WO2019128565A1 - 终端无线数据传输方法以及装置、终端及存储介质 - Google Patents

终端无线数据传输方法以及装置、终端及存储介质 Download PDF

Info

Publication number
WO2019128565A1
WO2019128565A1 PCT/CN2018/116798 CN2018116798W WO2019128565A1 WO 2019128565 A1 WO2019128565 A1 WO 2019128565A1 CN 2018116798 W CN2018116798 W CN 2018116798W WO 2019128565 A1 WO2019128565 A1 WO 2019128565A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data transmission
wireless
terminal
fragments
Prior art date
Application number
PCT/CN2018/116798
Other languages
English (en)
French (fr)
Inventor
曹军
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019128565A1 publication Critical patent/WO2019128565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels

Definitions

  • the embodiments of the present application relate to a wireless communication technology, for example, to a terminal wireless data transmission method and device, a terminal, and a storage medium.
  • the wireless data transmission speed of the wireless terminal may be reduced or even stopped.
  • the present application provides a terminal wireless data transmission method and device, a terminal, and a storage medium, which can improve the speed of data transmission by the terminal through the wireless network.
  • An embodiment of the present application provides a terminal wireless data transmission method, which is applied to a sending terminal, and includes:
  • M data IP fragments are respectively sent to the destination end through the M data transmission channels, and the M data IP fragments are used to be reassembled into the data to be transmitted at the destination end.
  • the embodiment of the present application further provides a terminal wireless data transmission method, which is applied to a receiving terminal, and includes:
  • the M data IP fragments are reassembled into data to be received.
  • the embodiment of the present application further provides a terminal wireless data transmission apparatus, including:
  • the transmission channel establishing module is configured to establish M data transmission channels with the destination end through M wireless network standards, where M is greater than or equal to 2;
  • a data dividing module configured to divide the data to be sent into M data IP fragments
  • the data sending module is configured to send M data IP fragments to the destination end through the M data transmission channels, and the M data IP fragments are used to reassemble to the data to be sent at the destination end.
  • the embodiment of the present application further provides a terminal wireless data transmission apparatus, including:
  • the transmission channel establishing module is configured to establish M data transmission channels with the transmitting end through M wireless network standards, where M is greater than or equal to 2;
  • a data receiving module configured to receive M data IP fragments from the M data transmission channels respectively;
  • the data reassembly module is configured to reassemble the M data IP fragments into data to be received.
  • the embodiment of the present application provides a terminal, including:
  • One or more processors are One or more processors;
  • a storage device configured to store one or more programs
  • one or more processors When one or more programs are executed by one or more processors, one or more processors implement a terminal wireless data transmission method as in the first aspect.
  • the embodiment of the present application provides a terminal, including:
  • One or more processors are One or more processors;
  • a storage device configured to store one or more programs
  • the one or more processors When one or more programs are executed by one or more processors, the one or more processors implement a terminal wireless data transmission method as in the second aspect.
  • the embodiment of the present application provides a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement a terminal wireless data transmission method according to the first aspect.
  • the embodiment of the present application provides a computer readable storage medium having stored thereon a computer program, wherein the program is executed by a processor to implement a terminal wireless data transmission method according to the second aspect.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for transmitting wireless data of a terminal according to an embodiment of the present disclosure
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for transmitting wireless data of a terminal according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a data transmission flow direction of a terminal wireless data transmission method according to an embodiment of the present disclosure
  • Embodiment 4 is a flowchart of Embodiment 3 of a method for transmitting wireless data of a terminal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a terminal wireless data transmission apparatus according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a terminal wireless data transmission apparatus according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • a wireless terminal refers to a terminal capable of data transmission through a wireless network, including but not limited to a data packet network in any mobile communication system, or other wireless communication system such as a wireless local area network, a wireless wide area network, or Bluetooth. And short-distance communication methods such as ZigBee. As long as it is capable of data interaction with other network devices through the wireless network standard, it can be called a wireless terminal.
  • wireless terminals Due to the rapid development of chip miniaturization and integration, the integration of current wireless terminals is getting higher and higher, and wireless terminals generally support multiple wireless network standards. Taking the most widely used wireless terminals and smartphones as examples, most smart phones support at least two mobile communication systems, and can realize simultaneous online, commonly known as “dual card dual standby". In addition, smart phones can also pass wireless fidelity.
  • the (Wireless Fidelity, WiFi) module connects to Wireless Local Area Networks (WLAN) and Bluetooth modules for close-range data transmission.
  • WLAN Wireless Local Area Networks
  • wireless terminals may have more wireless communication standard modules and support more wireless network standards.
  • a conventional wireless terminal When a conventional wireless terminal performs data transmission, it adopts a data transmission channel established by a wireless network standard, but when the wireless network standard that establishes the data transmission channel receives interference or the signal quality is poor, the data of the wireless terminal The transmission will be affected.
  • the wireless terminal supports multiple wireless network standards, the data transmission channels established by each wireless network standard are independent, and the data transmission of the data transmission channel corresponding to the affected wireless network standard is affected. Regardless of which data transmission channel is affected, it appears to the user that the data transmission of the wireless terminal is affected, thereby affecting the normal use of the user.
  • the transmission bandwidth of a data transmission channel is limited, which may not meet the data transmission requirements of the wireless terminal.
  • the used data transmission channel When the used data transmission channel is interfered, it may also affect the data transmission speed, which may also affect the normal use of the user.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for transmitting wireless data of a terminal according to an embodiment of the present disclosure. As shown in FIG. 1 , the method provided in this embodiment includes: Step 101, Step 102, and Step 103.
  • step 101 M data transmission channels are established with the destination end through M wireless network standards, and M is greater than or equal to 2.
  • the method provided in this embodiment is applied to a transmitting terminal, which is a wireless terminal capable of transmitting data through a wireless network standard.
  • the transmitting terminal supports M types of wireless network standards, and M is greater than or equal to 2.
  • the M wireless network standards include at least two of the following: Long Term Evolution (LTE), General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDM), enhancement Enhanced Data Rate for Global System for Mobile Communication Evolution (EDGE), WLAN, Wireless Wide Area Network (WWAN), Bluetooth, ZigBee, or other wireless network standards applicable to wireless terminals .
  • LTE Long Term Evolution
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDM Time Division-Synchronous Code Division Multiple Access
  • EDGE Enhancement Enhanced Data Rate for Global System for Mobile Communication Evolution
  • WLAN Wireless Wide Area Network
  • the transmitting terminal When the transmitting terminal needs to send data to the destination end, the transmitting terminal first establishes M data transmission channels with the destination end through the M network systems in the supported network standard.
  • the destination end here is the destination of the data to be sent that is sent by the sending terminal, and the destination end may be any other network device such as a wireless terminal, a wired terminal, or a server in the network.
  • the data transmission channel established between the sending terminal and the destination end may be directly connected, or may be relayed through other network elements in several networks.
  • the entire data transmission path that the transmitting terminal sends the data to be sent to the destination end may be forwarded by multiple network elements, but for the transmitting terminal, the data transmission between the first network element and the first network element on the data transmission path can be directly established.
  • the first network element that receives the data sent by the transmitting terminal establishes a data transmission channel with the next network element that reaches the destination end.
  • the network communication system used by the data transmission channels established between different network elements may be different.
  • the transmitting terminal establishes a data transmission channel with the first network element through the WLAN.
  • the first network element is a desktop computer in the same WLAN as the sending terminal, and then the first network element and the destination end are connected by the first network element.
  • the wired Ethernet network establishes a data transmission channel, and forwards the data sent by the sending terminal to the destination end.
  • the data transmission channel between the destination and the destination end is established through the wireless network standard.
  • the transmitting terminal establishes at least one data transmission channel between the wireless network system and the destination end. That is to say, the transmitting end can establish one or more data transmission channels between the wireless network system and the destination end.
  • the method for establishing a data transmission channel between the sender and the destination through different wireless network standards is performed according to the related standards and the intrinsic processes of the different wireless network standards, and is not repeatedly described in the embodiment of the present application.
  • the transmitting terminal can transmit data to the destination through the M network system.
  • step 102 the data to be transmitted is divided into M data network protocol (IP) fragments.
  • IP data network protocol
  • the wireless terminal transmits data through a data transmission channel
  • the bandwidth of the data transmission channel may be limited, which may affect the normal transmission of data. Therefore, in this embodiment, a plurality of data transmission channels are used to jointly transmit one data to be transmitted, thereby increasing the data transmission bandwidth and increasing the data transmission speed.
  • the data to be transmitted needs to be divided into a plurality of parts, so as to be respectively transmitted in the M data transmission channels.
  • the data to be transmitted is fragmented at the IP layer and divided into M data IP fragments, and the number of the divided M data IP fragments is the same as the number of the established M data transmission channels. That is to say, each data transmission channel is used to correspond to one data IP fragment. Each data transmission channel is used to transmit one data IP fragment.
  • the data to be sent is fragmented at the IP layer.
  • the data to be sent needs to be parsed first, and the destination IP address of the data to be sent is obtained.
  • the destination IP address is determined as the destination end, the data to be sent is determined according to the established data transmission channel.
  • the number is divided into the same number of packets, and then the IP packet header is added for each packet after the split.
  • the IP packet header includes three parts. The first part is the identifier of the IP data packet, and the identifier of the multiple data packets divided by the same data to be sent is the same; the second part is the flag bit, and one of them is used to indicate whether there is more. Multiple shards; the third part is used to indicate the offset of the packet in the original data.
  • step 103 M data IP fragments are respectively sent to the destination end through the M data transmission channels, and the M data IP fragments are used to be reassembled into the to-be-sent data at the destination end.
  • the M data IP fragments are respectively sent to the destination end through the M data transmission channels. Wherein, each data transmission channel sends a data IP fragment.
  • the destination end can reassemble the M data IP fragments into the data to be transmitted, thereby completing the data transmission from the transmitting terminal to the destination end.
  • the destination end may further send the feedback data to the sending terminal by receiving the M data transmission channels of the data to be sent, thereby completing the bidirectional transmission of the data.
  • the destination also needs to split the data at the IP layer before sending the data to the sending terminal.
  • the transmitting terminal Since the transmitting terminal transmits data to the destination end through the M data transmission channels, the transmitting terminal can use the bandwidth of the two data transmission channels, thereby improving the speed of data transmission.
  • the M data transmission channels are established by M wireless network standards, the parameters of the frequency and modulation mode of each wireless network system are different, and the interference sources are different, so when a wireless network system establishes a data transmission channel When the network quality is degraded, the network quality of the data transmission channels established by other wireless network standards may not be affected. Then, data transmission on the M data transmission channels established by the M wireless network standards can further eliminate the influence of the network quality degradation of the transmission channel on the data transmission.
  • the terminal wireless data transmission method provided by the embodiment of the present application establishes M data transmission channels by using M wireless network standards between the transmitting terminal and the destination end, where M is greater than or equal to 2, and then dividing the data to be transmitted into M data. IP fragmentation sends M data IP fragments to the destination end through M data transmission channels, thereby improving the speed of data transmission by the terminal through the wireless network.
  • FIG. 2 is a flowchart of Embodiment 2 of a method for transmitting wireless data of a terminal according to an embodiment of the present disclosure. As shown in FIG. 2, the method provided in this embodiment includes: Step 201 to Step 205.
  • step 201 the first data transmission channel is established with the destination end through the first wireless network system.
  • the wireless terminal Considering the power consumption of the wireless terminal and the compatibility with the data transmission method of the existing wireless terminal, the wireless terminal generally performs data transmission through a data transmission channel established by a wireless network standard, and another data transmission.
  • the bandwidth of the channel generally also meets the data transmission requirements. Therefore, multiple data transmission channels are established for data transmission only when the quality of the currently used data transmission channel is degraded or fails.
  • the wireless terminal first establishes a first data transmission channel with the destination end through the first wireless network standard.
  • the first wireless network standard may be any one of the wireless network standards supported by the wireless terminal.
  • step 202 data transmission is performed through the first data transmission channel and the destination end.
  • the wireless terminal and the destination end After the first data transmission channel is established, the wireless terminal and the destination end perform normal data transmission.
  • step 203 when the network quality of the first data transmission channel is lower than the first preset threshold, the destination end establishes at least the first data transmission channel by using at least one wireless network system other than the first wireless network standard.
  • a data transmission channel when the network quality of the first data transmission channel is lower than the first preset threshold, the destination end establishes at least the first data transmission channel by using at least one wireless network system other than the first wireless network standard.
  • the wireless terminal continuously detects the network quality of the first data transmission channel.
  • the network quality of the first data transmission channel is lower than the first preset threshold, it means the first The data transmission channel has been unable to meet the needs of data transmission.
  • the wireless terminal establishes at least one data transmission channel with the destination terminal through at least one wireless network system other than the first wireless network standard.
  • the at least one data transmission channel established by the wireless terminal and the first data transmission channel jointly serve as M data transmission channels between the wireless terminal and the destination end.
  • the first data transmission channel is lower than the first preset threshold, and the transmission rate of the first data transmission channel is lower than the first preset rate threshold, or the error rate of the first data transmission channel is higher than the first preset error rate.
  • the threshold, or the transmission bandwidth of the first data transmission channel is lower than the first preset bandwidth threshold.
  • the wireless network standard supported by the wireless terminal when the network quality of the first data transmission channel is lower than the first preset threshold, the wireless network standard supported by the wireless terminal is required to be in the wireless network standard except the first wireless network standard.
  • the network quality of the network path of the destination end is tested; and the destination end establishes at least one data transmission channel by using at least one wireless network system whose network quality exceeds a second preset threshold. That is, when the network quality of the first data transmission channel is lower than the first preset threshold, the network quality of other wireless network standards needs to be tested first, and the wireless terminal only passes the wireless network whose quality exceeds the second preset threshold.
  • the network standard establishes additional data transmission channels.
  • the second preset threshold is greater than or equal to the first preset threshold, for example, the second preset threshold is greater than the first preset threshold.
  • the network quality of the first data transmission channel is reduced. Another possibility is that the first data transmission channel is faulty and data transmission cannot be performed. At this time, data cannot be transmitted to the destination through the first data transmission channel, including segmentation. After the data IP fragmentation. Then, if the data to be sent is split, and one of the data IP fragments is sent through the first data transmission channel, the destination end cannot receive the data IP fragment, and the destination end cannot obtain the to-be-sent data through reassembly.
  • the wireless terminal establishes M data transmission channels with the destination end through M other wireless network systems except the first wireless network standard, and the wireless terminal will Data IP fragments are no longer sent to the destination through the first data transmission channel.
  • step 204 the data to be transmitted is divided into M data IP fragments, and M is greater than or equal to 2.
  • step 205 M data IP fragments are respectively sent to the destination end through the M data transmission channels, and the M data IP fragments are used to be reassembled into the data to be transmitted at the destination end.
  • the sending terminal and the destination end pass the At least one wireless network system other than the wireless network system establishes at least one data transmission channel except the first data transmission channel, and then divides the data to be transmitted into M data IP fragments, M is greater than or equal to 2, and passes M data.
  • the transmission channel sends M data IP fragments to the destination end, so that the speed of data transmission by the terminal through the wireless network can be improved.
  • the wireless terminal further includes: when M data transmission channels When the network quality of the second data transmission channel is lower than the third preset threshold, the wireless terminal stops transmitting data to the destination end in the second data transmission channel. In order to ensure that the destination end can receive the data to be sent sent by the wireless terminal, when the wireless terminal sends M data IP fragments to the destination end through the M data transmission channels, the wireless terminal also detects the network quality of the M data transmission channels. .
  • the third preset threshold is smaller than the second preset threshold, and the third preset threshold may be equal to the first preset threshold. Of course, the third preset threshold may also be different from the first preset threshold.
  • the wireless terminal may divide the data to be sent into the fragmentation manners of the M data IP fragments in multiple manners, including: the wireless terminal divides the data to be sent into M data IP fragments equally. That is, the size of the data IP fragments allocated by each data transmission channel are the same.
  • the average sharding method is relatively simple and does not require additional processing by the wireless terminal.
  • the method for the wireless terminal to divide the data to be transmitted into the M data IP fragments may further include: the wireless terminal divides the data to be transmitted into M data IP fragments according to the network quality of the M data transmission channels, and each data IP The size of the fragment is positively correlated with the network quality of the data transmission channel corresponding to each of the data IP fragments.
  • the wireless terminal divides the data to be sent it is preferred to determine the network quality of the M data transmission channels. The higher the network quality, the higher the transmission speed of the data transmission channel, and the data transmission channel can be transmitted through the data transmission channel in the same time period. More data. Therefore, the segmentation of the data to be transmitted may be performed by dividing the data to be transmitted according to the network quality of the M data transmission channels.
  • each data IP fragment is positively correlated with the network quality of the data transmission channel corresponding to each data IP fragment, that is, the higher the network quality, the data IP fragment corresponding to the data transmission channel. The bigger the size.
  • This division method can further improve the transmission speed of data to be transmitted, and maximize the bandwidth of multiple wireless network standards.
  • FIG. 3 is a schematic diagram of a data transmission flow direction of a terminal wireless data transmission method according to an embodiment of the present disclosure.
  • three data transmission channels are established by using three wireless network standards as an example, and the terminal wireless data transmission provided by the embodiment of the present application is provided. The method is explained.
  • the transmitting terminal supports three wireless network standards: WLAN, WWAN, and BT.
  • WLAN wireless network standards
  • WWAN wireless wide area network
  • BT wireless network systems
  • the transmitting terminal needs to go through different network paths to send data to the destination end through the data transmission channel established by different wireless network standards, and the sending terminal establishes direct data through the different wireless network standards and the first network element on the network path to the destination end.
  • the transmission channel is forwarded by the first network element on the network path to the destination end. For example, as shown in FIG.
  • the transmitting terminal establishes a data transmission channel with a WLAN access point (AP) through a WLAN system, establishes a data transmission channel with the WWAN AP through a WWAN system, and adopts a BT system and a BT AP or other supporting BT.
  • the node following the transmission establishes a data transmission channel.
  • the WLAN AP, the WWAN AP, the BT AP, or other nodes supporting the BT relay transmission respectively establish a data forwarding path to the destination end.
  • the transmitting terminal divides the data to be sent to the destination end according to the number of established data transmission channels, and then passes the divided data IP fragments through the protocol stacks of the respective wireless network standards through the communication protocols specified by the respective wireless network standards.
  • the sender sends the WLAN AP, the WWAN AP, the BT AP, or other nodes that support the BT relay transmission, and then the received node forwards the data to the destination end, thereby completing the multi-channel transmission of the wireless data from the transmitting terminal to the destination end, and improving the data. transfer speed.
  • FIG. 4 is a flowchart of Embodiment 3 of a method for transmitting wireless data of a terminal according to an embodiment of the present invention. As shown in FIG. 4, the method provided in this embodiment includes: Step 401, Step 402, and Step 403.
  • step 401 M data transmission channels are established with the transmitting end through M wireless network standards, and M is greater than or equal to 2.
  • the method provided in this embodiment is applied to a receiving terminal, which is a wireless terminal capable of receiving data through a wireless network standard.
  • the receiving terminal supports M kinds of wireless network standards, M is greater than or equal to 2.
  • the M wireless network standards include Long Term Evolution LTE, General Packet Radio Service GPRS, Code Division Multiple Access CDMA, Wideband Code Division Multiple Access (WCDMA), and Time Division Synchronization Codes.
  • TD-SCDM Enhanced Data Rate Global System for Mobile Communications Evolution EDGE, Wireless Local Area Network WLAN, Wireless Wide Area Network (WWAN), Bluetooth, ZigBee, or other M types in wireless network systems that can be applied to wireless terminals.
  • the receiving terminal can first establish M data transmission channels with the transmitting end through M wireless network standards.
  • the M data transmission channels are triggered by the data transmitting end, and the receiving terminal only responds to the establishment request sent by the transmitting terminal, and completes the establishment of the data transmission channel together with the transmitting end.
  • the transmitting end here is a source address for transmitting data to the receiving terminal, and the transmitting end may be any other network device such as a wireless terminal, a wired terminal, or a server in the network.
  • the data transmission channel established between the receiving terminal and the sending end may be directly connected, or may be relayed through other network elements in several networks.
  • the entire data transmission path of the receiving terminal receiving the data sent by the transmitting end may be forwarded by multiple network elements, but for the receiving terminal, only the data transmission channel between the last network element and the last network element on the data transmission path can be directly established.
  • the data transmission channel between the transmitting end and the transmitting end is established through the wireless network system.
  • the method for establishing a data transmission channel between the receiving terminal and the transmitting end by using different wireless network standards is performed according to related standards and intrinsic processes of different wireless network standards, and details are not described herein again in the embodiments of the present application.
  • step 402 the M data IP fragments are sent from the M data transmission channels respectively.
  • the M data transmission channels may be respectively sent from the M data transmission channels to send the M data IP fragments.
  • the M data IP fragments are generated by the sending end to be sent to the receiving terminal after being divided by the IP layer, and the number of the M data IP fragments is the same as the number of the M data transmission channels.
  • the receiving terminal receives a data IP fragment on each data transmission channel.
  • step 403 the M data IP fragments are reassembled into data to be received.
  • the receiving terminal After receiving the M data IP fragments, the receiving terminal can determine the data to be received corresponding to each data IP fragment by analyzing the data packet fragment header of each data. After receiving the data IP fragments corresponding to the data to be received, the receiving terminal can reassemble all the data IP fragments into data to be sent, thereby completing data transmission from the transmitting terminal to the destination end.
  • the receiving terminal Since the receiving terminal receives the data sent by the transmitting end through the M data transmission channels, the receiving terminal can use the bandwidth of the two data transmission channels, thereby improving the speed of data transmission.
  • the M data transmission channels are established by M wireless network standards, the parameters of the frequency and modulation mode of each wireless network system are different, and the interference sources are different, so when a wireless network system establishes a data transmission channel When the network quality is degraded, the network quality of the data transmission channels established by other wireless network standards may not be affected. Then, data transmission on the M data transmission channels established by the M wireless network standards can further eliminate the influence of the network quality degradation of the transmission channel on the data transmission.
  • the terminal wireless data transmission method provided by the embodiment of the present application establishes M data transmission channels by using M wireless network standards between the transmitting terminal and the destination end, where M is greater than or equal to 2, and then receives the transmitting end through M data transmission channels.
  • M is greater than or equal to 2
  • the M data IP fragments are sent, and the M data IP fragments are reassembled into data to be received, thereby improving the speed of data transmission by the terminal through the wireless network.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a terminal wireless data transmission apparatus according to an embodiment of the present disclosure.
  • the terminal wireless data transmission apparatus provided in this embodiment is disposed in a sending terminal, and includes: a transmission channel establishing module 51.
  • the transmission channel establishing module 51 is configured to establish M data transmission channels with the destination end through M wireless network standards, where M is greater than or equal to 2.
  • the data dividing module 52 is configured to divide the data to be transmitted into M data IP fragments.
  • the data sending module 53 is configured to send M data IP fragments to the destination end through the M data transmission channels, and the M data IP fragments are used to reassemble to the data to be sent at the destination end.
  • the transmission channel establishing module includes: a first channel establishing unit, a transmitting unit, and a second channel establishing unit.
  • the first channel establishing unit is configured to establish a first data transmission channel with the destination end by using a first wireless network standard.
  • a transmission unit configured to perform data transmission with the destination end by using the first data transmission channel.
  • a second channel establishing unit configured to establish, when the network quality of the first data transmission channel is lower than a first preset threshold, with the destination end by using at least one wireless network standard other than the first wireless network standard At least one data transmission channel outside the data transmission channel.
  • the second channel establishing unit is configured to: when the network quality of the first data transmission channel is lower than a first preset threshold, in the supported wireless network system, except the first wireless The network quality of the network path other than the network standard is tested to the network path of the destination end; and the destination end establishes at least one data transmission channel by using at least one wireless network system whose network quality exceeds a second preset threshold.
  • the apparatus further includes: a transmission stop module, configured to: after the data sending module separately sends the M data IP fragments to the destination end by using the M data transmission channels, When the network quality of the second data transmission channel in the M data transmission channels is lower than the third preset threshold, stopping transmission of data to the destination end in the second data transmission channel.
  • a transmission stop module configured to: after the data sending module separately sends the M data IP fragments to the destination end by using the M data transmission channels, When the network quality of the second data transmission channel in the M data transmission channels is lower than the third preset threshold, stopping transmission of data to the destination end in the second data transmission channel.
  • the data segmentation module is configured to divide the data to be sent into M data IP fragments equally.
  • the data splitting module is configured to: divide the data to be sent into M data IP fragments according to network quality of the M data transmission channels, and size and size of each data IP fragment The network quality of the data transmission channel corresponding to each data IP fragment is positively correlated.
  • the wireless network standard includes at least two of the following: Long Term Evolution (LTE), General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Synchronous Code Division Multiple Access (TD-SCDM), Enhanced Data Rates Global System for Mobile Communications Evolution EDGE, Wireless LAN WLAN, Wireless Wide Area Network WWAN, Bluetooth, and ZigBee.
  • LTE Long Term Evolution
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDM Time Division Synchronous Code Division Multiple Access
  • EDGE Enhanced Data Rates Global System for Mobile Communications Evolution EDGE
  • Wireless LAN WLAN Wireless Wide Area Network WWAN
  • Bluetooth Wireless Wide Area Network
  • ZigBee ZigBee
  • the terminal wireless data transmission apparatus may perform the terminal wireless data transmission method provided by the embodiment shown in FIG. 1 , and has a function module and a beneficial effect corresponding to the execution method.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a terminal wireless data transmission apparatus according to an embodiment of the present disclosure.
  • the terminal wireless data transmission apparatus provided in this embodiment is disposed in a receiving terminal, and includes: a transmission channel establishing module 61.
  • the transmission channel establishing module 61 is configured to establish M data transmission channels with the transmitting end through M wireless network standards, where M is greater than or equal to 2.
  • the data receiving module 62 is configured to receive M data IP fragments from the M data transmission channels respectively.
  • the data recombining module 63 is configured to reassemble the M data IP fragments into data to be received.
  • the wireless network standard includes at least two of the following: Long Term Evolution (LTE), General Packet Radio Service (GPRS), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Synchronous Code Division Multiple Access (TD-SCDM), Enhanced Data Rates Global System for Mobile Communications Evolution EDGE, Wireless LAN WLAN, Wireless Wide Area Network WWAN, Bluetooth, and ZigBee.
  • LTE Long Term Evolution
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDM Time Division Synchronous Code Division Multiple Access
  • EDGE Enhanced Data Rates Global System for Mobile Communications Evolution EDGE
  • Wireless LAN WLAN Wireless Wide Area Network WWAN
  • Bluetooth Wireless Wide Area Network
  • ZigBee ZigBee
  • the terminal wireless data transmission apparatus may perform the terminal wireless data transmission method provided by the embodiment shown in FIG. 3, and has a function module and a beneficial effect corresponding to the execution method.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor 71, a memory 72, and a wireless communication component 73.
  • the number of processors 71 in the terminal may be one or more.
  • a processor 71 is taken as an example; the processor 71, the memory 72, and the wireless communication component 73 in the terminal may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 72 is a computer readable storage medium, and can be configured to store a software program, a computer executable program, and a module, such as a program instruction/module corresponding to the terminal wireless data transmission method in the embodiment of FIG. 1 or FIG. 2 (for example, The transmission channel establishing module 51 and the data dividing module 52) in the terminal wireless data transmission method.
  • the processor 71 implements the above-described terminal wireless data transmission method by running software programs, instructions, and modules stored in the memory 72, thereby performing various functions of the terminal and data processing.
  • the memory 72 may mainly include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal, and the like.
  • memory 72 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the wireless communication component 73 can be used for transmission of network data, and the wireless communication component 73 is a combination of all wireless communication capable devices and modules for transmitting data through the wireless network system.
  • FIG. 8 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • the terminal includes a processor 81, a memory 82, and a wireless communication component 83.
  • the number of processors 81 in the terminal may be one or more.
  • a processor 81 is taken as an example; the processor 81, the memory 82, and the wireless communication component 83 in the terminal may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 82 is used as a computer readable storage medium for storing software programs, computer executable programs, and modules, such as program instructions/modules corresponding to the terminal wireless data transmission method in the embodiment of FIG. 4 of the present application (for example, terminal wireless data)
  • the processor 81 implements the above-described terminal wireless data transmission method by running software programs, instructions, and modules stored in the memory 82, thereby performing various functions and data processing of the terminal.
  • the memory 82 may mainly include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the terminal, and the like.
  • memory 82 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the wireless communication component 83 can perform transmission of network data, and the wireless communication component 83 is a combination of all wireless communication capable devices and modules of the terminal, and is configured to transmit data through a wireless network standard.
  • the embodiment of the present application further provides a storage medium including computer executable instructions for executing a terminal wireless data transmission method when executed by a computer processor, the method comprising:
  • M data IP fragments are respectively sent to the destination end through the M data transmission channels, and the M data IP fragments are used to be reassembled into the data to be transmitted at the destination end.
  • the embodiment of the present application further provides a storage medium including computer executable instructions for executing a terminal wireless data transmission method when executed by a computer processor, the method comprising:
  • the M data IP fragments are reassembled into data to be received.
  • the storage medium containing computer executable instructions provided by the embodiments of the present application the computer executable instructions are not limited to the method operations as described above, and may also execute the terminal wireless data transmission method provided by any embodiment of the present application. Related operations in .
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • FLASH FLASH
  • hard disk or optical disk etc., including a number of instructions to make a computer device (can be a personal computer)
  • the server, or network device, etc. performs the methods described in various embodiments of the present application.
  • the plurality of units and modules included are only divided according to functional logic, but are not limited to the foregoing division, as long as the corresponding functions can be implemented;
  • the specific names of the functional units are also for convenience of distinguishing from each other and are not intended to limit the scope of protection of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种终端无线数据传输方法、装置、终端及存储介质,一种终端无线数据传输方法,包括:与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;将待发送数据分割为M个数据IP分片;通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。

Description

终端无线数据传输方法以及装置、终端及存储介质
本申请要求在2017年12月30日提交中国专利局、申请号为201711481811.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术,例如涉及一种终端无线数据传输方法以及装置、终端及存储介质。
背景技术
随着无线通信技术的发展,无线终端中的多种应用在无线网络的支持下,对用户的工作和生活带来了许多便利。由于无线终端中的大部分应用都需要无线网络的支持,那么无线终端的无线数据传输需求也相应地日益增高。
但是,由于网络覆盖可能存在盲点,或者无线终端所处位置电磁环境较为复杂受到干扰,以及网络传输带宽不足等情况的发生,都可能导致无线终端的无线数据传输速度降低甚至停止。
发明内容
本申请提供一种终端无线数据传输方法以及装置、终端及存储介质,可以提高终端通过无线网络进行数据传输的速度。
本申请实施例提供了一种终端无线数据传输方法,应用于发送终端,包括:
与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
将待发送数据分割为M个数据IP分片;
通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。
本申请实施例还提供了一种终端无线数据传输方法,应用于接收终端,包括:
与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
从M个数据传输通道分别接收发送端发送M个数据IP分片;
将M个数据IP分片重组为待接收数据。
本申请实施例还提供了一种终端无线数据传输装置,包括:
传输通道建立模块,设置为与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
数据分割模块,设置为将待发送数据分割为M个数据IP分片;
数据发送模块,设置为通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。
本申请实施例还提供了一种终端无线数据传输装置,包括:
传输通道建立模块,设置为与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
数据接收模块,设置为从M个数据传输通道分别接收发送端发送M个数据IP分片;
数据重组模块,设置为将M个数据IP分片重组为待接收数据。
本申请实施例提供了一种终端,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序,
当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面的终端无线数据传输方法。
本申请实施例提供了一种终端,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序,
当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第二方面的终端无线数据传输方法。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如第一方面的终端无线数据传输方法。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如第二方面的终端无线数据传输方法。
附图概述
图1为本申请实施例提供的终端无线数据传输方法实施例一的流程图;
图2为本申请实施例提供的终端无线数据传输方法实施例二的流程图;
图3为本申请实施例提供的终端无线数据传输方法的数据传输流向示意图;
图4为本申请实施例提供的终端无线数据传输方法实施例三的流程图;
图5为本申请实施例提供的终端无线数据传输装置实施例一的结构示意图;
图6为本申请实施例提供的终端无线数据传输装置实施例二的结构示意图;
图7为本申请实施例提供的一种终端的结构示意图;
图8为本申请实施例提供的另一种终端的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
无线终端是指能够通过无线网络进行数据传输的终端,该无线网络包括但不限于任一种移动通信制式下的数据分组网络,或者无线局域网、无线广域网等其他无线通信制式,或者蓝牙(Bluetooth)、以及紫蜂(ZigBee)等近距离通信方式。只要是能够通过无线网络制式与其他网络设备进行数据交互,就可以将其称为无线终端。
由于芯片小型化、集成化的快速发展,目前的无线终端的集成度越来越高,无线终端一般都支持多种无线网络制式。以目前使用最广泛的无线终端,智能手机为例,大多智能手机都支持至少两种移动通信制式,且能够实现同时在线,俗称“双卡双待”,另外,智能手机还能够通过无线保真(Wireless Fidelity,WiFi)模块连接无线局域网(Wireless Local Area Networks,WLAN),以及蓝牙模块进行近距离数据传输。当然,随着无线通信技术的发展,以及设备集成度的提高和功耗的降低,无线终端中还可能具有更多的无线通信制式模块,支持更多的无线网络制式。
传统的无线终端在进行数据传输时,是采用一种无线网络制式建立的一个数据传输通道进行的,但建立该数据传输通道的无线网络制式收到干扰或信号质量不佳时,无线终端的数据传输将受到影响。虽然无线终端支持多种无线网络制式,但每种无线网络制式所建立的数据传输通道都是独立的,受到影响的无线网络制式对应的数据传输通道的数据传输都会被影响。而无论哪个数据传输通道被影响,从用户看来都是无线终端的数据传输受到影响,从而影响用户的正常使用。另外,一个数据传输通道的传输带宽有限,可能无法满足无线终端的数据传输需求,被使用的数据传输通道在受到干扰时,也可能对数据传输 速度产生影响,同样可能影响用户的正常使用。
图1为本申请实施例提供的终端无线数据传输方法实施例一的流程图,如图1所示,本实施例提供的方法包括:步骤101、步骤102和步骤103。
在步骤101中,与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2。
本实施例提供的方法应用于发送终端,该发送终端是能够通过无线网络制式发送数据的无线终端。该发送终端支持M种无线网络制式,M大于或等于2,M种无线网络制式包括以下至少两种:长期演进(Long Term Evolution,LTE)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDM)、增强数据速率全球移动通信系统演进(Enhanced Data Rate for Global System for Mobile Communication Evolution,EDGE)、WLAN、无线广域网(Wireless Wide Area Network,WWAN)、蓝牙、ZigBee,或者其他可应用于无线终端的无线网络制式。
当发送终端需要向目的端发送数据时,发送终端首先通过支持的网络制式中的M种网络制式建立与目的端的M个数据传输通道。这里的目的端是发送终端所需发送的待发送数据的目的地,目的端可以是其他的无线终端、有线终端、网络中的服务器等任一种网络设备。发送终端与目的端建立的数据传输通道可以是直接连接的,也可以是通过若干个网络中的其他网元中继连接的。发送终端将待发送数据发送给目的端的整个数据传输路径可能经过多个网元的转发,但对于发送终端而言,仅能直接建立与数据传输路径上的第一个网元之间的数据传输通道,由接收到发送终端发送的数据的第一个网元再次与到达目的端的下一个网元建立数据传输通道。
其中,不同网元之间建立的数据传输通道所使用的网络通信制式可能是不同的。例如,发送终端通过WLAN建立与第一网元之间的数据传输通道,第一网元是与发送终端处于同一WLAN中的台式电脑,然后第一网元与目的端通过第一网元连接的有线以太网络建立数据传输通道,并将发送终端发送的数据转发给目的端。但对于发送终端而言,都是通过无线网络制式建立与目的端之间的数据传输通道。
发送终端通过一个无线网络制式与目的端之间建立至少一个数据传输通道。 也就是说,发送端可以通过一个无线网络制式与目的端之间建立一个或者多个数据传输通道。发送端与目的端之间通过不同无线网络制式建立数据传输通道的方法根据不同无线网络制式的相关标准和固有流程进行,在本申请实施例中不再赘述。
总之,在建立了M个数据传输通道之后,发送终端可以通过M种网络制式向目的端发送数据。
在步骤102中,将待发送数据分割为M个数据网络协议(Internet Protocol,IP)分片。
由于无线终端通过一个数据传输通道进行数据传输时,可能由于该数据传输通道的带宽有限,影响数据的正常传输。因此,在本实施例中,使用多个数据传输通道共同发送一个待发送数据,从而增加数据传输带宽,提高数据传输速度。
那么在步骤101中建立了M个数据传输通道之后,需要将待发送数据分割为多个部分,从而分别在M个数据传输通道中进行传输。在本实施例中,将待发送数据在IP层进行分片,分割为M个数据IP分片,分割的M个数据IP分片的数量与建立的M个数据传输通道的数量相同。也就是说,每一个数据传输通道用于对一个数据IP分片对应。每个数据传输通道用于传输一个数据IP分片。
将待发送数据在IP层进行分片,例如,首先需要解析将待发送数据,获取待发送数据的目的IP地址,在确定目的IP地址为目的端时,将待发送数据按照建立的数据传输通道的数量,分割为相同的数量的数据包,然后为分割后的每个数据包添加IP数据包头。IP数据包头中包括三个部分,第一部分为IP数据包的标识,同一个待发送数据分割的多个数据包的标识相同;第二部分是标志位,其中有一位用来表示是否还有更多的分片;第三部分用于表示该数据包在原始数据中的偏移。将分割后的各个数据包加上对应的IP数据包头,即得到多个数据IP分片。
在步骤103中,通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。
在将待发送数据分割为M个数据IP分片后,通过M个数据传输通道分别向目的端发送该M个数据IP分片。其中,每个数据传输通道发送一个数据IP分片。M个数据IP分片被目的端接收到之后,目的端即可将M个数据IP分片重组为待发送数据,从而完成发送终端到目的端的数据传输。
在一实施例中,目的端在接收到发送终端发送的待发送数据后,还可以通过接收该待发送数据的M个数据传输通道向发送终端发送反馈的数据,从而完成数据的双向传输。当然,目的端同样需要先将数据在IP层进行分割后,再将数据发送至发送终端。
由于发送终端是通过M个数据传输通道向目的端发送数据的,因此发送终端可以使用两个数据传输通道的带宽,从而可以提高数据传输的速度。另外,由于M个数据传输通道是通过M种无线网络制式建立的,每个无线网络制式的频率、调制方式等参数不同,干扰源也不同,因此当一种无线网络制式建立的数据传输通道的网络质量下降时,其他无线网络制式建立的数据传输通道的网络质量可能不会被影响。那么在M个无线网络制式建立的M个数据传输通道上进行数据传输,可以进一步地消除据传输通道的网络质量下降对数据传输的影响。
本申请实施例提供的终端无线数据传输方法,通过在发送终端与目的端之间通过M种无线网络制式建立M个数据传输通道,M大于或等于2,然后将待发送数据分割为M个数据IP分片,通过M个数据传输通道分别向目的端发送M个数据IP分片,从而可以提高终端通过无线网络进行数据传输的速度。
图2为本申请实施例提供的终端无线数据传输方法实施例二的流程图,如图2所示,本实施例提供的方法包括:步骤201至步骤205。
在步骤201中,与目的端通过第一无线网络制式建立第一数据传输通道。
考虑到无线终端的功耗,以及与现有无线终端的数据传输方法的兼容性,无线终端在进行数据传输时,一般还是通过一个无线网络制式建立的一个数据传输通道进行,另外,一个数据传输通道的带宽一般也满足数据传输需求。因此,只有在当前使用的数据传输通道的质量下降或出现故障时,才建立多个数据传输通道进行数据的传输。
因此,无线终端首先与目的端通过第一无线网络制式建立第一数据传输通道。第一无线网络制式可以是无线终端支持的无线网络制式中的任一种无线网络制式。
在步骤202中,通过第一数据传输通道与目的端进行数据传输。
在建立了第一数据传输通道后,无线终端与目的端进行正常的数据传输。
在步骤203中,当第一数据传输通道的网络质量低于第一预设阈值时,与目的端通过除第一无线网络制式外的至少一个无线网络制式建立除第一数据传 输通道外的至少一个数据传输通道。
在无线终端与目的端进行数据传输的过程中,无线终端持续对第一数据传输通道的网络质量进行检测,当第一数据传输通道的网络质量低于第一预设阈值时,意味着第一数据传输通道已无法满足数据传输的需求。此时无线终端才与目的端通过除第一无线网络制式外的至少一个无线网络制式建立至少一个数据传输通道。无线终端建立的至少一个数据传输通道加上第一数据传输通道,共同作为无线终端与目的端之间的M个数据传输通道。
在检测到第一数据传输通道的网络质量降低时,才通过其他无线网络制式建立其他数据传输通道,能够有针对性地提高无线终端进行数据传输的速度。
其中第一数据传输通道低于第一预设阈值包括第一数据传输通道的传输速率低于第一预设速率阈值,或者第一数据传输通道的误码率高于第一预设误码率阈值,或者第一数据传输通道的传输带宽低于第一预设带宽阈值等。
在一实施例中,当第一数据传输通道的网络质量低于第一预设阈值时,还需要先对无线终端支持的无线网络制式中,除第一无线网络制式以外的其他无线网络制式到目的端的网络通路的网络质量进行测试;与目的端通过至少一个网络质量超过第二预设阈值的无线网络制式建立至少一个数据传输通道。也就是说,在第一数据传输通道的网络质量低于第一预设阈值时,还需要先对其他无线网络制式的网络质量进行测试,无线终端仅通过网络质量超过第二预设阈值的无线网络制式建立额外的数据传输通道。其中第二预设阈值大于或等于第一预设阈值,例如,第二预设阈值大于第一预设阈值。在进行无线网络制式检测后再建立其他数据传输通道,可以确保建立的数据传输通道的网络质量足够高,能够将分割后的数据IP分片正确发送至目的端。需要说明的是,无线终端对除第一无线网络制式以外的其他无线网络制式到目的端的网络通路的网络质量进行测试,除了对误码率、传输速率、以及带宽等网络信息进行测试,还需要测试通过该无线网络制式是否能够将数据发送至目的端,无线终端仅能选择可将数据发送至目的端的无线网络制式建立额外的数据传输通道。
在一实施例中,第一数据传输通道的网络质量降低还有一种可能是第一数据传输通道故障,无法进行数据传输,此时已无法通过第一数据传输通道向目的端发送数据,包括分割后的数据IP分片。那么若将待发送数据分割后,通过第一数据传输通道发送其中的一个数据IP分片,则目的端无法接收到该数据IP分片,那么目的端将无法通过重组得到该待发送数据。因此,若通过检测确定 第一数据传输通道已无法进行数据传输时,无线终端将与目的端通过除第一无线网络制式之外的M个其他无线网络制式建立M个数据传输通道,无线终端将不再通过第一数据传输通道向目的端发送数据IP分片。
在步骤204中,将待发送数据分割为M个数据IP分片,M大于或等于2。
在步骤205中,通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。
本申请实施例提供的终端无线数据传输方法,当发送终端与目的端之间正在进行数据传输的第一数据传输通道的网络质量低于第一预设阈值时,发送终端与目的端通过除第一无线网络制式外的至少一个无线网络制式建立除第一数据传输通道外的至少一个数据传输通道,然后将待发送数据分割为M个数据IP分片,M大于或等于2,通过M个数据传输通道分别向目的端发送M个数据IP分片,从而可以提高终端通过无线网络进行数据传输的速度。
在一实施例中,在图1或图2所示实施例的基础上,无线终端通过M个数据传输通道分别向目的端发送M个数据IP分片之后,还包括:当M个数据传输通道中第二数据传输通道的网络质量低于第三预设阈值时,无线终端停止在第二数据传输通道向目的端传输数据。为了确保目的端能够接收到无线终端发送的待发送数据,在无线终端通过M个数据传输通道向目的端发送M个数据IP分片时,无线终端还对M个数据传输通道的网络质量进行检测。当M个数据传输通道中的第二数据传输通道的网络质量低于第三预设阈值时,意味着通过第二数据传输通道进行数据传输的传输速度或误码率等参数已不满足需求,或者已无法通过第二数据传输通道发送数据IP分片。那么无线终端将停止在第二数据传输通道向目的端传输数据。无线终端将对待发送数据重新进行数据分割,以使数据IP分片的数量与剩余的数据传输通道的数量相同。第三预设阈值小于第二预设阈值,第三预设阈值可以与第一预设阈值相等,当然,第三预设阈值也可以与第一预设阈值不相等。
在一实施例中,无线终端将待发送数据分割为M个数据IP分片的分片方式可以有多种方式,包括:无线终端将待发送数据平均分为M个数据IP分片。也就是每个数据传输通道所分到的数据IP分片的大小都是相同的。平均分片的方式较为简便,无需无线终端进行额外的处理。
无线终端将待发送数据分割为M个数据IP分片的分片方式还可以包括:无线终端根据M个数据传输通道的网络质量将待发送数据分割为M个数据IP分 片,每个数据IP分片的大小与所述每个数据IP分片对应的数据传输通道的网络质量正相关。无线终端在对待发送数据进行分割之前,首选确定M个数据传输通道的网络质量,网络质量越高,意味着该数据传输通道的传输速度更高,在同一时间段内可以通过该数据传输通道传输更多的数据。因此,对待发送数据进行分割,可以是根据M个数据传输通道的网络质量对待发送数据进行分割。其中,每个数据IP分片的大小与所述每个数据IP分片对应的数据传输通道的网络质量正相关,也就是说,网络质量越高,该数据传输通道对应的数据IP分片的大小越大。这种分割方式,可以进一步地提高待发送数据的传输速度,最大化地利用多个无线网络制式的带宽。
下面以在无线终端中实现图1或图2所示的终端无线数据传输方法的具体架构为例,对本申请实施例提供的终端无线数据传输方法进行进一步说明。图3为本申请实施例提供的终端无线数据传输方法的数据传输流向示意图,在图3中,以三种无线网络制式建立3个数据传输通道为例,对本申请实施例提供的终端无线数据传输方法进行说明。
其中,发送终端支持WLAN、WWAN、BT三种无线网络制式,当发送终端需要向目的端发送数据时,首先与目的端之间分别通过WLAN、WWAN、BT三种无线网络制式建立三条数据传输通道。其中,发送终端通过不同无线网络制式建立的数据传输通道向目的端发送数据需要经过不同的网络路径,发送终端通过不同无线网络制式与到目的端的网络路径上的第一个网元建立直接的数据传输通道,再由网络路径上第一个网元向目的端进行数据转发。例如图3中所示,发送终端通过WLAN制式与WLAN接入点(Access Point,AP)建立数据传输通道,通过WWAN制式与WWAN AP建立数据传输通道,通过BT制式与BT AP或者其他支持BT中继传输的节点建立数据传输通道。然后再由WLAN AP、WWAN AP、BT AP或者其他支持BT中继传输的节点分别建立到目的端的数据转发路径。发送终端将待发送给目的端的数据按照建立的数据传输通道的数量进行分割后,分别通过各个无线网络制式所规定的通信协议,将分后的各个数据IP分片通过各个无线网络制式的协议栈发送方给WLAN AP、WWAN AP、BT AP或者其他支持BT中继传输的节点,再由接收到的节点向目的端进行数据的转发,从而完成发送终端到目的端的无线数据多通道发送,提高数据传输速度。
图4为本申请实施例提供的终端无线数据传输方法实施例三的流程图,如 图4所示,本实施例提供的方法包括:步骤401、步骤402和步骤403。
在步骤401,与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2。
本实施例提供的方法应用于接收终端,该接收终端是能够通过无线网络制式接收数据的无线终端。该接收终端支持M种无线网络制式,M大于或等于2,M种无线网络制式包括长期演进LTE、通用分组无线服务GPRS、码分多址CDMA、宽带码分多址WCDMA、时分同步码分多址TD-SCDM、增强数据速率全球移动通信系统演进EDGE、无线局域网WLAN、无线广域网WWAN、蓝牙、紫蜂ZigBee,或者其他可应用于无线终端的无线网络制式中的M种。
由于无线终端通过一个数据传输通道接收数据时,同样可能由于该数据传输通道的网络质量降低导致数据接收变慢或者失败。因此,接收终端可以首先与发送端通过M种无线网络制式建立M个数据传输通道。实际上,M个数据传输通道是由数据发送端触发建立的,接收终端只是响应发送终端发送的建立请求,而与发送端共同完成数据传输通道的建立。这里的发送端是向接收终端发送数据的源地址,发送端可以是其他的无线终端、有线终端、网络中的服务器等任一种网络设备。接收终端与发送端建立的数据传输通道可以是直接连接的,也可以是通过若干个网络中的其他网元中继连接的。接收终端接收发送端发送的数据的整个数据传输路径可能经过多个网元的转发,但对于接收终端而言,仅能直接建立与数据传输路径上的最后网元之间的数据传输通道。对于接收终端而言,都是通过无线网络制式建立与发送端之间的数据传输通道。
接收终端与发送端之间通过不同无线网络制式建立数据传输通道的方法根据不同无线网络制式的相关标准和固有流程进行,在本申请实施例中不再赘述。
在步骤402中,从M个数据传输通道分别接收发送端发送M个数据IP分片。
当接收终端与发送端建立了M个数据传输通道后,可以从M个数据传输通道分别接收发送端发送M个数据IP分片。其中,M个数据IP分片是发送端对待发送给接收终端在IP层进行分割后生成的,M个数据IP分片的数量与M个数据传输通道的数量相同。接收终端在每个数据传输通道上接收一个数据IP分片。
在步骤403中,将M个数据IP分片重组为待接收数据。
接收终端接收到M个数据IP分片后,通过对每个数据IP分片包头的分析, 可以确定各个数据IP分片所对应的待接收数据。当接收终端接收到一个待接收数据对应的所有数据IP分片后,即可将所有数据IP分片重组为待发送数据,从而完成发送终端到目的端的数据传输。
由于接收终端是通过M个数据传输通道接收发送端发送的数据,因此接收终端可以使用两个数据传输通道的带宽,从而可以提高数据传输的速度。另外,由于M个数据传输通道是通过M种无线网络制式建立的,每个无线网络制式的频率、调制方式等参数不同,干扰源也不同,因此当一种无线网络制式建立的数据传输通道的网络质量下降时,其他无线网络制式建立的数据传输通道的网络质量可能不会被影响。那么在M个无线网络制式建立的M个数据传输通道上进行数据传输,可以进一步地消除据传输通道的网络质量下降对数据传输的影响。
本申请实施例提供的终端无线数据传输方法,通过在发送终端与目的端之间通过M种无线网络制式建立M个数据传输通道,M大于或等于2,然后通过M个数据传输通道接收发送端发送M个数据IP分片,并将M个数据IP分片重组为待接收数据,从而可以提高终端通过无线网络进行数据传输的速度。
图5为本申请实施例提供的终端无线数据传输装置实施例一的结构示意图,如图5所示,本实施例提供的终端无线数据传输装置设置于发送终端中,包括:传输通道建立模块51、数据分割模块52和数据发送模块53。
传输通道建立模块51,设置为与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2。
数据分割模块52,设置为将待发送数据分割为M个数据IP分片。
数据发送模块53,设置为通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。
在一实施例中,所述传输通道建立模块包括:第一通道建立单元、传输单元和第二通道建立单元。
第一通道建立单元,设置为与所述目的端通过第一无线网络制式建立第一数据传输通道。
传输单元,设置为通过所述第一数据传输通道与所述目的端进行数据传输。
第二通道建立单元,设置为当所述第一数据传输通道的网络质量低于第一预设阈值时,与所述目的端通过除第一无线网络制式外的至少一个无线网络制式建立除第一数据传输通道外的至少一个数据传输通道。
在一实施例中,所述第二通道建立单元设置为:当所述第一数据传输通道的网络质量低于第一预设阈值时,对支持的无线网络制式中,除所述第一无线网络制式以外的其他无线网络制式到所述目的端的网络通路的网络质量进行测试;与所述目的端通过至少一个网络质量超过第二预设阈值的无线网络制式建立至少一个数据传输通道。
在一实施例中,所述装置还包括:传输停止模块,设置为在所述数据发送模块通过所述M个数据传输通道分别向所述目的端发送所述M个数据IP分片之后,当所述M个数据传输通道中第二数据传输通道的网络质量低于第三预设阈值时,停止在所述第二数据传输通道向所述目的端传输数据。
在一实施例中,所述数据分割模块,设置为:将所述待发送数据平均分为M个数据IP分片。
在一实施例中,所述数据分割模块,设置为:根据所述M个数据传输通道的网络质量将所述待发送数据分割为M个数据IP分片,每个数据IP分片的大小与所述每个数据IP分片对应的数据传输通道的网络质量正相关。
在一实施例中,所述无线网络制式包括以下至少两种:长期演进LTE、通用分组无线服务GPRS、码分多址CDMA、宽带码分多址WCDMA、时分同步码分多址TD-SCDM、增强数据速率全球移动通信系统演进EDGE、无线局域网WLAN、无线广域网WWAN、蓝牙、以及紫蜂ZigBee。
本申请实施例所提供的终端无线数据传输装置可执行图1所示实施例所提供的终端无线数据传输方法,具备执行方法相应的功能模块和有益效果。
图6为本申请实施例提供的终端无线数据传输装置实施例二的结构示意图,如图6所示,本实施例提供的终端无线数据传输装置设置于接收终端中,包括:传输通道建立模块61、数据接收模块62和数据重组模块63。
传输通道建立模块61,设置为与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2。
数据接收模块62,设置为从M个数据传输通道分别接收发送端发送M个数据IP分片。
数据重组模块63,设置为将M个数据IP分片重组为待接收数据。
在一实施例中,所述无线网络制式包括以下至少两种:长期演进LTE、通用分组无线服务GPRS、码分多址CDMA、宽带码分多址WCDMA、时分同步码分多址TD-SCDM、增强数据速率全球移动通信系统演进EDGE、无线局域网 WLAN、无线广域网WWAN、蓝牙、以及紫蜂ZigBee。
本申请实施例所提供的终端无线数据传输装置可执行图3所示实施例所提供的终端无线数据传输方法,具备执行方法相应的功能模块和有益效果。
图7为本申请实施例提供的一种终端的结构示意图,如图7所示,该终端包括处理器71、存储器72、无线通信组件73;终端中处理器71的数量可以是一个或多个,图7中以一个处理器71为例;终端中的处理器71、存储器72、无线通信组件73可以通过总线或其他方式连接,图7中以通过总线连接为例。
存储器72作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1或图2实施例中的终端无线数据传输方法对应的程序指令/模块(例如,终端无线数据传输方法中的传输通道建立模块51和数据分割模块52)。处理器71通过运行存储在存储器72中的软件程序、指令以及模块,从而终端的多种功能应用以及数据处理,即实现上述的终端无线数据传输方法。
存储器72可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器72可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
无线通信组件73可用进行网络数据的传输,无线通信组件73为终端所有具有无线通信能力的器件、模块的组合,用于通过无线网络制式进行数据的传输。
图8为本申请实施例提供的另一种终端的结构示意图,如图8所示,该终端包括处理器81、存储器82、无线通信组件83;终端中处理器81的数量可以是一个或多个,图8中以一个处理器81为例;终端中的处理器81、存储器82、无线通信组件83可以通过总线或其他方式连接,图8中以通过总线连接为例。
存储器82作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图4实施例中的终端无线数据传输方法对应的程序指令/模块(例如,终端无线数据传输装置中的传输通道建立模块61、数据重组模块63)。处理器81通过运行存储在存储器82中的软件程序、指令以及模块,从而终端的多种功能应用以及数据处理,即实现上述的终端无线数据传输方法。
存储器82可主要包括存储程序区和存储数据区,其中,存储程序区可存储 操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器82可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
无线通信组件83可用进行网络数据的传输,无线通信组件83为终端所有具有无线通信能力的器件、模块的组合,设置为通过无线网络制式进行数据的传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种终端无线数据传输方法,该方法包括:
与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
将待发送数据分割为M个数据IP分片;
通过M个数据传输通道分别向目的端发送M个数据IP分片,M个数据IP分片用于在目的端重组为待发送数据。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种终端无线数据传输方法,该方法包括:
与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
从M个数据传输通道分别接收发送端发送M个数据IP分片;
将M个数据IP分片重组为待接收数据。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的终端无线数据传输方法中的相关操作.
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
值得注意的是,上述搜索装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各个功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。

Claims (20)

  1. 一种终端无线数据传输方法,应用于发送终端,包括:
    与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
    将待发送数据分割为M个数据网络协议IP分片;
    通过所述M个数据传输通道分别向所述目的端发送所述M个数据IP分片,所述M个数据IP分片用于在所述目的端重组为所述待发送数据。
  2. 根据权利要求1所述的方法,其中,所述与目的端通过M种网络制式建立M个数据传输通道,包括:
    与所述目的端通过第一无线网络制式建立第一数据传输通道;
    通过所述第一数据传输通道与所述目的端进行数据传输;
    当所述第一数据传输通道的网络质量低于第一预设阈值时,与所述目的端通过除第一无线网络制式外的至少一个无线网络制式建立除第一数据传输通道外的至少一个数据传输通道。
  3. 根据权利要求2所述的方法,其中,所述当所述第一数据传输通道的网络质量低于第一预设阈值时,与所述目的端通过除第一无线网络制式外的至少一个无线网络制式建立除第一数据传输通道外的至少一个数据传输通道,包括:
    当所述第一数据传输通道的网络质量低于第一预设阈值时,对支持的无线网络制式中,除所述第一无线网络制式以外的其他无线网络制式到所述目的端的网络通路的网络质量进行测试;
    与所述目的端通过至少一个网络质量超过第二预设阈值的无线网络制式建立至少一个数据传输通道。
  4. 根据权利要求3所述的方法,所述通过所述M个数据传输通道分别向所述目的端发送所述M个数据IP分片之后,所述方法还包括:
    当所述M个数据传输通道中第二数据传输通道的网络质量低于第三预设阈值时,停止在所述第二数据传输通道向所述目的端传输数据。
  5. 根据权利要求1~4任一项所述的方法,其中,所述将所述待发送数据分割为M个数据IP分片,包括:
    将所述待发送数据平均分为M个数据IP分片。
  6. 根据权利要求1~4任一项所述的方法,其中,所述将所述待发送数据分割为M个数据IP分片,包括:
    根据所述M个数据传输通道的网络质量将所述待发送数据分割为M个数据IP分片,每个数据IP分片的大小与所述每个数据IP分片对应的数据传输通道的 网络质量正相关。
  7. 根据权利要求1~4任一项所述的方法,其中,所述M种无线网络制式包括以下至少两种:长期演进LTE、通用分组无线服务GPRS、码分多址CDMA、宽带码分多址WCDMA、时分同步码分多址TD-SCDM、增强数据速率全球移动通信系统演进EDGE、无线局域网WLAN、无线广域网WWAN、蓝牙、以及紫蜂ZigBee。
  8. 一种终端无线数据传输方法,应用于接收终端,包括:
    与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
    从所述M个数据传输通道分别接收所述发送端发送的M个数据网络协议IP分片;
    将所述M个数据IP分片重组为待接收数据。
  9. 根据权利要求8所述的方法,其中,所述无线网络制式包括以下至少两种:长期演进LTE、通用分组无线服务GPRS、码分多址CDMA、宽带码分多址WCDMA、时分同步码分多址TD-SCDM、增强数据速率全球移动通信系统演进EDGE、无线局域网WLAN、无线广域网WWAN、蓝牙、以及紫蜂ZigBee。
  10. 一种终端无线数据传输装置,包括:
    传输通道建立模块,设置为与目的端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
    数据分割模块,设置为将待发送数据分割为M个数据网络协议IP分片;
    数据发送模块,设置为通过所述M个数据传输通道分别向所述目的端发送所述M个数据IP分片,所述M个数据IP分片用于在所述目的端重组为所述待发送数据。
  11. 根据权利要求10所述的装置,其中,所述传输通道建立模块包括:
    第一通道建立单元,设置为与所述目的端通过第一无线网络制式建立第一数据传输通道;
    传输单元,设置为通过所述第一数据传输通道与所述目的端进行数据传输;
    第二通道建立单元,设置为当所述第一数据传输通道的网络质量低于第一预设阈值时,与所述目的端通过除第一无线网络制式外的至少一个无线网络制式建立除第一数据传输通道外的至少一个数据传输通道。
  12. 根据权利要求11所述的装置,其中,所述第二通道建立单元设置为:
    当所述第一数据传输通道的网络质量低于第一预设阈值时,对支持的无线 网络制式中,除所述第一无线网络制式以外的其他无线网络制式到所述目的端的网络通路的网络质量进行测试;
    与所述目的端通过至少一个网络质量超过第二预设阈值的无线网络制式建立至少一个数据传输通道。
  13. 根据权利要求12所述的装置,还包括:
    传输停止模块,设置为在所述数据发送模块通过所述M个数据传输通道分别向所述目的端发送所述M个数据IP分片之后,当所述M个数据传输通道中第二数据传输通道的网络质量低于第三预设阈值时,停止在所述第二数据传输通道向所述目的端传输数据。
  14. 根据权利要求10~13任一项所述的装置,其中,所述数据分割模块,设置为:
    将所述待发送数据平均分为M个数据IP分片。
  15. 根据权利要求10~13任一项所述的装置,其中,所述数据分割模块,设置为:
    根据所述M个数据传输通道的网络质量将所述待发送数据分割为M个数据IP分片,每个数据IP分片的大小与所述每个数据分片对应的数据传输通道的网络质量正相关。
  16. 一种终端无线数据传输装置,包括:
    传输通道建立模块,设置为与发送端通过M种无线网络制式建立M个数据传输通道,M大于或等于2;
    数据接收模块,设置为从所述M个数据传输通道分别接收所述发送端发送的M个数据网络协议IP分片;
    数据重组模块,设置为将所述M个数据IP分片重组为待接收数据。
  17. 一种终端,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1~7中任一所述的终端无线数据传输方法。
  18. 一种终端,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求8或9所述的终端无线数据传输方法。
  19. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1~7中任一所述的终端无线数据传输方法。
  20. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求8或9所述的终端无线数据传输方法。
PCT/CN2018/116798 2017-12-30 2018-11-21 终端无线数据传输方法以及装置、终端及存储介质 WO2019128565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711481811.8 2017-12-30
CN201711481811.8A CN108235373A (zh) 2017-12-30 2017-12-30 终端无线数据传输方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2019128565A1 true WO2019128565A1 (zh) 2019-07-04

Family

ID=62647308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116798 WO2019128565A1 (zh) 2017-12-30 2018-11-21 终端无线数据传输方法以及装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN108235373A (zh)
WO (1) WO2019128565A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110650546A (zh) * 2019-09-29 2020-01-03 Tcl移动通信科技(宁波)有限公司 文件传输的方法、装置、存储介质以及终端
CN113743043A (zh) * 2021-09-18 2021-12-03 苏州盛科通信股份有限公司 数据组合方法、芯片及装置
CN113873487A (zh) * 2021-09-27 2021-12-31 歌尔科技有限公司 数据传输方法、设备及计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235373A (zh) * 2017-12-30 2018-06-29 广东欧珀移动通信有限公司 终端无线数据传输方法、装置、终端及存储介质
CN109068315B (zh) * 2018-10-08 2021-06-29 中国联合网络通信集团有限公司 访问互联网业务方法及模组、移动终端、数据访问系统
CN110300115B (zh) * 2019-07-05 2021-07-16 腾讯科技(深圳)有限公司 一种基于多通道的数据传输方法以及相关装置
CN111132383B (zh) * 2019-12-30 2023-05-26 青岛海信电子设备股份有限公司 一种窄带集群终端数据传输方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1379026A1 (en) * 2002-07-03 2004-01-07 Sony International (Europe) GmbH Dual rate wireless transmission system
CN1938962A (zh) * 2004-01-28 2007-03-28 新加坡国立大学 通信系统及方法
CN103200606A (zh) * 2013-03-18 2013-07-10 东莞宇龙通信科技有限公司 终端和数据业务处理方法
CN103581257A (zh) * 2012-08-03 2014-02-12 华为技术有限公司 基于互联网协议的数据分流方法及装置
CN103580842A (zh) * 2013-11-04 2014-02-12 惠州Tcl移动通信有限公司 一种多类型无线链路并行传输的方法和系统
CN108235373A (zh) * 2017-12-30 2018-06-29 广东欧珀移动通信有限公司 终端无线数据传输方法、装置、终端及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101368648B1 (ko) * 2012-01-19 2014-03-06 에스케이텔레콤 주식회사 이기종 네트워크 기반 데이터 동시 전송 방법 및 이에 적용되는 장치
CN106851782B (zh) * 2012-05-07 2020-11-17 华为终端有限公司 数据传输方法及装置
CN103547327A (zh) * 2012-12-27 2014-01-29 华为技术有限公司 多种无线制式通信的实现方法及用户设备
CN105228133A (zh) * 2015-07-10 2016-01-06 努比亚技术有限公司 多通道数据下载方法及系统
CN105764079A (zh) * 2016-02-19 2016-07-13 努比亚技术有限公司 数据传输方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1379026A1 (en) * 2002-07-03 2004-01-07 Sony International (Europe) GmbH Dual rate wireless transmission system
CN1938962A (zh) * 2004-01-28 2007-03-28 新加坡国立大学 通信系统及方法
CN103581257A (zh) * 2012-08-03 2014-02-12 华为技术有限公司 基于互联网协议的数据分流方法及装置
CN103200606A (zh) * 2013-03-18 2013-07-10 东莞宇龙通信科技有限公司 终端和数据业务处理方法
CN103580842A (zh) * 2013-11-04 2014-02-12 惠州Tcl移动通信有限公司 一种多类型无线链路并行传输的方法和系统
CN108235373A (zh) * 2017-12-30 2018-06-29 广东欧珀移动通信有限公司 终端无线数据传输方法、装置、终端及存储介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110650546A (zh) * 2019-09-29 2020-01-03 Tcl移动通信科技(宁波)有限公司 文件传输的方法、装置、存储介质以及终端
CN110650546B (zh) * 2019-09-29 2023-08-15 Tcl移动通信科技(宁波)有限公司 文件传输的方法、装置、存储介质以及终端
CN113743043A (zh) * 2021-09-18 2021-12-03 苏州盛科通信股份有限公司 数据组合方法、芯片及装置
CN113873487A (zh) * 2021-09-27 2021-12-31 歌尔科技有限公司 数据传输方法、设备及计算机可读存储介质
CN113873487B (zh) * 2021-09-27 2024-06-04 歌尔科技有限公司 数据传输方法、设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN108235373A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019128565A1 (zh) 终端无线数据传输方法以及装置、终端及存储介质
US11374870B2 (en) Network congestion notification method, agent node, and computer device
EP3635931B1 (en) Methods for increasing voip network coverage
US11277313B2 (en) Data transmission method and corresponding device
US10958581B2 (en) Data transmission method and communications apparatus
EP3257203B1 (en) Method and device for handling multi path connections
US20130242843A1 (en) Wireless communication system, base station, and terminal
US11088988B2 (en) Virtual-machine dataplane with DHCP-server functionality
EP4124104A1 (en) Communication method and apparatus
JP2009533985A (ja) 移動性管理のための擬似配線
WO2019157689A1 (zh) 一种信息上报的方法、装置及系统
CN110313160B (zh) 用于避免封包分割的方法及其装置
WO2020085969A1 (en) Methods for handling link failures in integrated access backhaul (iab) networks
WO2016074211A1 (zh) 一种数据转发的方法和控制器
JP2014528227A (ja) 電力低減ワイヤレス通信のためのシステムおよび方法
JP2023500121A (ja) マルチパス通信の実行
WO2020125583A1 (zh) 通信业务的传输方法、装置、存储介质及电子装置
US10050930B2 (en) Multi-radio single internet protocol address wireless local area network apparatus and method
US11218912B2 (en) Method and apparatus for controlling traffic of network device in wireless communication network
US20220140957A1 (en) HARQ Feedback Technique for Communication Systems
US9144056B2 (en) Broadcast teardown apparatus and method
EP4395380A1 (en) Information processing method and apparatus, computer device, and storage medium
US10165598B2 (en) Wireless medium clearing
WO2020133996A1 (zh) 一种终端的跟踪方法、设备及存储介质
CN116743861A (zh) 一种组播加入方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893861

Country of ref document: EP

Kind code of ref document: A1