results of Example 1-1 and Comparative Example 1-1, in which the horizontal axis is the measurement frequency (unit: Hz) and the vertical axis is the impedance (unit: ⁇ ).
  • the tip of the electrode leg of the biological information measurement electrode was immersed in the electrolyte (0.1 M NaCl aqueous solution) and pulled up, and the electrolyte was contained in the tip groove. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) was measured when the electrode leg was in contact with the forehead as a living body. And the time when the contact impedance becomes 300 k ⁇ or less was measured.
  • the measurement results are shown in Table 1. When the contact impedance is 300 k ⁇ or less, for example, measurement of an electroencephalogram becomes possible. In addition, it indicates that if the time in which the contact impedance is low is quick, the response is good and it is easy to measure the biological information.
  • the biological information measurement electrode of Example 1-1 has a lower impedance value at all measured frequencies than the biological information measurement electrode of Comparative Example 1-1, and it is about 50%. It dropped to a degree. Therefore, the electrode for measuring biological information according to the present embodiment can detect an electrical signal obtained from a living body with high sensitivity, and can also perform measurement on the lower frequency side.
  • the biological information measurement electrodes of Example 1-1 and Example 1-2 have a contact impedance of 300 k ⁇ or less as compared with the biological information measurement electrode of Comparative Example 1-1. Is more than four times faster. Therefore, the biological information measurement electrode of the present embodiment is easy to measure biological information.
  • the time taken for the contact impedance with the living body to fall below a predetermined value can be shortened. It was confirmed that the electroencephalogram can be stably measured because the impedance of the electrode for use is reduced.
  • Example 2 [Production of electrodes for measuring biological information]
  • the base portion and the terminal portion are integrally formed by injection molding using a resin material (long fiber carbon fiber reinforced 6 nylon, trade name: Torayca (registered trademark), Toray Industries, Inc.) containing a carbon material, and then the base portion A cross-shaped tip groove was formed at the tip of the.
  • a solution containing a conductive polymer PEDOT / PSS
  • PEDOT / PSS a conductive polymer
  • the produced electrode for measuring biological information was 1.5 g.
  • Example 2-2 The same procedure as in Example 2-1 was followed except that the shape of the tip groove formed at the tip of the electrode leg was changed to a mesh shape.
  • Example 2-1 The same procedure as in Example 2-1 was performed except that no groove was formed at the tip of the electrode leg.
  • Example 2-2 The same procedure as in Example 2-1 was performed except that the groove and the conductive layer were not formed at the tip of the electrode leg.
  • the tip of the electrode leg of the electrode for measuring biological information is immersed in the electrolyte (0.1 M aqueous solution of NaCl) as in Example 1-1 above to make the electrolyte
  • the impedance of the tip in the inside was measured.
  • the frequency of measurement was 0.5 Hz to 1000 Hz.
  • the measurement results are shown in FIG. FIG. 24 shows the measurement results of Example 2-1 and Comparative Example 2-1 in which the horizontal axis is the measurement frequency (Hz) and the vertical axis is the impedance ( ⁇ ).
  • the impedance of the tip in “before electroencephalogram measurement (initial) / after electroencephalogram measurement / after alcohol washing” was measured.
  • the impedance in the electrolyte 0.1 M NaCl aqueous solution
  • the measured frequency was 1 Hz to 1000 Hz.
  • FIG. 25 and FIG. FIG. 25 shows the measurement result of impedance when using the biological information measurement electrode of Example 2-1
  • FIG. 26 shows the measurement result of impedance when using the biological information measurement electrode of Comparative Example 2-2 Are shown respectively.
  • the broken line indicates the measurement value before electroencephalogram measurement
  • the alternate long and short dash line indicates the measurement value after electroencephalogram measurement
  • the solid line indicates the measurement value after alcohol washing of the tip. .
  • the responsiveness of the contact was evaluated in the same manner as in Example 1-1 above. That is, in order to evaluate the responsiveness of the contact, the tip of the electrode leg of the biological information measurement electrode was immersed in the electrolyte (0.1 M NaCl aqueous solution) and pulled up, and the electrolyte was contained in the tip groove. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) was measured when the electrode leg was in contact with the forehead as a living body. And the time when the contact impedance becomes 300 k ⁇ or less was measured. The measurement results are shown in Table 2. When the contact impedance is 300 k ⁇ or less, for example, measurement of an electroencephalogram becomes possible.
  • the biological information measuring electrode of Example 2-1 having a tip groove and a conductive layer at the tip of the electrode leg was measured more than the biological information measuring electrode of Comparative Example 2-1.
  • Low impedance values were obtained at all frequencies, down to about 50%. Therefore, the electrode for measuring biological information according to the present embodiment can detect an electrical signal obtained from a living body with high sensitivity, and can also perform measurement on the lower frequency side.
  • the electrode for measuring biological information according to the present embodiment can stably detect an electrical signal obtained from a living body, and can be said to be resistant to cleaning (wipe) and the like.
  • the biological information measuring electrodes of Example 2-1 and Example 2-2 have a contact impedance of 300 k ⁇ or less, as compared with the biological information measuring electrode of Comparative Example 2-1. Is more than 1.8 times faster. Therefore, the biological information measurement electrode of the present embodiment is easy to measure biological information.
  • the time taken for the contact impedance with the living body to fall below a predetermined value can be shortened. It was confirmed that the electroencephalogram can be stably measured because the impedance of the electrode for use is reduced.
  • Example 3 [Production of electrodes for measuring biological information]
  • the base portion and the terminal portion are integrally formed by injection molding using an insulating material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray Dupont), and then the tip portion of the base portion is Six tip grooves as shown in FIG. 12 (groove width: 350 ⁇ m, maximum depth: 150 ⁇ m) were formed radially at substantially the same angle (about 60 °) in plan view of the tip.
  • an insulating material thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray Dupont
  • a solution containing a conductive polymer (PEDOT / PSS) (a solution containing a polythiophene-based conductive polymer (Sepluzida OC-AE 401 G, Shin-Etsu Polymer Co., Ltd.)) is applied to the tip of the electrode leg. After forming the coating layer, the coating layer was dried and cured to form a conductive layer. Thus, an electrode for measuring biological information was produced.
  • PEDOT / PSS a solution containing a polythiophene-based conductive polymer (Sepluzida OC-AE 401 G, Shin-Etsu Polymer Co., Ltd.)
  • Example 3-2 The procedure was carried out in the same manner as in Example 3-1 except that the tip groove portion formed at the tip portion of the electrode leg was changed to a radial arrangement of eight pieces at substantially the same angle (about 45 °) in plan view of the tip portion. .
  • Example 3-3 The same procedure as in Example 3-1 was carried out except that the shape of the tip groove formed at the tip of the electrode leg was changed to providing a stitch in a plan view of the tip as shown in FIG.
  • Example 3-4 The same procedure as in Example 3-1 is carried out except that, as shown in FIG. 15, the recessed portion (hole diameter: 350 ⁇ m, maximum depth: 150 ⁇ m) is changed to the tip end portion of the electrode leg instead of the end groove portion. I went.
  • Examples 3-5 to 3-7 The same procedure as in Examples 3-1 to 3-3 was performed, except that the groove width of the tip groove formed at the tip of the electrode leg in Examples 3-1 to 3-3 was changed to 450 ⁇ m.
  • Example 3-8 The same procedure as in Example 3-4 was performed, except that the groove width of the depressed portion formed at the tip of the electrode leg of Example 3-4 was changed to 450 ⁇ m.
  • Example 3-1 was carried out in the same manner as Example 3-1 except that the biological information measuring electrode manufactured in Comparative Example 1-1 described above was used.
  • the electrode leg of the electrode for measuring biological information was brought into contact with the forehead. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) when the electrode leg was in contact with the forehead as a living body was measured using an electroencephalograph (Polymate Mini AP108, Miyuki Giken Co., Ltd.). And the time when the contact impedance becomes 300 k ⁇ or less was measured. Thereafter, the electrode leg was separated from the living body and the tip was washed. The measurement of the time when the contact impedance was 300 k ⁇ or less was repeated five times in Examples 3-1 to 3-4 and Comparative Example 3-1. Table 3 and FIG.
  • FIG. 27 show measurement results of the time until the contact impedance of the electrodes for measuring biological information of Examples 3-1 to 3-4 and Comparative Example 3-1 falls to 300 k ⁇ or less and the absolute value of the error. Shown in.
  • the error of time until contact impedance falls to 300 k ⁇ or less is the difference between the maximum value and the minimum value of the time until contact impedance falls to 300 k ⁇ or less according to the following equation (1) (maximum value-minimum value) Do.
  • the contact impedance is 300 k ⁇ or less, for example, measurement of an electroencephalogram becomes possible.
  • the biological information measurement electrodes of Examples 3-1 to 3-8 have shorter contact impedance times of 300 k ⁇ or less than the biological information measurement electrodes of Comparative Example 3-1. Both became less than 300 k ⁇ in 10 seconds or less.
  • the biological information measuring electrodes of Examples 3-1 to 3-8 had smaller variations in contact impedance than the biological information measuring electrodes of Comparative Example 3-1. Therefore, the biological information measuring electrode in which the tip groove portion or the recess portion of a predetermined size is formed at the tip end portion of the electrode leg can stably perform the measurement of biological information.
  • the contact impedance with the living body is less than a predetermined value. It was confirmed that the brain waves can be measured stably because the time to become to become faster and the variation becomes smaller.
  • Example 4 [Production of electrodes for measuring biological information]
  • the base portion and the terminal portion are integrally formed by injection molding using an insulating material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray Dupont), and then the tip portion of the base portion is The two tip grooves (groove width: 350 ⁇ m, maximum depth: 150 ⁇ m) were formed in a straight line so as to face each other at substantially the same angle (about 180 °) in plan view of the tip.
  • an insulating material thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray Dupont
  • Hytrel registered trademark
  • the two tip grooves (groove width: 350 ⁇ m, maximum depth: 150 ⁇ m) were formed in a straight line so as to face each other at substantially the same angle (about 180 °) in plan view of the tip.
  • a solution containing a conductive polymer (PEDOT / PSS) (a solution containing a polythiophene-based conductive polymer (Sepluzida OC-AE 401 G, Shin-Etsu Polymer Co., Ltd.)) is applied to the tip of the electrode leg. After forming the coating layer, the coating layer was dried and cured to form a conductive layer. Thus, an electrode for measuring biological information was produced.
  • PEDOT / PSS a solution containing a polythiophene-based conductive polymer (Sepluzida OC-AE 401 G, Shin-Etsu Polymer Co., Ltd.)
  • Example 4- except that the tip groove portion formed at the tip portion of the electrode leg is provided four at substantially the same angle (90 °) in plan view of the tip portion to form the tip groove portion shown in FIG. It went in the same way as 1.
  • Example 4-3 Example 4--except that the tip groove portion formed at the tip portion of the electrode leg is provided six at substantially the same angle (60 °) in a plan view of the tip portion to form the tip groove portion shown in FIG. It went in the same way as 1.
  • Example 4 was carried out in the same manner as Example 4-1 except that eight tip grooves formed at the tip of the electrode leg were provided at substantially the same angle (45 °) in plan view of the tip.
  • Example 4-5 The same procedure as in Example 4-1 was carried out except that the shape of the tip groove formed at the tip of the electrode leg was changed to a stitch shape in a plan view of the tip.
  • Example 4-6 Similar to Example 4-1 except that instead of the end groove portion, a recessed portion (hole diameter: 350 ⁇ m, maximum depth: 150 ⁇ m) is formed at the end portion of the electrode leg as shown in FIG. I went.
  • Examples 4-7 to 4-11 The same procedure as in Examples 4-1 to 4-5 was performed, except that the maximum depth of the tip groove formed at the tip of the electrode leg in Examples 4-1 to 4-5 was changed to 250 ⁇ m. .
  • Example 4-12 Example 4-6 was carried out in the same manner as Example 4-6, except that the maximum depth of the depression formed at the tip of the electrode leg of Example 4-6 was changed to 250 ⁇ m.
  • Example 4-1 The same procedure as in Example 4-1 was repeated except that the biological information measuring electrode manufactured in Comparative Example 1-1 described above was used.
  • the electrode leg of the electrode for measuring biological information was brought into contact with the forehead. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) when the electrode leg was in contact with the forehead as a living body was measured using an electroencephalograph (Polymate Mini AP108, Miyuki Giken Co., Ltd.). And the time when the contact impedance becomes 300 k ⁇ or less was measured. Thereafter, the electrode leg was separated from the living body. The measurement of the time when the contact impedance became 300 k ⁇ or less was repeated five times in Examples 4-1 to 4-12 and Comparative Example 4-1.
  • the measurement results of the time until the contact impedance of the electrodes for measuring biological information of each Example and Comparative Example falls to 300 k ⁇ or less and the absolute value of the error are shown in FIG.
  • the error in the time until the contact impedance falls to 300 k ⁇ or less is the difference between the maximum value and the minimum value of the time until the contact impedance falls to 300 k ⁇ or less (maximum value-minimum value) as in the above-mentioned Example 3.
  • the contact impedance is 300 k ⁇ or less, for example, measurement of an electroencephalogram becomes possible.
  • the biological information measurement electrodes of Examples 4-1 to 4-12 have shorter contact impedance times of 300 k ⁇ or less than the biological information measurement electrodes of Comparative Example 4-1. Both became less than 300 k ⁇ in 21 seconds or less. Further, the electrodes for measuring biological information of Examples 4-1 to 4-12 had smaller variations in contact impedance than the electrodes for measuring biological information of Comparative Example 4-1. Therefore, the biological information measuring electrode in which the tip groove or depression of a predetermined size is formed at the tip of the electrode leg can stably measure biological information.
  • the contact impedance with the living body is reduced to a predetermined value or less. It has been confirmed that the brain waves can be measured stably because the variation becomes smaller as the time becomes faster.
  • Example 5 (Examples 5-1 and 5-2 and Comparative Example 5-1) [Production of electrodes for measuring biological information]
  • the electrodes for measuring biological information prepared in Examples 3-2 and 3-3 and Comparative Example 1-1 described above were used, respectively.
  • the contact resistance is evaluated by applying a load of 50 g to the surface of a conductive silicone sponge (Si-500, hardness E20) with the tip of the electrode leg of the electrode for measuring biological information as a soft surface, 6241A (manufactured by AGC Co., Ltd.) to measure the resistance value.
  • a load of 50 g to the surface of a conductive silicone sponge (Si-500, hardness E20) with the tip of the electrode leg of the electrode for measuring biological information as a soft surface, 6241A (manufactured by AGC Co., Ltd.) to measure the resistance value.
  • the measurement results of the resistance when using the electrodes for measuring biological information of Examples 5-1 and 5-2 and Comparative Example 5-1 are shown in FIG.
  • the electrodes for measuring biological information of Examples 5-1 and 5-2 had a resistance value reduced to 1 ⁇ 5 or less that of the electrode for measuring biological information of Comparative Example 5-1. Therefore, the biological information measuring electrode in which the tip groove is formed at the tip of the electrode leg is likely to bite the surface of the living body, so the time until the contact impedance becomes 300 k ⁇ or less is accelerated, and the electric signal obtained from the living body is high. It enables stable detection with sensitivity.

Abstract

A biological information measurement electrode comprising a part that can come into contact with a living organism, wherein, on the surface of the part, a plurality of grooves are formed and a conductive layer that contains a conductive polymer is formed.

Description

生体情報測定用電極および生体情報測定用電極の製造方法Electrode for measuring biological information and method of manufacturing electrode for measuring biological information
 本発明は、生体情報測定用電極および生体情報測定用電極の製造方法に関する。 The present invention relates to a biological information measurement electrode and a method of manufacturing a biological information measurement electrode.
 例えば、脳波、脈波、心電、筋電、体脂肪など生体情報の測定には、生体情報を測定するための電極(生体情報測定用電極)が用いられる。生体情報を測定する際には、生体情報測定用電極を毛髪や体毛のある生体(皮膚)に取り付けて、生体情報に関する電気信号を生体情報測定用電極で取得して、生体情報(例えば、脳波など)を測定する。 For example, an electrode (electrode for measuring biological information) for measuring biological information is used for measuring biological information such as brain waves, pulse waves, electrocardiograms, myoelectricity, body fat and the like. When measuring biological information, an electrode for measuring biological information is attached to a living body (skin) with hair or body hair, and an electrical signal related to biological information is obtained by the electrode for measuring biological information, and biological information (for example, brain waves) Etc).
 生体情報を測定する際には、生体情報測定用電極が生体と安定して接触していることが重要である。そのため、生体との接触の安定性を高めるため、種々の生体情報測定用電極が提案されている。 When measuring biological information, it is important that the biological information measuring electrode is in stable contact with the living body. Therefore, various electrodes for measuring biological information have been proposed in order to enhance the stability of contact with a living body.
 このような生体情報測定用電極の1つとして、例えば、電極の突起部の表面に導電性高分子膜を形成することで、突起部に導電性を付与して電極と生体との導通を確保し、生体信号を検出する電極が提案されている(例えば、特許文献1)。 As one of such electrodes for measuring biological information, for example, by forming a conductive polymer film on the surface of the protrusion of the electrode, conductivity is provided to the protrusion to ensure conduction between the electrode and the living body. In addition, an electrode for detecting a biological signal has been proposed (for example, Patent Document 1).
日本国特開2016-36642号公報Japanese Patent Application Laid-Open No. 2016-36642
 生体情報測定用電極は、生体に接触させて使用するものであるため、使用時には清潔である必要がある。そのため、生体情報測定用電極を使用する度に、一般にアルコールなどの洗浄液で電極の表面に残っている水分や汚れなどを拭き取って、生体情報測定用電極を予め洗浄している。 Since the biological information measurement electrode is used in contact with a living body, it needs to be clean at the time of use. Therefore, every time the biological information measurement electrode is used, the biological information measurement electrode is cleaned in advance by wiping off the water, dirt and the like remaining on the surface of the electrode with a cleaning liquid such as alcohol.
 しかしながら、特許文献1の電極に用いられる導電性高分子膜は摩耗しやすい。そのため、電極の突起部の表面に残っている水滴や汚れなどを拭き取る際に突起部の表面を繰り返し擦ると、導電性高分子膜はすり減り、一部の導電性高分子膜が剥がれてしまう可能性がある。その結果、突起部の表面に残っている導電性高分子膜と生体とは安定して接触しなくなるため、導電性高分子膜と生体とが導通し難くなる。一方、一部の導電性高分子膜が剥がれることで、露出した突起部の表面が生体と接触することになる。電極の突起部と皮膚との間に生じる接触抵抗(接触インピーダンス)の方が導電性高分子膜と皮膚との間に生じる接触インピーダンスよりも高い傾向にある。そのため、導電性高分子膜の生体との接触が僅かになると、生体情報の測定を安定して行うことができなくなる可能性がある。 However, the conductive polymer film used for the electrode of Patent Document 1 is easily worn. Therefore, if you wipe the surface of the protrusion repeatedly when wiping off the water droplets or dirt remaining on the surface of the protrusion of the electrode, the conductive polymer film may be worn away and part of the conductive polymer film may be peeled off There is sex. As a result, since the conductive polymer film remaining on the surface of the protrusion and the living body do not contact stably, it becomes difficult for the conductive polymer film and the living body to conduct. On the other hand, when a part of the conductive polymer film peels off, the surface of the exposed protrusion comes in contact with the living body. The contact resistance (contact impedance) generated between the projection of the electrode and the skin tends to be higher than the contact impedance generated between the conductive polymer film and the skin. Therefore, when contact of the conductive polymer film with the living body is slight, it may not be possible to stably measure biological information.
 本発明の一態様は、生体情報を安定して測定することができる生体情報測定用電極を提供することを目的とする。 An aspect of the present invention aims to provide a biological information measurement electrode capable of stably measuring biological information.
 本発明の一態様に係る生体情報測定用電極は、生体と接触可能な領域を有する生体情報測定用電極であって、前記領域の表面には、複数の溝部が形成されると共に、導電性高分子を含有した導電層が形成されている。 The biological information measuring electrode according to an aspect of the present invention is a biological information measuring electrode having a region capable of being in contact with a living body, and a plurality of grooves are formed on the surface of the region, and the conductive high A conductive layer containing molecules is formed.
 本発明の一態様に係る生体情報測定用電極は、生体情報を安定して測定することができる。 The biological information measurement electrode according to one aspect of the present invention can stably measure biological information.
第1の実施形態に係る生体情報測定用電極の外観を示す斜視図である。It is a perspective view showing the appearance of the living body information measurement electrode concerning a 1st embodiment. 第1の実施形態に係る生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 1st Embodiment. 第1の実施形態に係る生体情報測定用電極の外観を示す他の斜視図である。It is another perspective view which shows the external appearance of the electrode for biometric information measurement which concerns on 1st Embodiment. 第1の実施形態に係る生体情報測定用電極の正面図である。It is a front view of a living body information measurement electrode concerning a 1st embodiment. 図1のI-I断面図である。FIG. 2 is a cross-sectional view taken along line II of FIG. 先端部の先端溝部の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the front end groove part of a front-end | tip part. 電極脚の側面の補助溝部の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the auxiliary | assistant groove part of the side of an electrode leg. 第1の実施形態に係る生体情報測定用電極を備えた検査装置を用いて被験者の脳波を測定する一例を示す図である。It is a figure which shows an example which measures a test subject's brain waves using the test | inspection apparatus provided with the electrode for biological information measurement which concerns on 1st Embodiment. 基体部の先端部を導電層を介して頭皮に接触させた状態の一例を示す説明図である。It is explanatory drawing which shows an example of the state which made the front-end | tip part of a base | substrate part contact the scalp via a conductive layer. 先端部の導電層の一部が摩耗した状態を示す説明図である。It is an explanatory view showing the state where a part of electric conduction layer of a tip part wears. 先端溝部で保持されていた液体が広がる状態を示す説明図である。It is explanatory drawing which shows the state which the liquid hold | maintained by the front end groove part spreads. 電極脚の一端部に形成される溝部の他の一例を示す斜視図である。It is a perspective view which shows another example of the groove part formed in the one end part of an electrode leg. 電極脚の一端部に形成される溝部の他の一例を示す斜視図である。It is a perspective view which shows another example of the groove part formed in the one end part of an electrode leg. 電極脚の一端部に形成される溝部の他の一例を示す斜視図である。It is a perspective view which shows another example of the groove part formed in the one end part of an electrode leg. 電極脚の一端部に形成される溝部の他の一例を示す斜視図である。It is a perspective view which shows another example of the groove part formed in the one end part of an electrode leg. 生体情報測定用電極の他の構成の一例を示す斜視図である。It is a perspective view which shows an example of the other structure of the electrode for biological information measurement. 図16のII-II断面図である。FIG. 17 is a cross-sectional view taken along the line II-II in FIG. 第1の実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode for biometric information measurement which concerns on 1st Embodiment. 原料供給通路が端子部に固定されている状態の一例を示す図である。It is a figure which shows an example of the state by which the raw material supply channel | path is being fixed to the terminal part. 生体情報測定用電極の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. 第2の実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode for biological information measurement which concerns on 2nd Embodiment. 生体情報測定用電極の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the electrode for biological information measurement. インピーダンスの測定結果を示す図である。It is a figure which shows the measurement result of impedance. 実施例1-1および1-2のインピーダンスの測定結果を示す図である。It is a figure which shows the measurement result of the impedance of Example 1-1 and 1-2. 実施例2-1の生体情報測定用電極を用いた時のインピーダンスの測定結果を示す図である。FIG. 16 is a diagram showing measurement results of impedance when the biological information measurement electrode of Example 2-1 is used. 比較例2-2の生体情報測定用電極を用いた時のインピーダンスの測定結果を示す図である。It is a figure which shows the measurement result of the impedance at the time of using the electrode for biological information measurement of Comparative Example 2-2. 実施例3-1~3-4および比較例3-1の生体情報測定用電極を用いた時の300kΩ以下に低下するまでの時間の測定結果を示す図である。FIG. 17 is a view showing measurement results of time until the potential falls to 300 kΩ or less when using the electrodes for biological information measurement of Examples 3-1 to 3-4 and Comparative Example 3-1. 実施例4-1~4-18および比較例4-1の生体情報測定用電極を用いた時の300kΩ以下に低下するまでの時間の測定結果を示す図である。FIG. 16 is a view showing measurement results of time until the potential drops to 300 kΩ or less when using the electrodes for measuring biological information of Examples 4-1 to 4-18 and Comparative Example 4-1. 実施例5-1および5-2と比較例5-1との生体情報測定用電極を用いた時の抵抗の測定結果を示す図である。FIG. 16 is a graph showing measurement results of resistance when using the electrodes for measuring biological information of Examples 5-1 and 5-2 and Comparative Example 5-1.
 以下、本発明の実施形態について、詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。また、図面における各部材の縮尺は実際とは異なる場合がある。本明細書では、3軸方向(X軸方向、Y軸方向、Z軸方向)の3次元直交座標系を用い、生体情報測定用電極の中心軸Jに平行な方向をZ軸方向とし、中心軸Jに直交する面において、互いに直交する2つの方向のうち一方をX軸方向とし、他方をY軸方向とする。以下の説明において、+Z軸方向を上といい、-Z軸方向を下という場合がある。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to make an understanding of description easy, the same code | symbol is attached | subjected with respect to the same component in each drawing, and the overlapping description is abbreviate | omitted. In addition, the scale of each member in the drawings may be different from the actual one. In this specification, using a three-dimensional orthogonal coordinate system in three axial directions (X-axis direction, Y-axis direction, Z-axis direction), the direction parallel to the central axis J of the biological information measurement electrode is taken as the Z-axis direction. In the plane orthogonal to the axis J, one of two directions orthogonal to each other is taken as an X-axis direction, and the other as a Y-axis direction. In the following description, the + Z axis direction may be referred to as the upper side, and the −Z axis direction may be referred to as the lower side.
[第1の実施形態]
<生体情報測定用電極>
 第1の実施形態に係る生体情報測定用電極について説明する。本実施形態では、一例として、生体の一部である頭皮や額に生体情報測定用電極を接触させて生体情報の測定を行う場合について説明する。本実施形態に係る生体情報測定用電極は、生体の一部に接触させて生体情報の測定を行うものであればよく、例えば、頭皮や額以外の皮膚などの一部に接触させて生体情報の測定を行うものでもよい。なお、生体とは、人体、又は人体以外の生物などをいう。
First Embodiment
<Electrode for measuring biological information>
The biological information measurement electrode according to the first embodiment will be described. In the present embodiment, as an example, measurement of biological information will be described by bringing an electrode for measuring biological information into contact with a scalp or a forehead that is a part of a living body. The electrode for measuring biological information according to the present embodiment may be any electrode for measuring biological information by bringing it into contact with a part of a living body. It may be a measure of The living body means a human body or a living thing other than the human body.
 図1は、本実施形態に係る生体情報測定用電極の外観を示す斜視図であり、図2および図3は、本実施形態に係る生体情報測定用電極の外観を示す他の斜視図であり、図4は、本実施形態に係る生体情報測定用電極の正面図であり、図5は、図1のI-I断面図である。図6は、電極脚の先端部の先端溝部の断面の一例を示す説明図であり、図7は、電極脚の側面の補助溝部の断面の一例を示す説明図である。なお、図1~図5中の一点鎖線は、生体情報測定用電極の中心軸Jを示す。中心軸Jとは、生体情報測定用電極を生体に設置した際の中心となる軸である。 FIG. 1 is a perspective view showing the appearance of the biological information measurement electrode according to the present embodiment, and FIGS. 2 and 3 are other perspective views showing the appearance of the biological information measurement electrode according to the present embodiment. 4 is a front view of the biological information measuring electrode according to the present embodiment, and FIG. 5 is a cross-sectional view taken along the line II in FIG. FIG. 6 is an explanatory view showing an example of the cross section of the tip groove portion of the tip portion of the electrode leg, and FIG. 7 is an explanatory view showing an example of the cross section of the auxiliary groove portion on the side surface of the electrode leg. 1 to 5 indicate the central axis J of the biological information measurement electrode. The central axis J is an axis at the center when the biological information measurement electrode is installed on a living body.
 本実施形態に係る生体情報測定用電極10は、図1~図5に示すように、基部21および複数の電極脚22を有する基体部20と、基部21の上側(+Z軸方向)に設けられた端子部30と、電極脚22の表面に設けられた導電層40と、を備えて構成されている。 The biological information measuring electrode 10 according to the present embodiment is provided on the base portion 20 having the base portion 21 and the plurality of electrode legs 22 and on the upper side (+ Z axis direction) of the base portion 21 as shown in FIGS. The terminal portion 30 and the conductive layer 40 provided on the surface of the electrode leg 22 are configured.
 基体部20および端子部30を形成する材料としては、導電性エラストマー、または絶縁材料を用いることができる。なお、絶縁材料とは、導電性がないか導電性が極めて小さい材料をいう。基体部20と端子部30とは、同一の材料で形成されていてもよいし、異なる材料で形成されていてもよい。本実施形態では、基体部20および端子部30は、同一の導電性エラストマーで一体に形成されている。従って、電極脚22の先端部221(後述する)側から端子部30まで導通していることになる。 As a material for forming the base portion 20 and the terminal portion 30, a conductive elastomer or an insulating material can be used. Note that the insulating material refers to a material which does not have conductivity or which has extremely low conductivity. The base portion 20 and the terminal portion 30 may be formed of the same material or may be formed of different materials. In the present embodiment, the base portion 20 and the terminal portion 30 are integrally formed of the same conductive elastomer. Accordingly, the terminal portion 30 is electrically connected to the tip end portion 221 (described later) of the electrode leg 22.
 導電性エラストマーは、その種類は特に限定されるものではない。導電性エラストマーは、例えば、導電性フィラーと非導電性エラストマーとを溶融混合することで得られる。基体部20と端子部30は、ゴム弾性を有する非導電性エラストマーを含んで成形されることで、低い弾性率を有する。そのため、生体情報測定用電極10の使用時に、基体部20と端子部30は頭皮や額の凹凸形状に変形し易いので、頭皮や額への接触を確実にできると共に、頭皮や額への押圧力を緩和できる。 The type of the conductive elastomer is not particularly limited. The conductive elastomer is obtained, for example, by melt mixing the conductive filler and the nonconductive elastomer. The base portion 20 and the terminal portion 30 have a low elastic modulus by being molded including a nonconductive elastomer having rubber elasticity. Therefore, at the time of use of the electrode 10 for measuring biological information, since the base 20 and the terminal 30 are easily deformed into the uneven shape of the scalp and forehead, contact with the scalp and forehead can be ensured, and pressing on the scalp and forehead It can relieve pressure.
 上述の導電性フィラーとしては、導電性を有していれば、その種類は特に限定されるものではない。例えば、導電性フィラーとしては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノホーンまたはカーボンファイバー(炭素繊維)などのカーボン材料;アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、またはニッケルなどの金属;いわゆるABO型のペロブスカイト型複合酸化物などの導電性セラミックスなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。耐久性の点から、カーボン材料を用いることが好ましい。 The type of the conductive filler described above is not particularly limited as long as it has conductivity. For example, as the conductive filler, carbon materials such as graphite, carbon black, carbon nanotubes, carbon nanohorns or carbon fibers (carbon fibers); aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, Examples thereof include metals such as titanium and nickel; and conductive ceramics such as a so-called ABO 3 type perovskite-type composite oxide, but the present invention is not limited thereto. These conductive fillers may be used alone or in combination of two or more. From the viewpoint of durability, it is preferable to use a carbon material.
 上述の非導電性エラストマーとしては、例えば、シリコーンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ニトリルゴム、クロロプレンゴム、アクリルニトリルブタジエンゴム、ブチルゴム、ウレタンゴム、またはフッ素ゴムなどが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中では、耐久性などの点から、シリコーンゴムを用いることが好ましい。 Examples of the above-mentioned non-conductive elastomers include silicone rubber, ethylene propylene rubber, ethylene propylene diene rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, chloroprene rubber, acrylonitrile nitrile butadiene rubber, butyl rubber, urethane rubber, or Fluororubber etc. are mentioned. These may be used alone or in combination of two or more. Among these, in terms of durability and the like, it is preferable to use silicone rubber.
 また、導電性エラストマーではない絶縁材料としては、上記の非導電性エラストマー、ポリプロピレン(PP)、ポリカーボネート(PC)、ABS樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)または液晶ポリマー(LCP)などを用いることができる。 Moreover, as the insulating material which is not a conductive elastomer, the above non-conductive elastomer, polypropylene (PP), polycarbonate (PC), ABS resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA) or A liquid crystal polymer (LCP) or the like can be used.
[基体部]
 基体部20は、図1~図5に示すように、基部21と、複数の電極脚22とを有する。
[Substrate]
The base 20 has a base 21 and a plurality of electrode legs 22 as shown in FIGS.
 基部21は、平面視(+Z軸方向から見たとき)において、略円形に形成されている。基部21は、基部21の裏面(-Z軸方向側)に突設部211を有する。突設部211は、基部21の裏面に複数(図1~図5では、8本)設けられ、環状に配設されている。突設部211の端部には、電極脚22が一体に成形されている。突設部211の数は、電極脚22の数に合うように設計される。なお、突設部211を設けなく、電極脚22が円板部分の基部21に連続して形成された構成でもよい。 The base 21 is formed in a substantially circular shape in a plan view (when viewed from the + Z axis direction). The base 21 has a projecting portion 211 on the back surface (−Z axis direction side) of the base 21. A plurality of (eight in FIGS. 1 to 5) projecting portions 211 are provided on the back surface of the base 21 and are disposed in an annular shape. An electrode leg 22 is integrally formed at an end of the protruding portion 211. The number of projecting portions 211 is designed to match the number of electrode legs 22. In addition, the structure which the electrode leg 22 formed continuously with the base 21 of a disc part may be sufficient, without providing the protrusion part 211. FIG.
 電極脚22は、基部21の突設部211から-Z軸方向に向けて延設されている。電極脚22は、円筒状に形成されており、その先端に頭皮と接触可能な先端部221を有する。先端部221は、先端に丸みがある曲面形状に形成されており、本実施形態では、ドーム形状に形成されている。先端部221の形状は、他の曲面形状として丸みがある円錐形状でもよいし、頭皮に接触できる端面を有する平坦形状であってもよい。 The electrode leg 22 is extended from the projecting portion 211 of the base 21 in the −Z axis direction. The electrode leg 22 is formed in a cylindrical shape, and has a tip 221 capable of contacting the scalp at its tip. The distal end portion 221 is formed in a curved shape having a rounded end, and in the present embodiment, is formed in a dome shape. The shape of the tip portion 221 may be a rounded conical shape as another curved surface shape, or may be a flat shape having an end face that can be in contact with the scalp.
 先端部221とは、ドーム形状に形成されている部分であり、生体である頭皮と接触する先端と、生体情報測定用電極10を傾斜させた時などに生体と接触する可能性のある、先端の周辺領域のことを意味する。本実施形態では、先端部221を、「生体と接触可能な領域A(以下、「領域A」という)」とする。 The tip portion 221 is a portion formed in a dome shape, and the tip which comes in contact with the scalp as a living body and the tip which may come in contact with the living body when the electrode 10 for measuring biological information is inclined. It means the surrounding area of In the present embodiment, the tip end portion 221 is referred to as “a region A capable of being in contact with a living body (hereinafter, referred to as“ a region A ”)”.
 また、電極脚22は、領域Aである先端部221に設けられる溝部(先端溝部)24Aと、先端部221以外の部分である電極脚22の側面222に設けられる補助溝部(側面溝部)25とを有する。電極脚22は、先端溝部24Aおよび側面溝部25を備えることで、先端溝部24Aおよび側面溝部25内に水分を含む液体を保持することができる。 Further, the electrode leg 22 includes a groove (tip groove portion) 24A provided in the tip end portion 221 which is the region A, and an auxiliary groove portion (side groove portion) 25 which is provided in the side surface 222 of the electrode leg 22 which is a portion other Have. The electrode leg 22 can hold the liquid containing water in the tip groove 24A and the side groove 25 by providing the tip groove 24A and the side groove 25.
 なお、先端溝部24Aおよび側面溝部25内に含まれる液体は、水の他に、電解液(食塩水)など生体に害を与えない液体であれば用いることができる。 The liquid contained in the tip groove 24A and the side groove 25 may be any liquid other than water as long as it is a liquid such as an electrolytic solution (saline solution) which does not harm the living body.
 先端溝部24Aは、電極脚22の先端部221の表面に形成されている。本実施形態では、先端溝部24Aは、電極脚22の先端部221を先端部221から+Z軸方向に向かって見たとき、十字型となるように放射状に等しい角度で4つ形成されている。 The front end groove 24 A is formed on the surface of the front end 221 of the electrode leg 22. In the present embodiment, four tip groove portions 24A are formed radially at equal angles so as to form a cross shape when the tip portion 221 of the electrode leg 22 is viewed from the tip portion 221 in the + Z axial direction.
 また、先端溝部24Aの断面形状は、図6に示すように、断面視において略U字状に形成されている。なお、先端溝部24Aの断面形状は、断面視において略V字状に形成されていてもよい。 Further, as shown in FIG. 6, the cross-sectional shape of the tip groove portion 24A is formed in a substantially U shape in a cross-sectional view. In addition, the cross-sectional shape of tip groove part 24A may be formed in the substantially V shape in the cross sectional view.
 また、先端溝部24Aの幅W1(図6参照)は、10μm~450μmであることが好ましい。先端溝部24Aの幅W1が上記範囲内であれば、先端溝部24Aに導電層40が形成された後でも、先端溝部24A内に液体を保持することができる。また、先端溝部24Aに導電層40が形成されていれば、例えば、アルコールを含んだキムワイプなどで電極脚22の先端部221を強く拭いても、キムワイプの繊維が先端溝部24A内に侵入するのを低減できる。また、幅W1が上記範囲内であれば、毛髪の平均の太さよりも小さいため、先端溝部24A内に毛髪が侵入するのを低減できる。先端溝部24Aの幅W1は、より好ましくは20μm~120μmであり、さらに好ましくは30μm~70μmであり、最も好ましくは40μm~50μmである。 The width W1 (see FIG. 6) of the tip groove 24A is preferably 10 μm to 450 μm. If the width W1 of the tip groove 24A is in the above range, the liquid can be held in the tip groove 24A even after the conductive layer 40 is formed in the tip groove 24A. In addition, if the conductive layer 40 is formed in the tip groove 24A, for example, even if the tip 221 of the electrode leg 22 is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter the tip groove 24A. Can be reduced. In addition, if the width W1 is within the above range, since the width is smaller than the average thickness of the hair, the penetration of the hair into the tip groove 24A can be reduced. The width W1 of the tip groove portion 24A is more preferably 20 μm to 120 μm, still more preferably 30 μm to 70 μm, and most preferably 40 μm to 50 μm.
 なお、本実施形態では、幅W1とは、先端溝部24Aの底部から表面側までの幅の最大値(最大幅)をいう。先端溝部24Aの断面形状が、断面視において略V字状に形成されている場合でも、幅W1とは、最大幅、すなわち、先端部221の表面における幅の値をいう。 In the present embodiment, the width W1 refers to the maximum value (maximum width) of the width from the bottom of the tip groove 24A to the surface side. Even when the cross-sectional shape of the tip groove 24A is formed in a substantially V-shape in a cross-sectional view, the width W1 refers to the maximum width, that is, the value of the width on the surface of the tip 221.
 また、先端溝部24Aの最大深さH1(図6参照)は、10μm~500μmであることが好ましい。先端溝部24Aの最大深さH1が上記範囲内であれば、電極脚22の先端部221に、導電層40を形成しても先端溝部24Aは所定の深さを有することができる。先端溝部24Aの最大深さH1は、より好ましくは20μm~300μmであり、さらに好ましくは30μm~150μmである。 The maximum depth H1 (see FIG. 6) of the tip groove 24A is preferably 10 μm to 500 μm. If the maximum depth H1 of the end groove 24A is in the above range, the end groove 24A can have a predetermined depth even if the conductive layer 40 is formed on the end 221 of the electrode leg 22. The maximum depth H1 of the tip groove 24A is more preferably 20 μm to 300 μm, and still more preferably 30 μm to 150 μm.
 側面溝部25は、図1~図5に示すように、先端部221以外の部分である、電極脚22の側面222の表面に複数形成されており、先端溝部24Aの少なくとも一部と連通している。 As shown in FIGS. 1 to 5, a plurality of side grooves 25 are formed on the surface of the side surface 222 of the electrode leg 22, which is a portion other than the tip 221, communicating with at least a part of the tip groove 24A. There is.
 また、側面溝部25の幅W2(図7参照)は、先端溝部24Aの幅W1と同様、10~120μmであることが好ましい。側面溝部25の幅W2が10~120μmであれば、側面溝部25に導電層40が形成されても、側面溝部25内に液体を保持することができる。また、側面溝部25に導電層40が形成されていれば、例えば、アルコールを含んだキムワイプなどで電極脚22の側面222を強く拭いても、キムワイプの繊維が側面溝部25内に侵入するのを低減できる。また、幅W2が上記範囲内であれば、毛髪の太さを超えないため、毛髪が側面溝部25内に侵入するのを低減できる。側面溝部25の幅W2は、より好ましくは20~70μmであり、さらに好ましくは30~50μmである。なお、側面溝部25の幅W2の定義は、上述の幅W1と同様であるため、説明は省略する。 Further, the width W2 (see FIG. 7) of the side surface groove 25 is preferably 10 to 120 μm, similarly to the width W1 of the tip groove 24A. If the width W2 of the side surface groove 25 is 10 to 120 μm, even if the conductive layer 40 is formed in the side surface groove 25, the liquid can be held in the side surface groove 25. Also, if the conductive layer 40 is formed in the side groove 25, for example, even if the side 222 of the electrode leg 22 is strongly wiped with a Kimwipe containing alcohol, the Kimwipe fibers enter into the side groove 25. It can be reduced. In addition, when the width W2 is in the above range, the hair does not exceed the thickness of the hair, so that the penetration of the hair into the side groove 25 can be reduced. The width W2 of the side face groove 25 is more preferably 20 to 70 μm, and still more preferably 30 to 50 μm. In addition, since the definition of the width W2 of the side surface groove part 25 is the same as the above-mentioned width W1, description is abbreviate | omitted.
 また、側面溝部25の最大深さH2(図7参照)は、先端溝部24Aと同様、10~500μmであることが好ましい。側面溝部25の最大深さH2が上記範囲内であれば、電極脚22の側面222に導電層40を形成しても先端溝部24Aは所定の深さを有することができる。先端溝部24Aの最大深さH2は、より好ましくは20~300μmであり、さらに好ましくは30~150μmである。 Further, the maximum depth H2 (see FIG. 7) of the side surface groove 25 is preferably 10 to 500 μm, similarly to the tip groove 24A. If the maximum depth H2 of the side surface groove 25 is within the above range, even if the conductive layer 40 is formed on the side surface 222 of the electrode leg 22, the tip groove 24A can have a predetermined depth. The maximum depth H2 of the tip groove 24A is more preferably 20 to 300 μm, and still more preferably 30 to 150 μm.
[端子部]
 端子部30は、図1~図5に示すように、基体部20の基部21の上面であって、平面視において基部21の略中央部(中心軸Jが通る位置)から+Z軸方向に突出して設けられている。端子部30の中央部分には、金属層31が設けられている。この金属層31が設けられた部分に、後述する検査装置の導線52が接続される(図8参照)。これにより、端子部30は、電極脚22が一体に形成されている基体部20と電気的に接続されているので、端子部30と電極脚22の領域Aである先端部221とが電気的に接続されることとなり、領域Aからの生体情報信号(電気信号)を取り出すことができる。なお、金属層31としては、金、銀、または銅などの金属が好適に用いられるが、端子部30の中央部分には、金属以外の導電性を有する材料により形成された層を設けてもよい。
[Terminal]
The terminal portion 30 is an upper surface of the base portion 21 of the base portion 20 as shown in FIGS. 1 to 5 and protrudes in the + Z-axis direction from a substantially central portion of the base portion 21 (a position through which the central axis J passes) in plan view. Is provided. A metal layer 31 is provided at the central portion of the terminal portion 30. The conducting wire 52 of the inspection apparatus mentioned later is connected to the part in which this metal layer 31 was provided (refer FIG. 8). Thus, since the terminal portion 30 is electrically connected to the base portion 20 in which the electrode leg 22 is integrally formed, the terminal portion 30 and the tip portion 221 which is the region A of the electrode leg 22 are electrically connected. Thus, the biological information signal (electrical signal) from the area A can be extracted. Although metal such as gold, silver, or copper is preferably used as the metal layer 31, a layer made of a material having conductivity other than metal may be provided in the central portion of the terminal portion 30. Good.
 また、端子部30は、後述するが、測定部53(図8参照)と接続されている。具体的には、端子部30は、導線52(図8参照)などに接続され、この導線52(図8参照)と測定部53(図8参照)とが接続されている。端子部30は、電極脚22の先端部221から基体部20を介して得られた頭皮からの生体情報信号(電気信号)を測定部53(図8参照)に伝え、生体情報(例えば、脳波)として測定される。 Moreover, although the terminal part 30 is mentioned later, it is connected with the measurement part 53 (refer FIG. 8). Specifically, the terminal portion 30 is connected to a conducting wire 52 (see FIG. 8) or the like, and the conducting wire 52 (see FIG. 8) and the measuring unit 53 (see FIG. 8) are connected. The terminal unit 30 transmits a biological information signal (electric signal) from the scalp obtained from the tip end portion 221 of the electrode leg 22 through the base unit 20 to the measurement unit 53 (see FIG. 8), and biological information (for example, an electroencephalogram) Measured as).
[導電層]
 導電層40は、電極脚22の先端部221の表面に設けられている。本実施形態では、基体部20および端子部30が導電性エラストマーを用いて一体に形成されているので、基体部20と端子部30との導通は確保されている。このため、導電層40は、先端部221の表面にのみ形成している。なお、基体部20および端子部30が絶縁材料で形成されている場合には、導電層40は、基体部20と端子部30との導通を確保するため、基体部20および端子部30の全面に設けられる。
[Conductive layer]
The conductive layer 40 is provided on the surface of the tip end portion 221 of the electrode leg 22. In the present embodiment, since the base portion 20 and the terminal portion 30 are integrally formed using a conductive elastomer, the conduction between the base portion 20 and the terminal portion 30 is secured. Therefore, the conductive layer 40 is formed only on the surface of the tip portion 221. When base portion 20 and terminal portion 30 are formed of an insulating material, conductive layer 40 ensures the entire surface of base portion 20 and terminal portion 30 to ensure conduction between base portion 20 and terminal portion 30. Provided in
 また、導電層40は、導電性高分子を含有する。導電性高分子としては、例えば、ポリ3、4-エチレンジオキシチオフェン(PEDOT)にポリスチレンスルホン酸(ポリ4-スチレンサルフォネート;PSS)をドープしたPEDOT/PSS、ポリアセチレン、ポリアニリン、ポリチオフェン、ポリフェニレンビニレン、またはポリピロールなどを用いることができる。中でも、生体との接触インピーダンスがより低く、高い導電性を有する点から、PEDOT/PSSを用いることが好ましい。 The conductive layer 40 also contains a conductive polymer. As the conductive polymer, for example, PEDOT / PSS, polyacetylene, polyaniline, polythiophene, polythiophene, polyphenylene in which polystyrene sulfonic acid (poly 4-styrene sulfonate; PSS) is doped to poly3,4-ethylenedioxythiophene (PEDOT) Vinylene or polypyrrole can be used. Among them, it is preferable to use PEDOT / PSS in view of lower contact impedance with a living body and high conductivity.
 また、導電層40の平均厚さは、3~5μmであることが好ましい。この範囲内であれば、導電性を有することができ、頭皮から伝達される電気信号を安定して通電させることができる。なお、導電層40の平均厚さとは、導電層40の厚さの平均値をいう。例えば、導電層40の断面において、任意の場所で数カ所(例えば、6か所程度)測定した時、これらの測定箇所の厚さの平均値をいう。また、本実施形態において、厚さとは、導電層40の接触面に対して垂直方向の層の長さをいう。 The average thickness of the conductive layer 40 is preferably 3 to 5 μm. If it is in this range, it can have conductivity, and can electrically conduct the electric signal transmitted from the scalp stably. The average thickness of the conductive layer 40 refers to the average value of the thickness of the conductive layer 40. For example, in the cross section of the conductive layer 40, when several places (for example, about six places) are measured in arbitrary places, the average value of the thickness of these measurement places is said. Further, in the present embodiment, the thickness refers to the length of the layer in the direction perpendicular to the contact surface of the conductive layer 40.
 次に、本実施形態に係る生体情報測定用電極10を備えた検査装置を用いて被験者の脳波を測定する場合の一例について説明する。図8は、生体情報測定用電極10を備えた検査装置を用いて被験者の脳波を測定する一例を示す図である。図9は、基体部20の先端部221を導電層40を介して頭皮55に接触させた状態の一例を示す説明図である。図10は、先端部221の導電層40の一部が摩耗した状態を示す説明図である。図11は、先端溝部24Aで保持されていた液体が広がる状態を示す説明図である。 Next, an example in the case of measuring an electroencephalogram of a subject using an inspection apparatus provided with the biological information measurement electrode 10 according to the present embodiment will be described. FIG. 8 is a view showing an example of measuring an electroencephalogram of a subject using an inspection apparatus provided with the biological information measuring electrode 10. As shown in FIG. FIG. 9 is an explanatory view showing an example of a state in which the tip end portion 221 of the base portion 20 is in contact with the scalp 55 via the conductive layer 40. As shown in FIG. FIG. 10 is an explanatory view showing a state in which a part of the conductive layer 40 of the tip end portion 221 is worn. FIG. 11 is an explanatory view showing a state in which the liquid held by the end groove 24A spreads.
 検査装置50は、図8に示すように、生体情報測定用電極10と、被験者の頭部にかぶせるキャップ51と、導線52と、測定部53と、表示部54とを有する。キャップ51は、被験者の頭部を覆うように帽子またはヘルメットの形状を有し、合成樹脂や布などで形成される。生体情報測定用電極10が、キャップ51に所定間隔で複数カ所(例えば、21か所)に設けられ、被験者の頭皮55の任意の場所に取り付けられる。導線52は、例えば、リード線などであり、一端が端子部30に接続され、他端が測定部53に接続される。測定部53は、電源部531、および電気信号を解析して、生体情報として脳波を測定する信号解析部532を有する。表示部54は、モニターであり、信号解析部532で解析された脳波541を表示する。脳波541は、その周波数により、例えば、α波(8~13Hz)、β波(14~30Hz)、θ波(4~7Hz)、δ波(0.5~3Hz)に分類される。 As shown in FIG. 8, the inspection apparatus 50 includes the biological information measurement electrode 10, a cap 51 that covers the head of the subject, a lead 52, a measurement unit 53, and a display unit 54. The cap 51 has the shape of a hat or a helmet so as to cover the subject's head, and is formed of synthetic resin, cloth or the like. The biological information measuring electrodes 10 are provided at a plurality of locations (for example, 21 locations) on the cap 51 at predetermined intervals, and are attached to an arbitrary location of the scalp 55 of the subject. The conducting wire 52 is, for example, a lead wire, and one end is connected to the terminal unit 30 and the other end is connected to the measuring unit 53. The measurement unit 53 includes a power supply unit 531 and a signal analysis unit 532 that analyzes an electrical signal and measures an electroencephalogram as biological information. The display unit 54 is a monitor and displays the electroencephalogram 541 analyzed by the signal analysis unit 532. The brain waves 541 are classified into, for example, α wave (8 to 13 Hz), β wave (14 to 30 Hz), θ wave (4 to 7 Hz), and δ wave (0.5 to 3 Hz) according to the frequency.
 生体情報測定用電極10は、予め、電極脚22の少なくとも先端部221を容器中の液体に浸漬して、導電層40の先端溝部24Aおよび側面溝部25に液体を含有させる。液体中に浸漬状態から電極脚22を引き上げても、液体は、毛細管現象により、先端溝部24Aおよび側面溝部25に保持される。その後、先端溝部24Aおよび側面溝部25に液体を含有した状態で、キャップ51に固定することで、図9に示すように、電極脚22の先端部221を導電層40を介して頭皮55に接触させる。 In the biological information measuring electrode 10, at least the tip portion 221 of the electrode leg 22 is previously dipped in the liquid in the container, and the tip groove portion 24A of the conductive layer 40 and the side groove portion 25 contain the liquid. Even when the electrode leg 22 is pulled up from the immersion state in the liquid, the liquid is held in the tip groove 24A and the side groove 25 by capillary action. Thereafter, the distal end groove portion 24A and the side surface groove portion 25 are fixed to the cap 51 in a state of containing the liquid, thereby contacting the distal end portion 221 of the electrode leg 22 with the scalp 55 via the conductive layer 40 as shown in FIG. Let
 電源部531を入れて、測定を開始すると、頭皮からの電気信号が頭皮55から導電層40を介して電極脚22の先端部221に伝えられる。伝達された電気信号は、先端部221から基体部20を介して、端子部30、導線52、および測定部53の順に伝えられる。信号解析部532は、伝えられた電気信号を解析して、表示部54に脳波(例えば、α波、β波、θ波など)541を表示する。 When the power supply unit 531 is inserted and measurement is started, an electrical signal from the scalp is transmitted from the scalp 55 to the tip portion 221 of the electrode leg 22 through the conductive layer 40. The transmitted electric signal is transmitted from the tip end portion 221 through the base portion 20 in the order of the terminal portion 30, the lead 52, and the measuring portion 53. The signal analysis unit 532 analyzes the transmitted electric signal, and displays an electroencephalogram (for example, an α wave, a β wave, a θ wave, etc.) 541 on the display unit 54.
 以上のように構成された生体情報測定用電極10は、領域Aである先端部221の表面に複数の先端溝部24Aを有すると共に、先端部221の表面に導電層40を有する。生体情報測定用電極10を繰り返し使用することにより、例えば、図10に示すように、先端部221の表面の導電層40の一部が徐々に擦り減り、先端部221が部分的に露出する状態になるまで導電層40の一部が剥がれてしまう可能性がある。このような場合でも、生体情報測定用電極10では、先端溝部24Aの表面に形成された導電層40は残っている。そのため、導電層40の導通が、先端溝部24Aの表面に形成された導電層40と頭皮との接触部において維持できるため、導電層40と頭皮との導通を安定して維持することができる。よって、生体情報測定用電極10によれば、電極脚22の先端部221と頭皮との電気的接続を維持できるため、頭皮からの電気信号を安定して得ることができ、生体情報として脳波を安定して測定することができる。 The biological information measuring electrode 10 configured as described above has a plurality of tip grooves 24A on the surface of the tip 221 which is the region A, and the conductive layer 40 on the surface of the tip 221. By repeatedly using the biological information measuring electrode 10, for example, as shown in FIG. 10, a state in which a part of the conductive layer 40 on the surface of the tip part 221 is gradually worn away and the tip part 221 is partially exposed. There is a possibility that part of the conductive layer 40 may be peeled off until Even in such a case, in the biological information measuring electrode 10, the conductive layer 40 formed on the surface of the tip groove 24A remains. Therefore, since the conduction of the conductive layer 40 can be maintained at the contact portion between the conductive layer 40 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 40 and the scalp can be stably maintained. Therefore, according to the electrode 10 for measuring biological information, since the electrical connection between the tip portion 221 of the electrode leg 22 and the scalp can be maintained, an electrical signal from the scalp can be stably obtained, and an electroencephalogram can be obtained as biological information. It can be measured stably.
 また、生体情報測定用電極10は、先端部221の表面に導電層40を有することで、先端部221が頭皮と直接接触している場合よりも、頭皮と生体情報測定用電極10との間の接触インピーダンスを下げることができる。 In addition, the biological information measuring electrode 10 has the conductive layer 40 on the surface of the tip portion 221, so that it is more between the scalp and the biological information measuring electrode 10 than when the tip portion 221 is in direct contact with the scalp. Can reduce the contact impedance of
 さらに、生体情報測定用電極10を液体に浸漬すると、領域Aである先端部221の表面に設けた先端溝部24A内に毛細管現象により液体を保持することができる。そのため、脳波を測定する際に、先端部221を頭皮に接触させると、図11に示すように、先端溝部24Aで保持されていた液体が先端部221と接触する頭皮の表面に流れて頭皮に広がる。この結果、頭皮から導電層40に導通する面積が大きくなるため、頭皮と生体情報測定用電極10との間の接触インピーダンスをより下げることができる。これにより、脳波をより安定して測定することができる。 Furthermore, when the biological information measuring electrode 10 is immersed in the liquid, the liquid can be held by capillary action in the tip groove 24A provided on the surface of the tip portion 221 which is the region A. Therefore, when measuring the electroencephalogram, when the tip end portion 221 is brought into contact with the scalp, as shown in FIG. 11, the liquid held in the tip groove portion 24A flows on the surface of the scalp in contact with the tip end portion 221 to the scalp. spread. As a result, the area of conduction from the scalp to the conductive layer 40 is increased, so the contact impedance between the scalp and the biological information measuring electrode 10 can be further lowered. Thereby, the electroencephalogram can be measured more stably.
 また、生体情報測定用電極10は、電極脚22の側面に側面溝部25を複数有しており、側面溝部25は先端溝部24Aの少なくとも一部と連通している。そのため、脳波の測定時に、先端溝部24Aで保持されていた液体が先端部221と接触する頭皮の表面に流れ、先端溝部24Aで保持されていた液体が消費される。その際、側面溝部25に保持されていた液体が先端溝部24Aに流れて頭皮に供給される。これにより、頭皮と生体情報測定用電極10との間の接触インピーダンスを低く抑えたまま、頭皮と生体情報測定用電極10との接触を維持することができるため、生体情報をより安定して継続的に測定することができる。 The biological information measuring electrode 10 has a plurality of side grooves 25 on the side surface of the electrode leg 22, and the side grooves 25 communicate with at least a part of the tip groove 24A. Therefore, at the time of measurement of the electroencephalogram, the liquid held in the tip groove 24A flows to the surface of the scalp in contact with the tip 221, and the liquid held in the tip groove 24A is consumed. At this time, the liquid held in the side groove 25 flows to the tip groove 24A and is supplied to the scalp. Thereby, the contact between the scalp and the biological information measuring electrode 10 can be maintained while the contact impedance between the scalp and the biological information measuring electrode 10 is kept low, so that the biological information can be continued more stably. Can be measured.
 また、金属により形成されている生体情報測定用電極は、電極の被験者との接触面が金属であり、被験者に金属アレルギーを生じさせる場合があるため、金属アレルギーを持つ被験者には用いることはできない。本実施形態では、導電層40は、導電性高分子を含んで形成されているため、導電層40が頭皮に接触しても被験者に金属アレルギーを生じさせることはなく、安全である。よって、生体情報測定用電極10は、全ての被験者に安心して使用することができる。 In addition, the electrode for measuring biological information formed of metal can not be used for a subject with metal allergy because the contact surface of the electrode with the subject is metal and may cause metal allergy to the subject. . In the present embodiment, since the conductive layer 40 is formed to contain a conductive polymer, even if the conductive layer 40 contacts the scalp, it does not cause metal allergy to the subject, which is safe. Therefore, the biological information measurement electrode 10 can be used with confidence for all subjects.
[変形例]
 生体情報測定用電極10の一例を示したが、これに限定されない。以下に、生体情報測定用電極10の変形例のいくつかについて説明する。
[Modification]
Although an example of the biological information measurement electrode 10 is shown, the present invention is not limited to this. Hereinafter, some modifications of the biological information measuring electrode 10 will be described.
 本実施形態では、先端溝部24Aは、電極脚22の先端部221を+Z軸方向に向かって見たとき、十字型となるように先端部221に放射状に形成されているが、先端溝部24Aは、溝内に液体を保持することができる形状であればよい。例えば、図12に示すように、電極脚22の先端部221を+Z軸方向に向かって見たとき、先端部221に、6つの先端溝部24Bが放射状に等しい角度で形成されていてもよい。また、図13に示すように、電極脚22の先端部221を+Z軸方向に向かって見たとき、先端部221には、網目状に形成された先端溝部24Cが設けられていてもよい。さらに、図14に示すように樹枝状に形成された先端溝部24Dが設けられていてもよい。図12~図14に示すように、先端部221に、放射状に形成された先端溝部24B、網目状に形成された先端溝部24C、または樹枝状に形成された先端溝部24Dを設けた場合でも、先端部221の表面の先端溝部24B~24Dに液体をより効率よく保持することができる。そのため、導電層40と頭皮との導通をより安定して維持することができる。また、先端部221が頭皮に接触した際、先端部221は、あらゆる方向に対して先端溝部24B~24Dの表面の導電層40と頭皮との導通を安定して維持することができる。そのため、先端部221を頭皮に沿ってあらゆる方向に移動させても、生体情報をより安定して測定することができる。 In the present embodiment, the tip groove portion 24A is radially formed on the tip portion 221 so as to become a cross shape when the tip portion 221 of the electrode leg 22 is viewed in the + Z axial direction, but the tip groove portion 24A is And any shape that can hold the liquid in the groove. For example, as shown in FIG. 12, when the tip end portion 221 of the electrode leg 22 is viewed in the + Z axial direction, six tip groove portions 24B may be formed at the same angle in the radial direction. Further, as shown in FIG. 13, when the tip end portion 221 of the electrode leg 22 is viewed in the + Z axial direction, the tip end portion 221 may be provided with a tip end groove portion 24C formed in a mesh shape. Furthermore, as shown in FIG. 14, a distal end groove 24D formed in a dendritic shape may be provided. As shown in FIG. 12 to FIG. 14, even when the distal end groove portion 24B formed radially, the distal end groove portion 24C formed in a mesh shape, or the distal end groove portion 24D formed in a dendritic shape are provided in the distal end portion 221, The liquid can be more efficiently held in the tip grooves 24B to 24D on the surface of the tip 221. Therefore, the conduction between the conductive layer 40 and the scalp can be maintained more stably. In addition, when the tip end portion 221 contacts the scalp, the tip end portion 221 can stably maintain the conduction between the conductive layer 40 on the surface of the tip end groove portions 24B to 24D and the scalp in any direction. Therefore, biological information can be measured more stably even if the tip 221 is moved in any direction along the scalp.
 本実施形態では、電極脚22の先端部221に先端溝部24Aを形成しているが、図15に示すように、電極脚22の先端部221に窪み部26を形成してもよい。先端部221に窪み部26を設けた場合でも、先端部221の表面の窪み部26に液体をより効率よく保持することができため、導電層40と頭皮との導通をより安定して維持できる。また、先端部221が頭皮に接触した際、先端部221は、あらゆる方向に対して窪み部26の表面の導電層40と頭皮との導通を安定して維持できる。そのため、先端部221を頭皮に沿ってあらゆる方向に移動させても、生体情報をより安定して測定できる。 In the present embodiment, the distal end groove portion 24A is formed in the distal end portion 221 of the electrode leg 22, but as shown in FIG. 15, the recessed portion 26 may be formed in the distal end portion 221 of the electrode leg 22. Even when the recessed portion 26 is provided in the tip end portion 221, the liquid can be more efficiently held in the recessed portion 26 in the surface of the tip end portion 221, so that the conduction between the conductive layer 40 and the scalp can be maintained more stably. . In addition, when the tip end portion 221 contacts the scalp, the tip end portion 221 can stably maintain conduction between the conductive layer 40 on the surface of the depression portion 26 and the scalp in all directions. Therefore, biological information can be measured more stably even if the tip portion 221 is moved in any direction along the scalp.
 窪み部26の幅は、先端溝部24Aと同様、10μm~450μmであることが好ましく、より好ましくは20μm~120μmであり、さらに好ましくは30μm~70μmであり、最も好ましくは40μm~50μmである。窪み部26の幅が10μm~450μmであることが好ましい理由は、先端溝部24Aと同様の理由である。なお、窪み部26の幅とは、窪み部26が円形である場合には、先端の平面視における直径である。窪み部26が楕円形である場合には、先端の平面視における直径である。窪み部26の長軸と短軸の平均値を窪み部26の幅とする。 The width of the recess 26 is preferably 10 μm to 450 μm, more preferably 20 μm to 120 μm, still more preferably 30 μm to 70 μm, and most preferably 40 μm to 50 μm, as in the tip groove 24A. The reason why the width of the recess 26 is preferably 10 μm to 450 μm is the same reason as the tip groove 24A. In addition, the width | variety of the hollow part 26 is a diameter in planar view of a front end, when the hollow part 26 is circular. If the recess 26 is elliptical, it is the diameter of the tip in plan view. The average value of the major and minor axes of the recess 26 is taken as the width of the recess 26.
 窪み部26の最大深さは、先端溝部24Aと同様、10μm~500μmであることが好ましく、より好ましくは20μm~300μmであり、さらに好ましくは30μm~150μmである。窪み部26の最大深さが10μm~500μmであることが好ましい理由は、先端溝部24Aと同様の理由である。 The maximum depth of the recess 26 is preferably 10 μm to 500 μm, more preferably 20 μm to 300 μm, and still more preferably 30 μm to 150 μm, as in the tip groove 24A. The reason why the maximum depth of the recess 26 is preferably 10 μm to 500 μm is the same reason as the tip groove 24A.
 本実施形態では、基体部20と端子部30とは一体に形成されているが、基体部20と端子部30とは別々の部材で構成されていてもよい。基体部20と端子部30とを別々の部材で構成した時の生体情報測定用電極10の一例を図16および図17に示す。図16は、生体情報測定用電極10の他の構成の一例を示す斜視図であり、図17は、図16のII-II断面図である。図16および図17に示すように、端子部30は、円板形状の基部301と、基部301の中央部から突出した凸部302とを有する。端子部30は、金属材料などの導電性を有する材料により形成されている。端子部30は、基体部20の基部21が電極脚22と連続している側とは反対側の端部21aと、例えば、不図示の導電性接着剤や導電性ペーストなどにより固定して接続されている。これにより、端子部30は、電極脚22と一体で形成されている基体部20と電気的に接続される。従って、電極脚22の先端部221は、基体部20の基部21を介して、端子部30と電気的に接続される。 In the present embodiment, the base portion 20 and the terminal portion 30 are integrally formed, but the base portion 20 and the terminal portion 30 may be configured by separate members. One example of the biological information measuring electrode 10 when the base portion 20 and the terminal portion 30 are constituted by separate members is shown in FIG. 16 and FIG. FIG. 16 is a perspective view showing an example of another configuration of the biological information measuring electrode 10, and FIG. 17 is a cross-sectional view taken along the line II-II of FIG. As shown in FIGS. 16 and 17, the terminal portion 30 has a disc-shaped base portion 301 and a convex portion 302 protruding from the central portion of the base portion 301. The terminal portion 30 is formed of a conductive material such as a metal material. The terminal portion 30 is fixed and connected to an end portion 21a opposite to the side where the base portion 21 of the base portion 20 is continuous with the electrode leg 22, for example, with a conductive adhesive or conductive paste (not shown). It is done. Thus, the terminal portion 30 is electrically connected to the base portion 20 formed integrally with the electrode leg 22. Therefore, the tip end portion 221 of the electrode leg 22 is electrically connected to the terminal portion 30 via the base portion 21 of the base portion 20.
 本実施形態では、基体部20は、基部21と電極脚22とを一体に成形しているが、基部21と電極脚22とを別々の部材で構成してもよい。このとき、基部21と電極脚22とは、合成樹脂からなる結着部材により結着する。なお、結着部材は、エポキシ樹脂、またはウレタン樹脂などの合成樹脂が硬化したものである。また、結着部材として、前記合成樹脂の他に、ゴムなどの弾性を有した合成樹脂でもよい。 In the present embodiment, the base portion 20 integrally forms the base portion 21 and the electrode leg 22, but the base portion 21 and the electrode leg 22 may be configured by separate members. At this time, the base 21 and the electrode leg 22 are bound by a binding member made of synthetic resin. The binding member is one obtained by curing a synthetic resin such as an epoxy resin or a urethane resin. In addition to the synthetic resin, the binding member may be an elastic synthetic resin such as rubber.
 本実施形態では、側面溝部25が電極脚22の側面222の表面に形成されているが、先端溝部24Aで十分、液体を保持することができる場合などには、側面溝部25は形成されていなくてもよい。 In the present embodiment, the side surface groove 25 is formed on the surface of the side surface 222 of the electrode leg 22. However, the side surface groove 25 is not formed if the tip groove 24A can sufficiently hold the liquid. May be
 導電層40は、領域Aである電極脚22の先端部221に形成されているが、少なくとも先端部221に形成されていればよく、基体部20の他の部分に形成されていてもよいし、基体部20および端子部30の全面に形成されてもいてもよい。例えば、基体部20および端子部30が絶縁材料で形成されている場合には、基体部20および端子部30の全面に形成することで、先端部221から端子部30への導通をより安定させることができる。 The conductive layer 40 is formed at the tip end portion 221 of the electrode leg 22 which is the region A, but may be formed at another portion of the base portion 20 as long as it is formed at least at the tip end portion 221. Alternatively, it may be formed on the entire surface of the base portion 20 and the terminal portion 30. For example, when the base portion 20 and the terminal portion 30 are formed of an insulating material, forming the entire surface of the base portion 20 and the terminal portion 30 further stabilizes the conduction from the tip portion 221 to the terminal portion 30. be able to.
<第1の実施形態に係る生体情報測定用電極の製造方法>
 次に、第1の実施形態に係る生体情報測定用電極の製造方法について説明する。図18は、本実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。図19は、成形時に用いられる原料供給通路61が端子部30に固定されている状態の一例を示す図である。
<Manufacturing method of biological information measuring electrode according to the first embodiment>
Next, a method of manufacturing the biological information measuring electrode according to the first embodiment will be described. FIG. 18 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment. FIG. 19 is a view showing an example of a state where the raw material supply passage 61 used at the time of molding is fixed to the terminal portion 30. As shown in FIG.
 本実施形態に係る生体情報測定用電極の製造方法は、図18に示すように、基体部20および端子部30を成形すると共に、領域Aである先端部221の表面に複数の先端溝部24Aを形成し、側面222に側面溝部25を形成する成形工程(ステップS11)と、先端部221の表面を活性化処理する表面処理工程(ステップS12)と、先端部221の表面に、導電性高分子を含有する導電層40を形成する導電層形成工程(ステップS13)とを含む。以下、各工程について説明する。 In the method of manufacturing the biological information measuring electrode according to the present embodiment, as shown in FIG. 18, the base portion 20 and the terminal portion 30 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 221 which is the region A. Forming step (step S11) for forming the side groove portion 25 on the side surface 222, surface treatment step (step S12) for activating the surface of the tip portion 221, and conductive polymer on the surface of the tip portion 221 And a conductive layer forming step (step S13) of forming a conductive layer 40 containing Each step will be described below.
 まず、成形工程(ステップS11)では、基体部20および端子部30を形成する材料を用いて、基体部20および端子部30を一体に成形すると共に、先端部221の表面に複数の先端溝部24Aを形成し、側面222に側面溝部25を形成する。 First, in the molding step (step S11), the base portion 20 and the terminal portion 30 are integrally molded using a material for forming the base portion 20 and the terminal portion 30, and a plurality of tip groove portions 24A are formed on the surface of the tip portion 221. To form the side grooves 25 on the side surface 222.
 基体部20および端子部30は、圧縮成形(コンプレッション成形)、射出成形(インジェクション成形)、または押出成形(トランスファー成形)など公知の成形方法で、所望の形状を有する基体部20および端子部30を成形することができる。これらの成形法を用いる際、基体部20および端子部30の形状に対応した金型が用いられる。金型には、先端溝部24Aおよび側面溝部25に対応した突部を設ける。前記金型を用いることで、基体部20および端子部30を同時に成形すると共に、先端溝部24Aおよび側面溝部25を同時に形成することができる。 The base portion 20 and the terminal portion 30 are made of the base portion 20 and the terminal portion 30 having desired shapes by a known molding method such as compression molding (compression molding), injection molding (injection molding), or extrusion molding (transfer molding). It can be molded. When using these molding methods, a mold corresponding to the shapes of the base portion 20 and the terminal portion 30 is used. The mold is provided with a protrusion corresponding to the end groove 24A and the side groove 25. By using the mold, the base portion 20 and the terminal portion 30 can be simultaneously formed, and the tip groove 24A and the side surface groove 25 can be simultaneously formed.
 また、射出成形法などを用いる場合、射出成形後、基体部20および端子部30を成形する原料(樹脂や金属など)が供給される原料供給通路(例えば、スプール、ランナーなど)が基体部20または端子部30に連結されている。例えば、図19に示すように、原料供給通路61が端子部30に連結されている場合、原料供給通路61の少なくともその一部は、基体部20および端子部30の成形後も、端子部30に連結しておくことが好ましい。後述する導電層形成工程(ステップS13)で、基体部20および端子部30の少なくとも一部を、導電性高分子を含む溶液に浸漬する際に、原料供給通路61は、基体部20の掴み手として用いることができる。なお、原料供給通路61は、好適な成形を行うために製品のどの位置にするか決まるもので、図19に示す端子部30以外に、基体部20の基部21などに連結されていてもよい。 In the case of using the injection molding method or the like, the raw material supply passage (e.g., a spool, a runner, etc.) to which the raw material (such as resin or metal) for molding the base portion 20 and the terminal portion 30 is supplied after injection molding. Or, it is connected to the terminal unit 30. For example, as shown in FIG. 19, when the raw material supply passage 61 is connected to the terminal portion 30, at least a part of the raw material supply passage 61 can be used for the terminal portion 30 even after the base portion 20 and the terminal portion 30 are formed. It is preferable to connect to When immersing at least a part of the base portion 20 and the terminal portion 30 in a solution containing a conductive polymer in the conductive layer forming step (step S13) described later, the raw material supply passage 61 serves as a grip for the base portion 20. It can be used as The raw material supply passage 61 is determined at which position of the product to perform suitable molding, and may be connected to the base 21 or the like of the base 20 other than the terminal 30 shown in FIG. .
 次に、表面処理工程(ステップS12)では、エキシマによる真空紫外光(エキシマUV光)を照射する方法、またはArおよび酸素を含む混合ガス中でプラズマ処理する方法を用いて、先端部221の表面を活性化処理する。先端部221の表面を活性化処理することで、後述する導電層形成工程(ステップS13)において、先端部221と導電層40との密着性を向上させることができる。これにより、先端部221の洗浄や拭き取りなどにより物理的な力が加わった際に、導電層40が基体部20(主に先端部221)から容易に剥がれることを防止できる。 Next, in the surface treatment step (step S12), the surface of the tip portion 221 is applied using a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen. Activate the By performing the activation process on the surface of the tip portion 221, the adhesion between the tip portion 221 and the conductive layer 40 can be improved in the conductive layer forming step (step S13) described later. Thereby, when physical force is applied by washing | cleaning, wiping off, etc. of the front-end | tip part 221, it can prevent that the conductive layer 40 peels easily from the base | substrate part 20 (mainly front-end | tip part 221).
 また、エキシマUV光を照射する方法を用いる場合、先端部221の表面にエキシマUV光を照射する。エキシマUV光は、大気中で波長が240nm以下のUV光であり、放電性ガスの種類により、所定の波長(中心波長)を有する。放電性ガスとして、Ar(波長126nm)、Kr(波長146nm)、ArBr(波長165nm)、Xe(波長172nm)、KrI(波長191nm)、またはKrCl(波長222nm)などを用いることができる。エキシマUV光を放射する照射ランプが、例えば、Xeガスを封入した誘電体バリヤ放電ランプであるとする。この場合、誘電体バリヤ放電ランプは、Xe原子が励起されたエキシマ状態(Xe )となり、このエキシマ状態から再びXe原子に解離するときに波長約172nmの光を発生する。この波長172nmの光を酸素に照射することで、高濃度のオゾンが発生する。このオゾンの作用により、基体部20および端子部30のうちエキシマUV光が照射される箇所の表面が改質され、親水性の高い基(例えば、水酸基(OH基)、アルデヒド基(CHO基)、カルボキシル基(COOH基)が形成される。これにより、基体部20の先端部221の表面を活性化処理することができ、先端部221の表面を親水性に変化させることができる。この結果、先端部221の表面の液体に対する濡れ性を高めることができる。そのため、エキシマUV光を照射する方法は、先端部221のみを簡易に活性化処理することができるので、基体部20および端子部30が導電性材料で形成されている場合に有効に用いることができる。なお、少なくとも先端部221の表面を活性化処理できればよく、基体部20の先端部221以外の部分や、基体部20および端子部30の全体にエキシマUV光を照射してもよい。 In addition, in the case of using a method of irradiating excimer UV light, the surface of the tip portion 221 is irradiated with excimer UV light. Excimer UV light is UV light having a wavelength of 240 nm or less in the atmosphere, and has a predetermined wavelength (central wavelength) depending on the type of discharge gas. As the dischargeable gas, Ar 2 (wavelength 126 nm), Kr 2 (wavelength 146 nm), ArBr (wavelength 165 nm), Xe 2 (wavelength 172 nm), KrI (wavelength 191 nm), KrCl (wavelength 222 nm) or the like can be used. . A radiation lamp emitting excimer UV light is, for example, a dielectric barrier discharge lamp sealed with Xe gas. In this case, the dielectric barrier discharge lamp is in an excimer state (Xe 2 * ) in which Xe atoms are excited, and generates light with a wavelength of about 172 nm when it dissociates again into Xe atoms from this excimer state. By irradiating the light of wavelength 172 nm to oxygen, high concentration ozone is generated. By the action of the ozone, the surface of the portion to which the excimer UV light is irradiated among the base portion 20 and the terminal portion 30 is modified, and a highly hydrophilic group (for example, a hydroxyl group (OH group), an aldehyde group (CHO group) Thus, a carboxyl group (COOH group) is formed, whereby the surface of the tip portion 221 of the base portion 20 can be activated, and the surface of the tip portion 221 can be made hydrophilic. The wettability to the liquid of the surface of tip part 221 can be improved.For this reason, only the tip part 221 can be activated easily by the method of irradiating excimer UV light, so the base part 20 and the terminal part 30 can be effectively used in the case where it is formed of a conductive material, It is sufficient if at least the surface of the tip portion 221 can be activated, 221 and portions other than may be irradiated with excimer UV light the entire base portion 20 and the terminal portion 30.
 また、Arおよび酸素とを含む混合ガス中でプラズマ処理する方法を用いる場合、基体部20および端子部30の全体の表面がプラズマで活性化処理される。これにより、先端部221の表面以外に、基体部20および端子部30の全体の表面を親水性に変化させることができる。この結果、先端部221含め、基体部20および端子部30の全体の表面の液体に対する濡れ性を高めることができる。そのため、基体部20および端子部30が導電性材料または絶縁材料のいずれで形成されている場合でも有効に用いることができる。 In addition, in the case of using the method of plasma treatment in a mixed gas containing Ar and oxygen, the entire surface of the base portion 20 and the terminal portion 30 is plasma activated. Thus, the entire surface of the base portion 20 and the terminal portion 30 can be changed to hydrophilicity in addition to the surface of the tip portion 221. As a result, the wettability to the liquid of the whole surface of base part 20 and terminal area 30 including tip part 221 can be improved. Therefore, even when the base portion 20 and the terminal portion 30 are formed of either a conductive material or an insulating material, it can be effectively used.
 最後に、導電層形成工程(ステップS13)では、先端部221の表面に導電性高分子を含有する導電層40を形成する。導電層形成工程(ステップS13)は、塗布工程(ステップS131)と、乾燥工程(ステップS132)とを含む。 Finally, in the conductive layer forming step (step S13), the conductive layer 40 containing a conductive polymer is formed on the surface of the tip portion 221. The conductive layer forming step (step S13) includes a coating step (step S131) and a drying step (step S132).
 導電層形成工程(ステップS13)の塗布工程(ステップS131)では、少なくとも先端部221に、導電性高分子を含む溶液を塗布して塗布層を形成する。導電性高分子を含む溶液を少なくとも先端部221に塗布する方法としては、導電性高分子を含む溶液に少なくとも先端部221を浸漬する浸漬法、導電性高分子を含む溶液を少なくとも先端部221に吹き付けるスプレー法などを用いることができる。 In the coating step (step S131) of the conductive layer forming step (step S13), a solution containing a conductive polymer is applied to at least the tip portion 221 to form a coating layer. As a method of applying a solution containing a conductive polymer to at least the tip portion 221, an immersion method of immersing at least the tip portion 221 in a solution containing a conductive polymer, a solution containing a conductive polymer at least at the tip portion 221 A spray method or the like can be used.
 導電層形成工程(ステップS13)の乾燥工程(ステップS132)では、先端部221に形成された塗布層を乾燥して、塗布層を硬化させる。これにより、先端部221および先端溝部24Aの表面に導電層40が形成される。本実施形態では、基体部20および端子部30が導電性エラストマーで形成されているため、導電層40は、先端部221の表面に形成すればよい。 In the drying step (step S132) of the conductive layer forming step (step S13), the applied layer formed on the tip portion 221 is dried to cure the applied layer. Thereby, the conductive layer 40 is formed on the surfaces of the tip end portion 221 and the tip end groove portion 24A. In the present embodiment, since the base portion 20 and the terminal portion 30 are formed of a conductive elastomer, the conductive layer 40 may be formed on the surface of the tip portion 221.
 このように、先端部221の表面に導電層40が形成されることで、生体情報測定用電極10が得られる。そのため、生体情報測定用電極10を繰り返し使用することで、先端部221に設けた導電層40が摩耗して削られても、先端溝部24Aの表面に設けられた導電層40は残っている。よって、先端溝部24Aの表面に形成された導電層40と頭皮との接触部において頭皮との導通を維持することができるので、導電層40と頭皮との導通を安定して維持することができる。 As described above, the conductive layer 40 is formed on the surface of the tip portion 221, whereby the biological information measurement electrode 10 is obtained. Therefore, by repeatedly using the biological information measurement electrode 10, the conductive layer 40 provided on the surface of the tip groove 24A remains even if the conductive layer 40 provided on the tip 221 is worn and scraped off. Therefore, since the conduction with the scalp can be maintained at the contact portion between the conductive layer 40 formed on the surface of the tip groove 24A and the scalp, the conduction between the conductive layer 40 and the scalp can be stably maintained. .
[変形例]
 本実施形態に係る生体情報測定用電極の製造方法の一例を示したが、これに限定されない。以下に、生体情報測定用電極の製造方法における変形例を説明する。
[Modification]
Although an example of the manufacturing method of the living body information measurement electrode concerning this embodiment was shown, it is not limited to this. Below, the modification in the manufacturing method of the electrode for biometric information measurement is demonstrated.
 本実施形態では、成形工程(ステップS11)において、先端溝部24Aおよび側面溝部25に対応した突起を設けた金型を用いて、基体部20および端子部30を同時に形成しているが、これに限定されない。例えば、基体部20および端子部30を、それぞれ、別々に成形して一体化した後に、先端溝部24Aおよび側面溝部25を形成してもよい。 In the present embodiment, in the molding step (step S11), the base portion 20 and the terminal portion 30 are simultaneously formed using a mold provided with a protrusion corresponding to the tip groove portion 24A and the side surface groove portion 25. It is not limited. For example, the tip groove 24A and the side groove 25 may be formed after the base portion 20 and the terminal portion 30 are separately molded and integrated, respectively.
 この場合、本実施形態に係る生体情報測定用電極の製造方法は、図20に示すように、成形工程(ステップS11)を、基体部20および端子部30を準備する準備工程(ステップS111)と、基体部20および端子部30を結着して一体化する結着工程(ステップS112)と、先端部221の表面に複数の先端溝部24Aおよび側面溝部25を形成する溝部形成工程(ステップS113)とで構成する。そして、本実施形態と同様に、先端部221の表面を活性化処理する表面処理工程(ステップS12)と、先端部221の表面に、導電性高分子を含有する導電層40を形成する導電層形成工程(ステップS13)とを行う。 In this case, as shown in FIG. 20, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the forming step (step S11) is a preparing step (step S111) of preparing the base portion 20 and the terminal portion 30. A bonding step of bonding and integrating the base portion 20 and the terminal portion 30 (step S112), and a groove forming step of forming the plurality of tip grooves 24A and the side grooves 25 on the surface of the tip portion 221 (step S113) And consists of. Then, as in the present embodiment, a surface treatment step (step S12) for activating the surface of the tip portion 221, and a conductive layer for forming a conductive layer 40 containing a conductive polymer on the surface of the tip portion 221. And a forming process (step S13).
 上述の成形工程(ステップS11)の結着工程(ステップS112)においては、基体部20と端子部30とを結着部材を用いて一体化する。この結着するために使用する結着部材は、公知の結着部材を用いることができる。例えば、エポキシ樹脂、またはウレタン樹脂などの合成樹脂、ゴムなどの弾性を有した合成樹脂などを用いることができる。 In the binding step (step S112) of the above-described forming step (step S11), the base portion 20 and the terminal portion 30 are integrated using a binding member. A known binding member can be used as the binding member used for this binding. For example, synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used.
 また、本実施形態では、導電層形成工程(ステップS13)において、基体部20の先端部221にのみ導電層40を形成しているが、導電層40は少なくとも先端部221に形成されていればよく、導電層40は、基体部20の先端部221以外の部分、または基体部20および端子部30の全体に形成されていてもよい。本実施形態では、基体部20および端子部30が導電性エラストマーで形成されているため、導電層40は、少なくとも先端部221の表面に形成すればよいが、基体部20および端子部30が絶縁材料で形成されている場合には、導電層40は、基体部20および端子部30の全面に形成する。これにより、頭皮から得られる電気信号は、導電層40を介して、電極脚22の先端部221から端子部30まで伝えられる。 Further, in the present embodiment, in the conductive layer forming step (step S13), the conductive layer 40 is formed only at the tip end portion 221 of the base portion 20, but the conductive layer 40 is formed at least at the tip end portion 221. Preferably, the conductive layer 40 may be formed on the portion other than the tip end portion 221 of the base portion 20, or on the whole of the base portion 20 and the terminal portion 30. In the present embodiment, since the base portion 20 and the terminal portion 30 are formed of a conductive elastomer, the conductive layer 40 may be formed at least on the surface of the tip portion 221, but the base portion 20 and the terminal portion 30 are insulated. When formed of a material, the conductive layer 40 is formed on the entire surface of the base portion 20 and the terminal portion 30. Thereby, the electrical signal obtained from the scalp is transmitted from the tip end portion 221 of the electrode leg 22 to the terminal portion 30 through the conductive layer 40.
[第2の実施形態]
 第2の実施形態に係る生体情報測定用電極について説明する。本実施形態に係る生体情報測定用電極は、上記の第1の実施形態に係る生体情報測定用電極10の基体部20および端子部30を形成する材料を変更したこと以外は、上記の第1の実施形態に係る生体情報測定用電極10と同様であるため、本実施形態では、基体部20、端子部30および導電層40の構成についてのみ説明する。なお、本実施形態に係る生体情報測定用電極の構成を説明にする当たり、上記の第1の実施形態に係る生体情報測定用電極10を示す図1~図5を用いて説明する。
Second Embodiment
A biological information measurement electrode according to a second embodiment will be described. The biological information measuring electrode according to the present embodiment is the same as the first above except that the material for forming the base portion 20 and the terminal portion 30 of the biological information measuring electrode 10 according to the first embodiment is changed. Since it is the same as that of the electrode 10 for measuring biological information according to the embodiment of the present invention, only the configurations of the base portion 20, the terminal portion 30, and the conductive layer 40 will be described in the present embodiment. The configuration of the biological information measurement electrode according to the present embodiment will be described with reference to FIGS. 1 to 5 showing the biological information measurement electrode 10 according to the first embodiment.
[基体部および端子部]
 本実施形態に係る生体情報測定用電極の基体部20および端子部30は、カーボン材料を含む樹脂材料で形成されており、樹脂材料を母材(マトリックス)とし、樹脂材料中にカーボン材料を含む複合材料である。基体部20と端子部30とは、同一の材料で形成されていてもよいし、異なる材料で形成されていてもよい。本実施形態では、基体部20および端子部30は、同一の材料で射出成形により一体に形成されている。従って、電極脚22の先端部221(後述する)側から端子部30まで導通していることになる。
[Base part and terminal part]
The base portion 20 and the terminal portion 30 of the biological information measuring electrode according to the present embodiment are formed of a resin material containing a carbon material, and the resin material is used as a matrix (matrix), and the carbon material is contained in the resin material. It is a composite material. The base portion 20 and the terminal portion 30 may be formed of the same material or may be formed of different materials. In the present embodiment, the base portion 20 and the terminal portion 30 are integrally formed of the same material by injection molding. Accordingly, the terminal portion 30 is electrically connected to the tip end portion 221 (described later) of the electrode leg 22.
 上述の樹脂材料としては、熱可塑性樹脂が好適に用いられる。熱可塑性樹脂としては、特に限定はなく、例えば、ポリアミド(例えば、ナイロン6、ナイロン66)、ポリカーボネート、ポリオキシメチレン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、AS樹脂およびABS樹脂などが挙げられる。これらは1種単独で用いてもよいし、2種類以上を混合して用いてもよい。熱可塑性樹脂としては、耐候性、成形性、強度、およびコストなどの観点から、ポリアミド、ポリカーボネート、ポリフェニレンスルフィド、ポリエステル、またはポリプロピレンを用いることが好ましい。 A thermoplastic resin is suitably used as the above-mentioned resin material. The thermoplastic resin is not particularly limited, and, for example, polyamide (for example, nylon 6, nylon 66), polycarbonate, polyoxymethylene, polyphenylene sulfide, polyphenylene ether, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate) And polyethylene, polypropylene, polystyrene, polymethyl methacrylate, AS resin and ABS resin. These may be used singly or in combination of two or more. As the thermoplastic resin, it is preferable to use polyamide, polycarbonate, polyphenylene sulfide, polyester, or polypropylene from the viewpoint of weatherability, moldability, strength, cost and the like.
 上述のカーボン材料は、基体部20および端子部30に導電性を付与すると共に、基体部20および端子部30を軽量かつ柔軟にすることができる。カーボン材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノホーンまたはカーボンファイバ(炭素繊維)などが用いられる。また、カーボン材料は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 The carbon material described above can impart conductivity to the base portion 20 and the terminal portion 30, and can make the base portion 20 and the terminal portion 30 lightweight and flexible. As the carbon material, graphite, carbon black, carbon nanotube, carbon nanohorn or carbon fiber (carbon fiber) or the like is used. Moreover, a carbon material may be used individually by 1 type, and may use 2 or more types together.
 また、カーボン材料の中でも、生産性、取り扱い性、およびコストの観点から、カーボンファイバを用いることが好ましい。カーボンファイバには、出発原料の違いから、大きくPAN系とピッチ系とに分かれるが、いずれのタイプでもよく、組み合わせて用いてもよい。そして、カーボン材料としてカーボンファイバを用いる場合、5μm~10μm程度の平均太さ(平均径)で、50μm~200μm程度の平均長さのものを好適に用いる。平均径が5μm~10μm、平均長さが50μm~200μmの範囲内であれば、容易に樹脂材料に分散することができる。なお、カーボンファイバの太さは、光散乱装置、レーザ顕微鏡、走査型電子顕微鏡(SEM)などを用いて公知の測定方法で求めることができる。例えば、SEMなどでカーボンファイバを観察し、任意に選んだ所定の数(例えば、10~200本)のカーボンファイバの長手方向に対して直交する方向の長さ(カーボンファイバの径方向の長さ)を測定し、その平均値を算出することで、平均径が求められる。 Further, among carbon materials, it is preferable to use a carbon fiber from the viewpoint of productivity, handleability, and cost. The carbon fiber is roughly divided into a PAN system and a pitch system due to the difference in starting materials, but any type may be used, and they may be used in combination. When a carbon fiber is used as the carbon material, one having an average thickness (average diameter) of about 5 μm to 10 μm and an average length of about 50 μm to 200 μm is preferably used. If the average diameter is in the range of 5 μm to 10 μm and the average length is in the range of 50 μm to 200 μm, the resin material can be easily dispersed. The thickness of the carbon fiber can be determined by a known measurement method using a light scattering device, a laser microscope, a scanning electron microscope (SEM) or the like. For example, a carbon fiber is observed with an SEM or the like, and a length in a direction orthogonal to the longitudinal direction of a predetermined number (for example, 10 to 200) of carbon fibers arbitrarily selected (a length in a radial direction of the carbon fiber The average diameter can be determined by measuring) and calculating the average value thereof.
 熱可塑性樹脂とカーボン材料との含有割合としては、カーボン材料は、熱可塑性樹脂100重量部に対して10質量部~40質量部であることが好ましく、20質量部~30質量部であることがより好ましい。カーボン材料が熱可塑性樹脂100重量部に対して20質量部~30質量部とすることにより、基体部20および端子部30の成形性は良好にすると共に、基体部20および端子部30の形態を安定して維持することができる。 The content ratio of the thermoplastic resin and the carbon material is preferably 10 parts by mass to 40 parts by mass, and 20 parts by mass to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin. More preferable. When the carbon material is 20 parts by mass to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin, the formability of the base portion 20 and the terminal portion 30 is improved and the shapes of the base portion 20 and the terminal portion 30 are It can be maintained stably.
[導電層]
 導電層40は、電極脚22の先端部221の表面に設けられている。本実施形態では、基体部20および端子部30が樹脂材料中にカーボン材料を含む導電性の複合材料を用いて一体に形成されているので、基体部20と端子部30との導通は確保されている。このため、導電層40は、先端部221の表面にのみ(領域Aに対応する部分)に形成している。なお、領域A以外の基体部20および端子部30が絶縁材料で形成されている場合には、導電層40は、領域Aを含んだ基体部20と端子部30との導通を確保するため、基体部20および端子部30の全面に設けられる。
[Conductive layer]
The conductive layer 40 is provided on the surface of the tip end portion 221 of the electrode leg 22. In the present embodiment, since the base portion 20 and the terminal portion 30 are integrally formed using a conductive composite material containing a carbon material in a resin material, the conduction between the base portion 20 and the terminal portion 30 is secured. ing. Therefore, the conductive layer 40 is formed only on the surface of the tip end portion 221 (a portion corresponding to the region A). When the base portion 20 and the terminal portion 30 other than the region A are formed of an insulating material, the conductive layer 40 ensures conduction between the base portion 20 including the region A and the terminal portion 30, It is provided on the entire surface of the base portion 20 and the terminal portion 30.
 本実施形態に係る生体情報測定用電極は、先端部221を含む基体部20および端子部30をカーボン材料を含む樹脂材料で形成している。そのため、本実施形態に係る生体情報測定用電極は、より軽量かつ柔軟とすることができる。従来の生体情報測定用電極のように、生体情報測定用電極の突起部の表面に金属膜が形成されている場合、金属膜は導電性高分子膜などに比べて重量があるため、被験者の頭部などに装着した際、重量感を与え、被験者にある種の緊張感を与える場合がある。これに対し、本実施形態に係る生体情報測定用電極は、基体部20および端子部30をカーボン材料を含む樹脂材料で形成し、より軽量かつ柔軟とすることができるため、本実施形態に係る生体情報測定用電極を被験者の頭部などに装着しても、重量感などを与えることを軽減することができる。これにより、被験者にある種の緊張感などを与えることなく、生体情報として脳波を測定することができる。本実施形態では、本実施形態に係る生体情報測定用電極は、基体部が金属で形成されて表面が金めっきされた同じ大きさの電極に比べて、例えば、56%軽くすることができる。 In the biological information measurement electrode according to the present embodiment, the base portion 20 including the tip portion 221 and the terminal portion 30 are formed of a resin material including a carbon material. Therefore, the biological information measurement electrode according to the present embodiment can be made lighter and more flexible. When a metal film is formed on the surface of the protrusion of the biological information measurement electrode as in the conventional biological information measurement electrode, the metal film is heavier than the conductive polymer film etc. When worn on the head, etc., it may give a feeling of weight and give the subject a sense of tension. On the other hand, in the biological information measurement electrode according to the present embodiment, since the base portion 20 and the terminal portion 30 can be formed of a resin material containing a carbon material, and can be made lighter and more flexible, according to the present embodiment. Even when the biological information measurement electrode is attached to the head of the subject, it is possible to reduce the weight feeling. Thereby, it is possible to measure an electroencephalogram as biological information without giving a subject a certain sense of tension or the like. In the present embodiment, the biological information measuring electrode according to the present embodiment can be made lighter by, for example, 56% than an electrode of the same size in which the base portion is formed of metal and the surface is gold-plated.
 また、本実施形態に係る生体情報測定用電極は、上記の第1の実施形態に係る生体情報測定用電極10で説明した通り、導電層40を、導電性高分子を含んで形成している。そのため、導電層40が頭皮に接触しても被験者に金属アレルギーを生じさせることはなく、安全である。よって、本実施形態に係る生体情報測定用電極は、全ての被験者に安心して使用することができる。 Further, in the biological information measurement electrode according to the present embodiment, as described in the biological information measurement electrode 10 according to the first embodiment, the conductive layer 40 is formed to include the conductive polymer. . Therefore, even if the conductive layer 40 contacts the scalp, it does not cause metal allergy to the subject, which is safe. Therefore, the biological information measurement electrode according to the present embodiment can be used with confidence for all subjects.
[変形例]
 本実施形態に係る生体情報測定用電極の一例を示したが、これに限定されない。以下に、本実施形態に係る生体情報測定用電極の変形例を説明する。
[Modification]
Although an example of the biological information measurement electrode according to the present embodiment is shown, the present invention is not limited to this. Hereinafter, modified examples of the biological information measurement electrode according to the present embodiment will be described.
 本実施形態では、基体部20および端子部30は、樹脂材料として、熱可塑性樹脂を用いているが、非導電性エラストマーなど熱可塑性樹脂以外の樹脂材料を用いてもよい。非導電性エラストマーとしては、例えば、シリコーンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ニトリルゴム、クロロプレンゴム、アクリルニトリルブタジエンゴム、ブチルゴム、ウレタンゴム、またはフッ素ゴムなどが挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中では、耐久性などの点から、シリコーンゴムを用いることが好ましい。基体部20と端子部30が、ゴム弾性を有する非導電性エラストマーを含んで成形されることで、低い弾性率を有する。そのため、本実施形態に係る生体情報測定用電極の使用時に、基体部20と端子部30は頭皮や額の凹凸形状に変形し易いので、頭皮や額への接触を確実にできると共に、頭皮や額への押圧力を緩和できる。 In the present embodiment, a thermoplastic resin is used as the resin material for the base portion 20 and the terminal portion 30. However, a resin material other than a thermoplastic resin such as a nonconductive elastomer may be used. As a nonconductive elastomer, for example, silicone rubber, ethylene propylene rubber, ethylene propylene diene rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, chloroprene rubber, acrylonitrile nitrile butadiene rubber, butyl rubber, urethane rubber, or fluororubber Etc. These may be used alone or in combination of two or more. Among these, in terms of durability and the like, it is preferable to use silicone rubber. The base portion 20 and the terminal portion 30 are formed to include a nonconductive elastomer having rubber elasticity, and thus have a low elastic modulus. Therefore, at the time of use of the biological information measurement electrode according to the present embodiment, the base 20 and the terminal 30 are easily deformed into the uneven shape of the scalp and forehead, so that contact with the scalp and forehead can be ensured, The pressure on the forehead can be alleviated.
 本実施形態では、基体部20および端子部30は、カーボン材料を含んで形成されているが、導電性フィラーを更に含んでもよい。カーボン材料以外の導電性フィラーとしては、アルミニウム、金、銀、銅、鉄、白金、クロム、スズ、インジウム、アンチモン、チタン、またはニッケルなどの金属;いわゆるABO3型のペロブスカイト型複合酸化物などの導電性セラミックスなどが挙げられるが、これらに限定されるものではない。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。 In the present embodiment, the base portion 20 and the terminal portion 30 are formed to include a carbon material, but may further include a conductive filler. Conductive fillers other than carbon materials include metals such as aluminum, gold, silver, copper, iron, platinum, chromium, tin, indium, antimony, titanium, or nickel; and so-called ABO 3 type perovskite-type composite oxides Although conductive ceramics etc. are mentioned, it is not limited to these. These conductive fillers may be used alone or in combination of two or more.
<第2の実施形態に係る生体情報測定用電極の製造方法>
 次に、第2の実施形態に係る生体情報測定用電極の製造方法について説明する。本実施形態に係る生体情報測定用電極の製造方法は、上記の図21に示す、第1の実施形態に係る生体情報測定用電極の製造方法の成形工程S11で基体部20および端子部30を成形する材料を変更し、成形工程S11と表面処理工程S12との間に、研磨工程を設けたものである。
<Manufacturing Method of Biological Information Measuring Electrode According to Second Embodiment>
Next, a method of manufacturing the biological information measuring electrode according to the second embodiment will be described. In the method of manufacturing the biological information measuring electrode according to the present embodiment, the base portion 20 and the terminal portion 30 are formed in the molding step S11 of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG. The material to be molded is changed, and a polishing process is provided between the molding process S11 and the surface treatment process S12.
 図21は、本実施形態に係る生体情報測定用電極の製造方法を示すフローチャートである。なお、成形時に用いられる原料供給通路61が端子部30に固定されている状態の一例を図19に示す。 FIG. 21 is a flowchart showing a method of manufacturing the biological information measuring electrode according to the present embodiment. An example of a state in which the raw material supply passage 61 used at the time of molding is fixed to the terminal portion 30 is shown in FIG.
 本実施形態に係る生体情報測定用電極の製造方法は、図21に示すように、基体部20および端子部30を成形すると共に、領域Aである先端部221の表面に複数の先端溝部24Aを形成し、側面222に側面溝部25を形成する成形工程(ステップS21)と、先端部221の表面を研磨する研磨工程(ステップS22)と、先端部221の表面を活性化処理する表面処理工程(ステップS23)と、少なくとも先端部221の表面に、導電性高分子を含有する導電層40を形成する導電層形成工程(ステップS24)とを含む。以下、各工程について説明する。 In the method of manufacturing the biological information measuring electrode according to the present embodiment, as shown in FIG. 21, the base portion 20 and the terminal portion 30 are formed, and a plurality of tip grooves 24A are formed on the surface of the tip portion 221 which is the region A. Forming step (step S21) for forming the side groove portion 25 on the side surface 222, polishing step (step S22) for polishing the surface of the tip portion 221, and surface treatment step for activating the surface of the tip portion 221 Step S23) and a conductive layer forming step (Step S24) of forming a conductive layer 40 containing a conductive polymer on at least the surface of the tip end portion 221. Each step will be described below.
 まず、成形工程(ステップS21)では、上記の図21に示す、第1の実施形態に係る生体情報測定用電極の製造方法の成形工程S11で基体部20および端子部30を成形する材料に、カーボン材料を含む樹脂材料を用いる。成形工程(ステップS21)では、カーボン材料を含む樹脂材料を用いて、基体部20および端子部30を一体に成形すると共に、先端部221の表面に複数の先端溝部24Aを形成し、側面222に側面溝部25を形成する。 First, in the forming step (step S21), the material for forming the base portion 20 and the terminal portion 30 in the forming step S11 of the method for manufacturing the biological information measuring electrode according to the first embodiment shown in FIG. A resin material containing a carbon material is used. In the molding step (step S21), the base portion 20 and the terminal portion 30 are integrally molded using a resin material containing a carbon material, and a plurality of tip grooves 24A are formed on the surface of the tip portion 221. The side grooves 25 are formed.
 基体部20および端子部30の成形方法などその他の内容は、上記の図21に示す、第1の実施形態に係る生体情報測定用電極の製造方法の成形工程S11と同様であるため、説明は省略する。 The other contents such as the forming method of the base portion 20 and the terminal portion 30 are the same as the forming step S11 of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG. I omit it.
 次に、研磨工程(ステップS22)では、先端部221の表面を研磨する。成形工程(ステップS21)において、カーボン材料を含む樹脂材料を用いて基体部20および端子部30を成形する際、先端部221の表面付近には、カーボン材料が殆ど含まれず樹脂材料が含まれる割合が高い層(スキン層)が存在する場合がある。スキン層には、カーボン材料が含まれていないか、含まれていてもその含有量は非常に小さいため、基体部20および端子部30の導通が取れないか導通が取り難くなる。研磨工程(ステップS22)で、先端部221の表面を研磨して、先端部221の表面に存在するスキン層を除去することで、先端部221に安定して導通を持たせることができる。 Next, in the polishing step (step S22), the surface of the tip portion 221 is polished. When molding the base portion 20 and the terminal portion 30 using a resin material containing a carbon material in the molding step (step S21), the proportion near the surface of the tip portion 221 does not contain the carbon material but contains the resin material There may be a high layer (skin layer). Since the skin layer does not contain a carbon material or the content thereof is very small even if it is contained, the conduction of the base portion 20 and the terminal portion 30 can not be achieved or the conduction becomes difficult. In the polishing step (step S22), the surface of the tip end portion 221 is polished to remove the skin layer present on the surface of the tip end portion 221, whereby the tip end portion 221 can be stably conductive.
 また、成形工程(ステップS21)により得られた基体部20および端子部30の表面にはカーボン材料の一部が突出している箇所が存在する。先端部221の表面を研磨することで、先端部221の表面から突出しているカーボン材料が削られる。これにより、先端部221の表面を平坦にすることまたは表面の凹凸を小さくすることができる。この結果、例えば、導電層40の一部が剥がれて露出した先端部221の表面が生体と接触する場合に、先端部221の表面から突出しているカーボン材料が生体の表面を傷つけるのを抑制することができる。 Further, on the surfaces of the base portion 20 and the terminal portion 30 obtained in the forming step (step S21), there are places where a part of the carbon material protrudes. By polishing the surface of the tip portion 221, the carbon material protruding from the surface of the tip portion 221 is scraped off. Thereby, the surface of the tip end portion 221 can be made flat or the surface unevenness can be reduced. As a result, for example, when the surface of the tip portion 221 exposed by peeling off a part of the conductive layer 40 comes into contact with the living body, the carbon material protruding from the surface of the tip portion 221 suppresses damage to the surface of the living body be able to.
 先端部221の表面を研磨する方法としては、先端部221の表面に存在するスキン層を除去できると共に、先端部221の表面から突出しているカーボン材料が削れればよく、サンドブラスト法や研磨紙などを用いた物理的研磨法を用いるなど公知の方法を用いることができる。 As a method of polishing the surface of the distal end portion 221, it is sufficient to remove the skin layer present on the surface of the distal end portion 221 and to remove the carbon material protruding from the surface of the distal end portion 221. A known method such as using a physical polishing method using
 次に、表面処理工程(ステップS23)では、エキシマによる真空紫外光(エキシマUV光)を照射する方法、またはArおよび酸素を含む混合ガス中でプラズマ処理する方法を用いて、先端部221の表面を活性化処理する。表面処理工程(ステップS23)は、上記の図21に示す、第1の実施形態に係る生体情報測定用電極の製造方法の表面処理工程(ステップS12)と同様であるため、説明は省略する。 Next, in the surface treatment step (step S23), the surface of the tip portion 221 is applied using a method of irradiating vacuum ultraviolet light (excimer UV light) by excimer or a method of plasma processing in a mixed gas containing Ar and oxygen. Activate the The surface treatment step (step S23) is the same as the surface treatment step (step S12) of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG.
 最後に、導電層形成工程(ステップS24)では、先端部221の表面に導電性高分子を含有する導電層40を形成する。導電層形成工程(ステップS24)は、塗布工程(ステップS241)と、乾燥工程(ステップS242)とを含む。導電層形成工程(ステップS24)は、上記の図21に示す、第1の実施形態に係る生体情報測定用電極の製造方法の導電層形成工程(ステップS14)と同様であるため、説明は省略する。 Finally, in the conductive layer forming step (step S24), the conductive layer 40 containing a conductive polymer is formed on the surface of the tip portion 221. The conductive layer forming step (step S24) includes a coating step (step S241) and a drying step (step S242). The conductive layer forming step (step S24) is the same as the conductive layer forming step (step S14) of the method of manufacturing the biological information measuring electrode according to the first embodiment shown in FIG. Do.
 このように、先端部221を含む基体部20および端子部30をカーボン材料を含む樹脂材料で形成することで、先端部221を含む基体部20および端子部30をカーボン材料を含む樹脂材料で形成された生体情報測定用電極が得られる。生体情報測定用電極は、より軽量かつ柔軟とすることができるため、生体情報測定用電極を被験者の頭部などに装着しても、重量感などを与えることを軽減することができる。これにより、被験者にある種の緊張感などを与えることなく、生体情報として脳波を測定することができる。本実施形態では、生体情報測定用電極は、基体部が金属で形成されて表面が金めっきされた同じ大きさの電極に比べて、例えば、56%軽くすることができる。 Thus, by forming the base portion 20 including the tip portion 221 and the terminal portion 30 by a resin material including a carbon material, the base portion 20 including the tip portion 221 and the terminal portion 30 are formed by a resin material including a carbon material The obtained biological information measuring electrode is obtained. Since the biological information measuring electrode can be made more lightweight and flexible, even when the biological information measuring electrode is attached to the head of the subject, it is possible to reduce the giving of a feeling of weight or the like. Thereby, it is possible to measure an electroencephalogram as biological information without giving a subject a certain sense of tension or the like. In the present embodiment, the biological information measuring electrode can be made, for example, 56% lighter than an electrode of the same size in which the base portion is formed of metal and the surface is gold-plated.
[変形例]
 本実施形態に係る生体情報測定用電極の製造方法の一例を示したが、これに限定されない。以下に、本実施形態に係る生体情報測定用電極の製造方法における変形例を説明する。
[Modification]
Although an example of the manufacturing method of the living body information measurement electrode concerning this embodiment was shown, it is not limited to this. Below, the modification in the manufacturing method of the electrode for biological information measurement concerning this embodiment is explained.
 本実施形態では、成形工程(ステップS21)において、先端溝部24Aおよび側面溝部25に対応した突起を設けた金型を用いて、基体部20および端子部30を同時に形成しているが、これに限定されない。例えば、基体部20および端子部30を、それぞれ、別々に成形して一体化した後に、先端溝部24Aおよび側面溝部25を後から形成してもよい。 In the present embodiment, in the molding step (step S21), the base portion 20 and the terminal portion 30 are simultaneously formed using a mold provided with a protrusion corresponding to the tip groove portion 24A and the side surface groove portion 25. It is not limited. For example, after the base portion 20 and the terminal portion 30 are separately molded and integrated respectively, the tip groove 24A and the side groove 25 may be formed later.
 この場合、本実施形態に係る生体情報測定用電極の製造方法は、図22に示すように、成形工程(ステップS21)を、基体部20および端子部30を準備する準備工程(ステップS211)と、基体部20および端子部30を結着して一体化する結着工程(ステップS212)と、先端部221の表面に複数の先端溝部24Aおよび側面溝部25を形成する溝部形成工程(ステップS213)とで構成する。そして、本実施形態と同様に、先端部221の表面を研磨する研磨工程(ステップS22)と、先端部221の表面を活性化処理する表面処理工程(ステップS23)と、先端部221の表面に、導電性高分子を含有する導電層40を形成する導電層形成工程(ステップS24)とを行う。 In this case, as shown in FIG. 22, in the method of manufacturing the biological information measuring electrode according to the present embodiment, the forming step (step S21) is a preparing step (step S211) of preparing the base portion 20 and the terminal portion 30. A bonding step of bonding and integrating the base portion 20 and the terminal portion 30 (step S212), and a groove forming step of forming the plurality of tip grooves 24A and the side grooves 25 on the surface of the tip portion 221 (step S213) And consists of. Then, as in the present embodiment, the polishing process (step S22) for polishing the surface of the tip 221, the surface treatment process (step S23) for activating the surface of the tip 221, and the surface of the tip 221 And a conductive layer forming step (step S24) of forming a conductive layer 40 containing a conductive polymer.
 上述の成形工程(ステップS21)の結着工程(ステップS212)においては、基体部20と端子部30とを結着部材を用いて一体化する。この結着するために使用する結着部材は、公知の結着部材を用いることができる。例えば、エポキシ樹脂、またはウレタン樹脂などの合成樹脂、ゴムなどの弾性を有した合成樹脂などを用いることができる。また、この結着工程(ステップS212)では、基体部20と端子部30とを結着する前に、予め、基体部20の端子部30と結着する面を研磨して、前記面の表面付近に存在するスキン層を除去すると共に、前記面の表面から突出しているカーボン材料を削っておくことが好ましい。これにより、基体部20と端子部30との導通を安定して維持することができると共に、基体部20と端子部30との結着力を強めることができる。 In the binding step (step S212) of the above-described forming step (step S21), the base portion 20 and the terminal portion 30 are integrated using a binding member. A known binding member can be used as the binding member used for this binding. For example, synthetic resin such as epoxy resin or urethane resin, or synthetic resin having elasticity such as rubber can be used. Further, in the bonding step (step S212), before bonding the base portion 20 and the terminal portion 30, the surface of the base portion 20 to be bonded to the terminal portion 30 is polished in advance to form the surface of the surface. While removing the skin layer which exists near, it is preferable to shave off the carbon material which protrudes from the surface of the said surface. Thus, the conduction between the base portion 20 and the terminal portion 30 can be stably maintained, and the bonding force between the base portion 20 and the terminal portion 30 can be strengthened.
 上述の溝部形成工程(ステップS213)では、レーザ光や切削治具などを用いて、先端部221の表面に複数の先端溝部24Aおよび側面溝部25を形成する。この際に、十分な幅と深さが削られるため、先端溝部24Aおよび側面溝部25の表面のスキン層が除去される。このため、先端溝部24Aおよび側面溝部25と導電層40とは安定して導通を維持することができる。 In the above-described groove forming step (step S213), a plurality of tip grooves 24A and side grooves 25 are formed on the surface of the tip portion 221 using a laser beam, a cutting jig, or the like. At this time, the skin layer on the surface of the tip groove 24A and the side groove 25 is removed since the width and the depth are reduced sufficiently. Therefore, the tip groove 24A and the side groove 25 and the conductive layer 40 can be stably maintained in conduction.
 また、本実施形態では、研磨工程(ステップS22)を含んでいるが、先端部221の表面付近にスキン層がないかスキン層の影響が殆ど生じない場合など、先端部221の表面を研磨する必要がない場合には省略してもよい。 Further, in the present embodiment, although the polishing step (step S22) is included, the surface of the tip portion 221 is polished, for example, when there is no skin layer near the surface of the tip portion 221 or little effect of the skin layer occurs. It may be omitted if it is not necessary.
[第3の実施形態]
 第3の実施形態に係る生体情報測定用電極について説明する。本実施形態に係る生体情報測定用電極は上記の第1の実施形態に係る生体情報測定用電極10の電極脚22の先端部221の先端溝部24Aの幅W1および最大深さH1を変更したこと以外は、上記の第1の実施形態に係る生体情報測定用電極10と同様であるため、本実施形態では、先端溝部24Aについてのみ説明する。なお、本実施形態に係る生体情報測定用電極の構成を説明にする当たり、上記の第1の実施形態に係る生体情報測定用電極10を示す図1~図6を用いて説明する。
Third Embodiment
A biological information measurement electrode according to a third embodiment will be described. The biological information measuring electrode according to the present embodiment has the width W1 and the maximum depth H1 of the distal end groove 24A of the distal end 221 of the electrode leg 22 of the biological information measuring electrode 10 according to the first embodiment described above changed. The other components are the same as those of the biological information measuring electrode 10 according to the first embodiment described above, and therefore, in the present embodiment, only the tip groove 24A will be described. The configuration of the biological information measurement electrode according to the present embodiment will be described with reference to FIGS. 1 to 6 showing the biological information measurement electrode 10 according to the first embodiment.
[基体部および端子部]
 本実施形態では、基体部20の先端部221に形成された先端溝部24Aの幅W1は、200μm~450μmであることが好ましい。先端溝部24Aの幅W1が上記範囲内であれば、先端溝部24A内に頭皮が食い込みやすくなり、頭皮の表面の形状に追従し易くなる。先端溝部24Aの幅W1は、より好ましくは、250μm~400μmであり、さらに好ましくは300μm~350μmであることがさらに好ましい。
[Base part and terminal part]
In the present embodiment, the width W1 of the tip groove portion 24A formed in the tip portion 221 of the base portion 20 is preferably 200 μm to 450 μm. If the width W1 of the distal end groove 24A is in the above range, the scalp can easily bite into the distal end groove 24A, and can easily follow the shape of the surface of the scalp. The width W1 of the tip groove portion 24A is more preferably 250 μm to 400 μm, and still more preferably 300 μm to 350 μm.
 また、先端溝部24Aの最大深さH1は、100μm~250μmであることが好ましい。先端溝部24Aの幅W1が、上記の通り、200μm~450μmと広めにしており、頭皮が食い込み易いくなっている。先端溝部24Aの最大深さH1が上記範囲内であれば、頭皮が先端溝部24Aに食い込んでも、十分な深さを確保できる。また、電極脚22の先端部221に、導電層40を形成しても先端溝部24Aは所定の深さを十分確保できる。さらに、先端溝部24Aの位置によって接触インピーダンスが所定値(例えば、300kΩ)以下に低下するまでの時間のばらつきを小さくできる。本実施形態では、先端溝部24Aの最大深さH1は、より好ましくは100μmを超え230μm以下であり、さらに好ましくは150μm~210μmである。 The maximum depth H1 of the tip groove 24A is preferably 100 μm to 250 μm. As described above, the width W1 of the distal end groove 24A is as wide as 200 μm to 450 μm, and the scalp is apt to bite. If the maximum depth H1 of the end groove 24A is in the above range, a sufficient depth can be secured even if the scalp bites into the end groove 24A. Further, even if the conductive layer 40 is formed at the tip end portion 221 of the electrode leg 22, the tip groove portion 24A can ensure a predetermined depth. Furthermore, the variation in time until the contact impedance drops to a predetermined value (for example, 300 kΩ) or less can be reduced by the position of the tip groove 24A. In the present embodiment, the maximum depth H1 of the tip groove 24A is more preferably more than 100 μm and not more than 230 μm, and still more preferably 150 μm to 210 μm.
 上記の第1の実施形態に係る生体情報測定用電極10は、先端部221を頭皮に接触させた際、頭皮が濡れている場合等のように頭皮の水分の保持量が高い場合等では、先端溝部24Aで保持されていた液体が先端部221と接触する頭皮の表面に流れない可能性がある。また、先端部221の頭皮に対する押圧力が高い場合等には、頭皮は柔らかいため、頭皮が先端溝部24Aを塞ぎ、先端溝部24Aに保持されていた液体が先端部221と接触する頭皮の表面に流れない可能性がある。しかし、本実施形態に係る生体情報測定用電極は、先端部221の表面の先端溝部24Aの幅W1および最大深さH1を、上記のように、所定の範囲内としている。これにより、頭皮が先端溝部24Aに容易に食い込むことができるので、先端部221の表面と頭皮との接触面積を増大させることができる。そのため、頭皮と生体情報測定用電極10との間の接触インピーダンスをより下げることができ、脳波をより安定して測定することができる。 When the tip portion 221 is brought into contact with the scalp, the biological information measuring electrode 10 according to the first embodiment described above has a high amount of moisture held in the scalp, such as when the scalp is wet, etc. The liquid held by the tip groove 24A may not flow to the surface of the scalp in contact with the tip 221. Also, when the pressing force of the tip 221 against the scalp is high, the scalp is soft, so the scalp blocks the tip groove 24A, and the liquid held in the tip groove 24A contacts the tip 221 on the surface of the scalp. It may not flow. However, in the biological information measurement electrode according to the present embodiment, the width W1 and the maximum depth H1 of the tip groove 24A on the surface of the tip portion 221 are within the predetermined range as described above. Thereby, since the scalp can easily bite into the tip groove 24A, the contact area between the surface of the tip 221 and the scalp can be increased. Therefore, the contact impedance between the scalp and the biological information measurement electrode 10 can be further lowered, and the electroencephalogram can be measured more stably.
 また、本実施形態に係る生体情報測定用電極は、先端部221の表面の先端溝部24Aの幅W1および最大深さH1を、上記のように、所定の範囲内とすることで、生体の表面に先端部221を複数回接触させても、先端部221の表面と頭皮との接触面積の変化を抑えることができる。そのため、脳波を複数回測定する場合に、測定の度に、本実施形態に係る生体情報測定用電極の先端部221を頭皮の表面に接触させても、得られる脳波の測定値のばらつきを抑えることができるため、得られる脳波の測定値の信頼性を高めることができる。 In the biological information measurement electrode according to the present embodiment, the width W1 and the maximum depth H1 of the tip groove portion 24A on the surface of the tip portion 221 are within the predetermined range as described above, to thereby obtain the surface of the living body. Even if the tip end portion 221 is brought into contact with a plurality of times, a change in the contact area between the surface of the tip end portion 221 and the scalp can be suppressed. Therefore, when electroencephalograms are measured a plurality of times, even if the tip portion 221 of the biological information measurement electrode according to this embodiment is brought into contact with the surface of the scalp every measurement, variation in the measured values of the electroencephalograms obtained is suppressed. Can increase the reliability of the obtained electroencephalogram measurements.
 以上のように、上記の各実施形態に係る生体情報測定用電極は、頭皮との電気的接続を維持し、頭皮から得られる生体情報(脳波)を安定して測定することができるため、脳波以外に、例えば、脈波、心電、筋電、体脂肪など様々な生体の情報を皮膚に接触させて測定する生体情報測定用電極として好適に用いることができる。また、生体とは、人体、又は人体以外の生物等を含むが、上記の各実施形態に係る生体情報測定用電極は、人体用として特に好適に用いることができる。 As described above, the electrodes for measuring biological information according to each of the above embodiments maintain electrical connection with the scalp and can stably measure biological information (brain waves) obtained from the scalp. Besides, for example, it can be suitably used as an electrode for measuring biological information in which information of various living bodies such as pulse wave, electrocardiogram, myoelectricity, body fat, etc. is brought into contact with the skin and measured. In addition, although a living body includes a human body or a living body other than the human body, etc., the biological information measuring electrode according to each of the above embodiments can be particularly suitably used for the human body.
 以下、実施例および比較例を示して実施形態を更に具体的に説明するが、実施形態はこれらの実施例により限定されるものではない。 Hereinafter, although an Example and a comparative example are shown and an embodiment is more concretely described, an embodiment is not limited by these examples.
<実施例1>
(実施例1-1)
[生体情報測定用電極の作製]
 基体部および端子部を絶縁材料(熱可塑性ポリエステルエラストマー、商品名:ハイトレル(登録商標)、東レ・デュポン社製)を用いて、射出成形法により、一体形成した後、基体部の先端部に十字型の先端溝部(溝幅:400μm、高さ:500μm)を形成した。次いで、電極脚の先端部に、導電性高分子(PEDOT/PSS)を含む溶液を塗布して塗布層を形成した後、塗布層を乾燥して硬化させ、導電層を形成した。これにより、生体情報測定用電極を作製した。
Example 1
Example 1-1
[Production of electrodes for measuring biological information]
The base portion and the terminal portion are integrally formed by injection molding using an insulating material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray DuPont), and then a cross is formed at the tip of the base portion. The tip groove of the mold (groove width: 400 μm, height: 500 μm) was formed. Next, a solution containing a conductive polymer (PEDOT / PSS) was applied to the tip of the electrode leg to form a coated layer, and then the coated layer was dried and cured to form a conductive layer. Thus, an electrode for measuring biological information was produced.
(実施例1-2)
 電極脚の先端部に形成した先端溝部の形状を網目状に変更したこと以外は、実施例1-1と同様にして行った。
(Example 1-2)
The same procedure as in Example 1-1 was followed, except that the shape of the tip groove formed at the tip of the electrode leg was changed to a mesh shape.
(比較例1-1)
 電極脚の先端部に溝部を形成しなかったこと以外は、実施例1-1と同様にして行った。
(Comparative Example 1-1)
The same procedure as in Example 1-1 was carried out except that no groove was formed at the tip of the electrode leg.
[生体との接触性の評価]
 生体情報測定用電極の皮膚(額)との接触性は、生体情報測定用電極の皮膚(額)との接触の安定性および応答性により評価した。生体情報測定用電極の皮膚(額)との接触の安定性および応答性の評価は、インピーダンスを測定することによって行った。
[Evaluation of contact with living body]
The contact of the biological information measuring electrode with the skin (forehead) was evaluated by the stability and responsiveness of the contact of the biological information measuring electrode with the skin (forehead). The evaluation of the stability and responsiveness of the contact of the electrode for measuring biological information with the skin (forehead) was performed by measuring the impedance.
 まず、接触の安定性の評価として、生体情報測定用電極の電極脚の先端部を電解液(0.1MのNaCl水溶液)に浸漬して、電解液中における先端部のインピーダンスを測定した。測定の周波数は、0.5Hz~1000Hzとした。その測定結果を図23に示す。図23は、横軸が測定周波数(単位:Hz)、縦軸がインピーダンス(単位:Ω)で、実施例1-1、および比較例1-1の測定結果を示している。 First, in order to evaluate the stability of the contact, the tip of the electrode leg of the biological information measurement electrode was immersed in an electrolytic solution (0.1 M NaCl aqueous solution), and the impedance of the tip in the electrolytic solution was measured. The frequency of measurement was 0.5 Hz to 1000 Hz. The measurement results are shown in FIG. FIG. 23 shows the measurement results of Example 1-1 and Comparative Example 1-1, in which the horizontal axis is the measurement frequency (unit: Hz) and the vertical axis is the impedance (unit: Ω).
 先端部のインピーダンスが低いほど、生体から得られる電気信号を高感度で検出することができるため、生体情報測定用電極の測定精度が高いことを示す。また、周波数が低い側でインピーダンスがより低ければ、一般的に測定に用いられる周波数(10Hz~30Hz)において、安定して精度良く測定することができる。 The lower the impedance at the tip, the higher the sensitivity with which an electrical signal obtained from a living body can be detected. This indicates that the measurement accuracy of the biological information measurement electrode is higher. Also, if the impedance is lower at the lower frequency side, stable and accurate measurement can be performed at the frequency (10 Hz to 30 Hz) generally used for measurement.
 次に、接触の応答性の評価として、生体情報測定用電極の電極脚の先端部を電解液(0.1MのNaCl水溶液)に浸漬して引き上げ、先端溝部に電解液を含ませた。その後、周波数を0.5Hz~1000Hzとして、電極脚が生体として額に接触している時のインピーダンス(接触インピーダンス)を測定した。そして、その接触インピーダンスが300kΩ以下になる時間を測定した。その測定結果を表1に示す。なお、接触インピーダンスが300kΩ以下になれば、例えば、脳波の測定が可能になる。また、接触インピーダンスが低くなる時間が速ければ応答性がよく、生体情報の測定が行い易いことを示す。 Next, in order to evaluate the responsiveness of the contact, the tip of the electrode leg of the biological information measurement electrode was immersed in the electrolyte (0.1 M NaCl aqueous solution) and pulled up, and the electrolyte was contained in the tip groove. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) was measured when the electrode leg was in contact with the forehead as a living body. And the time when the contact impedance becomes 300 kΩ or less was measured. The measurement results are shown in Table 1. When the contact impedance is 300 kΩ or less, for example, measurement of an electroencephalogram becomes possible. In addition, it indicates that if the time in which the contact impedance is low is quick, the response is good and it is easy to measure the biological information.
Figure JPOXMLDOC01-appb-T000001
  
Figure JPOXMLDOC01-appb-T000001
  
[生体との接触性の評価結果]
 図23に示すように、実施例1-1の生体情報測定用電極は、比較例1-1の生体情報測定用電極よりも、測定した全周波数において、低いインピーダンス値が得られ、約50%程度にまで低下した。従って、本実施形態の生体情報測定用電極は、生体から得られる電気信号を高感度で検出することができると共に、より低周波側での測定も可能としている。
[Evaluation result of contact with living body]
As shown in FIG. 23, the biological information measurement electrode of Example 1-1 has a lower impedance value at all measured frequencies than the biological information measurement electrode of Comparative Example 1-1, and it is about 50%. It dropped to a degree. Therefore, the electrode for measuring biological information according to the present embodiment can detect an electrical signal obtained from a living body with high sensitivity, and can also perform measurement on the lower frequency side.
 表1に示すように、実施例1-1および実施例1-2の生体情報測定用電極は、比較例1-1の生体情報測定用電極よりも、接触インピーダンスが300kΩ以下になるまでの時間が4倍以上早くなった。従って、本実施形態の生体情報測定用電極は、生体情報の測定が行い易い。 As shown in Table 1, the biological information measurement electrodes of Example 1-1 and Example 1-2 have a contact impedance of 300 kΩ or less as compared with the biological information measurement electrode of Comparative Example 1-1. Is more than four times faster. Therefore, the biological information measurement electrode of the present embodiment is easy to measure biological information.
 よって、電極脚の先端部に少なくとも先端溝部を形成し、先端部の表面に導電層を形成すれば、生体との接触インピーダンスが所定の値以下になるまでの時間が早くなると共に、生体情報測定用電極のインピーダンスが小さくなるので、脳波を安定して測定することができることが確認された。 Therefore, if at least a tip groove is formed at the tip of the electrode leg and a conductive layer is formed on the surface of the tip, the time taken for the contact impedance with the living body to fall below a predetermined value can be shortened. It was confirmed that the electroencephalogram can be stably measured because the impedance of the electrode for use is reduced.
<実施例2>
(実施例2-1)
[生体情報測定用電極の作製]
 基体部および端子部をカーボン材料を含む樹脂材料(長繊維カーボンファイバ強化6ナイロン、商品名:トレカ(登録商標)、東レ社製)を用いて、射出成形法により、一体形成した後、基体部の先端部に十字型の先端溝部を形成した。次いで、上記の実施例1-1と同様に、電極脚の先端部に、導電性高分子(PEDOT/PSS)を含む溶液を塗布して塗布層を形成した後、塗布層を乾燥して硬化させ、導電層を形成した。これにより、生体情報測定用電極を作製した。作製した生体情報測定用電極は、1.5gであった。
Example 2
(Example 2-1)
[Production of electrodes for measuring biological information]
The base portion and the terminal portion are integrally formed by injection molding using a resin material (long fiber carbon fiber reinforced 6 nylon, trade name: Torayca (registered trademark), Toray Industries, Inc.) containing a carbon material, and then the base portion A cross-shaped tip groove was formed at the tip of the. Next, as in Example 1-1 above, a solution containing a conductive polymer (PEDOT / PSS) is applied to the tip of the electrode leg to form a coated layer, and then the coated layer is dried and cured. To form a conductive layer. Thus, an electrode for measuring biological information was produced. The produced electrode for measuring biological information was 1.5 g.
(実施例2-2)
 電極脚の先端部に形成した先端溝部の形状を網目状に変更したこと以外は、実施例2-1と同様にして行った。
(Example 2-2)
The same procedure as in Example 2-1 was followed except that the shape of the tip groove formed at the tip of the electrode leg was changed to a mesh shape.
(比較例2-1)
 電極脚の先端部に溝部を形成しなかったこと以外は、実施例2-1と同様にして行った。
(Comparative example 2-1)
The same procedure as in Example 2-1 was performed except that no groove was formed at the tip of the electrode leg.
(比較例2-2)
 電極脚の先端部に溝部および導電層を形成しなかったこと以外は、実施例2-1と同様にして行った。
(Comparative Example 2-2)
The same procedure as in Example 2-1 was performed except that the groove and the conductive layer were not formed at the tip of the electrode leg.
[生体との接触性の評価]
 生体情報測定用電極の皮膚(額)との接触性は、実施例1と同様、生体情報測定用電極の皮膚(額)との接触の安定性および応答性により評価した。生体情報測定用電極の皮膚(額)との接触の安定性および応答性の評価は、インピーダンスを測定することによって行った。
[Evaluation of contact with living body]
The contactability of the biological information measurement electrode with the skin (forehead) was evaluated based on the stability and responsiveness of the contact of the biological information measurement electrode with the skin (forehead), as in Example 1. The evaluation of the stability and responsiveness of the contact of the electrode for measuring biological information with the skin (forehead) was performed by measuring the impedance.
 まず、接触の安定性の評価として、上記の実施例1-1と同様に、生体情報測定用電極の電極脚の先端部を電解液(0.1MのNaCl水溶液)に浸漬して、電解液中における先端部のインピーダンスを測定した。測定の周波数は、0.5Hz~1000Hzとした。その測定結果を図24に示す。図24は、横軸が測定周波数(Hz)、縦軸がインピーダンス(Ω)で、実施例2-1、および比較例2-1の測定結果を示している。 First, as evaluation of the stability of the contact, the tip of the electrode leg of the electrode for measuring biological information is immersed in the electrolyte (0.1 M aqueous solution of NaCl) as in Example 1-1 above to make the electrolyte The impedance of the tip in the inside was measured. The frequency of measurement was 0.5 Hz to 1000 Hz. The measurement results are shown in FIG. FIG. 24 shows the measurement results of Example 2-1 and Comparative Example 2-1 in which the horizontal axis is the measurement frequency (Hz) and the vertical axis is the impedance (Ω).
 次に、同じような接触の安定性の評価として、"脳波測定前(初期)/脳波測定後/アルコール洗浄後"における、先端部のインピーダンスを測定した。測定方法は、上述と同じように、電解液(0.1MのNaCl水溶液)中におけるインピーダンスを測定し、測定した周波数は、1Hz~1000Hzとした。その測定結果を図25および図26に示す。図25は、実施例2-1の生体情報測定用電極を用いた時のインピーダンスの測定結果を、図26は、比較例2-2の生体情報測定用電極を用いた時のインピーダンスの測定結果を、それぞれ示している。なお、図25および図26中、破線は、脳波測定前の測定値を示し、一点鎖線は、脳波測定後の測定値を示し、実線は、先端部のアルコール洗浄後の測定値を示している。 Next, as an evaluation of the stability of the similar contact, the impedance of the tip in “before electroencephalogram measurement (initial) / after electroencephalogram measurement / after alcohol washing” was measured. In the measurement method, the impedance in the electrolyte (0.1 M NaCl aqueous solution) was measured in the same manner as described above, and the measured frequency was 1 Hz to 1000 Hz. The measurement results are shown in FIG. 25 and FIG. FIG. 25 shows the measurement result of impedance when using the biological information measurement electrode of Example 2-1, and FIG. 26 shows the measurement result of impedance when using the biological information measurement electrode of Comparative Example 2-2 Are shown respectively. In FIG. 25 and FIG. 26, the broken line indicates the measurement value before electroencephalogram measurement, the alternate long and short dash line indicates the measurement value after electroencephalogram measurement, and the solid line indicates the measurement value after alcohol washing of the tip. .
 次に、接触の応答性の評価は、上記の実施例1-1と同様にして行った。すなわち、接触の応答性の評価として、生体情報測定用電極の電極脚の先端部を電解液(0.1MのNaCl水溶液)に浸漬して引き上げ、先端溝部に電解液を含ませた。その後、周波数を0.5Hz~1000Hzとして、電極脚が生体として額に接触している時のインピーダンス(接触インピーダンス)を測定した。そして、その接触インピーダンスが300kΩ以下になる時間を測定した。その測定結果を表2に示す。なお、接触インピーダンスが300kΩ以下になれば、例えば、脳波の測定が可能になる。 Next, the responsiveness of the contact was evaluated in the same manner as in Example 1-1 above. That is, in order to evaluate the responsiveness of the contact, the tip of the electrode leg of the biological information measurement electrode was immersed in the electrolyte (0.1 M NaCl aqueous solution) and pulled up, and the electrolyte was contained in the tip groove. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) was measured when the electrode leg was in contact with the forehead as a living body. And the time when the contact impedance becomes 300 kΩ or less was measured. The measurement results are shown in Table 2. When the contact impedance is 300 kΩ or less, for example, measurement of an electroencephalogram becomes possible.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[生体との接触性の評価結果]
 先端部のインピーダンスが低いほど、生体から得られる電気信号を高感度で検出することができるため、生体情報測定用電極の測定精度が高いことを示す。また、周波数が低い側でインピーダンスがより低ければ、一般的に測定に用いられる周波数(10Hz~30Hz)において、安定して精度良く測定することができる。また、接触インピーダンスが低くなる時間が速ければ応答性がよく、生体情報の測定が行い易いことを示す。
[Evaluation result of contact with living body]
The lower the impedance at the tip, the higher the sensitivity with which an electrical signal obtained from a living body can be detected. This indicates that the measurement accuracy of the biological information measurement electrode is higher. Also, if the impedance is lower at the lower frequency side, stable and accurate measurement can be performed at the frequency (10 Hz to 30 Hz) generally used for measurement. In addition, it indicates that if the time in which the contact impedance is low is quick, the response is good and it is easy to measure the biological information.
 図24に示すように、電極脚の先端部に先端溝部と導電層を有した実施例2-1の生体情報測定用電極は、比較例2-1の生体情報測定用電極よりも、測定した全周波数において、低いインピーダンス値が得られ、約50%程度にまで低下した。従って、本実施形態の生体情報測定用電極は、生体から得られる電気信号を高感度で検出することができるとともに、より低周波側での測定も可能としている。 As shown in FIG. 24, the biological information measuring electrode of Example 2-1 having a tip groove and a conductive layer at the tip of the electrode leg was measured more than the biological information measuring electrode of Comparative Example 2-1. Low impedance values were obtained at all frequencies, down to about 50%. Therefore, the electrode for measuring biological information according to the present embodiment can detect an electrical signal obtained from a living body with high sensitivity, and can also perform measurement on the lower frequency side.
 図25および図26に示すように、実施例2-1の生体情報測定用電極は、脳波測定前後のインピーダンスに変化が見られず、アルコール洗浄後においても、同様なインピーダンスが得られた。一方、比較例2-2の生体情報測定用電極では、脳波測定後に大幅にインピーダンスが高くなり、アルコール洗浄後に低くはなったが、脳波測定前の値には戻らなかった。従って、本実施形態の生体情報測定用電極は、生体から得られる電気信号を安定的に検出することができるとともに、洗浄(拭き取り)などにも強いといえる。 As shown in FIGS. 25 and 26, in the electrode for measuring biological information of Example 2-1, no change was observed in the impedance before and after the measurement of the electroencephalogram, and the same impedance was obtained even after the alcohol washing. On the other hand, in the electrode for measuring biological information of Comparative Example 2-2, the impedance was significantly increased after electroencephalogram measurement and decreased after washing with alcohol, but did not return to the value before electroencephalogram measurement. Therefore, the electrode for measuring biological information according to the present embodiment can stably detect an electrical signal obtained from a living body, and can be said to be resistant to cleaning (wipe) and the like.
 表2に示すように、実施例2-1および実施例2-2の生体情報測定用電極は、比較例2-1の生体情報測定用電極よりも、接触インピーダンスが300kΩ以下になるまでの時間が1.8倍以上早くなった。従って、本実施形態の生体情報測定用電極は、生体情報の測定が行い易い。 As shown in Table 2, the biological information measuring electrodes of Example 2-1 and Example 2-2 have a contact impedance of 300 kΩ or less, as compared with the biological information measuring electrode of Comparative Example 2-1. Is more than 1.8 times faster. Therefore, the biological information measurement electrode of the present embodiment is easy to measure biological information.
 よって、電極脚の先端部に少なくとも先端溝部を形成し、先端部の表面に導電層を形成すれば、生体との接触インピーダンスが所定の値以下になるまでの時間が早くなると共に、生体情報測定用電極のインピーダンスが小さくなるので、脳波を安定して測定することができることが確認された。 Therefore, if at least a tip groove is formed at the tip of the electrode leg and a conductive layer is formed on the surface of the tip, the time taken for the contact impedance with the living body to fall below a predetermined value can be shortened. It was confirmed that the electroencephalogram can be stably measured because the impedance of the electrode for use is reduced.
<実施例3>
(実施例3-1)
[生体情報測定用電極の作製]
 基体部および端子部を絶縁材料(熱可塑性ポリエステルエラストマー、商品名:ハイトレル(登録商標)、東レ・デュポン社製)を用いて、射出成形法により、一体形成した後、基体部の先端部に、図12に示すように6つの先端溝部(溝幅:350μm、最大深さ:
150μm)を先端部の平面視において略等しい角度(約60°)で放射状に形成した。次いで、電極脚の先端部に、導電性高分子(PEDOT/PSS)を含む溶液(ポリチオフェン系導電性高分子(セプルジーダ(登録商標) OC-AE401G、信越ポリマー(株))を含む溶液)を塗布して塗布層を形成した後、塗布層を乾燥して硬化させ、導電層を形成した。これにより、生体情報測定用電極を作製した。
Example 3
Example 3-1
[Production of electrodes for measuring biological information]
The base portion and the terminal portion are integrally formed by injection molding using an insulating material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray Dupont), and then the tip portion of the base portion is Six tip grooves as shown in FIG. 12 (groove width: 350 μm, maximum depth:
150 μm) were formed radially at substantially the same angle (about 60 °) in plan view of the tip. Then, a solution containing a conductive polymer (PEDOT / PSS) (a solution containing a polythiophene-based conductive polymer (Sepluzida OC-AE 401 G, Shin-Etsu Polymer Co., Ltd.)) is applied to the tip of the electrode leg. After forming the coating layer, the coating layer was dried and cured to form a conductive layer. Thus, an electrode for measuring biological information was produced.
(実施例3-2)
 電極脚の先端部に形成した先端溝部を先端部の平面視において略等しい角度(約45°)で8個放射状に設けることに変更したこと以外は、実施例3-1と同様にして行った。
Example 3-2
The procedure was carried out in the same manner as in Example 3-1 except that the tip groove portion formed at the tip portion of the electrode leg was changed to a radial arrangement of eight pieces at substantially the same angle (about 45 °) in plan view of the tip portion. .
(実施例3-3)
 電極脚の先端部に形成した先端溝部の形状を図13に示すように先端部の平面視において編み目状に設けることに変更したこと以外は、実施例3-1と同様にして行った。
(Example 3-3)
The same procedure as in Example 3-1 was carried out except that the shape of the tip groove formed at the tip of the electrode leg was changed to providing a stitch in a plan view of the tip as shown in FIG.
(実施例3-4)
 先端溝部に変えて、図15に示すように窪み部(孔径:350μm、最大深さ:150μm)を電極脚の先端部に形成することに変更したこと以外は、実施例3-1と同様にして行った。
Example 3-4
The same procedure as in Example 3-1 is carried out except that, as shown in FIG. 15, the recessed portion (hole diameter: 350 μm, maximum depth: 150 μm) is changed to the tip end portion of the electrode leg instead of the end groove portion. I went.
(実施例3-5~3-7)
 実施例3-1~3-3の電極脚の先端部に形成した先端溝部の溝幅を450μmに変更したこと以外は、それぞれ、実施例3-1~3-3と同様にして行った。
(Examples 3-5 to 3-7)
The same procedure as in Examples 3-1 to 3-3 was performed, except that the groove width of the tip groove formed at the tip of the electrode leg in Examples 3-1 to 3-3 was changed to 450 μm.
(実施例3-8)
 実施例3-4の電極脚の先端部に形成した窪み部の溝幅を450μmに変更したこと以外は、実施例3-4と同様にして行った。
(Example 3-8)
The same procedure as in Example 3-4 was performed, except that the groove width of the depressed portion formed at the tip of the electrode leg of Example 3-4 was changed to 450 μm.
(比較例3-1)
 上記の比較例1-1で作製した生体情報測定用電極を用いたこと以外は、実施例3-1と同様にして行った。
(Comparative Example 3-1)
Example 3-1 was carried out in the same manner as Example 3-1 except that the biological information measuring electrode manufactured in Comparative Example 1-1 described above was used.
[生体との接触の応答性の評価]
 生体情報測定用電極の皮膚(額)との接触の応答性の評価は、接触インピーダンスを測定することによって行った。
[Evaluation of responsiveness of contact with living body]
The evaluation of the responsiveness of the contact of the electrode for measuring biological information with the skin (the forehead) was performed by measuring the contact impedance.
 接触の応答性の評価として、生体情報測定用電極の電極脚を額に接触させた。その後、周波数を0.5Hz~1000Hzとして、電極脚が生体として額に接触している時のインピーダンス(接触インピーダンス)を脳波計(ポリメイトミニAP108、株式会社ミユキ技研)を用いて測定した。そして、その接触インピーダンスが300kΩ以下になる時間を測定した。その後、電極脚を生体から離して、先端部を洗浄した。接触インピーダンスが300kΩ以下になる時間の測定を、実施例3-1~3-4および比較例3-1では5回繰り返し行った。実施例3-1~3-4および比較例3-1の生体情報測定用電極の接触インピーダンスが300kΩ以下に低下するまでの時間と、その誤差の絶対値との測定結果を表3および図27に示す。接触インピーダンスが300kΩ以下に低下するまでの時間の誤差は、下記式(1)より、接触インピーダンスが300kΩ以下に低下するまでの時間の最大値と最小値との差(最大値-最小値)とする。なお、接触インピーダンスが300kΩ以下になれば、例えば、脳波の測定が可能になる。また、接触インピーダンスが低くなる時間が速ければ応答性がよく、生体情報の測定が行い易いことを示す。 As evaluation of the responsiveness of the contact, the electrode leg of the electrode for measuring biological information was brought into contact with the forehead. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) when the electrode leg was in contact with the forehead as a living body was measured using an electroencephalograph (Polymate Mini AP108, Miyuki Giken Co., Ltd.). And the time when the contact impedance becomes 300 kΩ or less was measured. Thereafter, the electrode leg was separated from the living body and the tip was washed. The measurement of the time when the contact impedance was 300 kΩ or less was repeated five times in Examples 3-1 to 3-4 and Comparative Example 3-1. Table 3 and FIG. 27 show measurement results of the time until the contact impedance of the electrodes for measuring biological information of Examples 3-1 to 3-4 and Comparative Example 3-1 falls to 300 kΩ or less and the absolute value of the error. Shown in. The error of time until contact impedance falls to 300 kΩ or less is the difference between the maximum value and the minimum value of the time until contact impedance falls to 300 kΩ or less according to the following equation (1) (maximum value-minimum value) Do. When the contact impedance is 300 kΩ or less, for example, measurement of an electroencephalogram becomes possible. In addition, it indicates that if the time in which the contact impedance is low is quick, the response is good and it is easy to measure the biological information.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[生体との接触の安定性の評価結果]
 図27に示すように、実施例3-1~3-8の生体情報測定用電極は、比較例3-1の生体情報測定用電極よりも、接触インピーダンスが300kΩ以下になるまでの時間が短くなり、いずれも10秒以下で300kΩ以下になった。また、実施例3-1~3-8の生体情報測定用電極は、比較例3-1の生体情報測定用電極よりも、接触インピーダンスのばらつきが小さかった。よって、電極脚の先端部に所定の大きさの先端溝部または窪み部を形成した生体情報測定用電極は、生体情報の測定を安定して行える。
[Evaluation result of stability of contact with living body]
As shown in FIG. 27, the biological information measurement electrodes of Examples 3-1 to 3-8 have shorter contact impedance times of 300 kΩ or less than the biological information measurement electrodes of Comparative Example 3-1. Both became less than 300 kΩ in 10 seconds or less. The biological information measuring electrodes of Examples 3-1 to 3-8 had smaller variations in contact impedance than the biological information measuring electrodes of Comparative Example 3-1. Therefore, the biological information measuring electrode in which the tip groove portion or the recess portion of a predetermined size is formed at the tip end portion of the electrode leg can stably perform the measurement of biological information.
 なお、各実施例および比較例では、生体情報測定用電極を繰り返し使用した場合、接触インピーダンスが300kΩ以下になるまでの時間にばらつきが生じやすい傾向を示した。これは、生体情報測定用電極を繰り替え使用する際に、先端部が額に接触する位置が各測定ごとに若干ずれることによるものと考えられる。また、生体情報測定用電極を繰り返し使用して、先端部を額に接触させたことで、先端部の汚染具合等が異なるためと考えられる。 In addition, in each Example and the comparative example, when the electrode for biological information measurement was used repeatedly, the tendency until a contact impedance became 300 k (ohm) or less tends to produce dispersion easily. This is considered to be due to the fact that the position at which the tip portion contacts the forehead is slightly shifted for each measurement when repeatedly using the biological information measuring electrode. Moreover, it is thought that the contamination condition etc. of a front-end | tip part differ by having used the electrode for a biometric information measurement repeatedly and contacting a front-end | tip part to a forehead.
 このように、電極脚の先端部に所定の溝幅および最大深さの先端溝部または窪み部を形成し、先端部の表面に導電層を形成すれば、生体との接触インピーダンスが所定の値以下になるまでの時間が早くなると共に、そのばらつきが小さくなるので、脳波を安定して測定することができることが確認された。 As described above, when a tip groove or recess having a predetermined groove width and maximum depth is formed at the tip of the electrode leg and a conductive layer is formed on the surface of the tip, the contact impedance with the living body is less than a predetermined value. It was confirmed that the brain waves can be measured stably because the time to become to become faster and the variation becomes smaller.
<実施例4>
(実施例4-1)
[生体情報測定用電極の作製]
 基体部および端子部を絶縁材料(熱可塑性ポリエステルエラストマー、商品名:ハイトレル(登録商標)、東レ・デュポン社製)を用いて、射出成形法により、一体形成した後、基体部の先端部に、2つの先端溝部(溝幅:350μm、最大深さ:150μm)を先端部の平面視において略等しい角度(約180°)で対向するように直線状に形成した。次いで、電極脚の先端部に、導電性高分子(PEDOT/PSS)を含む溶液(ポリチオフェン系導電性高分子(セプルジーダ(登録商標) OC-AE401G、信越ポリマー(株))を含む溶液)を塗布して塗布層を形成した後、塗布層を乾燥して硬化させ、導電層を形成した。これにより、生体情報測定用電極を作製した。
Example 4
Example 4-1
[Production of electrodes for measuring biological information]
The base portion and the terminal portion are integrally formed by injection molding using an insulating material (thermoplastic polyester elastomer, trade name: Hytrel (registered trademark), manufactured by Toray Dupont), and then the tip portion of the base portion is The two tip grooves (groove width: 350 μm, maximum depth: 150 μm) were formed in a straight line so as to face each other at substantially the same angle (about 180 °) in plan view of the tip. Then, a solution containing a conductive polymer (PEDOT / PSS) (a solution containing a polythiophene-based conductive polymer (Sepluzida OC-AE 401 G, Shin-Etsu Polymer Co., Ltd.)) is applied to the tip of the electrode leg. After forming the coating layer, the coating layer was dried and cured to form a conductive layer. Thus, an electrode for measuring biological information was produced.
(実施例4-2)
 電極脚の先端部に形成した先端溝部を先端部の平面視において略等しい角度(90°)で4個設け、図1に示す先端溝部を形成したことに変更したこと以外は、実施例4-1と同様にして行った。
(Example 4-2)
Example 4--except that the tip groove portion formed at the tip portion of the electrode leg is provided four at substantially the same angle (90 °) in plan view of the tip portion to form the tip groove portion shown in FIG. It went in the same way as 1.
(実施例4-3)
 電極脚の先端部に形成した先端溝部を先端部の平面視において略等しい角度(60°)で6個設け、図12に示す先端溝部を形成したことに変更したこと以外は、実施例4-1と同様にして行った。
Example 4-3
Example 4--except that the tip groove portion formed at the tip portion of the electrode leg is provided six at substantially the same angle (60 °) in a plan view of the tip portion to form the tip groove portion shown in FIG. It went in the same way as 1.
(実施例4-4)
 電極脚の先端部に形成した先端溝部を先端部の平面視において略等しい角度(45°)で8個設けることに変更したこと以外は、実施例4-1と同様にして行った。
(Example 4-4)
Example 4 was carried out in the same manner as Example 4-1 except that eight tip grooves formed at the tip of the electrode leg were provided at substantially the same angle (45 °) in plan view of the tip.
(実施例4-5)
 電極脚の先端部に形成した先端溝部の形状を先端部の平面視において編み目状に変更したこと以外は、実施例4-1と同様にして行った。
(Example 4-5)
The same procedure as in Example 4-1 was carried out except that the shape of the tip groove formed at the tip of the electrode leg was changed to a stitch shape in a plan view of the tip.
(実施例4-6)
 先端溝部に変えて、図15に示すように窪み部(孔径:350μm、最大深さ:150μm)を電極脚の先端部に形成することに変更したこと以外は、実施例4-1と同様にして行った。
(Example 4-6)
Similar to Example 4-1 except that instead of the end groove portion, a recessed portion (hole diameter: 350 μm, maximum depth: 150 μm) is formed at the end portion of the electrode leg as shown in FIG. I went.
(実施例4-7~4-11)
 実施例4-1~4-5の電極脚の先端部に形成した先端溝部の最大深さを250μmに変更したこと以外は、それぞれ、実施例4-1~4-5と同様にして行った。
(Examples 4-7 to 4-11)
The same procedure as in Examples 4-1 to 4-5 was performed, except that the maximum depth of the tip groove formed at the tip of the electrode leg in Examples 4-1 to 4-5 was changed to 250 μm. .
(実施例4-12)
 実施例4-6の電極脚の先端部に形成した窪み部の最大深さを250μmに変更したこと以外は、実施例4-6と同様にして行った。
Example 4-12
Example 4-6 was carried out in the same manner as Example 4-6, except that the maximum depth of the depression formed at the tip of the electrode leg of Example 4-6 was changed to 250 μm.
(比較例4-1)
 上記の比較例1-1で作製した生体情報測定用電極を用いたこと以外は、実施例4-1と同様にして行った。
(Comparative Example 4-1)
The same procedure as in Example 4-1 was repeated except that the biological information measuring electrode manufactured in Comparative Example 1-1 described above was used.
[生体との接触の応答性の評価]
 生体情報測定用電極の皮膚(額)との接触の応答性の評価は、接触インピーダンスを測定することによって行った。
[Evaluation of responsiveness of contact with living body]
The evaluation of the responsiveness of the contact of the electrode for measuring biological information with the skin (the forehead) was performed by measuring the contact impedance.
 接触の応答性の評価として、生体情報測定用電極の電極脚を額に接触させた。その後、周波数を0.5Hz~1000Hzとして、電極脚が生体として額に接触している時のインピーダンス(接触インピーダンス)を脳波計(ポリメイトミニAP108、株式会社ミユキ技研)を用いて測定した。そして、その接触インピーダンスが300kΩ以下になる時間を測定した。その後、電極脚を生体から離した。接触インピーダンスが300kΩ以下になる時間の測定を、実施例4-1~4-12および比較例4-1では5回繰り返し行った。各実施例および比較例の生体情報測定用電極の接触インピーダンスが300kΩ以下に低下するまでの時間と、その誤差の絶対値との測定結果を図28に示す。接触インピーダンスが300kΩ以下に低下するまでの時間の誤差は、上記の実施例3と同様、接触インピーダンスが300kΩ以下に低下するまでの時間の最大値と最小値との差(最大値-最小値)とする。なお、接触インピーダンスが300kΩ以下になれば、例えば、脳波の測定が可能になる。また、接触インピーダンスが低くなる時間が速ければ応答性がよく、生体情報の測定が行い易いことを示す。 As evaluation of the responsiveness of the contact, the electrode leg of the electrode for measuring biological information was brought into contact with the forehead. Thereafter, the frequency was set to 0.5 Hz to 1000 Hz, and the impedance (contact impedance) when the electrode leg was in contact with the forehead as a living body was measured using an electroencephalograph (Polymate Mini AP108, Miyuki Giken Co., Ltd.). And the time when the contact impedance becomes 300 kΩ or less was measured. Thereafter, the electrode leg was separated from the living body. The measurement of the time when the contact impedance became 300 kΩ or less was repeated five times in Examples 4-1 to 4-12 and Comparative Example 4-1. The measurement results of the time until the contact impedance of the electrodes for measuring biological information of each Example and Comparative Example falls to 300 kΩ or less and the absolute value of the error are shown in FIG. The error in the time until the contact impedance falls to 300 kΩ or less is the difference between the maximum value and the minimum value of the time until the contact impedance falls to 300 kΩ or less (maximum value-minimum value) as in the above-mentioned Example 3. I assume. When the contact impedance is 300 kΩ or less, for example, measurement of an electroencephalogram becomes possible. In addition, it indicates that if the time in which the contact impedance is low is quick, the response is good and it is easy to measure the biological information.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[生体との接触の安定性の評価結果]
 図28に示すように、実施例4-1~4-12の生体情報測定用電極は、比較例4-1の生体情報測定用電極よりも、接触インピーダンスが300kΩ以下になるまでの時間が短くなり、いずれも21秒以下で300kΩ以下になった。また、実施例4-1~4-12の生体情報測定用電極は、比較例4-1の生体情報測定用電極よりも、接触インピーダンスのばらつきが小さかった。従って、電極脚の先端部に所定の大きさの先端溝部または窪み部を形成した生体情報測定用電極は、生体情報の測定を安定して行える。
[Evaluation result of stability of contact with living body]
As shown in FIG. 28, the biological information measurement electrodes of Examples 4-1 to 4-12 have shorter contact impedance times of 300 kΩ or less than the biological information measurement electrodes of Comparative Example 4-1. Both became less than 300 kΩ in 21 seconds or less. Further, the electrodes for measuring biological information of Examples 4-1 to 4-12 had smaller variations in contact impedance than the electrodes for measuring biological information of Comparative Example 4-1. Therefore, the biological information measuring electrode in which the tip groove or depression of a predetermined size is formed at the tip of the electrode leg can stably measure biological information.
 なお、各実施例および比較例では、生体情報測定用電極を繰り返し使用した場合、接触インピーダンスが300kΩ以下になるまでの時間にばらつきが生じやすい傾向を示した。これは、上記の実施例3において説明した通り、生体情報測定用電極を繰り替え使用する際に、先端部が額に接触する位置が各測定ごとに若干ずれることによるものと考えられる。また、生体情報測定用電極を繰り返し使用して、先端部を額に接触させたことで、先端部の汚染具合等が異なるためと考えられる。 In addition, in each Example and the comparative example, when the electrode for biological information measurement was used repeatedly, the tendency until a contact impedance became 300 k (ohm) or less tends to produce dispersion easily. This is considered to be due to the fact that the position at which the tip portion contacts the forehead is slightly deviated for each measurement when repeatedly using the biological information measurement electrode as described in the third embodiment. Moreover, it is thought that the contamination condition etc. of a front-end | tip part differ by having used the electrode for a biometric information measurement repeatedly and contacting a front-end | tip part to a forehead.
 よって、電極脚の先端部に所定の最大深さ以上の先端溝部または窪み部を形成し、先端部の表面に導電層を形成すれば、生体との接触インピーダンスが所定の値以下になるまでの時間が早くなると共に、そのばらつきが小さくなるので、脳波を安定して測定することができることが確認された。 Therefore, if a tip groove or depression having a predetermined maximum depth or more is formed at the tip of the electrode leg and a conductive layer is formed on the surface of the tip, the contact impedance with the living body is reduced to a predetermined value or less. It has been confirmed that the brain waves can be measured stably because the variation becomes smaller as the time becomes faster.
<実施例5>
(実施例5-1および5-2と比較例5-1)
[生体情報測定用電極の作製]
 実施例5-1および5-2と比較例5-1とは、それぞれ、上記の実施例3-2および3-3と比較例1-1で作製した生体情報測定用電極を用いた。
Example 5
(Examples 5-1 and 5-2 and Comparative Example 5-1)
[Production of electrodes for measuring biological information]
In Examples 5-1 and 5-2 and Comparative Example 5-1, the electrodes for measuring biological information prepared in Examples 3-2 and 3-3 and Comparative Example 1-1 described above were used, respectively.
[生体との接触性の評価]
 生体情報測定用電極の生体との接触性の評価は、生体情報測定用電極の先端部を柔らかい面に接触させた時の接触抵抗(抵抗値)を測定することによって行った。
[Evaluation of contact with living body]
The contact of the biological information measuring electrode with the living body was evaluated by measuring the contact resistance (resistance value) when the tip of the biological information measuring electrode was brought into contact with a soft surface.
 接触抵抗の評価は、生体情報測定用電極の電極脚の先端部を柔らかい面として導電シリコーンスポンジ(Si-500、硬度E20)の表面に荷重50gを加えて押圧しながら接触させて、測定器(6241A、AGC(株)製)を用いて、抵抗値を測定することによって行った。実施例5-1および5-2と比較例5-1との生体情報測定用電極を用いた時の抵抗の測定結果を図29に示す。 The contact resistance is evaluated by applying a load of 50 g to the surface of a conductive silicone sponge (Si-500, hardness E20) with the tip of the electrode leg of the electrode for measuring biological information as a soft surface, 6241A (manufactured by AGC Co., Ltd.) to measure the resistance value. The measurement results of the resistance when using the electrodes for measuring biological information of Examples 5-1 and 5-2 and Comparative Example 5-1 are shown in FIG.
[生体との接触性の評価結果]
 図29に示すように、実施例5-1および5-2の生体情報測定用電極は、比較例5-1の生体情報測定用電極よりも抵抗値が1/5以下まで低下した。よって、電極脚の先端部に先端溝部を形成した生体情報測定用電極は、生体の表面が食い込み易いため、接触インピーダンスが300kΩ以下になるまでの時間が早められ、生体から得られる電気信号を高感度で安定して検出することを可能としている。
[Evaluation result of contact with living body]
As shown in FIG. 29, the electrodes for measuring biological information of Examples 5-1 and 5-2 had a resistance value reduced to 1⁄5 or less that of the electrode for measuring biological information of Comparative Example 5-1. Therefore, the biological information measuring electrode in which the tip groove is formed at the tip of the electrode leg is likely to bite the surface of the living body, so the time until the contact impedance becomes 300 kΩ or less is accelerated, and the electric signal obtained from the living body is high. It enables stable detection with sensitivity.
 以上の通り、実施形態を説明したが、上記の各実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although embodiment was described, said each embodiment is shown as an example, and this invention is not limited by the said embodiment. The above embodiments can be implemented in other various forms, and various combinations, omissions, replacements, changes, and the like can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
 本出願は、2017年12月27日に日本国特許庁に出願した特願2017-252506号および2017年12月27日に日本国特許庁に出願した特願2017-252507号に基づく優先権を主張するものであり、特願2017-252506号および特願2017-252507号の全内容を本出願に援用する。 The present application is based on Japanese Patent Application No. 2017-252506 filed Dec. 27, 2017, and Japanese Patent Application No. 2017-252507 filed Dec. 27, 2017. The entire contents of Japanese Patent Application No. 2017-252506 and Japanese Patent Application No. 2017-252507 are incorporated in the present application.
 10 生体情報測定用電極
 20 基体部
 21、301 基部
 211 突設部
 22 電極脚
 221 先端部
 222 側面
 24A、24B、24C 溝部(先端溝部)
 25 補助溝部(側面溝部)
 30 端子部
 40 導電層
 A 領域
 H1、H2 最大深さ
 W1、W2 幅
DESCRIPTION OF REFERENCE NUMERALS 10 electrode for biological information measurement 20 base portion 21, 301 base portion 211 protruding portion 22 electrode leg 221 tip portion 222 side surface 24 A, 24 B, 24 C groove portion (tip groove portion)
25 Auxiliary groove (side groove)
30 terminal portion 40 conductive layer A region H1, H2 maximum depth W1, W2 width

Claims (14)

  1.  生体と接触可能な領域を有する生体情報測定用電極であって、
     前記領域の表面には、複数の溝部または窪み部が形成されると共に、導電性高分子を含有した導電層が形成されていることを特徴とする生体情報測定用電極。
    An electrode for measuring biological information, having a region accessible to a living body,
    A plurality of grooves or depressions are formed on the surface of the region, and a conductive layer containing a conductive polymer is also formed.
  2.  前記領域以外の部分の表面に複数の補助溝部が形成され、
     前記補助溝部が、前記溝部の少なくとも一部と連通している請求項1に記載の生体情報測定用電極。
    A plurality of auxiliary grooves are formed on the surface of the portion other than the region,
    The biological information measuring electrode according to claim 1, wherein the auxiliary groove communicates with at least a part of the groove.
  3.  前記溝部の幅が、10~450μmであり、
     前記溝部の最大深さが、10~500μmである請求項1または請求項2に記載の生体情報測定用電極。
    The width of the groove is 10 to 450 μm,
    The biological information measuring electrode according to claim 1 or 2, wherein the maximum depth of the groove is 10 to 500 μm.
  4.  前記溝部の幅が、10~120μmである請求項3に記載の生体情報測定用電極。 The biological information measuring electrode according to claim 3, wherein the width of the groove is 10 to 120 μm.
  5.  前記溝部の幅が、200~450μmであり、
     前記溝部の最大深さが、100~250μmである請求項3に記載の生体情報測定用電極。
    The width of the groove is 200 to 450 μm,
    The biological information measuring electrode according to claim 3, wherein the maximum depth of the groove is 100 to 250 μm.
  6.  前記溝部が、前記領域の表面に、放射状、網目状、または樹枝状に設けられている請求項1ないし請求項5の何れか一項に記載の生体情報測定用電極。 The biological information measuring electrode according to any one of claims 1 to 5, wherein the grooves are provided radially, reticulated, or dendritic on the surface of the region.
  7.  前記窪み部の幅が、10~450μmであり、
     前記窪み部の最大深さが、10~500μmである請求項1または請求項2に記載の生体情報測定用電極。
    The width of the recess is 10 to 450 μm,
    The biological information measuring electrode according to claim 1, wherein the maximum depth of the recess is 10 to 500 μm.
  8.  前記領域は、カーボン材料を含む樹脂材料で形成されている請求項1ないし請求項7の何れか一項に記載の生体情報測定用電極。 The biological information measuring electrode according to any one of claims 1 to 7, wherein the region is formed of a resin material containing a carbon material.
  9.  前記領域を備えた基体部と、
     前記領域に対して電気的に接続された端子部と、
    を有する請求項1ないし請求項8の何れか一項に記載の生体情報測定用電極。
    A base portion provided with the area;
    A terminal portion electrically connected to the region;
    The biological information measuring electrode according to any one of claims 1 to 8, comprising:
  10.  生体と接触可能な領域を有する生体情報測定用電極の製造方法であって、
     前記領域を備えた基体部を成形すると共に、前記領域の表面に複数の溝部を形成する成形工程と、
     少なくとも前記領域の表面に、導電性高分子を含有する導電層を形成する導電層形成工程と、
    を含むことを特徴とする生体情報測定用電極の製造方法。
    A method of manufacturing a biological information measuring electrode having a region accessible to a living body, the method comprising:
    Forming a base having the region, and forming a plurality of grooves on the surface of the region;
    A conductive layer forming step of forming a conductive layer containing a conductive polymer on at least the surface of the region;
    A method of manufacturing a biological information measuring electrode comprising:
  11.  前記成形工程は、前記基体部を少なくともカーボン材料を含む樹脂材料で形成する請求項10に記載の生体情報測定用電極の製造方法。 The method according to claim 10, wherein in the forming step, the base portion is formed of a resin material containing at least a carbon material.
  12.  前記基体部を成形した後、前記基体部の少なくとも前記領域の表面を研磨して、少なくとも前記領域の表面から突出している前記カーボン材料を除去する研磨工程をさらに含む請求項11に記載の生体情報測定用電極の製造方法。 The biological information according to claim 11, further comprising a polishing step of polishing the surface of at least the region of the substrate portion after forming the substrate portion, and removing the carbon material protruding from the surface of the region at least. Method of manufacturing measurement electrode.
  13.  前記領域の表面に複数の前記溝部を形成した後、少なくとも前記領域の表面を活性化処理する表面処理工程をさらに含み、
     前記表面処理工程が、少なくとも前記領域の表面をArと酸素とを含む混合ガス中でプラズマ処理する工程、または少なくとも前記領域の表面にエキシマUV光を照射する工程である請求項10ないし請求項12何れかに一項に記載の生体情報測定用電極の製造方法。
    The method further includes a surface treatment step of activating the surface of at least the region after forming the plurality of grooves on the surface of the region,
    The surface treatment step is a step of plasma treating at least the surface of the region in a mixed gas containing Ar and oxygen, or irradiating at least the surface of the region with excimer UV light. The manufacturing method of the electrode for biometric information measurement as described in any one.
  14.  前記導電層形成工程が、
     少なくとも前記領域に、前記導電性高分子を含む溶液を塗布して塗布層を形成する塗布工程と、
     前記塗布層が形成された前記領域を乾燥して、前記塗布層を硬化させる乾燥工程と、
    を含む請求項10ないし請求項13の何れかに一項に記載の生体情報測定用電極の製造方法。
    The conductive layer forming step
    Applying a solution containing the conductive polymer to at least the region to form a coating layer;
    Drying the area in which the coating layer is formed to cure the coating layer;
    The manufacturing method of the electrode for biometric information measurement as described in any one of Claims 10 thru | or 13 containing these.
PCT/JP2018/041219 2017-12-27 2018-11-06 Biological information measurement electrode and method for manufacturing biological information measurement electrode WO2019130832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562812A JPWO2019130832A1 (en) 2017-12-27 2018-11-06 Manufacturing method of electrodes for measuring biological information and electrodes for measuring biological information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-252506 2017-12-27
JP2017252507 2017-12-27
JP2017-252507 2017-12-27
JP2017252506 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019130832A1 true WO2019130832A1 (en) 2019-07-04

Family

ID=67066976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041219 WO2019130832A1 (en) 2017-12-27 2018-11-06 Biological information measurement electrode and method for manufacturing biological information measurement electrode

Country Status (2)

Country Link
JP (1) JPWO2019130832A1 (en)
WO (1) WO2019130832A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344170Y2 (en) * 1987-01-16 1991-09-17
JPH0686703U (en) * 1993-05-31 1994-12-20 日本光電工業株式会社 Biomedical electrode
JP2000139868A (en) * 1998-09-02 2000-05-23 Ryotaro Hatsui Electrode holder for measuring body fat
WO2006001276A1 (en) * 2004-06-25 2006-01-05 Olympus Corporation Brain wave detection electrode device and package
JP2013111361A (en) * 2011-11-30 2013-06-10 Japan Health Science Foundation Eeg measurement electrode, eeg measurement member, and eeg measurement device
JP2016036642A (en) * 2014-08-11 2016-03-22 日本電信電話株式会社 Electrode and wearable electrode
JP3209880U (en) * 2017-01-30 2017-04-13 有限会社 啓 EEG signal detection sensor
JP2017108761A (en) * 2015-12-14 2017-06-22 株式会社村田製作所 Biological signal detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344170Y2 (en) * 1987-01-16 1991-09-17
JPH0686703U (en) * 1993-05-31 1994-12-20 日本光電工業株式会社 Biomedical electrode
JP2000139868A (en) * 1998-09-02 2000-05-23 Ryotaro Hatsui Electrode holder for measuring body fat
WO2006001276A1 (en) * 2004-06-25 2006-01-05 Olympus Corporation Brain wave detection electrode device and package
JP2013111361A (en) * 2011-11-30 2013-06-10 Japan Health Science Foundation Eeg measurement electrode, eeg measurement member, and eeg measurement device
JP2016036642A (en) * 2014-08-11 2016-03-22 日本電信電話株式会社 Electrode and wearable electrode
JP2017108761A (en) * 2015-12-14 2017-06-22 株式会社村田製作所 Biological signal detector
JP3209880U (en) * 2017-01-30 2017-04-13 有限会社 啓 EEG signal detection sensor

Also Published As

Publication number Publication date
JPWO2019130832A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US11246518B2 (en) Sensors for analyte detection and methods of manufacture thereof
JP2017074370A (en) Electrode for brain wave measurement
US9498148B2 (en) Electrode for biopotential sensing
WO2016136629A1 (en) Brain wave measurement electrode
JP2016163688A (en) Brain wave measuring electrode
CN109259891A (en) A kind of electronic skin and preparation method thereof measuring pressure
WO2013054498A1 (en) Organism signal measurement device and method for measuring signal of organism
JP6855046B2 (en) Electrodes for measuring brain activity, head-mounted devices and brain activity measuring systems using the electrodes
US20190387993A1 (en) Vital sign information measuring electrode and method for producing vital sign information measuring electrode
IL267079B2 (en) Brush electrode
US20200268267A1 (en) Bioelectrode And Method For Producing Bioelectrode
WO2017065196A1 (en) Electrode for brain wave measurement
WO2021029100A1 (en) Electrode for measuring biological information
WO2019130832A1 (en) Biological information measurement electrode and method for manufacturing biological information measurement electrode
JP2009136526A (en) Analysis chip
US20200029897A1 (en) Biometric-information measuring electrode and method for measuring biometric information
JP2020195775A (en) Brain activity measurement electrode, head-mounted device comprising the electrode, and brain activity measurement system
WO2019130833A1 (en) Conductive material, conductive member, electrode leg, and biological information measurement electrode
JP2022012318A (en) Biomedical electrode
JP2021159216A (en) Bioelectric signal measuring electrode
JP7173979B2 (en) Bioelectrode for EEG detection
Bera et al. Gold electrode sensors for Electrical Impedance Tomography (EIT) studies
JP2021029264A (en) Electrode for biological information measurement
JP2021137192A (en) Biological information measuring electrode
JP6927631B2 (en) Electrodes for EEG measurement and their manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897106

Country of ref document: EP

Kind code of ref document: A1