WO2019130424A1 - Battery device - Google Patents

Battery device Download PDF

Info

Publication number
WO2019130424A1
WO2019130424A1 PCT/JP2017/046632 JP2017046632W WO2019130424A1 WO 2019130424 A1 WO2019130424 A1 WO 2019130424A1 JP 2017046632 W JP2017046632 W JP 2017046632W WO 2019130424 A1 WO2019130424 A1 WO 2019130424A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
dark current
voltage
battery device
Prior art date
Application number
PCT/JP2017/046632
Other languages
French (fr)
Japanese (ja)
Inventor
知也 真壁
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2017/046632 priority Critical patent/WO2019130424A1/en
Publication of WO2019130424A1 publication Critical patent/WO2019130424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a battery device.
  • the dark current load consumed when the ignition switch is off is large. At the time of leaving, the battery capacity may be lost, and so-called battery exhaustion may occur.
  • mounting a battery having a large capacity is not acceptable in terms of size and weight, particularly in the case of a small vehicle such as a motorcycle. Therefore, as a prior art, against the dark current load operated by the power supplied from the battery after the engine is stopped, the battery is supplied with the power via the power supply line opening / closing means, preventing the battery from rising (overdischarge). The method is known.
  • the present invention provides a battery device that can supply power to a dark current load while preventing a battery from rising due to the dark current load.
  • One aspect of the present invention is a battery body (36), a positive terminal (25A) connected to the positive electrode of the battery body (36), and a negative terminal (25B) connected to the negative electrode of the battery body (36) And a third terminal (25C) provided separately from the positive terminal (25A) and the negative terminal (25B), and a control provided between the battery body (36) and the third terminal (25C)
  • the third terminal separately from the plus terminal and the minus terminal.
  • a switch for connecting and disconnecting the feed path between the third terminal and the battery body by connecting the dark current load and the battery body using the third terminal, when the voltage of the battery body falls below or below the threshold value, the switch may cut off the power supply to the dark current load. It becomes possible. Therefore, when the battery voltage drops, the dark current load can be shut off to prevent overdischarge of the battery body.
  • a control unit is provided between the battery main body and the third terminal for interrupting the feeding path.
  • the switch (39) includes a semiconductor relay. According to this configuration, in the battery device, the switch can be made compact and have a long life, and the response to the command can be enhanced, as compared with the case where the mechanical relay (contact relay) is provided.
  • the third terminal (25C) is connected to the positive electrode of the battery body (36). According to this configuration, in the battery device, even when a high voltage is applied during charging of the battery main body, failure of the switch can be prevented. Further, in the battery device, when the negative side of the battery main body is connected to the dark current load component via the third terminal, it is necessary to provide a relay or the like for opening and closing the power supply line in each dark current load. On the other hand, by connecting the positive side of the battery body to the dark current load via the third terminal, a relay or the like for switching the power supply line is provided for each dark current load connected to the third terminal. There is no need for it, and the existing dark current load can be used as it is. Therefore, it is possible to suppress an increase in the part cost and to suppress an increase in the part arrangement space.
  • the plus terminal (25A) and the minus terminal (25B) are spaced apart from each other, and a gap between the plus terminal (25A) and the minus terminal (25B) is provided.
  • the third terminal (25C) is disposed.
  • the plus terminal and the minus terminal are laid out with respect to the vehicle body so that wiring can always be connected. Therefore, the third terminal is disposed between the plus terminal and the minus terminal.
  • a battery device capable of preventing a battery runout due to a dark current load while being able to supply power to the dark current load.
  • FIG. 1 It is a perspective view of the battery apparatus of this embodiment. It is II-II sectional drawing of FIG. It is a structure block diagram of the battery control system of this embodiment. It is a graph which shows the time change of the voltage of the said battery apparatus. It is a perspective view which shows arrangement
  • the battery device of the present embodiment is a battery mounted as a vehicle-mounted power source on a saddle-ride type vehicle such as a motorcycle, and includes a secondary battery capable of repeated charge and discharge.
  • the battery device 1 includes a substantially rectangular case 10. Inside the case 10, a plurality of secondary batteries 11 are accommodated.
  • the battery device 1 connects a plurality of secondary batteries 11 in series, and raises the output voltage to a predetermined voltage.
  • the battery device 1 incorporates a battery monitoring unit (BMU: Battery Managing Unit) that monitors a plurality of secondary batteries 11.
  • BMU Battery Managing Unit
  • the BMU normally measures the voltage or the like of each secondary battery 11 and detects overcharge or overdischarge during charge and discharge.
  • the BMU also has a function of maintaining the voltage balance of each secondary battery 11.
  • the case 10 has a lower case 10L and an upper case 10U coupled to the upper portion of the lower case 10L, and the lower case 10L and the upper case 10U are partitioned by the partition wall 12 There is.
  • the inside of the housing 10 is sealed except for an exhaust passage 26 described later.
  • the plurality of secondary batteries 11 are accommodated in the lower housing 10L.
  • the battery monitoring circuit 21 as the BMU is accommodated in the upper housing 10U. The battery monitoring circuit 21 monitors the voltage of the secondary battery 11, and cuts off the charging current to the secondary battery 11 when the secondary battery 11 is overcharged.
  • the secondary battery 11 is, for example, a lithium ion battery.
  • the positive electrode 14, the negative electrode 15, the separator 16, the non-aqueous electrolyte 17, and the like are housed inside the container 13 of the secondary battery 11.
  • a battery terminal 18 (a positive electrode terminal and a negative electrode terminal) for charging and discharging a current is provided.
  • a stepped portion which is stepped down with respect to the upper surface of the general portion of the upper wall 10a 10b is formed.
  • the positive terminal 25A and the negative terminal 25B of the battery device 1 are provided in the two step portions 10b.
  • Each of the terminals 25A and 25B is connected to the positive and negative battery terminals 18 of the secondary battery 11 in the housing 10, respectively.
  • the upper wall 10 a of the housing 10 is provided with an exhaust passage 26 for discharging the gas flowing into the upper housing 10 U through the through hole 19 to the outside of the housing 10.
  • the exhaust passage 26 has a cylindrical shape extending vertically, and a cap-like valve body 27 made of an elastic material such as rubber is attached to the upper portion thereof.
  • the valve body 27 functions as an exhaust valve for releasing the pressure to the outside when the pressure inside the housing 10 rises, and normally closes the exhaust passage 26.
  • a cover 28 flush with the upper wall 10 a is mounted above the valve body 27.
  • the battery device 1 mounted on the vehicle supplies power to the electrical components (general load 34 and dark current load 35) mounted on the vehicle as standard or option. Even if the ignition switch (main switch) SW1 is off, the battery device 1 supplies a dark current (backup power supply, standby power supply) to a part (dark current load 35) of the electric component. Due to this dark current, the battery device 1 consumes the battery capacity even if the ignition switch SW1 is off. Therefore, when the vehicle engine (internal combustion engine) and the generator 32 are stopped for a long time due to long-term parking etc. and the state where the external power supply is not connected continues, so-called battery exhaustion (overdischarge of the battery main body 36) occurs. May occur.
  • the analog circuit (dark current control unit 37) mounted on the battery device 1 sends the dark current load 35 Power supply path (second power supply path 42) is cut, and the power supply to the dark current load 35 is cut.
  • the battery control system includes a battery device 1, an ignition switch SW1, a starter switch SW2, a regulator 31, a generator 32, a starter motor 33, a general load 34, and a dark current load 35.
  • the battery device 1 includes a battery body 36, a dark current control unit 37, a plus terminal 25A, a minus terminal 25B, and a dark current connection terminal 25C.
  • the dark current control unit 37 includes a Vb detection unit (battery voltage detection unit) 38 and a switching element 39.
  • the battery body 36 is an assembly in which a plurality of secondary batteries 11 are connected in series.
  • the battery body 36 has a positive electrode connected to the positive terminal 25A and a negative electrode connected to the negative terminal 25B.
  • the plus terminal 25A is connected to one end of the ignition switch SW1, and the minus terminal 25B is grounded.
  • the other end of the ignition switch SW1 is connected to the respective positive electrodes of the general load 34 and the dark current load 35, and is also connected to the positive electrode of the starter motor 33 via the starter switch SW2.
  • the respective negative electrodes of the general load 34, the dark current load 35 and the starter motor 33 are grounded.
  • a dark current connection terminal 25C is connected to the positive electrode of the dark current load 35 via the fuse h3.
  • the generator 32 is connected to the input terminal of the regulator 31.
  • the output terminal of the regulator 31 is connected to the positive electrode of the battery main body 36 through the fuse h1.
  • the ground terminal of the regulator 31 is grounded.
  • the switching element 39 has a source terminal connected to the dark current connection terminal 25C, and a gate terminal connected to the Vb detection unit 38.
  • the switching element 39 is an N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor: metal oxide semiconductor field effect transistor).
  • the starter motor 33 is driven by the electric power of the battery device 1 and performs cranking via, for example, a one-way clutch to start the engine.
  • the generator 32 is a generator motor (ACG (Alternating Current Generator), for example, coaxially arranged with a crankshaft of the engine and driven by rotation of the crankshaft. That is, the generator 32 is operated by the engine.
  • the generator 32 supplies the generated power to the regulator 31.
  • the regulator 31 boosts or steps down the voltage supplied from the generator 32 to a predetermined voltage to charge the battery main body 36. Power may be supplied directly from the generator 32 to the general load 34 and the dark current load 35.
  • the general load 34 is a load to which power is supplied from the battery device 1 when the ignition switch SW1 is on.
  • the general load 34 includes, for example, an engine ignition system, a fuel supply system, various lamps and the like.
  • the dark current load 35 is a load to which power is constantly supplied from the battery device 1 including a state in which the vehicle is stopped and the engine is stopped.
  • the dark current load 35 includes, for example, an electronic control unit (ECU), a clock, various communication devices, and the like.
  • ECU electronice control unit
  • the ignition switch SW1 When the ignition switch SW1 is on, power is supplied to the dark current load 35 from the plus terminal 25A of the battery device 1 through the first power feeding path 41. If the battery voltage is equal to or higher than the dark current cut threshold VC when the ignition switch SW1 is off, the dark current load 35 receives power from the dark current connection terminal 25C of the battery device 1 through the third power feeding path 43. Supplied. A fuse h3 is interposed in the third feed path 43.
  • the Vb detection unit 38 is configured to include an integrated circuit.
  • the Vb detection unit 38 detects voltage values at both ends of the battery main body 36 and compares the voltage values with a predetermined dark current cut threshold VC. When the voltage value of the battery body 36 is less than the dark current cut threshold VC, the Vb detection unit 38 outputs an H (high) level signal to turn on the switching element 39. When the voltage value of the battery body 36 is equal to or higher than the dark current cut threshold VC, the Vb detection unit 38 outputs an L (low) level signal to turn off the switching element 39.
  • the switching element 39 connects and disconnects the second feed path 42 across the positive electrode of the battery body 36 and the dark current connection terminal 25C. That is, when the voltage value of the battery body 36 is less than the threshold value, the second feed path 42 is disconnected, and the power supply from the dark current connection terminal 25C to the dark current load 35 is stopped. When the voltage value of the battery body 36 is equal to or higher than the threshold value, the second power feeding path 42 is connected, and power can be supplied from the dark current connection terminal 25C to the dark current load 35.
  • a fuse h2 is interposed between the positive electrode of the battery main body 36 and the switching element 39 in the second feed path 42.
  • the time change of the battery voltage will be described with reference to FIG.
  • the vertical axis represents battery voltage and the horizontal axis represents time.
  • the dark current load 35 consumes battery capacity in a region where the battery voltage exceeds the dark current cut threshold VC (always-on power supply region).
  • the dark current control unit 37 cuts off the second power feeding path 42, whereby the consumption of the battery capacity is suppressed (line V1 in FIG. ).
  • a line V2 in the drawing indicates that the battery capacity is consumed while the dark current control unit 37 is connected to the second feed path 42.
  • the ignition switch SW1 After the dark current control unit 37 cuts off the second power feeding path 42, the ignition switch SW1 is turned on, and when a voltage change ( ⁇ V) due to the general load 34 is generated (in the figure, IGN_ON portion)
  • the Vb detection unit 38 detects and outputs a signal (FET_ON signal) for turning on the switching element 39. As a result, the second power supply path 42 returns from the cutoff state to the connection state.
  • the dark current load 35 is not supplied with power from the battery main body 36 by turning off the switching element 39. did. This makes it necessary to provide switches and relays for individually stopping the supply of power to each of the dark current loads 35 that consume power when the vehicle is stopped (when the engine is stopped or ACG is stopped). It disappears. As a result, it is possible to reduce parts, reduce costs, and further reduce the space.
  • the arrangement of the terminals of the battery device 1 will be described with reference to FIGS. 1 and 5.
  • the stepped portion 10b on the side where the plus terminal 25A is installed is provided wider than the stepped portion 10b on the side where the negative terminal 25B is installed in the direction along the longitudinal direction of the plan view shape of the upper wall 10a. .
  • the dark current connection terminal 25C is a positive electrode, and is disposed closer to the plus terminal 25A than the central portion in the longitudinal direction.
  • the reason why the step portion 10b where the negative terminal 25B is installed is large is to store and pack bolts and nuts for connecting external wiring to the terminals 25A to 25C when the battery device 1 is transported. Since the dark current connection terminal 25C is disposed closer to the plus terminal 25A, the step portion 10b in which the plus terminal 25A is installed is not suitable for enlargement.
  • a dark current connection terminal 25C is disposed in the gap between the two terminals 25A and 25B on one side along the longitudinal direction of the top wall 10a in plan view. Therefore, the external terminals can be connected also to the dark current connection terminal 25C by extension of the work of connecting the external wiring to the both terminals 25A and 25B. Further, since both the terminals 25A and 25B are disposed at the end in the longitudinal direction, and the dark current connection terminal 25C is disposed at the middle in the longitudinal direction, it is possible to distinguish between the both terminals 25A and 25B and the dark current connection terminal 25C. It is easy and can suppress the mistake of the external wiring.
  • the external wiring can be made detachable with the same tool from the same direction, and the mounting / demounting workability can be improved.
  • the concave portion 10c provided with the dark current connection terminal 25C can be shielded by the removable cover 10d, thereby making the appearance of the battery device 1 good when the dark current connection terminal 25C is not used It is possible to eliminate the hindrance to the function of the dark current connection terminal 25C due to the
  • the battery device 1 in the above embodiment includes the battery body 36, the positive terminal 25A connected to the positive electrode of the battery body 36, and the negative terminal 25B connected to the negative electrode of the battery body 36.
  • a dark current connection terminal 25C provided separately from the plus terminal 25A and the minus terminal 25B, and a dark current control unit 37 provided between the battery main body 36 and the dark current connection terminal 25C, wherein the dark current
  • the control unit 37 detects a voltage of the battery main body 36, and a second power supply path 42 between the battery main body 36 and the dark current connection terminal 25C based on the voltage detected by the Vb detection unit 38.
  • the switching element 39 is configured such that the voltage detected by the Vb detection unit 38 is dark. When it is less than the flow cut threshold VC (threshold or below), is to cut off the second feed path 42.
  • the dark current connection terminal 25C is provided separately from the plus terminal 25A and the minus terminal 25B, and the second power supply path 42 is provided between the dark current connection terminal 25C and the battery main body 36.
  • a switching element 39 for connecting and disconnecting. Then, by connecting the dark current load 35 and the battery main body 36 using the dark current connection terminal 25 C, when the voltage of the battery main body 36 becomes less than or less than the threshold value, the switching element 39 It is possible to cut off the power supply of Therefore, when the battery voltage drops, the dark current load 35 can be shut off to prevent overdischarge of the battery body 36.
  • a dark current control unit 37 is provided between the battery main body 36 and the dark current connection terminal 25C for interrupting the second power supply path 42.
  • the switching element 39 includes a semiconductor relay. According to this configuration, it is possible to make the switching element 39 compact and have a long life and to improve the response to the command, as compared with the case where the battery device 1 includes the mechanical relay (contact relay).
  • the switching element 39 is not limited to a semiconductor relay (contactless relay) such as a MOSFET, but may be a mechanical relay (contacted relay).
  • the dark current connection terminal 25C is connected to the positive electrode of the battery main body 36. According to this configuration, in the battery device 1, even when a high voltage is applied when charging the battery main body 36, it is possible to prevent the failure of the switching element 39. Further, in the battery device 1, when the dark current load 35 is connected to the negative side of the battery main body 36 via the dark current connection terminal 25C, it is necessary to provide each dark current load 35 with a relay or the like for switching the power supply line. It occurs. On the other hand, by connecting the positive side of the battery main body 36 to the dark current load 35 via the dark current connection terminal 25C, the individual dark current loads 35 connected to the dark current connection terminal 25C can be opened and closed. It is not necessary to provide a relay or the like, and the existing dark current load 35 can be used as it is. Therefore, it is possible to suppress an increase in the part cost and to suppress an increase in the part arrangement space.
  • the plus terminal 25A and the minus terminal 25B are disposed apart from each other, and the dark current is provided in the gap between the plus terminal 25A and the minus terminal 25B.
  • the connection terminal 25C is disposed. According to this configuration, in battery device 1, positive terminal 25A and negative terminal 25B are laid out with respect to the vehicle body so that wiring can always be connected, and therefore, there is a dark space between positive terminal 25A and negative terminal 25B.
  • By arranging the current connection terminal 25C it becomes easy to connect a wire to the plus terminal 25A, the minus terminal 25B, and the dark current connection terminal 25C arranged side by side even if the arrangement method of the battery is changed. For this reason, flexible connection according to various battery arrangement is possible, and attachment / detachment and layout of the battery device 1 can be facilitated.
  • the secondary battery is not limited to a lithium ion battery, and may be a nickel hydrogen battery, a sodium ion battery, or the like.
  • the present invention is not limited to the application to small vehicles such as motorcycles, but may be applied to various transportation devices such as passenger cars and freight cars, and is also applicable to facilities other than transportation devices.
  • the configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the scope of the present invention, such as replacing the components of the embodiment with known components.

Abstract

This battery device is provided with: a battery body (36); a plus terminal (25A) connected to the positive electrode of the battery body (36); a minus terminal (25B) connected to the negative electrode of the battery body (36); a third terminal (25C) provided separately from the plus terminal (25A) and the minus terminal (25B); and a control unit (37) provided between the battery body (36) and the third terminal (25C). The control unit (37) is provided with: a battery voltage detection unit (38) for detecting the voltage of the battery body (36); and a switch (39) for connecting/disconnecting a feed path (42) between the battery body (36) and the third terminal (25C) on the basis of the voltage detected by the battery voltage detection unit (38). The switch (39) disconnects the feed path (42) when the voltage detected by the battery voltage detection unit (38) has become less than, or less than or equal to, a threshold value (VC).

Description

バッテリ装置Battery device
 本発明は、バッテリ装置に関する。 The present invention relates to a battery device.
 車両に搭載されるバッテリ装置において、大型の車種やオプション部品が多数装着される車種の場合、イグニッションスイッチのオフ時に消費する暗電流負荷が大きいことから、既存のバッテリ容量では、エンジン停止後の長期放置時にバッテリ容量が無くなり、いわゆるバッテリ上がりが生じる可能性がある。一方、容量の大きいバッテリを搭載することは、特に自動二輪車のような小型車両の場合、サイズ、重量ともに許容できるものではない。
 このため、従来技術として、エンジン停止後にバッテリから供給される電源によって動作する暗電流負荷に対し、前記バッテリから電源線開閉手段を介して電源を供給するようにした、バッテリ上がり(過放電)防止方法が知られている。
In the case of a battery system mounted on a vehicle, in the case of a large vehicle model or a vehicle model equipped with a large number of optional parts, the dark current load consumed when the ignition switch is off is large. At the time of leaving, the battery capacity may be lost, and so-called battery exhaustion may occur. On the other hand, mounting a battery having a large capacity is not acceptable in terms of size and weight, particularly in the case of a small vehicle such as a motorcycle.
Therefore, as a prior art, against the dark current load operated by the power supplied from the battery after the engine is stopped, the battery is supplied with the power via the power supply line opening / closing means, preventing the battery from rising (overdischarge). The method is known.
特開2004-291720号公報JP 2004-291720 A
 しかし、上記従来技術では、各暗電流負荷一つ一つに電源線開閉のためのリレー等を設ける必要があり、スペースやコストの面で改善の余地がある。 However, in the above-mentioned prior art, it is necessary to provide a relay or the like for switching the power supply line for each dark current load, and there is room for improvement in terms of space and cost.
 そこで本発明は、暗電流負荷に電源を供給可能としながら暗電流負荷によるバッテリ上がりを防ぐことができるバッテリ装置を提供する。 Therefore, the present invention provides a battery device that can supply power to a dark current load while preventing a battery from rising due to the dark current load.
 本発明の一態様は、バッテリ本体(36)と、前記バッテリ本体(36)の正極に接続されたプラス端子(25A)と、前記バッテリ本体(36)の負極に接続されたマイナス端子(25B)と、前記プラス端子(25A)およびマイナス端子(25B)とは別に設けられた第三の端子(25C)と、前記バッテリ本体(36)および第三の端子(25C)の間に設けられた制御部(37)と、を備え、前記制御部(37)は、前記バッテリ本体(36)の電圧を検知するバッテリ電圧検知部(38)と、前記バッテリ電圧検知部(38)が検知した電圧に基づき前記バッテリ本体(36)および第三の端子(25C)の間の給電経路(42)を断接するスイッチ(39)と、を備え、前記スイッチ(39)は、前記バッテリ電圧検知部(38)が検知した電圧が閾値(VC)未満又は以下になったときに、前記給電経路(42)を遮断する
 この構成によれば、バッテリ装置において、プラス端子およびマイナス端子とは別に第三の端子が設けられ、第三の端子とバッテリ本体との間には、給電経路を断接するスイッチが設けられている。そして、第三の端子を利用して暗電流負荷とバッテリ本体とを接続することで、バッテリ本体の電圧が閾値未満又は以下になったときには、スイッチによって暗電流負荷への給電を遮断することが可能となる。このため、バッテリ電圧が低下したときには、暗電流負荷を遮断してバッテリ本体の過放電を防ぐことができる。
 また、バッテリ装置において、バッテリ本体および第三の端子の間に、給電経路を遮断する制御部が設けられている。これにより、第三の端子に接続した個々の暗電流負荷に対して、電源線開閉のためのリレー等を設ける必要がなく、既存の暗電流負荷をそのまま使用可能となる。このため、部品コストの増加を抑えるとともに、部品配置スペースの拡大を抑えることができる。
One aspect of the present invention is a battery body (36), a positive terminal (25A) connected to the positive electrode of the battery body (36), and a negative terminal (25B) connected to the negative electrode of the battery body (36) And a third terminal (25C) provided separately from the positive terminal (25A) and the negative terminal (25B), and a control provided between the battery body (36) and the third terminal (25C) A battery voltage detection unit (38) for detecting the voltage of the battery body (36); and a voltage detected by the battery voltage detection unit (38). And a switch (39) for connecting and disconnecting a feed path (42) between the battery body (36) and the third terminal (25C), the switch (39) comprising the battery voltage detector (3) Shut off the feeding path (42) when the voltage detected by the) falls below or below the threshold (VC). According to this configuration, in the battery device, the third terminal separately from the plus terminal and the minus terminal. And a switch for connecting and disconnecting the feed path between the third terminal and the battery body. Then, by connecting the dark current load and the battery body using the third terminal, when the voltage of the battery body falls below or below the threshold value, the switch may cut off the power supply to the dark current load. It becomes possible. Therefore, when the battery voltage drops, the dark current load can be shut off to prevent overdischarge of the battery body.
In the battery device, a control unit is provided between the battery main body and the third terminal for interrupting the feeding path. Thus, it is not necessary to provide a relay or the like for switching the power supply line for each dark current load connected to the third terminal, and the existing dark current load can be used as it is. Therefore, it is possible to suppress an increase in the part cost and to suppress an increase in the part arrangement space.
 本発明の一態様は、前記スイッチ(39)は、半導体リレーを備えている。
 この構成によれば、バッテリ装置において、機械式リレー(有接点リレー)を備える場合に比べて、スイッチをコンパクトかつ長寿命とし、かつ指令に対する応答性を高めることができる。
In one aspect of the present invention, the switch (39) includes a semiconductor relay.
According to this configuration, in the battery device, the switch can be made compact and have a long life, and the response to the command can be enhanced, as compared with the case where the mechanical relay (contact relay) is provided.
 本発明の一態様は、前記第三の端子(25C)は、前記バッテリ本体(36)の正極に接続されている。
 この構成によれば、バッテリ装置において、バッテリ本体の充電時に高電圧が印加される場合にも、スイッチの故障を防ぐことができる。
 また、バッテリ装置において、暗電流負荷部品に第三の端子を介してバッテリ本体のマイナス側を接続した場合、個々の暗電流負荷に電源線開閉のためのリレー等を設ける必要が生じる。一方、暗電流負荷に第三の端子を介してバッテリ本体のプラス側を接続することで、第三の端子に接続した個々の暗電流負荷に対して、電源線開閉のためのリレー等を設ける必要がなく、既存の暗電流負荷をそのまま使用可能となる。このため、部品コストの増加を抑えるとともに、部品配置スペースの拡大を抑えることができる。
In one aspect of the present invention, the third terminal (25C) is connected to the positive electrode of the battery body (36).
According to this configuration, in the battery device, even when a high voltage is applied during charging of the battery main body, failure of the switch can be prevented.
Further, in the battery device, when the negative side of the battery main body is connected to the dark current load component via the third terminal, it is necessary to provide a relay or the like for opening and closing the power supply line in each dark current load. On the other hand, by connecting the positive side of the battery body to the dark current load via the third terminal, a relay or the like for switching the power supply line is provided for each dark current load connected to the third terminal. There is no need for it, and the existing dark current load can be used as it is. Therefore, it is possible to suppress an increase in the part cost and to suppress an increase in the part arrangement space.
 本発明の一態様は、前記プラス端子(25A)と前記マイナス端子(25B)とは、互いに離間して配置され、前記プラス端子(25A)と前記マイナス端子(25B)との間の間隙には、前記第三の端子(25C)が配置されている。
 この構成によれば、バッテリ装置において、プラス端子およびマイナス端子は、常に配線が接続可能なように車体に対してレイアウトされることから、これらプラス端子およびマイナス端子の間に第三の端子を配置することで、バッテリの配置方法が変わっても、プラス端子およびマイナス端子と横並びの第三の端子に配線を接続しやすくなる。このため、多様なバッテリ配置に応じた柔軟な接続が可能となり、バッテリ装置の着脱およびレイアウトを容易にすることができる。
In one aspect of the present invention, the plus terminal (25A) and the minus terminal (25B) are spaced apart from each other, and a gap between the plus terminal (25A) and the minus terminal (25B) is provided. , The third terminal (25C) is disposed.
According to this configuration, in the battery device, the plus terminal and the minus terminal are laid out with respect to the vehicle body so that wiring can always be connected. Therefore, the third terminal is disposed between the plus terminal and the minus terminal. By doing this, even if the battery arrangement method changes, it becomes easy to connect the wiring to the plus terminal and the minus terminal, and the third terminal arranged side by side. Therefore, flexible connections can be made according to various battery arrangements, and attachment and detachment of the battery device can be facilitated.
 本発明の態様によれば、暗電流負荷に電源を供給可能としながら暗電流負荷によるバッテリ上がりを防ぐことができるバッテリ装置を提供することができる。 According to an aspect of the present invention, it is possible to provide a battery device capable of preventing a battery runout due to a dark current load while being able to supply power to the dark current load.
本実施形態のバッテリ装置の斜視図である。It is a perspective view of the battery apparatus of this embodiment. 図1のII-II断面図である。It is II-II sectional drawing of FIG. 本実施形態のバッテリ制御システムの構成ブロック図である。It is a structure block diagram of the battery control system of this embodiment. 上記バッテリ装置の電圧の時間変化を示すグラフである。It is a graph which shows the time change of the voltage of the said battery apparatus. 上記バッテリ装置の端子の配置を示す斜視図である。It is a perspective view which shows arrangement | positioning of the terminal of the said battery apparatus.
 以下、本発明の実施形態について図面を参照して説明する。本実施形態のバッテリ装置は、自動二輪車等の鞍乗り型車両に車載電源として搭載されるバッテリであり、繰り返しの充放電が可能な二次電池を備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The battery device of the present embodiment is a battery mounted as a vehicle-mounted power source on a saddle-ride type vehicle such as a motorcycle, and includes a secondary battery capable of repeated charge and discharge.
 図1、図2に示すように、バッテリ装置1は、略長方体状の筐体10を備えている。筐体10の内部には、複数の二次電池11が収容されている。バッテリ装置1は、複数の二次電池11を直列に接続し、出力電圧を予め定めた電圧まで高めている。バッテリ装置1は、複数の二次電池11を監視する電池監視ユニット(BMU:Battery Managing Unit)を内蔵している。BMUは、通常、各二次電池11の電圧などを測定し、充放電時の過充電や過放電を検出する。BMUは、各二次電池11の電圧バランスを維持する機能も有している。 As shown in FIGS. 1 and 2, the battery device 1 includes a substantially rectangular case 10. Inside the case 10, a plurality of secondary batteries 11 are accommodated. The battery device 1 connects a plurality of secondary batteries 11 in series, and raises the output voltage to a predetermined voltage. The battery device 1 incorporates a battery monitoring unit (BMU: Battery Managing Unit) that monitors a plurality of secondary batteries 11. The BMU normally measures the voltage or the like of each secondary battery 11 and detects overcharge or overdischarge during charge and discharge. The BMU also has a function of maintaining the voltage balance of each secondary battery 11.
 筐体10は、下部筐体10Lと、その下部筐体10Lの上部に結合された上部筐体10Uとを有し、下部筐体10Lと上部筐体10Uの間が仕切壁12によって仕切られている。筐体10の内部は、後述の排気通路26を除いて密閉されている。複数の二次電池11は、下部筐体10Lに収容されている。上部筐体10Uの内部には、前記BMUとしての電池監視回路21が収容されている。電池監視回路21は、二次電池11の電圧を監視し、二次電池11に過充電が生じたときは二次電池11への充電電流を遮断する。 The case 10 has a lower case 10L and an upper case 10U coupled to the upper portion of the lower case 10L, and the lower case 10L and the upper case 10U are partitioned by the partition wall 12 There is. The inside of the housing 10 is sealed except for an exhaust passage 26 described later. The plurality of secondary batteries 11 are accommodated in the lower housing 10L. The battery monitoring circuit 21 as the BMU is accommodated in the upper housing 10U. The battery monitoring circuit 21 monitors the voltage of the secondary battery 11, and cuts off the charging current to the secondary battery 11 when the secondary battery 11 is overcharged.
 二次電池11は、例えばリチウムイオン電池である。二次電池11の容器13の内部には、例えば、正極14、負極15、セパレータ16、非水電解質17等が収容されている。二次電池11の容器13には、電流を充放電するための電池端子18(正極端子および負極端子)が設置されている。 The secondary battery 11 is, for example, a lithium ion battery. For example, the positive electrode 14, the negative electrode 15, the separator 16, the non-aqueous electrolyte 17, and the like are housed inside the container 13 of the secondary battery 11. In the container 13 of the secondary battery 11, a battery terminal 18 (a positive electrode terminal and a negative electrode terminal) for charging and discharging a current is provided.
 筐体10の平面視矩形状の上壁10aにおいて、平面視形状の長手方向に沿う一辺の両側の上部コーナー部分には、上壁10aの一般部の上面に対して段差状に下がった段差部10bが形成されている。両段差部10bには、バッテリ装置1のプラス端子25Aおよびマイナス端子25Bが設置されている。各端子25A,25Bは、筐体10の内部において、二次電池11の正負極の電池端子18にそれぞれ接続されている。 In the upper wall 10a of the rectangular shape in a plan view of the housing 10, at upper corner portions on both sides of one side along the longitudinal direction of the shape in plan view, a stepped portion which is stepped down with respect to the upper surface of the general portion of the upper wall 10a 10b is formed. The positive terminal 25A and the negative terminal 25B of the battery device 1 are provided in the two step portions 10b. Each of the terminals 25A and 25B is connected to the positive and negative battery terminals 18 of the secondary battery 11 in the housing 10, respectively.
 筐体10の仕切る仕切壁12には、二次電池11から発生したガスを上部筐体10U側に流通させるための貫通孔19が形成されている。筐体10の上壁10aには、貫通孔19を通して上部筐体10U内に流入したガスを筐体10の外部に排出するための排気通路26が設けられている。例えば、排気通路26は、上下に延びる筒状をなし、その上部には、ゴム等の弾性体からなるキャップ状の弁体27が取り付けられている。弁体27は、筐体10の内部の圧力が上昇したときに、この圧力を外部に逃がす排気弁として機能し、通常時は排気通路26を閉じている。弁体27の上方には、上壁10aと面一状のカバー28が装着されている。 Through holes 19 for allowing the gas generated from the secondary battery 11 to flow to the upper housing 10U side are formed in the partition wall 12 which partitions the housing 10. The upper wall 10 a of the housing 10 is provided with an exhaust passage 26 for discharging the gas flowing into the upper housing 10 U through the through hole 19 to the outside of the housing 10. For example, the exhaust passage 26 has a cylindrical shape extending vertically, and a cap-like valve body 27 made of an elastic material such as rubber is attached to the upper portion thereof. The valve body 27 functions as an exhaust valve for releasing the pressure to the outside when the pressure inside the housing 10 rises, and normally closes the exhaust passage 26. A cover 28 flush with the upper wall 10 a is mounted above the valve body 27.
 図3を併せて参照し、車両に搭載されたバッテリ装置1は、車両に標準又はオプションで装着された電装部品(一般負荷34、暗電流負荷35)に対して電力を供給する。バッテリ装置1は、イグニッションスイッチ(メインスイッチ)SW1がオフであっても、上記電装部品の一部(暗電流負荷35)に暗電流(バックアップ電源、待機電源)を供給する。この暗電流により、バッテリ装置1は、イグニッションスイッチSW1がオフであってもバッテリ容量を消費する。このため、長期の駐車等で車両のエンジン(内燃機関)および発電機32を長期間停止し、かつ外部電源とも接続されていない状態が続くと、いわゆるバッテリ上がり(バッテリ本体36の過放電)が生じることがある。 Referring also to FIG. 3, the battery device 1 mounted on the vehicle supplies power to the electrical components (general load 34 and dark current load 35) mounted on the vehicle as standard or option. Even if the ignition switch (main switch) SW1 is off, the battery device 1 supplies a dark current (backup power supply, standby power supply) to a part (dark current load 35) of the electric component. Due to this dark current, the battery device 1 consumes the battery capacity even if the ignition switch SW1 is off. Therefore, when the vehicle engine (internal combustion engine) and the generator 32 are stopped for a long time due to long-term parking etc. and the state where the external power supply is not connected continues, so-called battery exhaustion (overdischarge of the battery main body 36) occurs. May occur.
 本実施形態のバッテリ装置1では、バッテリ電圧が予め定めた閾値(後述の暗電流カット閾値VC)を下回ると、バッテリ装置1に搭載したアナログ回路(暗電流制御部37)が暗電流負荷35への給電経路(第二給電経路42)を切断し、暗電流負荷35への電力供給をカットする。 In the battery device 1 of the present embodiment, when the battery voltage falls below a predetermined threshold (dark current cut threshold VC described later), the analog circuit (dark current control unit 37) mounted on the battery device 1 sends the dark current load 35 Power supply path (second power supply path 42) is cut, and the power supply to the dark current load 35 is cut.
 図3を参照し、本実施形態のバッテリ装置1を含むバッテリ制御システムについて説明する。
 バッテリ制御システムは、バッテリ装置1、イグニッションスイッチSW1、スタータスイッチSW2、レギュレータ31、発電機32、スタータモータ33、一般負荷34および暗電流負荷35を備えている。
 バッテリ装置1は、バッテリ本体36、暗電流制御部37、プラス端子25A、マイナス端子25Bおよび暗電流接続端子25Cを備えている。
 暗電流制御部37は、Vb検出部(バッテリ電圧検知部)38およびスイッチング素子39を備えている。
A battery control system including the battery device 1 of the present embodiment will be described with reference to FIG.
The battery control system includes a battery device 1, an ignition switch SW1, a starter switch SW2, a regulator 31, a generator 32, a starter motor 33, a general load 34, and a dark current load 35.
The battery device 1 includes a battery body 36, a dark current control unit 37, a plus terminal 25A, a minus terminal 25B, and a dark current connection terminal 25C.
The dark current control unit 37 includes a Vb detection unit (battery voltage detection unit) 38 and a switching element 39.
 バッテリ本体36は、複数の二次電池11を直列に接続した集合体である。バッテリ本体36は、正極がプラス端子25Aに接続され、負極がマイナス端子25Bに接続されている。プラス端子25Aは、イグニッションスイッチSW1の一端に接続され、マイナス端子25Bは接地されている。イグニッションスイッチSW1の他端は、一般負荷34および暗電流負荷35の各正極に接続されるとともに、スタータスイッチSW2を介してスタータモータ33の正極に接続されている。一般負荷34、暗電流負荷35およびスタータモータ33の各負極は接地されている。暗電流負荷35の正極には、ヒューズh3を介して暗電流接続端子25Cが接続されている。 The battery body 36 is an assembly in which a plurality of secondary batteries 11 are connected in series. The battery body 36 has a positive electrode connected to the positive terminal 25A and a negative electrode connected to the negative terminal 25B. The plus terminal 25A is connected to one end of the ignition switch SW1, and the minus terminal 25B is grounded. The other end of the ignition switch SW1 is connected to the respective positive electrodes of the general load 34 and the dark current load 35, and is also connected to the positive electrode of the starter motor 33 via the starter switch SW2. The respective negative electrodes of the general load 34, the dark current load 35 and the starter motor 33 are grounded. A dark current connection terminal 25C is connected to the positive electrode of the dark current load 35 via the fuse h3.
 発電機32は、レギュレータ31の入力端子に接続されている。レギュレータ31の出力端子は、ヒューズh1を介してバッテリ本体36の正極に接続されている。レギュレータ31の接地端子は接地されている。 The generator 32 is connected to the input terminal of the regulator 31. The output terminal of the regulator 31 is connected to the positive electrode of the battery main body 36 through the fuse h1. The ground terminal of the regulator 31 is grounded.
 暗電流制御部37は、Vb検出部38の一端がバッテリ本体36の正極に接続され、Vb検出部38の他端がバッテリ本体36の負極に接続されている。Vb検出部38の一端は、ヒューズh2を介してスイッチング素子39のドレイン端子に接続されている。スイッチング素子39は、ソース端子が暗電流接続端子25Cに接続され、ゲート端子がVb検出部38に接続されている。例えば、スイッチング素子39は、NチャネルのMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属酸化膜半導体電界効果トランジスタ)である。 In the dark current control unit 37, one end of the Vb detection unit 38 is connected to the positive electrode of the battery main body 36, and the other end of the Vb detection unit 38 is connected to the negative electrode of the battery main body 36. One end of the Vb detection unit 38 is connected to the drain terminal of the switching element 39 via the fuse h2. The switching element 39 has a source terminal connected to the dark current connection terminal 25C, and a gate terminal connected to the Vb detection unit 38. For example, the switching element 39 is an N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor: metal oxide semiconductor field effect transistor).
 スタータモータ33は、バッテリ装置1の電力によって駆動され、例えばワンウェイクラッチを介してクランキングを行ってエンジンを始動する。
 発電機32は、発電モータ(ACG(Alternating Current Generator:交流発電機)であり、例えばエンジンのクランクシャフトと同軸配置され、クランクシャフトの回転によって駆動される。すなわち、発電機32は、エンジンの運転時に発電を行う。発電機32は、発電した電力をレギュレータ31に供給する。レギュレータ31は、発電機32から供給された電圧を所定の電圧に昇圧または降圧してバッテリ本体36に充電する。なお、発電機32から一般負荷34および暗電流負荷35へ直接電力を供給してもよい。
The starter motor 33 is driven by the electric power of the battery device 1 and performs cranking via, for example, a one-way clutch to start the engine.
The generator 32 is a generator motor (ACG (Alternating Current Generator), for example, coaxially arranged with a crankshaft of the engine and driven by rotation of the crankshaft. That is, the generator 32 is operated by the engine. The generator 32 supplies the generated power to the regulator 31. The regulator 31 boosts or steps down the voltage supplied from the generator 32 to a predetermined voltage to charge the battery main body 36. Power may be supplied directly from the generator 32 to the general load 34 and the dark current load 35.
 一般負荷34は、イグニッションスイッチSW1がオンのときにバッテリ装置1から電力が供給される負荷である。一般負荷34には、例えばエンジン点火系や燃料供給系、各種灯火器等がある。
 暗電流負荷35は、車両が停車しエンジンが停止している状態を含めて、バッテリ装置1から常時電力が供給される負荷である。暗電流負荷35には、例えばECU(Electronic Control Unit)、時計、各種通信機器等がある。
The general load 34 is a load to which power is supplied from the battery device 1 when the ignition switch SW1 is on. The general load 34 includes, for example, an engine ignition system, a fuel supply system, various lamps and the like.
The dark current load 35 is a load to which power is constantly supplied from the battery device 1 including a state in which the vehicle is stopped and the engine is stopped. The dark current load 35 includes, for example, an electronic control unit (ECU), a clock, various communication devices, and the like.
 暗電流負荷35には、イグニッションスイッチSW1がオンの場合には、バッテリ装置1のプラス端子25Aから第一給電経路41を介して電力が供給される。
 暗電流負荷35には、イグニッションスイッチSW1がオフの場合には、バッテリ電圧が暗電流カット閾値VC以上であれば、バッテリ装置1の暗電流接続端子25Cから第三給電経路43を介して電力が供給される。第三給電経路43にはヒューズh3が介装されている。
When the ignition switch SW1 is on, power is supplied to the dark current load 35 from the plus terminal 25A of the battery device 1 through the first power feeding path 41.
If the battery voltage is equal to or higher than the dark current cut threshold VC when the ignition switch SW1 is off, the dark current load 35 receives power from the dark current connection terminal 25C of the battery device 1 through the third power feeding path 43. Supplied. A fuse h3 is interposed in the third feed path 43.
 Vb検出部38は、集積回路を含んで構成されている。Vb検出部38は、バッテリ本体36の両端の電圧値を検出して、予め定めた暗電流カット閾値VCと比較する。Vb検出部38は、バッテリ本体36の電圧値が暗電流カット閾値VC未満の場合、スイッチング素子39をオン状態にするH(ハイ)レベルの信号を出力する。Vb検出部38は、バッテリ本体36の電圧値が暗電流カット閾値VC以上の場合、スイッチング素子39をオフ状態にするL(ロー)レベルの信号を出力する。 The Vb detection unit 38 is configured to include an integrated circuit. The Vb detection unit 38 detects voltage values at both ends of the battery main body 36 and compares the voltage values with a predetermined dark current cut threshold VC. When the voltage value of the battery body 36 is less than the dark current cut threshold VC, the Vb detection unit 38 outputs an H (high) level signal to turn on the switching element 39. When the voltage value of the battery body 36 is equal to or higher than the dark current cut threshold VC, the Vb detection unit 38 outputs an L (low) level signal to turn off the switching element 39.
 スイッチング素子39は、バッテリ本体36の正極と暗電流接続端子25Cとに渡る第二給電経路42を断接する。すなわち、バッテリ本体36の電圧値が閾値未満の場合、第二給電経路42が切断されて暗電流接続端子25Cから暗電流負荷35への電力供給が停止する。バッテリ本体36の電圧値が閾値以上の場合、第二給電経路42が接続されて暗電流接続端子25Cから暗電流負荷35への電力供給が可能となる。第二給電経路42におけるバッテリ本体36の正極とスイッチング素子39との間にはヒューズh2が介装されている。 The switching element 39 connects and disconnects the second feed path 42 across the positive electrode of the battery body 36 and the dark current connection terminal 25C. That is, when the voltage value of the battery body 36 is less than the threshold value, the second feed path 42 is disconnected, and the power supply from the dark current connection terminal 25C to the dark current load 35 is stopped. When the voltage value of the battery body 36 is equal to or higher than the threshold value, the second power feeding path 42 is connected, and power can be supplied from the dark current connection terminal 25C to the dark current load 35. A fuse h2 is interposed between the positive electrode of the battery main body 36 and the switching element 39 in the second feed path 42.
 図4を参照し、バッテリ電圧の時間変化について説明する。図4のグラフにおいて、縦軸はバッテリ電圧、横軸は時間を示している。
 バッテリ電圧が暗電流カット閾値VCを上回っている領域(常時電源供給領域)では、暗電流負荷35によりバッテリ容量が消費する。バッテリ電圧が暗電流カット閾値VCを下回っている領域(暗電流カット領域)では、暗電流制御部37が第二給電経路42を遮断することで、バッテリ容量の消費が抑えられる(図中線V1)。図中線V2は暗電流制御部37が第二給電経路42を接続したままでバッテリ容量が消費する様を示す。
The time change of the battery voltage will be described with reference to FIG. In the graph of FIG. 4, the vertical axis represents battery voltage and the horizontal axis represents time.
The dark current load 35 consumes battery capacity in a region where the battery voltage exceeds the dark current cut threshold VC (always-on power supply region). In a region where the battery voltage is lower than the dark current cut threshold VC (dark current cut region), the dark current control unit 37 cuts off the second power feeding path 42, whereby the consumption of the battery capacity is suppressed (line V1 in FIG. ). A line V2 in the drawing indicates that the battery capacity is consumed while the dark current control unit 37 is connected to the second feed path 42.
 暗電流制御部37が第二給電経路42を遮断した後、イグニッションスイッチSW1がオンになり、一般負荷34への通電による電圧変化(ΔV)が生じると(図中IGN_ON部)、この電圧変化をVb検出部38が検知し、スイッチング素子39をオン状態にする信号(FET_ON信号)を出力する。これにより、第二給電経路42が遮断状態から接続状態に復帰する。 After the dark current control unit 37 cuts off the second power feeding path 42, the ignition switch SW1 is turned on, and when a voltage change (ΔV) due to the general load 34 is generated (in the figure, IGN_ON portion) The Vb detection unit 38 detects and outputs a signal (FET_ON signal) for turning on the switching element 39. As a result, the second power supply path 42 returns from the cutoff state to the connection state.
 本実施形態では、バッテリ本体36の電圧値が暗電流カット閾値VC未満になった場合に、スイッチング素子39をオフ状態にすることで、暗電流負荷35にバッテリ本体36から電力を供給しないようにした。これにより、車両が停止している際(エンジン停止時、ACG停止時)に電力を消費する暗電流負荷35それぞれに対して、個別に電力の供給を停止するためのスイッチやリレーを設ける必要が無くなる。その結果、部品を削減してコストを削減し、さらに小スペース化を図ることができる。 In the present embodiment, when the voltage value of the battery main body 36 becomes less than the dark current cut threshold VC, the dark current load 35 is not supplied with power from the battery main body 36 by turning off the switching element 39. did. This makes it necessary to provide switches and relays for individually stopping the supply of power to each of the dark current loads 35 that consume power when the vehicle is stopped (when the engine is stopped or ACG is stopped). It disappears. As a result, it is possible to reduce parts, reduce costs, and further reduce the space.
 図1、図5を参照し、バッテリ装置1の端子の配置について説明する。
 プラス端子25Aが設置される側の段差部10bは、マイナス端子25Bが設置される側の段差部10bに対して、上壁10aの平面視形状の長手方向に沿う方向で幅広に設けられている。
The arrangement of the terminals of the battery device 1 will be described with reference to FIGS. 1 and 5.
The stepped portion 10b on the side where the plus terminal 25A is installed is provided wider than the stepped portion 10b on the side where the negative terminal 25B is installed in the direction along the longitudinal direction of the plan view shape of the upper wall 10a. .
 暗電流接続端子25Cは正極であり、上記長手方向の中央部よりもプラス端子25A寄りに配置されている。マイナス端子25Bが設置される段差部10bが大きい理由は、バッテリ装置1の搬送時に各端子25A~25Cに外部配線を接続するためのボルトやナットを収納して梱包するためである。プラス端子25Aが設置される段差部10bは、プラス端子25A寄りに暗電流接続端子25Cが配置されることから、拡大に不向きである。 The dark current connection terminal 25C is a positive electrode, and is disposed closer to the plus terminal 25A than the central portion in the longitudinal direction. The reason why the step portion 10b where the negative terminal 25B is installed is large is to store and pack bolts and nuts for connecting external wiring to the terminals 25A to 25C when the battery device 1 is transported. Since the dark current connection terminal 25C is disposed closer to the plus terminal 25A, the step portion 10b in which the plus terminal 25A is installed is not suitable for enlargement.
 上壁10aの平面視形状の長手方向に沿う一辺において、両端子25A,25B間の間隙に暗電流接続端子25Cが配置されている。このため、両端子25A,25Bに外部配線を接続する作業の延長で、暗電流接続端子25Cに対しても外部端子を接続することができる。また、両端子25A,25Bは上記長手方向の端部、暗電流接続端子25Cは上記長手方向の中間部に配置されることから、両端子25A,25Bと暗電流接続端子25Cとの見分けがつきやすく、外部配線の誤組みを抑止することができる。また、各端子25A~25Cの端子自体は、相互に同一構成とすることで、同一方向から同一工具で外部配線を着脱可能とし、着脱作業性を向上させることができる。また、暗電流接続端子25Cを設置した凹部10cは、着脱可能なカバー10dにより遮蔽可能とすることで、暗電流接続端子25Cの未使用時におけるバッテリ装置1の外観を良好にし、かつ泥づまり等による暗電流接続端子25Cの機能への支障を無くすことができる。 A dark current connection terminal 25C is disposed in the gap between the two terminals 25A and 25B on one side along the longitudinal direction of the top wall 10a in plan view. Therefore, the external terminals can be connected also to the dark current connection terminal 25C by extension of the work of connecting the external wiring to the both terminals 25A and 25B. Further, since both the terminals 25A and 25B are disposed at the end in the longitudinal direction, and the dark current connection terminal 25C is disposed at the middle in the longitudinal direction, it is possible to distinguish between the both terminals 25A and 25B and the dark current connection terminal 25C. It is easy and can suppress the mistake of the external wiring. Further, by making the terminals themselves of the respective terminals 25A to 25C have the same configuration, the external wiring can be made detachable with the same tool from the same direction, and the mounting / demounting workability can be improved. Further, the concave portion 10c provided with the dark current connection terminal 25C can be shielded by the removable cover 10d, thereby making the appearance of the battery device 1 good when the dark current connection terminal 25C is not used It is possible to eliminate the hindrance to the function of the dark current connection terminal 25C due to the
 以上説明したように、上記実施形態におけるバッテリ装置1は、バッテリ本体36と、前記バッテリ本体36の正極に接続されたプラス端子25Aと、前記バッテリ本体36の負極に接続されたマイナス端子25Bと、前記プラス端子25Aおよびマイナス端子25Bとは別に設けられた暗電流接続端子25Cと、前記バッテリ本体36および暗電流接続端子25Cの間に設けられた暗電流制御部37と、を備え、前記暗電流制御部37は、前記バッテリ本体36の電圧を検知するVb検出部38と、前記Vb検出部38が検知した電圧に基づき前記バッテリ本体36および暗電流接続端子25Cの間の第二給電経路42を断接するスイッチング素子39と、を備え、前記スイッチング素子39は、前記Vb検出部38が検知した電圧が暗電流カット閾値VC未満(閾値以下でもよい)になったときに、前記第二給電経路42を遮断するものである。 As described above, the battery device 1 in the above embodiment includes the battery body 36, the positive terminal 25A connected to the positive electrode of the battery body 36, and the negative terminal 25B connected to the negative electrode of the battery body 36. A dark current connection terminal 25C provided separately from the plus terminal 25A and the minus terminal 25B, and a dark current control unit 37 provided between the battery main body 36 and the dark current connection terminal 25C, wherein the dark current The control unit 37 detects a voltage of the battery main body 36, and a second power supply path 42 between the battery main body 36 and the dark current connection terminal 25C based on the voltage detected by the Vb detection unit 38. And the switching element 39 is configured such that the voltage detected by the Vb detection unit 38 is dark. When it is less than the flow cut threshold VC (threshold or below), is to cut off the second feed path 42.
 この構成によれば、バッテリ装置1において、プラス端子25Aおよびマイナス端子25Bとは別に暗電流接続端子25Cが設けられ、暗電流接続端子25Cとバッテリ本体36との間には、第二給電経路42を断接するスイッチング素子39が設けられている。そして、暗電流接続端子25Cを利用して暗電流負荷35とバッテリ本体36とを接続することで、バッテリ本体36の電圧が閾値未満又は以下になったときには、スイッチング素子39によって暗電流負荷35への給電を遮断することが可能となる。このため、バッテリ電圧が低下したときには、暗電流負荷35を遮断してバッテリ本体36の過放電を防ぐことができる。
 また、バッテリ装置1において、バッテリ本体36および暗電流接続端子25Cの間に、第二給電経路42を遮断する暗電流制御部37が設けられている。これにより、暗電流接続端子25Cに接続した個々の暗電流負荷35に対して、電源線開閉のためのリレー等を設ける必要がなく、既存の暗電流負荷35をそのまま使用可能となる。このため、部品コストの増加を抑えるとともに、部品配置スペースの拡大を抑えることができる。
According to this configuration, in the battery device 1, the dark current connection terminal 25C is provided separately from the plus terminal 25A and the minus terminal 25B, and the second power supply path 42 is provided between the dark current connection terminal 25C and the battery main body 36. And a switching element 39 for connecting and disconnecting. Then, by connecting the dark current load 35 and the battery main body 36 using the dark current connection terminal 25 C, when the voltage of the battery main body 36 becomes less than or less than the threshold value, the switching element 39 It is possible to cut off the power supply of Therefore, when the battery voltage drops, the dark current load 35 can be shut off to prevent overdischarge of the battery body 36.
Further, in the battery device 1, a dark current control unit 37 is provided between the battery main body 36 and the dark current connection terminal 25C for interrupting the second power supply path 42. As a result, it is not necessary to provide a relay or the like for switching the power supply line for each dark current load 35 connected to the dark current connection terminal 25C, and the existing dark current load 35 can be used as it is. Therefore, it is possible to suppress an increase in the part cost and to suppress an increase in the part arrangement space.
 また、上記実施形態におけるバッテリ装置1において、前記スイッチング素子39は、半導体リレーを備えている。
 この構成によれば、バッテリ装置1において、機械式リレー(有接点リレー)を備える場合に比べて、スイッチング素子39をコンパクトかつ長寿命とし、かつ指令に対する応答性を高めることができる。なお、スイッチング素子39は、MOSFET等の半導体リレー(無接点リレー)に限らず、機械式リレー(有接点リレー)を採用してもよい。
Moreover, in the battery device 1 in the above embodiment, the switching element 39 includes a semiconductor relay.
According to this configuration, it is possible to make the switching element 39 compact and have a long life and to improve the response to the command, as compared with the case where the battery device 1 includes the mechanical relay (contact relay). The switching element 39 is not limited to a semiconductor relay (contactless relay) such as a MOSFET, but may be a mechanical relay (contacted relay).
 また、上記実施形態におけるバッテリ装置1において、前記暗電流接続端子25Cは、前記バッテリ本体36の正極に接続されている。
 この構成によれば、バッテリ装置1において、バッテリ本体36の充電時に高電圧が印加される場合にも、スイッチング素子39の故障を防ぐことができる。
 また、バッテリ装置1において、暗電流負荷35に暗電流接続端子25Cを介してバッテリ本体36のマイナス側を接続した場合、個々の暗電流負荷35に電源線開閉のためのリレー等を設ける必要が生じる。一方、暗電流負荷35に暗電流接続端子25Cを介してバッテリ本体36のプラス側を接続することで、暗電流接続端子25Cに接続した個々の暗電流負荷35に対して、電源線開閉のためのリレー等を設ける必要がなく、既存の暗電流負荷35をそのまま使用可能となる。このため、部品コストの増加を抑えるとともに、部品配置スペースの拡大を抑えることができる。
Further, in the battery device 1 according to the embodiment, the dark current connection terminal 25C is connected to the positive electrode of the battery main body 36.
According to this configuration, in the battery device 1, even when a high voltage is applied when charging the battery main body 36, it is possible to prevent the failure of the switching element 39.
Further, in the battery device 1, when the dark current load 35 is connected to the negative side of the battery main body 36 via the dark current connection terminal 25C, it is necessary to provide each dark current load 35 with a relay or the like for switching the power supply line. It occurs. On the other hand, by connecting the positive side of the battery main body 36 to the dark current load 35 via the dark current connection terminal 25C, the individual dark current loads 35 connected to the dark current connection terminal 25C can be opened and closed. It is not necessary to provide a relay or the like, and the existing dark current load 35 can be used as it is. Therefore, it is possible to suppress an increase in the part cost and to suppress an increase in the part arrangement space.
 また、上記実施形態におけるバッテリ装置1において、前記プラス端子25Aと前記マイナス端子25Bとは、互いに離間して配置され、前記プラス端子25Aと前記マイナス端子25Bとの間の間隙には、前記暗電流接続端子25Cが配置されている。
 この構成によれば、バッテリ装置1において、プラス端子25Aおよびマイナス端子25Bは、常に配線が接続可能なように車体に対してレイアウトされることから、これらプラス端子25Aおよびマイナス端子25Bの間に暗電流接続端子25Cを配置することで、バッテリの配置方法が変わっても、プラス端子25Aおよびマイナス端子25Bと横並びの暗電流接続端子25Cに配線を接続しやすくなる。このため、多様なバッテリ配置に応じた柔軟な接続が可能となり、バッテリ装置1の着脱およびレイアウトを容易にすることができる。
Further, in the battery device 1 in the above embodiment, the plus terminal 25A and the minus terminal 25B are disposed apart from each other, and the dark current is provided in the gap between the plus terminal 25A and the minus terminal 25B. The connection terminal 25C is disposed.
According to this configuration, in battery device 1, positive terminal 25A and negative terminal 25B are laid out with respect to the vehicle body so that wiring can always be connected, and therefore, there is a dark space between positive terminal 25A and negative terminal 25B. By arranging the current connection terminal 25C, it becomes easy to connect a wire to the plus terminal 25A, the minus terminal 25B, and the dark current connection terminal 25C arranged side by side even if the arrangement method of the battery is changed. For this reason, flexible connection according to various battery arrangement is possible, and attachment / detachment and layout of the battery device 1 can be facilitated.
 なお、本発明は上記実施形態に限られるものではなく、例えば、二次電池はリチウムイオン電池に限らず、ニッケル水素電池、ナトリウムイオン電池等であってもよい。自動二輪車等の小型車両への適用に限らず、乗用車や貨物車等の種々輸送機器に適用してもよく、さらには輸送機器以外の設備等への適用も可能である。
 そして、上記実施形態における構成は本発明の一例であり、実施形態の構成要素を周知の構成要素に置き換える等、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above embodiment. For example, the secondary battery is not limited to a lithium ion battery, and may be a nickel hydrogen battery, a sodium ion battery, or the like. The present invention is not limited to the application to small vehicles such as motorcycles, but may be applied to various transportation devices such as passenger cars and freight cars, and is also applicable to facilities other than transportation devices.
The configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the scope of the present invention, such as replacing the components of the embodiment with known components.
 1 バッテリ装置
 25A プラス端子
 25B マイナス端子
 25C 暗電流接続端子(第三の端子)
 36 バッテリ本体
 37 暗電流制御部(制御部)
 38 Vb検出部(バッテリ電圧検知部)
 39 スイッチング素子(スイッチ)
 VC 暗電流カット閾値(閾値)
1 Battery device 25A positive terminal 25B negative terminal 25C dark current connection terminal (third terminal)
36 Battery main body 37 Dark current control unit (control unit)
38 Vb detector (battery voltage detector)
39 Switching element (switch)
VC dark current cut threshold (threshold)

Claims (4)

  1.  バッテリ本体(36)と、
     前記バッテリ本体(36)の正極に接続されたプラス端子(25A)と、
     前記バッテリ本体(36)の負極に接続されたマイナス端子(25B)と、
     前記プラス端子(25A)およびマイナス端子(25B)とは別に設けられた第三の端子(25C)と、
     前記バッテリ本体(36)および第三の端子(25C)の間に設けられた制御部(37)と、を備え、
     前記制御部(37)は、前記バッテリ本体(36)の電圧を検知するバッテリ電圧検知部(38)と、
     前記バッテリ電圧検知部(38)が検知した電圧に基づき前記バッテリ本体(36)および第三の端子(25C)の間の給電経路(42)を断接するスイッチ(39)と、を備え、
     前記スイッチ(39)は、前記バッテリ電圧検知部(38)が検知した電圧が閾値(VC)未満又は以下になったときに、前記給電経路(42)を遮断するバッテリ装置。
    Battery body (36),
    A positive terminal (25A) connected to the positive electrode of the battery body (36);
    A negative terminal (25B) connected to the negative electrode of the battery body (36);
    A third terminal (25C) provided separately from the plus terminal (25A) and the minus terminal (25B);
    A control unit (37) provided between the battery body (36) and the third terminal (25C);
    The control unit (37) is a battery voltage detection unit (38) for detecting the voltage of the battery body (36);
    A switch (39) for connecting and disconnecting a feed path (42) between the battery body (36) and the third terminal (25C) based on the voltage detected by the battery voltage detection unit (38);
    The switch (39) shuts off the feed path (42) when the voltage detected by the battery voltage detection unit (38) is less than or equal to a threshold (VC).
  2.  前記スイッチ(39)は、半導体リレーを備えている請求項1に記載のバッテリ装置。 The battery device according to claim 1, wherein the switch (39) comprises a semiconductor relay.
  3.  前記第三の端子(25C)は、前記バッテリ本体(36)の正極に接続されている請求項1又は2に記載のバッテリ装置。 The battery device according to claim 1 or 2, wherein the third terminal (25C) is connected to the positive electrode of the battery body (36).
  4.  前記プラス端子(25A)と前記マイナス端子(25B)とは、互いに離間して配置され、
     前記プラス端子(25A)と前記マイナス端子(25B)との間の間隙には、前記第三の端子(25C)が配置されている請求項1から3の何れか一項に記載のバッテリ装置。
    The plus terminal (25A) and the minus terminal (25B) are disposed apart from each other,
    The battery device according to any one of claims 1 to 3, wherein the third terminal (25C) is disposed in a gap between the plus terminal (25A) and the minus terminal (25B).
PCT/JP2017/046632 2017-12-26 2017-12-26 Battery device WO2019130424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046632 WO2019130424A1 (en) 2017-12-26 2017-12-26 Battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046632 WO2019130424A1 (en) 2017-12-26 2017-12-26 Battery device

Publications (1)

Publication Number Publication Date
WO2019130424A1 true WO2019130424A1 (en) 2019-07-04

Family

ID=67066824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046632 WO2019130424A1 (en) 2017-12-26 2017-12-26 Battery device

Country Status (1)

Country Link
WO (1) WO2019130424A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161662A1 (en) * 2020-02-14 2021-08-19 日立Astemo株式会社 Power starting/stopping device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334498A (en) * 1998-05-27 1999-12-07 Yazaki Corp System for preventing battery from overdischarge
JP2013193738A (en) * 2012-03-20 2013-09-30 Samsung Sdi Co Ltd Battery pack and control method of battery pack
JP2015089714A (en) * 2013-11-06 2015-05-11 古河電気工業株式会社 Device for preventing secondary battery from becoming dead, and method for preventing secondary battery from becoming dead

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334498A (en) * 1998-05-27 1999-12-07 Yazaki Corp System for preventing battery from overdischarge
JP2013193738A (en) * 2012-03-20 2013-09-30 Samsung Sdi Co Ltd Battery pack and control method of battery pack
JP2015089714A (en) * 2013-11-06 2015-05-11 古河電気工業株式会社 Device for preventing secondary battery from becoming dead, and method for preventing secondary battery from becoming dead

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161662A1 (en) * 2020-02-14 2021-08-19 日立Astemo株式会社 Power starting/stopping device

Similar Documents

Publication Publication Date Title
US7675261B2 (en) Auxiliary battery attachment apparatus for use in a multiple battery system that reliably supplies electrical energy to an electrical system
JP6155569B2 (en) Power system
US9793722B2 (en) Power source apparatus for vehicle
JP7073865B2 (en) Redundant power supply system
JP2012130108A (en) Power supply
US11235682B2 (en) Power supply device for vehicle
JP7010187B2 (en) Vehicle power system control method, vehicle power system
CN106998085B (en) Power storage device and method for determining improper use of power storage element
JP2014027799A (en) Power system
WO2019208410A1 (en) Failure diagnosis method, and management device for electricity-storage element
US11476704B2 (en) Power supply control system
US11502339B2 (en) Power storage device
WO2019130424A1 (en) Battery device
CN113544927A (en) Management device for power storage element and power storage device
US20200139821A1 (en) Power supply device
JP7276682B2 (en) Storage device management device, power storage device, and storage device management method
WO2017191818A1 (en) Power supply device
JP2020022366A (en) vehicle
US20050116682A1 (en) Low voltage protection device for batteries
JP2018133269A (en) Battery pack
US20220301795A1 (en) Protective device, energy storage apparatus, and method for reducing contact resistance of relay
WO2022249783A1 (en) Power storage device, and method for determining connection state
WO2022049856A1 (en) Secondary battery and control method
JP2021166454A (en) Failure diagnosis method for current cutoff device, and power storage device
JP2024047889A (en) CONTROL DEVICE, DIAGNOSIS METHOD, AND ELECTRICITY STORAGE DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP