WO2019128462A1 - 一种数据传输方法、发送装置及接收装置 - Google Patents

一种数据传输方法、发送装置及接收装置 Download PDF

Info

Publication number
WO2019128462A1
WO2019128462A1 PCT/CN2018/113590 CN2018113590W WO2019128462A1 WO 2019128462 A1 WO2019128462 A1 WO 2019128462A1 CN 2018113590 W CN2018113590 W CN 2018113590W WO 2019128462 A1 WO2019128462 A1 WO 2019128462A1
Authority
WO
WIPO (PCT)
Prior art keywords
code block
service
bits
dedicated
dedicated code
Prior art date
Application number
PCT/CN2018/113590
Other languages
English (en)
French (fr)
Inventor
李爱妮
钟其文
李日欣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207020850A priority Critical patent/KR102450095B1/ko
Priority to EP18897501.5A priority patent/EP3720032B1/en
Priority to JP2020554347A priority patent/JP7080987B2/ja
Publication of WO2019128462A1 publication Critical patent/WO2019128462A1/zh
Priority to US16/910,477 priority patent/US11438098B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet

Definitions

  • the present application relates to the field of communications, and in particular, to a data transmission method, a transmitting device, and a receiving device.
  • the 802.3 Ethernet-related standards defined by the IEEE Association are widely cited in the industry. However, with the development of technology, the deviation between standard Ethernet interfaces and actual application requirements is also increasing. For example, if 50Gb/s services use 100 gigabits. The Ethernet (gigabit ethernet, GE) port will waste bandwidth resources, and the 200Gb/s service does not have a corresponding Ethernet standard. For this reason, a flexible Ethernet (FelxE) standard is proposed.
  • a 100GE physical layer (physical, PHY) interface time slots are divided according to time division multiplexing, and one cycle includes 20 time slots. Each time slot carries a 64B/66B code block, and each time slot has a bandwidth of 5 Gbps.
  • the scheme requires that one idle code block must be replaced with an indicator code block for indicating all the replaced code blocks in the period in one cycle, but if the indicator code block has an error during transmission, the receiving device receives the data.
  • the code block after the replacement in the period cannot be identified. It can be seen that the replacement mode of the idle code block has a high dependence on the indicator code block, and the transmission error of the indication code block will affect the other transmissions of the receiving device to the same period.
  • the identification and extraction of the replaced code blocks, the overall stability of the network transmission is poor.
  • the embodiment of the present application provides a data transmission method for improving overall stability of network transmission.
  • the first aspect of the embodiments of the present application provides a data transmission method, including:
  • the transmitting device acquires a code block set
  • the transmitting device determines whether an idle code block is included in the code block set
  • the sending device If yes, the sending device generates a dedicated code block, where the dedicated code block includes an indication domain and a data domain, the data domain is used to carry a service, and the indication domain carries indication information, where the indication information is used to indicate the The dedicated code block and the data domain carry the service;
  • the transmitting device transmits the target code block set.
  • the processing of the code block set by the transmitting apparatus may be implemented in the PHY layer.
  • the code block set in the embodiment of the present application may be a continuous code block on the communication interface, or may be a FlexE frame applied in FlexE.
  • the dedicated code block in the embodiment of the present application is different from the OH code block set and other data code blocks in the FlexE frame, and the indication field of the dedicated code block can uniquely distinguish the dedicated code block and indicate that the data field of the dedicated code block carries the service.
  • the service includes a BE service or an OH service.
  • the service is the BE service
  • the generating, by the sending device, the dedicated code block includes:
  • the transmitting device determines 0 to 7 bit bits and/or 32 to 35 bits of the dedicated code block as the indication field;
  • the transmitting device determines that 8 to 31 bits and/or 36 to 63 bits of the dedicated code block are the data fields
  • the transmitting device encapsulates the BE service into the data domain.
  • the service is the OH service
  • the generating, by the sending device, the dedicated code block includes:
  • the transmitting device determines 0 to 7 bit bits and/or 32 to 35 bits of the dedicated code block as the indication field;
  • the transmitting device determines that 8 to 31 bits and/or 36 to 63 bits of the dedicated code block are the data fields
  • the transmitting device encapsulates the OH service into the data domain.
  • the OH service encapsulated in the dedicated code block is a part of the OH service in the OH service that the sending device determines to carry.
  • the method before the sending device generates the dedicated code block, the method further includes:
  • the transmitting device determines the service that needs to be added to the dedicated code block.
  • the sending device uses the dedicated code block Before replacing the idle code block to obtain a target code block set, the method further includes:
  • the transmitting device encapsulates the OH service into a management channel, and the code block set includes the management channel.
  • the management channel is reserved for carrying the management information, and the OH service encapsulated in the management channel is another part of the OH service except the OH service encapsulated in the dedicated code block. .
  • the sending device acquires a code block set.
  • the code block set includes an idle code block
  • the sending device generates a dedicated code block, where the dedicated code block includes an indication domain and a data domain, and the data domain is used to carry the service.
  • indicating the bearer indication information where the indication information is used to indicate that the dedicated code block and the data domain carry the service
  • further sending by using the dedicated code block, replace the idle code block to obtain a target code block set and send
  • each dedicated code block in the code block set in this embodiment not only has an identification function but also carries data information, even if a dedicated code block in which a transmission error occurs in the code block set does not affect.
  • the receiving device identifies and extracts other normal transmitted dedicated code blocks, thereby improving the overall stability of the network transmission.
  • a second aspect of the embodiments of the present application provides a data transmission method, including:
  • the receiving device determines whether the code block set includes a dedicated code block, the dedicated code block includes an indication domain and a data domain, the data domain is used for carrying a service, and the indication domain bears indication information, and the indication information Used to indicate that the dedicated code block and the data domain bear the service;
  • the receiving device extracts the service
  • the receiving device replaces the dedicated code block with an idle code block to obtain a target code block set.
  • the processing of the code block set by the receiving apparatus may be implemented in the PHY layer.
  • the receiving device may receive a set of code blocks sent by another sending device, which may be a continuous code block on the communication interface, or may be a FlexE frame applied in the FlexE, and the receiving device replaces the dedicated code block with the idle code block. After obtaining the target code block set, the receiving device transmits the target code block set through the communication interface.
  • the receiving device can distinguish the dedicated code block by the indication field in the code block and the indication information in the indication field.
  • the service includes a BE service or an OH service.
  • the service is the BE service
  • the receiving device extracting the service includes:
  • the receiving device determines that 8 to 31 bits and/or 36 to 63 bits of the dedicated code block are the data fields
  • the receiving device extracts the BE service from the data domain.
  • the service is the OH service
  • the receiving device extracting the service includes:
  • the receiving device determines that 8 to 31 bits and/or 36 to 63 bits of the dedicated code block are the data fields
  • the receiving device extracts the OH service from the data domain.
  • the receiving device in addition to extracting the OH service from the data domain of the dedicated code block, may also extract another part of the OH service from the management channel.
  • the receiving device receives the code block set sent by the sending device, and then the receiving device determines whether the code block set includes a dedicated code block, where the dedicated code block includes an indication domain and a data domain, where the data domain is used.
  • the bearer service, the indication domain bears indication information, where the indication information is used to indicate that the dedicated code block and the data domain carry the service, and when the code block set includes a dedicated code block, the receiving device extracts the service. And replacing the dedicated code block with the idle code block to obtain the target code block set.
  • the dedicated code block in the code block set in this embodiment not only has the identification function but also carries the data information, and for the receiving device, even the code block
  • the special code block in which the transmission error occurs in the set does not affect the identification and service extraction of other normal transmission dedicated code blocks, and improves the overall stability of the network transmission.
  • a third aspect of the embodiments of the present application provides a sending apparatus, including:
  • An obtaining unit configured to acquire a code block set
  • a determining unit configured to determine whether an idle code block is included in the code block set
  • a generating unit configured to generate a dedicated code block when the code block set includes an idle code block, where the dedicated code block includes an indication domain and a data domain, where the data domain is used for carrying a service, and the indication domain bearer indication Information, the indication information is used to indicate that the dedicated code block and the data domain bear the service;
  • a replacing unit configured to replace the idle code block with the dedicated code block to obtain a target code block set
  • a sending unit configured to send the target code block set.
  • the services include best effort BE services or overhead OH services.
  • the service is a BE service
  • the service is an OH service
  • the sending device further includes:
  • a determining unit for determining the service that needs to be added to the dedicated code block a determining unit for determining the service that needs to be added to the dedicated code block.
  • the sending device further includes:
  • the encapsulating unit is configured to encapsulate the OH service into the management channel, where the OH service in the management channel removes another part of the OH service except the OH service encapsulated in the dedicated code block for the OH service to be added.
  • a fourth aspect of the embodiments of the present application provides a receiving apparatus, including:
  • a receiving unit configured to receive a code block set sent by the sending device
  • a determining unit configured to determine whether the code block set includes a dedicated code block, where the dedicated code block includes an indication domain and a data domain, the data domain is used for carrying a service, and the indication domain carries indication information, where the indication The information is used to indicate that the dedicated code block and the data domain bear the service;
  • An extracting unit configured to extract the service when the code block set includes a dedicated code block
  • a replacement unit configured to replace the dedicated code block to obtain a target code block set.
  • the service includes a best effort BE service or an overhead OH service.
  • the service is the BE service
  • the extracting unit is specifically used for
  • the service is the OH service
  • the extracting unit is specifically used for
  • a fifth aspect of the embodiments of the present application provides a sending apparatus, including:
  • a processor a memory, a bus, and an input and output interface
  • Program code is stored in the memory
  • the processor performs the following operations when calling the program code in the memory:
  • the dedicated code block includes an indication domain and a data domain, the data domain is used for carrying a service, the indication domain carries indication information, and the indication information is used to indicate the dedicated code block and The data domain carries the service;
  • a sixth aspect of the embodiments of the present application provides a receiving apparatus, including:
  • a processor a memory, a bus, and an input and output interface
  • Program code is stored in the memory
  • the processor performs the following operations when calling the program code in the memory:
  • the code block includes a dedicated code block
  • the dedicated code block includes an indication domain and a data domain
  • the data domain is used to carry a service
  • the indication domain carries indication information, where the indication information is used to indicate Dedicating the code block and the data domain carrying the service
  • the dedicated code block is replaced with an idle code block to obtain a target code block set.
  • a seventh aspect of the present application provides a computer readable storage medium comprising instructions for causing a computer to execute the flow in the data transmission method of the first aspect or the second aspect when the instruction is run on a computer.
  • An eighth aspect of the embodiments of the present application provides a computer program product comprising instructions, when executed on a computer, causing a computer to execute the flow in the data transmission method of the first aspect or the second aspect.
  • the embodiments of the present application have the following advantages:
  • the sending device acquires a code block set.
  • the code block set includes an idle code block
  • the sending device generates a dedicated code block, where the dedicated code block includes an indication domain and a data domain, and the data domain is used to carry the service.
  • indicating the bearer indication information where the indication information is used to indicate that the dedicated code block and the data domain carry the service
  • further sending by using the dedicated code block, replace the idle code block to obtain a target code block set and send
  • each dedicated code block in the code block set in this embodiment not only has an identification function but also carries data information, even if a dedicated code block in which a transmission error occurs in the code block set does not affect.
  • the receiving device identifies and extracts other normal transmitted dedicated code blocks, thereby improving the overall stability of the network transmission.
  • Figure 1 is a general architectural diagram of FlexE
  • FIG. 2 is a frame format diagram of a FlexE frame
  • FIG. 3 is a code block format diagram of a dedicated indicator code block in the prior art
  • FIG. 4 is a schematic diagram of an embodiment of a data transmission method according to the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a data transmission method according to the present application.
  • FIG. 6 is a code block format diagram of a dedicated code block in the present application.
  • FIG. 7 is a frame format diagram of a PPP frame
  • FIG. 8 is a schematic diagram of another embodiment of a data transmission method according to the present application.
  • FIG. 9 is a schematic diagram of a dedicated code block and a management channel jointly carrying an OH service according to the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a data transmission method according to the present application.
  • FIG. 11 is a schematic diagram of an embodiment of a transmitting apparatus of the present application.
  • FIG. 12 is a schematic diagram of an embodiment of a receiving apparatus of the present application.
  • FIG. 13 is a schematic diagram of an embodiment of a network device according to the present application.
  • the embodiment of the present application provides a data transmission method for improving overall stability of network transmission.
  • the embodiments of the present application can be applied to FlexE.
  • the FlexE supports binding multiple Ethernet interfaces into one link group to support media access control (MAC) services with a rate greater than a single Ethernet interface, and
  • the service allocation time slot supports MAC services whose rate is smaller than the link group bandwidth or smaller than the bandwidth of a single Ethernet interface.
  • multiple MAC services can be simultaneously transmitted in the link group by allocating time slots for the service.
  • the overall architecture of FlexE is shown in Figure 1.
  • the flexible Ethernet group (FlexE Group) is bound by 1 to n Ethernet physical layers (PHYs), and the flexible Ethernet clients (FlexE Clients) are MAC-based.
  • Ethernet data stream flexible Ethernet layer (FlexE Shim) in the transmission direction to reuse, the FlexE Clients data mapping to FlexE Group, the opposite in the receiving direction to demultiplex, the data from FlexE Group demapping.
  • FlexE constructs a fixed frame format for physical interface transmission and divides the time slot based on time division multiplexing.
  • the frame format in FlexE is shown in Figure 2.
  • the data code block stream is composed of 64B/66B code blocks. Each 20 64B/66B code blocks are in one cycle, and the 20 64B/66B code blocks respectively correspond to different time slots, and the data on each PHY in the FlexE is implemented by periodically inserting overhead (OH) code blocks.
  • OH overhead
  • Alignment in particular, inserts a 66B OH code block every 1023x20 64B/66B code blocks, and 8 OH code blocks plus 1023x20 64B/66B code blocks together form a FlexE frame, wherein 8 of each FlexE frame A number of OH code blocks are also extracted in the OH code block to define a management channel.
  • 64B/66B encoding encodes 64-bit data or control information into 66-bit block transmission.
  • the first two bits of the 66-bit block represent the synchronization header, which is mainly used for data alignment and synchronization.
  • the synchronization header has "01” and “10", “01 "The following 64 bits are all data, and "10" indicates that the latter 64 bits are a mixture of data and control information.
  • Each of the 20 64B/66B code blocks in each period may include an idle code block that does not carry a service.
  • the first idle code block in the period is replaced with the indicator code block of 0x4B+0xA, corresponding to the first bit in FIG. 3, and the remaining idle code blocks are replaced by the BE service code block, corresponding to the 10th bit and the 12th bit in FIG.
  • the 17th bit indicating that the first 20 bits of the three bytes of the code block D1-D3 are used to indicate the replacement of the code block in the period, corresponding to the case shown in FIG. 3, the first 20 bits of D1-D3 should be (1000 0000 0101 0000 1000), where 1 indicates the code block after replacement in the period, and 0 indicates that the code block in the period is the original code block (not replaced).
  • the solution can only work in a scenario that includes at least two idle code blocks in the same period, and indicates that the transmission error of the code block will affect the identification and extraction of the replaced code blocks that are normally replaced by the receiving device in the same period.
  • the overall stability of the transmission is poor.
  • the data transmission method described in the embodiment of the present application may be applied to a network device, such as a switch, a router, etc., and it may be understood that the device for implementing the data transmission method in the embodiment of the present application is a device for transmitting and receiving. Both the data transmission function and the data reception function can be regarded as a transmitting device when transmitting data, and can be regarded as a receiving device when receiving data.
  • an embodiment of a data transmission method in an embodiment of the present application includes:
  • the sending device acquires a code block set.
  • the sending device receives the code block set through the communication interface.
  • the code block set may be a continuous code block on the communication interface, or may be a FlexE frame.
  • the FlexE frame is configured by the frame structure.
  • a column of the illustrated OH code block is constructed in conjunction with the remaining data code blocks, wherein one or more OH code blocks in the OH code block set are used as management channels reserved for carrying management information, such as OH.
  • each OH code block uses "01" as the synchronization header and contains 8 available bytes for a total of 64 bits.
  • the transmitting device determines whether an idle code block is included in the code block set. If yes, step 403 is performed.
  • the sending device After receiving the code block set, the sending device needs to determine whether the code block includes the idle code block. It can be understood that the idle code block is a code block that does not carry the data information.
  • the transmitting device generates a dedicated code block.
  • the sending device when the code block set includes an idle code block, the sending device generates a dedicated code block.
  • the dedicated code block includes a synchronization header, an indication field, and a data field, and removes the synchronization header of the first 2 bits occupying the dedicated code block.
  • the indication field and the data field occupy 64 bits behind the dedicated code block, and the data field is used to carry the service, and the indication domain carries the indication information, where the indication information is used to indicate the dedicated code block and indicates that the data field of the dedicated code block carries the service.
  • the dedicated code block in the embodiment of the present application is different from the OH code block set and other data code blocks in the FlexE frame, and the indication field of the dedicated code block can uniquely distinguish the dedicated code block and indicate that the data field of the dedicated code block carries the service.
  • the receiving device can identify the dedicated code block as a code block that replaces the idle code block and carries the service according to the indication field of the dedicated code block.
  • the transmitting device replaces the idle code block with a dedicated code block to obtain a target code block set.
  • the transmitting device replaces the idle code block with the dedicated code block to obtain the target code block set. It can be understood that if the code block set includes multiple idle code blocks, the sending is performed. The device sequentially replaces the idle code block according to the order in which the code blocks in the code block set are transmitted.
  • the transmitting device sends the target code block set.
  • the transmitting device completes the replacement of the idle code block by the dedicated code block
  • the obtained target code block set is sent out from the interface.
  • the sending device acquires a code block set.
  • the code block set includes an idle code block
  • the sending device generates a dedicated code block, where the dedicated code block includes an indication domain and a data domain, and the data domain is used to carry the service.
  • the indication field indicates the domain bearer indication information, where the indication information is used to indicate that the dedicated code block and the data domain bear the service, and the sending device replaces the idle code block with the dedicated code block to obtain the target code block set.
  • each dedicated code block in the code block set in this embodiment not only has an identification function but also carries data information, even if a special code block with a transmission error occurs in the code block set. It will affect the identification and extraction of other normal transmission specific code blocks by the receiving device, and improve the overall stability of the network transmission.
  • Solution 1 A special code block is defined, the dedicated code block includes an indication field and a data field, the indication field is used to indicate a dedicated code block, the data field is used to carry a BE service, and the sending device uses the dedicated code carrying the BE service.
  • the block replaces the idle code block.
  • an embodiment of a data transmission method in an embodiment of the present application includes:
  • the sending device acquires a code block set.
  • the sending device receives the code block set through the communication interface.
  • the code block set may be a continuous code block on the communication interface, or may be a FlexE frame.
  • the FlexE frame is configured by the frame structure.
  • a column of the illustrated OH code block is constructed in conjunction with the remaining data code blocks, wherein one or more OH code blocks in the OH code block set are used as management channels reserved for carrying management information, such as OH.
  • each OH code block uses "01" as the synchronization header and contains 8 available bytes for a total of 64 bits.
  • the transmitting device determines whether an idle code block is included in the code block set. If yes, step 503 is performed.
  • the sending device After receiving the code block set, the sending device needs to determine whether the code block set of the code block set includes an idle code block. It can be understood that the idle code block is a code block that does not carry data information.
  • the sending apparatus determines a data domain and an indication domain of the dedicated code block.
  • the sending device determines the data field and the indication field of the dedicated code block.
  • the dedicated code block may be as shown in FIG. 6, and the dedicated code block includes the synchronization header.
  • the indication field and the data field are removed from the synchronization header occupying the first 2 bits of the dedicated code block, and the indication field and the data field occupy 64 bits behind the dedicated code block.
  • the indication field may have multiple definition manners, for example, the dedicated code block is 0.
  • Up to 7bit is defined as an indication field
  • 32 to 35 bits of the dedicated code block may be defined as an indication field, or 0 to 7 bits and 32 to 35 bits of the dedicated code block may be jointly defined as an indication domain, that is, 0x4B in the figure 6
  • the indicated area or the area indicated by 0xF, or the area indicated by 0x4B+0xF, the data field of the dedicated code block can also be defined in various ways, for example, 8 to 31 bits of the dedicated code block are defined as data fields,
  • the 36 to 63 bits of the dedicated code block may be defined as a data field, or 8 to 31 bits and 36 to 63 bits of the dedicated code block may be jointly defined as a data field, that is, an area indicated by D1 - D3 in FIG. 6 or D4 -D7 shows the area, or D1-D7 Area.
  • the dedicated code block in the embodiment of the present application is different from the OH code block set and other data code blocks in the FlexE frame, and the indication field of the dedicated code block can uniquely distinguish the dedicated code block and indicate that the data field of the dedicated code block carries the service.
  • the receiving device can identify the dedicated code block as a code block that replaces the idle code block and carries the service according to the indication field of the dedicated code block.
  • the indication information is carried in the indication field, such as 0x4B and 0xF, where the indication information carried in the indication domain may be other forms, for example, the indication information corresponding to 0 to 7 bits may be 0x4B or 32 to 35 bits.
  • the corresponding indication information is 0xF, 0xA, 0x9, or 0x3, or the indication information corresponding to 0 to 7 bits is 0x00, which is not limited herein.
  • the sending device loads the BE service into the dedicated code block.
  • the sending device loads the BE service to be carried into the data field of the dedicated code block.
  • the sending device encapsulates the BE service and performs byte-by-byte mapping through a point-to-point protocol (PPP). Go to the data field of the dedicated code block.
  • PPP point-to-point protocol
  • the PPP frame format is shown in Figure 7.
  • PPP uses 0x7E as the start and end of the frame, followed by the 0x7E start byte is the address byte (0xFF) and the control byte (0x03), and the following protocol field uses two words.
  • the section is filled, the information field is used to carry the BE service that needs to be transmitted, and the frame check field (FCS) is also two bytes. It is used for checking the information domain, and borrows the PPP protocol based on the byte delimiting mode.
  • the start and end of the frame are identified by 0x7E and the BE service is encapsulated into the information field.
  • the transmitting device may use other protocols in addition to encapsulating the BE service by using the PPP protocol, for example, a high-level data link control (HDLC) protocol and a general framing protocol (generic framing). Procedure, GFP) protocol, which is not limited here.
  • a high-level data link control (HDLC) protocol and a general framing protocol (generic framing).
  • GFP general framing protocol
  • the transmitting device replaces the idle code block with a dedicated code block to obtain a target code block set.
  • the transmitting device After the sending device loads the BE service into the dedicated code block, the transmitting device replaces the idle code block with the dedicated code block to obtain the target code block set. It can be understood that if the code block set includes multiple idle code blocks, The transmitting device sequentially replaces the idle code block in the order in which the code blocks in the code block set are transmitted.
  • the transmitting device sends the target code block set.
  • the transmitting device completes the replacement of the idle code block by the dedicated code block
  • the obtained target code block set is sent out from the interface.
  • the sending device acquires a code block set.
  • the code block set includes an idle code block
  • the sending device generates a dedicated code block, where the dedicated code block includes an indication domain and a data domain, and the data domain is used to carry the BE.
  • the service indication field indicates the domain bearer indication information, where the indication information is used to indicate that the dedicated code block and the data domain bear the BE service, and the sending device replaces the idle code block with the dedicated code block to obtain the target code.
  • the block sets and transmits the target code block set. It can be seen that each dedicated code block in the code block set in this embodiment not only has an identification function but also carries data information, even if a special code block with a transmission error occurs in the code block set. It also does not affect the identification and extraction of other normally transmitted dedicated code blocks by the receiving device, and improves the overall stability of the network transmission.
  • Solution 2 A special code block is defined, the dedicated code block includes an indication field and a data field, and the indication field is used to indicate a dedicated code block, and the sending device loads the OH service into the data field and the management channel of the dedicated code block, and uses The dedicated code block replaces the idle code block, so that the dedicated code block and the management channel jointly carry the OH service.
  • FIG. 8 another embodiment of a data transmission method in an embodiment of the present application includes:
  • the sending device acquires a code block set.
  • the transmitting device determines whether an idle code block is included in the code block set. If yes, step 803 is performed.
  • the sending apparatus determines a data domain and an indication domain of the dedicated code block.
  • the steps 801 to 803 are similar to the steps 501 to 503 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the sending device loads the first OH service into the dedicated code block.
  • the sending device loads the first OH service to be carried in the data field of the dedicated code block, and the first OH service is a part of the OH service in the OH service that the sending device needs to add.
  • the first OH service is encapsulated by a point to point protocol (PPP) and mapped byte by byte into the data field of the dedicated code block.
  • PPP point to point protocol
  • the PPP frame format is shown in Figure 6.
  • PPP uses 0x7E as the start and end of the frame, followed by the 0x7E start byte is the address byte (0xFF) and the control byte (0x03), and the subsequent protocol field uses two words.
  • the section is filled, the information field is used to carry the first OH service to be transmitted, and the frame check field (FCS) is also two bytes, which is used for checking the information domain, borrowing the PPP protocol based on byte-based frame delimitation.
  • FCS frame check field
  • the start and end of the frame are identified by 0x7E and the first OH service is encapsulated into the information field.
  • the transmitting device may use other protocols, such as a high-level data link control (HDLC) protocol and a general framing procedure (GFP) protocol is not limited herein.
  • HDMI high-level data link control
  • GFP general framing procedure
  • the sending device loads the second OH service into the management channel.
  • the sending device loads the second OH service to be carried in the management channel. It can be understood that the sending device can jointly carry the OH service in combination with the dedicated code block and the management channel, where the second OH service is required. Another part of the OH service except the first OH service is removed from the added OH service.
  • the first column of the code block set is an OH code block, where the 4th and 5th OH code blocks are defined as management channels, and the second OH service is loaded into the management channel, and the management channel includes 132bit
  • the management channel defined in this embodiment is only an example, and the management channel may have other definition manners.
  • the management channel may also be defined by the third to eighth OH code blocks. This is not limited here.
  • the sending device encapsulates the second OH service through the PPP protocol and maps it to the management channel byte by byte.
  • the sending device may use other protocols, for example, HDLC. Protocol and GFP protocol, which are not limited here.
  • step 804 may be performed first, or step 805 may be performed first, or step 804 and step 805 may be performed at the same time, which is not limited herein.
  • the transmitting device replaces the idle code block with a dedicated code block to obtain a target code block set.
  • the sending device sends the target code block set.
  • the steps 806 to 807 are similar to the steps 505 to 506 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the sending device acquires a code block set.
  • the code block set includes an idle code block
  • the sending device generates a dedicated code block, where the dedicated code block includes an indication domain and a data domain, and the data domain is used to carry the first An OH service, indicating domain bearer indication information, where the indication information is used to indicate that the dedicated code block and the data domain bear the service, and the sending device further loads the second OH service into the management channel. That is to say, the OH service is carried by the dedicated code block and the management channel.
  • a part of the OH service can be carried by the dedicated code block to provide additional bandwidth for the OH service.
  • another embodiment of a data transmission method in an embodiment of the present application includes:
  • the receiving device receives a code block set.
  • the receiving device receives the code block set sent by the other device.
  • the code block set may be a continuous code block on the communication interface, or may be a FlexE frame, and the description and diagram of the FlexE frame. Step 4 of the embodiment shown in FIG. 4 is similar to the description of the FlexE frame, and details are not described herein again.
  • the receiving device determines whether a dedicated code block is included in the code block set. If yes, step 1003 is performed.
  • the receiving device After receiving the code block set, the receiving device needs to determine whether the code block set includes a dedicated code block.
  • the description of the code block is similar to the step 503 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the receiving device can identify the dedicated code block according to the indication field in the dedicated code block and the indication information in the indication domain.
  • the receiving device sequentially replaces the dedicated code blocks according to the order of transmission of the code blocks in the code block set.
  • the receiving device extracts a service.
  • the receiving device when the code block set includes the dedicated code block, the receiving device extracts the corresponding service from the dedicated code block. Specifically, if the dedicated code block carries the BE service, the receiving device uses the dedicated service. The BE service is extracted from the data field of the code block. If the dedicated code block carries a part of the OH service, the receiving device extracts the OH service from the data field of the dedicated code block, and further needs to extract another part from the management channel. OH business.
  • the receiving device replaces the dedicated code block with an idle code block to obtain a target code block set.
  • the receiving device after the receiving device extracts the service from the dedicated code block, the receiving device replaces the dedicated code block with the idle code block to obtain the target code block set, that is, restores the dedicated code block to the previous idle code block, and then The receiving device sends the target code block set through the communication interface.
  • the receiving device receives the code block set sent by the sending device, and then the receiving device determines whether the code block set includes a dedicated code block, where the dedicated code block includes an indication domain and a data domain, where the data domain is used.
  • the bearer service, the indication domain bears indication information, where the indication information is used to indicate that the dedicated code block and the data domain carry the service, and when the code block set includes a dedicated code block, the receiving device extracts the service. And replacing the dedicated code block with the idle code block to obtain the target code block set.
  • the dedicated code block in the code block set in this embodiment not only has the identification function but also carries the data information, and for the receiving device, even the code block
  • the special code block in which the transmission error occurs in the set does not affect the identification and service extraction of other normal transmission dedicated code blocks, and improves the overall stability of the network transmission.
  • an embodiment of a sending apparatus in this embodiment of the present application includes:
  • the obtaining unit 1101 is configured to acquire a code block set.
  • the determining unit 1102 is configured to determine whether an idle code block is included in the code block set.
  • the generating unit 1103 is configured to generate, when the code block set includes an idle code block, a dedicated code block, where the dedicated code block includes an indication domain and a data domain, where the data domain is used for carrying a service, and the indication domain bearer Instructing information, the indication information is used to indicate that the dedicated code block and the data domain bear the service;
  • the replacing unit 1104 is configured to replace the idle code block with the dedicated code block to obtain a target code block set.
  • the sending unit 1105 is configured to send the target code block set.
  • the sending apparatus further includes:
  • a determining unit 1106 is configured to determine the service that needs to be added to the dedicated code block.
  • the generating unit 1103 is specifically used to generate the service to be added.
  • the BE service is encapsulated into the data domain.
  • the generating unit 1103 is specifically used to generate the service to be added.
  • the acquiring unit 1101 obtains a code block set, and the determining unit 1102 determines whether an idle code block is included in the code block set.
  • the code block set includes an idle code block
  • the generating unit 1103 generates a dedicated code block, and the special code is generated.
  • the block includes an indication field and a data field, and the data field is used to carry the service, indicating the domain bearer indication information, where the indication information is used to indicate that the dedicated code block and the data domain bear the service, and the further replacing unit 1104 is used.
  • the dedicated code block replaces the idle code block to obtain the target code block set, and the transmitting unit 1105 sends the target code block set.
  • each dedicated code block in the code block set in this embodiment not only has the identification function but also Carrying data information, even if a special code block with a transmission error in the code block set does not affect the recognition and extraction of other normally transmitted dedicated code blocks by the receiving device, and the overall stability of the network transmission is improved.
  • the transmitting device in the embodiment of the present application has been described above.
  • the receiving device in the embodiment of the present application is described below:
  • an embodiment of a receiving apparatus in this embodiment of the present application includes:
  • the receiving unit 1201 is configured to receive a code block set sent by the sending device.
  • the determining unit 1202 is configured to determine whether the dedicated code block is included in the code block set, where the dedicated code block includes an indication domain and a data domain, the data domain is used to carry a service, and the indication domain carries indication information, where The indication information is used to indicate that the dedicated code block and the data domain bear the service;
  • the extracting unit 1203 is configured to: when the dedicated code block is included in the code block set, extract the service;
  • the replacing unit 1204 is configured to replace the dedicated code block to obtain a target code block set.
  • the extracting unit 1203 is specifically used to extract the service to be extracted.
  • the extracting unit 1203 is specifically used to extract the service to be extracted.
  • the receiving unit 1201 receives the code block set sent by the sending device, and the determining unit 1202 determines whether the dedicated code block is included in the code block set, where the dedicated code block includes an indication domain and a data domain, where the data domain is used.
  • the indication domain carries indication information, where the indication information is used to indicate that the dedicated code block and the data domain carry the service, and when the code block set includes a dedicated code block, the extracting unit 1203
  • the replacement unit 1204 replaces the dedicated code block with the idle code block to obtain the target code block set.
  • the dedicated code block in the code block set in this embodiment not only has the identification function but also carries the data information, and the receiving device is It is said that even if a special code block with a transmission error in the code block set does not affect the identification and service extraction of other normal transmission dedicated code blocks, the overall stability of the network transmission is improved.
  • the transmitting device and the receiving device in the embodiment of the present application are described above from the perspective of a modular functional entity.
  • the following describes the network device having the sending and receiving functions in the embodiment of the present application from the perspective of hardware processing:
  • the network device may be a provider (P) network node in the FlexE, or may be a provider edge (PE) network node, and the network device may be regarded as the embodiment in the present application when performing data transmission.
  • P provider
  • PE provider edge
  • the transmitting device, the network device can be regarded as the receiving device in the embodiment of the present application when performing data reception.
  • the network device in the present application includes one or more central processing unit 1301, a memory 1302, and a communication interface 1303.
  • the central processing unit 1301, the memory 1302, and the communication interface 1303 are mutually connected by a bus.
  • the memory 1302 may be short-term storage or persistent storage for storing related instructions and data, and the communication interface 1303 is for receiving and transmitting data. Still further, central processor 1301 can be configured to communicate with memory 1302 to perform a series of instruction operations in memory 1302 on the network device.
  • the central processing unit 1301 reads the program code stored in the memory 1302 and performs the following operations:
  • the dedicated code block includes an indication domain and a data domain, the data domain is used for carrying a service, the indication domain carries indication information, and the indication information is used to indicate the special code
  • the dedicated code block includes an indication domain and a data domain, the data domain is used for carrying a service, the indication domain carries indication information, and the indication information is used to indicate the special code
  • the block and the data domain bear the service;
  • the target code block set is transmitted through the communication interface 1303.
  • the central processing unit 1301 reads the program code stored in the memory 1302 and performs the following operations:
  • the code block includes a dedicated code block
  • the dedicated code block includes an indication domain and a data domain
  • the data domain is used to carry a service
  • the indication domain carries indication information, where the indication information is used to indicate Dedicating the code block and the data domain carrying the service
  • the dedicated code block is replaced with an idle code block to obtain a target code block set.
  • the specific function module in the central processing unit 1301 can be divided into functional modules of the acquiring unit, the determining unit, the generating unit, the replacing unit, the sending unit, the extracting unit, and the like described in the foregoing FIGS. 11 and 12. Similar, it will not be repeated here.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例公开了一种数据传输方法、发送装置及接收装置,用于提高网络传输整体的稳定性。本申请实施例方法包括:发送装置获取码块集合,所述发送装置判断所述码块集合中是否包括空闲码块,若是,则所述发送装置生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,所述发送装置用所述专用码块替换所述空闲码块得到目标码块集合,所述发送装置发送所述目标码块集合。

Description

一种数据传输方法、发送装置及接收装置
本申请要求于2017年12月25日提交中国专利局、申请号为201711426203.7、发明名称为“一种数据传输方法、发送装置及接收装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据传输方法、发送装置及接收装置。
背景技术
IEEE协会定义的802.3以太网相关标准在业界被广泛引用,但是随着技术的发展,标准以太网接口与实际应用需求的偏差也越来越大,比如:50Gb/s的业务如果用100吉比特以太网(gigabit ethernet,GE)端口来承载会浪费带宽资源,而200Gb/s的业务还没有对应的以太网标准可以承载。为此目前提出了一种灵活以太网(Flexible Ethernet,FelxE)标准,对于100GE的物理层(physical,PHY)接口,会按照时分复用方式来划分时隙,一个周期包含20个时隙,每个时隙承载一个64B/66B码块,每个时隙的带宽为5Gbps。
FelxE划分的每个时隙的带宽在传输过程中会被所传输的业务独占,那么如果某一时隙当前空闲,也会造成带宽资源的浪费,为避免这种现象,现有技术中,当一个周期的20个64B/66B码块中至少包括2个空闲码块时,把同一时间周期内的首个空闲码块替换为指示码块,其余空闲码块替换为尽力而为(best effort,BE)业务的业务码块。
该方案要求一个周期内必须有一个空闲码块替换为指示码块用于指示该周期内所有替换后的码块,但是如果指示码块在传输过程中出现错误的话,接收装置在接收数据时就无法识别出该周期内替换后的码块,可以看出这种空闲码块的替换方式对指示码块依赖性较高,指示码块的传输错误将会影响接收装置对同一周期内其他传输正常的替换后的码块的识别和提取,网络传输整体的稳定性较差。
发明内容
本申请实施例提供了一种数据传输方法,用于提高网络传输整体的稳定性。
有鉴于此,本申请实施例第一方面提供了一种数据传输方法,包括:
发送装置获取码块集合;
所述发送装置判断所述码块集合中是否包括空闲码块;
若是,则所述发送装置生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
所述发送装置用所述专用码块替换所述空闲码块得到目标码块集合;
所述发送装置发送所述目标码块集合。
本申请实施例中,发送装置对码块集合的处理可以在PHY层实现。
本申请实施例中的码块集合可以是通信接口上一段连续的码块,也可以是应用于FlexE 中的FlexE帧。
本申请实施例中的专用码块区别于FlexE帧中OH码块集合及其他数据码块,专用码块的指示域可以唯一区分专用码块并指示专用码块的数据域中承载有业务。
结合本申请实施例第一方面,本申请实施例第一方面的第一种实施方式中,业务包括BE业务或OH业务。
结合本申请实施例第一方面的第一种实施方式,本申请实施例第一方面的第二种实施方式中,所述业务为所述BE业务;
所述发送装置生成所述专用码块包括:
所述发送装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
所述发送装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
所述发送装置将所述BE业务封装到所述数据域。
结合本申请实施例第一方面的第一种实施方式,本申请实施例第一方面的第三种实施方式中,所述业务为所述OH业务;
所述发送装置生成所述专用码块包括:
所述发送装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
所述发送装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
所述发送装置将所述OH业务封装到所述数据域。
本申请实施例中,封装在专用码块中的OH业务是发送装置确定需要携带的OH业务中的一部分OH业务。
结合本申请实施例第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,本申请实施例第一方面的第四种实施方式中,所述发送装置生成专用码块之前,所述方法还包括:
所述发送装置确定需要添加到所述专用码块的所述业务。
结合本申请实施例第一方面的第三种实施方式,本申请实施例第一方面的第五种实施方式中,所述发送装置获取码块集合之后,所述发送装置用所述专用码块替换所述空闲码块得到目标码块集合之前,所述方法还包括:
所述发送装置将OH业务封装到管理通道,所述码块集合包括所述管理通道。
本申请实施例中,管理通道预留用作携带管理信息,封装在管理通道中的OH业务是发送装置确定需要携带的OH业务中除了封装在专用码块中的OH业务外的另一部分OH业务。
本申请实施例中,发送装置获取码块集合,当码块集合中包括空闲码块时,所述发送装置生成专用码块,该专用码块包括指示域和数据域,数据域用于承载业务,指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,进一步发送装置用该专用码块替换空闲码块得到目标码块集合并发送该目标码块集合,可以看出,本实施例中码块集合中的每个专用码块不仅具有标识作用还可以携带数据信息,即使码块集合中出现传输错误的专用码块也不会影响接收装置对其他正常传输的专用码块的识别和提取,提高了网络传输整体的稳定性。
本申请实施例第二方面提供了一种数据传输方法,包括:
接收装置接收发送装置发送的码块集合;
所述接收装置判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
若是,则所述接收装置提取所述业务;
所述接收装置用空闲码块替换所述专用码块得到目标码块集合。
本申请实施例中,接收装置对码块集合的处理可以在PHY层实现。
本申请实施例中,接收装置接收其他发送装置发送的码块集合同样可以是通信接口上一段连续的码块,也可以是应用于FlexE中的FlexE帧,接收装置用空闲码块替换专用码块得到目标码块集合之后,接收装置将目标码块集合通过通信接口发送出去。
可以理解的是,接收装置可以通过码块中是的指示域及指示域中的指示信息来区分专用码块。
结合本申请实施例第二方面,本申请实施例第二方面的第一种实施方式中,所述业务包括BE业务或OH业务。
结合本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第二种实施方式中,所述业务为所述BE业务;
所述接收装置提取所述业务包括:
所述接收装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
所述接收装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
所述接收装置从所述数据域提取所述BE业务。
结合本申请实施例第二方面的第一种实施方式,本申请实施例第二方面的第三种实施方式中,所述业务为所述OH业务;
所述接收装置提取所述业务包括:
所述接收装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
所述接收装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
所述接收装置从所述数据域提取所述OH业务。
本申请实施例中,接收装置除了可以从专用码块的数据域中提取OH业务外,还可以从管理通道中提取另一部分OH业务。
本申请实施例中,接收装置接收发送装置发送的码块集合,之后接收装置判断该码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,当码块集合中包括专用码块时,接收装置提取业务,并用空闲码块替换专用码块得到目标码块集合,可以看出,本实施例中码块集合中的专用码块不仅具有标识作用还可以携带数据信息,对于接收装置来说,即使码块集合中出现传输错误的专用码块也不会影响对其他正常传输的专用码块的识别和业务提取,提高了网络传输整体的稳定性。
本申请实施例第三方面提供了一种发送装置,包括:
获取单元,用于获取码块集合;
判断单元,用于判断所述码块集合中是否包括空闲码块;
生成单元,用于当所述码块集合中包括空闲码块时,生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
替换单元,用于用所述专用码块替换所述空闲码块得到目标码块集合;
发送单元,用于发送所述目标码块集合。
结合本申请实施例第三方面,本申请实施例第三方面的第一种实施方式中,
所述业务包括尽力而为BE业务或开销OH业务。
结合本申请实施例第三方面的第一种实施方式,本申请实施例第三方面的第二种实施方式中,所述业务为BE业务;所述生成单元具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
将所述BE业务封装到所述数据域。
结合本申请实施例第三方面的第一种实施方式,本申请实施例第三方面的第三种实施方式中,所述业务为OH业务;所述生成单元具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
将所述OH业务封装到所述数据域。
结合本申请实施例第三方面,或第三方面的第一种实施方式,或第三方面的第二种实施方式,或第三方面的第三种实施方式,本申请实施例第三方面的第四种实施方式中,所述发送装置还包括:
确定单元,用于确定需要添加到所述专用码块的所述业务。
结合本申请实施例第三方面,或第三方面的第一种实施方式,或第三方面的第二种实施方式,或第三方面的第三种实施方式,本申请实施例第三方面的第午种实施方式中,所述发送装置还包括:
封装单元,用于将OH业务封装到管理通道,该封装在管理通道中的OH业务为需要添加的OH业务中除去封装在专用码块中的OH业务外的另一部分OH业务。
本申请实施例第四方面提供了一种接收装置,包括:
接收单元,用于接收发送装置发送的码块集合;
判断单元,用于判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
提取单元,用于当所述码块集合中包括专用码块时,提取所述业务;
替换单元,用于替换所述专用码块得到目标码块集合。
结合本申请实施例第四方面,本申请实施例第四方面的第一种实施方式中,所述业务包括尽力而为BE业务或开销OH业务。
结合本申请实施例第四方面的第一种实施方式,本申请实施例第四方面的第二种实施 方式中,所述业务为所述BE业务;
所述提取单元具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
从所述数据域提取所述BE业务。
结合本申请实施例第四方面的第一种实施方式,本申请实施例第四方面的第三种实施方式中,所述业务为所述OH业务;
所述提取单元具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
从所述数据域提取所述OH业务。
本申请实施例第五方面提供了一种发送装置,包括:
处理器、存储器、总线以及输入输出接口;
所述存储器中存储有程序代码;
所述处理器调用所述存储器中的程序代码时执行如下操作:
获取码块集合;
判断所述码块集合中是否包括空闲码块;
若是,则生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
用所述专用码块替换所述空闲码块得到目标码块集合;
发送所述目标码块集合。
本申请实施例第六方面提供了一种接收装置,包括:
处理器、存储器、总线以及输入输出接口;
所述存储器中存储有程序代码;
所述处理器调用所述存储器中的程序代码时执行如下操作:
接收发送装置发送的码块集合;
判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
若是,提取所述业务;
用空闲码块替换所述专用码块得到目标码块集合。
本申请实施例第七方面提供了一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使得计算机执行上述第一方面或第二方面数据传输方法中的流程。
本申请实施例第八方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面数据传输方法中的流程。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,发送装置获取码块集合,当码块集合中包括空闲码块时,所述发送装置生成专用码块,该专用码块包括指示域和数据域,数据域用于承载业务,指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,进一步发送装置用该专用码块替换空闲码块得到目标码块集合并发送该目标码块集合,可以看出,本实施例中码块集合中的每个专用码块不仅具有标识作用还可以携带数据信息,即使码块集合中出现传输错误的专用码块也不会影响接收装置对其他正常传输的专用码块的识别和提取,提高了网络传输整体的稳定性。
附图说明
图1为FlexE的总体架构图;
图2为FlexE帧的帧格式图;
图3为现有技术中专用指示码块的码块格式图;
图4为本申请数据传输方法一个实施例示意图;
图5为本申请数据传输方法另一实施例示意图;
图6为本申请中专用码块的码块格式图;
图7为PPP帧的帧格式图;
图8为本申请数据传输方法另一实施例示意图;
图9为本申请专用码块与管理通道联合携带OH业务的示意图;
图10为本申请数据传输方法另一实施例示意图;
图11为本申请发送装置的一个实施例示意图;
图12为本申请接收装置的一个实施例示意图;
图13为本申请网络设备的一个实施例示意图。
具体实施方式
本申请实施例提供了一种数据传输方法,用于提高网络传输整体的稳定性。
本申请实施例可以应用于FlexE中,FlexE支持将多个以太网接口绑定为一个链路组以支持速率大于单个以太网接口的介质访问控制层(media access control,MAC)业务,并且通过为业务分配时隙支持速率小于链路组带宽或者小于单个以太网接口带宽的MAC业务,此外还可以通过为业务分配时隙支持在链路组中同时传输多个MAC业务。
FlexE的总体架构如图1所示,灵活以太网组(FlexE Group)是由1到n个以太网物理层(physical layer,PHY)绑定的,灵活以太网客户(FlexE Clients)是基于MAC的以太网数据流,灵活以太网层(FlexE Shim)在发送方向起到复用的作用,将FlexE Clients的数据映射到FlexE Group,相反的在接收方向起到解复用的作用,将数据从FlexE Group解映射。
FlexE对物理接口传输构建固定的帧格式,并进行基于时分复用进行时隙的划分,FlexE中的帧格式如图2所示,对于100GE PHY接口,数据码块流由64B/66B码块组成,每20个64B/66B码块为一个周期,并且这20个64B/66B码块分别对应不同时隙,FlexE中每个PHY 上的数据通过周期性插入开销(overhead,OH)码块来实现对齐,具体是每隔1023x20个64B/66B码块插入1个66B的OH码块,8个OH码块加上1023x20个64B/66B码块共同组成一个FlexE帧,其中每个FlexE帧的8个OH码块中还会抽取若干个OH码块定义为管理通道。
64B/66B编码将64bit数据或控制信息编码成66bit块传输,66bit块的前两个bit表示同步头,主要用于数据对齐和同步,同步头有“01”和“10”两种,“01”表示后面的64bit都是数据,“10”表示后面的64bit是数据和控制信息的混合。
每个周期的20个64B/66B码块中会有可能包括未携带业务的空闲码块,在现有技术中,如图3所示,当某一周期空闲码块的数量至少为两个时,把该周期内的首个空闲码块替换为0x4B+0xA的指示码块,对应图3中的第1bit,其余空闲码块替换为BE业务码块,对应图3中的第10bit、第12bit和第17bit,指示码块D1-D3这三个字节的前20个bit用于指示该周期内码块的替换情况,对应图3所示的情况,D1-D3的前20个比特应为(1000 0000 0101 0000 1000),其中1表示该周期内替换过后的码块,0表示该周期内的码块为原始码块(未经过替换)。
该方案只能工作于同一周期内至少包括两个空闲码块的情景,并且指示码块的传输错误将会影响接收装置对同一周期内其他传输正常的替换后的码块的识别和提取,网络传输整体的稳定性较差。
需要说明的是,本申请实施例描述的数据传输方法可以应用在网络设备,例如交换机及路由器等,可以理解的是,用于实施本申请实施例中数据传输方法的装置是收发一体的装置,既有数据的发送功能也有数据的接收功能,在发送数据时可以看做发送装置,在接收数据时可以看做接收装置。
为此本申请实施例中提供了一种数据传输方法以解决上述问题,为便于理解,下面对本申请实施例中的具体流程进行描述:
请参阅图4,本申请实施例中数据传输方法的一个实施例包括:
401、发送装置获取码块集合。
发送装置会通过通信接口接收到码块集合,具体地,该码块集合可以是通信接口上一段连续的码块,也可以是FlexE帧,如图2所示,FlexE帧由该帧结构中第一列所示的OH码块集合和其余的数据码块共同构成,其中OH码块集合中的一个或多个OH码块会作为管理通道,该管理通道预留用作携带管理信息,如OH业务,每个OH码块以“01”为同步头,并包含8个可用字节共64bit。
402、发送装置判断码块集合中是否包括空闲码块,若是,则执行步骤403。
发送装置接收到码块集合后需要判断该码块集合中是否包括空闲码块,可以理解的是,空闲码块是未携带数据信息的码块。
403、发送装置生成专用码块。
本实施例中,当码块集合中包括空闲码块时,发送装置生成专用码块,具体的,该专用码块包括同步头、指示域和数据域,除去占用专用码块前2bit的同步头,指示域和数据域占用专用码块后面的64bit,数据域用于承载业务,指示域承载有指示信息,指示信息 用于指示该专用码块并指示专用码块的数据域中承载有业务。
本申请实施例中的专用码块区别于FlexE帧中OH码块集合及其他数据码块,专用码块的指示域可以唯一区分专用码块并指示专用码块的数据域中承载有业务。
可以理解的是,接收装置可以根据专用码块的指示域识别到该专用码块为替换了空闲码块并携带有业务的码块。
404、发送装置用专用码块替换空闲码块得到目标码块集合。
发送装置生成承载有业务的专用码块后,进一步发送装置用该专用码块替换空闲码块得到目标码块集合,可以理解的是,若该码块集合中包括多个空闲码块,则发送装置按照码块集合中码块的发送先后顺序依次替换空闲码块。
405、发送装置发送目标码块集合。
本申请实施例中,发送装置完成专用码块对空闲码块的替换后,会将得到的目标码块集合从接口发送出去。
本申请实施例中,发送装置获取码块集合,当码块集合中包括空闲码块时,所述发送装置生成专用码块,该专用码块包括指示域和数据域,数据域用于承载业务,指示域指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,进一步发送装置用该专用码块替换空闲码块得到目标码块集合并发送该目标码块集合,可以看出,本实施例中码块集合中的每个专用码块不仅具有标识作用还可以携带数据信息,即使码块集合中出现传输错误的专用码块也不会影响接收装置对其他正常传输的专用码块的识别和提取,提高了网络传输整体的稳定性。
本申请实施例具体可以分为两个方案,下面分别进行描述:
方案一:定义了一种专用码块,该专用码块包括指示域和数据域,指示域用于指示专用码块,数据域用于承载BE业务,发送装置用该携带有BE业务的专用码块替换空闲码块。
请参阅图5,本申请实施例中数据传输方法的一个实施例包括:
501、发送装置获取码块集合。
发送装置会通过通信接口接收到码块集合,具体地,该码块集合可以是通信接口上一段连续的码块,也可以是FlexE帧,如图2所示,FlexE帧由该帧结构中第一列所示的OH码块集合和其余的数据码块共同构成,其中OH码块集合中的一个或多个OH码块会作为管理通道,该管理通道预留用作携带管理信息,如OH业务,每个OH码块以“01”为同步头,并包含8个可用字节共64bit。
502、发送装置判断码块集合中是否包括空闲码块,若是,则执行步骤503。
发送装置接收到码块集合后需要判断该码块集合的码块集合中是否包括空闲码块,可以理解的是,空闲码块是未携带数据信息的码块。
503、发送装置确定专用码块的数据域及指示域。
本实施例中,当码块集合中包括空闲码块时,发送装置确定专用码块的数据域及指示域,具体的,该专用码块可以如图6所示,该专用码块包括同步头、指示域和数据域,除去占用专用码块前2bit的同步头,指示域和数据域占用专用码块后面的64bit,其中,指示域可以有多种定义方式,例如,将专用码块的0至7bit定义为指示域,也可以将专用码 块的32至35bit定义为指示域,又或者可以将专用码块的0至7bit及32至35bit共同定义为指示域,即图中6中0x4B所示的区域或0xF所示的区域,又或者0x4B+0xF所示的区域,专用码块的数据域也可以有多种定义方式,例如,将专用码块的8至31bit定义为数据域,也可以将专用码块的36至63bit定义为数据域,又或者可以将专用码块的8至31bit及36至63bit共同定义为数据域,即可以是图6中D1-D3所示的区域或D4-D7所示的区域,又或者D1-D7所示的区域。
本申请实施例中的专用码块区别于FlexE帧中OH码块集合及其他数据码块,专用码块的指示域可以唯一区分专用码块并指示专用码块的数据域中承载有业务。
可以理解的是,接收装置可以根据专用码块的指示域识别到该专用码块为替换了空闲码块并携带有业务的码块。
需要说明的是,指示域中承载有指示信息,如0x4B和0xF,其中,指示域中承载的指示信息也可以是其他形式,例如还可以是0至7bit对应的指示信息为0x4B、32至35bit对应的指示信息为0xF、0xA、0x9或者0x3,又或者0至7bit对应的指示信息为0x00,具体此处不做限定。
504、发送装置将BE业务加载到专用码块。
本实施例中,发送装置会将需要携带的BE业务加载到专用码块的数据域中,具体的,发送装置会通过点对点协议(point to point protocol,PPP)封装BE业务并逐字节的映射到专用码块的数据域中。
PPP帧格式如图7所示,PPP采用0x7E作为帧的开始和结束,紧跟着0x7E开始字节的是地址字节(0xFF)和控制字节(0x03),之后的协议域用两个字节填充,信息域用来承载需要传输的BE业务,帧校验域(FCS)也为两个字节,它用于对信息域的校验,借用PPP协议基于字节的帧定界方式,用0x7E标识帧的开始与结束并将BE业务封装进信息域里。
需要说明的是,发送装置除了用PPP协议封装BE业务之外,还可以用其他的协议,例如,高级数据链路控制(high-level data link control,HDLC)协议和通用成帧规程(generic framing procedure,GFP)协议,具体此处不做限定。
505、发送装置用专用码块替换空闲码块得到目标码块集合。
发送装置在将BE业务加载到专用码块后,进一步发送装置用该专用码块替换空闲码块得到目标码块集合,可以理解的是,若该码块集合中包括多个空闲码块,则发送装置按照码块集合中码块的发送先后顺序依次替换空闲码块。
506、发送装置发送目标码块集合。
本实施例中,发送装置完成专用码块对空闲码块的替换后,会将得到的目标码块集合从接口发送出去。
本申请实施例中,发送装置获取码块集合,当码块集合中包括空闲码块时,所述发送装置生成专用码块,该专用码块包括指示域和数据域,数据域用于承载BE业务,指示域指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述BE业务,进一步发送装置用该专用码块替换空闲码块得到目标码块集合并发送该目标码块集合,可以看出,本实施例中码块集合中的每个专用码块不仅具有标识作用还可以携带数据信息, 即使码块集合中出现传输错误的专用码块也不会影响接收装置对其他正常传输的专用码块的识别和提取,提高了网络传输整体的稳定性。
方案二:定义了一种专用码块,该专用码块包括指示域和数据域,指示域用于指示专用码块,发送装置将OH业务加载到该专用码块的数据域及管理通道,并用专用码块替换空闲码块,使专用码块及管理通道共同携带OH业务。
请参阅图8,本申请实施例中数据传输方法的另一个实施例包括:
801、发送装置获取码块集合。
802、发送装置判断码块集合中是否包括空闲码块,若是,则执行步骤803。
803、发送装置确定专用码块的数据域及指示域。
本实施例中,步骤801至步骤803与图5所示的实施例中的步骤501至步骤503类似,具体此处不再赘述。
804、发送装置将第一OH业务加载到专用码块。
本实施例中,发送装置会将需要携带的第一OH业务加载到专用码块的数据域中,第一OH业务为发送装置需要添加的OH业务中的一部分OH业务,具体的,发送装置会通过点对点协议(point to point protocol,PPP)封装第一OH业务并逐字节的映射到专用码块的数据域中。
PPP帧格式如图6所示,PPP采用0x7E作为帧的开始和结束,紧跟着0x7E开始字节的是地址字节(0xFF)和控制字节(0x03),之后的协议域用两个字节填充,信息域用来承载需要传输的第一OH业务,帧校验域(FCS)也为两个字节,它用于对信息域的校验,借用PPP协议基于字节的帧定界方式,用0x7E标识帧的开始与结束并将第一OH业务封装进信息域里。
需要说明的是,发送装置除了用PPP协议封装第一OH业务之外,还可以用其他的协议,例如,高级数据链路控制(high-level data link control,HDLC)协议和通用成帧规程(generic framing procedure,GFP)协议,具体此处不做限定。
805、发送装置将第二OH业务加载到管理通道。
本实施例中,发送装置会将需要携带的第二OH业务加载到管理通道中,可以理解的是,发送装置可以联合专用码块及管理通道共同携带OH业务,其中的第二OH业务为需要添加的OH业务中除去第一OH业务外的另一部分OH业务。
具体可以参照图9,码块集合的第一列为OH码块,其中第4和第5的两个OH码块定义为管理通道,第二OH业务加载到管理通道中,该管理通道共包含132bit,可以理解的是,本实施例中定义的管理通道仅为一种举例,管理通道也可以有其他的定义方式,例如管理通道也可以定义在第6至第8的三个OH码块,具体此处不做限定。
需要说明的是,发送装置会通过PPP协议封装第二OH业务并逐字节的映射到管理通道中,发送装置除了用PPP封装第二OH业务之外,还可以用其他的协议,例如,HDLC协议和GFP协议,具体此处不做限定。
需要说明的是,步骤804与步骤805之间没有固定的时序关系,可以先执行步骤804,也可以先执行步骤805,又或者可以同时执行步骤804及步骤805,具体此处不做限定。
806、发送装置用专用码块替换空闲码块得到目标码块集合。
807、发送装置发送目标码块集合。
本实施例中,步骤806至步骤807与图5所示的实施例中的步骤505至步骤506类似,具体此处不再赘述。
本申请实施例中,发送装置获取码块集合,当码块集合中包括空闲码块时,所述发送装置生成专用码块,该专用码块包括指示域和数据域,数据域用于承载第一OH业务,指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,另外,发送装置还会将第二OH业务加载到管理通道,也就是通过专用码块和管理通道共同携带OH业务,在提高了网络传输整体的稳定性的基础上,还可以通过专用码块来携带部分OH业务为OH业务提供了额外的带宽。
上面从发送装置的角度对本申请实施例进行了描述,下面从接收装置的角度来进一步介绍本申请实施例。
请参阅图10,本申请实施例中数据传输方法的另一个实施例包括:
1001、接收装置接收码块集合。
本申请实施例中,接收装置接收到由其他设备发送的码块集合,具体地,该码块集合可以是通信接口上一段连续的码块,也可以是FlexE帧,关于FlexE帧的描述与图4所示实施例中步骤401关于FlexE帧的描述类似,具体此处不再赘述。
1002、接收装置判断码块集合中是否包括专用码块,若是,则执行步骤1003。
接收装置接收到码块集合后需要判断该码块集合中是否包括专用码块,关于该专用码块的描述与图5所示实施例中步骤503类似,具体此处不再赘述。
可以理解的是,接收装置可以根据专用码块中的指示域及指示域中的指示信息识别到专用码块。
需要说明的是,若该码块集合中包括多个专用码块,则接收装置按照码块集合中码块的发送先后顺序依次替换专用码块。
1003、接收装置提取业务。
本申请实施例中,当码块集合中包括专用码块时,接收装置会从专用码块中提取相应的业务,具体地,如果专用码块中携带的是BE业务,那么接收装置从该专用码块的数据域中提取该BE业务,如果专用码块中携带的是一部分OH业务,那么接收装置从该专用码块的数据域中提取该OH业务,此外还需要从管理通道中提取另一部分的OH业务。
1004、接收装置用空闲码块替换专用码块得到目标码块集合。
本申请实施例中,接收装置从专用码块中提取了业务之后,接收装置会用空闲码块替换专用码块得到目标码块集合,也就是将专用码块还原为之前的空闲码块,之后,接收装置将目标码块集合通过通信接口发送出去。
本申请实施例中,接收装置接收发送装置发送的码块集合,之后接收装置判断该码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,当码块集合中包括专用码块时,接收装置提取业务,并用空闲码块替换专用码块 得到目标码块集合,可以看出,本实施例中码块集合中的专用码块不仅具有标识作用还可以携带数据信息,对于接收装置来说,即使码块集合中出现传输错误的专用码块也不会影响对其他正常传输的专用码块的识别和业务提取,提高了网络传输整体的稳定性。
上面对本申请实施例中的数据传输方法进行了描述,下面对本申请实施例中的发送装置进行描述:
请参阅图11,本申请实施例中发送装置的一个实施例包括:
获取单元1101、用于获取码块集合;
判断单元1102、用于判断所述码块集合中是否包括空闲码块;
生成单元1103、用于当所述码块集合中包括空闲码块时,生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
替换单元1104、用于用所述专用码块替换所述空闲码块得到目标码块集合;
发送单元1105、用于发送所述目标码块集合。
本申请实施例中,发送装置还包括:
确定单元1106,用于确定需要添加到所述专用码块的所述业务。
本申请实施例中,当需要添加的业务为BE业务时,生成单元1103具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
将BE业务封装到所述数据域。
本申请实施例中,当需要添加的业务为OH业务时,生成单元1103具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
将所述OH业务封装到所述数据域。
本申请实施例中,获取单元1101获取码块集合,判断单元1102判断码块集合中是否包括空闲码块,当码块集合中包括空闲码块时,生成单元1103生成专用码块,该专用码块包括指示域和数据域,数据域用于承载业务,指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,进一步替换单元1104用该专用码块替换空闲码块得到目标码块集合,并有发送单元1105发送该目标码块集合,可以看出,本实施例中码块集合中的每个专用码块不仅具有标识作用还可以携带数据信息,即使码块集合中出现传输错误的专用码块也不会影响接收装置对其他正常传输的专用码块的识别和提取,提高了网络传输整体的稳定性。
上面对本申请实施例中的发送装置进行了描述,下面对本申请实施例中的接收装置进行描述:
请参阅图12,本申请实施例中接收装置的一个实施例包括:
接收单元1201、用于接收发送装置发送的码块集合;
判断单元1202、用于判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指 示所述专用码块及所述数据域中承载有所述业务;
提取单元1203、用于当所述码块集合中包括专用码块时,提取所述业务;
替换单元1204、用于替换所述专用码块得到目标码块集合。
本申请实施例中,当需要提取的业务为BE业务时,提取单元1203具体用于
确定所述专用码块的0至7比特位bit以及32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
从所述数据域提取所述BE业务。
本申请实施例中,当需要提取的业务为OH业务时,提取单元1203具体用于
确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
从所述数据域提取所述OH业务。
本申请实施例中,接收单元1201接收发送装置发送的码块集合,判断单元1202判断该码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务,当码块集合中包括专用码块时,提取单元1203提取业务,替换单元1204用空闲码块替换专用码块得到目标码块集合,可以看出,本实施例中码块集合中的专用码块不仅具有标识作用还可以携带数据信息,对于接收装置来说,即使码块集合中出现传输错误的专用码块也不会影响对其他正常传输的专用码块的识别和业务提取,提高了网络传输整体的稳定性。
上面从模块化功能实体的角度对本申请实施例中的发送装置及接收装置进行了描述,下面从硬件处理的角度对本申请施例中具有发送和接收功能的网络设备进行描述:
其中,网络设备可以是FlexE中的提供商(provider,P)网络节点,也可以是提供商边缘(provider edge,PE)网络节点,网络设备在进行数据发送时可视作本申请实施例中的发送装置,网络设备在进行数据接收时可视作本申请实施例中的接收装置。
请参阅图13,本申请中网络设备包括一个或多个中央处理器1301、存储器1302及通信接口1303,其中,中央处理器1301、存储器1302及通信接口1303之间通过总线互相连接。
存储器1302可以是短暂存储或持久存储,用于存储相关的指令及数据,通信接口1303用于接收和发送数据。更进一步地,中央处理器1301可以配置为与存储器1302通信,在网络设备上执行存储器1302中的一系列指令操作。
本实施例中,在网络设备作为发送装置时,中央处理器1301读取存储器1302中存储的程序代码,执行以下操作:
获取码块集合;
判断所述码块集合中是否包括空闲码块;
若是,则所述生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
用所述专用码块替换所述空闲码块得到目标码块集合;
通过通信接口1303发送目标码块集合。
本实施例中,在网络设备作为接收装置时,中央处理器1301读取存储器1302中存储的程序代码,执行以下操作:
通过通信接口1303接收码块集合;
判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
若是,则提取所述业务;
用空闲码块替换所述专用码块得到目标码块集合。
本实施例中,中央处理器1301中的具体功能模块划分可以与前述图11及12中所描述的获取单元、判断单元、生成单元、替换单元、发送单元、提取单元等单元的功能模块划分方式类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述 各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (18)

  1. 一种数据传输方法,其特征在于,包括:
    发送装置获取码块集合;
    所述发送装置判断所述码块集合中是否包括空闲码块;
    若是,则所述发送装置生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
    所述发送装置用所述专用码块替换所述空闲码块得到目标码块集合;
    所述发送装置发送所述目标码块集合。
  2. 根据权利要求1所述的方法,其特征在于,所述业务包括尽力而为BE业务或开销OH业务。
  3. 根据权利要求2所述的方法,其特征在于,所述业务为所述BE业务;
    所述发送装置生成所述专用码块包括:
    所述发送装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
    所述发送装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    所述发送装置将所述BE业务封装到所述数据域。
  4. 根据权利要求2所述的方法,其特征在于,所述业务为所述OH业务;
    所述发送装置生成所述专用码块包括:
    所述发送装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
    所述发送装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    所述发送装置将所述OH业务封装到所述数据域。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述发送装置生成专用码块之前,所述方法还包括:
    所述发送装置确定需要添加到所述专用码块的所述业务。
  6. 一种数据传输方法,其特征在于,包括:
    接收装置接收发送装置发送的码块集合;
    所述接收装置判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
    若是,则所述接收装置提取所述业务;
    所述接收装置用空闲码块替换所述专用码块得到目标码块集合。
  7. 根据权利要求6所述的方法,其特征在于,所述业务包括尽力而为BE业务或开销OH业务。
  8. 根据权利要求7所述的方法,其特征在于,所述业务为所述BE业务;
    所述接收装置提取所述业务包括:
    所述接收装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
    所述接收装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    所述接收装置从所述数据域提取所述BE业务。
  9. 根据权利要求7所述的方法,其特征在于,所述业务为所述OH业务;
    所述接收装置提取所述业务包括:
    所述接收装置确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域;
    所述接收装置确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    所述接收装置从所述数据域提取所述OH业务。
  10. 一种发送装置,其特征在于,包括:
    获取单元,用于获取码块集合;
    判断单元,用于判断所述码块集合中是否包括空闲码块;
    生成单元,用于当所述码块集合中包括空闲码块时,生成专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
    替换单元,用于用所述专用码块替换所述空闲码块得到目标码块集合;
    发送单元,用于发送所述目标码块集合。
  11. 根据权利要求10所述的发送装置,其特征在于,
    所述业务包括尽力而为BE业务或开销OH业务。
  12. 根据权利要求11所述的发送装置,其特征在于,所述业务为BE业务;所述生成单元具体用于
    确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    将所述BE业务封装到所述数据域。
  13. 根据权利要求11所述的发送装置,其特征在于,所述业务为OH业务;所述生成单元具体用于
    确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    将所述OH业务封装到所述数据域。
  14. 根据权利要求10至13中任一项所述的发送装置,其特征在于,所述发送装置还包括:
    确定单元,用于确定需要添加到所述专用码块的所述业务。
  15. 一种接收装置,其特征在于,包括:
    接收单元,用于接收发送装置发送的码块集合;
    判断单元,用于判断所述码块集合中是否包括专用码块,所述专用码块包括指示域和数据域,所述数据域用于承载业务,所述指示域承载指示信息,所述指示信息用于指示所述专用码块及所述数据域中承载有所述业务;
    提取单元,用于当所述码块集合中包括专用码块时,提取所述业务;
    替换单元,用于替换所述专用码块得到目标码块集合。
  16. 根据权利要求15所述的接收装置,其特征在于,所述业务包括尽力而为BE业务 或开销OH业务。
  17. 根据权利要求16所述的接收装置,其特征在于,所述业务为所述BE业务;
    所述提取单元具体用于确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    从所述数据域提取所述BE业务。
  18. 根据权利要求16所述的接收装置,其特征在于,所述业务为所述OH业务;
    所述提取单元具体用于
    确定所述专用码块的0至7比特位bit和/或32至35bit为所述指示域,并确定所述专用码块的8至31bit和/或36至63bit为所述数据域;
    从所述数据域提取所述OH业务。
PCT/CN2018/113590 2017-12-25 2018-11-02 一种数据传输方法、发送装置及接收装置 WO2019128462A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207020850A KR102450095B1 (ko) 2017-12-25 2018-11-02 데이터 송신 방법, 전송 장치, 및 수신 장치
EP18897501.5A EP3720032B1 (en) 2017-12-25 2018-11-02 Data transmission method, sending apparatus and receiving apparatus
JP2020554347A JP7080987B2 (ja) 2017-12-25 2018-11-02 データ伝送方法、送信装置、および受信装置
US16/910,477 US11438098B2 (en) 2017-12-25 2020-06-24 Data transmission method, sending apparatus, and receiving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711426203.7 2017-12-25
CN201711426203.7A CN109962762B (zh) 2017-12-25 2017-12-25 一种数据传输方法、发送装置及接收装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/910,477 Continuation US11438098B2 (en) 2017-12-25 2020-06-24 Data transmission method, sending apparatus, and receiving apparatus

Publications (1)

Publication Number Publication Date
WO2019128462A1 true WO2019128462A1 (zh) 2019-07-04

Family

ID=67021546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113590 WO2019128462A1 (zh) 2017-12-25 2018-11-02 一种数据传输方法、发送装置及接收装置

Country Status (6)

Country Link
US (1) US11438098B2 (zh)
EP (1) EP3720032B1 (zh)
JP (1) JP7080987B2 (zh)
KR (1) KR102450095B1 (zh)
CN (1) CN109962762B (zh)
WO (1) WO2019128462A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012993A4 (en) * 2019-08-13 2022-11-02 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR TRANSMISSION OF SERVICE DATA

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417602A (zh) * 2019-08-06 2019-11-05 Ut斯达康通讯有限公司 以太网通道管理方法和通信设备
CN113541874A (zh) * 2020-04-15 2021-10-22 华为技术有限公司 一种数据传输方法及网络设备
CN114257333A (zh) * 2020-09-24 2022-03-29 华为技术有限公司 一种码块流的处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335750A (zh) * 2007-06-29 2008-12-31 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置
CN101631064A (zh) * 2008-07-14 2010-01-20 华为技术有限公司 一种数据发送与接收的方法、装置及系统
CN103491386A (zh) * 2013-09-18 2014-01-01 辛欣 一种利用ts包传输流媒体的方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020015405A1 (en) * 2000-06-26 2002-02-07 Risto Sepponen Error correction of important fields in data packet communications in a digital mobile radio network
US7376102B2 (en) * 2005-12-01 2008-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Erased frame and idle frame suppression in a wireless communications system
CN100586052C (zh) * 2005-12-17 2010-01-27 华为技术有限公司 一种数据传输方法及系统
US7657695B1 (en) * 2007-05-30 2010-02-02 Paravirtual Corporation Efficient processing of memory accesses to virtual hardware using runtime code patching
JP2009232193A (ja) 2008-03-24 2009-10-08 Nec Corp 通信システムおよび監視/制御方法および中継装置およびプログラム
US8416770B2 (en) * 2009-07-20 2013-04-09 Futurewei Technologies, Inc. Universal service transport transitional encoding
US9838290B2 (en) * 2015-06-30 2017-12-05 Ciena Corporation Flexible ethernet operations, administration, and maintenance systems and methods
US10097480B2 (en) * 2015-09-29 2018-10-09 Ciena Corporation Time transfer systems and methods over flexible ethernet
CN110719143A (zh) * 2015-07-30 2020-01-21 华为技术有限公司 用于数据传输的方法、发送机和接收机
WO2017070851A1 (en) * 2015-10-27 2017-05-04 Zte Corporation Channelization for flexible ethernet
CN113162853A (zh) * 2016-05-27 2021-07-23 华为技术有限公司 转发数据的方法和设备
CN107786320B (zh) * 2016-08-25 2021-06-22 华为技术有限公司 一种发送和接收业务的方法、装置和网络系统
JP2018046373A (ja) * 2016-09-13 2018-03-22 富士通株式会社 伝送装置及び伝送方法
CN109347598B (zh) * 2017-09-21 2022-03-11 中国移动通信有限公司研究院 校验码处理方法、电子设备及存储介质
CN112073246B (zh) * 2017-09-21 2023-05-09 中国移动通信有限公司研究院 Oam消息传输方法、传输设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335750A (zh) * 2007-06-29 2008-12-31 华为技术有限公司 将以太网编码块映射到光传输网络传输的方法及装置
CN101631064A (zh) * 2008-07-14 2010-01-20 华为技术有限公司 一种数据发送与接收的方法、装置及系统
CN103491386A (zh) * 2013-09-18 2014-01-01 辛欣 一种利用ts包传输流媒体的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720032A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012993A4 (en) * 2019-08-13 2022-11-02 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR TRANSMISSION OF SERVICE DATA

Also Published As

Publication number Publication date
US20200322087A1 (en) 2020-10-08
CN109962762A (zh) 2019-07-02
JP2021508996A (ja) 2021-03-11
KR20200100759A (ko) 2020-08-26
CN109962762B (zh) 2020-06-16
EP3720032A1 (en) 2020-10-07
JP7080987B2 (ja) 2022-06-06
EP3720032B1 (en) 2024-03-20
KR102450095B1 (ko) 2022-10-04
US11438098B2 (en) 2022-09-06
EP3720032A4 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2019128462A1 (zh) 一种数据传输方法、发送装置及接收装置
EP3787208B1 (en) Data transmission method and a communication system
JP6736701B2 (ja) サービス送信方法及び装置、サービス受信方法及び装置、並びにネットワーク・システム
WO2017012510A1 (zh) 传输灵活以太网的业务流的方法和装置
WO2019128664A1 (zh) 一种数据传输方法、通信设备及存储介质
CN101022405B (zh) 一种通用成帧规程封装方法
WO2019085816A1 (zh) 业务数据传输方法及装置
US9641916B2 (en) Optical channel data unit service transmission apparatus and method
CN107800528B (zh) 一种传输同步信息的方法、装置和系统
US20070127526A1 (en) Fibre Channel Frame-Mode GFP with Distributed Delimiter
WO2019029419A1 (zh) 透传业务频率的方法和设备
US11245470B2 (en) Method, device, and system for transmitting data
EP3723302A1 (en) Data transmission method, communication device and storage medium
US20200288468A1 (en) Data transmission method and device
JP2023523462A (ja) サービスデータ処理方法、サービスデータ交換方法、サービスデータ抽出方法およびコンピュータ可読媒体
WO2015165206A1 (zh) 基于芯片的数据传输方法、装置及系统、计算机存储介质
CN103634229B (zh) 一种片间通讯方法及控制装置
CN101035112B (zh) 一种传送附加信息的装置及方法
WO2023109424A1 (zh) 一种数据传输的方法以及相关装置
WO2021115215A1 (zh) 一种数据传输方法、通信设备及存储介质
US7953101B2 (en) Encoding fibre channel over ethernet transport
WO2020169009A1 (zh) 时隙容器的配置方法及装置
CN103746970B (zh) 一种自适应多协议eop实现方法和装置
WO2021027749A1 (zh) 用于传输业务数据的方法和装置
WO2023143577A1 (zh) 一种光传送网中的数据帧的处理方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018897501

Country of ref document: EP

Effective date: 20200702

ENP Entry into the national phase

Ref document number: 20207020850

Country of ref document: KR

Kind code of ref document: A