WO2019128035A1 - 风力发电机组功率控制方法及装置 - Google Patents

风力发电机组功率控制方法及装置 Download PDF

Info

Publication number
WO2019128035A1
WO2019128035A1 PCT/CN2018/086175 CN2018086175W WO2019128035A1 WO 2019128035 A1 WO2019128035 A1 WO 2019128035A1 CN 2018086175 W CN2018086175 W CN 2018086175W WO 2019128035 A1 WO2019128035 A1 WO 2019128035A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
active power
target value
wind turbine
Prior art date
Application number
PCT/CN2018/086175
Other languages
English (en)
French (fr)
Inventor
吴先友
肖硕文
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2018374068A priority Critical patent/AU2018374068B2/en
Priority to EP18877290.9A priority patent/EP3531527A4/en
Priority to US16/349,507 priority patent/US11339762B2/en
Publication of WO2019128035A1 publication Critical patent/WO2019128035A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/044Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present disclosure relates to the field of control, circuit, and wind power generation technologies, and in particular, to a wind turbine power control method and apparatus.
  • the active process of the wind power generation process is to convert the kinetic energy of the wind into mechanical energy, and then convert the mechanical energy into electrical energy.
  • the wind power is used to drive the wind turbine blades to rotate, and then the speed of the rotation is increased by the speed increasing machine to promote the generator to generate electricity.
  • the net power of the wind turbine is the active power output from the wind turbine to the low-voltage side of the tank. It removes the mechanical loss, generator loss, converter loss, internal line loss of the wind power and the unit of the wind turbine during wind power generation. Self-consumption and so on.
  • the active power target value is used as the input of the fan controller, so that the fan controller outputs the variable current torque reference and the pitch angle based on the active power target value, so that the wind turbine generator set can generate electricity according to the foregoing requirements.
  • the measured active power of the fan output is not necessarily the net power.
  • the deviation between the active power target value and the net power consumption of the input fan controller there are many reasons for the deviation between the active power target value and the net power consumption of the input fan controller. For example, the loss of the full power converter is related to the ambient temperature. Even if the active power and the net power consumption have the same reason, the magnitude of the deviation is different in different situations.
  • the loss coefficients of different seasons are inconsistent, and the unit losses are also different. Therefore, when the active power is used as the input of the fan controller, it is also necessary to multiply the active power by a loss factor, thereby increasing or decreasing the variable current torque reference and the pitch angle given by the fan controller. Ensure that the net power of the net is equal to the active power target.
  • the loss factor is obtained by the measurement method, and it needs to be set according to the parameters that can cover all the working conditions.
  • the method described above will result in a long period of loss coefficient measurement, and the complete loss factor needs to include at least the climate.
  • the full working condition data at the same time, the parameters may not cover all working conditions, and all wind farms have different conditions. It is not realistic to measure the loss coefficient of each wind farm separately.
  • there may be influencing factors that are not currently known, and adjusting the fan parameters (especially the variable current) will have a large impact on the loss factor, and parameter optimization is a necessary process in most cases.
  • the purpose of the present disclosure is to solve at least one of the above technical defects, in particular, the deviation between the active power target value and the net power-on power of the input fan controller due to various reasons, and the long loss measurement period and the influence of parameters. Complex issues and other issues.
  • a wind turbine power control method including: determining a compensation value of the active power target value according to a power difference between a net on-net power and an active power target value; The power target value and the compensation value determine an active power reference value; and the variable current and pitch control are performed according to the active power reference value.
  • a wind turbine power control apparatus including: a first compensation value determining module, configured to determine the active power according to a power difference between a net power of the net and an active power target value a compensation value of the target value; an active power set value determining module, configured to determine an active power reference value according to the active power target value and the compensation value; and a variable current and pitch control module for determining the active power
  • the converter performs variable current and pitch control.
  • a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the wind power generator of any of the above aspects The steps of the power control method.
  • a computer apparatus comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, the processor executing the computer program
  • FIG. 1 is a flow chart of an embodiment of an exemplary embodiment of a wind turbine power control method according to the present disclosure
  • FIG. 2 is a structural diagram of an embodiment of an exemplary embodiment of a wind turbine power control device according to the present disclosure.
  • the present disclosure also provides a wind turbine power control method, as shown in FIG. 1, which includes S100, S200, and S300.
  • a compensation value of the active power target value is determined according to a power difference between the net power of the net and the target value of the active power.
  • the net power-on-power detecting device is added to dynamically detect the net power-on-power and the received active power target value in real time and output the power difference between the net power-on power and the active power target value to determine the compensation value.
  • the net power of the wind power generation device is detected and the target power value set by the user is received, and the power between the active power target value and the net power is determined according to a preset power calculation rule.
  • the difference is the power difference value, so as to determine the deviation between the active power target value and the net power-on power value, so as to determine the compensation value of the active power based on the power difference.
  • a calculation rule for correcting the difference between the target value of the active power and the net power of the net is provided, and according to the rule, the compensation value of the target value of the active power is more accurate, and the fluctuation of the net power of the net is avoided, and the operation of the entire system is ensured. stability.
  • the power difference value is converted into a compensation value according to an operation rule, and the power difference value is directly used as an error value of the compensation value of the active power target value, so that the power setting value and The difference in net power consumption can be as small as possible to ensure that the wind power plant can operate at full capacity.
  • the subsequent wind power generation power control method in the embodiment of the present disclosure can also be used to determine the power difference value and the subsequent operation process of the power difference value.
  • the location where the net power detection device is installed is not in the circuit that the wind power generator outputs to the low voltage side of the box.
  • the deviation between the net power and the active power target value comes from the self-consumption of the unit, due to self-consumption fluctuations.
  • the range is small, and the net power of the net can use the currently detected active power minus the maximum value of the self-consumption. This avoids the cost of technical modifications and increased equipment.
  • the active power reference value is determined according to the active power target value and the compensation value.
  • the corrected active power reference value of the input wind power generation device is obtained, thereby ensuring the net power supply output by the wind power generation device. It can be consistent with the input active power target value, thus ensuring the accuracy of the power set value and the stable and reasonable operation of the wind power generation device.
  • variable current and pitch control are performed according to the active power set value.
  • the arithmetic module in the wind power generation device obtains the variable current given and the pitch given based on the variable current given and the pitch given, and the wind power generator is converted according to the variable flow given and the pitch given. And pitch control, so that the wind power generation device can generate energy according to the variable flow given and the pitch given, and convert the wind energy into electric energy.
  • determining the compensation value of the active power target value according to the power difference between the net power and the active power target value specifically including:
  • the power difference between the net power and the active power target value is input to the proportional integral controller to obtain the active power.
  • the compensation value of the target value is input to the proportional integral controller to obtain the active power.
  • the determination condition determines whether the current pitch angle of the wind turbine is greater than the system minimum pitch angle limit and the current power generation state of the wind turbine. Specifically, when the current pitch angle of the wind turbine is greater than the system minimum pitch angle limit and the wind turbine is in the power generation state, the determination result is true, and the set judgment condition is satisfied, indicating that the wind power generation device can be at the power setting value.
  • the full-state operation is performed, and then the compensation value is determined based on the aforementioned power difference between the net power and the active power target value, specifically, the power difference is input to the proportional-integral controller, and the power is reduced by the proportional-integral controller.
  • the error of the difference ensures that the net power of the wind power output and the active power target are consistent, and the whole system can operate stably.
  • it can be implemented by any one of an incremental proportional controller and an incremental proportional integral controller in this process, so as to make the system react according to the problems occurring in the system and the proportional coefficient of the wind farm demand.
  • Sensitive adjust the speed plus, reduce the steady-state error, or eliminate the steady-state error and improve the control accuracy and increase the stability of the system.
  • the method further includes: when the current pitch angle of the wind turbine is not greater than the minimum pitch angle of the wind turbine or the wind turbine is not in the power generation state, controlling the preset value of the compensation value of the previous cycle according to each cycle. The quantity is successively decremented to zero.
  • the compensation value of the previous cycle is controlled according to each cycle. Let the amount of change decrease from cycle to cycle until the value of the compensation value is zero, and the compensation value is less than the preset change amount in the penultimate cycle, then the compensation value is directly decremented to zero in the last cycle. For example, when the compensation value is 50kw and the judgment result is false, the preset change amount in each cycle is 1kw, and the compensation value 50kw will change to zero in the last cycle after 50 cycles, and change here.
  • each period in the process will be gradually decremented according to the order of the number of cycles, that is, according to the order of the number of cycles, the compensation values in the corresponding period are: 49kw, 48kw, 47kw...0kw, and determined according to the period according to the compensation value.
  • the power setting value input by the wind power generator. If the compensation value is less than 1kw in the last cycle, it will return to zero directly in the last cycle. If the compensation value is 0.6kw in a certain period, the compensation value in the next period will be directly zero.
  • the period in the embodiment of the present disclosure is a period in which the power closed-loop control module operates, specifically, for example, 1kw per cycle, the period of operation of the controller for operation is 0.02s, and the speed of change of the compensation value is 50kw/s. .
  • the speed of the compensation value does not exceed the power change speed when the power limit of the fan is limited.
  • the power difference between the net power and the active power target value is input to the proportional integral controller, and the compensation value of the active power target value is obtained:
  • the power difference between the net power and the active power target value is input to the proportional integral controller, and the first correction value is calculated, and the first correction value is subjected to clipping processing to obtain a second correction value, and the active power of the previous cycle is obtained.
  • the compensation value of the power target value is summed with the second correction value to obtain a third correction value, and the third correction value is subjected to clipping processing to obtain a compensation value of the active power target value of the current period; compensation of the active power target value of the current period
  • the value is not greater than the preset ratio of the net power of the net.
  • the preset ratio may be 10%.
  • the first correction value is calculated by the proportional integral controller, wherein the integral of the first correction value is mainly to limit the variation range of the first correction value, In order to protect the first correction value from the upper and lower limits, the first correction value is prevented from being caused by the power difference being too large, so that the compensation value of the subsequent output is too large and the compensation value is unreasonable.
  • the limit value after the limit is obtained by limiting the second correction value of the previous cycle.
  • the compensation value in the cycle is more accurate, and the compensation value of the previous cycle and the second correction value in the current cycle are summed to obtain a third compensation value, and the third correction value obtained by the summation is limited to obtain the current period. Compensation value.
  • the compensation value in the embodiment of the present disclosure is made more accurate by the method, so that the loop for detecting the net power of the wind power generation system in the wind power generation system is operated under a reasonable state to avoid abnormality of the wind power generator during operation.
  • the wind power generating device in the power control system of the wind power generating set protects the circuit connected to the power computing module, for example, under reasonable conditions.
  • the reasonable amplitude may be increased or decreased based on the third correction value, and the amplitude may be an absolute value, or the amplitude and the running state of the wind power generator are stored in a mapping relationship, in the pair
  • the third correction value is limited, the amplitude corresponding to the operating state of the wind power generator is called, and the compensation value of the current period is obtained according to the amplitude value and the third correction value.
  • the compensation value of the active power target value may not be greater than the preset proportion of the net power consumption, for example, the final compensation value may not exceed 10% of the net power of the net.
  • the aforementioned process is actually the operating cycle of the proportional integral controller.
  • the present disclosure also provides a wind turbine power control device, as shown in FIG. 2, comprising: a first compensation value determination module 100, an active power reference value determination module 200, and a variable flow and pitch control module 300.
  • the first compensation value determining module 100 may determine the compensation value of the active power target value according to the power difference between the net power and the active power target value.
  • the net power-on-power detecting device is added to dynamically detect the net power-on-power and the received active power target value in real time and output the power difference between the net power-on power and the active power target value to determine the compensation value.
  • the first compensation value determining module 100 determines the active power according to the preset power calculation rule. The difference between the power target value and the net power-on power, and the difference is a power difference, so as to determine a deviation between the active power target value and the net power-on power value, so as to facilitate subsequent compensation for determining the active power based on the power difference value.
  • a calculation rule for correcting the difference between the target value of the active power and the net power of the net is provided, and according to the rule, the compensation value of the target value of the active power is more accurate, and the fluctuation of the net power of the net is avoided, and the operation of the entire system is ensured. stability.
  • the power difference After receiving the power difference outputted by the power calculation module, the power difference is converted into a compensation value according to the operation rule, and the power difference value is directly used as the error value of the compensation value of the active power target value, so that the power setting value and the net access value are obtained.
  • the difference in power can be as small as possible to ensure that the wind power plant can run at full capacity.
  • the active power setpoint determination module 200 can determine the active power setpoint based on the active power target value and the compensation value.
  • the active power reference value determining module 200 obtains the corrected active power reference value of the input wind power generation device according to the active power target value set by the user and the previous compensation value based on the active power target value. In addition, it is ensured that the net power output of the wind power generation device and the input active power target value can be consistent, thereby ensuring the accuracy of the power setting value and the stable and reasonable operation of the wind power generation device.
  • the variable flow and pitch control module 300 performs variable flow and pitch control according to the active power set value.
  • variable flow and pitch control module 300 in the wind power generation device obtains the variable flow reference and the pitch reference based on the variable flow reference and the pitch given pair.
  • the wind turbine performs variable flow and pitch control so that the wind power generation device can generate energy according to the variable flow given and the pitch given, and convert the wind energy into electric energy.
  • the first compensation value determining module 100 may include a proportional integral controller.
  • the proportional integral controller calculates the power difference between the input net power and the active power target value, and obtains The compensation value of the active power target value.
  • the determination condition determines whether the current pitch angle of the wind turbine is greater than the system minimum pitch angle limit and the current power generation state of the wind turbine. Specifically, when the current pitch angle of the wind turbine is greater than the minimum pitch angle limit of the system and the wind turbine is in the power generation state, the determination result is true, and the set judgment condition is satisfied, indicating that the wind power generation device can be at the power setting value.
  • the full-state operation is performed, and then the compensation value is determined based on the aforementioned power difference between the net power and the active power target value, specifically, the power difference is input to the proportional-integral controller, and the power is reduced by the proportional-integral controller.
  • the error of the difference ensures that the net power of the wind power output and the active power target are consistent, and the whole system can operate stably.
  • it can be implemented by any one of an incremental proportional controller and an incremental proportional integral controller in this process, so as to make the system react according to the problems occurring in the system and the proportional coefficient of the wind farm demand.
  • Sensitive adjust the speed plus, reduce the steady-state error, or eliminate the steady-state error and improve the control accuracy and increase the stability of the system.
  • the first compensation value determining module 100 may be further configured to: control the compensation of the previous period when the current pitch angle of the wind power generator is not greater than the minimum pitch angle of the wind power generator set or the wind power generation group is not in the power generation state. The value is successively decremented to zero according to the preset amount of change per cycle.
  • the first compensation value determination module controls the compensation value of the previous cycle.
  • the preset change amount of each cycle is decremented cycle by cycle until the value of the compensation value is zero, and the compensation value is less than the preset change amount in the penultimate cycle, and the compensation value is directly decremented to zero in the last cycle. For example, when the compensation value is 50kw and the judgment result is false, the preset change amount in each cycle is 1kw, and the compensation value 50kw will change to zero in the last cycle after 50 cycles, and change here.
  • each period in the process will be gradually decremented according to the order of the number of cycles, that is, according to the order of the number of cycles, the compensation values in the corresponding period are: 49kw, 48kw, 47kw...0kw, and determined according to the period according to the compensation value.
  • the power setting value input by the wind power generator. If the compensation value is less than 1kw in the last cycle, it will return to zero directly in the last cycle. If the compensation value is 0.6kw in a certain period, the compensation value in the next period will be directly zero.
  • the period in the embodiment of the present disclosure is a period in which the power closed-loop control module operates, specifically, for example, 1kw per cycle, the period of operation of the controller for operation is 0.02 s, and the speed of change of the compensation value is 50 kW/s. .
  • the speed of the compensation value does not exceed the power change speed when the power limit of the fan is limited.
  • the first compensation value determining module 100 may include a proportional integral controller.
  • the proportional integral controller can calculate the power difference between the input net power and the active power target value to obtain a first correction value, and perform a limiting process on the first correction value to obtain a second correction value, and the previous period is
  • the compensation value of the active power target value is summed with the second correction value to obtain a third correction value, and the third correction value is subjected to clipping processing to obtain a compensation value of the active power target value of the current period.
  • the compensation value of the active power target value of the current cycle is not greater than the preset ratio of the net power of the net, and the variation of the compensation value of the final output is not excessively large, so that the system can operate stably.
  • the integral first correction value is calculated by the proportional integral controller, wherein the integral of the first correction value is mainly to limit the variation range of the first correction value.
  • the first correction value is prevented from being caused by the power difference being too large, so that the compensation value of the subsequent output is too large and the compensation value is unreasonable.
  • the limit value after the limit is obtained by limiting the second correction value of the previous cycle.
  • the compensation value in the cycle is more accurate, and the compensation value of the previous cycle and the second correction value in the current cycle are summed to obtain a third correction value, and the third correction value obtained by the summation is subjected to clipping, and the current process is obtained.
  • the compensation value in the embodiment of the present disclosure is made more accurate by the method, so that the loop for detecting the net power of the power in the wind power generation power control system is operated under a reasonable state, and the abnormality of the wind power generator during the operation is avoided.
  • the circuit connecting the wind power generator and the power calculation module in the wind turbine power control system is operated under reasonable conditions.
  • the reasonable amplitude may be increased or decreased based on the third correction value, and the amplitude may be an absolute value, or the amplitude and the running state of the wind power generator are stored in a mapping relationship, in the pair
  • the third correction value is limited, the amplitude corresponding to the operating state of the wind power generator is called, and the compensation value of the current period is obtained according to the amplitude value and the third correction value.
  • the compensation value of the active power target value may not be greater than the preset proportion of the net power consumption, for example, the final compensation value may not exceed 10% of the net power of the net.
  • the aforementioned process is actually the operating cycle of the proportional integral controller.
  • the wind turbine power control device is disposed in a main controller of the wind turbine.
  • the present disclosure also provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of the wind turbine power control method according to any one of the above aspects. .
  • the present disclosure also provides a computer device comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor executing the computer program to implement the wind power generation according to any one of the above technical solutions The steps of the unit power control method.
  • the present disclosure has the following advantageous effects as compared with the prior art.
  • detecting a net power of the wind turbine output comparing the value with an active power target value, determining a difference between the active power target value and the net power, and determining the active power by the value
  • the compensation value of the target value, the active power set value superimposed by the two is used for variable current and pitch control, so that the wind power generation device can obtain the net power of the net according to the set value of the active power, so that the whole process is automatically realized, and does not need Artificially test the loss factor of different wind turbines separately. Since each wind turbine can adopt the method and device of the present disclosure, it can ensure that the net power of the net is consistent with the target value of the active power when there is any source of deviation between the net power and the target value of the active power. Reduce the problem that the net power is not full (or over) due to deviation, improve the accuracy of control and the satisfaction of the owner.
  • the wind power generator when the wind power generator is limited in power operation, by adjusting the deviation between the net power of the net and the target value of the active power, the net power of the net is consistent with the target value of the active power, and thus the wind is
  • each wind turbine can quickly respond to the active power target value of the wind farm power control system (AGC), so that the wind field power can be quickly stabilized.
  • AGC wind farm power control system
  • the current wind power generator set determines whether the current wind power generator set can be in a state in which the active power target value is full, in order to determine the compensation value of the active power target value.
  • the compensation value of the previous cycle is successively decreased to zero according to each cycle and the preset variation, thereby ensuring the wind turbine normal operation.
  • the proportional controller in order to be able to adjust the accuracy of the compensation value of the active power target value by the proportional integral controller according to different requirements in the wind wind farm, can increase the proportional coefficient to make the system responsive, The adjustment speed increases and reduces the steady-state error.
  • the integral controller can eliminate the steady-state error and improve the control accuracy.
  • the differential controller can predict the trend of the error change to offset the influence of the hysteresis factor. The appropriate differential control can reduce the overshoot. Small, increasing the stability of the system.
  • the third correction value of the current period is summed with the compensation value of the previous period, and by limiting the third correction value, the compensation value of the current period is prevented from being excessively changed compared with the compensation value of the previous period.
  • the system is not stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种风力发电机组功率控制方法及装置,该方法包括:根据净上网功率与有功功率目标值的功率差值,确定所述有功功率目标值的补偿值(S100);根据所述有功功率目标值和所述补偿值确定有功功率给定值(S200);依据所述有功功率给定值进行变流及变桨控制(S300)。

Description

风力发电机组功率控制方法及装置 技术领域
本公开涉及控制、电路及风力发电技术领域,具体而言,本公开涉及一种风力发电机组功率控制方法及装置。
背景技术
风力发电过程的能动过程是把风的动能转变成机械能,再把机械能转化为电能,其主要利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来促使发电机发电。风力发电机组的净上网功率为风力发电机组输出到箱变低压侧的有功功率,其去除了风力发电过程中的风力发电机组的机械损耗、发电机损耗、变流损耗、风电内部线路损耗以及机组自耗电等。在一般情况下,有功功率目标值作为风机控制器的输入,以便风机控制器基于有功功率目标值输出变流扭矩给定和桨距角给定,使得风机发电机组能依据前述要求发电。由于早期风力发电机组设计不足、机组自耗电接线位置偏差、变流器设计的区别等原因,导致测量出的风机输出的有功功率并不一定是净上网功率。另外,导致输入风机控制器的有功功率目标值和净上网功率具有偏差的原因较多,如全功率变流器的损耗跟环境温度有关。即使有功功率和净上网功率具有偏差的原因相同,不同情况下,偏差的大小也有区别,如不同的季节的损耗系数不一致,机组损耗也不同。因此,将有功功率作为风机控制器的输入时,还需在有功功率的基础上乘以一个损耗系数,进而增大或减小风机控制器输出的变流扭矩给定和桨距角给定,以确保净上网功率等于有功功率目标值。
常规情况下,损耗系数通过测量的方法获得,同时还需要依据能够覆盖全部工况的参数进行设置,但是采用前述的方法会导致损耗系数测量的周期长,完整的损耗系数至少需要包括气候在内的全工况数据;同时参数未必能够覆盖所有工况,且所有风电场的情况各不相同,单独测量每一个 风电场的损耗系数不太现实。同时,还可能存在目前并不知晓的影响因素,且调整风机参数(特别是变流)会对损耗系数产生较大的影响,而参数优化在大部分情况下是必需的过程。
发明内容
本公开的目的旨在至少解决上述技术缺陷之一,特别是由于各种原因导致输入风机控制器的有功功率目标值和净上网功率之间具有偏差,以及损耗系数测量周期长、影响参数的工况复杂等问题。
根据本公开的一方面,提供了一种风力发电机组功率控制方法,其包括:根据净上网功率与有功功率目标值的功率差值,确定所述有功功率目标值的补偿值;根据所述有功功率目标值和所述补偿值确定有功功率给定值;依据所述有功功率给定值进行变流及变桨控制。
根据本公开的另一方面,提供了一种风力发电机组功率控制装置,其包括:第一补偿值确定模块,用于根据净上网功率与有功功率目标值的功率差值,确定所述有功功率目标值的补偿值;有功功率给定值确定模块,用于根据所述有功功率目标值和所述补偿值确定有功功率给定值;变流及变桨控制模块,用于依据所述有功功率给定值进行变流及变桨控制。
根据本公开的又一方面,提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项技术方案所述的风力发电机组功率控制方法的步骤。
根据本公开的再一方面,提供了一种计算机设备,其包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任意一项技术方案所述的风力发电机组功率控制方法的步骤。
本公开附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解,其中:
图1为本公开一种风力发电机组功率控制方法的典型实施例中一种实施方式的流程图;
图2为本公开一种风力发电机组功率控制装置的典型实施例中一种实施方式的结构图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能解释为对本公开的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本公开还提供了一种风力发电机组功率控制方法,如图1所示,其包括S100、S200和S300。
在S100中,根据净上网功率与有功功率目标值的功率差值,确定有功功率目标值的补偿值。
在本公开的实施例中,增加净上网功率检测装置来动态实时地检测净上网功率和接收有功功率目标值且将净上网功率与有功功率目标值的功率差值输出以便确定补偿值。在本公开的实施例中,检测出风力发电装置的净上网功率和接收到用户设定的有功功率目标值,将两者按照预设的功率运算规则确定有功功率目标值和净上网功率之间的差值,且该差值为功率差值,以便确定有功功率目标值和净上网功率值之间的偏差,便于后续基于该功率差值确定有功功率的补偿值。进一步地设有矫正有功功率目标值和净上网功率之间的差值的运算规则,依据该规则使得有功功率目标值的补偿值更为精确,且能避免净上网功率波动,保证整个系统运行的稳定性。在接收到例如功率运算模块输出的功率差值之后,将功率差值依据运算规则变换为补偿值,降低功率差值直接作为有功功率目标值的补偿值时的误差,以使功率设定值和净上网功率的差值能够尽可能地小,确保风力发电装置能够满发运行。
在本公开的实施例中,如果净上网功率检测设备安装的位置不在风力发电装置输出到箱变低压侧的电路中,导致其检测到的上网功率不是净上网功率,且其与净上网功率之间的偏差不大,而且偏差稳定时,同样能够采用本公开的实施例中后续的风力发电机组功率控制方法确定功率差值,以及功率差值后续的运算过程。比如,净上网功率检测设备安装的位置不在风力发电装置输出到箱变低压侧的电路中,净上网功率与有功功率目标值之间的偏差来源于机组自耗电的情况,由于自耗电波动范围不大,净上网功率可以使用当前检测的有功功率减去自耗电的最大值。由此避免因技术改造和增加设备带来的成本。
在S200中,根据有功功率目标值和补偿值确定有功功率给定值。
根据用户设定的有功功率目标值,且在有功功率目标值的基础上结合前文的补偿值,得到修正后的输入风力发电装置的有功功率给定值,进而确保风力发电装置输出的净上网功率与输入的有功功率目标值能够保持一致,进而保证功率设定值精确性,以及风力发电装置稳定合理的运行。
在S300中,依据有功功率给定值进行变流及变桨控制。
在前述过程中得到有功功率给定值后,风力发电装置中的运算模块基 于其得到变流给定及变桨给定,且依据变流给定及变桨给定对风力发电机组进行变流及变桨控制,以便风力发电装置能够依据该变流给定及变桨给定获取能量发电,将风能转换为电能。
进一步地,根据净上网功率与有功功率目标值的功率差值,确定有功功率目标值的补偿值,具体包括:
在风力发电机组的当前桨距角大于风力发电机组的最小桨距角且风力发电机组处于发电状态时,将净上网功率与有功功率目标值的功率差值输入至比例积分控制器,得到有功功率目标值的补偿值。
由于设定了判断条件,在本公开的实施例中,其主要判断风力发电机组的当前桨距角是否大于系统最小桨距角限值及风力发电机组的当前发电状态。具体地,在风力发电机组的当前桨距角大于系统最小桨距角限值且风力发电机组处于发电状态,判断结果为true,满足设定的判断条件,说明风力发电装置能够在功率设定值满发的状态运行,进而在前述的净上网功率和有功功率目标值的功率差值的基础上确定补偿值,具体为,将功率差值输入给比例积分控制器,通过比例积分控制器降低功率差值的误差,保证风力发电装置输出的净上网功率和有功功率目标值保持一致,同时使整个系统能够稳定运行。
在一个实施例中,在此过程中可通过增量式比例控制器、增量式比例积分控制器中的任意一种控制方式实现,以便于根据系统出现的问题和风场需求比例系数使系统反应灵敏、调节速度加、减小稳态误差、或者在此基础上消除稳态误差并提高控制精度、增加系统的稳定性。
进一步地,还包括:在风力发电机组的当前桨距角不大于风力发电机组的最小桨距角或风力发电机组未处于发电状态时,控制上一周期的补偿值按照每个周期的预设变化量逐次递减直至零。
如前文所述,在风力发电机组的当前桨距角大于系统最小桨距角限值且风力发电机组处于发电状态时,说明判断结果为false;控制上一周期的补偿值按照每个周期的预设变化量逐周期递减,直至补偿值的值为零,且在倒数第二周期时补偿值小于预设变化量,则在最后一个周期时,补偿值直接递减至零。例如,在补偿值为50kw,且判断结果为false时,每一个 周期内的预设变化量均为1kw,补偿值50kw将经过50个周期后,在最后一个周期变化为零,且在此变化过程内的每一个周期将按照等差数列的方式逐渐递减,即按照周期数的变化顺序,在对应的周期内补偿值为:49kw、48kw、47kw……0kw,且按周期依据该补偿值确定风力发电装置输入的功率设定值。如果在最后一个周期,补偿值不足1kw,则在最后一周期直接归零。如在某一周期内补偿值为0.6kw,则下一周期内的补偿值将直接为0。进一步地,本公开实施例中的周期为功率闭环控制模块运行的周期,具体的,例如每周期变化1kw,用于运算的控制器运行的周期为0.02s,补偿值的变化速度为50kw/s。为了保证风力发电装置在限功率时也能正常运行,补偿值的变化速度不超过风机限功率时的功率变化速度。
进一步地,将净上网功率与有功功率目标值的功率差值输入至比例积分控制器,得到有功功率目标值的补偿值包括:
将净上网功率与有功功率目标值的功率差值输入至比例积分控制器,计算得到第一修正值,并将第一修正值进行限幅处理得到第二修正值,并将上一周期的有功功率目标值的补偿值与第二修正值求和得到第三修正值,以及对第三修正值进行限幅处理得到当前周期的有功功率目标值的补偿值;当前周期的有功功率目标值的补偿值不大于净上网功率的预设比例。
在一个实施例中,预设比例可以为10%。
具体地,结合前文说明,在将功率差值输入至比例积分控制器后,通过比例积分控制器计算得到第一修正值,其中对第一修正值积分主要是限制第一修正值的变化幅度,以便对第一修正值进行上下限保护,防止因功率差值过大而出现极大的第一修正值,导致后续输出的补偿值过大而出现补偿值不合理的情况。在前一个周期中,通过对前一个周期的第二修正值限幅得到限幅后的补偿值,为了控制补偿值输出的总量,防止其超出合理范围,导致风力发电机组运行异常以及使当前周期内的补偿值更为精确,将上一周期的补偿值和当前周期内的第二修正值求和得到第三补偿值,对求和得到的第三修正值进行限幅,获得当前周期内的补偿值。通过该方法使得本公开实施例中的补偿值更为精确,以使风力发电机组功率控制系统 中检测净上网功率的回路在合理的状态下运行,避免风力发电机组在运行过程中出现异常。为了保证整个风力发电机组的功率控制系统能够合理的运行,保护风力发电机组的功率控制系统中风力发电装置与例如功率运算模块连接的回路在合理的情况下运行。在一个实施例中,可以在第三修正值的基础上增加或者减少合理的幅值,且该幅值可以为一个绝对值,或者幅值和风力发电机的运行状态以映射关系存储,在对第三修正值限幅时,调出与风力发电机的运行状态相对应的幅值,依据该幅值和第三修正值得到当前周期的补偿值。更优地,在限幅过程中,还可以通过控制有功功率目标值的补偿值不大于净上网功率的预设比例,例如最终的补偿值不得超过净上网功率的10%。在一个实施例中,前述的过程实际为比例积分控制器的运行周期。
本公开还提供了一种风力发电机组功率控制装置,如图2所示,其包括:第一补偿值确定模块100、有功功率给定值确定模块200、以及变流及变桨控制模块300。
第一补偿值确定模块100可以根据净上网功率与有功功率目标值的功率差值来确定有功功率目标值的补偿值。
在本公开的实施例中,增加净上网功率检测装置来动态实时地检测净上网功率和接收有功功率目标值且将净上网功率与有功功率目标值的功率差值输出以便确定补偿值。在本公开的实施例中,在检测出风力发电装置的净上网功率和接收到用户设定的有功功率目标值之后,第一补偿值确定模块100将两者按照预设的功率运算规则确定有功功率目标值和净上网功率之间的差值,且该差值为功率差值,以便确定有功功率目标值和净上网功率值之间的偏差,便于后续基于该功率差值确定有功功率的补偿值。进一步地设有矫正有功功率目标值和净上网功率之间的差值的运算规则,依据该规则使得有功功率目标值的补偿值更为精确,且能避免净上网功率波动,保证整个系统运行的稳定性。在接收到功率运算模块输出的功率差值,将功率差值依据运算规则变换为补偿值,降低功率差值直接作为有功功率目标值的补偿值时的误差,以使功率设定值和净上网功率的差值能够尽可能地小,确保风力发电装置能够满发运行。
有功功率给定值确定模块200可以根据有功功率目标值和补偿值确定有功功率给定值。
具体地,有功功率给定值确定模块200根据用户设定的有功功率目标值,且在有功功率目标值的基础上结合前文的补偿值,得到修正后的输入风力发电装置的有功功率给定值,进而确保风力发电装置输出的净上网功率与输入的有功功率目标值能够保持一致,进而保证功率设定值的精确性,以及风力发电装置稳定合理的运行。
变流及变桨控制模块300依据有功功率给定值进行变流及变桨控制。
在前述过程中得到有功功率给定值后,风力发电装置中的变流及变桨控制模块300基于其得到变流给定及变桨给定,且依据变流给定及变桨给定对风力发电机组进行变流及变桨控制,以便风力发电装置能够依据该变流给定及变桨给定获取能量发电,将风能转换为电能。
进一步地,第一补偿值确定模块100可以包括比例积分控制器。当风力发电机组的当前桨距角大于风力发电机组的最小桨距角且风力发电机组处于发电状态时,比例积分控制器对输入的净上网功率与有功功率目标值的功率差值进行计算,得到有功功率目标值的补偿值。
由于设定了判断条件,在本公开的实施例中,其主要判断风力发电机组的当前桨距角是否大于系统最小桨距角限值及风力发电机组当前发电状态。具体的,在风力发电机组的当前桨距角大于系统最小桨距角限值且风力发电机组处于发电状态,判断结果为true,满足设定的判断条件,说明风力发电装置能够在功率设定值满发的状态运行,进而在前述的净上网功率和有功功率目标值的功率差值的基础上确定补偿值,具体为,将功率差值输入给比例积分控制器,通过比例积分控制器降低功率差值的误差,保证风力发电装置输出的净上网功率和有功功率目标值保持一致,同时使整个系统能够稳定运行。
在一个实施例中,在此过程中可通过增量式比例控制器、增量式比例积分控制器中的任意一种控制方式实现,以便于根据系统出现的问题和风场需求比例系数使系统反应灵敏、调节速度加、减小稳态误差、或者在此基础上消除稳态误差并提高控制精度、增加系统的稳定性。
进一步地,第一补偿值确定模块100还可以用于:在风力发电机组的当前桨距角不大于风力发电机组的最小桨距角或风力发电机组未处于发电状态时,控制上一周期的补偿值按照每个周期的预设变化量逐次递减直至零。
如前文所述,在风力发电机组的当前桨距角大于系统最小桨距角限值且风力发电机组处于发电状态时,说明判断结果为false;第一补偿值确定模块控制上一周期的补偿值按照每个周期的预设变化量逐周期递减,直至补偿值的值为零,且在倒数第二周期时补偿值小于预设变化量,则在最后一个周期时,补偿值直接递减至零。例如,在补偿值为50kw,且判断结果为false时,每一个周期内的预设变化量均为1kw,补偿值50kw将经过50个周期后,在最后一个周期变化为零,且在此变化过程内的每一个周期将按照等差数列的方式逐渐递减,即按照周期数的变化顺序,在对应的周期内补偿值为:49kw、48kw、47kw……0kw,且按周期依据该补偿值确定风力发电装置输入的功率设定值。如果在最后一个周期,补偿值不足1kw,则在最后一周期直接归零。如在某一周期内补偿值为0.6kw,则下一周期内的补偿值将直接为0。进一步地,本公开实施例中的周期为功率闭环控制模块运行的周期,具体地,例如每周期变化1kw,用于运算的控制器运行的周期为0.02s,补偿值的变化速度为50kw/s。为了保证风力发电装置在限功率时也能正常的运行,补偿值的变化速度不超过风机限功率时的功率变化速度。
进一步地,第一补偿值确定模块100可以包括比例积分控制器。
比例积分控制器可以对输入的净上网功率与有功功率目标值的功率差值进行计算得到第一修正值,并将第一修正值进行限幅处理得到第二修正值,并将上一周期的有功功率目标值的补偿值与第二修正值求和得到第三修正值,以及对第三修正值进行限幅处理得到当前周期的有功功率目标值的补偿值。当前周期的有功功率目标值的补偿值不大于净上网功率的预设比例,通过该过程使得最终输出的补偿值变化幅度不至于过大,使得系统能够稳定的运行。
具体地,结合前文说明,在将功率差值输入至比例积分控制器后,通 过比例积分控制器计算得到积分第一修正值,其中对第一修正值积分主要是限制第一修正值的变化幅度,以便对第一修正值进行上下限保护,防止因功率差值过大而出现极大的第一修正值,导致后续输出的补偿值过大而出现补偿值不合理的情况。在前一个周期中,通过对前一个周期的第二修正值限幅得到限幅后的补偿值,为了控制补偿值输出的总量,防止其超出合理范围,导致风力发电机组运行异常以及使当前周期内的补偿值更为精确,将上一周期的补偿值和当前周期内的第二修正值求和得到第三修正值,对求和得到的第三修正值进行限幅的过程,获得当前周期内的补偿值。通过该方法使得本公开实施例中的补偿值更为精确,以使风力发电机组功率控制系统中检测净上网功率的回路在合理的状态下运行,避免风力发电机组在运行过程中出现异常。为了保证整个风力发电机组功率控制系统能够合理的运行,保护风力发电机组功率控制系统中风力发电装置与功率运算模块连接的回路在合理的情况下运行。在一个实施例中,可以在第三修正值的基础上增加或者减少合理的幅值,且该幅值可以为一个绝对值,或者幅值和风力发电机的运行状态以映射关系存储,在对第三修正值限幅时,调出与风力发电机的运行状态相对应的幅值,依据该幅值和第三修正值得到当前周期的补偿值。更优地,在限幅过程中,还可以通过控制有功功率目标值的补偿值不大于净上网功率的预设比例,例如最终的补偿值不得超过净上网功率的10%。在一个实施例中,前述的过程实际为比例积分控制器的运行周期。
在一个实施例中,风力发电机组功率控制装置设置在风力发电机组的主控制器中。
本公开还提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项技术方案所述的风力发电机组功率控制方法的步骤。
本公开还提供了一种计算机设备,其包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述任意一项技术方案所述的风力发电机组功率控制方法的步骤。
与现有技术相比,本公开具有以下有益效果。
在本公开的示例性实施例中,检测风力发电机组输出的净上网功率,将该值与有功功率目标值对比,确定有功功率目标值与净上网功率的差值,且通过该值确定有功功率目标值的补偿值,将两者叠加后的有功功率给定值进行变流及变桨控制,以便风力发电装置能够依据有功功率给定值得到净上网功率,使得整个过程为自动实现,不需要人为的单独测试不同的风力发电机的损耗系数。由于在每一台风力发电机能够采用本公开的方法及装置,所以在净上网功率与有功功率目标值之间有任何偏差来源的情况下,能够确保净上网功率与有功功率目标值保持一致,减少因偏差导致净上网功率不满发(或超发)的问题,提高控制的准确性及业主的满意度。
在本公开的示例性实施例中,在风力发电装置限功率运行时,通过调整净上网功率与有功功率目标值之间的偏差,使得净上网功率与有功功率目标值保持一致,进而在在风力发电场存在多台风力发电机运行时,每一台风力发电机都能够快速地响应风力场功率控制系统(AGC)的发出的有功功率目标值,从而实现风场场功功率的快速稳定。
在本公开的示例性实施例中,判断当前风力发电机组是否能够在有功功率目标值满发的状态下,以便确定所述有功功率目标值的补偿值。在判断出当前风力发电机组不能在有功功率目标值满发的状态下运行时,控制上一周期的所述补偿值按照每个周期和预设变化量逐次递减直至零,进而保证风力发电机组的正常运行。
在本公开的示例性实施例中,为了能够依据风力风电场中的不同需求,通过比例积分控制器调整有功功率目标值的补偿值的精度,比例控制器能够增大比例系数使系统反应灵敏、调节速度加、减小稳态误差,积分控制器能够消除稳态误差并提高控制精度,微分控制器能预测误差变化的趋势以抵消滞后因素的影响,适当的微分控制作用可以使超调量减小,增加系统的稳定性。另外,将当前周期的第三修正值与上一周期的所述补偿值求和,且通过对第三修正值限幅,避免当前周期的补偿值相比上一周期的补偿值变化过大导致系统不能够稳定运行。
以上所述仅是本公开的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进 和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (12)

  1. 一种风力发电机组功率控制方法,其特征在于,包括:
    根据净上网功率与有功功率目标值的功率差值,确定所述有功功率目标值的补偿值;
    根据所述有功功率目标值和所述补偿值确定有功功率给定值;
    依据所述有功功率给定值进行变流及变桨控制。
  2. 根据权利要求1所述的风力发电机组功率控制方法,其特征在于,根据净上网功率与有功功率目标值的功率差值,确定所述有功功率目标值的补偿值,包括:
    在风力发电机组的当前桨距角大于风力发电机组的最小桨距角且所述风力发电机组处于发电状态时,将净上网功率与有功功率目标值的功率差值输入至比例积分控制器,得到所述有功功率目标值的补偿值。
  3. 根据权利要求2所述的风力发电机组功率控制方法,其特征在于,还包括:
    在风力发电机组的当前桨距角不大于风力发电机组的最小桨距角或所述风力发电机组未处于发电状态时,控制上一周期的补偿值按照每个周期的预设变化量逐次递减直至零。
  4. 根据权利要求2或3所述的风力发电机组功率控制方法,其特征在于,将净上网功率与有功功率目标值的功率差值输入至比例积分控制器,得到所述有功功率目标值的补偿值包括:
    将净上网功率与有功功率目标值的功率差值输入至比例积分控制器,计算得到第一修正值,并将所述第一修正值进行限幅处理得到第二修正值,并将上一周期的有功功率目标值的补偿值与所述第二修正值求和得到第三修正值,以及对所述第三修正值进行限幅处理得到当前周期的有功功率目标值的补偿值,其中,所述当前周期的有功功率目标值的补偿值不大于所述净上网功率的预设比例。
  5. 根据权利要求4所述的风力发电机组功率控制方法,其特征在于,所述预设比例为10%。
  6. 一种风力发电机组功率控制装置,其特征在于,包括:
    第一补偿值确定模块,用于根据净上网功率与有功功率目标值的功率差值,确定所述有功功率目标值的补偿值;
    有功功率给定值确定模块,用于根据所述有功功率目标值和所述补偿值确定有功功率给定值;
    变流及变桨控制模块,用于依据所述有功功率给定值进行变流及变桨控制。
  7. 根据权利要求6所述的风力发电机组功率控制装置,其特征在于,所述第一补偿值确定模块包括比例积分控制器,
    其中,当风力发电机组的当前桨距角大于风力发电机组的最小桨距角且所述风力发电机组处于发电状态时,所述比例积分控制器对输入的净上网功率与有功功率目标值的功率差值进行计算,得到所述有功功率目标值的补偿值。
  8. 根据权利要求7所述的风力发电机组功率控制装置,其特征在于,第一补偿值确定模块还用于:在风力发电机组的当前桨距角不大于风力发电机组的最小桨距角或所述风力发电机组未处于发电状态时,控制上一周期的所述补偿值按照每个周期的预设变化量逐次递减直至零。
  9. 根据权利要求7或8所述的风力发电机组功率控制装置,其特征在于,所述比例积分控制器对输入的净上网功率与有功功率目标值的功率差值进行计算以得到第一修正值,并将所述第一修正值进行限幅处理得到第二修正值,并将上一周期的有功功率目标值的补偿值与所述第二修正值求和得到第三修正值,以及对所述第三修正值进行限幅处理得到当前周期的有功功率目标值的补偿值,其中,所述当前周期的有功功率目标值的补偿值不大于所述净上网功率的预设比例。
  10. 根据权利要求9所述的风力发电机组功率控制装置,其特征在于,所述风力发电机组功率控制装置设置在风力发电机组的主控制器中。
  11. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,所述程序被处理器执行时实现根据权利要求1至5中任意一项所述的风力发电机组功率控制方法的步骤。
  12. 一种计算机设备,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现根据权利要求1至5中任意一项所述的风力发电机组功率控制方法的步骤。
PCT/CN2018/086175 2017-12-27 2018-05-09 风力发电机组功率控制方法及装置 WO2019128035A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018374068A AU2018374068B2 (en) 2017-12-27 2018-05-09 Method and apparatus for controlling wind turbine power
EP18877290.9A EP3531527A4 (en) 2017-12-27 2018-05-09 METHOD AND DEVICE FOR CONTROLLING POWER FOR WIND GENERATOR SYSTEM
US16/349,507 US11339762B2 (en) 2017-12-27 2018-05-09 Method and apparatus for controlling wind turbine power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711450275.5 2017-12-27
CN201711450275.5A CN109973300B (zh) 2017-12-27 2017-12-27 风力发电机组功率控制方法及装置

Publications (1)

Publication Number Publication Date
WO2019128035A1 true WO2019128035A1 (zh) 2019-07-04

Family

ID=67065004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086175 WO2019128035A1 (zh) 2017-12-27 2018-05-09 风力发电机组功率控制方法及装置

Country Status (5)

Country Link
US (1) US11339762B2 (zh)
EP (1) EP3531527A4 (zh)
CN (1) CN109973300B (zh)
AU (1) AU2018374068B2 (zh)
WO (1) WO2019128035A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696318B (zh) * 2019-10-22 2023-06-16 北京金风科创风电设备有限公司 风力发电机组的控制方法及装置
CN110925134B (zh) * 2019-12-03 2021-06-18 上海明华电力科技有限公司 一种风电机组的输出功率给定值实时修正系统及方法
CN113031527B (zh) * 2019-12-25 2023-05-30 新疆金风科技股份有限公司 多轴同步变桨控制方法、装置以及系统
CN111396255A (zh) * 2020-03-13 2020-07-10 上海电气风电集团股份有限公司 风力发电机组的控制方法及其控制装置以及风力发电系统
CN113471986B (zh) * 2020-03-31 2024-05-31 北京金风科创风电设备有限公司 调节风电场有功功率的方法、控制设备及风电场的控制器
CN111396250B (zh) * 2020-03-31 2022-07-08 新疆金风科技股份有限公司 风力发电机组的功率控制系统、方法及装置
CN111509770B (zh) * 2020-04-21 2022-03-25 浙江运达风电股份有限公司 一种基于多工况专家策略的智能风电场有功功率控制方法
CN114439684B (zh) * 2022-01-14 2023-05-02 华能大理风力发电有限公司 风力发电机组的变桨控制方法、装置以及电子设备
CN116760126B (zh) * 2023-08-22 2023-11-10 国能日新科技股份有限公司 有功功率的确定方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480130A (zh) * 2010-11-29 2012-05-30 比亚迪股份有限公司 用于风电系统的功率补偿方法及系统
CN103216383A (zh) * 2013-04-18 2013-07-24 北京金风科创风电设备有限公司 风力发电机组控制系统和控制方法
WO2014202077A1 (en) * 2013-06-18 2014-12-24 Vestas Wind Systems A/S Compensating electrical harmonics on the electrical grid
CN104632524A (zh) * 2015-02-03 2015-05-20 北京金风科创风电设备有限公司 风力发电机组的控制装置及方法
CN105119324A (zh) * 2015-07-24 2015-12-02 河南行知专利服务有限公司 一种风电场的功率控制方法
CN107346893A (zh) * 2016-05-05 2017-11-14 中国船舶重工集团海装风电股份有限公司 一种风电场有功功率控制方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352075B2 (en) * 2006-03-06 2008-04-01 General Electric Company Methods and apparatus for controlling rotational speed of a rotor
KR20110009072A (ko) 2009-05-20 2011-01-27 미츠비시 쥬고교 가부시키가이샤 풍력 발전 장치 및 그 제어 방법
CN103016266B (zh) * 2013-01-11 2014-10-29 华北电力大学 模糊前馈与线性自抗扰结合的风电机组变桨距控制方法
US10968891B2 (en) 2014-11-03 2021-04-06 Vestas Wind Systems A/S Method of controlling active power generation of a wind power plant and wind power plant
ES2683203T3 (es) * 2015-10-16 2018-09-25 Nordex Energy Gmbh Turbina eólica con un controlador de velocidad y controlador de generador
US20170298904A1 (en) * 2016-04-18 2017-10-19 Siemens Aktiengesellschaft Method for responding to a grid event
EP3429050B1 (de) * 2017-07-10 2019-12-18 Nordex Energy GmbH Verfahren zur regelung der wirkleistungsabgabe eines windparks sowie ein entsprechender windpark

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480130A (zh) * 2010-11-29 2012-05-30 比亚迪股份有限公司 用于风电系统的功率补偿方法及系统
CN103216383A (zh) * 2013-04-18 2013-07-24 北京金风科创风电设备有限公司 风力发电机组控制系统和控制方法
WO2014202077A1 (en) * 2013-06-18 2014-12-24 Vestas Wind Systems A/S Compensating electrical harmonics on the electrical grid
CN104632524A (zh) * 2015-02-03 2015-05-20 北京金风科创风电设备有限公司 风力发电机组的控制装置及方法
CN105119324A (zh) * 2015-07-24 2015-12-02 河南行知专利服务有限公司 一种风电场的功率控制方法
CN107346893A (zh) * 2016-05-05 2017-11-14 中国船舶重工集团海装风电股份有限公司 一种风电场有功功率控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531527A4 *

Also Published As

Publication number Publication date
EP3531527A4 (en) 2019-12-04
EP3531527A1 (en) 2019-08-28
US20200263661A1 (en) 2020-08-20
CN109973300A (zh) 2019-07-05
AU2018374068B2 (en) 2021-02-18
US11339762B2 (en) 2022-05-24
AU2018374068A1 (en) 2019-07-11
CN109973300B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2019128035A1 (zh) 风力发电机组功率控制方法及装置
US9189755B2 (en) Available power estimator
JP6181177B2 (ja) ウインドパークを制御する方法
CN108475929B (zh) 用于控制风力发电厂的方法
US20110270451A1 (en) Control device for exhaust heat recovery system
US9822764B2 (en) System for automatic power estimation adjustment
CN110778519B (zh) 一种并联压缩机机组的控制系统
CN105649875B (zh) 风力发电机组的变桨控制方法及装置
JP2020139427A (ja) 風力発電システム、風量発電システムの制御方法
CN114725445A (zh) 一种燃料电池空压机流量控制方法
US20160378128A1 (en) Device operation setting apparatus and device operation setting value determination program
EP3990777B1 (en) Controlling power output of a wind turbine at below-rated wind speed
JP3517260B2 (ja) 燃料電池発電装置および燃料電池発電装置の制御方法
CN110994639A (zh) 一种电厂储能辅助调频的仿真定容方法、装置及设备
CN113803121B (zh) 低压汽轮机的自动控制方法及系统、发电系统
US12071934B2 (en) Method for determining performance parameters in real time
CN103670537B (zh) 涡轮机控制装置和涡轮机控制方法
CN111608858A (zh) 调整风力发电机组输出功率的方法及装置、计算机可读存储介质及风力发电系统
US20240097486A1 (en) Methods and systems for enhanced active power control during frequency deviation
US12044212B2 (en) Controlling a wind turbine with an updated power coefficient adjusted by a degradation function
JP2558860B2 (ja) 蒸気流量制御装置
CN116753041A (zh) 燃气轮机进口导叶开度控制方法及装置
CN118539826A (zh) 半超导超高节能电机超负荷运行散热自动调节方法
CN202362686U (zh) 双控制环路恒温控制装置
CN115733149A (zh) 计及dfig出力范围交替求解的风电系统无功优化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018877290

Country of ref document: EP

Effective date: 20190520

ENP Entry into the national phase

Ref document number: 2018374068

Country of ref document: AU

Date of ref document: 20180509

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE