WO2022091181A1 - Shape data processing device, shape data processing method, and shape data processing program - Google Patents

Shape data processing device, shape data processing method, and shape data processing program Download PDF

Info

Publication number
WO2022091181A1
WO2022091181A1 PCT/JP2020/040111 JP2020040111W WO2022091181A1 WO 2022091181 A1 WO2022091181 A1 WO 2022091181A1 JP 2020040111 W JP2020040111 W JP 2020040111W WO 2022091181 A1 WO2022091181 A1 WO 2022091181A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
data processing
point
shape data
degrees
Prior art date
Application number
PCT/JP2020/040111
Other languages
French (fr)
Japanese (ja)
Inventor
光一 西浦
Original Assignee
インテグラル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテグラル・テクノロジー株式会社 filed Critical インテグラル・テクノロジー株式会社
Priority to JP2022558614A priority Critical patent/JP7392961B2/en
Priority to PCT/JP2020/040111 priority patent/WO2022091181A1/en
Publication of WO2022091181A1 publication Critical patent/WO2022091181A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD

Definitions

  • the present invention relates to a shape data processing device, a shape data processing method, and a shape data processing program.
  • Patent Document 1 describes a technique for determining the surface shape of an object classified in the technical field of CAE (Computer Aided Engineering) such as structural analysis using a plurality of symbols (+,-, 0). It has been disclosed.
  • CAE Computer Aided Engineering
  • CAD Computer-Aided Design
  • a three-dimensional (three-dimensional) object shape is output by using the determination result of the surface shape of the classified object. Is desired. Further, in recent years, a technique for determining the shape of a three-dimensional object by using an AI (artificial intelligence) technique has attracted attention.
  • AI artificial intelligence
  • Patent Document 1 since it is not possible to specify which category and what shape the surface shape of the classified object is, it is used in the CAD technical field (particularly AI technology). The reality is that we have not been able to do it.
  • the present invention can specify which category and what shape the surface shape of the classified object is, thereby entering the technical field of CAD (particularly AI technology). It is an object of the present invention to provide a shape data processing apparatus, a shape data processing method, and a shape data processing program that can be used.
  • the present invention provides the following shape data processing device, shape data processing method, and shape data processing program in order to solve the above problems.
  • the shape data processing device is a determination means for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of faces in an object whose surface is divided into a plurality of faces. And, the acquisition means for acquiring the area of the plurality of characteristic information related to the shapes of the plurality of surfaces, and the point angle obtained by summing the line angles between the lines adjacent to each point of the plurality of surfaces are calculated.
  • the point angle calculating means, the activator detecting means for detecting the activator consisting of two adjacent points among the points and the line between the two points, and the classification information corresponding to the plurality of surfaces are described above. It is characterized by comprising shape identification information, the point angle, the activator, and a registration means for registering in a database in association with the area.
  • the shape data processing method is a shape data processing method performed by a shape data processing apparatus, and the determination means is a plurality of objects in an object whose surface is divided into a plurality of surfaces.
  • the angle calculation means calculates the point angle by summing the line angles between the lines adjacent to each point of the plurality of surfaces, and the activator detecting means is two adjacent points among the points.
  • An activator detection step for detecting an activator consisting of a point and a line between the two points, and a registration means, the division information corresponding to the plurality of surfaces are subjected to the shape identification information, the point angle, the activator, and the activator. It is characterized by including a registration step associated with the area and registered in the database.
  • Shape Data Processing Program is for causing a computer to execute each step of the shape data processing method according to the present invention.
  • the present invention it is possible to specify which category and what shape the surface shape of the classified object is, which is used in the CAD technical field (particularly AI technology). It becomes possible to do.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a shape data processing device.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus.
  • FIG. 3 is an explanatory diagram showing an example of the aspect of the division information of a part of the object.
  • FIG. 4 is an explanatory diagram of an object determination process by the shape data processing device.
  • FIG. 5 is an explanatory diagram of an object determination process by the shape data processing device.
  • FIG. 6 is an explanatory diagram of an object determination process by the shape data processing device.
  • FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a shape data processing device.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus.
  • FIG. 3 is an explanatory diagram showing an example of the aspect of the division information of a part of the
  • FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 9 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 10 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 11 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 12 is an explanatory diagram showing a simple example when the analysis structure is divided into hexahedral meshes.
  • FIG. 13 is an explanatory diagram conceptually explaining a line angle and a point angle between lines adjacent to each point of a plurality of surfaces.
  • FIG. 14A is a data structure diagram schematically showing an example of the data structure of the shape specifying data of a part of the object shown in FIG. 13 in the database.
  • FIG. 14B is a data structure diagram schematically showing an example of the data structure of the shape specifying data obtained by processing the shape specifying data shown in FIG. 14A.
  • FIG. 15 is a perspective view showing an example of a hexahedron rib as an object provided on the base material.
  • FIG. 16 is a perspective view showing an example of a rib in which two hexahedrons having different sizes are joined as an object provided on the base material.
  • FIG. 17 is a perspective view showing an example of a rib in which two hexahedrons are joined so as to be orthogonal to each other as an object provided on the base material.
  • FIG. 18A is a perspective view showing an example of a cylindrical rib as an object provided on the base material.
  • FIG. 18B is a perspective view showing another example of a cylindrical rib as an object provided on the base metal.
  • FIG. 19A is a perspective view showing an example of a hole in a pedestal as an object provided on the base material.
  • FIG. 19B is a perspective view showing another example of a hole in the pedestal as an object provided on the base metal.
  • FIG. 20 is a perspective view showing an example of a rib in which a cylinder and a hexahedron are joined as an object provided on the base material.
  • FIG. 21 is a perspective view showing an example of a rib in which an L-shaped member is joined to the end of a hexahedron as an object provided on the base material.
  • FIG. 22 is a perspective view showing an example of a fillet in an object.
  • FIG. 23A is a perspective view showing an example of a rectangular hole provided in the object.
  • FIG. 23B is a perspective view showing an example of a circular hole provided in the object.
  • FIG. 24 is a perspective view showing an example of a rib in which a cylinder and a right-angled triangular prism are joined as an object provided on the base material.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of the shape data processing device 100.
  • the shape data processing device 100 includes a control unit 110 (computer), a storage unit 120, a reading unit 130, and an output unit 140.
  • the control unit 110 is configured to realize various functions required for the control unit 110 by executing the shape data processing program P stored (installed) in advance in the recording device 121 of the storage unit 120.
  • the control unit 110 is composed of a processor such as a CPU.
  • the control unit 110 performs various processes by loading and executing a software program such as the shape data processing program P previously stored in the recording device 121 on the RAM 122b of the memory device 122.
  • the storage unit 120 includes a memory device 122 such as a ROM 122a and a RAM 122b, and a recording device 121 such as a flash memory and a hard disk device.
  • the shape data processing program P acquired from the reading unit 130 is stored in the recording device 121 in advance.
  • the shape data processing program P is downloaded via a communication means such as the Internet.
  • the output unit 140 includes a display device 141 such as a liquid crystal display panel and a printing device 142 such as a laser printer.
  • the display device 141 displays the output display information from the control unit 110 on the display screen.
  • the printing device 142 prints the output display information from the control unit 110.
  • the reading unit 130 includes a reading device 131 that reads a recording medium M such as a CD-ROM.
  • the shape data processing program P may be recorded in advance on the recording medium M and read by the reading device 131.
  • the recording medium M may be a recording disc such as a CD-ROM, or any other recording medium.
  • the control unit 110 includes a three-dimensional CAD data input means Q1, a shape recognition means Q2, a determination means Q3, an acquisition means Q4, a point angle calculation means Q5, an actuator detection means Q6, a registration means Q7, and a shape. It functions as a means including the specific means Q8 and the output means Q9. That is, the shape data processing program P includes a three-dimensional CAD data input step, a shape recognition step, a determination step, an acquisition step, a point angle calculation step, an actuator detection step, a registration step, and a shape identification step. , The control unit 110 is made to execute the step including the output step.
  • FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus 100.
  • each processing of 3D CAD data input, shape recognition, shape identification information determination, characteristic information acquisition, point angle calculation, actuator detection, database registration, shape identification, and information output is performed. conduct.
  • 3D CAD data input In the 3D CAD data input step, the control unit 110 inputs 3D CAD data (3D CAD model), which is the shape data of the object (product) created by the 3D CAD, from the reading unit 130.
  • the control unit 110 recognizes the shape based on the three-dimensional CAD data.
  • the shape recognition step can be mainly divided into three steps.
  • each surface information of 3D CAD data is acquired.
  • a free mesh is created on each surface of the first input 3D CAD data, and a database for feature calculation (database DB in this example) is constructed.
  • databases DB database for feature calculation
  • Such features include, for example, surface curvature, outer peripheral curvature, outer peripheral length, fixed points on the outer circumference, length ratio of paired outer peripheral pairs, outer circular shape, cylindrical shape, sphericality, internal angle of fixed points, etc. Includes area, in-plane normal angle difference, surface continuity, peripheral contact angle, and cross-sectional shape. In order to calculate these features, we mainly refer to the mesh data together with the acquired geometry shape information.
  • feature means, for example, (1) "Overall shape”: A twisted uneven plate with holes (2) "Draw beads”: Strip-shaped uneven parts made on a flat surface (3) “Fillet”: Sharpened corners are rounded It refers to the “shape” (or the word that indicates it) such as a part, and is called “shape”.
  • each aspect is classified based on the acquired information and features.
  • each face is classified into 5 different types (plane, fillet, cylinder, sphere, curved surface).
  • plane, fillet, cylinder, sphere, curved surface In order to classify each surface, it is confirmed whether it has a specific feature depending on the surface type to be classified.
  • a surface As an example, in order to consider a surface as a fillet surface, the curvature of the surface, the curvature of the outer circumference, the outer circumference length, the width of the surface, the fixed point on the outer circumference, the length ratio of the paired outer circumference pair, and the outer circumference.
  • Fillets, cylinders, spheres, and curved surfaces are all considered curved surfaces in the first place. Then distinguish them from different features. Also, a cylinder and a sphere can be fillets. If they have a certain form of continuity with the adjacent surface, they are considered fillets.
  • the third step recognition of a complicated part consisting of multiple surfaces is performed.
  • 2D holes on the plate-shaped model, 3D holes on the solid model, stepped holes such as counterbore, steps, embossing, flanges, fillet flow, chamfers, corner fillets, thin surfaces between fillets, ribs, grooves Use the surface types and other information classified in the second step to recognize parts such as gear teeth and screws.
  • Other information used to recognize the part includes the combination of face types, the positional relationship between the faces, the size of the part, and the cross-sectional shape when a composite shape is formed by a plurality of faces.
  • the specific part recognized through the above three steps is retained inside the system together with CAD information, mesh area information, and shape data at the time of recognition, and is used when creating a mesh according to the rules. ..
  • shape data such as characteristic information is associated with each classification information (for example, a face number or a face symbol) corresponding to the classification of the object.
  • the division information is a surface symbol and / or a number corresponding to a surface (hereinafter, also referred to as a surface).
  • the surface means one unit constituting the object in the three-dimensional CAD data. That is, the surface is obtained by dividing the surface of the object into a plurality of surfaces for convenience in order to grasp the position of each shape in the object, and each of the plurality of surfaces is assigned a symbol and / or a number. Will be done.
  • shape data such as characteristic information associated with each classification information may be registered in advance in the database DB. In this case, the shape recognition step can be omitted.
  • the control unit 110 determines a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into the plurality of surfaces (surfaces). ..
  • FIG. 3 is an explanatory diagram showing an example of the surface of the division information M12 of a part of the object.
  • the surface shown in FIG. 3 exemplifies the surface of the division information M12 of the rounded thick portion (fillet) which is the root of the rising portion of the rib-shaped rib shown in FIG. 8 to be described later.
  • the area a1 As information on each surface, the area a1, the lines L1 to L4 and the number of lines constituting the outer shape of each surface, the lengths of the respective lines L1 to L4, and the maximum line length (L1 (or L3 in this example)).
  • the determination step Is an outer product vector based on the normal vector (out-of-plane vector) of the surface of the first division information (reference surface) and the vector in the tangential direction in which the surface of the first division information and the surface of the second division information are in contact with each other.
  • the first is based on the calculation results of the outer product calculation step for obtaining the inner product
  • the inner product calculation step for obtaining the inner product of the obtained outer product vector and the normal vector (outside vector) of the surface of the second division information
  • the inner product calculation step includes a determination step of determining the surface shape of the surface of the second division information with respect to the surface of the division information.
  • FIG. 4 to 6 are explanatory views of the object determination process by the shape data processing device 100. Further, FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device 100.
  • one surface registered in the database DB is set as a surface (reference surface) of the first division information M1, and another surface of the other division information adjacent to the surface is used as a surface of the second division information M2.
  • the surface (reference surface) of the first division information M1 is basically a plane.
  • the outer product vector V is obtained from the vector S in the tangential direction in which the surface of the division information M2 is in contact with the above.
  • the inner product of the outer product vector V obtained in the outer product calculation step and the normal vector (outside vector) T of the surface of the second division information M2 is obtained (ST2), and the calculation result is determined. Enter in the step.
  • the surface shape of the surface of the second division information M2 with respect to the surface of the first division information M1 is determined based on the input calculation result.
  • the surface of the second division information M2 is concave (FIG. 4) to determine the shape identification information (+1) (ST4).
  • the calculation result is not a positive value (ST3: No)
  • it is determined whether or not the calculation result is a negative value (ST5)
  • the calculation result shows a negative value (ST5: Yes).
  • the shape identification information (-1) is determined by using the surface of the second division information M2 as a convex surface (see FIG. 5) (ST6).
  • step ST5 If the calculation result is not a negative value (step ST5: No), it is determined whether or not the calculation result is a zero value (ST7), and if the calculation result indicates a zero value (ST7: Yes). ), The shape identification information (0) is determined assuming that the surface of the second division information M2 is a plane continuous with the surface of the first division information M1 (see FIG. 6) (ST8). If No is determined even in ST7, error processing (ST10) is executed to move to ST9.
  • the surface where the adjacent surfaces bite into the surface when viewed from the reference surface always has a negative value, and the surface spreading out of the surface always has a positive value. I am using.
  • FIGS. 8 to 11 exemplify the processing results when the above determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 8 shows the result of applying the above determination process to the rib shape, and the surface of the rounded thick portion (fillet) which is the root of the rising portion of the rib has a positive (+) result of the inner product calculation.
  • the result of the inner product calculation is minus (-).
  • the surface (M11) is a flat surface
  • the surface (M12) is a concave surface
  • the surface (M13) is a flat surface
  • the surface (M14) is a convex surface
  • the surface (M15) is a flat surface
  • the surface (M16) is a concave surface.
  • (M17) will be classified as a plane.
  • FIG. 9 shows the result of applying the above determination process to the shape of the end portion, and the rounded surface of the corner portion of the end portion has a negative (-) result of the inner product calculation. ..
  • the surface (M21) is classified as a plane
  • the surface (M22) is classified as a convex surface
  • the surface (M23) is classified as a plane
  • the surface (M24) is classified as a convex surface
  • the surface (M25) is classified as a plane.
  • FIG. 10 shows the result of applying the above determination process to the shape in which the plane continues. If the plane continues, the result of the inner product operation will also be zero (0).
  • the plane (M31) is classified as a plane
  • the plane (M32) is classified as a plane
  • the plane (M33) is classified as a plane
  • the plane (M34) is classified as a plane.
  • FIG. 11 shows the result of applying the above determination process to the shape including the gradually changing surface (slowly changing surface), and for the gradually changing surface, the result of the inner product calculation is plus (+) and minus. It is (-).
  • the surface (M41) is classified as a plane
  • the surface (M42) is classified as a gradually changing surface (in this example, an inclined surface)
  • the surface (M43) is classified as a plane.
  • the surface shape of each of the divided surfaces can be determined only by the plus, minus, and zero of the calculated values of the calculation result, so that the surface determination process is simple and extremely high speed. It becomes possible to do it.
  • the surface shape determination process of the present embodiment can be applied to various shape models such as a solid model and a wire model in addition to the above surface model. Is.
  • connection point e1 point between the surface (M41) and the surface (M42) and the connection point e2 (point) between the surface (M42) and the surface (M43) become opposite surfaces.
  • the distance (thickness of the analysis structure) at each connection point e1 and e2 can be known. Therefore, by using this information, for example, a neutral surface (or mesh) CF1 can be easily attached to the center of the gradually changing surface (M42).
  • FIG. 12 is an explanatory diagram showing a simple example in which the analysis structure is divided into hexahedral meshes, and is a normal vector of a plane (M51) which is a reference plane, and a plane (M51) and a plane (M52).
  • the outer product vector is obtained from the vector in the tangential direction in contact with), and the inner product of this outer product vector and the normal vector of the surface (M52) is obtained, and the calculation result is positive. That is, it can be seen that the connecting portion between the surface (M51) and the surface (M52) is a concave portion.
  • FIGS. 11 and 12 are only examples, and are not limited to these application examples.
  • the control unit 110 acquires the area of the surface among the plurality of characteristic information related to the shapes of the plurality of surfaces.
  • the characteristic information is the characteristic information recognized in the shape recognition step or the characteristic information registered in advance.
  • the characteristic information for example, the width, length, area, thickness, curvature of the surface (surface), and the coordinates of the inflection point at which the shape is switched within the surface (surface) can be mentioned.
  • FIG. 13 shows lines (K1-K2), (K2-K3), (K3-K1), adjacent to points A, B, ... Of a plurality of surfaces (M1, M2, M3, M4, M5, ). It is explanatory drawing which conceptually explains (B1 + B2 + B3 + B4), the line angle (A1, A2, A3), ... and the point angle (A1 + A2 + A3), ...
  • the object N (analyzed structure) has shape identification information (+1) for a plurality of surfaces (M1, M2, M3, M4, M5, . , -1, 0), point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ..., activators (A, B, K1), ..., And areas S1, S2, ....
  • the shape identification information (+1, -1, 0) is, for example, a concave surface (+), a convex surface (-), and a flat surface (0).
  • the point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ... Are the sum of the line angles (A1, A2, A3), (B1, B2, B3, B4), ...
  • the line angles (A1, A2, A3), (B1, B2, B3, B4), ... are the lines adjacent to the points A, B, ... [(K1-K2), (K2-K3), (K3-K3-). K1)], [(K1-K5), (K5-K4), (K4-K6), (K6-K1)], ....
  • the point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ... Are basically 270 degrees, 360 degrees, and 450 degrees, and the larger the point, the more complicated the line enters.
  • the point angle is 450 degrees, it is often present at the bottom of the prism.
  • the point angle is 360 degrees, it often exists at the bottom or end of the cylinder, or at the bottom or end of the cylinder.
  • each point of the operator often has the same value.
  • Operator detection In the operator detection step, an operator consisting of two adjacent points (A, B), ... And two points (A, B), ... Of each point A, B, ... (A, B, K1), ... Are detected.
  • FIG. 14A is a data structure diagram schematically showing an example of the data structure of the shape specifying data DT1 of a part of the object N shown in FIG. 13 in the database DB.
  • the division information M1, M2, ... (For example, a surface number or a surface symbol) corresponding to a plurality of surfaces is registered in the database DB in association with the shape identification information, the point angle, the operator and the area of the surface.
  • an operator (A, B, K1) including each point A, B, ..., Each point A, B, ...
  • shape identification information +1, -1,0
  • point angle for example, 270 degrees, 450 degrees, 450 degrees, ...)
  • area S1, S2, ... (For example, 1000 mm 2 , ).
  • the thicknesses of adjacent faces (M1, M2), (M1, M3), ... Thin in the direction orthogonal to the faces) are often the same. Further, the curvatures of adjacent surfaces (M1, M2), (M1, M3), ... May be the same.
  • the division information M1, M2, ... Is further added to the operators (A, B, K1), ...,
  • the thickness of each surface h1, h2, ... It may be registered in the database DB in association with (for example, 0, ).
  • the shape specifying step described later whether or not the thickness of one surface is equal to the thickness of the other surface to be adjacent, or / and the curvature of one surface is equal to the curvature of the other surface to be adjacent.
  • the accuracy of identifying another surface adjacent to one surface can be improved.
  • the control unit 110 controls the division information M1, M2, ... Each actor, shape identification information (+ 1, -1, 0), point angle, and surface area S1, S2, ... Stored in the database DB. Further, the surface thicknesses h1, h2, ... And / or the surface curvature are read from the database DB.
  • the control unit 110 has read out division information M1, M2, ... Each operator, shape identification information (+1, -1, 0), point angle and surface area S1, S2, ..., Further, surface thickness h1. , H2, ... And / or the division information M1, M2, ... Is connected from the curvature of the surface to specify the shape of the object N.
  • the surfaces of the division information M2 and M3 are actuators (A, B).
  • K1), (A, D, K2) are adjacent to each other by a convex surface (-1)
  • the surfaces of the division information M1 and M2 are actuators (B, C, K5) with the surfaces of the division information M4 and M5.
  • B, E, K6 are adjacent to each other with a concave surface (+1).
  • the point angles of points B, C, E, ... are 450 degrees, it can be seen that they usually exist at the bottom of the prism. Further, when the point angle is 360 degrees, it can be seen that it usually exists at the bottom or end of the cylinder, or at the bottom or end of the cylinder.
  • the three-dimensional shape of the object N can be specified by performing the recognition processing on all the surfaces in the same manner.
  • the shape may be specified by using the shape specifying data DT1 for specifying the shape of the object N shown in FIG. 14A, but the shape is specified for each surface (division information) so that the data can be easily processed.
  • the three-dimensional shape of the object N may be specified by using the shape specifying data DT1a obtained by processing the data DT1.
  • FIG. 14B is a data structure diagram schematically showing an example of the data structure of the shape specifying data DT1a obtained by processing the shape specifying data DT1 shown in FIG. 14A.
  • the "number of point angles” in the “number or ratio of point angles” represents the number of the same point angles on each surface, for example, a surface (M1). ),
  • the number of point angles of 270 degrees is two, which is the sum of one point A and one point D, and the number of point angles of 450 degrees is one point B and one point C. It means that the total of and is two.
  • the “number of shape identification information” represents the number of the same shape identification information for the operator in each surface.
  • the concave surface (+1). Is one of the operators (point B, point C, line K5), and the number of convex surfaces (-1) is one of the operators (point A, point B, line K1) and the operator (point C).
  • Point D, line K7) and one operator (point A, point D, line K2) are totaled three, indicating that the number of plane surfaces (0) is zero. ing.
  • “number of actuators between adjacent point angles” is the same combination of actuators between adjacent point angles on each surface.
  • the surface (M1) one combination of the point angle 270 degrees of the point A and the point angle 270 degrees of the point D, the point angle 450 degrees of the point B, and the point angle of the point C are represented.
  • one combination of the point angle 270 degrees of the point A and the point angle 270 degrees of the point F, and one combination of the point angle 450 degrees of the point B and the point angle 450 degrees of the point E represents a combination of a point angle of 270 degrees of a point A and a point angle of 450 degrees of a point B, and a total of two combinations of a point angle of 270 degrees of a point F and a point angle of 450 degrees of a point E.
  • the "thickness” is an average value obtained by averaging the thicknesses h1, h2, ... For each operator (A, B, K1) on each surface (M1, M2, ...) Or each surface (M1, M2, ). The thickness of the center.
  • the thickness of the center of each surface (M1, M2, 7) Can be used, for example, when the average value of the thicknesses h1, h2, ... For each operator (A, B, K1), ... Cannot be calculated. ..
  • Examples of the "face name” include a rib surface, a rib root surface, a cylinder rib surface, an end surface, a fillet surface, a cylindrical surface, a base material surface, and a general surface.
  • the three-dimensional shape of the object N can also be specified by using the shape specifying data DT1a processed in units of surfaces (classification information) in this way.
  • FIG. 15 is a perspective view showing an example of a rib of a hexahedron as an object N provided on the base material I.
  • a three-dimensional shape can be specified from a set of operator shape identification information, point angles, etc. expressed by image elements such as hue, saturation, and brightness.
  • FIG. 16 is a perspective view showing an example of a rib in which two hexahedrons having different sizes are joined as an object N provided on the base material I.
  • the operator (A, B, K1) if the point angle of the point E is 450 degrees, but the point angle of the point X1 is 270 degrees, the operator (A, B, K1) ,.
  • a joining member N2 such as a rib is joined to the rib N1 composed of (E, F, K8).
  • the joining member N2 is a rib
  • the rib N1 is a base material I1
  • the base material I of the rib N1 is a base material.
  • the point X2 has a point angle of 450 degrees.
  • the point X3 is located on the base material I1 side, and the points X4 and the point X5 having a point angle of 450 degrees are located on the base material I side.
  • a three-dimensional shape can be specified from a set in which the shape identification information of the operator, the point angle, etc. are expressed by image elements such as hue, saturation, and brightness. ..
  • FIG. 17 is a perspective view showing an example of a rib in which two hexahedrons are joined so as to be orthogonal to each other as an object N provided on the base material I.
  • FIG. 17 shows the shape identification information of the operator and the point angle of each point in the rib joined so that the two hexahedrons are orthogonal to each other.
  • 18A and 18B are perspective views showing an example of a cylindrical rib as an object N provided on the base material I.
  • FIGS. 18A and 18B show the shape identification information of the operator and the point angle of each point in the rib of the cylinder. Since the point angles of points A and B are both 360 degrees, it can be seen that they usually exist at the bottom or end of the cylinder, or at the bottom or end of the cylinder.
  • 19A and 19B are perspective views showing an example of holes H1 and H2 of a pedestal as an object N provided in the base material I.
  • FIG. 19A and 19B show shape identification information of operators and point angles of each point in a pedestal provided with square holes H1 and H2.
  • a shape in which one side surface of the rectangular hole is open can be exemplified.
  • FIG. 20 is a perspective view showing an example of a rib in which a cylinder and a hexahedron are joined as an object N provided on the base material I.
  • FIG. 20 shows the shape identification information of the operator and the point angle of each point in the rib where the cylinder and the hexahedron are joined.
  • FIG. 21 is a perspective view showing an example of a rib in which an L-shaped member N3 is joined to the end of a hexahedron as an object N provided on the base material I.
  • FIG. 21 shows the shape identification information of the operator and the point angle of each point in the rib in which the L-shaped member N3 is joined to the end of the hexahedron.
  • FIG. 22 is a perspective view showing an example of a fillet in the object N.
  • FIG. 22 shows the shape identification information of the operator and the point angle of each point in the fillet in the object N.
  • 23A and 23B are perspective views showing an example of a rectangular hole H3 and an example of a circular hole H4 provided in the object N, respectively.
  • FIGS. 23A and 23B show the shape identification information of the operator and the point angle of each point in the rectangular hole H3 and the circular hole H4 provided in the object N.
  • FIG. 24 is a perspective view showing an example of a rib in which a cylinder and a right-angled triangular prism are joined as an object N provided on the base material I.
  • FIG. 24 shows the shape identification information of the operator and the point angle of each point in the rib where the cylinder and the triangular prism are joined.
  • the point angle of the points constituting the right triangle of the right triangle is 270 degrees, and the point angles ⁇ 1 and ⁇ 2 of the points constituting the base angles ⁇ 1 and ⁇ 2 (45 degrees in this example) of the right triangle exceed 360 degrees (base angle). It is a value (405 degrees in this example) of ⁇ 1 and ⁇ 2 exceeding 0 degrees and less than 450 degrees (base angles ⁇ 1 and ⁇ 2 are less than 90 degrees).
  • control unit 110 outputs the shape of the object N specified in the shape specifying step to the display device 141 or the printing device 142.
  • the specified three-dimensional shape information is sent to, for example, a CAD system and used in the CAD system.
  • the division information M1, M2, ... Each actor (A, B, K1), ..., Shape identification information (+1, -1, 0), point angle (A1 + A2 + A3) stored in the database DB. ), ... And the areas S1, S2, ... Of the surfaces (M1, M2, 7) Can be connected to a plurality of surfaces (M1, M2, 7)
  • the control unit 110 uses the image processing technique to obtain shape identification information (+ 1, -1, 0), point angles (A1 + A2 + A3), ..., Actors (A,) for the classification information M1, M2, ...
  • the shape of the object N is specified from B, K1), ... And the areas S1, S2, ....
  • the shape of the specified object N can be output, so that the user can output the operator (A, B, K1), ..., Shape for each of a plurality of surfaces (M1, M2, ). It is possible to confirm the three-dimensional shape of the object N specified from the identification information (+1, -1,0), the point angle (A1 + A2 + A3), ..., And the areas S1, S2, ... Of the surface (M1, M2, . can.
  • the control unit 110 has a plurality of characteristic information (for example, areas S1, S2, ..., thickness h1, h2, ..., Curvature) related to the shapes of the plurality of surfaces (M1, M2, ).
  • the thickness h1, h2 ... And / or the curvature of the surface (M1, M2, 7) Of the surface (M1, M2, 7) Is further acquired, and the classification information M1, M2, ... And / or register in the database DB in association with the curvature.
  • the division information M1, M2, ... Each actor (A, B, K1), ..., Shape identification information (+1, -1,0), point angle (A1 + A2 + A3), ... And the area of the surface (M1, M2, ...) S1, S2, ..., and the thickness of the surface (M1, M2, %) H1, h2 ... And / or the curvature of the surface (M1, M2, ).
  • the shape of the object N can be easily specified.
  • control unit 110 uses an image processing technique to perform actors (A, B, K1), ..., Shape identification information (+1, -1, 0), and points for the division information M1, M2, ....
  • the shape of the object N is specified from the angle (A1 + A2 + A3), ..., Area S1, S2, ..., Thickness h1, h2, ... And / or curvature.
  • the control unit 110 may continuously process the division information by a single processor, but the division information M1, M2, ... Is divided into a plurality of processing units. It is preferable that the control unit 110 is provided with the same processor and performs parallel processing by a plurality of processors.
  • a plurality of processors can be sequentially or randomly assigned to the division information M1, M2, .... By assigning a plurality of processors to the division information M1, M2, ...
  • the three-dimensional shape of the object N can be specified by the shape identification information (+1, -1, 0), the point angle, the areas S1, S2, ...
  • the first processor is assigned to the division information M1 to M1000
  • the second processor is assigned to the division information M2001 to M3000
  • the third processor is assigned to the division information M1001 to M2000, respectively, and the first processor and the second processor are assigned. Even if parallel processing is performed by the processor and the third processor, the three-dimensional shape of the object N can be easily specified from the actuator, the shape identification information, the point angle, and the area. By doing so, parallel processing can be easily performed, and as a result, further high-speed processing can be realized with a simple control configuration.
  • the present invention can be applied to the technical field of CAD, particularly AI technology.
  • Shape data processing device 110 Control unit 120 Storage unit 121 Recording device 122 Memory device 130 Reading unit 131 Reading device 140 Output unit 141 Display device 142 Printing device A, ... Each point A1, ... Line angle DB Database DT1 Shape specification data DT1a Processed shape identification data M1, ... Category information N Object P Shape data processing program Q1 Three-dimensional CAD data input means Q2 Shape recognition means Q3 Judgment means Q4 Acquisition means Q5 Point angle calculation means Q6 Actor detection means Q7 Registration means Q8 Shape specifying means Q9 Output means S1, ... Area h1, ... Thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Processing Or Creating Images (AREA)

Abstract

A shape data processing device, shape data processing method, and shape data processing program according to the present invention: determine multiple pieces of shape identification information respectively corresponding to the shapes of multiple faces of an object of which the surface is divided into multiple faces; acquire the surface area of a face from among multiple pieces of characteristic information respectively related to the shapes of the multiple faces; calculate a point angle that is obtained by summing line angles between lines adjoining points on the multiple faces; detect a working element comprising two neighboring points from among the points and a line between the two points; and register, in a database and in association with shape identification information, point angles, working elements, and surface areas, classification information corresponding to the multiple faces.

Description

形状データ処理装置、形状データ処理方法及び形状データ処理プログラムShape data processing device, shape data processing method and shape data processing program
 本発明は、形状データ処理装置、形状データ処理方法及び形状データ処理プログラムに関する。 The present invention relates to a shape data processing device, a shape data processing method, and a shape data processing program.
 特許文献1には、構造解析等のCAE(Computer Aided Engineering:コンピュータ支援エンジニアリング)の技術分野において区分された対象物の表面形状を複数の記号(+,-,0)を用いて判定する技術が開示されている。 Patent Document 1 describes a technique for determining the surface shape of an object classified in the technical field of CAE (Computer Aided Engineering) such as structural analysis using a plurality of symbols (+,-, 0). It has been disclosed.
国際公開第2017/175349号International Publication No. 2017/175349
 ところで、CAD(Computer-Aided Design:コンピュータ支援設計)の技術分野においては、区分された対象物の表面形状の判定結果を利用して立体的な(3次元的な)対象物の形状を出力することが望まれている。また、近年、AI(人工知能)技術を利用して立体的な対象物の形状を判定する技術が注目されている。 By the way, in the technical field of CAD (Computer-Aided Design), a three-dimensional (three-dimensional) object shape is output by using the determination result of the surface shape of the classified object. Is desired. Further, in recent years, a technique for determining the shape of a three-dimensional object by using an AI (artificial intelligence) technique has attracted attention.
 しかしながら、特許文献1の開示技術では、区分された対象物の表面形状がどこの区分のものでどのような形状のものであるかを特定できないため、CADの技術分野(特にAI技術)に利用することができていないのが実情である。 However, in the disclosed technique of Patent Document 1, since it is not possible to specify which category and what shape the surface shape of the classified object is, it is used in the CAD technical field (particularly AI technology). The reality is that we have not been able to do it.
 そこで、本発明は、区分された対象物の表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野(特にAI技術)に利用することができる形状データ処理装置、形状データ処理方法及び形状データ処理プログラムを提供することを目的とする。 Therefore, the present invention can specify which category and what shape the surface shape of the classified object is, thereby entering the technical field of CAD (particularly AI technology). It is an object of the present invention to provide a shape data processing apparatus, a shape data processing method, and a shape data processing program that can be used.
 本発明は、前記課題を解決するため、次の形状データ処理装置、形状データ処理方法及び形状データ処理プログラムを提供する。 The present invention provides the following shape data processing device, shape data processing method, and shape data processing program in order to solve the above problems.
 (1)形状データ処理装置
 本発明に係る形状データ処理装置は、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定手段と、前記複数の面の形状にそれぞれ関係する複数の特性情報のうちの面積を取得する取得手段と、前記複数の面の各点に隣接する線間の線角度を合計した点角度を算出する点角度算出手段と、前記各点のうちの隣り合う2つの点と前記2つの点間の線とからなる作用子を検出する作用子検出手段と、前記複数の面に対応する区分情報を前記形状識別情報、前記点角度、前記作用子及び前記面積と関連付けてデータベースに登録する登録手段とを備えることを特徴とする。
(1) Shape Data Processing Device The shape data processing device according to the present invention is a determination means for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of faces in an object whose surface is divided into a plurality of faces. And, the acquisition means for acquiring the area of the plurality of characteristic information related to the shapes of the plurality of surfaces, and the point angle obtained by summing the line angles between the lines adjacent to each point of the plurality of surfaces are calculated. The point angle calculating means, the activator detecting means for detecting the activator consisting of two adjacent points among the points and the line between the two points, and the classification information corresponding to the plurality of surfaces are described above. It is characterized by comprising shape identification information, the point angle, the activator, and a registration means for registering in a database in association with the area.
 (2)形状データ処理方法
 本発明に係る形状データ処理方法は、形状データ処理装置が行う形状データ処理方法であって、判定手段が、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定ステップと、取得手段が、前記複数の面の形状にそれぞれ関係する複数の特性情報のうちの面積を取得する取得ステップと、点角度算出手段が、前記複数の面の各点に隣接する線間の線角度を合計した点角度を算出する点角度算出ステップと、作用子検出手段が、前記各点のうちの隣り合う2つの点と前記2つの点間の線とからなる作用子を検出する作用子検出ステップと、登録手段が、前記複数の面に対応する区分情報を前記形状識別情報、前記点角度、前記作用子及び前記面積と関連付けてデータベースに登録する登録ステップとを含むことを特徴とする。
(2) Shape Data Processing Method The shape data processing method according to the present invention is a shape data processing method performed by a shape data processing apparatus, and the determination means is a plurality of objects in an object whose surface is divided into a plurality of surfaces. A determination step for determining a plurality of shape identification information corresponding to each of the shapes of the surfaces, an acquisition step for the acquisition means to acquire an area of a plurality of characteristic information related to each of the shapes of the plurality of surfaces, and a point. The angle calculation means calculates the point angle by summing the line angles between the lines adjacent to each point of the plurality of surfaces, and the activator detecting means is two adjacent points among the points. An activator detection step for detecting an activator consisting of a point and a line between the two points, and a registration means, the division information corresponding to the plurality of surfaces are subjected to the shape identification information, the point angle, the activator, and the activator. It is characterized by including a registration step associated with the area and registered in the database.
 (3)形状データ処理プログラム
 本発明に係る形状データ処理プログラムは、前記本発明に係る形状データ処理方法の各ステップを、コンピュータに実行させるためのものである。
(3) Shape Data Processing Program The shape data processing program according to the present invention is for causing a computer to execute each step of the shape data processing method according to the present invention.
 本発明によると、区分された対象物の表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野(特にAI技術)に利用することが可能となる。 According to the present invention, it is possible to specify which category and what shape the surface shape of the classified object is, which is used in the CAD technical field (particularly AI technology). It becomes possible to do.
図1は、形状データ処理装置のハードウェア構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a hardware configuration of a shape data processing device. 図2は、形状データ処理装置の処理手順の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus. 図3は、対象物の一部の区分情報の面の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of the aspect of the division information of a part of the object. 図4は、形状データ処理装置による対象物の判定処理の説明図である。FIG. 4 is an explanatory diagram of an object determination process by the shape data processing device. 図5は、形状データ処理装置による対象物の判定処理の説明図である。FIG. 5 is an explanatory diagram of an object determination process by the shape data processing device. 図6は、形状データ処理装置による対象物の判定処理の説明図である。FIG. 6 is an explanatory diagram of an object determination process by the shape data processing device. 図7は、形状データ処理装置による対象物の判定処理の手順を示すフローチャートである。FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device. 図8は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図9は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 9 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図10は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 10 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図11は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 11 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図12は、解析構造物を六面体メッシュに分割する場合の簡単な例を示した説明図である。FIG. 12 is an explanatory diagram showing a simple example when the analysis structure is divided into hexahedral meshes. 図13は、複数の面の各点に隣接する線間の線角度及び点角度を概念的に説明する説明図である。FIG. 13 is an explanatory diagram conceptually explaining a line angle and a point angle between lines adjacent to each point of a plurality of surfaces. 図14Aは、データベースにおいて図13に示す対象物の一部の形状特定用データのデータ構造の一例を概略的に示すデータ構造図である。FIG. 14A is a data structure diagram schematically showing an example of the data structure of the shape specifying data of a part of the object shown in FIG. 13 in the database. 図14Bは、図14Aに示す形状特定用データを加工した形状特定用データのデータ構造の一例を概略的に示すデータ構造図である。FIG. 14B is a data structure diagram schematically showing an example of the data structure of the shape specifying data obtained by processing the shape specifying data shown in FIG. 14A. 図15は、母材に設けられた対象物として6面体のリブの一例を示す斜視図である。FIG. 15 is a perspective view showing an example of a hexahedron rib as an object provided on the base material. 図16は、母材に設けられた対象物として互いに大きさが異なる2つの6面体を接合したリブの一例を示す斜視図である。FIG. 16 is a perspective view showing an example of a rib in which two hexahedrons having different sizes are joined as an object provided on the base material. 図17は、母材に設けられた対象物として2つの6面体を直交させるように接合したリブの一例を示す斜視図である。FIG. 17 is a perspective view showing an example of a rib in which two hexahedrons are joined so as to be orthogonal to each other as an object provided on the base material. 図18Aは、母材に設けられた対象物として円筒のリブの一例を示す斜視図である。FIG. 18A is a perspective view showing an example of a cylindrical rib as an object provided on the base material. 図18Bは、母材に設けられた対象物として円筒のリブの他の例を示す斜視図である。FIG. 18B is a perspective view showing another example of a cylindrical rib as an object provided on the base metal. 図19Aは、母材に設けられた対象物として台座の穴の一例を示す斜視図である。FIG. 19A is a perspective view showing an example of a hole in a pedestal as an object provided on the base material. 図19Bは、母材に設けられた対象物として台座の穴の他の例を示す斜視図である。FIG. 19B is a perspective view showing another example of a hole in the pedestal as an object provided on the base metal. 図20は、母材に設けられた対象物として円筒と6面体とを接合したリブの一例を示す斜視図である。FIG. 20 is a perspective view showing an example of a rib in which a cylinder and a hexahedron are joined as an object provided on the base material. 図21は、母材に設けられた対象物として6面体の端部にL字状部材を接合したリブの一例を示す斜視図である。FIG. 21 is a perspective view showing an example of a rib in which an L-shaped member is joined to the end of a hexahedron as an object provided on the base material. 図22は、対象物におけるフィレットの一例を示す斜視図である。FIG. 22 is a perspective view showing an example of a fillet in an object. 図23Aは、対象物に設けられた四角形状の穴の一例を示す斜視図である。FIG. 23A is a perspective view showing an example of a rectangular hole provided in the object. 図23Bは、対象物に設けられた円形状の穴の一例を示す斜視図である。FIG. 23B is a perspective view showing an example of a circular hole provided in the object. 図24は、母材に設けられた対象物として円筒と直角三角柱とを接合したリブの一例を示す斜視図である。FIG. 24 is a perspective view showing an example of a rib in which a cylinder and a right-angled triangular prism are joined as an object provided on the base material.
 以下、本発明に係る実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
 [形状データ処理装置のハードウェア構成]
 先ず、本実施の形態に係る形状データ処理装置100のハードウェア構成について図1を参照しながら以下に説明する。
[Hardware configuration of shape data processing device]
First, the hardware configuration of the shape data processing apparatus 100 according to the present embodiment will be described below with reference to FIG.
 図1は、形状データ処理装置100のハードウェア構成の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of the hardware configuration of the shape data processing device 100.
 図1に示すように、形状データ処理装置100は、制御部110(コンピュータ)、記憶部120、読取部130及び出力部140を備えている。制御部110は、記憶部120の記録装置121に予め格納(インストール)された形状データ処理プログラムPを実行することによって、制御部110に必要な各種の機能を実現させるように構成されている。詳しくは、制御部110は、CPU等のプロセッサーで構成されている。制御部110は、記録装置121に予め格納された形状データ処理プログラムP等のソフトウェアプログラムをメモリ装置122のRAM122b上にロードして実行することにより、各種の処理を行う。記憶部120は、ROM122a、RAM122b等のメモリ装置122、及び、フラッシュメモリ、ハードディスク装置等の記録装置121を備えている。記録装置121には、読取部130から取得した形状データ処理プログラムPが予め格納される。形状データ処理プログラムPは、例えば、インターネット等の通信手段を介してダウンロードされる。出力部140は、液晶表示パネル等の表示装置141と、レーザープリンタ等の印刷装置142を備えている。表示装置141は、制御部110からの出力表示情報を表示画面に表示する。印刷装置142は、制御部110からの出力表示情報を印刷する。読取部130は、CD-ROM等の記録媒体Mを読み取る読取装置131を備えている。なお、形状データ処理プログラムPは、記録媒体Mに予め記録され、読取装置131にて読み取られるものであってもよい。記録媒体Mは、CD-ROM等の記録ディスクの他、他の各種の記録媒体であってもよい。 As shown in FIG. 1, the shape data processing device 100 includes a control unit 110 (computer), a storage unit 120, a reading unit 130, and an output unit 140. The control unit 110 is configured to realize various functions required for the control unit 110 by executing the shape data processing program P stored (installed) in advance in the recording device 121 of the storage unit 120. Specifically, the control unit 110 is composed of a processor such as a CPU. The control unit 110 performs various processes by loading and executing a software program such as the shape data processing program P previously stored in the recording device 121 on the RAM 122b of the memory device 122. The storage unit 120 includes a memory device 122 such as a ROM 122a and a RAM 122b, and a recording device 121 such as a flash memory and a hard disk device. The shape data processing program P acquired from the reading unit 130 is stored in the recording device 121 in advance. The shape data processing program P is downloaded via a communication means such as the Internet. The output unit 140 includes a display device 141 such as a liquid crystal display panel and a printing device 142 such as a laser printer. The display device 141 displays the output display information from the control unit 110 on the display screen. The printing device 142 prints the output display information from the control unit 110. The reading unit 130 includes a reading device 131 that reads a recording medium M such as a CD-ROM. The shape data processing program P may be recorded in advance on the recording medium M and read by the reading device 131. The recording medium M may be a recording disc such as a CD-ROM, or any other recording medium.
 [形状データ処理装置のソフトウェア構成]
 次に、形状データ処理装置100のソフトウェア構成について図1を参照しながら以下に説明する。
[Software configuration of shape data processing device]
Next, the software configuration of the shape data processing device 100 will be described below with reference to FIG.
 制御部110は、3次元CADデータ入力手段Q1と、形状認識手段Q2と、判定手段Q3と、取得手段Q4と、点角度算出手段Q5と、作用子検出手段Q6と、登録手段Q7と、形状特定手段Q8と、出力手段Q9とを備える手段として機能する。すなわち、形状データ処理プログラムPは、3次元CADデータ入力ステップと、形状認識ステップと、判定ステップと、取得ステップと、点角度算出ステップと、作用子検出ステップと、登録ステップと、形状特定ステップと、出力ステップとを含むステップを制御部110に実行させる。 The control unit 110 includes a three-dimensional CAD data input means Q1, a shape recognition means Q2, a determination means Q3, an acquisition means Q4, a point angle calculation means Q5, an actuator detection means Q6, a registration means Q7, and a shape. It functions as a means including the specific means Q8 and the output means Q9. That is, the shape data processing program P includes a three-dimensional CAD data input step, a shape recognition step, a determination step, an acquisition step, a point angle calculation step, an actuator detection step, a registration step, and a shape identification step. , The control unit 110 is made to execute the step including the output step.
 [形状データ処理装置の処理手順]
 図2は、形状データ処理装置100の処理手順の一例を示すフローチャートである。
[Processing procedure of shape data processing device]
FIG. 2 is a flowchart showing an example of a processing procedure of the shape data processing apparatus 100.
 形状データ処理装置100の処理手順の一例では、3次元CADデータ入力、形状認識、形状識別情報判定、特性情報取得、点角度算出、作用子検出、データベース登録、形状特定、情報出力の各処理を行う。 In an example of the processing procedure of the shape data processing device 100, each processing of 3D CAD data input, shape recognition, shape identification information determination, characteristic information acquisition, point angle calculation, actuator detection, database registration, shape identification, and information output is performed. conduct.
 (3次元CADデータ入力)
 3次元CADデータ入力ステップでは、制御部110は、3次元CADで作成された対象物(製品)の形状データである3次元CADデータ(3次元CADモデル)が読取部130から入力される。
(3D CAD data input)
In the 3D CAD data input step, the control unit 110 inputs 3D CAD data (3D CAD model), which is the shape data of the object (product) created by the 3D CAD, from the reading unit 130.
 (形状認識)
 次に、形状認識ステップでは、制御部110は、3次元CADデータに基づいて形状を認識する。詳しくは、形状認識ステップは、主に3つのステップに分けることができる。
(Shape recognition)
Next, in the shape recognition step, the control unit 110 recognizes the shape based on the three-dimensional CAD data. Specifically, the shape recognition step can be mainly divided into three steps.
 第1ステップでは、3次元CADデータのそれぞれの面情報を取得する。最初に入力された3次元CADデータのそれぞれの面にフリーメッシュを作成し、特徴計算のためのデータベース(この例ではデータベースDB)を構築する。かかる特徴は、例えば、面の曲率、外周の曲率、外周長さ、外周上の固定点、対になる外周ペアの長さ比、外周の円形状、円筒形状、球面度、固定点の内角、面積、面内の法線方向角度差、サーフェス連続性、外周の接触角度、そして断面形状が含まれる。これらの特徴を計算するために、取得したジオメトリ形状の情報とともにメッシュデータを主に参照する。 In the first step, each surface information of 3D CAD data is acquired. A free mesh is created on each surface of the first input 3D CAD data, and a database for feature calculation (database DB in this example) is constructed. Such features include, for example, surface curvature, outer peripheral curvature, outer peripheral length, fixed points on the outer circumference, length ratio of paired outer peripheral pairs, outer circular shape, cylindrical shape, sphericality, internal angle of fixed points, etc. Includes area, in-plane normal angle difference, surface continuity, peripheral contact angle, and cross-sectional shape. In order to calculate these features, we mainly refer to the mesh data together with the acquired geometry shape information.
 本明細書でいう「特徴」とは、例えば、
(1)「全体の形状」:穴の開いている捻じれた凹凸のある板
(2)「ドロービード」:平らな面に作る帯状の凹凸部分
(3)「フィレット」:尖った角を丸く削った部分
などの「形状」(又はそれを示す言葉)をいい、「シェープ」と称される。
The term "feature" as used herein means, for example,
(1) "Overall shape": A twisted uneven plate with holes (2) "Draw beads": Strip-shaped uneven parts made on a flat surface (3) "Fillet": Sharpened corners are rounded It refers to the "shape" (or the word that indicates it) such as a part, and is called "shape".
 また、「特徴=形状」の「起点(頂点、端部を含む)」「切り替わる」部分(但し、3次元CADデータに表現されている「線」全てがそれに相当するわけではない。)は、「フィーチャー」と称される。 In addition, the "starting point (including vertices and ends)" and "switching" part of "feature = shape" (however, not all "lines" expressed in 3D CAD data correspond to it). Called a "feature".
 第2ステップでは、取得した情報と特徴を元にそれぞれの面を分類分けする。データを取得し、それぞれの面の特徴を計算した後に、それぞれの面を5つの異なるタイプ(平面、フィレット、円筒、球、曲面)に分類する。各面を分類するためには、分類する面タイプによって特定の特徴を有するか確認する。例として、ある面をフィレットの面だとみなすためには、面の曲率、外周の曲率、外周長さ、面の幅、外周上の固定点、対になる外周ペアの長さ比、外周の円形状、固定点の内角、面積、サーフェスの連続性、外周の接触角度、そして断面形状を検査する。フィレット、円筒、球、そして曲面は全て最初の段階では曲面とみなす。その後異なる特徴からそれらを区別する。また、円筒と球とはフィレットになり得る。それらが特定の形で隣接面との連続性がある場合はフィレットとみなす。 In the second step, each aspect is classified based on the acquired information and features. After acquiring the data and calculating the characteristics of each face, each face is classified into 5 different types (plane, fillet, cylinder, sphere, curved surface). In order to classify each surface, it is confirmed whether it has a specific feature depending on the surface type to be classified. As an example, in order to consider a surface as a fillet surface, the curvature of the surface, the curvature of the outer circumference, the outer circumference length, the width of the surface, the fixed point on the outer circumference, the length ratio of the paired outer circumference pair, and the outer circumference. Inspect the circular shape, the internal angle of the fixed point, the area, the continuity of the surface, the contact angle of the outer circumference, and the cross-sectional shape. Fillets, cylinders, spheres, and curved surfaces are all considered curved surfaces in the first place. Then distinguish them from different features. Also, a cylinder and a sphere can be fillets. If they have a certain form of continuity with the adjacent surface, they are considered fillets.
 第3ステップでは、複数の面からなる複雑な部位の認識を行う。板形状モデル上の2Dの穴、ソリッドモデル上の3Dの孔、ザグリをはじめとした段付き孔、段差、エンボス、フランジ、フィレット流れ、面取り、角部フィレット、フィレット間の細い面、リブ、溝、ギヤの歯、ネジのような部位を認識するために、第2ステップで分類した面タイプとその他の情報を使用する。部位の認識を行うめに使用したその他の情報には、面タイプの組み合わせ、面同士の位置関係、部位の大きさ、複数の面で複合形状を形成した際の断面形状などがある。 In the third step, recognition of a complicated part consisting of multiple surfaces is performed. 2D holes on the plate-shaped model, 3D holes on the solid model, stepped holes such as counterbore, steps, embossing, flanges, fillet flow, chamfers, corner fillets, thin surfaces between fillets, ribs, grooves Use the surface types and other information classified in the second step to recognize parts such as gear teeth and screws. Other information used to recognize the part includes the combination of face types, the positional relationship between the faces, the size of the part, and the cross-sectional shape when a composite shape is formed by a plurality of faces.
 以上、3つのステップを経て認識された特定部位は、CADの情報、メッシュの領域情報、認識した際の形状データをまとめてシステム内部で保持され、ルールに従ったメッシュ作成の際に使用される。 The specific part recognized through the above three steps is retained inside the system together with CAD information, mesh area information, and shape data at the time of recognition, and is used when creating a mesh according to the rules. ..
 このとき、データベースDBにおいて、対象物の区分に対応する区分情報(例えば面番号や面記号)毎に特性情報等の形状データが関連付けられている。この例では、区分情報は、サーフェス(以下、面ということもある。)に対応するサーフェス記号及び/又は番号とされている。ここで、サーフェスとは、3次元CADデータにおいて対象物を構成する一単位を意味する。すなわち、サーフェスは、対象物における個々の形状の位置を把握するために、便宜上、対象物の表面をサーフェスで複数に区切ったものであり、複数のサーフェスのそれぞれには記号及び/又は番号が付与される。なお、データベースDBにおいて区分情報毎に関連付けられた特性情報等の形状データが予め登録されていてもよい。この場合、形状認識ステップを省略することができる。 At this time, in the database DB, shape data such as characteristic information is associated with each classification information (for example, a face number or a face symbol) corresponding to the classification of the object. In this example, the division information is a surface symbol and / or a number corresponding to a surface (hereinafter, also referred to as a surface). Here, the surface means one unit constituting the object in the three-dimensional CAD data. That is, the surface is obtained by dividing the surface of the object into a plurality of surfaces for convenience in order to grasp the position of each shape in the object, and each of the plurality of surfaces is assigned a symbol and / or a number. Will be done. In addition, shape data such as characteristic information associated with each classification information may be registered in advance in the database DB. In this case, the shape recognition step can be omitted.
 (形状識別情報判定)
 判定ステップでは、制御部110は、表面を複数の面(サーフェス)に区分された対象物における複数の面の形状のそれぞれに対応する複数の形状識別情報(+1,-1,0)を判定する。
(Shape identification information judgment)
In the determination step, the control unit 110 determines a plurality of shape identification information (+1, -1, 0) corresponding to each of the shapes of the plurality of surfaces in the object whose surface is divided into the plurality of surfaces (surfaces). ..
 図3は、対象物の一部の区分情報M12の面の一例を示す説明図である。図3に示す面は、後述する図8に示すリブ形状のリブの立ち上がり部分の根元である丸み肉厚部(フィレット)の区分情報M12の面を例示している。 FIG. 3 is an explanatory diagram showing an example of the surface of the division information M12 of a part of the object. The surface shown in FIG. 3 exemplifies the surface of the division information M12 of the rounded thick portion (fillet) which is the root of the rising portion of the rib-shaped rib shown in FIG. 8 to be described later.
 データベースDBには、各面の情報として、面積a1、各面の外形を構成するラインL1~L4及びライン数、それぞれのラインL1~L4の長さ、最大ライン長(この例ではL1(またはL3)の幅w)、相当ライン幅(=面積a1/最大のラインL1の長さd)の各情報が、それぞれの区分情報毎に登録されている。 In the database DB, as information on each surface, the area a1, the lines L1 to L4 and the number of lines constituting the outer shape of each surface, the lengths of the respective lines L1 to L4, and the maximum line length (L1 (or L3 in this example)). ) Width w) and equivalent line width (= area a1 / maximum line L1 length d) are registered for each division information.
 ここで、データベースDBに登録された一つの面を第1の区分情報の第1面(基準面)とし、これに隣接する他の面を第2の区分情報の第2面とすると、判定ステップは、第1の区分情報の面(基準面)の法線ベクトル(面外ベクトル)と、第1の区分情報の面と第2の区分情報の面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算ステップと、求めた外積ベクトルと第2の区分情報の面の法線ベクトル(面外ベクトル)との内積を求める内積演算ステップと、内積演算ステップの演算結果に基づいて第1の区分情報の面に対する第2の区分情報の面の表面形状を判定する判定ステップとを含んでいる。 Here, assuming that one surface registered in the database DB is the first surface (reference surface) of the first division information and the other surface adjacent to this is the second surface of the second division information, the determination step. Is an outer product vector based on the normal vector (out-of-plane vector) of the surface of the first division information (reference surface) and the vector in the tangential direction in which the surface of the first division information and the surface of the second division information are in contact with each other. The first is based on the calculation results of the outer product calculation step for obtaining the inner product, the inner product calculation step for obtaining the inner product of the obtained outer product vector and the normal vector (outside vector) of the surface of the second division information, and the inner product calculation step. It includes a determination step of determining the surface shape of the surface of the second division information with respect to the surface of the division information.
 次に、上記構成の判定ステップによる判定処理について、図4から図6に示す説明図及び図7に示すフローチャートを参照しながら以下に説明する。 Next, the determination process by the determination step of the above configuration will be described below with reference to the explanatory diagrams shown in FIGS. 4 to 6 and the flowchart shown in FIG. 7.
 図4から図6は、形状データ処理装置100による対象物の判定処理の説明図である。また、図7は、形状データ処理装置100による対象物の判定処理の手順を示すフローチャートである。 4 to 6 are explanatory views of the object determination process by the shape data processing device 100. Further, FIG. 7 is a flowchart showing a procedure for determining an object by the shape data processing device 100.
 外積演算ステップでは、データベースDBに登録された一つの面を第1の区分情報M1の面(基準面)とし、これに隣接する他の区分情報の面を第2の区分情報M2の面として、外積演算を行う(ST1)。ここで、第1の区分情報M1の面(基準面)は、基本的に平面である。外積演算ステップでは、図4から図6に示すように、第1の区分情報M1の面(基準面)の法線ベクトル(面外ベクトル)Rと、第1の区分情報M1の面と第2の区分情報M2の面とが接する接線方向のベクトルSとにより外積ベクトルVを求める。 In the outer product calculation step, one surface registered in the database DB is set as a surface (reference surface) of the first division information M1, and another surface of the other division information adjacent to the surface is used as a surface of the second division information M2. Perform an outer product operation (ST1). Here, the surface (reference surface) of the first division information M1 is basically a plane. In the outer product calculation step, as shown in FIGS. 4 to 6, the normal vector (out-of-plane vector) R of the surface (reference surface) of the first division information M1, the surface of the first division information M1, and the second. The outer product vector V is obtained from the vector S in the tangential direction in which the surface of the division information M2 is in contact with the above.
 次に、内積演算ステップでは、外積演算ステップで求めた外積ベクトルVと第2の区分情報M2の面の法線ベクトル(面外ベクトル)Tとの内積を求め(ST2)、その演算結果を判定ステップに入力する。 Next, in the inner product calculation step, the inner product of the outer product vector V obtained in the outer product calculation step and the normal vector (outside vector) T of the surface of the second division information M2 is obtained (ST2), and the calculation result is determined. Enter in the step.
 判定ステップでは、入力された演算結果に基づいて第1の区分情報M1の面に対する第2の区分情報M2の面の表面形状を判定する。 In the determination step, the surface shape of the surface of the second division information M2 with respect to the surface of the first division information M1 is determined based on the input calculation result.
 具体的には、演算結果がプラスの値であるか否かを判断し(ST3)、演算結果がプラスの値を示すときには(ST3:Yes)、第2の区分情報M2の面を凹面(図4参照)として形状識別情報(+1)を判定する(ST4)。一方、演算結果がプラスの値でない場合には(ST3:No)、演算結果がマイナスの値であるか否かを判断し(ST5)、演算結果がマイナスの値を示すときには(ST5:Yes)、第2の区分情報M2の面を凸面(図5参照)として形状識別情報(-1)を判定する(ST6)。また、演算結果がマイナスの値でない場合には(ステップST5:No)、演算結果が零の値であるか否かを判断し(ST7)、演算結果が零の値を示すときには(ST7:Yes)、第2の区分情報M2の面を第1の区分情報M1の面に連続する平面(図6参照)であるとして形状識別情報(0)を判定する(ST8)。なお、ST7でもNoと判断された場合には、エラー処理(ST10)を実行してST9に移行する。 Specifically, when it is determined whether or not the calculation result is a positive value (ST3) and the calculation result shows a positive value (ST3: Yes), the surface of the second division information M2 is concave (FIG. 4) to determine the shape identification information (+1) (ST4). On the other hand, when the calculation result is not a positive value (ST3: No), it is determined whether or not the calculation result is a negative value (ST5), and when the calculation result shows a negative value (ST5: Yes). , The shape identification information (-1) is determined by using the surface of the second division information M2 as a convex surface (see FIG. 5) (ST6). If the calculation result is not a negative value (step ST5: No), it is determined whether or not the calculation result is a zero value (ST7), and if the calculation result indicates a zero value (ST7: Yes). ), The shape identification information (0) is determined assuming that the surface of the second division information M2 is a plane continuous with the surface of the first division information M1 (see FIG. 6) (ST8). If No is determined even in ST7, error processing (ST10) is executed to move to ST9.
 この後、全ての区分情報の面の処理を終了したか否かを確認し(ST9)、全ての区分情報の面の処理を終了していない場合には(ST9:Yes)、ST1に戻って処理を繰り返す。一方、全ての区分情報の面の処理を終了している場合には(ST9:No)、その時点で表面形状の判定処理を終了する。 After that, it is confirmed whether or not the processing of all the classification information faces has been completed (ST9), and if the processing of all the classification information faces has not been completed (ST9: Yes), the process returns to ST1. Repeat the process. On the other hand, if the processing of all the classification information surfaces is completed (ST9: No), the surface shape determination processing is terminated at that point.
 すなわち、本実施の形態では、上記内積演算の結果、隣り合う面が、基準面からみたときに面内に食い込む面は必ずマイナスの値となり、面外に広がる面は必ずプラスの値となることを利用している。 That is, in the present embodiment, as a result of the above-mentioned inner product calculation, the surface where the adjacent surfaces bite into the surface when viewed from the reference surface always has a negative value, and the surface spreading out of the surface always has a positive value. I am using.
 図8から図11は、上記の判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を例示している。 FIGS. 8 to 11 exemplify the processing results when the above determination processing is applied to a specific shape portion of the analysis structure.
 図8は、リブ形状に上記の判定処理を当てはめた結果を示しており、リブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面は、内積演算の結果がプラス(+)となり、リブの先端部(端部)の面では、内積演算の結果がマイナス(-)となっている。その結果、図8において、面(M11)は平面、面(M12)は凹面、面(M13)は平面、面(M14)は凸面、面(M15)は平面、面(M16)は凹面、面(M17)は平面に分類されることになる。 FIG. 8 shows the result of applying the above determination process to the rib shape, and the surface of the rounded thick portion (fillet) which is the root of the rising portion of the rib has a positive (+) result of the inner product calculation. On the surface of the tip (end) of the rib, the result of the inner product calculation is minus (-). As a result, in FIG. 8, the surface (M11) is a flat surface, the surface (M12) is a concave surface, the surface (M13) is a flat surface, the surface (M14) is a convex surface, the surface (M15) is a flat surface, and the surface (M16) is a concave surface. (M17) will be classified as a plane.
 また、図9は、端部の形状に上記の判定処理を当てはめた結果を示しており、端部の角部分の丸みを帯びた面は、内積演算の結果がマイナス(-)となっている。その結果、図9において、面(M21)は平面、面(M22)は凸面、面(M23)は平面、面(M24)は凸面、面(M25)は平面に分類されることになる。 Further, FIG. 9 shows the result of applying the above determination process to the shape of the end portion, and the rounded surface of the corner portion of the end portion has a negative (-) result of the inner product calculation. .. As a result, in FIG. 9, the surface (M21) is classified as a plane, the surface (M22) is classified as a convex surface, the surface (M23) is classified as a plane, the surface (M24) is classified as a convex surface, and the surface (M25) is classified as a plane.
 また、図10は、平面が続く形状に上記の判定処理を当てはめた結果を示している。平面が続く場合には、内積演算の結果も零(0)が続くことなる。その結果、図10において、面(M31)は平面、面(M32)は平面、面(M33)は平面、面(M34)は平面に分類されることになる。 Further, FIG. 10 shows the result of applying the above determination process to the shape in which the plane continues. If the plane continues, the result of the inner product operation will also be zero (0). As a result, in FIG. 10, the plane (M31) is classified as a plane, the plane (M32) is classified as a plane, the plane (M33) is classified as a plane, and the plane (M34) is classified as a plane.
 また、図11は、徐変している面(徐変面)を含む形状に上記の判定処理を当てはめた結果を示しており、徐変面は、内積演算の結果がプラス(+)とマイナス(-)となっている。その結果、図11において、面(M41)は平面、面(M42)は徐変面(この例では傾斜面)、面(M43)は平面に分類されることになる。 Further, FIG. 11 shows the result of applying the above determination process to the shape including the gradually changing surface (slowly changing surface), and for the gradually changing surface, the result of the inner product calculation is plus (+) and minus. It is (-). As a result, in FIG. 11, the surface (M41) is classified as a plane, the surface (M42) is classified as a gradually changing surface (in this example, an inclined surface), and the surface (M43) is classified as a plane.
 このようにして分類された解析構造物(対象物)の各面の形状種別の情報は、その後の各種解析シミュレーションに利用される。 Information on the shape type of each surface of the analysis structure (object) classified in this way is used for various subsequent analysis simulations.
 すなわち、本実施の形態の表面形状判定処理によれば、区分された各面の表面形状を、演算結果の演算値のプラス、マイナス、零だけで判定できるので、表面判定処理を簡単かつ極めて高速に行うことが可能となる。 That is, according to the surface shape determination process of the present embodiment, the surface shape of each of the divided surfaces can be determined only by the plus, minus, and zero of the calculated values of the calculation result, so that the surface determination process is simple and extremely high speed. It becomes possible to do it.
 なお、解析構造物の形状モデルとしては、上記のサーフェースモデル以外にも、ソリッドモデルやワイヤーモデル等の各種形状モデルに対しても、本実施の形態の表面形状判定処理を適用することが可能である。 As the shape model of the analysis structure, the surface shape determination process of the present embodiment can be applied to various shape models such as a solid model and a wire model in addition to the above surface model. Is.
 (実施の形態に係る表面形状判定処理の応用例の説明)
 例えば図11に示す形状の場合、面(M41)と面(M42)との接続点e1(点)、及び面(M42)と面(M43)との接続点e2(点)からそれぞれ対向面に垂直に直線L11,L12を引くことで、各接続点e1,e2での距離(解析構造物の厚み)がわかる。従って、これらの情報を利用して、例えば徐変している面(M42)に対して、その真ん中に中立面(若しくはメッシュ)CF1を貼るといったことを容易に行うことができる。また、面(M41)の中立面(若しくはメッシュ)CF2をそのまま面(M42)及び面(M43)まで延長して貼るような場合でも、面(M41)から面(M43)までの解析構造物の形状を事前に特定する必要があるが、本実施の形態の表面形状判定処理を用いることで、このような形状特定を容易に行うことができる。
(Explanation of an application example of the surface shape determination process according to the embodiment)
For example, in the case of the shape shown in FIG. 11, the connection point e1 (point) between the surface (M41) and the surface (M42) and the connection point e2 (point) between the surface (M42) and the surface (M43) become opposite surfaces. By drawing straight lines L11 and L12 vertically, the distance (thickness of the analysis structure) at each connection point e1 and e2 can be known. Therefore, by using this information, for example, a neutral surface (or mesh) CF1 can be easily attached to the center of the gradually changing surface (M42). Further, even when the neutral surface (or mesh) CF2 of the surface (M41) is extended and pasted as it is to the surface (M42) and the surface (M43), the analysis structure from the surface (M41) to the surface (M43) is attached. It is necessary to specify the shape of the above in advance, but by using the surface shape determination process of the present embodiment, such shape can be easily specified.
 また、図12は、解析構造物を六面体メッシュに分割する場合の簡単な例を示した説明図であり、基準面である面(M51)の法線ベクトルと、面(M51)と面(M52)とが接する接線方向のベクトルとにより外積ベクトルを求め、この外積ベクトルと面(M52)の法線ベクトルとの内積を求めると、その演算結果はプラスとなる。すなわち、面(M51)と面(M52)との接続部分は凹部であることがわかる。従って、この接続点e(点)から面(M52)に沿って下方向に〔すなわち、面(M54)と平行に〕カット線CL1を引くことで、解析構造物を左右2つの六面体メッシュに分割することができる。また、この接続点eから面(M51)に沿って左方向に〔すなわち、面(M53)に平行に〕カット線CL2を引くことで、解析構造物を上下2つの六面体メッシュに分割することができる。 Further, FIG. 12 is an explanatory diagram showing a simple example in which the analysis structure is divided into hexahedral meshes, and is a normal vector of a plane (M51) which is a reference plane, and a plane (M51) and a plane (M52). The outer product vector is obtained from the vector in the tangential direction in contact with), and the inner product of this outer product vector and the normal vector of the surface (M52) is obtained, and the calculation result is positive. That is, it can be seen that the connecting portion between the surface (M51) and the surface (M52) is a concave portion. Therefore, by drawing a cut line CL1 downward along the plane (M52) from this connection point e (point) [that is, parallel to the plane (M54)], the analysis structure is divided into two left and right hexahedral meshes. can do. Further, by drawing a cut line CL2 from this connection point e to the left along the plane (M51) [that is, parallel to the plane (M53)], the analysis structure can be divided into two upper and lower hexahedral meshes. can.
 なお、図11及び図12で示した応用例はほんの一例であり、これらの応用例に限定されるものではない。 Note that the application examples shown in FIGS. 11 and 12 are only examples, and are not limited to these application examples.
 (特性情報取得)
 取得ステップでは、制御部110は、複数の面の形状にそれぞれ関係する複数の特性情報のうちの面の面積を取得する。ここで、特性情報は、形状認識ステップにて認識した特性情報或いは予め登録しておいた特性情報である。特性情報としては、例えば、面(サーフェス)の幅、長さ、面積、厚み、曲率、面(サーフェス)内で形状が切り替わる変曲点座標を挙げることができる。
(Acquisition of characteristic information)
In the acquisition step, the control unit 110 acquires the area of the surface among the plurality of characteristic information related to the shapes of the plurality of surfaces. Here, the characteristic information is the characteristic information recognized in the shape recognition step or the characteristic information registered in advance. As the characteristic information, for example, the width, length, area, thickness, curvature of the surface (surface), and the coordinates of the inflection point at which the shape is switched within the surface (surface) can be mentioned.
 図13は、複数の面(M1,M2,M3,M4,M5,…)の各点A,B,…に隣接する線(K1-K2),(K2-K3),(K3-K1),(B1+B2+B3+B4),…間の線角度(A1,A2,A3),…及び点角度(A1+A2+A3),…を概念的に説明する説明図である。 FIG. 13 shows lines (K1-K2), (K2-K3), (K3-K1), adjacent to points A, B, ... Of a plurality of surfaces (M1, M2, M3, M4, M5, ...). It is explanatory drawing which conceptually explains (B1 + B2 + B3 + B4), the line angle (A1, A2, A3), ... and the point angle (A1 + A2 + A3), ...
 本発明者の知見によれば、図13に示すように、対象物N(解析構造物)は、複数の面(M1,M2,M3,M4,M5,…)に対して形状識別情報(+1、-1、0)と、点角度(A1+A2+A3),(B1+B2+B3+B4),…と、作用子(A,B,K1),…と、面積S1,S2,…とで表現される。 According to the findings of the present inventor, as shown in FIG. 13, the object N (analyzed structure) has shape identification information (+1) for a plurality of surfaces (M1, M2, M3, M4, M5, ...). , -1, 0), point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ..., activators (A, B, K1), ..., And areas S1, S2, ....
 ここで、形状識別情報(+1、-1、0)は、例えば、凹面(+)、凸面(-)、平面(0)である。点角度(A1+A2+A3),(B1+B2+B3+B4),…は、線角度(A1,A2,A3),(B1,B2,B3,B4),…を合計した角度である。線角度(A1,A2,A3),(B1,B2,B3,B4),…は、各点A,B,…に隣接する線〔(K1-K2),(K2-K3),(K3-K1)〕,〔(K1-K5),(K5-K4),(K4-K6),(K6-K1)〕,…間の角度である。点角度(A1+A2+A3),(B1+B2+B3+B4),…は、基本的には270度、360度、450度となり、大きいほど、複雑な線の入り込み方をしている。 Here, the shape identification information (+1, -1, 0) is, for example, a concave surface (+), a convex surface (-), and a flat surface (0). The point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ... Are the sum of the line angles (A1, A2, A3), (B1, B2, B3, B4), ... The line angles (A1, A2, A3), (B1, B2, B3, B4), ... Are the lines adjacent to the points A, B, ... [(K1-K2), (K2-K3), (K3-K3-). K1)], [(K1-K5), (K5-K4), (K4-K6), (K6-K1)], .... The point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ... Are basically 270 degrees, 360 degrees, and 450 degrees, and the larger the point, the more complicated the line enters.
 例えば、点Aの線角度A1,A2,A3は、それぞれ、90度、90度、90度であり、点角度(A1+A2+A3)は、線角度A1,A2,A3を合計した270度(=90度+90度+90度)である。点角度が270度である場合、角柱の先端部に存在することが多い。点Bの線角度B1,B2,B3,B4は、それぞれ、90度、135度、135度、90度であり、点角度(B1+B2+B3+B4)は、線角度B1,B2,B3,B4を合計した450度(=90度+135度+135度+90度)である。点角度が450度である場合、角柱の底部に存在することが多い。なお、点角度が360度である場合、円筒の底部若しくは端部、又は、円柱の底部若しくは端部に存在することが多い。 For example, the line angles A1, A2, and A3 of the point A are 90 degrees, 90 degrees, and 90 degrees, respectively, and the point angle (A1 + A2 + A3) is 270 degrees (= 90 degrees), which is the sum of the line angles A1, A2, and A3. +90 degrees +90 degrees). When the point angle is 270 degrees, it is often present at the tip of the prism. The line angles B1, B2, B3, B4 of the point B are 90 degrees, 135 degrees, 135 degrees, and 90 degrees, respectively, and the point angles (B1 + B2 + B3 + B4) are 450, which is the sum of the line angles B1, B2, B3, and B4. Degrees (= 90 degrees + 135 degrees + 135 degrees + 90 degrees). When the point angle is 450 degrees, it is often present at the bottom of the prism. When the point angle is 360 degrees, it often exists at the bottom or end of the cylinder, or at the bottom or end of the cylinder.
 また、作用子(A,B,K1),…は、各点A,B,…のうちの隣り合う2つの点(A,B),…と2つの点2つの点(A,B),…間の線K1,…とからなる。例えば、円柱の端部において、作用子の各点が同じ値となる場合が多い。 Further, the operators (A, B, K1), ... Are two adjacent points (A, B), ... And two points (A, B), among the points A, B, .... It consists of lines K1 and ... between ... For example, at the end of a cylinder, each point of the operator often has the same value.
 例えば、作用子(B,E,K6),(A,F,K3)について、(点Bの点角度)=(点Eの点角度)、(点Aの点角度)=(点Fの点角度)のとき点Bと点Eとは同等の構造角を持つため、作用子(B,E、K6),(A,F,K3)間では特異的な構造は存在しないとして、その次の作用子候補(E,F,K8),(C,D,K7)を考える。 For example, for actors (B, E, K6), (A, F, K3), (point angle of point B) = (point angle of point E), (point angle of point A) = (point of point F). Since the point B and the point E have the same structural angle at the angle), it is assumed that there is no specific structure between the activators (B, E, K6) and (A, F, K3), and the following Consider actor candidates (E, F, K8), (C, D, K7).
 (点角度算出)
 点角度算出ステップでは、複数の面(M1,M2,M3,M4,M5,…)の各点A,B,…に隣接する線〔(K1-K2),(K2-K3),(K3-K1)〕,〔(K1-K5),(K5-K4),(K4-K6),(K6-K1)〕,…間の線角度(A1,A2,A3),(B1,B2,B3,B4),…を合計した点角度(A1+A2+A3),(B1+B2+B3+B4),…を算出する。
(Calculation of point angle)
In the point angle calculation step, the lines [(K1-K2), (K2-K3), (K3-) adjacent to the points A, B, ... Of the plurality of surfaces (M1, M2, M3, M4, M5, ...) K1)], [(K1-K5), (K5-K4), (K4-K6), (K6-K1)], ... Line angles (A1, A2, A3), (B1, B2, B3) B4), ... are summed up to calculate the point angles (A1 + A2 + A3), (B1 + B2 + B3 + B4), ...
 (作用子検出)
 作用子検出ステップでは、各点A,B,…のうちの隣り合う2つの点(A,B),…と2つの点(A,B),…間の線K1,…とからなる作用子(A,B,K1),…を検出する。
(Operator detection)
In the operator detection step, an operator consisting of two adjacent points (A, B), ... And two points (A, B), ... Of each point A, B, ... (A, B, K1), ... Are detected.
 (データベース登録)
 図14Aは、データベースDBにおいて図13に示す対象物Nの一部の形状特定用データDT1のデータ構造の一例を概略的に示すデータ構造図である。
(Database registration)
FIG. 14A is a data structure diagram schematically showing an example of the data structure of the shape specifying data DT1 of a part of the object N shown in FIG. 13 in the database DB.
 登録ステップでは、複数の面に対応する区分情報M1,M2,…(例えば面番号や面記号)を形状識別情報、点角度、作用子及び面の面積と関連付けてデータベースDBに登録する。 In the registration step, the division information M1, M2, ... (For example, a surface number or a surface symbol) corresponding to a plurality of surfaces is registered in the database DB in association with the shape identification information, the point angle, the operator and the area of the surface.
 詳しくは、登録ステップでは、各面の区分情報M1,M2,…に対して、各点A,B,…、各点A,B,…を含む作用子(A,B,K1),…、形状識別情報(+1,-1,0)、点角度(例えば、270度,450度,450度,…)、面積S1,S2,…(例えば、1000mm,…)と関連付けてデータベースDBに登録する。これにより、以後に実施される形状特定ステップにおいて、これらのデータの組み合わせにより対象物Nの立体的な形状を特定することができる。 Specifically, in the registration step, an operator (A, B, K1) including each point A, B, ..., Each point A, B, ... For the division information M1, M2, ... Registered in the database DB in association with shape identification information (+1, -1,0), point angle (for example, 270 degrees, 450 degrees, 450 degrees, ...), area S1, S2, ... (For example, 1000 mm 2 , ...). do. Thereby, in the shape specifying step to be carried out thereafter, the three-dimensional shape of the object N can be specified by the combination of these data.
 ところで、隣接する面同士(M1,M2),(M1,M3),…の厚み(面に直交する方向の厚み)は、等しいことが多い。また、隣接する面同士(M1,M2),(M1,M3),…の曲率が等しいこともある。 By the way, the thicknesses of adjacent faces (M1, M2), (M1, M3), ... (Thickness in the direction orthogonal to the faces) are often the same. Further, the curvatures of adjacent surfaces (M1, M2), (M1, M3), ... May be the same.
 従って、登録ステップでは、区分情報M1,M2,…をさらに作用子(A,B,K1),…、毎の面の厚みh1,h2,…(例えば、20mm,…)及び/又は面の曲率(例えば、0,…)と関連付けてデータベースDBに登録してもよい。これにより、後述する形状特定ステップにおいて、一の面の厚みが隣接するべき他の面の厚みと等しいか否か、或いは/さらに、一の面の曲率が隣接するべき他の面の曲率と等しいか否かで、一の面に隣接する他の面の特定精度を向上させることができる。 Therefore, in the registration step, the division information M1, M2, ... Is further added to the operators (A, B, K1), ..., The thickness of each surface h1, h2, ... It may be registered in the database DB in association with (for example, 0, ...). Thereby, in the shape specifying step described later, whether or not the thickness of one surface is equal to the thickness of the other surface to be adjacent, or / and the curvature of one surface is equal to the curvature of the other surface to be adjacent. Depending on whether or not it is present, the accuracy of identifying another surface adjacent to one surface can be improved.
 (形状特定)
 形状特定ステップでは、制御部110は、データベースDBに保存した区分情報M1,M2,…毎の作用子、形状識別情報(+1,-1,0)、点角度及び面の面積S1,S2,…、さらには、面の厚みh1,h2,…及び/又は面の曲率をデータベースDBから読み出す。制御部110は、読み出した区分情報M1,M2,…毎の作用子、形状識別情報(+1,-1,0)、点角度及び面の面積S1,S2,…、さらには、面の厚みh1,h2,…及び/又は面の曲率から区分情報M1,M2,…を繋ぎ合わせて対象物Nの形状を特定する。例えば、区分情報M1の面は、面積S1が1000mm、厚みh1が20mm、長さ50mm=1000mm/20mm)の平面(曲率0)で、区分情報M2,M3の面とは作用子(A,B,K1),(A,D,K2)において凸面(-1)で隣接し、区分情報M1,M2の面は、区分情報M4,M5の面とは作用子(B,C,K5),(B,E,K6)において凹面(+1)で隣接することがわかる。また、点A,D,F,H,…の点角度が270度であるため、通常は、角柱の先端部に存在することがわかる。点B,C,E,…の点角度が450度であるため、通常は、角柱の底部に存在することがわかる。また、点角度が360度である場合、通常は、円筒の底部又は端部、又は、円柱の底部又は端部に存在することがわかる。以下、全ての面について同様に認識処理することで、対象物Nの立体的な形状を特定することができる。
(Shape identification)
In the shape specifying step, the control unit 110 controls the division information M1, M2, ... Each actor, shape identification information (+ 1, -1, 0), point angle, and surface area S1, S2, ... Stored in the database DB. Further, the surface thicknesses h1, h2, ... And / or the surface curvature are read from the database DB. The control unit 110 has read out division information M1, M2, ... Each operator, shape identification information (+1, -1, 0), point angle and surface area S1, S2, ..., Further, surface thickness h1. , H2, ... And / or the division information M1, M2, ... Is connected from the curvature of the surface to specify the shape of the object N. For example, the surface of the division information M1 is a plane (curvature 0) having an area S1 of 1000 mm, a thickness h1 of 20 mm, and a length of 50 mm = 1000 mm / 20 mm, and the surfaces of the division information M2 and M3 are actuators (A, B). , K1), (A, D, K2) are adjacent to each other by a convex surface (-1), and the surfaces of the division information M1 and M2 are actuators (B, C, K5) with the surfaces of the division information M4 and M5. It can be seen that B, E, K6) are adjacent to each other with a concave surface (+1). Further, since the point angles of the points A, D, F, H, ... Are 270 degrees, it can be seen that they usually exist at the tip of the prism. Since the point angles of points B, C, E, ... Are 450 degrees, it can be seen that they usually exist at the bottom of the prism. Further, when the point angle is 360 degrees, it can be seen that it usually exists at the bottom or end of the cylinder, or at the bottom or end of the cylinder. Hereinafter, the three-dimensional shape of the object N can be specified by performing the recognition processing on all the surfaces in the same manner.
 図14Aに示す対象物Nの形状を特定するための形状特定用データDT1を用いて形状を特定するようにしてもよいが、データ処理し易いように、面(区分情報)単位で形状特定用データDT1を加工した形状特定用データDT1aを用いて対象物Nの立体的な形状を特定するようにしてもよい。 The shape may be specified by using the shape specifying data DT1 for specifying the shape of the object N shown in FIG. 14A, but the shape is specified for each surface (division information) so that the data can be easily processed. The three-dimensional shape of the object N may be specified by using the shape specifying data DT1a obtained by processing the data DT1.
 図14Bは、図14Aに示す形状特定用データDT1を加工した形状特定用データDT1aのデータ構造の一例を概略的に示すデータ構造図である。 FIG. 14B is a data structure diagram schematically showing an example of the data structure of the shape specifying data DT1a obtained by processing the shape specifying data DT1 shown in FIG. 14A.
 図14Bに示す加工した形状特定用データDT1aにおいて、「点角度の数又は比率」のうち、「点角度の数」は、各面において同じ点角度の数を表しており、例えば、面(M1)では、270度の点角度の数が点Aの1個と点Dの1個とを合計した2個であり、450度の点角度の数が点Bの1個と点Cの1個とを合計した2個であることを表している。「比率」は、総数(例えば4個)に対する点角度の数の割合〔例えば、面(M1)の270度で2/4=50%、360度で0%、450度で2/4=50%〕を表している。 In the processed shape specifying data DT1a shown in FIG. 14B, the "number of point angles" in the "number or ratio of point angles" represents the number of the same point angles on each surface, for example, a surface (M1). ), The number of point angles of 270 degrees is two, which is the sum of one point A and one point D, and the number of point angles of 450 degrees is one point B and one point C. It means that the total of and is two. The "ratio" is the ratio of the number of point angles to the total number (for example, 4) [for example, 2/4 = 50% at 270 degrees of the surface (M1), 0% at 360 degrees, and 2/4 = 50 at 450 degrees. %].
 「形状識別情報の数又は比率」のうち、「形状識別情報の数」は、各面において作用子に対する同じ形状識別情報の数を表しており、例えば、面(M1)では、凹面(+1)の数が作用子(点B、点C、線K5)の1個であり、凸面(-1)の数が作用子(点A、点B、線K1)の1個と作用子(点C、点D、線K7)の1個と作用子(点A、点D、線K2)の1個とを合計した3個であり、平面面(0)の数が0個であることを表している。「比率」は、総数(例えば4個)に対する各作用子に対する形状識別情報の数の割合〔例えば、面(M1)では、凹面(+1)で1/4=25%、凸面(-1)で3/4=75%、平面(0)で0%〕を表している。 Of the "number or ratio of shape identification information", the "number of shape identification information" represents the number of the same shape identification information for the operator in each surface. For example, in the surface (M1), the concave surface (+1). Is one of the operators (point B, point C, line K5), and the number of convex surfaces (-1) is one of the operators (point A, point B, line K1) and the operator (point C). , Point D, line K7) and one operator (point A, point D, line K2) are totaled three, indicating that the number of plane surfaces (0) is zero. ing. The "ratio" is the ratio of the number of shape identification information for each operator to the total number (for example, 4) [for example, in the case of a surface (M1), 1/4 = 25% for a concave surface (+1) and 1/4 = 25% for a convex surface (-1). 3/4 = 75%, 0% on the plane (0)].
 また、「作用子に対する隣り合う点角度間の作用子の数又は比率」のうち、「隣り合う点角度間の作用子の数」は、各面において隣り合う点角度間の作用子の同じ組合せの数を表しており、例えば、面(M1)では、点Aの点角度270度と点Dの点角度270度との組合せ1個と、点Bの点角度450度と点Cの点角度450度との組合せ1個と、点Aの点角度270度と点Bの点角度450度との組合せ、及び、点Dの点角度270度と点Cの点角度450度との組合せを合計した2個とを表している。面(M2)では、点Aの点角度270度と点Fの点角度270度との組合せ1個と、点Bの点角度450度と点Eの点角度450度との組合せ1個と、点Aの点角度270度と点Bの点角度450度との組合せ、及び、点Fの点角度270度と点Eの点角度450度との組合せを合計した2個とを表している。また、面(M3)では、点Aの点角度270度と点Dの点角度270度との組合せ、点Dの点角度270度と点Hの点角度270度との組合せ、点Hの点角度270度と点Fの点角度270度との組合せ、及び、点Fの点角度270度と点Aの点角度270度との組合せを合計した4個を表している。「比率」は、総数(例えば4個)に対する隣り合う点角度間の作用子の数の割合〔例えば、面(M1)の270度-270度間で1/4=25%、360度-360度間で0%、450度-450度間で1/4=25%、270度-360度間で0%、270度-450度間で2/4=50%、360度-450度間で0%〕を表している。 In addition, among the "number or ratio of actuators between adjacent point angles to the actuator", "number of actuators between adjacent point angles" is the same combination of actuators between adjacent point angles on each surface. For example, in the surface (M1), one combination of the point angle 270 degrees of the point A and the point angle 270 degrees of the point D, the point angle 450 degrees of the point B, and the point angle of the point C are represented. A total of one combination with 450 degrees, a combination of a point angle of 270 degrees at a point A and a point angle of 450 degrees at a point B, and a combination of a point angle of 270 degrees at a point D and a point angle of 450 degrees at a point C. It represents two pieces. On the surface (M2), one combination of the point angle 270 degrees of the point A and the point angle 270 degrees of the point F, and one combination of the point angle 450 degrees of the point B and the point angle 450 degrees of the point E. It represents a combination of a point angle of 270 degrees of a point A and a point angle of 450 degrees of a point B, and a total of two combinations of a point angle of 270 degrees of a point F and a point angle of 450 degrees of a point E. Further, on the surface (M3), the combination of the point angle 270 degrees of the point A and the point angle 270 degrees of the point D, the combination of the point angle 270 degrees of the point D and the point angle 270 degrees of the point H, and the point of the point H. It represents a total of four combinations of an angle of 270 degrees and a point angle of point F of 270 degrees, and a combination of a point angle of point F of 270 degrees and a point angle of point A of 270 degrees. "Ratio" is the ratio of the number of operators between adjacent point angles to the total number (eg 4) [eg 1/4 = 25% between 270 and -270 degrees of the surface (M1), 360 degrees-360. 0% between degrees, 1/4 = 25% between 450 degrees and 450 degrees, 0% between 270 degrees and 360 degrees, 2/4 = 50% between 270 degrees and 450 degrees, and 360 degrees and 450 degrees. Is 0%].
 「厚み」は、各面(M1,M2,…)において作用子(A,B,K1),…毎の厚みh1,h2,…を平均した平均値又は各面(M1,M2,…)の中心の厚みである。なお、各面(M1,M2,…)の中心の厚みは、例えば、作用子(A,B,K1),…毎の厚みh1,h2,…の平均値を計算できない場合に用いることができる。 The "thickness" is an average value obtained by averaging the thicknesses h1, h2, ... For each operator (A, B, K1) on each surface (M1, M2, ...) Or each surface (M1, M2, ...). The thickness of the center. The thickness of the center of each surface (M1, M2, ...) Can be used, for example, when the average value of the thicknesses h1, h2, ... For each operator (A, B, K1), ... Cannot be calculated. ..
 「面の名称」としては、例えば、リブ面、リブ根本面、シリンダーリブ面、端部面、フィレット面、円柱面、母材面、一般面などを挙げることができる。 Examples of the "face name" include a rib surface, a rib root surface, a cylinder rib surface, an end surface, a fillet surface, a cylindrical surface, a base material surface, and a general surface.
 このように面(区分情報)単位で加工した形状特定用データDT1aを用いることでも対象物Nの立体的な形状を特定することができる。 The three-dimensional shape of the object N can also be specified by using the shape specifying data DT1a processed in units of surfaces (classification information) in this way.
 具体的には、図15から図24に示すように特定することができる。 Specifically, it can be specified as shown in FIGS. 15 to 24.
 <具体例1>
 図15は、母材Iに設けられた対象物Nとして6面体のリブの一例を示す斜視図である。
<Specific example 1>
FIG. 15 is a perspective view showing an example of a rib of a hexahedron as an object N provided on the base material I.
 ・論理的に形状を捉える場合
 図15に示すように、作用子(A,B,K1),…について、点A,D,F,Hの点角度が何れも270度、点B,C,E,Gの点角度が何れも450度であれば、リブの可能性が非常に高い。
-When grasping the shape logically As shown in FIG. 15, for the operators (A, B, K1), ..., The point angles of the points A, D, F, and H are all 270 degrees, and the points B, C, and so on. If the point angles of E and G are both 450 degrees, the possibility of ribs is very high.
 一方、リブであれば、作用子(A,B,K1),…について、線K1-K2,K2-K3,…間の線角度は90度、線K5-K4,K4-K6,…間の線角度は135度であり、作用子(A,B,K1),(A,D,K2),…の形状識別情報は-1、作用子(B,C,K5),(B,E,K6),(G,C,K9),…の形状識別情報は+1、作用子(B,J,K4),…の形状識別情報は0である。 On the other hand, in the case of ribs, for the operators (A, B, K1), ..., The line angle between the lines K1-K2, K2-K3, ... Is 90 degrees, and between the lines K5-K4, K4-K6, ... The line angle is 135 degrees, the shape identification information of the operators (A, B, K1), (A, D, K2), ... Is -1, and the operators (B, C, K5), (B, E, The shape identification information of K6), (G, C, K9), ... Is +1 and the shape identification information of the operator (B, J, K4), ... Is 0.
 ・AIで捉える場合
 例えば、作用子の形状識別情報、点角度等を色相、彩度、明度等の画像要素で表現した集合から立体的な形状を特定することできる。
-When capturing with AI For example, a three-dimensional shape can be specified from a set of operator shape identification information, point angles, etc. expressed by image elements such as hue, saturation, and brightness.
 <具体例2>
 図16は、母材Iに設けられた対象物Nとして互いに大きさが異なる2つの6面体を接合したリブの一例を示す斜視図である。
<Specific example 2>
FIG. 16 is a perspective view showing an example of a rib in which two hexahedrons having different sizes are joined as an object N provided on the base material I.
 ・論理的に形状を捉える場合
 図16に示すように、図15に示す例と同様、作用子(A,B,K1),…について、点A,D,F,Hの点角度が何れも270度、点B,C,E,Gの点角度が何れも450度であれば、リブの可能性が非常に高い。
-When grasping the shape logically As shown in FIG. 16, as in the example shown in FIG. 15, for the operators (A, B, K1), ..., The point angles of the points A, D, F, and H are all. If the point angles of 270 degrees and points B, C, E, and G are all 450 degrees, the possibility of ribs is very high.
 また、例えば、作用子(A,B,K1)において、点Eの点角度は450度であるのに、点X1の点角度は270度であれば、作用子(A,B,K1),(E,F,K8)で構成されるリブN1にリブ等の接合部材N2が接合されている可能性が高い。接合部材N2は、リブである場合、リブN1を母材I1とし、かつ、リブN1の母材Iを母材とするリブとなり、図16に示すように、点角度が450度の点X2,点X3が母材I1側に、点角度が450度の点X4,点X5が母材I側に位置する。 Further, for example, in the operator (A, B, K1), if the point angle of the point E is 450 degrees, but the point angle of the point X1 is 270 degrees, the operator (A, B, K1) ,. There is a high possibility that a joining member N2 such as a rib is joined to the rib N1 composed of (E, F, K8). When the joining member N2 is a rib, the rib N1 is a base material I1 and the base material I of the rib N1 is a base material. As shown in FIG. 16, the point X2 has a point angle of 450 degrees. The point X3 is located on the base material I1 side, and the points X4 and the point X5 having a point angle of 450 degrees are located on the base material I side.
 ・AIで捉える場合
 例えば、図15に示す例と同様、作用子の形状識別情報、点角度等を色相、彩度、明度等の画像要素で表現した集合から立体的な形状を特定することできる。
-When capturing with AI For example, as in the example shown in FIG. 15, a three-dimensional shape can be specified from a set in which the shape identification information of the operator, the point angle, etc. are expressed by image elements such as hue, saturation, and brightness. ..
 <具体例3>
 図17は、母材Iに設けられた対象物Nとして2つの6面体を直交させるように接合したリブの一例を示す斜視図である。
<Specific example 3>
FIG. 17 is a perspective view showing an example of a rib in which two hexahedrons are joined so as to be orthogonal to each other as an object N provided on the base material I.
 図17には、2つの6面体を直交させるように接合したリブにおいて、作用子の形状識別情報、各点の点角度を示している。 FIG. 17 shows the shape identification information of the operator and the point angle of each point in the rib joined so that the two hexahedrons are orthogonal to each other.
 <具体例4>
 図18A及び図18Bは、母材Iに設けられた対象物Nとして円筒のリブの例を示す斜視図である。
<Specific example 4>
18A and 18B are perspective views showing an example of a cylindrical rib as an object N provided on the base material I.
 図18A及び図18Bには、円筒のリブにおいて、作用子の形状識別情報、各点の点角度を示している。点A,Bの点角度が何れも360度であるため、通常は、円筒の底部又は端部、又は、円柱の底部又は端部に存在することがわかる。 FIGS. 18A and 18B show the shape identification information of the operator and the point angle of each point in the rib of the cylinder. Since the point angles of points A and B are both 360 degrees, it can be seen that they usually exist at the bottom or end of the cylinder, or at the bottom or end of the cylinder.
 <具体例5>
 図19A及び図19Bは、母材Iに設けられた対象物Nとして台座の穴H1,H2の例を示す斜視図である。
<Specific example 5>
19A and 19B are perspective views showing an example of holes H1 and H2 of a pedestal as an object N provided in the base material I.
 図19A及び図19Bには、四角形状の穴H1,H2を設けた台座において、作用子の形状識別情報、各点の点角度を示している。図19Aに示すように、通常、座面F1(上面)における穴H1の各点の点角度が何れも450度で、座面F1における隣り合う2つの点の点角度の合計が900度(=450度+450度)であるが、図19Bに示すように、座面F1における穴H2の隣り合う2つの点の点角度の合計が720度(=450度+270度)の場合もある。この場合、四角形状の穴の一側面が開放した形状を例示できる。 19A and 19B show shape identification information of operators and point angles of each point in a pedestal provided with square holes H1 and H2. As shown in FIG. 19A, the point angle of each point of the hole H1 on the seat surface F1 (upper surface) is usually 450 degrees, and the total point angle of two adjacent points on the seat surface F1 is 900 degrees (=). (450 degrees + 450 degrees), but as shown in FIG. 19B, the total point angle of two adjacent points of the hole H2 on the seat surface F1 may be 720 degrees (= 450 degrees + 270 degrees). In this case, a shape in which one side surface of the rectangular hole is open can be exemplified.
 <具体例6>
 図20は、母材Iに設けられた対象物Nとして円筒と6面体とを接合したリブの一例を示す斜視図である。
<Specific example 6>
FIG. 20 is a perspective view showing an example of a rib in which a cylinder and a hexahedron are joined as an object N provided on the base material I.
 図20には、円筒と6面体とを接合したリブにおいて、作用子の形状識別情報、各点の点角度を示している。 FIG. 20 shows the shape identification information of the operator and the point angle of each point in the rib where the cylinder and the hexahedron are joined.
 <具体例7>
 図21は、母材Iに設けられた対象物Nとして6面体の端部にL字状部材N3を接合したリブの一例を示す斜視図である。
<Specific example 7>
FIG. 21 is a perspective view showing an example of a rib in which an L-shaped member N3 is joined to the end of a hexahedron as an object N provided on the base material I.
 図21には、6面体の端部にL字状部材N3を接合したリブにおいて、作用子の形状識別情報、各点の点角度を示している。 FIG. 21 shows the shape identification information of the operator and the point angle of each point in the rib in which the L-shaped member N3 is joined to the end of the hexahedron.
 <具体例8>
 図22は、対象物Nにおけるフィレットの一例を示す斜視図である。
<Specific example 8>
FIG. 22 is a perspective view showing an example of a fillet in the object N.
 図22には、対象物Nにおけるフィレットにおいて、作用子の形状識別情報、各点の点角度を示している。 FIG. 22 shows the shape identification information of the operator and the point angle of each point in the fillet in the object N.
 <具体例9>
 図23A及び図23Bは、それぞれ、対象物Nに設けられた四角形状の穴H3の一例及び円形状の穴H4の一例を示す斜視図である。
<Specific example 9>
23A and 23B are perspective views showing an example of a rectangular hole H3 and an example of a circular hole H4 provided in the object N, respectively.
 図23A及び図23Bには、対象物Nに設けられた四角形状の穴H3及び円形状の穴H4において、作用子の形状識別情報、各点の点角度を示している。 FIGS. 23A and 23B show the shape identification information of the operator and the point angle of each point in the rectangular hole H3 and the circular hole H4 provided in the object N.
 <具体例10>
 図24は、母材Iに設けられた対象物Nとして円筒と直角三角柱とを接合したリブの一例を示す斜視図である。
<Specific example 10>
FIG. 24 is a perspective view showing an example of a rib in which a cylinder and a right-angled triangular prism are joined as an object N provided on the base material I.
 図24には、円筒と3角柱とを接合したリブにおいて、作用子の形状識別情報、各点の点角度を示している。直角三角形の直角を構成する点の点角度が270度であり、直角三角形の底角θ1,θ2(この例では45度)を構成する点の点角度φ1,φ2が360度を超え(底角θ1,θ2が0度を超え)、かつ、450度未満(底角θ1,θ2が90度未満)の値(この例では405度)である。 FIG. 24 shows the shape identification information of the operator and the point angle of each point in the rib where the cylinder and the triangular prism are joined. The point angle of the points constituting the right triangle of the right triangle is 270 degrees, and the point angles φ1 and φ2 of the points constituting the base angles θ1 and θ2 (45 degrees in this example) of the right triangle exceed 360 degrees (base angle). It is a value (405 degrees in this example) of θ1 and θ2 exceeding 0 degrees and less than 450 degrees (base angles θ1 and θ2 are less than 90 degrees).
 (情報出力)
 出力ステップでは、制御部110は、形状特定ステップにて特定した対象物Nの形状を表示装置141又は印刷装置142に出力する。
(Information output)
In the output step, the control unit 110 outputs the shape of the object N specified in the shape specifying step to the display device 141 or the printing device 142.
 そして、特定した立体的な形状の情報は、例えば、CADシステムに送られ、CADシステムで利用される。 Then, the specified three-dimensional shape information is sent to, for example, a CAD system and used in the CAD system.
 (本実施の形態について)
 本実施の形態によれば、データベースDBに保存した区分情報M1,M2,…毎の作用子(A,B,K1),…、形状識別情報(+1,-1,0)、点角度(A1+A2+A3),…及び面(M1,M2,…)の面積S1,S2,…から複数の面(M1,M2,…)を繋ぎ合わせて対象物Nの立体的な形状を特定することができる。従って、区分された対象物Nの表面形状がどこの区分のものでどのような形状のものであるかを特定することができ、これにより、CADの技術分野(特にAI技術)に利用することが可能となる。
(About this embodiment)
According to the present embodiment, the division information M1, M2, ... Each actor (A, B, K1), ..., Shape identification information (+1, -1, 0), point angle (A1 + A2 + A3) stored in the database DB. ), ... And the areas S1, S2, ... Of the surfaces (M1, M2, ...) Can be connected to a plurality of surfaces (M1, M2, ...) To specify the three-dimensional shape of the object N. Therefore, it is possible to specify which category and what shape the surface shape of the segmented object N is, which can be used in the CAD technical field (particularly AI technology). Is possible.
 本実施の形態において、制御部110は、画像処理技術を用いて区分情報M1,M2,…に対する形状識別情報(+1,-1,0)、点角度(A1+A2+A3),…、作用子(A,B,K1),…及び面積S1,S2,…から対象物Nの形状を特定する。こうすることで、特定した対象物Nの形状を出力することができ、これにより、ユーザーは、複数の面(M1,M2,…)毎の作用子(A,B,K1),…、形状識別情報(+1,-1,0)、点角度(A1+A2+A3),…及び面(M1,M2,…)の面積S1,S2,…から特定した対象物Nの立体的な形状を確認することができる。 In the present embodiment, the control unit 110 uses the image processing technique to obtain shape identification information (+ 1, -1, 0), point angles (A1 + A2 + A3), ..., Actors (A,) for the classification information M1, M2, ... The shape of the object N is specified from B, K1), ... And the areas S1, S2, .... By doing so, the shape of the specified object N can be output, so that the user can output the operator (A, B, K1), ..., Shape for each of a plurality of surfaces (M1, M2, ...). It is possible to confirm the three-dimensional shape of the object N specified from the identification information (+1, -1,0), the point angle (A1 + A2 + A3), ..., And the areas S1, S2, ... Of the surface (M1, M2, ...). can.
 本実施の形態において、制御部110は、複数の面(M1,M2,…)の形状にそれぞれ関係する複数の特性情報(例えば面積S1,S2,…、厚みh1,h2,…、曲率)のうちの面(M1,M2,…)の厚みh1,h2,…及び/又は面(M1,M2,…)の曲率をさらに取得し、区分情報M1,M2,…をさらに厚みh1,h2,…及び/又は曲率と関連付けてデータベースDBに登録する。 In the present embodiment, the control unit 110 has a plurality of characteristic information (for example, areas S1, S2, ..., thickness h1, h2, ..., Curvature) related to the shapes of the plurality of surfaces (M1, M2, ...). The thickness h1, h2 ... And / or the curvature of the surface (M1, M2, ...) Of the surface (M1, M2, ...) Is further acquired, and the classification information M1, M2, ... And / or register in the database DB in association with the curvature.
 こうすることで、データベースDBに保存した区分情報M1,M2,…毎の作用子(A,B,K1),…、形状識別情報(+1,-1,0)、点角度(A1+A2+A3),…及び面(M1,M2,…)の面積S1,S2,…、さらには、面(M1,M2,…)の厚みh1,h2,…及び/又は面(M1,M2,…)の曲率から対象物Nの形状を特定し易くすることができる。 By doing so, the division information M1, M2, ... Each actor (A, B, K1), ..., Shape identification information (+1, -1,0), point angle (A1 + A2 + A3), ... And the area of the surface (M1, M2, ...) S1, S2, ..., and the thickness of the surface (M1, M2, ...) H1, h2 ... And / or the curvature of the surface (M1, M2, ...). The shape of the object N can be easily specified.
 本実施の形態において、制御部110は、画像処理技術を用いて区分情報M1,M2,…に対する作用子(A,B,K1),…、形状識別情報(+1,-1,0)、点角度(A1+A2+A3),…、面積S1,S2,…並びに厚みh1,h2,…及び/又は曲率から対象物Nの形状を特定する。 In the present embodiment, the control unit 110 uses an image processing technique to perform actors (A, B, K1), ..., Shape identification information (+1, -1, 0), and points for the division information M1, M2, .... The shape of the object N is specified from the angle (A1 + A2 + A3), ..., Area S1, S2, ..., Thickness h1, h2, ... And / or curvature.
 こうすることで、一の面の厚みが隣接するべき他の面の厚みと等しいか否か、或いは/さらに、一の面の曲率が隣接するべき他の面の曲率と等しいか否かで、一の面に隣接する他の面の特定精度を向上させることができる。 By doing so, whether the thickness of one surface is equal to the thickness of the other surface to be adjacent, or / and whether the curvature of one surface is equal to the curvature of the other surface to be adjacent. The accuracy of identifying another surface adjacent to one surface can be improved.
 本実施の形態において、制御部110は、区分情報に対して単一のプロセッサーにより連続的に処理するようにしてもよいが、区分情報M1,M2,…に対して複数に分けて処理する複数のプロセッサーを備え、制御部110は、複数のプロセッサーにより並列処理を行うことが好ましい。例えば、区分情報M1,M2,…に対して複数のプロセッサーを順番に又はランダムに割り当てるようにすることができる。このように、区分情報M1,M2,…に対して複数のプロセッサーを割り当てることにより、複数のプロセッサー間で区分情報M1,M2,…に関連付けられた作用子(A,B,K1),…、形状識別情報(+1,-1,0)、点角度、面積S1,S2,…により、対象物Nの立体的な形状を特定することができる。具体的には、区分情報M1~M1000に対して第1プロセッサー、区分情報M2001~M3000に対して第2プロセッサー、区分情報M1001~M2000に対して第3プロセッサーをそれぞれ割り当て、第1プロセッサー、第2プロセッサー及び第3プロセッサーにより並列処理を行ったとしても、作用子、形状識別情報、点角度、面積から対象物Nの立体的な形状を容易に特定することができる。こうすることで、容易に並列処理を行うことができ、これにより、簡単な制御構成で、さらなる高速処理を実現させることができる。 In the present embodiment, the control unit 110 may continuously process the division information by a single processor, but the division information M1, M2, ... Is divided into a plurality of processing units. It is preferable that the control unit 110 is provided with the same processor and performs parallel processing by a plurality of processors. For example, a plurality of processors can be sequentially or randomly assigned to the division information M1, M2, .... By assigning a plurality of processors to the division information M1, M2, ... In this way, the actors (A, B, K1), ... The three-dimensional shape of the object N can be specified by the shape identification information (+1, -1, 0), the point angle, the areas S1, S2, ... Specifically, the first processor is assigned to the division information M1 to M1000, the second processor is assigned to the division information M2001 to M3000, and the third processor is assigned to the division information M1001 to M2000, respectively, and the first processor and the second processor are assigned. Even if parallel processing is performed by the processor and the third processor, the three-dimensional shape of the object N can be easily specified from the actuator, the shape identification information, the point angle, and the area. By doing so, parallel processing can be easily performed, and as a result, further high-speed processing can be realized with a simple control configuration.
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、係る実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention is not limited to the embodiments described above, and can be implemented in various other forms. Therefore, such embodiments are merely exemplary in all respects and should not be construed in a limited way. The scope of the present invention is set forth by the claims and is not bound by the text of the specification. Further, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention.
 本発明は、CADの技術分野、特に、AI技術に適用することができる。 The present invention can be applied to the technical field of CAD, particularly AI technology.
100  形状データ処理装置
110  制御部
120  記憶部
121  記録装置
122  メモリ装置
130  読取部
131  読取装置
140  出力部
141  表示装置
142  印刷装置
A,…  各点
A1,… 線角度
DB   データベース
DT1  形状特定用データ
DT1a 加工した形状特定用データ
M1,… 区分情報
N    対象物
P    形状データ処理プログラム
Q1   3次元CADデータ入力手段
Q2   形状認識手段
Q3   判定手段
Q4   取得手段
Q5   点角度算出手段
Q6   作用子検出手段
Q7   登録手段
Q8   形状特定手段
Q9   出力手段
S1,… 面積
h1,… 厚み
100 Shape data processing device 110 Control unit 120 Storage unit 121 Recording device 122 Memory device 130 Reading unit 131 Reading device 140 Output unit 141 Display device 142 Printing device A, ... Each point A1, ... Line angle DB Database DT1 Shape specification data DT1a Processed shape identification data M1, ... Category information N Object P Shape data processing program Q1 Three-dimensional CAD data input means Q2 Shape recognition means Q3 Judgment means Q4 Acquisition means Q5 Point angle calculation means Q6 Actor detection means Q7 Registration means Q8 Shape specifying means Q9 Output means S1, ... Area h1, ... Thickness

Claims (6)

  1.  表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定手段と、
     前記複数の面の形状にそれぞれ関係する複数の特性情報のうちの前記面の面積を取得する取得手段と、
     前記複数の面の各点に隣接する線間の線角度を合計した点角度を算出する点角度算出手段と、
     前記各点のうちの隣り合う2つの点と前記2つの点間の線とからなる作用子を検出する作用子検出手段と、
     前記複数の面に対応する区分情報を前記形状識別情報、前記点角度、前記作用子及び前記面積と関連付けてデータベースに登録する登録手段と
     を備えることを特徴とする形状データ処理装置。
    A determination means for determining a plurality of shape identification information corresponding to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
    An acquisition means for acquiring the area of the surface among the plurality of characteristic information related to the shapes of the plurality of surfaces, and
    A point angle calculating means for calculating a point angle obtained by summing the line angles between lines adjacent to each point on the plurality of surfaces, and a point angle calculating means.
    An operator detecting means for detecting an operator composed of two adjacent points among the above points and a line between the two points.
    A shape data processing apparatus comprising: a registration means for registering classification information corresponding to a plurality of surfaces in a database in association with the shape identification information, the point angle, the operator, and the area.
  2.  請求項1に記載の形状データ処理装置であって、
     前記取得手段は、前記複数の面の形状にそれぞれ関係する複数の特性情報のうちの前記面の厚みをさらに取得し、
     前記登録手段は、前記区分情報をさらに前記厚みと関連付けてデータベースに登録することを特徴とする形状データ処理装置。
    The shape data processing apparatus according to claim 1.
    The acquisition means further acquires the thickness of the surface among the plurality of characteristic information related to the shapes of the plurality of surfaces.
    The registration means is a shape data processing apparatus characterized in that the classification information is further associated with the thickness and registered in a database.
  3.  請求項1又は請求項2に記載の形状データ処理装置であって、
     前記区分情報に対して複数に分けて処理する複数のプロセッサーを備え、
     前記複数のプロセッサーにより並列処理を行うことを特徴とする形状データ処理装置。
    The shape data processing apparatus according to claim 1 or 2.
    It is equipped with a plurality of processors that process the classification information in a plurality of divisions.
    A shape data processing apparatus characterized in that parallel processing is performed by the plurality of processors.
  4.  形状データ処理装置が行う形状データ処理方法であって、
     判定手段が、表面を複数の面に区分された対象物における前記複数の面の形状のそれぞれに対応する複数の形状識別情報を判定する判定ステップと、
     取得手段が、前記複数の面の形状にそれぞれ関係する複数の特性情報のうちの前記面の面積を取得する取得ステップと、
     点角度算出手段が、前記複数の面の各点に隣接する線間の線角度を合計した点角度を算出する点角度算出ステップと、
     作用子検出手段が、前記各点のうちの隣り合う2つの点と前記2つの点間の線とからなる作用子を検出する作用子検出ステップと、
     登録手段が、前記複数の面に対応する区分情報を前記形状識別情報、前記点角度、前記作用子及び前記面積と関連付けてデータベースに登録する登録ステップと
     を含むことを特徴とする形状データ処理方法。
    This is a shape data processing method performed by a shape data processing device.
    A determination step in which the determination means determines a plurality of shape identification information corresponding to each of the shapes of the plurality of surfaces in an object whose surface is divided into a plurality of surfaces.
    An acquisition step in which the acquisition means acquires the area of the surface among the plurality of characteristic information related to the shapes of the plurality of surfaces.
    A point angle calculation step in which the point angle calculation means calculates a point angle by summing up the line angles between lines adjacent to each point on the plurality of surfaces.
    An operator detection step in which the operator detecting means detects an operator consisting of two adjacent points among the two points and a line between the two points.
    A shape data processing method, wherein the registration means includes a registration step of registering classification information corresponding to the plurality of surfaces in a database in association with the shape identification information, the point angle, the operator, and the area. ..
  5.  請求項4に記載の形状データ処理方法であって、
     前記取得ステップでは、前記複数の面の形状にそれぞれ関係する複数の特性情報のうちの前記面の厚みをさらに取得し、
     前記登録ステップでは、前記区分情報をさらに前記厚みと関連付けてデータベースに登録することを特徴とする形状データ処理方法。
    The shape data processing method according to claim 4.
    In the acquisition step, the thickness of the surface among the plurality of characteristic information related to the shapes of the plurality of surfaces is further acquired.
    In the registration step, the shape data processing method is characterized in that the classification information is further associated with the thickness and registered in a database.
  6.  請求項4又は請求項5に記載の形状データ処理方法の各ステップを、コンピュータに実行させるための形状データ処理プログラム。 A shape data processing program for causing a computer to execute each step of the shape data processing method according to claim 4 or 5.
PCT/JP2020/040111 2020-10-26 2020-10-26 Shape data processing device, shape data processing method, and shape data processing program WO2022091181A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022558614A JP7392961B2 (en) 2020-10-26 2020-10-26 Shape data processing device, shape data processing method, and shape data processing program
PCT/JP2020/040111 WO2022091181A1 (en) 2020-10-26 2020-10-26 Shape data processing device, shape data processing method, and shape data processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040111 WO2022091181A1 (en) 2020-10-26 2020-10-26 Shape data processing device, shape data processing method, and shape data processing program

Publications (1)

Publication Number Publication Date
WO2022091181A1 true WO2022091181A1 (en) 2022-05-05

Family

ID=81383759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040111 WO2022091181A1 (en) 2020-10-26 2020-10-26 Shape data processing device, shape data processing method, and shape data processing program

Country Status (2)

Country Link
JP (1) JP7392961B2 (en)
WO (1) WO2022091181A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227431A (en) * 1995-02-22 1996-09-03 Sharp Corp Resizing method for mask pattern
JP2008040921A (en) * 2006-08-09 2008-02-21 Hitachi Ltd Shape simplification device and program to be used in the same
JP2011113530A (en) * 2009-11-30 2011-06-09 Canon Inc Geometry simplification apparatus, geometry simplification method, and program
WO2017175349A1 (en) * 2016-04-07 2017-10-12 インテグラル・テクノロジー株式会社 Surface shape determination device, surface shape determination method and surface shape determination program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227431A (en) * 1995-02-22 1996-09-03 Sharp Corp Resizing method for mask pattern
JP2008040921A (en) * 2006-08-09 2008-02-21 Hitachi Ltd Shape simplification device and program to be used in the same
JP2011113530A (en) * 2009-11-30 2011-06-09 Canon Inc Geometry simplification apparatus, geometry simplification method, and program
WO2017175349A1 (en) * 2016-04-07 2017-10-12 インテグラル・テクノロジー株式会社 Surface shape determination device, surface shape determination method and surface shape determination program

Also Published As

Publication number Publication date
JPWO2022091181A1 (en) 2022-05-05
JP7392961B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
JP6367895B2 (en) Method and system for automatic measurement of molded cooling holes
US8010315B2 (en) Multi-modality inspection method with data validation and data fusion
OuYang et al. On the normal vector estimation for point cloud data from smooth surfaces
CN105740497B (en) Simulating the machining of a workpiece
EP3675059B1 (en) Extracting a feature tree from a mesh
TWI259504B (en) Graphic processing method and apparatus
Quinsat et al. Filling holes in digitized point cloud using a morphing-based approach to preserve volume characteristics
CN109558624B (en) Generating 2D drawings representing mechanical components
CN107680154B (en) View-based voxel geometric parameter extraction method
Xie et al. Aircraft skin rivet detection based on 3D point cloud via multiple structures fitting
Wang et al. Accurate radius measurement of multi-bend tubes based on stereo vision
US20220004674A1 (en) Parallelized vehicle impact analysis
Radvar-Esfahlan et al. Robust generalized numerical inspection fixture for the metrology of compliant mechanical parts
WO2022091181A1 (en) Shape data processing device, shape data processing method, and shape data processing program
WO2022091311A1 (en) Shape data processing device, shape data processing method, and shape data processing program
JP7505880B2 (en) Generating structured 3D models from raw meshes
WO2021024367A1 (en) Shape data processing device, shape data processing method, and shape data processing program
CN113283020A (en) Structural simulation of mechanical components
US11775699B2 (en) Extracting grasping cues from tool geometry for digital human models
JP2010211629A (en) Apparatus and method for processing information
Chen et al. Idealization of scanning-derived triangle mesh models of prismatic engineering parts
Wang et al. Robot grasping in dense clutter via view-based experience transfer
JP2008310576A (en) Design support method and design support system
KR101811135B1 (en) Apparatus and method for simplifying model through optimal level-of-detail decision
JP3550949B2 (en) Modeling method for press forming analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959699

Country of ref document: EP

Kind code of ref document: A1