WO2019130415A1 - Analysis result extraction device, analysis result extraction method, and analysis result extraction program - Google Patents

Analysis result extraction device, analysis result extraction method, and analysis result extraction program Download PDF

Info

Publication number
WO2019130415A1
WO2019130415A1 PCT/JP2017/046577 JP2017046577W WO2019130415A1 WO 2019130415 A1 WO2019130415 A1 WO 2019130415A1 JP 2017046577 W JP2017046577 W JP 2017046577W WO 2019130415 A1 WO2019130415 A1 WO 2019130415A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis result
mesh data
unit
analysis
result extraction
Prior art date
Application number
PCT/JP2017/046577
Other languages
French (fr)
Japanese (ja)
Inventor
光一 西浦
平野 徹
和之 三上
Original Assignee
インテグラル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテグラル・テクノロジー株式会社 filed Critical インテグラル・テクノロジー株式会社
Priority to PCT/JP2017/046577 priority Critical patent/WO2019130415A1/en
Priority to JP2019562979A priority patent/JP6969757B2/en
Priority to PCT/JP2018/045943 priority patent/WO2019131185A1/en
Publication of WO2019130415A1 publication Critical patent/WO2019130415A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to CAE (Computer Aided Engineering) technology that uses a computer to support product design and development.
  • CAE Computer Aided Engineering
  • An analysis apparatus that performs various analyzes (analysis simulation) such as structural analysis, fluid analysis, flow analysis, etc. analyzes using an analysis method such as, for example, a finite element method (FEM).
  • FEM finite element method
  • CAD Computer Aided Design
  • Patent Document 1 determines an outer product vector from a normal vector of the first surface and a vector in the tangential direction where the first surface and the second surface contact each other, and the outer product vector and the normal vector of the second surface An inner product is obtained, the surface shape of the second surface with respect to the first surface is determined based on the calculation result, and the determination is used to generate mesh data.
  • analysis results corresponding to mesh data of all parts of a product to be analyzed are output as a list of analysis result file data.
  • the analysis accuracy basically improves as the number of mesh data per unit area increases (the mesh becomes more detailed).
  • the enlargement of mesh data is in progress.
  • the analysis result is a huge amount of, for example, hundreds of thousands, millions or hundreds of millions.
  • the user (designer) needs to find out the analysis result of the desired part from the huge amount of analysis results. Therefore, the work burden on the user, the work time, and the work cost increase.
  • the present invention can reduce the work load on the user for finding out the analysis result of the desired part, and can shorten the work time, thereby reducing the work cost. It is an object of the present invention to provide an analysis result extraction method and an analysis result extraction program.
  • the present invention provides the following analysis result extraction device, analysis result extraction method, and analysis result extraction program in order to solve the problems.
  • the analysis result extraction device is analyzed using mesh data generated in association with each part information of the product from shape data of the product generated by three-dimensional CAD.
  • the mesh data corresponding to the site information is specified from the site information accepted by the site information accepting unit, the site information accepting unit that accepts the site information of the product, and the association unit that associates the analysis result with the mesh data.
  • the analysis result extraction method according to the present invention is analyzed using mesh data generated in association with each part information of the product from shape data of the product generated by three-dimensional CAD. Identifying the mesh data corresponding to the region information from the region information received in the region information receiving step and the region information receiving step in the region information receiving step in which the analysis result is associated with the mesh data, the region information receiving step in which the product information is received
  • the method is characterized by including a mesh data identification step and an analysis result extraction step of extracting the analysis result corresponding to the mesh data from the mesh data identified in the mesh data identification step.
  • Analysis result extraction program An analysis result extraction program for causing a computer to execute each step of the analysis result extraction method according to the present invention.
  • the present invention it is possible to reduce the work load on the user for finding out the analysis result of the desired part, to shorten the work time, and to reduce the work cost.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of an analysis apparatus provided with an analysis result extraction apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing an example of the processing procedure of the analysis apparatus provided with the analysis result extraction apparatus according to the embodiment of the present invention.
  • FIG. 3A is a three-dimensional view showing an example of the overall shape of three-dimensional CAD data of a product.
  • FIG. 3B is a perspective view showing a portion of the draw bead of the shape shown in FIG. 3A.
  • FIG. 3C is a perspective view of a portion of the fillet in the shape shown in FIG. 3A.
  • FIG. 4A is a three-dimensional view showing “Surface” of the shape in FIG. 3A by an arrow.
  • FIG. 3A is a three-dimensional view showing “Surface” of the shape in FIG. 3A by an arrow.
  • FIG. 4B is a three-dimensional view showing “Surface” of the shape in FIG. 3B by an arrow.
  • FIG. 4C is a three-dimensional view showing “Surface” of the shape in FIG. 3C by an arrow.
  • FIG. 5 is a three-dimensional view in which a mesh is applied to a portion including the draw bead having the shape shown in FIGS. 3B and 4B.
  • FIG. 6 is a three-dimensional view in which a mesh is applied to a portion including fillets having the shapes shown in FIG. 3C and FIG. 4C.
  • FIG. 7 is a schematic diagram for explaining nodes and elements represented by calculation input data of structural analysis.
  • FIG. 8 is a schematic view showing an example in which nodes are numbered.
  • FIG. 8 is a schematic view showing an example in which nodes are numbered.
  • FIG. 9 is a schematic view showing the relationship between nodes and elements.
  • FIG. 10 is an explanatory diagram of node information.
  • FIG. 11 is a schematic diagram for explaining an example of fixing nodes 3 and 4 and applying pressure to nodes 1 and 2.
  • FIG. 12 is a chart showing an example of calculation results output from the analysis solver.
  • FIG. 13A is a perspective view showing an example in which a part including a U-shaped cross section is divided by a surface.
  • FIG. 13B is a front view of the component shown in FIG. 13A.
  • FIG. 14A is a front view showing actual parts.
  • FIG. 14B is a perspective view of the part showing FIG. 14A.
  • FIG. 15A is a plan view showing a state before the upper end portion of the plate collides with the parts shown in FIGS.
  • FIG. 15B is a plan view showing a state after the plate is collided with the parts shown in FIG. 13A to FIG. 14B at the upper end.
  • 16A is an enlarged perspective view showing a ⁇ portion of the part shown in FIG. 15B.
  • FIG. 16B is an explanatory diagram of a ⁇ portion shown in FIG. 16A and a calculation result thereof.
  • FIG. 17 is a front view showing an actual part in which the plate is collided at the upper end.
  • FIG. 18 is a schematic view showing an example of a data structure of a database in which mesh data and an analysis result are associated.
  • FIG. 19 is a schematic view showing an example of an input screen for inputting part information.
  • FIG. 20 is a schematic view showing a data structure in which node numbers and coordinate information are associated with each other.
  • FIG. 21 is a schematic diagram showing a data structure in which element numbers and part numbers are associated with node numbers.
  • FIG. 22 is a schematic diagram showing a data structure in which element numbers and analysis results are associated.
  • FIG. 23 is a three-dimensional view in which mesh data is given to a part.
  • FIG. 24 is a three-dimensional view in which mesh data is given to a component in which a plate is collided at the upper end.
  • FIG. 25 is a three-dimensional view in which mesh data is given to a component in which a plate is collided at an intermediate portion.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of an analysis apparatus 100 provided with an analysis result extraction apparatus 101 according to an embodiment of the present invention.
  • the analysis device 100 includes a control unit 110, a storage unit 120, and a display printing unit 140.
  • the control unit 110 is configured to implement various functions necessary for the control unit 110 by executing an analysis result extraction program P stored (installed) in advance in the recording device 121 of the storage unit 120.
  • the control unit 110 is configured by an arithmetic processing unit (an example of a computer) such as a CPU.
  • the control unit 110 performs various processes by loading a software program such as the analysis result extraction program P stored in advance in the recording device 121 onto the RAM 122 b of the memory device 122 and executing the software program.
  • the storage unit 120 includes a memory device 122 such as a ROM 122a and a RAM 122b, and a recording device 121 such as a flash memory and a hard disk device.
  • a recording device 121 such as a flash memory and a hard disk device.
  • an analysis result extraction program P from the reading unit 130 is stored in advance.
  • the display printing unit 140 includes a display device 141 such as a liquid crystal display panel and a printing device 142 such as a laser printer.
  • the display device 141 displays the output display information from the control unit 110 on the display screen.
  • the printing device 142 prints the output display information from the control unit 110.
  • the reading unit 130 includes a reading device 131 that reads a recording medium M such as a CD-ROM. In the recording medium M, an analysis result extraction program P is recorded in advance.
  • the recording medium M may be any other recording medium besides a recording disc such as a CD-ROM.
  • the analysis result extraction program P is not limited to one acquired via a recording medium such as a CD-ROM, and may be one downloaded via communication means such as the Internet.
  • the control unit 110 includes a three-dimensional CAD data input unit Q1, a shape recognition unit Q2, a mesh data generation unit Q3, an analysis unit Q4, an association unit Q5, a part information reception unit Q6, and a mesh data specification unit Q7. Functions as a unit including an analysis result extraction unit Q8, an analysis result evaluation unit Q9, and an analysis result output unit Q10. That is, the analysis result extraction program P includes a three-dimensional CAD data input step, a shape recognition step, a mesh data generation step, an analysis step, an association step, a part information reception step, a mesh data identification step, and an analysis result.
  • the control unit 110 is caused to execute steps including an extraction step, an analysis result evaluation step, and an analysis result output step.
  • FIG. 2 is a flow chart showing an example of the processing procedure of the analysis device 100 provided with the analysis result extraction device 101 according to the embodiment of the present invention.
  • the main processing procedures of the analysis apparatus 100 are roughly classified into pre-processing, analysis processing, and post-processing.
  • pre-processing three-dimensional CAD data input, shape recognition, and mesh data generation are performed.
  • analysis processing analysis is performed.
  • post processing mesh data analysis result association, part information reception, mesh data specification, analysis result extraction, and analysis result output are performed.
  • the control unit 110 receives, from the reading unit 130, three-dimensional CAD data (three-dimensional CAD model) which is shape data of a product created by three-dimensional CAD.
  • shape data is associated with each assembly number and each part number.
  • the control unit 110 recognizes the shape based on the three-dimensional CAD data.
  • the shape recognition step can be divided into three main steps.
  • surface information of each of three-dimensional CAD data is acquired.
  • a free mesh is created on each face of the initially input 3D CAD data, and a database for feature calculation is constructed.
  • Such features include, for example, curvature of surface, curvature of outer periphery, outer peripheral length, fixed point on outer periphery, length ratio of paired outer peripheral pair, circular shape of outer periphery, cylindrical shape, spherical degree, inner angle of fixed point, The area, the in-plane normal angle difference, the surface continuity, the peripheral contact angle, and the cross-sectional shape are included.
  • the mesh data is mainly referred to along with the acquired information on the geometric shape.
  • FIG. 3A is a three-dimensional view showing an example of the overall shape of three-dimensional CAD data of a product.
  • FIG. 3B is a perspective view showing a portion of the draw bead of the shape shown in FIG. 3A.
  • FIG. 3C is a perspective view of a portion of the fillet in the shape shown in FIG. 3A.
  • the "feature” is (1) “Whole shape”: a twisted uneven plate with holes (see Fig. 3A) (2) “Draw bead”: Band-like uneven part made on a flat surface (see Fig. 3B) (3) “Fillet”: Rounded corner of pointed corner (see Fig. 3C) Etc. (or words that indicate it), and is called “Shape”.
  • FIGS. 4A to 4C are three-dimensional views showing “Features” of the shapes in FIGS. 3A to 3C by arrows.
  • start point including vertices and ends
  • each face is classified based on the acquired information and features.
  • each surface is classified into five different types (plane, fillet, cylinder, sphere, curved surface). In order to classify each surface, it is confirmed whether the surface type to be classified has a specific feature.
  • the curvature of the surface, the curvature of the outer periphery, the outer peripheral length, the width of the surface, the fixed point on the outer periphery, the length ratio of the pair of outer peripheral pairs, the outer periphery Inspect the circular shape, the internal angle of the fixed point, the area, the continuity of the surface, the contact angle of the outer circumference, and the cross-sectional shape. Fillets, cylinders, spheres, and surfaces are all considered to be surfaces in the first place. Then distinguish them from different features. Also, the cylinder and the ball can be fillets. They are considered fillets if they have a certain form and continuity with adjacent faces.
  • complex regions consisting of multiple faces are recognized.
  • 2D holes on plate-shaped models, 3D holes on solid models, stepped holes including counterbore, steps, emboss, flanges, fillet flow, chamfers, corner fillets, narrow faces between fillets, ribs, grooves Use the surface type and other information classified in the second step to identify areas such as gear teeth, screws, etc.
  • Other information used to recognize a portion includes a combination of surface types, positional relationship between surfaces, size of the portion, and cross-sectional shape when forming a composite shape with a plurality of surfaces.
  • the specific part recognized through the three steps is held together in the system together with CAD information, mesh area information, and shape data at the time of recognition, and is used in mesh creation according to the rules. Ru.
  • the control unit 110 In the mesh data generation step, the control unit 110 generates mesh data associated with each part information corresponding to the part of the product based on the shape recognition data of the shape recognized in the shape recognition step. Specifically, the control unit 110 generates mesh data based on rules for each type of analysis. By doing this, it is possible to generate mesh data corresponding to various analyzes. That alone can improve the quality of the mesh. And analysis can be performed in the state which improved the quality of the mesh. This can improve the analysis accuracy.
  • control unit 110 performs calculation for each piece of part information whose shape is recognized, and generates a mesh according to the mesh rule, but mainly performs mesh creation in two steps.
  • FIG. 5 is a three-dimensional view in which a mesh is applied to a portion including the draw bead having the shape shown in FIGS. 3B and 4B.
  • FIG. 6 is a three-dimensional view in which a mesh is applied to a portion including fillets having the shapes shown in FIG. 3C and FIG. 4C.
  • the original shape is corrected.
  • Examples include chamfering and removal of corner fillets and ridgeline movement of fillets that are so narrow that they deviate from the mesh quality criteria.
  • chamfering and corner fillet removal a new ridge line is created at the position where the adjacent face is extended if it is determined to be the object to be removed for the shape-recognized chamfering and corner fillet, and the mesh shape is adjusted to this It is necessary to delete the shape by changing it.
  • mesh data generation is performed on the corrected shape in accordance with the mesh rule.
  • control of the number of divisions by the width of the fillet portion can be mentioned.
  • mesh generation is performed with the specified number of divisions while measuring the width of the fillet according to the defined rule.
  • a more complicated rule is set, such as unifying the number of divisions of the fillet into a uniform number of division under a constant condition, a mesh is generated in consideration of all the rules.
  • control unit 110 gives a mesh so that the apexes are in a line at the center of the "draw bead” portion.
  • control unit 110 gives a mesh so that the corners of the “fillet” portion are aligned in two rows.
  • the control unit 110 automatically recognizes the shapes of the "draw bead” portion and the "fillet” portion, and uses the "rule specified for each shape" for that location to execute finite elements.
  • the features of each surface are extracted, the shape is recognized from the classification of the surface and combined information of complex surfaces, and the shape is changed and the mesh data is generated from the recognized shape information. Highly accurate mesh can be created.
  • shape feature extraction is performed from the input 3D CAD shape and initial free mesh, shape recognition is performed, original shape correction is performed according to the mesh rule, and mesh data is finally obtained based on shape data. Generate For this reason, three-dimensional CAD data, FEM data, and shape recognition data are linked. Then, by combining these data with the analysis result data, it is possible to associate the shape with the analysis result as described later. This will be described in detail below.
  • Analysis processing In the analysis step, 3D CAD data is analyzed through appropriate mathematical formulation of the underlying physical laws.
  • Examples of types of analysis include structural analysis, heat conduction analysis, fluid analysis, electromagnetic field analysis, mechanical analysis, acoustic analysis, resin flow analysis, forging analysis, casting analysis and the like.
  • structural analysis finite element analysis by the finite element method will be described as an example of the type of analysis. However, it is not limited to it.
  • FIG. 7 is a schematic diagram for explaining nodes and elements represented by calculation input data of structural analysis.
  • an element is defined by a plurality of (four in the illustrated example) nodes.
  • the nodes are represented by coordinates.
  • the elements are managed by assigning numbers to each node.
  • FIG. 9 is a schematic view showing the relationship between nodes and elements. As shown in FIG.
  • FIG. 10 is an explanatory diagram of node information. As shown in FIG. 10, in the node information, “coordinates of X, Y, Z”, “element number”, “part number”, “number of nodes 1, 2, 3, 4” are associated with “node number” ing.
  • FIG. 11 is a schematic diagram for explaining an example of fixing nodes 3 and 4 and applying pressure to nodes 1 and 2. As shown in FIG. 11, for example, “node 3” and “node 4” are fixed so as not to move. On the other hand, push “node 1" and “node 2" by 0.1 [mm] in the Y direction.
  • FIG. 12 is a chart showing an example of the calculation result R output from the analysis solver.
  • data of an analysis result file representing stress for each element is shown.
  • the data of the analysis result file includes an element number (calculation position), stress information for each element (each calculation position), and plastic strain information for each element. However, like the input information, these pieces of information do not include shape information.
  • FIG. 13A is a three-dimensional view showing an example in which a part PT including a U-shaped cross section is divided by a surface.
  • FIG. 13B is a front view of the part PT shown in FIG. 13A.
  • “Surface” means one unit that constitutes a part PT in three-dimensional CAD data.
  • FIG. 14A is a front view showing an actual part PT.
  • FIG. 14B is a perspective view showing part PT showing FIG. 14A.
  • the part PT is divided by Surface, handled as another part, and numbers are given to each.
  • the part PT is divided into column A to column I in the vertical direction and rows 1 to 3 in the horizontal direction.
  • the surface number on the upper left is 1 row A column (1-A)
  • the surface number on the upper right is 1 row I column (1-I).
  • the surface number on the lower left is 3 rows A column (3-A)
  • the surface number on the lower right is 3 rows I column (3-I).
  • a plurality of consecutive Surfaces constitute a Feature.
  • Surface is 1 row A to 3 rows A column as Feature No. 1
  • Surface is 1 row B to 3 rows B column as Feature No. 2
  • Surface is 1 row as Feature No. 9
  • the actual product is one part (see FIGS. 14A and 14B).
  • FIG. 15A is a plan view showing a state before the upper end of the plate BD collides with the part PT shown in FIG. 13A to FIG. 14B.
  • FIG. 15B is a plan view showing a state after the upper end of the plate BD is made to collide with the part PT shown in FIG. 13A to FIG. 14B.
  • FIG. 16A is an enlarged perspective view showing a ⁇ portion of the part PT shown in FIG. 15B.
  • FIG. 16B is an explanatory diagram of a ⁇ portion shown in FIG. 16A and a calculation result thereof.
  • FIG. 17 is a front view showing an actual part PT in which the plate BD is collided at the upper end.
  • the calculation result R outputs data of all calculation models.
  • the calculation result R does not know the element number of the desired part in a list of numbers. Therefore, it is very difficult to extract necessary information.
  • the numbers of elements and nodes are nearly impossible to order in the actual product equivalent of very large scale.
  • the numbering of elements and nodes depends on the analysis solver. Therefore, it can not be known unless the analysis solver outputs the element or node number in which part.
  • FIG. 17 since the actual product is one part, it is very difficult to make the output element or node correspond to the part of the actual product.
  • control unit 110 associates the analysis result analyzed using the mesh data with the mesh data generated in the mesh data generating step.
  • FIG. 18 is a schematic view showing an example of the data structure of the database DB in which the mesh data N5 and the analysis result N6 are associated with each other.
  • the database DB is recorded in the recording device 121.
  • the control unit 110 associates the analysis result N6 with the mesh data N5 to create a database DB.
  • the database DB as shown in FIG. 18, assembly number N1, part number N2, feature number N3, surface number N4, mesh data N5 (node number N51, element number N52), and analysis result N6 Is associated and saved.
  • the mesh data N5 is generated based on the structure analysis rule in the mesh data generation step.
  • the mesh data N5 is mesh data based on the rules of the other analysis (for example, heat conduction analysis).
  • control unit 110 receives part information IN corresponding to the part of the product.
  • the part information IN is at least one of an assembly number N1, a part number N2, a feature number N3, and a surface number N4.
  • FIG. 19 is a schematic view showing an example of the input screen G for inputting the part information IN.
  • the control unit 110 selects the assembly number N1, the part number N2, the feature number N3 and the surface number N4 and inputs the analysis result button BT.
  • the control unit 110 selects the assembly number N1, the part number N2, The feature number N3 is accepted.
  • the control unit 110 receives only the assembly number N1.
  • the control unit 110 receives only the part number N2.
  • the control unit 110 When the user inputs the part number N2 and the feature number N3 and performs an input operation on the analysis result button BT, the control unit 110 receives the part number N2 and the feature number N3. In addition, when the user inputs the part number N2 and the surface number N4 and performs an input operation on the analysis result button BT, the control unit 110 receives the part number N2 and the surface number N4.
  • the control unit 110 specifies the mesh data N5 corresponding to the part information IN from the received part information IN (assembly number N1, part number N2, feature number N3, surface number N4) using the database DB.
  • the control unit 110 extracts an analysis result N6 corresponding to the mesh data N5 from the mesh data N5 specified in the mesh data specifying step using the database DB.
  • FIGS. 20 to 22 show more detailed data structures of the database DB shown in FIG.
  • FIG. 20 is a schematic diagram showing a data structure in which the node number N51 is associated with coordinate information.
  • FIG. 21 is a schematic diagram showing a data structure in which the element number N52 and the part number N2 are associated with the node number N51.
  • FIG. 22 is a schematic view showing a data structure in which the element number N52 and the analysis result N6 are associated with each other.
  • the node number N51 is associated with the values of the X, Y, and Z coordinates.
  • the element number N52 and the part number N2 are associated with the element information (node number N51).
  • the element number N52 and the analysis result N6 (in this example, stress / strain information) are associated.
  • the analysis result N6 can be easily extracted from the mesh data N5 (node number N51, element number N52).
  • the control unit 110 uses the analysis result N6 extracted in the analysis result extraction step as a name (for example, a name (eg, assembly number N1, part number N2, feature number N3, surface number N4) corresponding to the part information IN). It is output to the display device 141 or the printing device 142 together with the assembly name, the part name, the feature name, and the surface name.
  • a name for example, assembly number N1, part number N2, feature number N3, surface number N4
  • FIG. 23 is a three-dimensional view in which mesh data is given to the part PT.
  • FIG. 24 is a three-dimensional view in which mesh data is given to the part PT in which the plate BD is collided at the upper end.
  • FIG. 25 is a three-dimensional view in which mesh data is given to the part PT in which the plate BD is collided in the middle part.
  • the control unit 110 when, for example, the user desires the analysis result N6 of only the part of the surface number (1-D) (see the ⁇ part in FIGS. 23 and 24), the control unit 110 The analysis result N6 of only the part of the number (1-D) is output.
  • FIG. 25 in actuality (actual phenomenon / calculation result), when the condition changes, it is not clear where the problem will occur before the analysis result is output.
  • the mesh data for each type of analysis and the analysis result N6 (specifically, FEM data, analysis result data) are linked. Thereby, an arbitrary part can be designated and the analysis result N6 corresponding to the part can be extracted. Therefore, it is possible to make post-processing efficient.
  • the user inputs, from the input screen G, part information IN (in this example, the assembly number N1, the part number N2, the feature number N3 and the surface number N4) corresponding to the desired part.
  • control unit 110 receives part information input from input screen G.
  • the control unit 110 specifies the mesh data N5 from the received part information, and extracts an analysis result N6 associated with the mesh data N5 from the specified mesh data N5.
  • the analysis result N6 can be easily searched from the part information input from the input screen G. Therefore, the user does not have to find out the analysis result N6 of the desired part from the huge amount of analysis results N6, and can obtain the analysis result N6 of the desired part. Therefore, it is possible to reduce the burden on the user for finding out the analysis result N6 of the desired part.
  • the working time can be shortened, which in turn can reduce the working cost.
  • the analysis result evaluation step evaluates the analysis result N6 extracted in the analysis result extraction step. Then, in the analysis result output step, the evaluation result evaluated in the analysis result evaluation step is displayed on the display device 141 or printed on the printing device 142. By doing this, the user can easily recognize whether or not a desired site exhibits a desired function under analysis conditions of various analyzes.
  • the analysis result evaluation step evaluates the analysis result N6 extracted in the analysis result extraction step based on the design standard. By doing this, the user can recognize whether or not the desired part of the analysis condition with respect to the various analysis conditions. For example, the analysis result evaluation step can determine whether the maximum value of the analysis result N6 exceeds the design reference value. The analysis result evaluation step can determine whether the minimum value of the analysis result N6 falls below the design reference value. Alternatively, the analysis result evaluation step can determine whether the average value of the analysis result N6 falls within a predetermined design standard range.
  • the analysis result evaluation step evaluates the analysis result N6 extracted in the analysis result extraction step based on the distribution of the analysis result N6.
  • the user can recognize whether or not the distribution of the analysis result N6 of the desired portion under analysis conditions of various analyzes is possible.
  • the distribution of the analysis result N6 evaluated in the analysis result evaluation step can be displayed on the display device 141 or can be printed on the printing device 142. Thereby, the distribution of the analysis result N6 can be used as a judgment material by the user of the desired part.
  • the analysis result evaluation step (analysis result evaluation unit Q9) may have a learning function for the purpose of evaluation of the analysis result N6 using an artificial intelligence (AI) technique.
  • AI artificial intelligence
  • the analysis result N6 is given to the computer, and the evaluation pattern and the evaluation criteria are analyzed and learned with respect to the analysis result N6. This makes it possible to obtain highly accurate evaluation autonomously.
  • the present invention relates to an analysis result extraction apparatus, an analysis result extraction method, and an analysis result extraction program, and in particular, reduces the work load on the user for finding out an analysis result of a desired part and shortens the operation time. Therefore, the present invention can be applied to applications for reducing work costs.
  • analysis device 101 analysis result extraction device 110 control unit 120 storage unit 130 reading unit 140 display printing unit BD plate BT analysis result button DB database G input screen IN part information N1 assembly number N2 part number N3 feature number N3 feature number N4 surface number N5 mesh data N6 Analysis result P Analysis result extraction program PT Part Q1 3D CAD data input unit Q2 Shape recognition unit Q3 Mesh data generation unit Q4 Analysis unit Q5 Association unit Q6 Part information reception unit Q7 Mesh data specification unit Q8 Analysis result extraction unit Q9 Analysis result Evaluation part Q10 Analysis result output part R Calculation result

Abstract

According to the present invention, an analysis result extraction device, an analysis result extraction method, and an analysis result extraction program: associate results of analysis that uses mesh data with the mesh data, wherein the mesh data is generated from shape data of a product as created by three-dimensional CAD, and is associated with each set of part information about the product; receive a set of part information about the product; identify the mesh data associated with the received set of part information; and extract the analysis results associated with the identified mesh data.

Description

解析結果抽出装置、解析結果抽出方法及び解析結果抽出プログラムAnalysis result extraction device, analysis result extraction method and analysis result extraction program
 本発明は、コンピュータを用いて製品の設計開発支援を行うCAE(Computer Aided Engineering)技術に関する。 The present invention relates to CAE (Computer Aided Engineering) technology that uses a computer to support product design and development.
 構造解析、流体解析、流動解析等の各種解析(解析シミュレーション)を行う解析装置は、例えば、有限要素法(FEM:Finite Element Method)等の解析手法を用いて解析する。かかる解析を行うためには、3次元CAD(Computer Aided Design)で作成された製品の形状データからメッシュデータを生成する必要がある。例えば、特許文献1は、第1面の法線ベクトルと、第1面と第2面とが接する接線方向のベクトルとにより外積ベクトルを求め、外積ベクトルと、第2面の法線ベクトルとの内積を求め、その演算結果に基づいて第1面に対する第2面の表面形状を判定し、かかる判定をメッシュデータの生成に利用する構成を開示している。 An analysis apparatus that performs various analyzes (analysis simulation) such as structural analysis, fluid analysis, flow analysis, etc. analyzes using an analysis method such as, for example, a finite element method (FEM). In order to perform such analysis, it is necessary to generate mesh data from shape data of a product created by three-dimensional CAD (Computer Aided Design). For example, Patent Document 1 determines an outer product vector from a normal vector of the first surface and a vector in the tangential direction where the first surface and the second surface contact each other, and the outer product vector and the normal vector of the second surface An inner product is obtained, the surface shape of the second surface with respect to the first surface is determined based on the calculation result, and the determination is used to generate mesh data.
 ところで、従来の解析装置では、解析結果は、例えば、解析される製品の全部位のメッシュデータに対応する解析結果が解析結果ファイルのデータとしてリストで出力される。一方、解析精度は、基本的に、単位面積当たりのメッシュデータが多い程(メッシュが詳細な程)向上する。そして、近年のコンピュータの処理能力や解析技術の向上に伴い、メッシュデータの大規模化(メッシュの詳細化)が進んでいる。このため、解析結果は、例えば、数十万や数百万或いは数億といった膨大な量となってしまう。そうすると、ユーザ(設計者)は、膨大な量の解析結果の中から、所望の部位の解析結果を見つけ出す必要がある。従って、ユーザの作業負担、作業時間、ひいては作業コストが増大する。 By the way, in the conventional analysis apparatus, for example, analysis results corresponding to mesh data of all parts of a product to be analyzed are output as a list of analysis result file data. On the other hand, the analysis accuracy basically improves as the number of mesh data per unit area increases (the mesh becomes more detailed). And, with the improvement of the processing capability and analysis technology of the computer in recent years, the enlargement of mesh data (detailing of mesh) is in progress. For this reason, the analysis result is a huge amount of, for example, hundreds of thousands, millions or hundreds of millions. Then, the user (designer) needs to find out the analysis result of the desired part from the huge amount of analysis results. Therefore, the work burden on the user, the work time, and the work cost increase.
国際公開第2017/175349号International Publication No. 2017/175349
 そこで、本発明は、所望の部位の解析結果を見つけ出すためのユーザの作業負担を軽減させることができると共に、作業時間を短縮させることができ、ひいては作業コストを低減させることができる解析結果抽出装置、解析結果抽出方法及び解析結果抽出プログラムを提供することを目的とする。 Therefore, the present invention can reduce the work load on the user for finding out the analysis result of the desired part, and can shorten the work time, thereby reducing the work cost. It is an object of the present invention to provide an analysis result extraction method and an analysis result extraction program.
 本発明は、前記課題を解決するために、次の解析結果抽出装置、解析結果抽出方法及び解析結果抽出プログラムを提供する。 The present invention provides the following analysis result extraction device, analysis result extraction method, and analysis result extraction program in order to solve the problems.
 (1)解析結果抽出装置
 本発明に係る解析結果抽出装置は、3次元CADで作成された製品の形状データから前記製品の部位情報毎に関連付けられて生成されたメッシュデータを用いて解析された解析結果を前記メッシュデータに関連付ける関連付け部と、前記製品の部位情報を受け付ける部位情報受付部と、前記部位情報受付部にて受け付けた前記部位情報から該部位情報に対応する前記メッシュデータを特定するメッシュデータ特定部と、前記メッシュデータ特定部にて特定した前記メッシュデータから該メッシュデータに対応する前記解析結果を抽出する解析結果抽出部とを備えることを特徴とする。
(1) Analysis Result Extraction Device The analysis result extraction device according to the present invention is analyzed using mesh data generated in association with each part information of the product from shape data of the product generated by three-dimensional CAD. The mesh data corresponding to the site information is specified from the site information accepted by the site information accepting unit, the site information accepting unit that accepts the site information of the product, and the association unit that associates the analysis result with the mesh data. A mesh data identification unit, and an analysis result extraction unit for extracting the analysis result corresponding to the mesh data from the mesh data identified by the mesh data identification unit.
 (2)解析結果抽出方法
 本発明に係る解析結果抽出方法は、3次元CADで作成された製品の形状データから前記製品の部位情報毎に関連付けられて生成されたメッシュデータを用いて解析された解析結果を前記メッシュデータに関連付ける関連付けステップと、前記製品の部位情報を受け付ける部位情報受付ステップと、前記部位情報受付ステップにて受け付けた前記部位情報から該部位情報に対応する前記メッシュデータを特定するメッシュデータ特定ステップと、前記メッシュデータ特定ステップにて特定した前記メッシュデータから該メッシュデータに対応する前記解析結果を抽出する解析結果抽出ステップとを含むことを特徴とする。
(2) Analysis Result Extraction Method The analysis result extraction method according to the present invention is analyzed using mesh data generated in association with each part information of the product from shape data of the product generated by three-dimensional CAD. Identifying the mesh data corresponding to the region information from the region information received in the region information receiving step and the region information receiving step in the region information receiving step in which the analysis result is associated with the mesh data, the region information receiving step in which the product information is received The method is characterized by including a mesh data identification step and an analysis result extraction step of extracting the analysis result corresponding to the mesh data from the mesh data identified in the mesh data identification step.
 (2)解析結果抽出プログラム
 前記本発明に係る解析結果抽出方法の各ステップを、コンピュータに実行させるための解析結果抽出プログラム。
(2) Analysis result extraction program An analysis result extraction program for causing a computer to execute each step of the analysis result extraction method according to the present invention.
 本発明によると、所望の部位の解析結果を見つけ出すためのユーザの作業負担を軽減させることができると共に、作業時間を短縮させることができ、ひいては作業コストを低減させることが可能となる。 According to the present invention, it is possible to reduce the work load on the user for finding out the analysis result of the desired part, to shorten the work time, and to reduce the work cost.
図1は、本発明の実施の形態に係る解析結果抽出装置を備えた解析装置のハードウェア構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a hardware configuration of an analysis apparatus provided with an analysis result extraction apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る解析結果抽出装置を備えた解析装置の処理手順の一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of the processing procedure of the analysis apparatus provided with the analysis result extraction apparatus according to the embodiment of the present invention. 図3Aは、製品の3次元CADデータの全体形状の一例を示す立体図である。FIG. 3A is a three-dimensional view showing an example of the overall shape of three-dimensional CAD data of a product. 図3Bは、図3Aに示す形状のドロービードの部分を示す立体図である。FIG. 3B is a perspective view showing a portion of the draw bead of the shape shown in FIG. 3A. 図3Cは、図3Aに示す形状のフィレットの部分を示す立体図である。FIG. 3C is a perspective view of a portion of the fillet in the shape shown in FIG. 3A. 図4Aは、図3Aにおける形状の「Surface」を矢印で示した立体図である。FIG. 4A is a three-dimensional view showing “Surface” of the shape in FIG. 3A by an arrow. 図4Bは、図3Bにおける形状の「Surface」を矢印で示した立体図である。FIG. 4B is a three-dimensional view showing “Surface” of the shape in FIG. 3B by an arrow. 図4Cは、図3Cにおける形状の「Surface」を矢印で示した立体図である。FIG. 4C is a three-dimensional view showing “Surface” of the shape in FIG. 3C by an arrow. 図5は、図3B及び図4Bに示す形状のドロービードを含む部分にメッシュを付与した立体図である。FIG. 5 is a three-dimensional view in which a mesh is applied to a portion including the draw bead having the shape shown in FIGS. 3B and 4B. 図6は、図3C及び図4Cに示す形状のフィレットを含む部分にメッシュを付与した立体図である。FIG. 6 is a three-dimensional view in which a mesh is applied to a portion including fillets having the shapes shown in FIG. 3C and FIG. 4C. 図7は、構造解析の計算入力データで表される節点及び要素を説明するための模式図である。FIG. 7 is a schematic diagram for explaining nodes and elements represented by calculation input data of structural analysis. 図8は、節点に番号を付した例を示す模式図である。FIG. 8 is a schematic view showing an example in which nodes are numbered. 図9は、節点と要素との関係を示す模式図である。FIG. 9 is a schematic view showing the relationship between nodes and elements. 図10は、節点情報の説明図である。FIG. 10 is an explanatory diagram of node information. 図11は、節点3及び節点4を固定して節点1及び節点2に圧力をかけた様子の一例を説明するための模式図である。FIG. 11 is a schematic diagram for explaining an example of fixing nodes 3 and 4 and applying pressure to nodes 1 and 2. 図12は、解析ソルバーから出力される計算結果の一例を示す図表である。FIG. 12 is a chart showing an example of calculation results output from the analysis solver. 図13Aは、断面U字形状を含む部品をSurfaceで区切った例を示す立体図である。FIG. 13A is a perspective view showing an example in which a part including a U-shaped cross section is divided by a surface. 図13Bは、図13Aに示す部品の正面図である。FIG. 13B is a front view of the component shown in FIG. 13A. 図14Aは、実際の部品を示す正面図である。FIG. 14A is a front view showing actual parts. 図14Bは、図14Aを示す部品を示す立体図である。FIG. 14B is a perspective view of the part showing FIG. 14A. 図15Aは、図13Aから図14Bに示す部品に対して板を上端部で衝突させる前の状態を示す平面図である。FIG. 15A is a plan view showing a state before the upper end portion of the plate collides with the parts shown in FIGS. 13A to 14B. 図15Bは、図13Aから図14Bに示す部品に対して板を上端部で衝突させた後の状態を示す平面図である。FIG. 15B is a plan view showing a state after the plate is collided with the parts shown in FIG. 13A to FIG. 14B at the upper end. 図16Aは、図15Bに示す部品のγ部分を拡大して示す斜視図である。16A is an enlarged perspective view showing a γ portion of the part shown in FIG. 15B. 図16Bは、図16Aに示すγ部分及びその計算結果の説明図である。FIG. 16B is an explanatory diagram of a γ portion shown in FIG. 16A and a calculation result thereof. 図17は、板を上端部で衝突させた実際の部品を示す正面図である。FIG. 17 is a front view showing an actual part in which the plate is collided at the upper end. 図18は、メッシュデータと解析結果とを関連付けたデータベースのデータ構造の一例を示す模式図である。FIG. 18 is a schematic view showing an example of a data structure of a database in which mesh data and an analysis result are associated. 図19は、部位情報を入力するための入力画面の一例を示す模式図である。FIG. 19 is a schematic view showing an example of an input screen for inputting part information. 図20は、節点番号と座標情報とを関連付けたデータ構造を示す模式図である。FIG. 20 is a schematic view showing a data structure in which node numbers and coordinate information are associated with each other. 図21は、要素番号及び部品番号と節点番号とを関連付けたデータ構造を示す模式図である。FIG. 21 is a schematic diagram showing a data structure in which element numbers and part numbers are associated with node numbers. 図22は、要素番号と解析結果とを関連付けたデータ構造を示す模式図である。FIG. 22 is a schematic diagram showing a data structure in which element numbers and analysis results are associated. 図23は、部品に対してメッシュデータを付与した立体図である。FIG. 23 is a three-dimensional view in which mesh data is given to a part. 図24は、板を上端部で衝突させた部品に対してメッシュデータを付与した立体図である。FIG. 24 is a three-dimensional view in which mesh data is given to a component in which a plate is collided at the upper end. 図25は、板を中間部で衝突させた部品に対してメッシュデータを付与した立体図である。FIG. 25 is a three-dimensional view in which mesh data is given to a component in which a plate is collided at an intermediate portion.
 以下、本発明に係る実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
 [解析装置のハードウェア構成]
 先ず、解析装置100(解析結果出力装置)のハードウェア構成について図1を参照しながら以下に説明する。
[Hardware configuration of analysis device]
First, the hardware configuration of the analysis device 100 (analysis result output device) will be described below with reference to FIG.
 図1は、本発明の実施の形態に係る解析結果抽出装置101を備えた解析装置100のハードウェア構成の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of a hardware configuration of an analysis apparatus 100 provided with an analysis result extraction apparatus 101 according to an embodiment of the present invention.
 図1に示すように、解析装置100は、制御部110、記憶部120及び表示印刷部140を備えている。制御部110は、記憶部120の記録装置121に予め格納(インストール)された解析結果抽出プログラムPを実行することによって、制御部110に必要な各種の機能を実現させるように構成されている。詳しくは、制御部110は、CPU等の演算処理装置(コンピュータの一例)で構成されている。制御部110は、記録装置121に予め格納された解析結果抽出プログラムP等のソフトウェアプログラムをメモリ装置122のRAM122b上にロードして実行することにより、各種の処理を行う。記憶部120は、ROM122a、RAM122b等のメモリ装置122、及び、フラッシュメモリ、ハードディスク装置等の記録装置121を備えている。記録装置121には、読取部130からの解析結果抽出プログラムPが予め格納される。表示印刷部140は、液晶表示パネル等の表示装置141と、レーザープリンタ等の印刷装置142を備えている。表示装置141は、制御部110からの出力表示情報を表示画面に表示する。印刷装置142は、制御部110からの出力表示情報を印刷する。読取部130は、CD-ROM等の記録媒体Mを読み取る読取装置131を備えている。記録媒体Mには、解析結果抽出プログラムPが予め記録されている。なお、記録媒体Mは、CD-ROM等の記録ディスクの他、他の各種の記録媒体であってもよい。また、解析結果抽出プログラムPは、CD-ROM等の記録媒体を介して取得したものには限定されず、インターネット等の通信手段を介してダウンロードされたものであってもよい。 As shown in FIG. 1, the analysis device 100 includes a control unit 110, a storage unit 120, and a display printing unit 140. The control unit 110 is configured to implement various functions necessary for the control unit 110 by executing an analysis result extraction program P stored (installed) in advance in the recording device 121 of the storage unit 120. Specifically, the control unit 110 is configured by an arithmetic processing unit (an example of a computer) such as a CPU. The control unit 110 performs various processes by loading a software program such as the analysis result extraction program P stored in advance in the recording device 121 onto the RAM 122 b of the memory device 122 and executing the software program. The storage unit 120 includes a memory device 122 such as a ROM 122a and a RAM 122b, and a recording device 121 such as a flash memory and a hard disk device. In the recording device 121, an analysis result extraction program P from the reading unit 130 is stored in advance. The display printing unit 140 includes a display device 141 such as a liquid crystal display panel and a printing device 142 such as a laser printer. The display device 141 displays the output display information from the control unit 110 on the display screen. The printing device 142 prints the output display information from the control unit 110. The reading unit 130 includes a reading device 131 that reads a recording medium M such as a CD-ROM. In the recording medium M, an analysis result extraction program P is recorded in advance. The recording medium M may be any other recording medium besides a recording disc such as a CD-ROM. Further, the analysis result extraction program P is not limited to one acquired via a recording medium such as a CD-ROM, and may be one downloaded via communication means such as the Internet.
 [解析装置のソフトウェア構成]
 次に、解析装置100のソフトウェア構成について図1を参照しながら以下に説明する。
[Software configuration of analysis device]
Next, the software configuration of the analysis apparatus 100 will be described below with reference to FIG.
 制御部110は、3次元CADデータ入力部Q1と、形状認識部Q2と、メッシュデータ生成部Q3と、解析部Q4と、関連付け部Q5と、部位情報受付部Q6と、メッシュデータ特定部Q7と、解析結果抽出部Q8と、解析結果評価部Q9と、解析結果出力部Q10とを備える手段として機能する。すなわち、解析結果抽出プログラムPは、3次元CADデータ入力ステップと、形状認識ステップと、メッシュデータ生成ステップと、解析ステップと、関連付けステップと、部位情報受付ステップと、メッシュデータ特定ステップと、解析結果抽出ステップと、解析結果評価ステップと、解析結果出力ステップとを含むステップを制御部110に実行させる。 The control unit 110 includes a three-dimensional CAD data input unit Q1, a shape recognition unit Q2, a mesh data generation unit Q3, an analysis unit Q4, an association unit Q5, a part information reception unit Q6, and a mesh data specification unit Q7. Functions as a unit including an analysis result extraction unit Q8, an analysis result evaluation unit Q9, and an analysis result output unit Q10. That is, the analysis result extraction program P includes a three-dimensional CAD data input step, a shape recognition step, a mesh data generation step, an analysis step, an association step, a part information reception step, a mesh data identification step, and an analysis result. The control unit 110 is caused to execute steps including an extraction step, an analysis result evaluation step, and an analysis result output step.
 [解析装置の処理手順]
 図2は、本発明の実施の形態に係る解析結果抽出装置101を備えた解析装置100の処理手順の一例を示すフローチャートである。
[Processing procedure of analysis device]
FIG. 2 is a flow chart showing an example of the processing procedure of the analysis device 100 provided with the analysis result extraction device 101 according to the embodiment of the present invention.
 解析装置100の主要な処理手順は、プリ処理、解析処理、ポスト処理に大別される。プリ処理では、3次元CADデータ入力、形状認識、メッシュデータ生成を行う。解析処理では、解析を行う。ポスト処理では、メッシュデータ解析結果関連付け、部位情報受付、メッシュデータ特定、解析結果抽出、解析結果出力を行う。 The main processing procedures of the analysis apparatus 100 are roughly classified into pre-processing, analysis processing, and post-processing. In pre-processing, three-dimensional CAD data input, shape recognition, and mesh data generation are performed. In analysis processing, analysis is performed. In post processing, mesh data analysis result association, part information reception, mesh data specification, analysis result extraction, and analysis result output are performed.
 [プリ処理]
 (3次元CADデータ入力)
 まず、3次元CADデータ入力ステップでは、制御部110は、3次元CADで作成された製品の形状データである3次元CADデータ(3次元CADモデル)が読取部130から入力される。3次元CADデータでは、アセンブリ番号毎、部品番号毎に形状データが関連付けられている。
[Pre-processing]
(3D CAD data input)
First, in the three-dimensional CAD data input step, the control unit 110 receives, from the reading unit 130, three-dimensional CAD data (three-dimensional CAD model) which is shape data of a product created by three-dimensional CAD. In three-dimensional CAD data, shape data is associated with each assembly number and each part number.
 (形状認識)
 次に、形状認識ステップでは、制御部110は、3次元CADデータに基づいて形状を認識する。詳しくは、形状認識ステップは、主に3つのステップに分けることができる。
(Shape recognition)
Next, in the shape recognition step, the control unit 110 recognizes the shape based on the three-dimensional CAD data. Specifically, the shape recognition step can be divided into three main steps.
 第1ステップでは、3次元CADデータのそれぞれの面情報を取得する。最初に入力された3次元CADデータのそれぞれの面にフリーメッシュを作成し、特徴計算のためのデータベースを構築する。かかる特徴は、例えば、面の曲率、外周の曲率、外周長さ、外周上の固定点、対になる外周ペアの長さ比、外周の円形状、円筒形状、球面度、固定点の内角、面積、面内の法線方向角度差、サーフェス連続性、外周の接触角度、そして断面形状が含まれる。これらの特徴を計算するために、取得したジオメトリ形状の情報とともにメッシュデータを主に参照する。 In the first step, surface information of each of three-dimensional CAD data is acquired. A free mesh is created on each face of the initially input 3D CAD data, and a database for feature calculation is constructed. Such features include, for example, curvature of surface, curvature of outer periphery, outer peripheral length, fixed point on outer periphery, length ratio of paired outer peripheral pair, circular shape of outer periphery, cylindrical shape, spherical degree, inner angle of fixed point, The area, the in-plane normal angle difference, the surface continuity, the peripheral contact angle, and the cross-sectional shape are included. In order to calculate these features, the mesh data is mainly referred to along with the acquired information on the geometric shape.
 図3Aは、製品の3次元CADデータの全体形状の一例を示す立体図である。図3Bは、図3Aに示す形状のドロービードの部分を示す立体図である。図3Cは、図3Aに示す形状のフィレットの部分を示す立体図である。 FIG. 3A is a three-dimensional view showing an example of the overall shape of three-dimensional CAD data of a product. FIG. 3B is a perspective view showing a portion of the draw bead of the shape shown in FIG. 3A. FIG. 3C is a perspective view of a portion of the fillet in the shape shown in FIG. 3A.
 本明細書でいう「特徴」とは、
(1)「全体の形状」:穴の開いている捻じれた凹凸のある板(図3A参照)
(2)「ドロービード」:平らな面に作る帯状の凹凸部分(図3B参照)
(3)「フィレット」:尖った角を丸く削った部分(図3C参照)
などの「形状」(又はそれを示す言葉)をいい、「Shape」と称される。
In the present specification, the "feature" is
(1) "Whole shape": a twisted uneven plate with holes (see Fig. 3A)
(2) "Draw bead": Band-like uneven part made on a flat surface (see Fig. 3B)
(3) "Fillet": Rounded corner of pointed corner (see Fig. 3C)
Etc. (or words that indicate it), and is called "Shape".
 図4Aから図4Cは、それぞれ、図3Aから図3Cにおける形状の「Feature(特徴)」を矢印で示した立体図である。 FIGS. 4A to 4C are three-dimensional views showing “Features” of the shapes in FIGS. 3A to 3C by arrows.
 「特徴=形状」の「起点(頂点、端部を含む)」「切り替わる」部分(但し、3次元CADデータに表現されている「線」すべてがそれに相当するわけではない。)は、「Feature」と称される(図4Aから図4C参照)。 The “start point (including vertices and ends)” and “switch” part of “feature = shape” (however, not all “lines” represented in 3D CAD data correspond to that) are “Feature (See FIGS. 4A to 4C).
 第2ステップでは、取得した情報と特徴を元にそれぞれの面を分類分けする。データを取得し、それぞれの面の特徴を計算した後に、それぞれの面を5つの異なるタイプ(平面、フィレット、円筒、球、曲面)に分類する。各面を分類するためには、分類する面タイプによって特定の特徴を有するか確認する。例として、ある面をフィレットの面だとみなすためには、面の曲率、外周の曲率、外周長さ、面の幅、外周上の固定点、対になる外周ペアの長さ比、外周の円形状、固定点の内角、面積、サーフェスの連続性、外周の接触角度、そして断面形状を検査する。フィレット、円筒、球、そして曲面は全て最初の段階では曲面とみなす。その後異なる特徴からそれらを区別する。また、円筒と球とはフィレットになり得る。それらが特定の形で隣接面との連続性がある場合はフィレットとみなす。 In the second step, each face is classified based on the acquired information and features. After acquiring the data and calculating the features of each surface, each surface is classified into five different types (plane, fillet, cylinder, sphere, curved surface). In order to classify each surface, it is confirmed whether the surface type to be classified has a specific feature. For example, to regard a surface as the surface of the fillet, the curvature of the surface, the curvature of the outer periphery, the outer peripheral length, the width of the surface, the fixed point on the outer periphery, the length ratio of the pair of outer peripheral pairs, the outer periphery Inspect the circular shape, the internal angle of the fixed point, the area, the continuity of the surface, the contact angle of the outer circumference, and the cross-sectional shape. Fillets, cylinders, spheres, and surfaces are all considered to be surfaces in the first place. Then distinguish them from different features. Also, the cylinder and the ball can be fillets. They are considered fillets if they have a certain form and continuity with adjacent faces.
 第3ステップでは、複数の面からなる複雑な部位の認識を行う。板形状モデル上の2Dの穴、ソリッドモデル上の3Dの孔、ザグリをはじめとした段付き孔、段差、エンボス、フランジ、フィレット流れ、面取り、角部フィレット、フィレット間の細い面、リブ、溝、ギヤの歯、ネジのような部位を認識するために、第2ステップで分類した面タイプとその他の情報を使用する。部位の認識を行うめに使用したその他の情報には、面タイプの組み合わせ、面同士の位置関係、部位の大きさ、複数の面で複合形状を形成した際の断面形状などがある。 In the third step, complex regions consisting of multiple faces are recognized. 2D holes on plate-shaped models, 3D holes on solid models, stepped holes including counterbore, steps, emboss, flanges, fillet flow, chamfers, corner fillets, narrow faces between fillets, ribs, grooves Use the surface type and other information classified in the second step to identify areas such as gear teeth, screws, etc. Other information used to recognize a portion includes a combination of surface types, positional relationship between surfaces, size of the portion, and cross-sectional shape when forming a composite shape with a plurality of surfaces.
 以上、3つのステップを経て認識された特定部位は、CADの情報、メッシュの領域情報、認誠した際の形状データをまとめてシステム内部で保持され、ルールに従ったメッシュ作成の際に使用される。 As described above, the specific part recognized through the three steps is held together in the system together with CAD information, mesh area information, and shape data at the time of recognition, and is used in mesh creation according to the rules. Ru.
 (メッシュデータ生成)
 メッシュデータ生成ステップでは、制御部110は、形状認識ステップにて認識した形状の形状認識データに基づいて製品の部位に対応する部位情報毎に関連付けられたメッシュデータを生成する。詳しくは、制御部110は、メッシュデータを解析の種類毎のルールに基づいて生成する。こうすることで、各種の解析に応じたメッシュデータを生成することができる。それだけ、メッシュの品質を向上させることができる。そして、メッシュの品質を向上させた状態で解析を行うことができる。これにより、解析精度を向上させることができる。
(Mesh data generation)
In the mesh data generation step, the control unit 110 generates mesh data associated with each part information corresponding to the part of the product based on the shape recognition data of the shape recognized in the shape recognition step. Specifically, the control unit 110 generates mesh data based on rules for each type of analysis. By doing this, it is possible to generate mesh data corresponding to various analyzes. That alone can improve the quality of the mesh. And analysis can be performed in the state which improved the quality of the mesh. This can improve the analysis accuracy.
 具体的には、制御部110は、形状認識した各部位情報毎に計算を行い、メッシュルールに従ったメッシュを生成するが、主に2つのステップでメッシュ作成を行う。 Specifically, the control unit 110 performs calculation for each piece of part information whose shape is recognized, and generates a mesh according to the mesh rule, but mainly performs mesh creation in two steps.
 図5は、図3B及び図4Bに示す形状のドロービードを含む部分にメッシュを付与した立体図である。図6は、図3C及び図4Cに示す形状のフィレットを含む部分にメッシュを付与した立体図である。 FIG. 5 is a three-dimensional view in which a mesh is applied to a portion including the draw bead having the shape shown in FIGS. 3B and 4B. FIG. 6 is a three-dimensional view in which a mesh is applied to a portion including fillets having the shapes shown in FIG. 3C and FIG. 4C.
 まず、1つ目のステップでは、元の形状の修正を行う。例としては、面取りや角部フィレットの削除やメッシュ品質基準から逸脱するほど細いフィレット部の稜線移動が挙げられる。面取りや角部フィレット削除の例では、形状認識した面取り及び角部フィレットに対して、削除する対象と判断されれば隣接する面を延長した位置に新しい稜線を作成し、メッシュ形状をこれに合わせて変更することによって形状を削除する必要がある。また、細いフィレットの例では、周囲の状態に注意しながらメッシュ品質基準に沿ったメッシュが作成できる位置まで稜線を移動し、新しい稜線位置に境界ができるようにメッシュを変更する必要がある。これらの処理をメッシュルールに従って行うことで次のステップでのメッシュデータ生成を容易にしている。 First, in the first step, the original shape is corrected. Examples include chamfering and removal of corner fillets and ridgeline movement of fillets that are so narrow that they deviate from the mesh quality criteria. In the example of chamfering and corner fillet removal, a new ridge line is created at the position where the adjacent face is extended if it is determined to be the object to be removed for the shape-recognized chamfering and corner fillet, and the mesh shape is adjusted to this It is necessary to delete the shape by changing it. Also, in the example of a thin fillet, it is necessary to move the ridgeline to a position where the mesh can be created along the mesh quality standard while paying attention to the surrounding condition, and change the mesh so that the new ridgeline position can be bounded. By performing these processes in accordance with the mesh rules, mesh data generation in the next step is facilitated.
 次に、2つ目のステップでは、修正後の形状に対してメッシュルールに従ったメッシュデータ生成を行う。メッシュデータ生成を行う際のメッシュルールの例としては、フィレット部の幅による分割数のコントロールか挙げられる。この例では、定義されたルールに従ってフィレットの幅を計測しながら指定の分割数でメッシュ作成を行う。この際、フィレットの分割数を一定の条件下で均一な分割数に統一するなど、より複雑なルールが設定されている場合、全てのルールを考慮してメッシュを生成する。 Next, in the second step, mesh data generation is performed on the corrected shape in accordance with the mesh rule. As an example of the mesh rule at the time of mesh data generation, control of the number of divisions by the width of the fillet portion can be mentioned. In this example, mesh generation is performed with the specified number of divisions while measuring the width of the fillet according to the defined rule. At this time, if a more complicated rule is set, such as unifying the number of divisions of the fillet into a uniform number of division under a constant condition, a mesh is generated in consideration of all the rules.
 前述した2つのステップで作成されたメッシュに対して、メッシュ作成後に品質エラーがあるメッシュが存在する場合、メッシュ品質基準に従いエラーの修正を行う。このプロセスで作成されたメッシュは、形状認識した結果から作成すべきメッシュを判断しているため、形状認識データとメッシュデータとが紐付いている。 If there is a mesh with a quality error after mesh creation for the mesh created in the above two steps, correct the error according to the mesh quality standard. Since the mesh created in this process determines the mesh to be created from the result of shape recognition, the shape recognition data and the mesh data are linked.
 図5に示す例では、制御部110は、「ドロービード」の部分の中心に一列に頂点がくるようにメッシュを付与する。図6に示す例では、制御部110は、「フィレット」の部分の角部に2列で揃うようにメッシュを付与する。このように、制御部110は、「ドロービード」の部分、「フィレット」の部分の形状を自動で認識して、その場所に対して、「形状毎に指定してあるルール」を使って有限要素を作成する。 In the example shown in FIG. 5, the control unit 110 gives a mesh so that the apexes are in a line at the center of the "draw bead" portion. In the example shown in FIG. 6, the control unit 110 gives a mesh so that the corners of the “fillet” portion are aligned in two rows. As described above, the control unit 110 automatically recognizes the shapes of the "draw bead" portion and the "fillet" portion, and uses the "rule specified for each shape" for that location to execute finite elements. Create
 以上説明したメッシュデータ生成ステップでは、各面の特徴を抽出し、面の分類と複合的な面の組み合わせ情報などから形状を認識し、また認識した形状情報から形状変更とメッシュデータ生成とにより、高精度なメッシュを作成することができる。また、入力された3次元CADの形状と初期のフリーメッシュとから形状特徴抽出を行った上で形状認識し、メッシュルールに従って元の形状修正を行い、最終的に形状データをベースにメッシュデータを生成する。このため、3次元CADデータ、FEMデータ、形状認識データが紐付けされている。そして、これらのデータを解析結果データと合わせることで、後述するように、形状と解析結果とを紐付けることが可能である。これについて、以下に詳しく説明する。 In the mesh data generation step described above, the features of each surface are extracted, the shape is recognized from the classification of the surface and combined information of complex surfaces, and the shape is changed and the mesh data is generated from the recognized shape information. Highly accurate mesh can be created. In addition, shape feature extraction is performed from the input 3D CAD shape and initial free mesh, shape recognition is performed, original shape correction is performed according to the mesh rule, and mesh data is finally obtained based on shape data. Generate For this reason, three-dimensional CAD data, FEM data, and shape recognition data are linked. Then, by combining these data with the analysis result data, it is possible to associate the shape with the analysis result as described later. This will be described in detail below.
 [解析処理]
 (解析)
 解析ステップでは、3次元CADデータを基礎となる物理法則の適切な数学的定式化を通じて解析する。
Analysis processing
(analysis)
In the analysis step, 3D CAD data is analyzed through appropriate mathematical formulation of the underlying physical laws.
 解析の種類として、例えば、構造解析、熱伝導解析、流体解析、電磁場解析、機構解析、音響解析、樹脂流動解析、鍛造解析、鋳造解析などを挙げることができる。本実施の形態では、解析の種類として、有限要素法による構造解析(有限要素解析)を例にとって説明する。但し、それに限定されるものではない。 Examples of types of analysis include structural analysis, heat conduction analysis, fluid analysis, electromagnetic field analysis, mechanical analysis, acoustic analysis, resin flow analysis, forging analysis, casting analysis and the like. In this embodiment, structural analysis (finite element analysis) by the finite element method will be described as an example of the type of analysis. However, it is not limited to it.
 ところで、構造解析の計算入力データは、節点と要素とで表される。図7は、構造解析の計算入力データで表される節点及び要素を説明するための模式図である。図7に示すように、要素は、複数(図示例では4つ)の節点で定義されている。節点は座標で表されている。要素は、それぞれの節点に番号を付して管理する。図8は、節点に番号を付した例を示す模式図である。図8に示すように、節点1=(X,Y,Z)=(0,0,0)とすると、節点2=(1,0,0)、節点3=(1,1,0)、節点4=(0,1,0)となる。図9は、節点と要素との関係を示す模式図である。図9に示すように、「要素1」とは、「節点1」「節点2」「節点3」「節点4」で囲まれた計算領域をいう。図10は、節点情報の説明図である。図10に示すように、節点情報は、「節点番号」に対して「X,Y,Zの座標」「要素番号」「部品番号」「節点1,2,3,4の番号」が関連付けられている。 By the way, calculation input data of structural analysis is represented by nodes and elements. FIG. 7 is a schematic diagram for explaining nodes and elements represented by calculation input data of structural analysis. As shown in FIG. 7, an element is defined by a plurality of (four in the illustrated example) nodes. The nodes are represented by coordinates. The elements are managed by assigning numbers to each node. FIG. 8 is a schematic view showing an example in which nodes are numbered. As shown in FIG. 8, assuming that node 1 = (X, Y, Z) = (0, 0, 0), node 2 = (1, 0, 0), node 3 = (1, 1, 0), Node 4 = (0, 1, 0). FIG. 9 is a schematic view showing the relationship between nodes and elements. As shown in FIG. 9, “element 1” refers to a calculation area surrounded by “node 1”, “node 2”, “node 3” and “node 4”. FIG. 10 is an explanatory diagram of node information. As shown in FIG. 10, in the node information, “coordinates of X, Y, Z”, “element number”, “part number”, “number of nodes 1, 2, 3, 4” are associated with “node number” ing.
 ここで、解析用のデータを簡単に作成する。図11は、節点3及び節点4を固定して節点1及び節点2に圧力をかけた様子の一例を説明するための模式図である。図11に示すように、例えば、「節点3」「節点4」を動かないように固定する。一方、「節点1」「節点2」をY方向に0.1[mm]だけ押す。 Here, create data for analysis easily. FIG. 11 is a schematic diagram for explaining an example of fixing nodes 3 and 4 and applying pressure to nodes 1 and 2. As shown in FIG. 11, for example, “node 3” and “node 4” are fixed so as not to move. On the other hand, push "node 1" and "node 2" by 0.1 [mm] in the Y direction.
 解析ソルバーとして、例えば、構造解析ソフトウェアLS-DYNA(登録商標)(Livermore Software Technology Corporation製)を用いる場合、計算を実行するために、部品(部品と要素の種類・材料との結び付け)、節点1と節点2とを移動させこと及びその移動量、節点3と節点4とを固定すること、節点情報(番号及び座標)、要素情報(関係している部品及び節点の番号)などの入力情報が入力される。すなわち、これらの情報には、形状の情報は含まれていない。 When using, for example, structural analysis software LS-DYNA (registered trademark) (manufactured by Livermore Software Technology Corporation) as an analysis solver, parts (combination of parts and types of elements / materials), node 1 to perform calculations. And moving the node 2 and its movement amount, fixing the nodes 3 and 4, input information such as node information (numbers and coordinates), element information (numbers of related parts and nodes), etc. It is input. That is, these pieces of information do not include shape information.
 図12は、解析ソルバーから出力される計算結果Rの一例を示す図表である。図12に示す例では、要素毎の応力を表した解析結果ファイルのデータを示している。この解析結果ファイルのデータには、要素番号(計算位置)、要素毎(計算位置毎)の応力情報、要素毎の塑性ひずみ情報が含まれている。しかし、これらの情報には、入力情報と同様、形状の情報は含まれていない。 FIG. 12 is a chart showing an example of the calculation result R output from the analysis solver. In the example shown in FIG. 12, data of an analysis result file representing stress for each element is shown. The data of the analysis result file includes an element number (calculation position), stress information for each element (each calculation position), and plastic strain information for each element. However, like the input information, these pieces of information do not include shape information.
 次に、解析結果を検討する際の不都合について図13Aから図17を参照しながら以下に説明する。 Next, the inconvenience in examining the analysis result will be described below with reference to FIGS. 13A to 17.
 図13Aは、断面U字形状を含む部品PTをSurfaceで区切った例を示す立体図である。図13Bは、図13Aに示す部品PTの正面図である。ここで、「Surface」とは、3次元CADデータにおいて部品PTを構成する一単位を意味する。図14Aは、実際の部品PTを示す正面図である。図14Bは、図14Aを示す部品PTを示す立体図である。 FIG. 13A is a three-dimensional view showing an example in which a part PT including a U-shaped cross section is divided by a surface. FIG. 13B is a front view of the part PT shown in FIG. 13A. Here, “Surface” means one unit that constitutes a part PT in three-dimensional CAD data. FIG. 14A is a front view showing an actual part PT. FIG. 14B is a perspective view showing part PT showing FIG. 14A.
 図13Aに示すように、部品PTの位置を把握するために、便宜上、部品PTをSurfaceで区切って、別部品のように取り扱うこととし、それぞれに番号を付与する。例えば、図13Bに示すように、部品PTを縦方向にA列~I列、横方向に1行~3行に区切る。そうすると、左上のSurface番号は1行A列(1-A)となり、右上のSurface番号は1行I列(1-I)となる。また、左下のSurface番号は3行A列(3-A)となり、右下のSurface番号は3行I列(3-I)となる。そして、連続する複数のSurfaceがFeatureを構成する。例えば、Feature番号1としてSurfaceが1行A列~3行A列となる場合、Feature番号2としてSurfaceが1行B列~3行B列となる場合、また、Feature番号9としてSurfaceが1行I列~3行I列となる場合を挙げることができる。しかし、実際の製品は、1つの部品である(図14A及び図14B参照)。 As shown in FIG. 13A, in order to grasp the position of the part PT, for convenience, the part PT is divided by Surface, handled as another part, and numbers are given to each. For example, as shown in FIG. 13B, the part PT is divided into column A to column I in the vertical direction and rows 1 to 3 in the horizontal direction. Then, the surface number on the upper left is 1 row A column (1-A), and the surface number on the upper right is 1 row I column (1-I). Also, the surface number on the lower left is 3 rows A column (3-A), and the surface number on the lower right is 3 rows I column (3-I). Then, a plurality of consecutive Surfaces constitute a Feature. For example, when Surface is 1 row A to 3 rows A column as Feature No. 1, when Surface is 1 row B to 3 rows B column as Feature No. 2, Surface is 1 row as Feature No. 9 There can be mentioned the case of I column to 3 rows and I column. However, the actual product is one part (see FIGS. 14A and 14B).
 図15Aは、図13Aから図14Bに示す部品PTに対して板BDを上端部で衝突させる前の状態を示す平面図である。図15Bは、図13Aから図14Bに示す部品PTに対して板BDを上端部で衝突させた後の状態を示す平面図である。図16Aは、図15Bに示す部品PTのγ部分を拡大して示す斜視図である。図16Bは、図16Aに示すγ部分及びその計算結果の説明図である。図17は、板BDを上端部で衝突させた実際の部品PTを示す正面図である。 FIG. 15A is a plan view showing a state before the upper end of the plate BD collides with the part PT shown in FIG. 13A to FIG. 14B. FIG. 15B is a plan view showing a state after the upper end of the plate BD is made to collide with the part PT shown in FIG. 13A to FIG. 14B. FIG. 16A is an enlarged perspective view showing a γ portion of the part PT shown in FIG. 15B. FIG. 16B is an explanatory diagram of a γ portion shown in FIG. 16A and a calculation result thereof. FIG. 17 is a front view showing an actual part PT in which the plate BD is collided at the upper end.
 図15Aに示すように、板BDを例えば時速100km/hで衝突させると、図15Bを示すように、部品PTの箇所のうち、大きく変形するのは、α部分だけである。ユーザは、部品PTに対してどれくらいの影響があって、どれくらいの補強をすればよいか検討するために、変形の大きい「1行」目の情報だけを得ることが望まれる。 As shown in FIG. 15A, when the plate BD is caused to collide at, for example, 100 km / h, as shown in FIG. 15B, among the parts PT, only the α part is greatly deformed. It is desirable for the user to obtain only the information of the "first line" with large deformation in order to consider how much influence the component PT has and how much reinforcement should be made.
 しかし、図16Bに示すように、計算結果Rは、計算モデル全部のデータを出力してしまう。計算結果Rは、数字の羅列状態で所望の部分の要素番号も分からない。従って、必要な情報を抜き出すことが非常に困難となる。つまり、要素や節点の番号は、規模が非常に大きな実際の製品相当では、順番に付けることは不可能に近い。よって、要素や節点の番号付けは、解析ソルバーに依存することになる。従って、何れの部位に何れの要素や節点の番号があるかは、解析ソルバーで出力させてみないと分からない。そして、図17に示すように、実際の製品が1つの部品であることから、出力した要素や節点に実際の製品の部位を対応させることは非常に困難となる。 However, as shown in FIG. 16B, the calculation result R outputs data of all calculation models. The calculation result R does not know the element number of the desired part in a list of numbers. Therefore, it is very difficult to extract necessary information. In other words, the numbers of elements and nodes are nearly impossible to order in the actual product equivalent of very large scale. Thus, the numbering of elements and nodes depends on the analysis solver. Therefore, it can not be known unless the analysis solver outputs the element or node number in which part. Then, as shown in FIG. 17, since the actual product is one part, it is very difficult to make the output element or node correspond to the part of the actual product.
 [ポスト処理]
 (メッシュデータ解析結果関連付け)
 この点、関連付けステップでは、制御部110は、メッシュデータを用いて解析された解析結果をメッシュデータ生成ステップにて生成したメッシュデータに関連付ける。
[Post processing]
(Mesh data analysis result association)
In this regard, in the associating step, the control unit 110 associates the analysis result analyzed using the mesh data with the mesh data generated in the mesh data generating step.
 図18は、メッシュデータN5と解析結果N6とを関連付けたデータベースDBのデータ構造の一例を示す模式図である。データベースDBは、記録装置121に記録されている。 FIG. 18 is a schematic view showing an example of the data structure of the database DB in which the mesh data N5 and the analysis result N6 are associated with each other. The database DB is recorded in the recording device 121.
 制御部110は、解析結果N6をメッシュデータN5に関連付けてデータベースDBを作成する。データベースDBには、図18に示すように、アセンブリ番号N1と、部品番号N2と、Feature番号N3と、Surface番号N4と、メッシュデータN5(節点番号N51、要素番号N52)と、解析結果N6とが関連付けられて保存されている。この例では、メッシュデータN5は、メッシュデータ生成ステップにて構造解析のルールに基づいて生成されたものである。なお、メッシュデータN5は、他の解析(例えば熱伝導解析)の場合には、他の解析(例えば熱伝導解析)のルールに基づいたメッシュデータとなる。 The control unit 110 associates the analysis result N6 with the mesh data N5 to create a database DB. In the database DB, as shown in FIG. 18, assembly number N1, part number N2, feature number N3, surface number N4, mesh data N5 (node number N51, element number N52), and analysis result N6 Is associated and saved. In this example, the mesh data N5 is generated based on the structure analysis rule in the mesh data generation step. In the case of another analysis (for example, heat conduction analysis), the mesh data N5 is mesh data based on the rules of the other analysis (for example, heat conduction analysis).
 (部位情報受付)
 部位情報受付ステップでは、制御部110は、製品の部位に対応する部位情報INを受け付ける。部位情報INは、この例では、アセンブリ番号N1、部品番号N2、Feature番号N3、Surface番号N4のうち少なくとも1つである。
(Part information reception)
In the part information receiving step, control unit 110 receives part information IN corresponding to the part of the product. In this example, the part information IN is at least one of an assembly number N1, a part number N2, a feature number N3, and a surface number N4.
 図19は、部位情報INを入力するための入力画面Gの一例を示す模式図である。図19に示す例では、ユーザがアセンブリ番号N1、部品番号N2、Feature番号N3、Surface番号N4を入力して解析結果ボタンBTを入力操作すると、制御部110は、アセンブリ番号N1、部品番号N2、Feature番号N3を受け付ける。例えば、ユーザがアセンブリ番号N1のみを入力して解析結果ボタンBTを入力操作すると、制御部110は、アセンブリ番号N1のみを受け付ける。ユーザが部品番号N2のみを入力して解析結果ボタンBTを入力操作すると、制御部110は、部品番号N2のみを受け付ける。ユーザが部品番号N2及びFeature番号N3を入力して解析結果ボタンBTを入力操作すると、制御部110は、部品番号N2及びFeature番号N3を受け付ける。また、ユーザが部品番号N2及びSurface番号N4を入力して解析結果ボタンBTを入力操作すると、制御部110は、部品番号N2及びSurface番号N4を受け付ける。 FIG. 19 is a schematic view showing an example of the input screen G for inputting the part information IN. In the example shown in FIG. 19, when the user inputs the assembly number N1, the part number N2, the feature number N3 and the surface number N4 and inputs the analysis result button BT, the control unit 110 selects the assembly number N1, the part number N2, The feature number N3 is accepted. For example, when the user inputs only the assembly number N1 and performs input operation of the analysis result button BT, the control unit 110 receives only the assembly number N1. When the user inputs only the part number N2 and performs input operation on the analysis result button BT, the control unit 110 receives only the part number N2. When the user inputs the part number N2 and the feature number N3 and performs an input operation on the analysis result button BT, the control unit 110 receives the part number N2 and the feature number N3. In addition, when the user inputs the part number N2 and the surface number N4 and performs an input operation on the analysis result button BT, the control unit 110 receives the part number N2 and the surface number N4.
 (メッシュデータ特定)
 メッシュデータ特定ステップでは、制御部110は、受け付けた部位情報IN(アセンブリ番号N1、部品番号N2、Feature番号N3、Surface番号N4)から部位情報INに対応するメッシュデータN5をデータベースDBにより特定する。
(Mesh data specified)
In the mesh data specifying step, the control unit 110 specifies the mesh data N5 corresponding to the part information IN from the received part information IN (assembly number N1, part number N2, feature number N3, surface number N4) using the database DB.
 (解析結果抽出)
 解析結果抽出ステップでは、制御部110は、メッシュデータ特定ステップにて特定したメッシュデータN5からデータベースDBを用いてメッシュデータN5に対応する解析結果N6を抽出する。
(Analysis result extraction)
In the analysis result extraction step, the control unit 110 extracts an analysis result N6 corresponding to the mesh data N5 from the mesh data N5 specified in the mesh data specifying step using the database DB.
 図20から図22は、図18に示すデータベースDBのさらに詳細なデータ構造を示している。図20は、節点番号N51と座標情報とを関連付けたデータ構造を示す模式図である。図21は、要素番号N52及び部品番号N2と節点番号N51とを関連付けたデータ構造を示す模式図である。図22は、要素番号N52と解析結果N6とを関連付けたデータ構造を示す模式図である。 FIGS. 20 to 22 show more detailed data structures of the database DB shown in FIG. FIG. 20 is a schematic diagram showing a data structure in which the node number N51 is associated with coordinate information. FIG. 21 is a schematic diagram showing a data structure in which the element number N52 and the part number N2 are associated with the node number N51. FIG. 22 is a schematic view showing a data structure in which the element number N52 and the analysis result N6 are associated with each other.
 図20に示すように、節点番号N51とX、Y、Z座標の値とが関連付けられている。図21に示すように、要素番号N52及び部品番号N2と要素情報(節点番号N51)とが関連付けられている。また、要素番号N52と解析結果N6(この例では応力/ひずみ情報)とが関連付けられている。これにより、メッシュデータN5(節点番号N51、要素番号N52)から容易に解析結果N6を抽出することができる。 As shown in FIG. 20, the node number N51 is associated with the values of the X, Y, and Z coordinates. As shown in FIG. 21, the element number N52 and the part number N2 are associated with the element information (node number N51). Further, the element number N52 and the analysis result N6 (in this example, stress / strain information) are associated. Thus, the analysis result N6 can be easily extracted from the mesh data N5 (node number N51, element number N52).
 (解析結果出力)
 解析結果出力ステップでは、制御部110は、解析結果抽出ステップにて抽出した解析結果N6を、部位情報IN(アセンブリ番号N1、部品番号N2、Feature番号N3、Surface番号N4)に対応する名称(例えばアセンブリ名、部品名、feature名、Surface名)と共に表示装置141又は印刷装置142に出力する。
(Analysis result output)
In the analysis result output step, the control unit 110 uses the analysis result N6 extracted in the analysis result extraction step as a name (for example, a name (eg, assembly number N1, part number N2, feature number N3, surface number N4) corresponding to the part information IN). It is output to the display device 141 or the printing device 142 together with the assembly name, the part name, the feature name, and the surface name.
 次に、メッシュデータN5と解析結果N6との関連付けによる利点を図23から図25Bに参照しながら以下に説明する。 Next, advantages of associating the mesh data N5 with the analysis result N6 will be described below with reference to FIGS. 23 to 25B.
 図23は、部品PTに対してメッシュデータを付与した立体図である。図24は、板BDを上端部で衝突させた部品PTに対してメッシュデータを付与した立体図である。図25は、板BDを中間部で衝突させた部品PTに対してメッシュデータを付与した立体図である。 FIG. 23 is a three-dimensional view in which mesh data is given to the part PT. FIG. 24 is a three-dimensional view in which mesh data is given to the part PT in which the plate BD is collided at the upper end. FIG. 25 is a three-dimensional view in which mesh data is given to the part PT in which the plate BD is collided in the middle part.
 図23及び図24に示すように、制御部110は、例えば、ユーザがSurface番号(1-D)の部位(図23及び図24のβ部分参照)だけの解析結果N6を所望する場合、Surface番号(1-D)の部位だけの解析結果N6を出力する。図25に示すように、実際(実現象・計算結果)は条件が変わると、解析結果が出るまでにどこに問題が発生するかわからない。しかし、従来の構成では、予め都合よく部位を別にしておくことは不可能である。この点、本実施の形態では、解析の種類毎のメッシュデータと解析結果N6(具体的にはFEMデータ、解析結果データ)とを紐付けている。これにより、任意の部位を指定してその部位に対応する解析結果N6を抽出することができる。従って、ポスト処理を効率化させることが可能となる。 As shown in FIGS. 23 and 24, when, for example, the user desires the analysis result N6 of only the part of the surface number (1-D) (see the β part in FIGS. 23 and 24), the control unit 110 The analysis result N6 of only the part of the number (1-D) is output. As shown in FIG. 25, in actuality (actual phenomenon / calculation result), when the condition changes, it is not clear where the problem will occur before the analysis result is output. However, in the conventional configuration, it is impossible to separate the site conveniently in advance. In this respect, in the present embodiment, the mesh data for each type of analysis and the analysis result N6 (specifically, FEM data, analysis result data) are linked. Thereby, an arbitrary part can be designated and the analysis result N6 corresponding to the part can be extracted. Therefore, it is possible to make post-processing efficient.
 (本実施の形態について)
 本実施の形態によれば、ユーザは、所望の部位に対応する部位情報IN(この例ではアセンブリ番号N1、部品番号N2、Feature番号N3、Surface番号N4)を入力画面Gから入力する。そうすると、制御部110は、入力画面Gから入力された部位情報を受け付ける。そして、制御部110は、受け付けた部位情報からメッシュデータN5を特定し、特定したメッシュデータN5から、メッシュデータN5と関連付けられた解析結果N6を抽出する。これにより、入力画面Gから入力された部位情報からその解析結果N6を容易に検索することができる。従って、ユーザは、膨大な量の解析結果N6の中から、所望の部位の解析結果N6を見つけ出す必要はなく、所望の部位の解析結果N6を得ることができる。従って、所望の部位の解析結果N6を見つけ出すためのユーザの作業負担を軽減させることができる。また、作業時間を短縮させることができ、ひいては作業コストを低減させることができる。
(About the present embodiment)
According to the present embodiment, the user inputs, from the input screen G, part information IN (in this example, the assembly number N1, the part number N2, the feature number N3 and the surface number N4) corresponding to the desired part. Then, control unit 110 receives part information input from input screen G. Then, the control unit 110 specifies the mesh data N5 from the received part information, and extracts an analysis result N6 associated with the mesh data N5 from the specified mesh data N5. Thus, the analysis result N6 can be easily searched from the part information input from the input screen G. Therefore, the user does not have to find out the analysis result N6 of the desired part from the huge amount of analysis results N6, and can obtain the analysis result N6 of the desired part. Therefore, it is possible to reduce the burden on the user for finding out the analysis result N6 of the desired part. In addition, the working time can be shortened, which in turn can reduce the working cost.
 本実施の形態において、解析結果評価ステップは、解析結果抽出ステップにて抽出した解析結果N6を評価する。そして、解析結果出力ステップは、解析結果評価ステップにて評価した評価結果を表示装置141に表示するか、又は、印刷装置142に印刷する。こうすることで、ユーザは、各種解析の解析条件において所望の部位が所望の機能を発揮するか否かを容易に認識することができる。 In the present embodiment, the analysis result evaluation step evaluates the analysis result N6 extracted in the analysis result extraction step. Then, in the analysis result output step, the evaluation result evaluated in the analysis result evaluation step is displayed on the display device 141 or printed on the printing device 142. By doing this, the user can easily recognize whether or not a desired site exhibits a desired function under analysis conditions of various analyzes.
 本実施の形態において、解析結果評価ステップは、解析結果抽出ステップにて抽出した解析結果N6を設計基準に基づいて評価する。こうすることで、ユーザは、各種解析の解析条件における所望の部位の設計基準に対する可否を認識することができる。例えば、解析結果評価ステップは、解析結果N6の最大値が設計基準値を上回るか否かを判定することができる。解析結果評価ステップは、解析結果N6の最小値が設計基準値を下回るか否かを判定することができる。或いは、解析結果評価ステップは、解析結果N6の平均値が所定の設計基準範囲に入っているか否かを判定することができる。 In the present embodiment, the analysis result evaluation step evaluates the analysis result N6 extracted in the analysis result extraction step based on the design standard. By doing this, the user can recognize whether or not the desired part of the analysis condition with respect to the various analysis conditions. For example, the analysis result evaluation step can determine whether the maximum value of the analysis result N6 exceeds the design reference value. The analysis result evaluation step can determine whether the minimum value of the analysis result N6 falls below the design reference value. Alternatively, the analysis result evaluation step can determine whether the average value of the analysis result N6 falls within a predetermined design standard range.
 本実施の形態において、解析結果評価ステップは、解析結果抽出ステップにて抽出した解析結果N6を解析結果N6の分布に基づいて評価する。こうすることで、ユーザは、各種解析の解析条件における所望の部位の解析結果N6の分布に対する可否を認識することができる。例えば、解析結果出力ステップは、解析結果評価ステップにて評価した解析結果N6の分布を表示装置141に表示するか、又は、印刷装置142に印刷することができる。これにより、解析結果N6の分布を所望の部位のユーザによる判断材料にすることができる。 In the present embodiment, the analysis result evaluation step evaluates the analysis result N6 extracted in the analysis result extraction step based on the distribution of the analysis result N6. By doing this, the user can recognize whether or not the distribution of the analysis result N6 of the desired portion under analysis conditions of various analyzes is possible. For example, in the analysis result output step, the distribution of the analysis result N6 evaluated in the analysis result evaluation step can be displayed on the display device 141 or can be printed on the printing device 142. Thereby, the distribution of the analysis result N6 can be used as a judgment material by the user of the desired part.
 (その他の実施の形態)
 解析結果評価ステップ(解析結果評価部Q9)は、人工知能(AI)技術を利用して解析結果N6の評価を目的とした学習機能を有していてもよい。例えば、コンピュータに、解析結果N6を与え、解析結果N6に対して評価パターンや評価基準を分析させて学習させる。これにより、高精度な評価を自律的に得ることが可能となる。
(Other embodiments)
The analysis result evaluation step (analysis result evaluation unit Q9) may have a learning function for the purpose of evaluation of the analysis result N6 using an artificial intelligence (AI) technique. For example, the analysis result N6 is given to the computer, and the evaluation pattern and the evaluation criteria are analyzed and learned with respect to the analysis result N6. This makes it possible to obtain highly accurate evaluation autonomously.
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention is not limited to the embodiments described above, and can be implemented in other various forms. Therefore, such an embodiment is merely illustrative in every point and should not be interpreted in a limited manner. The scope of the present invention is indicated by the scope of the claims, and is not limited at all by the text of the specification. Furthermore, all variations and modifications that fall within the equivalent scope of the claims fall within the scope of the present invention.
 本発明は、解析結果抽出装置、解析結果抽出方法及び解析結果抽出プログラムに係るものであり、特に、所望の部位の解析結果を見つけ出すためのユーザの作業負担を軽減させると共に、作業時間を短縮させ、ひいては作業コストを低減させるための用途に適用できる。 The present invention relates to an analysis result extraction apparatus, an analysis result extraction method, and an analysis result extraction program, and in particular, reduces the work load on the user for finding out an analysis result of a desired part and shortens the operation time. Therefore, the present invention can be applied to applications for reducing work costs.
100 解析装置
101 解析結果抽出装置
110 制御部
120 記憶部
130 読取部
140 表示印刷部
BD  板
BT  解析結果ボタン
DB  データベース
G   入力画面
IN  部位情報
N1  アセンブリ番号
N2  部品番号
N3  Feature番号
N4  Surface番号
N5  メッシュデータ
N6  解析結果
P   解析結果抽出プログラム
PT  部品
Q1  3次元CADデータ入力部
Q2  形状認識部
Q3  メッシュデータ生成部
Q4  解析部
Q5  関連付け部
Q6  部位情報受付部
Q7  メッシュデータ特定部
Q8  解析結果抽出部
Q9  解析結果評価部
Q10 解析結果出力部
R   計算結果
100 analysis device 101 analysis result extraction device 110 control unit 120 storage unit 130 reading unit 140 display printing unit BD plate BT analysis result button DB database G input screen IN part information N1 assembly number N2 part number N3 feature number N3 feature number N4 surface number N5 mesh data N6 Analysis result P Analysis result extraction program PT Part Q1 3D CAD data input unit Q2 Shape recognition unit Q3 Mesh data generation unit Q4 Analysis unit Q5 Association unit Q6 Part information reception unit Q7 Mesh data specification unit Q8 Analysis result extraction unit Q9 Analysis result Evaluation part Q10 Analysis result output part R Calculation result

Claims (8)

  1.  3次元CADで作成された製品の形状データから前記製品の部位情報毎に関連付けられて生成されたメッシュデータを用いて解析された解析結果を前記メッシュデータに関連付ける関連付け部と、
     前記製品の部位情報を受け付ける部位情報受付部と、
     前記部位情報受付部にて受け付けた前記部位情報から該部位情報に対応する前記メッシュデータを特定するメッシュデータ特定部と、
     前記メッシュデータ特定部にて特定した前記メッシュデータから該メッシュデータに対応する前記解析結果を抽出する解析結果抽出部と
     を備えることを特徴とする解析結果抽出装置。
    An association unit which relates an analysis result analyzed using mesh data generated from shape data of a product created by three-dimensional CAD for each part information of the product to the mesh data;
    A part information receiving unit that receives part information of the product;
    A mesh data specification unit that specifies the mesh data corresponding to the part information from the part information received by the part information reception unit;
    And an analysis result extraction unit for extracting the analysis result corresponding to the mesh data from the mesh data specified by the mesh data specification unit.
  2.  請求項1に記載の解析結果抽出装置であって、
     前記3次元CADで作成された前記製品の形状データに基づいて形状を認識する形状認識部と、
     前記形状認識部にて認識した前記形状の形状認識データに基づいて前記製品の部位情報毎に関連付けられたメッシュデータを生成するメッシュデータ生成部とさらに備え、
     前記関連付け部は、前記メッシュデータを用いて解析された解析結果を前記メッシュデータ生成部にて生成した前記メッシュデータに関連付けることを特徴とする解析結果抽出装置。
    The analysis result extraction apparatus according to claim 1, wherein
    A shape recognition unit that recognizes a shape based on shape data of the product created by the three-dimensional CAD;
    It further comprises a mesh data generation unit that generates mesh data associated with each part information of the product based on the shape recognition data of the shape recognized by the shape recognition unit,
    The analysis result extraction apparatus characterized in that the association unit associates an analysis result analyzed using the mesh data with the mesh data generated by the mesh data generation unit.
  3.  請求項2に記載の解析結果抽出装置であって、
     前記メッシュデータ生成部は、前記メッシュデータを解析の種類毎のルールに基づいて生成することを特徴とする解析結果抽出装置。
    The analysis result extraction apparatus according to claim 2, wherein
    The analysis result extraction apparatus, wherein the mesh data generation unit generates the mesh data based on a rule for each type of analysis.
  4.  請求項1から請求項3までの何れか1つに記載の解析結果抽出装置であって、
     前記解析結果抽出部にて抽出した前記解析結果を評価する解析結果評価部をさらに備えることを特徴とする解析結果抽出装置。
    The analysis result extraction device according to any one of claims 1 to 3, wherein
    An analysis result extraction apparatus characterized by further comprising an analysis result evaluation unit for evaluating the analysis result extracted by the analysis result extraction unit.
  5.  請求項4に記載の解析結果抽出装置であって、
     前記解析結果評価部は、前記解析結果抽出部にて抽出した前記解析結果を設計基準に基づいて評価することを特徴とする解析結果抽出装置。
    The analysis result extraction apparatus according to claim 4, wherein
    An analysis result extraction apparatus characterized in that the analysis result evaluation unit evaluates the analysis result extracted by the analysis result extraction unit based on a design standard.
  6.  請求項4又は請求項5に記載の解析結果抽出装置であって、
     前記解析結果評価部は、前記解析結果抽出部にて抽出した前記解析結果を該解析結果の分布に基づいて評価することを特徴とする解析結果抽出装置。
    The analysis result extraction apparatus according to claim 4 or 5, wherein
    An analysis result extraction apparatus characterized in that the analysis result evaluation unit evaluates the analysis result extracted by the analysis result extraction unit based on a distribution of the analysis result.
  7.  3次元CADで作成された製品の形状データから前記製品の部位情報毎に関連付けられて生成されたメッシュデータを用いて解析された解析結果を前記メッシュデータに関連付ける関連付けステップと、
     前記製品の部位情報を受け付ける部位情報受付ステップと、
     前記部位情報受付ステップにて受け付けた前記部位情報から該部位情報に対応する前記メッシュデータを特定するメッシュデータ特定ステップと、
     前記メッシュデータ特定ステップにて特定した前記メッシュデータから該メッシュデータに対応する前記解析結果を抽出する解析結果抽出ステップと
     を含むことを特徴とする解析結果抽出方法。
    Associating, with the mesh data, an analysis result analyzed using mesh data generated from shape data of a product created by three-dimensional CAD in association with each part information of the product;
    A site information receiving step of receiving site information of the product;
    A mesh data specifying step of specifying the mesh data corresponding to the part information from the part information received in the part information receiving step;
    An analysis result extraction step of extracting the analysis result corresponding to the mesh data from the mesh data specified in the mesh data specifying step.
  8.  請求項7に記載の解析結果抽出方法の各ステップを、コンピュータに実行させるための解析結果抽出プログラム。 The analysis result extraction program for making a computer perform each step of the analysis result extraction method of Claim 7.
PCT/JP2017/046577 2017-12-26 2017-12-26 Analysis result extraction device, analysis result extraction method, and analysis result extraction program WO2019130415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/046577 WO2019130415A1 (en) 2017-12-26 2017-12-26 Analysis result extraction device, analysis result extraction method, and analysis result extraction program
JP2019562979A JP6969757B2 (en) 2017-12-26 2018-12-13 Analysis result data reduction device, analysis result data reduction method and analysis result data reduction program
PCT/JP2018/045943 WO2019131185A1 (en) 2017-12-26 2018-12-13 Analysis result data reduction device, analysis result data reduction method, and analysis result data reduction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046577 WO2019130415A1 (en) 2017-12-26 2017-12-26 Analysis result extraction device, analysis result extraction method, and analysis result extraction program

Publications (1)

Publication Number Publication Date
WO2019130415A1 true WO2019130415A1 (en) 2019-07-04

Family

ID=67066747

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/046577 WO2019130415A1 (en) 2017-12-26 2017-12-26 Analysis result extraction device, analysis result extraction method, and analysis result extraction program
PCT/JP2018/045943 WO2019131185A1 (en) 2017-12-26 2018-12-13 Analysis result data reduction device, analysis result data reduction method, and analysis result data reduction program

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045943 WO2019131185A1 (en) 2017-12-26 2018-12-13 Analysis result data reduction device, analysis result data reduction method, and analysis result data reduction program

Country Status (2)

Country Link
JP (1) JP6969757B2 (en)
WO (2) WO2019130415A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512386A (en) * 1991-07-02 1993-01-22 Hitachi Ltd Cae system
JP2009134526A (en) * 2007-11-30 2009-06-18 Integral Technology Kk Mesh preparation device, mesh preparation method, mesh preparation program, and recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166131A (en) * 1997-08-22 1999-03-09 Hitachi Ltd Cad and cae device and its analytic result display method
JP2013109498A (en) * 2011-11-18 2013-06-06 Renesas Electronics Corp Design aid device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512386A (en) * 1991-07-02 1993-01-22 Hitachi Ltd Cae system
JP2009134526A (en) * 2007-11-30 2009-06-18 Integral Technology Kk Mesh preparation device, mesh preparation method, mesh preparation program, and recording medium

Also Published As

Publication number Publication date
JPWO2019131185A1 (en) 2020-09-03
JP6969757B2 (en) 2021-11-24
WO2019131185A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
EP3011468B1 (en) Automatic creation of fasteners for simulating a computer-aided design (cad) model
US20160300003A1 (en) Rotorcraft Component Simulation using Scan-based Geometry
US8768661B2 (en) Method for creating finite element model of rubber composite
JP2018526744A (en) Mesh generation system and method
KR20160082481A (en) Simulating the machining of a workpiece
CN105760570B (en) Selecting viewpoints of a set of objects
US10318675B2 (en) Post-processing system for finite element analysis
KR20150073859A (en) Cad-based initial surface geometry correction
JP2022023010A (en) Vehicle impact analysis with two-point-contact curves
CN110334450B (en) Method for repairing object plane projection error in multi-block structure grid generation
CN116595653A (en) Design method based on fatigue damage sensitivity calculation
CN114861500A (en) Method and system for automatically generating tunnel structure finite element model based on three-dimensional point cloud
WO2019130415A1 (en) Analysis result extraction device, analysis result extraction method, and analysis result extraction program
JP2020115338A (en) Generation of structured 3d model from raw mesh
JPH06259404A (en) Analyzing method utilizing computer
US20180052948A1 (en) Analysis mesh manufacturing equipment and method
CN115952705A (en) Designing a modeled object
JP2007230403A (en) System for producing tire model, method for producing tire model, tire model, and method for simulating behavior of tire
JP6308544B2 (en) Method for calculating contact surface pressure between two objects and computer program for calculating contact surface pressure between two objects
JP3792584B2 (en) Tool path surface calculation method, tool path surface calculation program, and recording medium recording tool path surface calculation program
CN113283020A (en) Structural simulation of mechanical components
WO2021024367A1 (en) Shape data processing device, shape data processing method, and shape data processing program
WO2022091311A1 (en) Shape data processing device, shape data processing method, and shape data processing program
JP4957080B2 (en) Mesh generator for numerical analysis
WO2022091181A1 (en) Shape data processing device, shape data processing method, and shape data processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP