WO2019129230A1 - 终端控制方法、终端及计算机可读存储介质 - Google Patents

终端控制方法、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2019129230A1
WO2019129230A1 PCT/CN2018/125011 CN2018125011W WO2019129230A1 WO 2019129230 A1 WO2019129230 A1 WO 2019129230A1 CN 2018125011 W CN2018125011 W CN 2018125011W WO 2019129230 A1 WO2019129230 A1 WO 2019129230A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
microphone
relative
audio signal
speaker
Prior art date
Application number
PCT/CN2018/125011
Other languages
English (en)
French (fr)
Inventor
沈少武
刘立婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019129230A1 publication Critical patent/WO2019129230A1/zh
Priority to US16/892,159 priority Critical patent/US11568888B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04847Interaction techniques to control parameter settings, e.g. interaction with sliders or dials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1647Details related to the display arrangement, including those related to the mounting of the display in the housing including at least an additional display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1677Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for detecting open or closed state or particular intermediate positions assumed by movable parts of the enclosure, e.g. detection of display lid position with respect to main body in a laptop, detection of opening of the cover of battery compartment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1688Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being integrated loudspeakers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/54Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for retrieval
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6008Substation equipment, e.g. for use by subscribers including speech amplifiers in the transmitter circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals
    • G10L2025/783Detection of presence or absence of voice signals based on threshold decision
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6016Substation equipment, e.g. for use by subscribers including speech amplifiers in the receiver circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/22Details of telephonic subscriber devices including a touch pad, a touch sensor or a touch detector

Definitions

  • the present disclosure relates to the field of terminal technologies, for example, to a terminal control method, a terminal, and a computer readable storage medium.
  • the usage scenarios of mobile terminals are becoming more and more complex, and the requirements of the industry and users for the intelligent performance of terminals are becoming higher and higher.
  • the conventional control of the terminal is generally performed by performing a touch operation on the touch screen when the touch screen is illuminated, but the terminal is controlled by the touch operation, the operation is cumbersome, and the control efficiency is low.
  • the terminal control method, the terminal and the computer readable storage medium provided by the disclosure enable the terminal to be controlled without the touch operation of the touch screen, and the operation is simple and the control control efficiency is improved.
  • the present disclosure provides a terminal control method, where the terminal control method includes:
  • the terminal control operation to be performed is performed on the terminal where the microphone is located.
  • the present disclosure also provides a terminal, the terminal including a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection communication between the processor and the memory
  • the processor is arranged to execute at least one program stored in the memory to implement the terminal control method as described above.
  • the present disclosure also provides a computer readable storage medium storing at least one program executable by at least one processor to implement a terminal control method as described above.
  • FIG. 1 is a basic flowchart of a terminal control method according to an embodiment
  • FIG. 2 is a schematic diagram of frequency fluctuations of a 2 KHz audio signal provided by an embodiment when a sound source and a receiver are relatively stationary;
  • FIG. 3 is a schematic diagram showing frequency fluctuations of the 2 KHz audio signal of FIG. 2 when the acoustic wave source and the receiver are relatively moved;
  • FIG. 4 is a schematic diagram of a virtual relative motion of a microphone and a speaker on a terminal to be controlled by an interference microphone on a non-foldable terminal to be controlled provided by an embodiment
  • FIG. 5 is a schematic diagram of setting a plurality of speakers and a microphone for performing multiple sets of audio detection on a dual-screen folding terminal according to a first embodiment
  • FIG. 6 is a schematic diagram of a corresponding relationship between a folding angle of a foldable terminal and a display interface according to an embodiment
  • FIG. 7 is a schematic diagram showing a frequency offset detection result of a detected audio signal having an original frequency of 22 kHz and a relative speed on both sides of the foldable portion of the foldable terminal according to an embodiment
  • FIG. 8 is a schematic diagram of detecting audio signal propagation when a speaker (speaker) and a Mic (microphone) are placed on the top and bottom of a dual-screen folding terminal respectively according to an embodiment
  • FIG. 9 is a schematic diagram of detecting the audio signal traveling diagonally when the Speaker and the Mic are respectively disposed on the same side of the dual-screen folding terminal according to the first embodiment;
  • FIG. 10 is a schematic diagram of detection of a folding movement state of a flip phone provided by an embodiment
  • FIG. 11 is a schematic diagram of a selection interface of a terminal control operation provided by a user according to an embodiment
  • FIG. 12 is a schematic diagram showing the combination of different action elements in a relative state and the corresponding state of the selected terminal control operation
  • FIG. 13 is a schematic diagram of a folding motion input mode selection interface according to an embodiment
  • FIG. 14 is a schematic diagram of relative motion detection of a transmitting terminal and a receiving terminal according to an embodiment
  • FIG. 15 is a flowchart of another terminal control method according to another embodiment.
  • FIG. 16 is a schematic structural diagram of hardware of a terminal according to an embodiment.
  • the user may want to perform operations on the terminal in other ways. For example, in some occasions, the user may not be able to directly click the screen and the button on the screen, and hope to open the screen by non-clicking the touch screen. A certain function of the terminal; in some occasions, for example, in the case where the terminal is low in power, in order to save the power of the terminal, the user may wish to perform the bright screen without lighting the liquid crystal display (LCD) screen. Operation
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a terminal control scheme in which the user can implement terminal control by means of a non-clicking touch screen.
  • the user may initiate relative motion between the speaker and the microphone by certain operations such as changing the relative position of the speaker transmitting the probed audio signal and the microphone receiving the probed audio signal, or achieving a similar relative motion effect, thereby enabling the microphone to receive
  • the terminal control method of this embodiment includes the following steps.
  • S1010 Receive, by using a microphone, a detected audio signal that is transmitted by a speaker and meets a preset detection frequency.
  • the functions of the speaker and the microphone are respectively to transmit an audio signal and receive an audio signal, and the number of speakers is not limited in this embodiment.
  • an audio codec chip or the like is connected to the circuit at the back end of the microphone in the terminal to detect the audio signal received by the microphone, and the detected audio signal satisfying the preset frequency is obtained.
  • the relative state between the speaker and the microphone is determined by detecting the change of the audio signal, and the relative state can be used to indicate a relationship between the microphone and the speaker when the microphone and the speaker are both stationary.
  • the relative state may also represent at least one of the microphone and the speaker When motion occurs, the microphone and the speaker move relative to each other (for example, the microphones and speakers on different terminals are far apart or close to each other, and the microphones and speakers on the same terminal are far apart or close to each other, etc.).
  • the relative state of the present embodiment therefore includes the relative rest state and relative motion of the microphone and speaker.
  • the relative state includes a relatively stationary state and a relative motion.
  • the audio signal is 20 Hz (-18 kHz), and the audio signal of more than 18 kHz is inaudible to the human ear.
  • the user can generate an interference to the user.
  • an audio signal that is inaudible to the human ear is selected, for example, the frequency is 7 sets of higher frequency signals such as 18KHz, 19KHz, 20KHz, 21KHz, 22KHz, 23KHz and 24KHz.
  • the audio signal received by the microphone may have a larger frequency shift.
  • a higher frequency may be selected as the probe audio signal.
  • the transmission frequency such as the frequency between 20-24 KHz, is used as the transmission frequency. However, considering the relative motion between the speaker and the microphone, a frequency offset is generated.
  • the preset detection frequency may be in the detection of the audio signal transmission.
  • the transmission frequency selection range is 20-24 KHz
  • the preset detection frequency range is (20-0.5)-(24+0.5) ) KHz.
  • the acoustic waveform of the detected audio signal is determined based on user settings or terminal settings.
  • the acoustic waveform includes, but is not limited to, a sine wave, a square wave, or a sawtooth wave.
  • a circuit connected by the microphone is required to adjust the audio demodulation parameter to a range of less than 20 Hz or greater than 18 kHz.
  • the audio demodulation parameters may also be adjusted to the range of the preset detection frequencies described above, such as (20-0.5)-(24+0.5) KHz described above, for more accurate audio demodulation.
  • S1020 Obtain an audio parameter of the detected audio signal, and detect an original audio parameter when the audio signal is transmitted from the speaker.
  • the audio parameter of the sounding audio signal refers to the actual audio parameter of the sound signal detected by the microphone, including but not limited to detecting the actual frequency, actual amplitude, and receiving time of the audio signal; and detecting the original audio parameter of the audio signal.
  • the original audio parameters of the audio signal detected by the speaker when transmitting the sound signal including but not limited to the original frequency of the sound signal, the original amplitude, and the time of transmission.
  • the fast Fourier algorithm is used to filter the audio time domain signal received by the microphone and then convert it into a frequency domain signal, and then perform filtering and sampling. operating.
  • the acoustic wave of the fixed frequency emitted by the speaker may have a glitch, that is, a clutter signal of other frequencies, due to interference from the external environment or other noise interference. Therefore, in order to improve the accuracy of the subsequent determination of the relative state, it is necessary to filter the frequency signal converted by the audio signal received by the microphone to extract a valid identifiable frequency signal.
  • the range of the receiving frequency of the band pass filter is the range of the preset detection frequency described above.
  • the band pass filter can only receive signals of 18KHz-24KHz, and signals less than 18KHz and greater than 24KHz will be filtered out.
  • the ambient frequency noise of the filter boundary is removed, and the irregular frequency noise exceeding the threshold range is removed.
  • the actual frequency of the detected audio signal can be extracted based on the filtered frequency domain signal.
  • the frequency of the number of times or more may be extracted from the signal for the accuracy of the extracted frequency.
  • the sampling frequency can be set to 2 times, 3 times or N times according to the needs of user sensitivity detection, which is not limited in this embodiment.
  • the average mobile phone supports audio sampling rates of 8, 26, 32, 44, and 48 kHz.
  • the maximum supported sampling rate is 48 kHz by default, and the maximum supported audio frequency is 24 kHz.
  • the terminal where the microphone is located starts sampling with the default sampling frequency, and if the collected data is insufficient or cannot be recognized, it is automatically raised to a higher sampling frequency.
  • the default sampling frequency is available. In this case, if you want to shorten the sampling calculation time, you can also use down-frequency sampling.
  • the resolution of the frequency can be obtained as F/N. The larger the number of points N, the higher the resolution of the sample.
  • the relative state of the present embodiment includes a relative stationary state and a relative motion, which may be actual or may be a virtual relative motion simulated by the user through other operations on the terminal (eg, intervention on an audio signal transmitted by the speaker).
  • the speaker and the microphone may be on the same terminal, or may be on different terminals.
  • the terminal where the speaker or the microphone is located includes but is not limited to a mobile phone, a tablet, a smart hand. Ring, laptop or desktop computer, etc.
  • the relative motion of the acoustic source and receiver affects the frequency of the audio signal received by the receiver.
  • Figure 2 shows the frequency of the audio signal at 2 kHz when the source and receiver are relatively stationary.
  • Figure 3 shows the trend of the acoustic frequency as the acoustic source and receiver move relative to each other. As shown in Fig. 3, when the acoustic wave source and the receiver move toward each other, since the acoustic wave source approaches the receiver, the number of acoustic wave pulses received by the receiver per unit time will increase, the wavelength of the acoustic wave will be compressed, the wavelength will decrease, and the frequency will be reduced.
  • the speaker generates a low frequency or high frequency audio signal of a certain frequency
  • the microphone receives and demodulates the signal.
  • the speaker and microphone move relative to each other, the frequency of the audio waveform received by the microphone changes.
  • the frequency of the received audio signal when the speaker and the microphone on the terminal are close to each other, the frequency of the received audio signal is increased relative to the frequency of the audio signal emitted by the speaker due to the Doppler effect.
  • the frequency of the received audio signal due to the Doppler effect of the microphone is reduced relative to the frequency of the audio signal emitted by the speaker.
  • the microphone and the speaker are close to each other or away from each other.
  • S1040 Determine, according to the relative state, a corresponding relationship between the preset relative state and the terminal control operation, the terminal control operation to be performed;
  • a corresponding relative state is set for a plurality of terminal control operations in advance, and after the relative state is identified in S1030, the terminal control operation can be directly obtained according to the preset correspondence relationship. .
  • the terminal control operation in this embodiment may be different according to the type of the terminal, and the terminal where the microphone is located is taken as an example.
  • the terminal control operation of the mobile phone includes basic functions of the mobile phone, such as setting of mute, vibration, and flight mode. It can be the opening or setting of the camera or video mode of the front and rear cameras, or it can be Bluetooth, Wieless-FIdelity (WI-FI), Global Positioning System (GPS) wireless function opening and setting, or The opening of the mobile phone split screen function can also be the adjustment of the sound or the brightness of the screen; the terminal control operation of the mobile phone also includes operations on some applications on the mobile phone, such as pop-ups such as WeChat, QQ, etc., downloading of audition songs, etc. This embodiment is not limited thereto.
  • the terminal control operation may be an operation performed only on the terminal, or may be an operation required to interact with the terminal where the speaker is located. This embodiment is not limited thereto.
  • S1050 Perform terminal control operations to be performed on the terminal where the microphone is located.
  • the terminal where the speaker and the microphone are located have the following two situations: one: the speaker and the microphone are on the same terminal; and two: the speaker and the microphone are on different terminals.
  • the same terminal is named as the terminal to be controlled, and the relative state in S1030 is the relative state of the speaker and the microphone on the terminal to be controlled. .
  • determining the relative state of the terminal area where the microphone and the speaker are respectively located according to the audio parameter and the original audio parameter in S1030 includes: determining, according to the audio parameter and the original audio parameter, the area where the microphone and the speaker are located on the terminal to be controlled.
  • the relative state; performing the terminal control operation to be performed on the terminal where the microphone is located includes: performing a terminal control operation to be performed on the terminal to be controlled.
  • the audio parameters include an actual frequency when the sound signal is detected by the microphone, and the original audio parameter includes the original frequency when the sound signal is detected from the speaker.
  • the frequency of the audio signal received by the microphone is higher than the frequency at which the speaker transmits the audio signal, and the microphone and the speaker are far away from each other.
  • the frequency of the audio signal received by the microphone is smaller than the frequency at which the speaker transmits the audio signal.
  • the actual relative position between the microphone and the speaker generally does not change, so in the present embodiment, the relative motion in the relative state between the microphone and the speaker on the non-foldable terminal is manually A virtual relative movement produced by intervention.
  • Determining, according to the audio parameter and the original audio parameter, the relative state of the area where the microphone and the speaker are located on the terminal to be controlled includes: determining the relative state of the area where the microphone and the speaker are located if the actual frequency of the detected audio signal is lower than the original frequency of the detected audio signal For the virtual mutual away state; if the actual frequency of the detected audio signal is higher than the original frequency of the detected audio signal, it is determined that the relative state of the area where the microphone and the speaker are located is a virtual mutual close state.
  • the number of speakers and/or microphones may be plural. In this embodiment, there is no limitation on the number of the speakers and the microphone and the setting position.
  • the virtual relative motion of the terminal to be controlled needs to be realized by human interference.
  • the top of the non-foldable terminal is provided with a microphone (Mic) A and a speaker (A), and the bottom is provided with Mic B and Speaker B.
  • the shading in Fig. 4 indicates the manual intervention of the human hand on MicA and B.
  • the manual interference can cause the frequency of the audio signal received by the Mic to change with respect to the frequency of the audio signal emitted by the Speaker, which is equivalent to the folding operation of the foldable terminal.
  • the manual interference can make the frequency of the audio signal received by the Mic larger than the frequency of the audio signal sent by the Speaker, the relative state of the area where the microphone and the speaker are located is a virtual mutual close state, which is equivalent to the folding terminal. If the manual interference can make the frequency of the audio signal received by the Mic smaller than the frequency of the audio signal sent by the Speaker, the relative state of the area where the microphone and the speaker are located is a virtual mutual distant state, which is equivalent to the foldable terminal. Expand the operation. In the process of using, Speaker A is triggered to transmit an audio signal of a specific frequency, and Mic A and Mic B simultaneously receive the audio signal.
  • the foldable property can be generated based on a folding member of a flexible screen or a terminal, and the number of display screens of the foldable terminal is not limited.
  • the foldable terminal may be a flexible screen terminal, a dual screen folding terminal such as a dual screen folding mobile phone, or the like.
  • the foldable to-be-controlled terminal On the foldable to-be-controlled terminal, at least one pair of speakers and microphones are respectively disposed on both sides of the foldable portion of the terminal to be controlled; if it is a flexible screen terminal, a pair of speakers and a microphone are set at least The position of the top and bottom of the terminal is controlled, and if it is a double-sided folding terminal, at least one pair of speakers and a microphone are disposed on both sides of the foldable portion.
  • the relative state of the area where the microphone and the speaker are located on the terminal to be controlled is considered to be the relative state of the two sides of the foldable portion of the terminal to be controlled in the scenario that the terminal to be controlled is a foldable terminal. .
  • the detecting audio signal that is transmitted by the microphone receiving speaker and satisfying the preset detection frequency in the above S1010 includes: receiving, by the microphone, the sounding audio signal that is transmitted by the speaker located on the terminal to be controlled and that meets the preset detection frequency.
  • the above-mentioned speaker includes at least one speaker on the side different from the microphone on the foldable portion.
  • the frequency of the detected audio signals transmitted by the different speakers is different to avoid interference.
  • the number of pairs of speakers and microphones located on both sides of the foldable portion of the terminal to be controlled can be increased.
  • the dual-screen folding terminal has two screens, and Speaker A and Mic A, and Speaker B and Mic B are disposed at the top and bottom of the two screens, respectively.
  • Speakers or Mics different detection groups can be formed according to different microphones and speakers, and different detection functions are set for different detection groups.
  • the detection group can be divided into 1-4 groups to detect the detection of the audio signal and control the terminal operation according to the detected probe audio signal.
  • speakers and microphones on the same side of the foldable portion can detect other status information of the terminal by detecting audio parameters of the audio signal, thereby controlling other functions of the terminal, the other states
  • the information and corresponding functions can be based on the user's settings or the terminal's default settings. For example, if it is detected by the 3 groups and 4 groups that the user has shaken the terminal, the WeChat display interface is opened.
  • the degree of complexity of the relative state and the relative motion setting of the relative state may be determined according to the number of terminal control operations that the user wants to trigger by the relative state to determine the relative state of the preset relative state and the terminal control operation.
  • the relatively stationary state includes a relatively stationary state described by an angle between the two sides of the foldable portion based on the relative rest of the sides of the foldable portion.
  • the angle between the two sides of the foldable portion on the terminal to be controlled is 180 degrees
  • the angle between the two sides of the foldable portion on the terminal to be controlled is 90 degrees or the like.
  • the relative static state is defined by a constituent element of the angle, and the number of terminal control operations corresponding to the control is relatively small, but the user's operation is simple and the user can easily remember the relationship between the angle of folding and the terminal control operation.
  • the terminal control operation may be a plurality of operations described above.
  • different folding angles in a relatively stationary state may be utilized to control the switching of the display interface of the terminal to be controlled. For example, as shown in FIG. 6, when the user hits a two-screen folding terminal (which may also be a flexible screen terminal in one example) to a certain angle, the two screens present different display contents. As shown in Fig.
  • the A and B interfaces are displayed at 90 degrees
  • the C and D interfaces are switched at 180 degrees
  • the E and F interfaces are switched at 120 degrees.
  • the angle between the two sides of the foldable portion on the terminal to be controlled and the distance between the pair of speakers and the microphone on both sides of the foldable portion on the terminal to be controlled may be mutually converted.
  • constituent elements of relative motion include, but are not limited to, relative motion directions, relative speeds, and the like. If the number of terminal control operations is small, such as only two, the relative motion can be set very simply, and the relative motion can be directly set to the expansion and integration of both sides of the foldable portion. However, if the number of terminal control operations is large, it is necessary to increase the constituent elements of the relative motion.
  • the relative motion comprises: relative motion described based on the relative motion directions of the two sides of the foldable portion; the relative motion direction includes unfolding or merging; Based on at least one of an angle between the two sides of the foldable portion, a relative speed of both sides of the foldable portion, a number of movements of the both sides of the foldable portion in the relative movement direction, and both sides of the foldable portion
  • the relative motion of the combination of relative motion directions is described.
  • the relative motion in the correspondence between the preset relative state and the terminal control operation, includes at least the following setting manners.
  • Relative motion described based on the relative direction of movement of the sides of the foldable portion comprising the unfolding and merging of the sides of the foldable portion of the foldable terminal.
  • Relative motion described based on the relative movement directions of the sides of the foldable portion and the angle between the sides of the foldable portion for example, to 120 degrees, to 60 degrees, and the like.
  • Relative motion described based on the relative motion directions of the two sides of the foldable portion and the relative speeds of the two sides of the foldable portion for example, rapid deployment, rapid incorporation, slow expansion, and slow incorporation, and the like.
  • Relative motion described based on the relative movement directions of the two sides of the foldable portion and the number of movements in the relative movement direction on both sides of the foldable portion for example, two consecutive developments, three consecutive incorporations, one expansion and one incorporation Wait a minute.
  • a relative state described based on a relative movement direction of both sides of the foldable portion, an angle between both sides of the foldable portion, and a number of movements of the both sides of the foldable portion in the relative movement direction for example, two consecutive developments 90 degrees, or 30 degrees from the 180 degree expansion state, or 120 degrees once, then 90 degrees, or 90 degrees twice, then 120 degrees and so on.
  • a relative state described based on the relative direction of movement of the sides of the foldable portion, the angle between the sides of the foldable portion, and the relative speed of the sides of the foldable portion for example, rapid deployment to 80 degrees, slow speed Combine into 120 degrees and so on.
  • the relative motion for example, is rapidly spread to 90 degrees twice in succession, or 30 degrees in rapid succession from the 180 degree unfolding state, and the like.
  • the constituent elements of the composition relating to the relative motion described above are all obtainable by detecting the detected audio signal.
  • the audio parameters of the sounding audio signal include the actual frequency, the actual amplitude, and the receiving time when the microphone is received;
  • the original audio parameters of the sounding audio signal include: the original frequency, the original amplitude, and the transmitting time when transmitting.
  • the relative stationary state and the relative motion are identified based on the following method.
  • a sounding signal transmitted from a speaker on a different side of the foldable portion of the microphone is obtained from the sounding audio signal, and the obtained sounding signal is used as the first sounding signal; when the microphone and the speaker have only one pair, the direct sounding
  • the received probe audio signal is used as the first probe audio signal.
  • the detected audio signal received by the microphone may include a sounding audio signal emitted from a speaker on the same side of the foldable portion of the microphone, in this embodiment, in order to determine The accuracy of the first probe audio signal is obtained by the above steps.
  • the original frequency of the detected audio signal is 22 kHz as an example, and the frequency offset detection result in the case where the relative speeds are different is shown.
  • the actual frequency of the detected audio signal becomes larger with respect to the original frequency, and when the two sides of the foldable portion are expanded, the actual frequency of the audio signal is detected. Relative to the original frequency, it can be determined whether both sides of the foldable portion are unfolded or joined according to the original frequency of the first probed audio signal and the magnitude of the actual frequency.
  • the amplitude of the audio signal is attenuated as the transmission distance is larger, it can be known that if the two sides of the foldable portion are joined, the actual amplitude of the received first detected audio signal is gradually increased; Conversely, if both sides of the foldable portion are unfolded, the actual amplitude of the received first detected audio signal is gradually reduced, so that it can be determined according to whether the actual amplitude of the first detected audio signal is gradually increased or decreased.
  • the sides of the foldable part are unfolded or joined.
  • the speed of sound propagation is fixed. If the terminal itself does not move relative to the outside world, when the angle between the two sides of the foldable part is different, the sound is transmitted from the speakers on both sides of the foldable part to The time required for the microphone is also different. Because the position of the speaker and microphone on the terminal is fixed, the linear distance from the speaker to the microphone can be calculated according to the time required for the sound to be transmitted from the speaker to the microphone, and the speaker can be converted according to the linear distance and the position of the speaker and the microphone on the terminal. The angle between the sides of the folded part and the angle of the plane where the microphone is located.
  • the time required for the first probe audio signal to be transmitted from the speaker to the microphone may be acquired when the angle between the two sides of the foldable portion is different, and the required time and the foldable portion are acquired.
  • the corresponding relationship model of the angle between the two sides determines the transmission time according to the transmission time and the reception time of the first probe audio signal in the process of audio detection, and then compares and calculates the transmission time with the previous correspondence model. The angle between the sides of the foldable section.
  • a similar manner may be employed, in which the angle between the two sides of the foldable portion is first collected.
  • the actual amplitude of the first detected audio signal transmitted from the speaker to the microphone, the amplitude attenuation is determined based on the actual amplitude and the original amplitude, and then the correspondence model of the amplitude attenuation and the angle between the two sides of the foldable portion is determined, and then in the audio detection
  • the actual amplitude, the original amplitude, and the corresponding relationship model described above are obtained, and the angle between the two sides of the foldable portion is obtained.
  • the above described scheme can be used to calculate the angle between the two sides of the foldable portion in a relatively stationary state and in relative motion. However, the calculations are more accurate when they are at rest.
  • the audio signal in order to improve the accuracy of the angle between the measured sides (relatively stationary) of the foldable portion, can be transmitted and received multiple times between the speaker and the microphone, and the audio is measured multiple times.
  • the time the signal is transmitted between the speaker and the microphone, and the time is averaged.
  • the time ⁇ t required for the N-transmission of the acoustic pulse can be calculated, divided by the number N of acoustic waves, the average transmission time of the single pulse is obtained, and the average transmission time corresponding to the different angles between the two sides of the foldable portion is tested.
  • the value is stored as a model value.
  • the relative speeds on both sides of the foldable portion may be determined based on the magnitude of the difference between the original frequency of the first probed audio signal and the actual frequency.
  • the relative speed may simply be a level of relative speed such as fast, slow, or a specific value of relative speed.
  • the actual frequency of the detected audio signal with the original frequency of 22 kHz is 22.125 KHz at the time of slow speed integration, and the frequency offset of the corresponding detected audio signal is 0.125 kHz.
  • the medium speed is integrated.
  • the frequency offset is 0.350 KHz
  • the frequency offset at high speed is 0.650 KHz.
  • the speed of the relative speeds on both sides of the foldable portion is determined according to the difference between the original frequency of the first detected audio signal and the actual frequency.
  • multiple levels of speed may be pre-divided, such as the slow, medium, and high speed levels described above, and different levels of frequency offset values may be set for each level (in one example, different frequency offsets)
  • the value ranges do not overlap.
  • the frequency offset value is determined according to the difference between the original frequency of the first probe audio signal and the actual frequency during the audio detection process
  • the relative speed level may be determined according to the preset frequency offset value range.
  • the level of speed may also be divided into two, four, etc., but considering the problem of user experience, it is generally reasonable to divide into no more than three levels.
  • the actual amplitude of the received first detected audio signal is gradually increased; in contrast, if the foldable portion is unfolded on both sides, receiving The actual amplitude of the first detected audio signal is gradually reduced. If the speed of the incorporation (or expansion) is larger, the actual amplitude is increased (or decreased) faster, so the actual sound signal can be detected according to the first The speed at which the amplitude increases or decreases determines the magnitude of the relative velocity of the sides of the foldable portion.
  • the change of the actual frequency of the detected audio signal is Firstly, the frequency is decreased with respect to the original frequency, and then increased relative to the original frequency.
  • the number of times the actual frequency of the detected audio signal is reduced relative to the original frequency in this embodiment is the number of times of expansion on both sides of the foldable portion, and the sound signal is detected.
  • the number of times the actual frequency is increased relative to the original frequency is the number of times the two sides of the foldable portion are joined.
  • the number of times the actual amplitude of the first probe audio signal is increased is the number of times of the two sides of the foldable portion
  • the number of times the actual amplitude of the first probe audio signal is gradually decreased is the number of times of expansion of both sides of the foldable portion.
  • the variation of the actual amplitude of a first detected audio signal is actually increased first, then decreased, then increased, and then decreased.
  • the actual amplitude is increased twice, and the sides of the foldable portion are combined.
  • the number of times of entry is two
  • the number of actual amplitude reductions is two
  • the number of expansions on both sides of the foldable portion is also twice.
  • the order of the two sides of the foldable portion can be obtained and expanded, and the actual frequency of the first detected audio signal becomes larger or larger than the original frequency.
  • the order in which the foldable portions are joined and unfolded can be obtained.
  • the angle between the two sides of the foldable portion, the relative speed of the both sides of the foldable portion, the number of movements in the relative movement direction on both sides of the foldable portion, and the foldable portion are obtained based on the detected audio signal.
  • the relative motion directions of the two sides are merely for illustrative purposes and do not constitute a limitation to the scheme of the present embodiment based on the actual audio parameters of the detected audio signal and the original audio parameters to obtain the relative states of the two sides of the foldable portion.
  • the terminal control operation performed by the user folding terminal on the foldable to-be-controlled terminal will be exemplified below with reference to FIG. 8 to FIG.
  • Figure 8 shows a schematic diagram of sound signal propagation when Speaker and Mic are placed in the top and bottom layout of a dual-screen folding terminal, respectively; signal transmission between Speaker A and Mic B (or Speaker B and Mic A) in Figure 8.
  • the route is taken along a line parallel to the sides of the terminal. Taking Speaker A and Mic B as an example, when the user joins the dual-screen folding terminal, the Mic B receives the probe audio signal sent by the Speaker A that satisfies the preset detection frequency, according to the actual frequency of the detected audio signal relative to the detected audio.
  • the angle of the double screen after entering, similarly, the angle of the double screen can also be calculated by this method before the start of the joint.
  • FIG. 9 is a schematic diagram showing the propagation of the audio signal along the diagonal when the Speaker and the Mic are respectively placed on the same side of the dual-screen folding terminal; the terminal control is realized by detecting the relative motion of the detected audio signal transmitted diagonally.
  • the signal transmission route between Speaker A and Mic B (or Speaker B and Mic A) in Figure 9 is performed along the diagonal of the terminal.
  • Speaker A and Mic B as an example, when the user expands the dual-screen folding mobile phone, the Mic B receives the detected audio signal that is sent by the Speaker A and meets the preset detection frequency, according to the actual frequency of the detected audio signal relative to the detected audio signal.
  • the original frequency reduction information at the time of transmission determines that the user performs the operation of expanding the dual-screen folding terminal, performs the terminal control operation corresponding to the expansion operation in the dual-screen folding terminal, and, after the expansion operation ends, the Mic B can also pass Receiving the detected audio signal sent by Speaker A that satisfies the preset detection frequency to determine the time required for the audio signal to go from Speaker A to Mic B after the integration, thereby calculating the distance between Speaker A and Mic B, and the dual screen after expansion. Angle, similarly, the angle of the dual screen can also be calculated by this method before the start of the dual screen deployment.
  • the identification of the setting and folding action of the speaker and the microphone on the flexible screen terminal is similar to the above-mentioned dual-screen folding terminal, and details are not described herein again.
  • the accuracy of the folding motion recognition can also be increased by increasing the number of microphones and/or speakers.
  • one form of the foldable terminal may also be a flip phone
  • FIG. 10 is a schematic diagram showing the detection of the folding motion state of the flip phone, and the Speaker and Mic on the flip phone are respectively placed in the upper part.
  • the audio parameters received by the mic placed in the lower part of the keyboard and transmitted by the Speaker placed above the upper screen satisfying the preset detection frequency will follow the folding direction.
  • the speed, angle, and number of times change, and the content of the folding action can be obtained according to the method in the above description, and the different terminal control operations of the flip phone are displayed according to different folding actions, or the flip phone is controlled to enter different screen displays.
  • the correspondence between the relative states of the two sides of the foldable portion and the terminal control operation may be set by the user. set.
  • the manner of setting the relative states of the two sides of the foldable portion includes: when the user performs the folding operation on the control terminal, real-time acquiring both sides of the foldable portion on the terminal to be controlled
  • the relative state is the relative state in the above correspondence.
  • the angle between the two sides of the foldable portion is used as a constituent element of the relative stationary state.
  • obtaining a relative state parameter input by the user on the user input interface to obtain a relative state in the corresponding relationship.
  • the terminal may provide a display interface as shown in FIG. 11 for the user to select a mobile phone function corresponding to the audio state detection, such as different action element combinations and terminal control operation examples shown in FIG. Users can select most mobile phone functions as terminal control operations corresponding to audio status detection, such as mobile phone flight mode, mute, vibration, flashlight, volume adjustment, screen brightness adjustment, smart power saving, WI-FI, Bluetooth, GPS , Near Field Communication (NFC), the opening and closing of data services.
  • a mobile phone function corresponding to the audio state detection such as different action element combinations and terminal control operation examples shown in FIG.
  • Users can select most mobile phone functions as terminal control operations corresponding to audio status detection, such as mobile phone flight mode, mute, vibration, flashlight, volume adjustment, screen brightness adjustment, smart power saving, WI-FI, Bluetooth, GPS , Near Field Communication (NFC), the opening and closing of data services.
  • NFC Near Field Communication
  • the terminal may display the relative motion input interface of each terminal control operation to the user, as shown in FIG. 13, the folding action input mode selection interface, providing the user with two methods of parameter setting and real-time detection.
  • the setting mode the user can use the display interface to join/unfold as shown in FIG. 12, the number of times of integration/the number of expansions, the angle between the two sides of the foldable portion, and the relative speeds of the two sides of the foldable portion.
  • the constituent elements are selected to form a custom folding action.
  • the relative stationary state of the control terminal control operation is set using the parameter setting mode, only the angle between the two sides of the foldable portion can be set.
  • the real-time detection mode the user folds the terminal, and the terminal detects the folding action, and completes the mapping of the folding action and the terminal control operation.
  • the correspondence between the relative states of the two sides of the foldable portion and the terminal control operation may also be provided to the user by the terminal default settings.
  • the microphone and the speaker are at different terminals, the terminal where the speaker is located is named as the transmitting terminal, and the terminal where the microphone is located is named as the receiving terminal.
  • the number of transmitting terminals is at least one. In order to accurately detect the relative states of the transmitting terminal and the receiving terminal, the number of speakers transmitting the sounding signal by one transmitting terminal may be multiple, in order to facilitate the resolution of the transmitting terminal. And to avoid interference, the frequency of the detected audio signals emitted by different speakers is different.
  • the terminal control operations performed in S1050 include an interworking operation between the receiving terminal and the transmitting terminal. This interaction includes Bluetooth connectivity as well as data transfer and the like.
  • the following description takes a transmitting terminal as an example. When multiple transmitting terminals are used, the control mode of the receiving terminal is similar.
  • the relative states in the correspondence between the preset relative state and the terminal control operation include relative motion and relative stationary state.
  • the relative motion includes: a relative motion described based on a relative motion direction of the receiving terminal and the transmitting terminal; the relative motion direction includes: relatively close and relatively far away; and, based on the number of motions of the receiving terminal and the transmitting terminal in a relative motion direction, and the receiving terminal and the transmitting The relative motion of at least one of the relative speeds of the terminals and the relative motion direction of the receiving terminal and the transmitting terminal.
  • the relative motion comprises the following relative motion.
  • Relative motion described based on the relative motion direction of the receiving terminal and the transmitting terminal for example, the receiving terminal and the transmitting terminal are relatively distant or relatively close.
  • the relative motion described based on the relative motion direction of the receiving terminal and the transmitting terminal and the number of motions in the relative motion direction. For example, the receiving terminal and the transmitting terminal are relatively close to each other and relatively far away.
  • Relative motion based on the relative motion direction of the receiving terminal and the transmitting terminal and the relative speed of the receiving terminal and the transmitting terminal for example, relatively fast distance between the receiving terminal and the transmitting terminal, and relatively fast approach of the receiving terminal and the transmitting terminal.
  • Relative motion based on the relative motion direction of the receiving terminal and the transmitting terminal, the number of motions in the relative motion direction, and the relative speed of the receiving terminal and the transmitting terminal, for example, the receiving terminal and the transmitting terminal are relatively fast away from each other and then approaching slowly. once.
  • the relative states described above are relative motions, which in one example may be relatively static.
  • the receiving terminal and the transmitting terminal are relatively stationary.
  • the audio parameters of the sounding audio signal include an actual frequency and an actual amplitude
  • the original audio parameters of the sounding audio signal include an original frequency
  • the relative motion direction of the receiving terminal and the transmitting terminal is determined according to the actual frequency becoming larger or smaller than the original frequency; wherein, the relative direction is relatively close, and the distance is relatively small.
  • the number of movements of the direction a detailed example description refers to a similar description in the above-mentioned pair of foldable terminals, and details are not described herein again.
  • the Speaker A on the phone A is triggered to transmit an audio signal of a specific frequency (which satisfies the preset detection frequency), and the Mic B on the Phone B simultaneously receives the audio signal, when the Phone B is directed to the Phone A.
  • the audio signal received by Mic B will change.
  • the corresponding parameter model threshold is compared, thereby implementing different function calls and interconnections between the two mobile phones, such as connecting Bluetooth, WI-FI, file transmission, and the like.
  • the actual amplitude of the audio signal transmitted by the speaker received by the microphone is significantly different from the amplitude of the ambient noise and other electronic product noise. Therefore, the actual amplitude factor can be taken into consideration to filter the detected audio signal.
  • the frequency shift value will be different. Since the distance between the microphone and the speaker is the closest, the maximum can be obtained. Doppler shift, so it is also possible to filter the frequency shift values of multiple sounding signals to filter the sound signals.
  • the method further includes: determining, by at least one of the following methods, whether the sounding signal is a valid sounding signal.
  • the actual amplitude of the probe audio signal satisfies the preset amplitude range, it is determined that the probe audio signal is an effective probe audio signal, and other audio signals that do not satisfy the preset amplitude range are filtered out.
  • the manner of judging the first mode described above is applicable to a foldable, non-foldable terminal to be controlled and between the transmitting terminal and the receiving terminal.
  • the distance between the speaker and the microphone is fixed when folded along the fixed folded portion, which means that the actual amplitude range of the audio signal emitted by the speaker reaches the microphone is fixed (in the absence of obstacles) In case). Therefore, in an example, when the speaker and the microphone are in the same terminal scene, the same terminal is a foldable to-be-controlled terminal; the preset amplitude range is a fixed amplitude detection audio signal transmitted by the speaker of the terminal to be controlled, at the terminal to be controlled. The actual amplitude range at which the audio signal is received by the microphone at different folding angles.
  • the maximum value of the preset amplitude range is the actual amplitude of the detected audio signal transmitted at a fixed amplitude when the distance between the speaker and the microphone is closest, and the minimum amplitude of the preset amplitude range is the same
  • the actual amplitude at which the fixed amplitude transmitted probe audio signal is received by the microphone when the distance between the speaker and the microphone is farthest.
  • the amplitude range in other scenarios can be obtained in a similar manner.
  • the trigger control strategy it is determined whether the speaker continuously transmits the transmitted probe audio signal, and whether the terminal where the microphone is located performs continuous acquisition, detection, and detection of the audio signal. Calculation and so on.
  • the triggering control strategy is: before determining whether the sounding signal is a valid sounding audio signal, the method further includes: detecting whether the user triggers the microphone by a button operation, a gesture operation, or a touch operation when the microphone is turned off.
  • the audio detection function of the terminal is enabled. If the audio detection function of the terminal where the microphone is triggered is detected by the button operation, the gesture operation or the touch operation, the microphone is turned on to detect the audio signal; if the button operation or the gesture operation is not detected Or the touch detection triggers the audio detection function of the terminal where the microphone is turned on, and the microphone is not turned on; wherein, if the microphone and the speaker are in the same terminal, the speaker and the microphone of the terminal are simultaneously turned on.
  • the button operation includes long pressing the terminal function key for a certain length of time, such as long press the volume plus or volume down button, or a combination of different button operations and button durations, such as pressing the volume plus button for more than the first preset duration Then press the power button once.
  • the user terminal is generally provided with some sensors, such as a gyroscope or an acceleration sensor, etc., which will not work when the terminal is at rest; and when the terminal moves, one or all of the sensors can work.
  • the data is acquired, so whether the microphone and the speaker are turned on can be judged by whether the sensors work and the data acquired at work.
  • the change value is Continuous and relatively regular, if the microphone receives the same frequency signal, it is judged that the motion of the terminal is generated by the motion of the outside world, and the user does not operate.
  • the trigger control strategy is: before determining whether the detected audio signal is a valid probe audio signal, the method further includes: monitoring whether the preset sensor of the terminal where the microphone is located is working, and determining according to the signal detected by the preset sensor. Whether the motion of the terminal where the microphone is located is generated by the motion outside the terminal; if the motion of the terminal is generated by the motion outside the terminal, the microphone is not turned on, and if the motion of the terminal is not generated by the motion outside the terminal, the microphone is turned on to detect the audio signal. Acquire; wherein, if the microphone and the speaker are at the same terminal, the speaker and microphone of the terminal are simultaneously turned on.
  • the preset sensor is a sensor that can detect whether the terminal is moving, including but not limited to a gyroscope, an acceleration sensor, and the like.
  • determining, according to the signal detected by the preset sensor, whether the motion of the terminal where the microphone is located is generated by motion outside the terminal includes: if the sensor is detected, acquiring a signal detected by the sensor; determining whether the signal is continuous and relatively regular If the signal is continuous and relatively regular, the motion of the terminal where the microphone is located is generated by the motion outside the terminal; if the signal is not continuous or irregular, the motion of the terminal where the microphone is located is not generated by the motion outside the terminal.
  • the first step may be taken so that the external noise does not cause a large interference to the detected audio signal. For example, this can be achieved by avoiding the detection of the audio signal at the same frequency as the external noise.
  • the energy consumption of the microphone and the speaker always turned on can also be reduced by a low-power sleep wake-up algorithm.
  • the low-power sleep wake-up algorithm controls the microphone to periodically wake up, and monitors whether there is a sounding sound signal that is sent by the speaker that satisfies the preset detection frequency. If the sounding signal that satisfies the preset detection frequency is monitored, the formal audio detection is entered. If the detected audio signal that meets the preset detection frequency is not monitored, the microphone is turned off.
  • the low-power sleep wake-up algorithm controls the microphone and the speaker on the same terminal to be simultaneously turned on, and the speaker emits a sounding audio signal that satisfies a preset detection frequency, and if the detected audio signal received by the microphone does not have a Doppler frequency shift, the data is directly turned off.
  • the speaker and the microphone if Doppler shift occurs, determine whether the Doppler shift is generated by motion outside the terminal or by motion of the terminal itself.
  • the method before the speaker transmits the detected audio signal, the method further includes: acquiring ambient noise outside the speaker, and if the frequency of the ambient noise is coincident with the preset detection frequency, selecting a preset detection frequency that is different from the frequency of the ambient noise.
  • the frequency is the frequency of the probed audio signal to be transmitted.
  • the folding operation can be accurately determined by transmitting and receiving the sound signal of the specific frequency, and then the terminal control operation corresponding to the folding action is determined, and the terminal control operation is performed on the dual-screen folding terminal. It avoids the process that the user needs to light up and operate a variety of software icons directly on the touch screen operation, and provides a non-touch terminal convenient operation method for the user, which is beneficial to improving the user experience.
  • a foldable dual-screen folding mobile phone is taken as an example to illustrate a method for detecting a folding operation of a dual-screen folding mobile phone by an audio signal, thereby implementing terminal control. It is assumed that the upper and lower portions of each screen on the folding mobile phone are respectively provided with a speaker and a microphone, and the first speaker on one side of the first screen and the second microphone on one side of the second screen are a pair of detection groups.
  • the terminal control process will be described below by taking an example between the first speaker and the second microphone.
  • the terminal control method of this embodiment includes the following steps.
  • S15020 Determine, by the trigger control policy, whether to open the first speaker and the second microphone for audio detection; if it is determined that the first speaker and the second microphone are turned on for audio detection, go to S15030, if it is determined that the first speaker and the second microphone are not turned on for audio Detection, keeping the first speaker and the second microphone off.
  • the trigger control strategy is described in the related embodiment.
  • the first speaker transmits a detected audio signal of 22 KHz.
  • the second microphone receives the probe audio signal and collects the probe audio signal.
  • S15050 Filter, sample, time domain-frequency domain transform and Doppler frequency shift of the collected sounding signal.
  • S15070 detecting a frequency change of the detected audio signal received by the current folded mobile phone, and/or a parameter such as a time change required for transmission, and/or a parameter such as an actual amplitude change, and determining a folding operation of the currently folded mobile phone.
  • S15080 Determine a terminal control operation to be performed according to a current folding operation and a correspondence between a preset folding operation and a terminal control operation.
  • the transmitting and receiving of the sound signal by the specific frequency on the folding mobile phone can accurately determine the folding action of the user, and then determine the terminal control operation corresponding to the folding action, and execute the terminal control on the dual-screen folding terminal.
  • the operation avoids the process that the user needs to light up and operate a plurality of software icons directly on the touch screen operation, and provides a non-touch terminal convenient operation method for the user, which is beneficial to improving the user experience.
  • a terminal further includes a processor 161, a memory 162, and a communication bus 163.
  • the communication bus 163 is configured to implement connection communication between the processor 161 and the memory 162.
  • the processor 161 At least one program stored in the memory 162 is set to execute the terminal control method as described above.
  • the embodiment further provides a computer readable storage medium storing at least one program, the at least one program being executable by at least one processor to implement the terminal control method as described above .
  • At least one module or at least one step of the above-described embodiments of the present disclosure may be implemented by a general-purpose computing device, and the at least one module or at least one step may be centralized on a single computing device or distributed over a network of multiple computing devices. on.
  • the at least one module or at least one step may be implemented by program code executable by the computing device, such that at least one module or at least one step may be stored in a computer storage medium (Read-Only) Memory, ROM)/Random Access Memory (RAM), disk, optical disk are executed by a computing device, and in some cases, may be shown or described in a different order than here.
  • the steps are either made into individual integrated circuit modules, or the above at least one module or a plurality of modules or steps in at least one step are fabricated into a single integrated circuit module. Therefore, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephone Function (AREA)

Abstract

一种终端控制方法、终端和计算机可读存储介质。所述终端控制方法包括通过麦克风接收扬声器发射的满足预设探测频率的探测音频信号(S1010);获取探测音频信号被所述麦克风接收时实际的音频参数和探测音频信号从扬声器发射时原始的音频参数(S1020);根据实际的音频参数和原始的音频参数,确定麦克风和扬声器的相对状态(S1030);根据预设的相对状态与终端控制操作的对应关系确定待执行的终端控制操作(S1040);在麦克风所在终端上执行待执行的终端控制操作(S1050)。

Description

终端控制方法、终端及计算机可读存储介质
本公开要求在2017年12月28日提交中国专利局、申请号为201711466427.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及终端技术领域,例如涉及一种终端控制方法、终端及计算机可读存储介质。
背景技术
移动终端的使用场景越来越复杂,业界和用户对终端的智能性能的要求也越来越高。对终端的常规控制一般通过在触控屏被点亮的情况下在触控屏上进行触控操作进行,但是通过触控操作对终端进行控制,操作繁琐,控制效率较低。
发明内容
本公开提供的一种终端控制方法、终端及计算机可读存储介质,实现了可在不对触控屏进行触控操作的情况下,对终端进行控制,操作简便,提高控制控制效率。
本公开提供一种终端控制方法,该终端控制方法包括:
通过麦克风接收扬声器发射的满足预设探测频率的探测音频信号;
获取探测音频信号被麦克风接收时的实际的音频参数,和探测音频信号从扬声器发射时的原始的音频参数;
根据该实际的音频参数和原始的音频参数,确定麦克风和扬声器的相对状态;
根据该相对状态,以及预设的相对状态与终端控制操作的对应关系确定待执行的终端控制操作;
在麦克风所在终端上执行待执行的终端控制操作。
本公开还提供一种终端,该终端包括处理器、存储器及通信总线;
通信总线设置为实现处理器和存储器之间的连接通信;
处理器设置为执行存储器中存储的至少一个程序,以实现如上述的终端控制方法。
本公开还提供一种计算机可读存储介质,该计算机可读存储介质存储有至少一个程序,至少一个程序可被至少一个处理器执行,以实现如上述的终端控制方法。
附图说明
图1为一实施例提供的一种终端控制方法的基本流程图;
图2为实施例提供的2KHz的音频信号在声波源和接收器相对静止时的频率波动示意图;
图3为图2中的2KHz的音频信号在声波源和接收器相对运动时的频率波动示意图;
图4为一实施例提供的不可折叠的待控制终端上通过干涉麦克风实现待控制终端上麦克风和扬声器发生虚拟相对运动的示意图;
图5为一实施例一提供的在双屏折叠终端上设置多个扬声器和麦克风进行多组音频检测的示意图;
图6为一实施例提供的一种可折叠终端的折叠角度与显示界面的对应关系示意图;
图7为一实施例提供的原始频率为22KHz的探测音频信号,在可折叠终端的可折叠部分两侧的相对速度不同的情况下的频偏检测结果示意图;
图8为一实施例提供的Speaker(扬声器)和Mic(麦克风)分别置于双屏折叠终端顶部和底部的布局时,探测音频信号传播示意图;
图9为一实施例一提供的Speaker和Mic分别置于双屏折叠终端同侧的布局时,探测音频信号沿对角传播的示意图;
图10为一实施例提供的翻盖手机折叠运动状态的检测的示意图;
图11为一实施例提供的为用户提供的终端控制操作的选择界面示意图;
图12为一实施例提供的不同动作元素组合成相对状态,及选择终端控制操作对应相对状态的示意图;
图13为一实施例提供的折叠动作输入方式选择界面示意图;
图14为一实施例提供的对发射终端和接收终端的相对运动检测的示意图;
图15为另一实施例提供的另一种终端控制方法的流程图;
图16为一实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本公开实施例进行说明。此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
有些时候,用户可能因为某些原因,希望通过其他方式来进行对终端的操作,例如在有些场合,用户可能不便于在屏幕上直接点击画面和按钮,希望可以通过非点击触控屏的方式打开终端的某个功能;在有些场合下,例如是在终端电量不足的场合下,为了节省终端电量,用户可能希望在不点亮液晶显示器(Liquid Crystal Display,LCD)屏幕的情况下进行亮屏下的操作
实施例一:
本实施例中,提供了一种终端控制方案,在该方案中,用户可通过非点击触控屏的方式实现终端控制。例如,用户可以通过某些操作如改变发射探测音频信号的扬声器和接收探测音频信号的麦克风的相对位置来引发扬声器和麦克风之间的相对运动,或达到类似相对运动的效果,从而使得麦克风接收的探测音频信号和扬声器发射的原始的探测音频信号之间存在差异,根据这种差异反推到扬声器和麦克风的相对运动,从而控制麦克风所在终端执行相应的终端控制操作。
如图1所示,本实施例的终端控制方法包括如下步骤。
S1010、通过麦克风接收扬声器发射的满足预设探测频率的探测音频信号。
在本实施例中,扬声器和麦克风的作用分别是发射音频信号和接收音频信号,扬声器的数量在本实施例中是没有限定的。一般地在终端中麦克风后端的电路中还连接有音频编解码芯片等等来对麦克风接收的音频信号进行检测,获取满足预设频率的探测音频信号。
本实施例中,是利用探测音频信号的变化确定扬声器和麦克风之间的相对状态,该相对状态可以用来表示在麦克风和扬声器相互都是静止的时候,麦克风和扬声器之间存在的某种关系(如相对位置关系,例如,不同终端上的麦克风和扬声器的距离,同一个终端上的麦克风和扬声器在静止状态时候的夹角等),该相对状态还可以表示在麦克风和扬声器中的至少一个发生运动时,麦克风和扬声器之间相互运动(例如,不同终端上的麦克风和扬声器之间是相互远离还是相互靠近,相同的终端上的麦克风和扬声器是相互远离还是相互靠近等等)。所以本实施例的相对状态包括麦克风和扬声器的相对静止状态和相对运动。该相对状态包括相对静止状态和相对运动。为了保证对相对状态判断的准确度,需要对探测音频信号进行选择。在实际中,人耳正常可以听到的是音频信号是20赫兹(Hz)-18千赫兹(KHz),而大于18KHz的音频信号人耳是听不到的。为了避免本实施例中的控制麦克风所在终端进行终端控制操作时, 产生人耳可听到的声音,对用户产生干扰,本实施例中,选择人耳听不到的音频信号,如频率分别为18KHz,19KHz,20KHz,21KHz,22KHz,23KHz和24KHz等7组频率较高的信号。在一实施例中,由于频移大小和扬声器发射音频信号时的原始频率成正比,为了麦克风接收的音频信号可以有更大的频移,本实施例中可以选择较高的频率作为探测音频信号的发射频率,如20-24KHz间的频率作为发射频率。但是考虑到扬声器和麦克风之间的相对运动会产生频偏,为了避免麦克风后端的电路过滤掉超过20-24KHz一点点范围的有效的探测音频信号,预设探测频率的范围可以是在探测音频信号发射时的发射频率选择范围的基础上往最大值和最小值的两边进行一定的扩展得到,例如发射频率选择范围为20-24KHz,预设探测频率的范围为(20-0.5)-(24+0.5)KHz。在一实施例中,探测音频信号的声波波形根据用户设置或终端设置确定。本实施例中,声波波形包括但不限于正弦波、方波或锯齿波等。
在本实施例中,为了完成对探测音频信号的接收,需要麦克风连接的电路将音频解调参数调整到小于20Hz或大于18KHz的范围。在一实施例中,还可以将音频解调参数调整到上述的预设探测频率的范围,例如上述的(20-0.5)-(24+0.5)KHz,进行更加精确的音频解调。
S1020、获取探测音频信号的音频参数,和探测音频信号从扬声器发射时原始的音频参数.
本实施例中,探测音频信号的音频参数指的是被麦克风接收时探测音频信号实际的音频参数,包括但不限于探测音频信号的实际频率,实际振幅,接收时间;探测音频信号原始的音频参数指的是扬声器发射探测音频信号时探测音频信号原始的音频参数,包括但不限于探测音频信号的原始频率,原始振幅,发射时间。
在一实施例中,由于声音波形的时域上的信号特征不明显,所以使用快速傅立叶算法,将麦克风接收到的音频时域信号先滤波后再转化为频域信号,再进行滤波以及采样等操作。
在一实施例中,扬声器发射的固定频率的声波,由于外界环境的干扰,或其他噪声干扰,麦克接收到的声波信号频率可能会有毛刺,即其他频率的杂波信号。因此,为了提升后续确定相对状态的准确度,需要对麦克接收到的音频信号转化的频率信号再进行滤波,提取出有效的可识别频率信号。在本实施例中,通过增加多组带通滤波器来实现,带通滤波器的接收频率的范围为上述的预设探测频率的范围。例如带通滤波器只能接收18KHz-24KHz的信号,小于18KHz及大于24KHz的信号将会被滤除,本实施例中滤除外界的环境频率噪声,以及去除超出阈值范围的不规则频率噪声,就可以基于滤波后的频域信号提取探测音频信号的实际频率。在一实施例中,为了提取的频率的准确性,可以从 该信号中提取两次或以上次数的频率。
在进行采样时,采样频率根据用户灵敏度检测的需要可以设置为2倍频,3倍频或N倍频,本实施例对此没有限制。一般的手机支持的音频采样率为8、26、32、44和48KHz几种采样率,默认可支持的最大采样率为48KHz,能够支持的最大音频频率为24KHz。在本实施例中,麦克风所在终端开始采用默认采样频率进行采样,如果采集到的数据不够或识别不出来,则自动升高到更高的采样频率,在一个示例中,在默认采样频率可用的情况下,如果为了缩短采样计算时间,还可以采用降频率采样。另外,通过增大采样的点数N,可以得到频率的分辨率为F/N。点数N越大,采样的分辨率越高。
S1030、根据该音频参数和原始的音频参数,确定麦克风和扬声器的相对状态。
本实施例的相对状态包括相对静止状态和相对运动,该相对运动可以是实际存在,也可以是用户通过对终端的其他操作(如,对扬声器发射的音频信号的干预)而模拟的虚拟相对运动。在本实施例中,扬声器和麦克风可以是同一个终端上的,也可以是不同的终端上的,本实施例对此没有限定,扬声器或麦克风所在的终端包括但不限于手机、平板、智能手环、笔记本电脑或台式电脑等等。
声波源和接收器的相对运动会影响接收器接收的音频信号的频率,图2示出了频率为2KHz的音频信号在声波源和接收器相对静止时的频率。图3示出了声波源和接收器相对运动时,声波频率的变化趋势。如图3所示,当声波源和接收器相向运动,由于声波源向着接收器靠近,接收器单位时间内接收到的声波脉冲数会增大,声波的波长会被压缩,波长减小,频率增大(图3中大于2KHz的频率);当声波源和接收器相背运动,由于声波源远离接收器,接收器单位时间内接收到的声波脉冲数会降低,声波的波长会被拉伸,波长增大,频率减少(小于2KHz的频率)。所以根据接收器接收的音频信号的频率变化,至少可以得到声波源和接收器之间是相互靠近还是相互远离。
基于上述的原理,扬声器产生一定频率的低频或高频音频信号,麦克对该信号进行接收解调。当扬声器和麦克风相对运动时,会出现麦克风接收到的音频波形频率变化的现象。
在一实施例中,当终端上扬声器和麦克风相互靠近时,麦克风接收到的音频信号由于多普勒效应,接收到的音频信号的频率相对于扬声器发出的音频信号的频率会增大。当终端上的扬声器和麦克相互远离时,麦克接收到的音频信号由于多普勒效应,接收到的音频信号的频率相对于扬声器发出的音频信号的频率会减小。
在本实施例中,根据探测音频信号的音频参数和原始的音频参数,至少可 以确定麦克风和扬声器是相互靠近还是相互远离。
S1040、根据该相对状态,以及预设的相对状态与终端控制操作的对应关系确定待执行的终端控制操作;
为了实现本实施例对终端的灵敏控制,采用的是预先为多个终端控制操作设置对应的相对状态,在S1030中识别出相对状态后,就可以根据预设的对应关系直接获取到终端控制操作。
本实施例的终端控制操作根据终端类型的不同可以有所差异,以麦克风所在终端为手机为例,手机的终端控制操作包括手机的基本功能,如静音、震动以及飞行模式等状态的设置,也可以是前后摄像头的拍照或录像模式的打开,还可以是蓝牙,无线保真(WIreless-FIdelity,WI-FI),全球定位系统(Global Positioning System,GPS)无线功能的打开和建立,还可以是手机分屏功能的开启,还可以是声音或屏幕亮度的调节;手机的终端控制操作还包括对手机上的一些应用程序的操作,例如微信、QQ等应用界面的弹出,试听歌曲的下载等等,本实施例对此没有限制。在一个示例中,终端控制操作可以是只在本终端上实现的操作,还可以是需要和扬声器所在终端交互完成的操作。本实施例对此没有限制。
S1050、在麦克风所在终端上执行待执行的终端控制操作。
本实施例中,扬声器和麦克风所在终端存在以下的两种情况:一:扬声器和麦克风在同一个终端上;二:扬声器和麦克风在不同的终端上。
以下先基于麦克风与扬声器在同一终端下,如何实现终端控制进行说明,为了便于叙述将该同一终端命名为待控制终端,S1030中所说的相对状态是待控制终端上的扬声器和麦克风的相对状态。
在该场景下,S1030中根据音频参数和原始的音频参数,确定麦克风和扬声器分别所在的终端区域的相对状态包括:根据音频参数和原始的音频参数,确定待控制终端上麦克风和扬声器所在区域的相对状态;在麦克风所在终端上执行待执行的终端控制操作包括:在待控制终端上执行待执行的终端控制操作。
以下以待控制终端为不可折叠的终端为例进行示例说明,音频参数包括探测音频信号被麦克风接收时的实际频率,原始的音频参数包括探测音频信号从扬声器发射时的原始频率。我们都知道,麦克风和扬声器相互靠近,麦克风接收的音频信号的频率比扬声器发射音频信号时的频率大,麦克风和扬声器相互远离,麦克风接收的音频信号的频率比扬声器发射音频信号时的频率小。而在不可折叠的终端上,麦克风和扬声器之间的实际相对位置一般不会发生变化,所以在本实施例中,不可折叠的终端上麦克风和扬声器之间的相对状态中的相对运动是通过人工干预而产生的一种虚拟的相对运动。
根据音频参数和原始的音频参数,确定待控制终端上麦克风和扬声器所在区域的相对状态包括:若探测音频信号的实际频率低于探测音频信号的原始频率,则确定麦克风和扬声器所在区域的相对状态为虚拟的相互远离状态;若探测音频信号的实际频率高于探测音频信号的原始频率,则确定麦克风和扬声器所在区域的相对状态为虚拟的相互靠近状态。
在该不可折叠的待控制终端上,扬声器和/或麦克风的数量均可以是多个,本实施例对该扬声器和麦克风的数量以及设置位置没有限制。待控制终端的虚拟相对运动需要通过人为干涉来实现,例如,如图4所示,不可折叠的终端顶部设置有麦克风(Mic)A和扬声器(Speaker)A,底部设置有Mic B和Speaker B,图4中的阴影表示人手对MicA和B的手动干涉,该手动干涉可以使得Mic接收到的音频信号的频率相对于Speaker发出的音频信号的频率有所改变,相当于可折叠终端的折叠操作,例如,若手动干涉可以使得Mic接收到的音频信号的频率相对于Speaker发出的音频信号的频率变大,则麦克风和扬声器所在区域的相对状态为虚拟的相互靠近状态,相当于可折叠终端的合入操作;若手动干涉可以使得Mic接收到的音频信号的频率相对于Speaker发出的音频信号的频率变小,则麦克风和扬声器所在区域的相对状态为虚拟的相互远离状态,相当于可折叠终端的展开操作。在使用的过程中,Speaker A被触发后发射特定频率的音频信号,Mic A和Mic B同时接收该音频信号,当Mic A和Mic B两个Mic上方有手指阻挡,动作挥动时,两个Mic接收到的音频信号将会发生变化。通过该音频信号的变化或两个Mic接收到的信号差值,从而控制待控制终端对应的不同的功能调用或显示界面(如LCD界面)显示切换。类似的,用户的干涉动作也可以在两个Speaker上方进行,本实施例对此没有限制。
以下以待控制终端为可折叠的终端为例进行示例说明,该可折叠的性质可以基于柔性屏或终端的折叠部件产生,可折叠的终端的显示屏的数量没有限定制。例如,可折叠终端可以是柔性屏终端,双屏折叠终端如双屏折叠手机等。
在可折叠的待控制终端上,扬声器和麦克风中至少有一对扬声器和麦克风分别设置在该待控制终端的可折叠部分的两侧;如果是柔性屏终端,则一对扬声器和麦克风至少设置在待控制终端的顶部和底部的位置,如果是双面屏折叠终端,则至少一对扬声器和麦克风设置在可折叠部分的两侧。在一实施例中,上述所说的待控制终端上麦克风和扬声器所在区域的相对状态,在待控制终端为可折叠终端的场景下可以认为是待控制终端上可折叠部分的两侧的相对状态。
上述S1010中通过麦克风接收扬声器发射的满足预设探测频率的探测音频信号包括:通过麦克风接收位于待控制终端上的扬声器发射的满足预设探测频率的探测音频信号。为了能够识别可折叠部分的两侧的相对状态,上述的扬声器中至少包括一个与麦克风在可折叠部分不同侧的扬声器。在一实施例中,为 了避免干扰,不同扬声器发射的探测音频信号的频率不同。
为了增加相对状态的检测的精确度,可以增加位于待控制终端可折叠部分的两侧的扬声器和麦克风的对数。
下面以待控制终端为双屏折叠终端为例,结合图5进行多对麦克风和扬声器检测的示例说明。如图5所示,双屏折叠终端上具有两个屏幕,分别在两个屏幕的顶部和底部设置有Speaker A和Mic A,以及Speaker B和Mic B。基于终端上具有多个Speaker或Mic时,可以根据不同的麦克风和扬声器组成不同的检测组,为不同的检测组设置不同的检测功能的考虑。如图5所示,可分为1-4组检测组来实现探测音频信号的检测以及根据检测到的探测音频信号控制终端操作。图5的终端上1和2组的麦克风和扬声器对是位于待控制终端可折叠部分的两侧的,可以为可折叠部分的两侧的相对状态的识别提供两组音频参数,可以提高对待控制终端可折叠部分的两侧的相对状态(相对运动或相对静止状态)的判断的精准度。在一个示例中,位于可折叠部分同一侧的扬声器和麦克风,例如3组和4组,可以通过探测音频信号的音频参数对终端的其他状态信息进行检测,从而控制终端的其他功能,该其他状态信息和对应的功能可以根据用户的设置或终端的默认设置而定。例如,若是通过3组和4组检测出用户对终端发起了摇动的操作,则打开微信显示界面。
在本实施例中,可以根据用户想要通过相对状态触发的终端控制操作的数量来确定预设的相对状态与终端控制操作的对应关系中,相对状态的复杂程度,以及相对状态的相对运动设置时涉及的组成元素。
在一个示例中,相对静止状态包括:基于在可折叠部分的两侧相对静止的情况下,可折叠部分的两侧之间的角度描述的相对静止状态。例如,在待控制终端上可折叠部分的两侧之间的角度为180度,在待控制终端上可折叠部分的两侧之间的角度为90度等。
该相对静止状态是通过角度这一个组成元素来限定,对应控制的终端控制操作的数量比较少,但是用户操作简单且便于用户记忆折叠的角度和终端控制操作的关系。本实施例中,该终端控制操作可以是上述描述的多种操作。在一个实施例中,可以利用相对静止状态下的不同折叠角度来控制待控制终端的显示界面的切换。例如,如图6所示,当用户将双屏折叠终端(在一个示例中还可以是柔性屏终端)打到一定角度时,两个屏幕呈现出不同的显示内容。如图6中,在90度下显示A和B界面,在180度下切换到C和D界面,120度下切换到E和F界面。另外,待控制终端上可折叠部分的两侧之间的角度和待控制终端上可折叠部分的两侧的一对扬声器和麦克风的距离值可以是相互转化的。
在另一个示例中,相对运动的组成元素包括但不限于相对运动方向、相对速度等等。若是终端控制操作的数量较少,如只有两个,则相对运动可以设置 的非常简单,直接将相对运动设置为可折叠部分的两侧的展开和合入即可。但是如果终端控制操作的数量较多,则需要增加相对运动的组成元素。
在一实施例中,预设的相对状态与终端控制操作的对应关系中,相对运动包括:基于可折叠部分的两侧的相对运动方向描述的相对运动;相对运动方向包括展开或合入;和基于可折叠部分的两侧之间的角度、可折叠部分的两侧的相对速度、可折叠部分的两侧的在相对运动方向的运动次数中的至少一种,和可折叠部分的两侧的相对运动方向的组合描述的相对运动。
在一实施例中,预设的相对状态与终端控制操作的对应关系中,相对运动至少包括以下的几种设置方式。
1、基于可折叠部分的两侧的相对运动方向描述的相对运动,相对运动方向包括对可折叠终端的可折叠部分的两侧的展开和合入。
2、基于可折叠部分的两侧的相对运动方向和可折叠部分的两侧之间的角度描述的相对运动,例如展开到120度,合入到60度等等。
3、基于可折叠部分的两侧的相对运动方向和可折叠部分的两侧的相对速度描述的相对运动,例如,快速展开,快速合入,慢速展开以及慢速合入等等。
4、基于可折叠部分的两侧的相对运动方向和可折叠部分的两侧的在相对运动方向的运动次数描述的相对运动,例如,连续两次展开,连续三次合入,展开一次后合入一次等等。
5、基于可折叠部分的两侧的相对运动方向、可折叠部分的两侧之间的角度,和可折叠部分的两侧在相对运动方向的运动次数描述的相对状态,例如,连续两次展开90度,或从180度展开状态连续三次合入30度,或展开120度一次,再合入90度,或合入90度两次,再展开120度一次等等。
6、基于可折叠部分的两侧的相对运动方向、可折叠部分的两侧之间的角度,和可折叠部分的两侧的相对速度描述的相对状态,例如,快速展开到80度,慢速合入到120度等等。
7、基于可折叠部分的两侧的相对运动方向、可折叠部分的两侧在相对运动方向的运动次数,和可折叠部分的两侧的相对速度描述的相对状态,例如,快速合入两次,快速展开两次等等。
8、基于可折叠部分的两侧的相对运动方向、可折叠部分的两侧之间的角度,可折叠部分的两侧在相对运动方向的运动次数,和可折叠部分的两侧的相对速度描述的相对运动,例如,连续两次快速展开到90度,或从180度展开状态连续三次快速合入30度等等。
本实施例中,上述涉及到的组成相对运动的组成元素,通过对探测音频信号的检测都是可以得到的。
本实施例中,探测音频信号的音频参数包括麦克风接收时的实际频率、实际振幅、接收时间;探测音频信号原始的音频参数包括:发射时的原始频率、原始振幅、发射时间。
在根据音频参数和原始的音频参数,确定可折叠部分的两侧的相对状态时,基于以下的方法对相对静止状态和相对运动进行识别。
首先,从探测音频信号中获取与麦克风位于可折叠部分不同侧的扬声器发射的探测音频信号,并将获取的探测音频信号作为第一探测音频信号;当麦克风和扬声器只有一对时,可以直接将接收到的探测音频信号作为第一探测音频信号。考虑到若在待控制终端上设置了多对麦克风和扬声器,则麦克风接收到的探测音频信号可能包含与该麦克风在可折叠部分同侧的扬声器发出的探测音频信号,本实施例中,为了判断的准确性,通过上述的步骤进行第一探测音频信号的获取。
1、根据第一探测音频信号的原始频率和实际频率的大小,或根据第一探测音频信号的实际振幅的变化趋势,确定可折叠部分的两侧的相对运动方向。
参见图7,图7中以探测音频信号的原始频率为22KHz为例,示出了在相对速度不同的情况下的频偏检测结果。
如图7所示,对可折叠部分的两侧进行合入的时候,探测音频信号的实际频率相对于原始频率变大,在可折叠部分的两侧进行展开的时候,探测音频信号的实际频率相对于原始频率减小,所以根据第一探测音频信号的原始频率和实际频率的大小可以确定可折叠部分的两侧是展开还是合入。
而根据传输距离越远,音频信号的振幅衰减越大的规则,可以知道,若是可折叠部分的两侧进行合入,则接收的第一探测音频信号的实际振幅是逐渐增大的;与之相反的是,若是可折叠部分的两侧展开,则接收的第一探测音频信号的实际振幅是逐渐减小的,所以根据第一探测音频信号的实际振幅是逐渐增大还是逐渐减小可以确定可折叠部分两侧是展开还是合入。
2、根据第一探测音频信号的发射时间和接收时间,或根据第一探测音频信号的实际振幅和原始振幅,确定可折叠部分的两侧的夹角。
在实际中,我们知道,声音的传播速度是固定的,若是终端本身没有相对于外界移动,则当可折叠部分的两侧的夹角不同时,声音从可折叠部分的两侧的扬声器传输到麦克风所需的时间也是不同的。因为扬声器和麦克风在终端上的位置固定,根据声音从扬声器传输到麦克风所需的时间可以计算出从扬声器到麦克风的直线距离,根据该直线距离和扬声器以及麦克风在终端上的位置可以转换得到扬声器和麦克风所在平面的角度,也即可折叠部分两侧之间的角度。在另一个方案中,也可以先采集在可折叠部分的两侧之间的角度为不同值时, 第一探测音频信号从扬声器传输到麦克风所需的时间,获取该所需时间与可折叠部分的两侧之间的角度的对应关系模型,在音频检测的过程中根据第一探测音频信号的发射时间和接收时间确定传输时间,再将该传输时间和之前的对应关系模型进行比较和计算得到可折叠部分的两侧之间的角度。
对于利用第一探测音频信号的实际振幅和原始振幅,确定可折叠部分的两侧的夹角,也可以采用类似的方式,先采集在可折叠部分的两侧之间的角度为不同值时,第一探测音频信号从扬声器传输到麦克风的实际振幅,根据实际振幅和原始振幅确定振幅衰减情况,继而确定振幅衰减情况和可折叠部分的两侧之间的角度的对应关系模型,然后在音频检测的过程中当需要计算可折叠部分的两侧之间的角度时,获取实际振幅、原始振幅和上述的对应关系模型,得到可折叠部分的两侧之间的角度。
上述的方案可以用在计算相对静止状态下和相对运动中可折叠部分的两侧之间的角度。但是,在相互在静止状态下,计算的准确度更高。
在一实施例中,为了提高测得的可折叠部分的两侧(相对静止时)之间的角度的准确度,可以在扬声器和麦克风之间多次发射和接收音频信号,多次测得音频信号在扬声器和麦克风之间传输的时间,再对时间取平均值。例如,可以计算声波脉冲的N次传输需要的时间Δt,除以声波脉冲数N,得到单次脉冲的平均传输时间,将可折叠部分的两侧之间的不同角度对应的平均传输时间的测试值进行存储作为模型值。
3、根据第一探测音频信号的原始频率和实际频率的差值大小,或根据第一探测音频信号的实际振幅变化速度,确定可折叠部分的两侧的相对速度。
在一个示例中,可以根据第一探测音频信号的原始频率和实际频率的差值大小,确定可折叠部分两侧的相对速度。该相对速度可以仅仅是相对速度的等级如快速、慢速,还可以是相对速度的具体值。
参见图7可知,原始频率为22KHz的探测音频信号在慢速合入时,实际频率为22.125KHz,慢速合入对应的探测音频信号的频偏是0.125KHz,根据图7,中速合入时的频偏是0.350KHz,高速合入时的频偏是0.650KHz,不同速度展开时,频偏值大小的规律也是类似的。所以频偏值越大,对两个相对运动方向而言相对速度都越快。所以本实施例中,根据第一探测音频信号的原始频率和实际频率的差值大小,确定可折叠部分两侧的相对速度的快慢。
在一个示例中,可以预先划分多个等级的速度,如上述的慢速、中速、高速三个等级,为每个等级设置对应的不同的频偏值范围(一个示例中,不同的频偏值范围之间不重叠),当在音频检测过程中根据第一探测音频信号的原始频率和实际频率的差值大小确定频偏值后,可以根据预设的频偏值范围确定相对速度的等级。在一些实施例中,速度的等级还可以划分为两个、四个等等, 但是考虑到用户体验的问题,一般划分为不超过三个等级是比较合理的。
在一实施例中,若是可折叠部分的两侧进行合入,则接收的第一探测音频信号的实际振幅是逐渐增大的;与之相反的是,若是可折叠部分两侧展开,则接收的第一探测音频信号的实际振幅是逐渐减小的,若是合入(或展开)的速度越大,则实际振幅增加(或减少)的速度越快,所以可以根据第一探测音频信号的实际振幅增大或变小的速度,确定可折叠部分的两侧的相对速度的大小。
4、根据第一探测音频信号的实际频率相对于第一探测音频信号的原始频率变大或变小的次数,或根据第一探测音频信号的实际振幅增大或变小的次数,确定可折叠部分的两侧在相对运动方向的运动次数。
参见图7,根据图7最后一行的数据,可以得到原始频频率为22KHz的探测音频信号在可折叠部分的两侧先慢速展开再快速合入的时候,探测音频信号的实际频率的变化是先相对于原始频率降低,再相对于原始频率增加,基于这种规律,本实施例中探测音频信号的实际频率相对于原始频率降低的次数就是可折叠部分两侧的展开次数,探测音频信号的实际频率相对于原始频率增加的次数就是可折叠部分两侧的合入次数。
类似的,第一探测音频信号的实际振幅增加的次数为可折叠部分的两侧的合入次数,第一探测音频信号的实际振幅逐渐减小的次数为可折叠部分的两侧的展开次数。例如,一个第一探测音频信号的实际振幅的变化规律是实际在振幅先增加,再减小,再增加,再减小,则实际振幅增加的次数是两次,可折叠部分的两侧的合入的次数为两次,实际振幅减小的次数是两次,可折叠部分的两侧的展开的次数也是两次。
本实施例中,根据第一探测音频信号实际振幅增加和减少的顺序,可以得到可折叠部分的两侧合入和展开的顺序,根据第一探测音频信号实际频率相对于原始频率变大或变小的顺序,可以得到可折叠部分两侧合入和展开的顺序。
上述本实施例中基于探测音频信号得到上述可折叠部分的两侧之间的角度、可折叠部分的两侧的相对速度、可折叠部分的两侧的在相对运动方向的运动次数和可折叠部分的两侧的相对运动方向仅仅是为了示例说明,并不构成对本实施例基于探测音频信号实际的音频参数和原始的音频参数得到可折叠部分两侧的相对状态的方案的限制。
下面结合图8-图10,对可折叠的待控制终端上,通过用户折叠终端进行终端控制操作进行示例说明。
图8示出的是Speaker和Mic分别置于双屏折叠终端顶部和底部的布局时,探测音频信号传播示意图;图8中Speaker A和Mic B(或Speaker B和Mic A)之间的信号传输路线是沿着平行于终端的侧边的线路进行的。以Speaker A和 Mic B为例,当用户合入该双屏折叠终端时,Mic B接收Speaker A发送的满足预设探测频率的探测音频信号,根据该探测音频信号的实际频率相对于该探测音频信号发射时的原始频率增大的信息,确定用户进行的是合入双屏折叠终端的操作,在双屏折叠终端执行合入动作对应的终端控制操作;并且,在合入动作结束后,Mic B还可以通过接收Speaker A发送的满足预设探测频率的探测音频信号来确定合入后,音频信号从Speaker A到Mic B所需的时间,从而计算出Speaker A到Mic B的距离、以及合入后双屏的角度,类似的,在合入开始前,双屏的角度也可以通过该方式来计算。
图9示出的是Speaker和Mic分别置于双屏折叠终端同侧的布局时,探测音频信号沿对角传播的示意图;通过对对角传输的探测音频信号进行相对运动的检测实现终端控制。图9中Speaker A和Mic B(或Speaker B和Mic A)之间的信号传输路线是沿着终端的对角进行的。以Speaker A和Mic B为例,当用户展开该双屏折叠手机时,Mic B接收Speaker A发送的满足预设探测频率的探测音频信号,根据该探测音频信号的实际频率相对于该探测音频信号发射时的原始频率减小的信息,确定用户进行的是展开双屏折叠终端的操作,在双屏折叠终端执行展开动作对应的终端控制操作,并且,在展开动作结束后,Mic B还可以通过接收Speaker A发送的满足预设探测频率的探测音频信号来确定合入后,音频信号从Speaker A到Mic B所需的时间,从而计算出Speaker A到Mic B的距离、以及展开后双屏的角度,类似的,在双屏展开开始前,双屏的角度也可以通过该方式来计算。
对于柔性屏终端上扬声器和麦克风的设置和折叠动作的识别,与上述双屏折叠终端类似,在此不再赘述。本实施例中,还可以通过增加麦克风和/或扬声器的数量来增加折叠动作识别的准确性。
对于可折叠终端而言,可折叠终端的一种形式还可以是翻盖手机,图10中示出的是对翻盖手机的折叠运动状态的检测的示意图,翻盖手机上的Speaker和Mic分别置于上部屏幕上方和键盘的下部。当上下屏幕折叠机在展开或折叠过程中,置于键盘下部的mic接收到的由置于上部屏幕上方的Speaker发射的满足预设探测频率的探测音频信号的音频参数,会随着折叠的方向,速度,角度、次数的变化而发生变化,根据上述描述中的方法可以得到折叠动作的内容,根据不同的折叠动作显示对翻盖手机的不同终端控制操作,或者控制翻盖手机进入不同的画面显示。
为了提升实际使用中用户对终端的可折叠部分的两侧的相对状态和终端控制操作的对应关系的熟悉度,可折叠部分的两侧的相对状态和终端控制操作的对应关系可以由用户自己设定。
在预先设置相对状态与终端控制操作的对应关系时,可折叠部分的两侧的 相对状态的设置方式包括:在用户对待控制终端进行折叠操作时,实时获取待控制终端上可折叠部分的两侧的相对状态作为上述对应关系中的相对状态。
例如,在为一个终端控制操作设置对应的相对静止状态时,获取用户操作待控制终端后,可折叠部分的两侧之间的角度作为相对静止状态的组成元素。
或者,获取用户在用户输入界面上输入的相对状态参数得到对应关系中的相对状态。
在后一种设置方式中,终端可以为用户提供如图11所示的显示界面,让用户勾选音频状态检测对应的手机功能,如图12所示的不同动作元素组合及终端控制操作示例,用户可以将绝大部分手机功能勾选为音频状态检测对应的终端控制操作,如手机的飞行模式,静音,震动,手电筒,音量调节,屏幕亮度调节,智能省电,WI-FI,蓝牙,GPS,近距离无线通讯技术(Near Field Communication,NFC),数据业务的打开与关闭等。
在选择终端控制操作后,终端可以向用户显示每一个终端控制操作的相对运动输入界面,如图13所示的折叠动作输入方式选择界面,为用户提供参数设置和实时检测两种方式,在参数设置方式中,用户可通过显示界面在如图12所示的合入/展开,合入次数/展开次数,可折叠部分的两侧之间的角度,可折叠部分的两侧的相对速度四种组成元素中选择组成元素组成自定义的折叠动作。在一个示例中,若是使用参数设置方式设置控制终端控制操作的相对静止状态,则可以只对可折叠部分的两侧之间的角度进行设置。在实时检测的方式中,用户对终端进行折叠,终端检测折叠动作,完成将折叠动作与终端控制操作的映射。
另外,在一个示例中,可折叠部分的两侧的相对状态和终端控制操作的对应关系也可以由终端默认设置提供给用户。
以下是对麦克风与扬声器在不同终端下,如何实现终端控制进行说明。
根据实施例前部分的内容,麦克风与扬声器在不同终端,扬声器所在终端命名为发射终端,麦克风所在终端命名为接收终端。在一实施例中,发射终端的数量为至少一个,为了对发射终端和接收终端的相对状态进行准确的检测,一个发射终端发射探测音频信号的扬声器的数量可以是多个,为了便于分辨发射终端以及避免干扰,不同的扬声器发射的探测音频信号的频率不同。
在一个示例中,S1050中执行的终端控制操作包括接收终端和发射终端的交互操作。该交互操作包括蓝牙连接以及数据传输等等。
下面的叙述都以一个发射终端为例,多个发射终端时,在接收终端的控制方式是类似的。
在麦克风与扬声器在不同终端上的场景下,预设的相对状态与终端控制操 作的对应关系中的相对状态包括相对运动和相对静止状态。
相对运动包括:基于接收终端与发射终端的相对运动方向描述的相对运动;相对运动方向包括:相对靠近和相对远离;和,基于接收终端和发射终端在相对运动方向的运动次数以及接收终端和发射终端的相对速度中的至少一种和接收终端和发射终端的相对运动方向描述的相对运动。
在一实施例中,相对运动包括如下相对运动。
1、基于接收终端与发射终端的相对运动方向描述的相对运动,例如,接收终端和发射终端相对远离或相对接近。
2、基于接收终端与发射终端的相对运动方向、在相对运动方向的运动次数描述的相对运动,例如,接收终端和发射终端相对远离一次后相对接近,再相对远离。
3、基于接收终端与发射终端的相对运动方向以及接收终端和发射终端的相对速度描述的相对运动,例如,接收终端和发射终端的相对快速远离,接收终端和发射终端的相对快速接近。
4、基于接收终端与发射终端的相对运动方向、在相对运动方向的运动次数、接收终端和发射终端的相对速度描述的相对运动,例如,接收终端和发射终端的相对快速远离一次后慢速接近一次。
上述描述的相对状态都是相对运动,在一个示例中,该相对状态可以是相对静止状态。接收终端和发射终端之间相对静止。
在一个示例中,探测音频信号的音频参数包括实际频率和实际振幅,探测音频信号的原始的音频参数包括原始频率,在根据音频参数和原始的音频参数,确定接收终端和发射终端的相对运动时,基于以下的方法确定相对运动。
根据实际频率相对于原始频率为变大或变小,确定接收终端和发射终端的相对运动方向;其中,变大为相对靠近,变小为相对远离。
根据实际频率相对于原始频率变大或变小的次数,确定接收终端和发射终端在相对运动方向的运动次数;或,根据实际振幅增大或变小的次数确定接收终端和发射终端在相对运动方向的运动次数;详细的示例说明参考对上述对可折叠终端中的类似说明,在此不再赘述。
根据实际频率与原始频率的差值的大小,确定接收终端和发射终端的相对速度;或,根据实际振幅增大或变小的速度,确定接收终端和发射终端的相对速度;详细的示例说明参考对上述对可折叠终端中的类似说明,在此不再赘述。
下面结合图14对扬声器和麦克风分属于两个手机时,两个手机通过相对运动触发交互操作的方案进行说明。
如下图14所示,电话(Phone)A上的Speaker A被触发后发射特定频率(满足预设探测频率)的音频信号,Phone B上的Mic B同时接收该音频信号,当Phone B向着Phone A移动或背向Phone A移动时,Mic B接收到的音频信号将会发生变化。通过该音频参数的变化,和对应的参数模型阈值相比较,从而实现两个手机之间对应的不同的功能调用和互联,比如连接蓝牙,WI-FI,文件传输等。
在实际中,外界环境中一般存在噪音,该噪音可能是环境噪音,或其他的电子设备发出的噪音,这些噪音的频率很可能在我们使用的预设探测频率范围内。为了避免这些噪音对本实施例S1010-S1030音频检测过程产生干扰,形成对终端控制操作的误触发,需要将扬声器产生的特定音频信号(一般为高频信号)分离,同时抑制其他干扰信号,这里主要通过终端内置的音频滤波器件完成。音频接收时只接收扬声器发出的特定频率范围(满足预设探测频率的范围)内的音频信号。考虑到本实施例中扬声器和麦克风的距离一般较近,麦克风接收的扬声器发射的音频信号的实际振幅相对环境噪声和其他电子产品噪声的振幅是有明显的区别的。所以可以将实际振幅的因素考虑进来筛选探测音频信号。另外,考虑到当有其周围他设备也在发射高频信号并做移动时,由于距离和角度不一样,所以频移值大小也会不一样,由于麦克风和扬声器的距离最近,所以可以获得最大的多普勒频移,因此还可以将多个探测音频信号的频移值考虑进来筛选探测音频信号
在麦克风接收扬声器发射的满足预设探测频率的探测音频信号后,还包括:通过以下的至少一种方式判断探测音频信号是否为有效探测音频信号。
获取探测音频信号的实际振幅,当探测音频信号的实际振幅满足预设振幅范围,则判断探测音频信号为有效探测音频信号,过滤掉其他不满足预设振幅范围的音频信号。
或,获取多个探测音频信号的频移值,将频移值最大的探测音频信号作为有效的探测音频信号。
上述第一种方式的判断方式适用于可折叠、不可折叠的待控制终端以及发射终端和接收终端之间。
对于可折叠的待控制终端,沿着固定的折叠部分折叠时,扬声器和麦克风的距离范围是固定的,这就表示扬声器发射的音频信号达到麦克风时的实际振幅范围固定的(在没有障碍物的情况下)。所以一个示例中,当扬声器和麦克风在同一终端的场景下,该同一终端为可折叠的待控制终端;预设振幅范围是待控制终端的扬声器发射的固定幅度的探测音频信号,在待控制终端的不同折叠角度下,探测音频信号被麦克风接收时的实际振幅范围。
其中,这个预设振幅范围的最大值,为以固定振幅发射的探测音频信号在 扬声器和麦克风的距离最近时,被麦克风接收时的实际振幅,这个预设振幅范围的最小值,为以同样的固定振幅发射的探测音频信号在扬声器和麦克风的距离最远时,被麦克风接收时的实际振幅。其他场景下的振幅范围可以以类似的方式得到。
第二种方式中,由于只选了一个探测音频信号为有效的探测音频信号,所以比较适合于发射探测音频信号的扬声器只有一个场景。
若是将扬声器和麦克风一直开启进行探测音频信号的发射和接收,会浪费资源和电量,缩短续航时间,降低用户体验。所以本实施例中在S1010之前,需要有一种触发音频检测的触发控制策略,根据该触发控制策略判断是否使得扬声器持续发射发射探测音频信号,麦克风所在终端是否进行探测音频信号的持续获取、检测和计算等等。
在一个示例中,触发控制策略为:在判断探测音频信号是否为有效的探测音频信号前,还包括:在麦克风关闭的状态下,检测用户是否通过按键操作、手势操作或触控操作触发麦克风所在终端的音频检测功能开启,若检测到通过按键操作、手势操作或触控操作触发麦克风所在终端的音频检测功能开启,则开启麦克风进行探测音频信号的获取;若未检测到通过按键操作、手势操作或触控操作触发麦克风所在终端的音频检测功能开启,则不开启麦克风;其中,若麦克风和扬声器在同一终端,则同时开启该终端的扬声器和麦克风。
本实施例中,按键操作包括长按终端功能键一定时长,如长按音量加或音量减的按键,或包括不同按键操作和按键时长的组合,如按压音量加的按键超过第一预设时长之后按压电源键一次。
用户终端上一般都设置有一些传感器,如陀螺仪或加速度传感器等等,这些传感器在终端处于静止状态时,将不会工作;而当终端运动时,这些传感器中的一个或全部传感器可以进行工作获取数据,所以可以通过这些传感器是否工作以及工作时获取的数据来判断是否触发麦克风和扬声器的开启。
为了防止终端在运动过程中,而用户本身没有对终端做任何操作,如用户在跑步中,或终端放置在车上等,此时虽然多个传感器检测到的值发生了变化,但变化值是持续且相对规则的,此时如果麦克风接收到的是同频信号,则判断终端的运动是由外界的运动产生,用户没有操作。
所以,在另一个示例中,触发控制策略为:在判断探测音频信号是否为有效的探测音频信号前,还包括:监测麦克风所在终端的预设传感器是否工作,根据预设传感器检测到的信号判断麦克风所在终端的运动是否由终端外部的运动产生;若终端的运动是由终端外部的运动产生,则不开启麦克风,若终端的运动不是由终端外部的运动产生,则开启麦克风进行探测音频信号的获取;其中,若麦克风和扬声器在同一终端,则同时开启该终端的扬声器和麦克风。
在一实施例中,预设的传感器是可以检测终端是否运动的传感器,包括但不限于陀螺仪,加速度传感器等。
在一实施例中,根据预设传感器检测到的信号判断麦克风所在终端的运动是否由终端外部的运动产生包括:若检测到传感器工作,则获取传感器检测到的信号;判断信号是否持续且相对规则;若信号是持续且相对规则,则麦克风所在终端的运动由终端外部的运动产生;若信号不是持续或不规则,则麦克风所在终端的运动不是由终端外部的运动产生
通过上述的方法,精确了何时开启扬声器和麦克风进行音频探测信号的发射和接收,但是,为了避免在用户未操作终端的情况下错误地打开扬声器和麦克风进行探测音频信号的传输,造成资源的浪费,降低终端续航,在上述开启麦克风和扬声器之后,还可以设置一个初步探测过程,先控制扬声器在一定时长内发射探测音频信号,若检测到探测音频信号未发生频偏,则及时关闭扬声器和麦克风,降低资源浪费,若监测到频偏,则继续探测音频信号的发射和接收。
在一实施例中,在开启麦克风和扬声器进行探测前,可以先一步采取措施使得外界噪声不对探测音频信号产生大的干扰。例如,可以通过避免探测音频信号与外界噪声的频率相同来实现。
本实施例中,还可以通过一种低功耗睡眠唤醒算法来降低麦克风和扬声器一直开启对能量的消耗。该低功耗睡眠唤醒算法控制麦克风周期性地唤醒,监听是否有扬声器发出的满足预设探测频率的探测音频信号,若监听到满足预设探测频率的探测音频信号,则进入正式的音频检测,若未监听到满足预设探测频率的探测音频信号,则关闭麦克风。或者该低功耗睡眠唤醒算法控制同一个终端上的麦克风和扬声器同时开启,扬声器发射满足预设探测频率的探测音频信号,若麦克风接收的探测音频信号没有发生多普勒频移,则直接关闭扬声器和麦克风,若发生多普勒频移,则判断该多普勒频移是由终端外部的运动产生还是终端本身的运动产生。
本实施例中,在扬声器发射探测音频信号前,还包括:获取扬声器外部的环境噪声,若环境噪声的频率与预设探测频率有重合,则选择预设探测频率中与环境噪声的频率不同的频率作为将要发射的探测音频信号的频率。
采用本实施例,在折叠终端时,通过特定频率的探测音频信号的发射和接收,可以准确判断出折叠动作,进而确定折叠动作对应的终端控制操作,在双屏折叠终端上执行该终端控制操作,避免了用户直接对触控屏操作需要点亮和操作多种软件图标的过程,为用户提供了一种非触控的终端便捷操作方法,有利于提升用户体验。
第二实施例:
下面结合图15以可折叠的双屏折叠手机为例,对通过音频信号检测双屏折叠手机的折叠操作,进而实现终端控制的方法进行示例说明。假设折叠手机上每一个屏幕的上部和下部都分别设置有扬声器和麦克风,位于第一屏幕一侧的第一扬声器和位于第二屏幕一侧的第二麦克风为一对检测组。下面以第一扬声器和第二麦克风之间为例说明终端控制过程。
如图15所示,本实施例的终端控制方法包括如下步骤。
S15010、用户开启端音频实时状态检测及应用功能,勾选对应的终端控制操作和折叠动作设置。
S15020、通过触发控制策略判断是否打开第一扬声器和第二麦克风进行音频检测;若确定打开第一扬声器和第二麦克风进行音频检测,进入S15030,若确定不打开第一扬声器和第二麦克风进行音频检测,则保持第一扬声器和第二麦克风关闭。
触发控制策略见实施例一的相关叙述。
S15030、第一扬声器发射22KHz的探测音频信号。
S15040、第二麦克风接收该探测音频信号并采集探测音频信号。
S15050、对采集到的探测音频信号进行滤波,采样,时域-频域变换及多普勒频移的计算。
S15060、计算探测音频信号的实际振幅及到探测音频信号从第一扬声器到第二麦克风传输所需时间等辅助音频参数。
S15070、检测当前折叠手机接收的探测音频信号的频率变化,和/或传输所需时间变化等参数,和/或实际振幅变化等参数,确定当前折叠手机的折叠操作。
S15080、根据当前的折叠操作,以及预设的折叠操作和终端控制操作的对应关系,确定待执行的终端控制操作。
S15090、在折叠手机上执行该终端控制操作。
采用本实施例,在折叠手机上通过特定频率的探测音频信号的发射和接收,可以准确判断出用户的折叠动作,进而确定折叠动作对应的终端控制操作,在双屏折叠终端上执行该终端控制操作,避免了用户直接对触控屏操作需要点亮和操作多种软件图标的过程,为用户提供了一种非触控的终端便捷操作方法,有利于提升用户体验。
第三实施例:
如图16所示,在本实施例中,还提供一种终端包括处理器161、存储器162及通信总线163;通信总线163设置为实现处理器161和存储器162之间的连接通信;处理器161设置为执行存储器162中存储的至少一个程序,以实现如上所述的终端控制方法。
在一实施例中,本实施例还提出一种计算机可读存储介质,计算机可读存储介质存储有至少一个程序,至少一个程序可被至少一个处理器执行,以实现如上所述的终端控制方法。
上述本公开实施例的至少一个模块或至少一步骤可以用通用的计算装置来实现,上述至少一模块或至少一个步骤可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施例中,上述至少一模块或至少一个步骤可以用计算装置可执行的程序代码来实现,从而,可以将至少一模块或至少一个步骤存储在计算机存储介质(只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将上述至少一模块或至少一个步骤中的多个模块或步骤制作成单个集成电路模块来实现。所以,本公开不限制于任何特定的硬件和软件结合。

Claims (18)

  1. 一种终端控制方法,包括:
    通过麦克风接收扬声器发射的满足预设探测频率的探测音频信号;
    获取所述探测音频信号被所述麦克风接收时的实际的音频参数,和所述探测音频信号从所述扬声器发射时的原始的音频参数;
    根据所述实际的音频参数和所述原始的音频参数,确定所述麦克风和所述扬声器的相对状态;
    根据所述相对状态,以及预设的相对状态与终端控制操作的对应关系确定待执行的终端控制操作;
    在所述麦克风所在终端上执行所述待执行的终端控制操作。
  2. 如权利要求1所述的终端控制方法,其中,所述麦克风与所述扬声器在同一终端上,所述同一终端为待控制终端;
    所述根据所述实际的音频参数和所述原始的音频参数,确定所述麦克风和所述扬声器的相对状态包括:
    根据所述实际的音频参数和所述原始的音频参数,确定所述待控制终端上所述麦克风和所述扬声器的相对状态;
    所述在所述麦克风所在终端上执行所述待执行的终端控制操作包括:
    在所述待控制终端上执行所述待执行的终端控制操作。
  3. 如权利要求1所述的终端控制方法,其中,所述麦克风与所述扬声器在不同终端上,所述麦克风所在终端为接收终端,所述扬声器所在终端为发射终端;
    所述根据所述实际的音频参数和所述原始的音频参数,确定所述麦克风和所述扬声器的相对状态包括:
    根据所述实际的音频参数和所述原始的音频参数,确定所述接收终端和所述发射终端的相对状态;
    所述在所述麦克风所在终端上执行所述待执行的终端控制操作包括:
    在所述接收终端上执行所述待执行的终端控制操作。
  4. 如权利要求2所述的终端控制方法,其中,所述待控制终端不可折叠, 所述实际的音频参数包括所述探测音频信号被所述麦克风接收时的实际频率,所述原始的音频参数包括所述探测音频信号从所述扬声器发射时的原始频率;
    所述根据所述实际的音频参数和所述原始的音频参数,确定所述待控制终端上所述麦克风和所述扬声器的相对状态包括:
    若所述探测音频信号的实际频率低于所述探测音频信号的原始频率,则确定所述麦克风和所述扬声器的相对状态为虚拟的相互远离状态;
    若所述探测音频信号的实际频率高于所述探测音频信号的原始频率,则确定所述麦克风和所述扬声器的相对状态为虚拟的相互靠近状态。
  5. 如权利要求2所述的终端控制方法,其中,所述待控制终端可折叠,所述扬声器中存在至少一个扬声器与所述麦克风在所述待控制终端的可折叠部分的不同侧;所述待控制终端上所述麦克风和所述扬声器的相对状态为所述待控制终端上所述可折叠部分的两侧的相对状态;
    所述通过所麦克风接收扬声器发射的满足预设探测频率的探测音频信号包括:
    通过麦克风接收位于所述待控制终端上的至少一个扬声器发射的满足预设探测频率的探测音频信号;其中,不同的扬声器发射的探测音频信号的频率不同。
  6. 如权利要求5所述的终端控制方法,其中,所述预设的相对状态与终端控制操作的对应关系中,所述相对状态包括:相对静止状态和相对运动;
    所述相对静止状态包括:
    基于在所述可折叠部分的两侧相对静止的情况下,所述可折叠部分的两侧之间的角度描述的相对静止状态;
    所述相对运动包括:
    基于所述可折叠部分的两侧的相对运动方向描述的相对运动;所述相对运动方向包括展开或合入;
    和,基于所述可折叠部分的两侧之间的角度、所述可折叠部分的两侧的相对速度、所述可折叠部分的两侧的在相对运动方向的运动次数中的至少一种, 和所述可折叠部分的两侧的相对运动方向的组合描述的相对运动。
  7. 如权利要求6所述的终端控制方法,其中,所述实际的音频参数包括实际频率、实际振幅和接收时间;所述原始的音频参数包括:原始频率、原始振幅和发射时间;
    在根据所述实际的音频参数和所述原始的音频参数,确定所述可折叠部分的两侧的相对状态的情况下,基于以下的方法对所述相对静止状态和所述相对运动进行识别:
    从所述探测音频信号中获取与所述麦克风位于所述可折叠部分不同侧的扬声器发射的探测音频信号作为第一探测音频信号;
    根据所述第一探测音频信号的原始频率和实际频率的大小,或根据所述第一探测音频信号的实际振幅的变化趋势,确定所述可折叠部分的两侧的相对运动方向;
    根据所述第一探测音频信号的发射时间和接收时间,或根据所述第一探测音频信号的实际振幅和原始振幅,确定所述可折叠部分的两侧之间的角度;
    根据所述第一探测音频信号的原始频率和实际频率的差值大小,或根据所述第一探测音频信号的实际振幅变化速度,确定所述可折叠部分的两侧的相对速度;
    根据所述第一探测音频信号的实际频率相对于所述第一探测音频信号的原始频率变大或变小的次数,或根据所述第一探测音频信号的实际振幅变大或变小的次数,确定所述可折叠部分的两侧在相对运动方向的运动次数。
  8. 如权利要求6所述的终端控制方法,其中,在预先设置相对状态与终端控制操作的对应关系的情况下,所述相对状态的获取方式包括:
    在设置终端控制操作对应的相对状态且所述待控制终端进行折叠操作的情况下,获取所述待控制终端上所述可折叠部分的两侧的相对状态作为所述对应关系中所述终端控制操作对应的相对状态;
    或者,获取输入界面上输入的相对状态参数,得到所述对应关系中的相对状态。
  9. 如权利要求3所述的终端控制方法,其中,所述终端控制操作包括所述 接收终端和所述发射终端的交互操作。
  10. 如权利要求3所述的终端控制方法,其中,所述预设的相对状态与终端控制操作的对应关系中的所述相对状态包括:
    基于所述接收终端与所述发射终端的相对运动方向描述的相对运动;所述相对运动方向包括:相对靠近和相对远离;
    和,基于所述接收终端和所述发射终端在所述相对运动方向的运动次数以及所述接收终端和所述发射终端的相对速度中的至少一种和所述接收终端和所述发射终端的相对运动方向组合描述的相对运动。
  11. 如权利要求10所述的终端控制方法,其中,所述实际的音频参数包括实际频率和实际振幅,所述原始的音频参数包括原始频率;
    在根据所述实际的音频参数和所述原始的音频参数,确定所述接收终端和所述发射终端的相对运动的情况下,基于以下的方法确定所述相对运动;
    根据所述实际频率相对于所述原始频率为变大或变小,确定所述接收终端和所述发射终端的相对运动方向;
    根据所述实际频率相对于所述原始频率变大或变小的次数,确定所述接收终端和所述发射终端在所述相对运动方向的运动次数;或,根据所述实际振幅增大或变小的次数确定所述接收终端和所述发射终端在所述相对运动方向的运动次数;
    根据所述实际频率与所述原始频率的差值的大小,确定所述接收终端和所述发射终端的相对速度;或,根据所述实际振幅增大或变小的速度,确定所述接收终端和所述发射终端的相对速度。
  12. 如权利要求1-11任一项所述的终端控制方法,在通过麦克风接收扬声器发射的满足预设探测频率的探测音频信号之后,还包括:
    通过以下方式判断所述探测音频信号是否为有效的探测音频信号:
    获取多个探测音频信号的实际振幅,当目标探测音频信号的实际振幅满足预设振幅范围,则将所述目标探测音频信号作为有效的探测音频信号;
    或,获取多个探测音频信号的频移值,将频移值最大的探测音频信号作为 有效的探测音频信号。
  13. 如权利要求12所述的终端控制方法,其中,在所述扬声器和所述麦克风在同一终端的场景下,且所述同一终端为可折叠的待控制终端;
    所述预设振幅范围是所述待控制终端的扬声器发射的固定幅度的探测音频信号,在所述待控制终端的多个折叠角度下,所述探测音频信号被所述麦克风接收时的实际振幅的范围。
  14. 如权利要求12所述的终端控制方法,在判断所述探测音频信号是否为有效的探测音频信号之前,还包括:
    在所述麦克风关闭的状态下,检测是否通过按键操作、手势操作或触控操作触发所述麦克风所在终端的音频检测功能开启,若检测到通过按键操作、手势操作或触控操作触发所述麦克风所在终端的音频检测功能开启,则开启所述麦克风进行所述探测音频信号的获取;若未检测到通过按键操作、手势操作或触控操作触发所述麦克风所在终端的音频检测功能开启,则不开启所述麦克风;其中,若所述麦克风和所述扬声器在同一终端,则同时开启所述扬声器和所述麦克风;
    或者,监测所述麦克风所在终端的预设传感器是否工作,在所述预设传感器工作的情况下,根据所述预设传感器检测到的信号判断所述麦克风所在终端的运动是否由所述终端外部的运动产生;若所述麦克风所在终端的运动是由所述终端外部的运动产生,则不开启所述麦克风,若所述麦克风所在终端的运动不是由所述终端外部的运动产生,则开启所述麦克风进行所述探测音频信号的获取;其中,若所述麦克风和所述扬声器在同一终端,则同时开启所述扬声器和所述麦克风。
  15. 如权利要求14所述的终端控制方法,其中,所述在所述预设传感器工作的情况下,根据所述预设传感器检测到的信号判断所述麦克风所在终端的运动是否由所述终端外部的运动产生包括:
    若监测到所述预设传感器工作,则获取所述预设传感器检测到的信号;
    判断所述信号是否持续且相对规则;
    若所述信号持续且相对规则,则所述麦克风所在终端的运动由所述终端外 部的运动产生;若所述信号不持续或不规则,则所述麦克风所在终端的运动不是由所述终端外部的运动产生
  16. 如权利要求2、4-8任一项所述的终端控制方法,在扬声器发射所述探测音频信号之前,还包括:
    获取所述扬声器外部的环境噪声,若所述环境噪声的频率与所述预设探测频率有重合,则选择所述预设探测频率中与所述环境噪声的频率不同的频率作为发射的探测音频信号的频率。
  17. 一种终端,所述终端包括处理器、存储器及通信总线;
    所述通信总线设置为实现所述处理器和所述存储器之间的连接通信;
    所述处理器设置为执行存储器中存储的至少一个程序,以实现如权利要求1至16中任一项所述的终端控制方法。
  18. 一种计算机可读存储介质,所述计算机可读存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1至16中任一项所述的终端控制方法。
PCT/CN2018/125011 2017-12-28 2018-12-28 终端控制方法、终端及计算机可读存储介质 WO2019129230A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/892,159 US11568888B2 (en) 2017-12-28 2020-06-03 Terminal control method, terminal and non-transitory computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711466427.0A CN109976625B (zh) 2017-12-28 2017-12-28 一种终端控制方法、终端及计算机可读存储介质
CN201711466427.0 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/892,159 Continuation US11568888B2 (en) 2017-12-28 2020-06-03 Terminal control method, terminal and non-transitory computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019129230A1 true WO2019129230A1 (zh) 2019-07-04

Family

ID=67063263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125011 WO2019129230A1 (zh) 2017-12-28 2018-12-28 终端控制方法、终端及计算机可读存储介质

Country Status (3)

Country Link
US (1) US11568888B2 (zh)
CN (1) CN109976625B (zh)
WO (1) WO2019129230A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568888B2 (en) 2017-12-28 2023-01-31 Zte Corporation Terminal control method, terminal and non-transitory computer readable storage medium

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111078178B (zh) * 2018-10-19 2023-09-01 青岛海信移动通信技术有限公司 弯折角度的确定方法、装置、设备及存储介质
US11157058B2 (en) * 2019-05-29 2021-10-26 Motorola Mobility Llc Setting polling interval of open/closed position sensor for a movable portion of an electronic device based on activity state of the electronic device
CN110580141B (zh) * 2019-08-07 2022-09-30 上海摩软通讯技术有限公司 移动终端
CN111770233B (zh) * 2020-06-23 2021-06-11 Oppo(重庆)智能科技有限公司 一种频率补偿方法及终端设备
CN112261180B (zh) * 2020-10-12 2022-03-08 维沃移动通信有限公司 电子设备、电子设备的控制方法
US20220310111A1 (en) * 2021-03-23 2022-09-29 International Business Machines Corporation Superimposing high-frequency copies of emitted sounds
KR20220134308A (ko) * 2021-03-26 2022-10-05 삼성전자주식회사 음성 신호 처리를 위한 전자 장치 및 방법
CN113208253B (zh) * 2021-04-30 2023-12-19 深圳市中诺通讯有限公司 一种保护套和保护套控制数码产品的方法
CN118118584A (zh) * 2021-04-30 2024-05-31 深圳市中诺通讯有限公司 一种控制数码产品的方法
CN117056895A (zh) * 2022-05-07 2023-11-14 华为技术有限公司 目标设备选择的识别方法、终端设备、系统和存储介质
CN115065748A (zh) * 2022-06-08 2022-09-16 西安维沃软件技术有限公司 录制方法、装置和可折叠终端
CN115996346A (zh) * 2022-11-18 2023-04-21 深圳市维仕声学有限公司 一种扬声器控制方法及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276514A (zh) * 2008-03-31 2008-10-01 深圳创维-Rgb电子有限公司 一种电子设备的控制方法、系统及装置
CN103116976A (zh) * 2012-11-09 2013-05-22 魏显辉 基于声频信号无线控制智能电话或平板电脑的方法及系统
US20150063587A1 (en) * 2013-09-05 2015-03-05 Lg Electronics Inc. Electronic device and control method thereof
US20150200638A1 (en) * 2014-01-13 2015-07-16 Samsung Electronics Co., Ltd. Audio output control method and electronic device supporting the same
CN105246015A (zh) * 2015-11-11 2016-01-13 上海斐讯数据通信技术有限公司 一种电子设备及其扬声器音源的检测方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111896B (fi) * 1995-11-24 2003-09-30 Nokia Corp Kaksitoimisen tiedonvälityslaitteen käyttöä helpottava toiminto ja kaksitoiminen tiedonvälityslaite
US8391851B2 (en) * 1999-11-03 2013-03-05 Digimarc Corporation Gestural techniques with wireless mobile phone devices
US7180502B2 (en) * 2004-03-23 2007-02-20 Fujitsu Limited Handheld device with preferred motion selection
US20060132431A1 (en) * 2004-12-17 2006-06-22 Eliezer Oren E Multi-function digital device as a human-input-device for a computer
US20090265671A1 (en) * 2008-04-21 2009-10-22 Invensense Mobile devices with motion gesture recognition
US8516561B2 (en) * 2008-09-29 2013-08-20 At&T Intellectual Property I, L.P. Methods and apparatus for determining user authorization from motion of a gesture-based control unit
US8543061B2 (en) * 2011-05-03 2013-09-24 Suhami Associates Ltd Cellphone managed hearing eyeglasses
KR20140051994A (ko) * 2011-07-28 2014-05-02 톰슨 라이센싱 오디오 교정 시스템 및 방법
TW201319927A (zh) * 2011-11-02 2013-05-16 Quanta Comp Inc 音訊處理系統及音訊暫存器之調整方法
US8749485B2 (en) * 2011-12-20 2014-06-10 Microsoft Corporation User control gesture detection
CN103379194A (zh) 2012-04-24 2013-10-30 易晓军 防摔手机膜
CN103645869A (zh) 2013-11-15 2014-03-19 飞依诺科技(苏州)有限公司 防止显示器跌落的装置及方法
CN103645848B (zh) * 2013-12-13 2016-08-24 广东小天才科技有限公司 一种基于超声波的终端控制方法和终端控制装置
US9733714B2 (en) * 2014-01-07 2017-08-15 Samsung Electronics Co., Ltd. Computing system with command-sense mechanism and method of operation thereof
CN105094298B (zh) 2014-05-13 2018-06-26 华为技术有限公司 终端以及基于该终端的手势识别方法
US9794692B2 (en) * 2015-04-30 2017-10-17 International Business Machines Corporation Multi-channel speaker output orientation detection
CN105045385A (zh) 2015-06-29 2015-11-11 山东超越数控电子有限公司 一种基于双麦克的终端手势识别方法
CN105388458A (zh) * 2015-11-19 2016-03-09 广州杰赛科技股份有限公司 一种球状传感器及侦测系统
CN105785353B (zh) 2016-03-30 2018-05-11 南京大学 一种基于可穿戴音频设备的行人相对位置定位方法
CN106056061B (zh) 2016-05-26 2019-05-21 南京大学 一种基于可穿戴设备的日常抽烟行为检测方法
CN106484359B (zh) 2016-10-31 2019-12-27 维沃移动通信有限公司 一种手势控制的方法及移动终端
CN109976625B (zh) 2017-12-28 2022-10-18 中兴通讯股份有限公司 一种终端控制方法、终端及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101276514A (zh) * 2008-03-31 2008-10-01 深圳创维-Rgb电子有限公司 一种电子设备的控制方法、系统及装置
CN103116976A (zh) * 2012-11-09 2013-05-22 魏显辉 基于声频信号无线控制智能电话或平板电脑的方法及系统
US20150063587A1 (en) * 2013-09-05 2015-03-05 Lg Electronics Inc. Electronic device and control method thereof
US20150200638A1 (en) * 2014-01-13 2015-07-16 Samsung Electronics Co., Ltd. Audio output control method and electronic device supporting the same
CN105246015A (zh) * 2015-11-11 2016-01-13 上海斐讯数据通信技术有限公司 一种电子设备及其扬声器音源的检测方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568888B2 (en) 2017-12-28 2023-01-31 Zte Corporation Terminal control method, terminal and non-transitory computer readable storage medium

Also Published As

Publication number Publication date
US11568888B2 (en) 2023-01-31
CN109976625A (zh) 2019-07-05
CN109976625B (zh) 2022-10-18
US20200294533A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019129230A1 (zh) 终端控制方法、终端及计算机可读存储介质
US9958950B2 (en) Detector
EP2820536B1 (en) Gesture detection based on information from multiple types of sensors
US20180286394A1 (en) Processing method and electronic device
JP5670579B2 (ja) 第一のモードから第二のモードへの複数のマイクロフォンの移行
TWI684116B (zh) 終端狀態判斷方法、裝置及終端
WO2017133190A1 (zh) 一种基于耳机的智能设备控制方法、装置及系统
CN109407921B (zh) 一种应用程序的处理方法及终端设备
WO2021043029A1 (zh) 一种切换应用的方法及电子设备
WO2018223535A1 (zh) 一种移动终端的振动提醒方法和移动终端
CN111083684A (zh) 控制电子设备的方法及电子设备
US20170336848A1 (en) Information processing apparatus, information processing system, and information processing method
CN108646959A (zh) 屏幕控制方法、装置以及移动终端
JP6907191B2 (ja) ダブルナックルタッチスクリーン制御のためのシステムおよび方法
CN105607738B (zh) 确定单手模式的方法及装置
WO2017031647A1 (zh) 一种检测触摸方式的方法及装置
CN109347531B (zh) 一种天线状态控制方法及终端
US20170336873A1 (en) Information processing apparatus, information processing system, and information processing method
CN110290576A (zh) 电子设备控制方法及装置
JP2023521661A (ja) 表示方法及び電子機器
CN114666433A (zh) 一种终端设备中啸叫处理方法及装置、终端
CN109408472A (zh) 一种文件夹显示方法及终端
CN110837296B (zh) 一种应用分身管理方法及电子设备
CN113238214A (zh) 目标对象检测方法、装置、电子设备和存储介质
CN110913069A (zh) 通话模式切换方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895963

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018895963

Country of ref document: EP

Effective date: 20200529

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895963

Country of ref document: EP

Kind code of ref document: A1