WO2019128017A1 - 一种蓝牙壁炉装置和系统 - Google Patents

一种蓝牙壁炉装置和系统 Download PDF

Info

Publication number
WO2019128017A1
WO2019128017A1 PCT/CN2018/085413 CN2018085413W WO2019128017A1 WO 2019128017 A1 WO2019128017 A1 WO 2019128017A1 CN 2018085413 W CN2018085413 W CN 2018085413W WO 2019128017 A1 WO2019128017 A1 WO 2019128017A1
Authority
WO
WIPO (PCT)
Prior art keywords
bluetooth
module
circuit
capacitor
control
Prior art date
Application number
PCT/CN2018/085413
Other languages
English (en)
French (fr)
Inventor
黄新
熊飞
汪序凯
张文彬
黄广亮
彭智光
吴洛毅
陈进银
Original Assignee
深圳佳比泰智能照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳佳比泰智能照明股份有限公司 filed Critical 深圳佳比泰智能照明股份有限公司
Publication of WO2019128017A1 publication Critical patent/WO2019128017A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems

Definitions

  • the present disclosure relates to the field of fireplaces, and more particularly to a Bluetooth fireplace apparatus and system.
  • electric fireplace As a kind of household electric heating appliance, electric fireplace has the characteristics of cleanness, convenient loading and unloading, and high combustion utilization rate. Compared with fireplaces that burn wood or burn natural gas for heating, electric fireplaces generate electricity, so there is no hard-to-wear ash, pungent odor and noise from burning; electric fireplaces not only save heating costs, but also set Different visual effects such as virtual flames bring warmth to the user's interior through the electric fireplace, and also give the user an elegant viewing effect.
  • the infrared remote controller is generally used to control the operation of the electric fireplace through the infrared signal, but since the infrared signal is easily blocked by the obstacle, the stability of the operation is affected, and the like.
  • the control of the infrared remote controller is inconvenient.
  • some electric fireplaces are remotely controlled by using Bluetooth signals.
  • the circuit structure of the electric fireplace based on the Bluetooth remote control is often very complicated, resulting in poor operation stability of the remote control. , greatly reducing the user experience.
  • the technical problem to be solved by the present disclosure includes providing a Bluetooth fireplace device to solve the above-mentioned defects of the prior art, and solving the problem that the electric fireplace circuit has a complicated structure and low stability.
  • the technical problem to be solved by the present disclosure includes providing a Bluetooth fireplace system to solve the above-mentioned defects of the prior art, and solving the problem that the electric fireplace circuit has a complicated structure and low stability.
  • the technical solution adopted by the present disclosure to solve the technical problem includes: providing a Bluetooth fireplace device, comprising: a first control module, a first Bluetooth module, a control button, an AC-DC step-down circuit, a driving module, a heating body and a fan;
  • the AC-DC step-down circuit is respectively connected with the main power, the first control module and the first bluetooth module, and supplies power to the first control module and the first bluetooth module after the mains is stepped down; the drive module respectively generates heat
  • the first control module is connected to the Bluetooth module, the control button, and the driving module, and controls the driving module to drive the heating element and the fan according to the Bluetooth signal received by the first Bluetooth module or the control signal of the control button;
  • the mains supply powers the heating element and the fan.
  • the optional solution includes: the AC-DC step-down circuit includes an electromagnetic compatibility sub-circuit, a rectifier bridge stack DB1, a ⁇ -type filter sub-circuit, a high-frequency transformer T1, a driving chip U1, a transformer T1, a diode D3, a capacitor C9, Capacitor C10.
  • the positive and negative input terminals of the electromagnetic compatibility sub-circuit are connected to the mains, and the output end of the electromagnetic compatibility sub-circuit is connected to the rectifier bridge DB1, and the rectifier bridge DB1 is further connected to the ⁇ -type filter sub-circuit Connected, the ⁇ -type filter sub-circuit is also connected to the primary coil end of the high-frequency transformer T1, the primary coil end of the high-frequency transformer T1 is also connected to the drive chip U1, and the high-frequency transformer T1 is The coil end of the stage is connected to the anode of the diode D3, and the cathode of the diode D3 is respectively connected to one end of the capacitor C9 and the capacitor C10 connected in parallel, and the other ends of the capacitor C9 and the capacitor C10 are connected to each other and outputted as a step-down. City power.
  • the optional solution includes: the Bluetooth fireplace device further includes a second step-down circuit and a third step-down circuit, wherein the second step-down circuit is disposed between the AC-DC step-down circuit and the first control module.
  • the third step-down circuit is disposed between the AC-DC step-down circuit and the first Bluetooth module.
  • the method further includes: the Bluetooth fireplace device further includes a second step-down circuit, and the second step-down circuit is disposed between the AC-DC step-down circuit and the first control module.
  • the method further includes: the Bluetooth fireplace device further includes a third step-down circuit, and the third step-down circuit is disposed between the AC-DC step-down circuit and the first Bluetooth module.
  • the second step-down circuit includes: the buck chip U4, the capacitor C12, and the capacitor C23.
  • the output end of the AC-DC buck circuit is connected to the input end of the buck chip U4.
  • the voltage chip U4 is also respectively connected to the two ends of the capacitor C12 and the capacitor C23, and the output terminal of the step-down chip U4 outputs the voltage after the step-down.
  • the optional solution includes: the type of the buck chip U4 is LN5R12C.
  • the third step-down circuit includes a buck chip U9, a resistor R76, a resistor R77, a resistor R78, a capacitor C24, a capacitor C25, a capacitor C26, a capacitor C27, a capacitor C28, a diode D12, and a Zener diode.
  • ZD1 electromagnetic coil L4.
  • the IN pin of the buck chip U9 is connected to the AC-DC buck circuit output end and one end of the resistor R76 and one end of the capacitor C28 and one end of the capacitor C27, and the EN pin and the The other end of the capacitor C28 and the other end of the resistor R76 are connected, and the GND pin is respectively connected to the other end of the capacitor C27 and the anode of the diode 12 and one end of the resistor R78 and one end of the capacitor C24.
  • One end of C26 and one end of the electromagnetic coil L4 are connected, and the BS pin is connected to the other end of the capacitor C26.
  • the other end of the electromagnetic coil L4 and the other end of the resistor R77 and the other end of the capacitor C25 are connected.
  • the other end of the capacitor C24 is connected to the cathode of the Zener diode ZD1, and outputs a voltage after the step-down.
  • the optional solution includes: the type of the step-down chip U9 is Si3116.
  • the optional solution includes: the first control module shares a chip with the first Bluetooth module, and the model of the shared chip is TLSR8266.
  • the optional method includes: the driving module includes a driving circuit and a relay, wherein the driving circuit is respectively connected to the first control module and the relay, and the relay is respectively connected to the AC-DC step-down circuit, the heating body and the fan,
  • the first control module controls the relay operation through the drive circuit, and controls the heating element and the fan to work through the relay.
  • the method further includes: the Bluetooth fireplace device further includes a simulated flame, wherein the simulated flame is respectively connected to an AC-DC step-down circuit and a relay, wherein the first control module controls the relay operation through the driving circuit, and is controlled by the relay The simulated flame works; or the simulated flame is respectively connected to the AC-DC step-down circuit and the first control module, and the first control module controls the simulated flame work.
  • the option comprises: the Bluetooth fireplace device further comprises a temperature detecting module connected to the first control module, wherein the temperature detecting module acquires the temperature of the Bluetooth fireplace device.
  • the technical solution adopted by the present disclosure to solve the technical problem thereof comprises: providing a Bluetooth fireplace system, comprising: a Bluetooth fireplace device and a Bluetooth controller, the Bluetooth controller comprising a second control module, a second Bluetooth module, a matrix button and an LED
  • the second control module is respectively connected to the second bluetooth module, the LED display screen and the matrix button, and the second control module sends the Bluetooth signal to the Bluetooth fireplace device according to the control of the matrix button and through the second bluetooth module.
  • a Bluetooth module displays the corresponding control information in the LED display.
  • the optional solution includes: the Bluetooth controller includes a backlight and a backlight boosting circuit, wherein the backlight boosting circuit is respectively connected to the backlight, the second control module, and the power source, and the backlight boosting circuit is in the second control The module is controlled to boost the power supply after the power is boosted; the backlight is set in the LED display to adjust the brightness of the backlight in the LED display.
  • the second control module includes a second control chip, and the backlight boosting circuit includes a transistor Q1, a filter circuit, and a boosting chip. One end of the boosting chip is sequentially connected, and the filtering circuit is The collector of the transistor Q1 has the other end connected to the backlight; the base of the transistor Q1 is connected to a control output pin of the second control module, and the emitter thereof is connected to the power source.
  • the optional solution includes: the second control module includes a second control chip, the matrix button includes a plurality of matrix-arranged button switches, and one end of each of the button switches is connected to the same of the second control chip. Control input pins, one end of each of the button switches of each column is connected to the same control input pin of the second control chip.
  • the optional solution includes: the Bluetooth fireplace system further includes a Bluetooth mobile terminal, and the Bluetooth mobile terminal sends a Bluetooth signal to a first Bluetooth module of the Bluetooth fireplace device; the Bluetooth mobile terminal is a mobile phone, a tablet, a smart wearer, and a notebook One of them.
  • the present disclosure provides a Bluetooth remote control function for a Bluetooth fireplace device to improve a user experience by designing a Bluetooth fireplace device and system; and, the overall structure is simple and the performance is stable. It is convenient for users to control and use; at the same time, it provides multiple voltage control to improve anti-interference ability.
  • FIG. 1 is a block diagram showing the structure of a Bluetooth fireplace device of the present disclosure
  • FIG. 2 is a block diagram showing a specific structure of a Bluetooth fireplace device of the present disclosure
  • FIG. 3 is a circuit diagram of an AC-DC step-down circuit of the present disclosure
  • FIG. 4 is a circuit diagram of a third step-down circuit of the present disclosure.
  • FIG. 5 is a schematic circuit diagram of a driving module, a heating element, and a fan of the present disclosure
  • FIG. 6 is a circuit diagram of a simulated flame of the present disclosure
  • Figure 7 is a block diagram showing the structure of a Bluetooth fireplace system of the present disclosure.
  • FIG. 8 is a block diagram showing the structure of a Bluetooth controller of the present disclosure.
  • Figure 9 is a block diagram showing the structure of a backlight of the present disclosure.
  • FIG. 10 is a circuit diagram of a second control chip of the present disclosure.
  • FIG. 11 is a circuit diagram of a second Bluetooth chip of the present disclosure.
  • FIG. 12 is a circuit diagram of a backlight boost circuit of the present disclosure.
  • connection should be understood broadly, for example, may be a fixed connection, or may be Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation may be a fixed connection, or may be Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the present disclosure provides an embodiment of a Bluetooth fireplace device.
  • a Bluetooth fireplace device includes: a first control module 11, a first Bluetooth module 12, a control button 15, an AC-DC step-down circuit 13, a drive module 14, a heating element 16 and a fan 17; the AC-DC step-down The circuit 13 is respectively connected to the main power, the first control module 11 and the first Bluetooth module 12, and supplies power to the first control module 11 and the first Bluetooth module 12 after being stepped down by the commercial power; the driving module 14 and the heating element respectively
  • the first control module 11 is connected to the first Bluetooth module 12, the control button 15, and the driving module 14, and is controlled according to the Bluetooth signal received by the first Bluetooth module 12 or the control signal of the control button 15.
  • the module 14 drives the heating element 16 and the fan 17 to operate; the mains supply supplies power to the heating element 16 and the fan 17.
  • the first control module 11 acquires a control signal sent by the first Bluetooth module 12 and acquires a control signal of the control button 15 , wherein the first Bluetooth module 12 acquires an external Bluetooth control signal, and The Bluetooth control signal is converted into a corresponding control signal and sent to the first control module 11, and the first control module 11 also reads the button signal of the control button 15.
  • the first control module 11 When the user sends a Bluetooth control signal to the first Bluetooth module 12 through a Bluetooth transmitting device or other similar device capable of emitting a Bluetooth signal, or when the user activates the button signal through the control button 15, the first control module 11 according to the first Bluetooth
  • the Bluetooth signal received by the module 12 or the control module 14 is controlled according to a control signal of the control button 15, and the driving module 14 drives the heating element 16 and the fan 17 to operate, for example, controlling the heating of the heating element 16, and controlling the rotation of the fan 17.
  • the DC step-down circuit 13 converts 220V AC to 12V DC to power other components in the device.
  • the first control module 11 and the first Bluetooth module 12 can share a chip.
  • a chip with a chip type of TLSR8266 can be selected.
  • FIG. 3 includes a circuit schematic of the AC-DC step-down circuit 13.
  • the positive pole (ACL) and the negative pole (COM1) are connected to the mains, and after the DB1 bridge rectification, the alternating current is converted into direct current, and the direct current is stepped down by the transformer T1, and the output is 12V direct current after being stepped down.
  • 100-240V AC is input from the ACL and COM1 terminals, passes through the electromagnetic compatibility (EMC) sub-circuit to the rectifier bridge stack DB1, is rectified into DC power, and then passes through the ⁇ -type filter sub-circuit composed of C1, L1, and C2, and reaches a high level.
  • the frequency transformer T1 is driven by the driving IC (U1).
  • the transformer T1 operates with a switching potential.
  • the secondary winding of the transformer induces a voltage of 12V. After D3 rectification and C9 and C10 filtering, a stable 12V DC output is formed.
  • the AC-DC step-down circuit 13 includes an electromagnetic compatibility sub-circuit, a rectifier bridge stack DB1, a ⁇ -type filter sub-circuit, a high-frequency transformer T1, a driving chip U1, a transformer T1, a diode D3, and a capacitor C9. , capacitor C10.
  • the positive and negative input terminals of the electromagnetic compatibility sub-circuit are connected to the mains, and the output end of the electromagnetic compatibility sub-circuit is connected to the rectifier bridge stack DB1, and the rectifier bridge stack DB1 is also connected to the ⁇ -type filter sub-circuit, and the ⁇ -type filter sub-circuit is also high.
  • the primary coil end of the frequency transformer T1 is connected, the primary coil end of the high frequency transformer T1 is also connected to the driving chip U1, the secondary coil end of the high frequency transformer T1 is connected to the anode of the diode D3, and the cathode of the diode D3 is respectively connected to the capacitors connected in parallel with each other.
  • C9 is connected to one end of the capacitor C10, and the other ends of the capacitor C9 and the capacitor C10 are connected to each other and output as the mains after the step-down.
  • the present disclosure provides an embodiment of a Bluetooth fireplace device.
  • the Bluetooth fireplace device includes a second step-down circuit 191 and/or a third step-down circuit 192, and the second step-down circuit 191 is disposed in the AC-DC step-down circuit 13 and the first control module. Between 11 and 11, the third step-down circuit 192 is disposed between the AC-DC step-down circuit 13 and the first Bluetooth module 12.
  • FIG. 3 also depicts a circuit schematic of the second step-down circuit 191
  • FIG. 4 depicts a circuit schematic of the third step-down circuit 192.
  • the second step-down circuit 191 connected to the voltage output end of the AC-DC step-down circuit 13, for receiving 12V DC output from the AC-DC step-down circuit 13, 12V DC is stepped down by the step-down chip U4, and output The 5V voltage, the 5V voltage provides the operating voltage for the first control module 11.
  • the second buck circuit 191 can include a chip of the type LN5R12C.
  • the second step-down circuit 191 includes a buck chip U4, a capacitor C12, and a capacitor C23.
  • the output end of the AC-DC step-down circuit is connected to the input end of the step-down chip U4, and the step-down chip U4 is also connected to the two ends of the capacitor C12 and the capacitor C23, respectively, and the output end of the step-down chip U4 outputs the voltage after the step-down.
  • the third step-down circuit 192 is connected to the voltage output end of the AC-DC step-down circuit 13 for receiving the 12V DC output of the AC-DC step-down circuit 13, and the 12V DC power is stepped down by the step-down chip U9, and the output is output.
  • the 3V voltage, the 3V voltage provides the operating voltage for the first Bluetooth module 12.
  • the third buck circuit 192 can include a chip of the type Si3116.
  • the third step-down circuit includes a buck chip U9, a resistor R76, a resistor R77, a resistor R78, a capacitor C24, a capacitor C25, a capacitor C26, a capacitor C27, a capacitor C28, a diode D12, and a Zener diode.
  • ZD1 electromagnetic coil L4.
  • the IN pin of the buck chip U9 is connected to the output of the AC-DC buck circuit and one end of the resistor R76, one end of the capacitor C28, and one end of the capacitor C27.
  • the EN pin is connected to the other end of the capacitor C28 and the other end of the resistor R76.
  • the GND pin is respectively connected to the other end of the capacitor C27 and the anode of the diode 12 and one end of the resistor R78 and one end of the capacitor C24 and the anode of the Zener diode ZD1, the other end of the FB pin and the resistor R78, and one end of the resistor R77.
  • One end of the capacitor C25 is connected
  • the SW pin is connected to the cathode of the diode D12, one end of the capacitor C26, and one end of the electromagnetic coil L4
  • the BS pin is connected to the other end of the capacitor C26.
  • the other end of the electromagnetic coil L4 and the other end of the resistor R77 are connected.
  • the other end of the capacitor C25, the other end of the capacitor C24, and the cathode of the Zener diode ZD1 are connected, and the voltage after the step-down is output.
  • the driving module 14 includes a driving circuit 141 and a relay 142, and the driving circuit 141 is respectively connected to the first control module 11 and the relay 142, and the relay 142 is also respectively connected to the AC.
  • the DC step-down circuit 13 the heating element 16 and the fan 17 are connected, the first control module 11 controls the operation of the relay 142 by the drive circuit 141, and controls the heating element 16 and the fan 17 to operate by the relay 142, respectively.
  • a driving chip U5 is included, and input pins of 1, 3, 5, and 7 of the driving chip U5 are respectively connected to control output pins of the control chip of the first control module 11 (Fig. In 5, only the pin connection is taken out, and the connection with the first control module 11 is not shown.
  • the input pin 1 of the driving chip U5 receives the HIGH signal
  • the input pin 3 receives the LOW signal
  • the input pin 5 receives the SWING.
  • input pin 7 receives the FAN signal.
  • the HIGH signal indicates high-grade heating
  • the LOW signal indicates low-grade heating
  • the SWING signal indicates synchronous motor
  • the FAN signal indicates fan.
  • each switch is common to the mains (such as ACL1 in Figure 5), and the other end is connected to the synchronous motor, fan 17, HIGH and LOW, respectively, and the corresponding switch is driven by the relay 142, and the synchronous motor (SWING signal) is controlled.
  • Fan 17 FAN signal
  • high temperature heating HGH
  • low temperature heating LOW
  • the other ends of the relay K1, the relay K2, the relay K3, and the relay K4 are respectively connected to the output end of the AC-DC step-down circuit 13 (12 V DC voltage).
  • the driver chip U5 may be a chip of the type ULN2003; in addition, the synchronous motor may be any low speed motor, the HIGH signal may be connected to a 1500W heating wire, and the LOW signal may be connected to a 750W heating wire.
  • the Bluetooth fireplace device may further include a simulated flame 18 connected to the AC-DC step-down circuit 13 and the relay 142, respectively, to simulate the flame 18 and the AC-DC drop.
  • the pressure circuit 13 includes two communication paths.
  • the simulation flame 18 can have two driving modes.
  • the first control module 11 controls the operation of the relay 142 through the driving circuit 141, and controls the simulation flame 18 through the relay 142.
  • the simulated flame 18 is coupled to the AC-DC buck circuit 13 and the first control module 11, respectively, and the first control module 11 controls the simulated flame 18 to operate.
  • the simulated flame 18 is preferably a simulated flame 18 lamp module.
  • the 12V voltage is driven by the 12V voltage, and the positive pole of the control switch CN01 is connected to the 12V voltage, and the negative pole is connected to one end of the FET Q01, and the FET Q01 is also
  • the control terminal of the control chip of the control module 11 is connected (the lead line is shown in Fig. 6, and the connection terminal of the first control module 11 is not shown).
  • the Bluetooth fireplace device further includes a temperature detecting module 161 connected to the first control module 11, and the temperature detecting module 161 acquires the temperature of the Bluetooth fireplace device.
  • the temperature inside the Bluetooth fireplace device is acquired by the temperature detecting module 161, or the temperature of the heating element 16 is obtained, thereby realizing the temperature monitoring in the Bluetooth fireplace device of the embodiment of the present disclosure, and when the temperature is too high or other temperature abnormality occurs. Respond in a timely manner, such as shutdown, cooling, alarms, etc.
  • the present disclosure provides a preferred embodiment of a Bluetooth fireplace system and a Bluetooth controller.
  • a Bluetooth fireplace system includes: a Bluetooth fireplace device and a Bluetooth controller 20.
  • the Bluetooth controller 20 includes a second control module 21, a second Bluetooth module 22, and a matrix button. 23 and an LED display screen 24; the second control module 21 is respectively connected to the second Bluetooth module 22, the LED display screen 24 and the matrix button 23, and the second control module 21 passes the second Bluetooth according to the control of the matrix button 23.
  • Module 22 sends a Bluetooth signal to first Bluetooth module 12 of the Bluetooth fireplace device and displays corresponding control information in LED display 24.
  • the second control module 21 may select a chip of the type CP1612
  • the second Bluetooth module 22 may select a chip of the type TSLR8266.
  • the second control module 21 acquires the control signal of the matrix button 23, that is, the second control module 21 reads the button signal of the matrix button 23.
  • the second control module 21 sends a control command to the first Bluetooth module 12 of the Bluetooth fireplace device through the second Bluetooth module 22 according to the control signal to control the driving module to drive the heating element and the fan to work, for example, to control the heating of the heating element, and/ Or control the fan to rotate.
  • the Bluetooth fireplace system may further include a Bluetooth mobile terminal 30, which transmits a Bluetooth signal to the first Bluetooth module 12 of the Bluetooth fireplace device;
  • the Bluetooth mobile terminal 30 may be Any one or more of mobile phones, tablets, smart wear and notebooks.
  • the present disclosure also provides an embodiment of a backlight used in an LED display screen 24.
  • the Bluetooth controller 20 includes a backlight 26 and a backlight boost circuit 25, and the backlight boost circuit 25 is respectively connected to the backlight 26, the second control module 21, and a power source, and the backlight boost circuit 25 is in the second control.
  • the module 21 controls the power supply to boost the backlight 26 after being boosted; the backlight 26 is disposed in the LED display 24 to adjust the backlight brightness in the LED display 24.
  • the present disclosure provides an embodiment of the circuit principle of a Bluetooth controller.
  • the second control module 21 includes a second control chip MUC1.
  • the backlight boost circuit 25 includes a transistor Q1, a filter circuit, and a boost chip U2.
  • One end of the chip U2 is sequentially connected to the filter circuit, the collector of the transistor Q1, and the other end thereof is connected to the backlight 26; the base of the transistor Q1 is connected to a control output pin of the second control module 21 (not shown in FIG. 12)
  • the second control module 21) has its emitter connected to the power source.
  • the boost chip U2 can be selected from the boost chip U2 of the type ME2188.
  • the backlight boosting circuit 25 includes a boosting chip U2 whose input terminal is connected to the transistor Q1, and the transistor Q1 is respectively connected to the 3V power supply and the second control chip of the second control module 21, according to the second Control of the control chip of the control module 21, the 3V power supply is connected to the boosting chip U2, the output end of the boosting chip U2 is connected to the backlight 26, and the backlight 26 includes a plurality of LED lights, as shown in FIG. Parallel LED lights D1, D2 and D3.
  • the second control module 21 includes a second control chip MUC1
  • the matrix button 23 includes a plurality of matrix-arranged button switches, and one end of each of the button switches is connected to the first The same control input pin of the second control chip MUC1, one end of each of the button switches is connected to the same control input pin of the second control chip MUC1.
  • the second Bluetooth module 22 includes a second Bluetooth chip U1 and its external circuitry.
  • a second Bluetooth chip U1 Such as antenna ANT and antenna matching circuit (L1, L2, R2, C2, etc.), such as crystal oscillator circuit (C11, C12).
  • the present disclosure provides a Bluetooth fireplace device and system, which is simple and ingenious in structure, convenient to install, and can be applied to indoor heating use in various scenarios, and can not only stabilize and effectively heat up the heating requirement during use. At the same time, it can provide better visual effects and enhance user experience.
  • the Bluetooth fireplace device and system of the present disclosure can also realize Bluetooth remote control, and the performance of Bluetooth remote control operation is stable and convenient to use.

Abstract

一种蓝牙壁炉装置,包括:第一控制模块(11)、第一蓝牙模块(12)、控制按键(15)、AC-DC降压电路(13)、驱动模块(14)、发热体(16)和风扇(17);AC-DC降压电路(13)将市电降压后为第一控制模块(11)和第一蓝牙模块(12)供电;驱动模块(14)分别与发热体(16)和风扇(17)连接,第一控制模块(11)分别与第一蓝牙模块(12)、控制按键(15)、驱动模块(14)连接,并根据第一蓝牙模块(12)接收的蓝牙信号或者控制按键(15)的控制信号控制驱动模块(14)驱动发热体(16)和风扇(17)工作。还公开了一种蓝牙壁炉系统。

Description

一种蓝牙壁炉装置和系统
相关申请的交叉引用
本申请要求于2017年12月30日提交中国专利局的申请号为2017219099041、名称为“一种蓝牙壁炉装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及壁炉领域,具体涉及一种蓝牙壁炉装置和系统。
背景技术
在当今快节奏的工作和生活中,人们更加渴望享受壁炉带来的那份自然、温暖、浪漫的休闲感觉。但传统壁炉在安装和使用上却有许多不令人满意之处,比如,只能以木材作为燃料、难以点燃、燃烧时产生烟尘、会将可吸入性颗粒散布在房间各处、污染严重;需要笨重的烟囱;热量损失严重、热效率较低、难以控制温度等等。
电壁炉作为一种家用电热器具,具有清洁卫生、装卸便利、燃烧利用率高等特点。与燃烧木材或燃烧天然气进行取暖的壁炉相比较而言,电壁炉通电产热,因此不会有难防的烟灰、燃烧产生的刺鼻气味以及噪音;电壁炉不仅能节省取暖成本,还可以设置虚拟火焰等不同的视觉效果,在通过电壁炉为使用者的室内带来温暖的同时,还能够给使用者带来高雅的观赏效果。
但是,对于电壁炉的操作方式,现有技术中通常是使用红外遥控器通过红外线信号对电壁炉的工作进行连接控制,但是由于红外线信号存在容易被障碍物遮挡而影响操作稳定性等因素,使得红外遥控器的控制不方便,现有技术中也有一些电壁炉是采用蓝牙信号进行远程遥控,但是这种基于蓝牙远程遥控的电壁炉其电路结构往往非常复杂,导致遥控控制的操作稳定性较差,大大降低用户体验。
发明内容
本公开要解决的技术问题包括,针对现有技术的上述缺陷,提供一种蓝牙壁炉装置,解决电壁炉电路结构复杂、稳定性不高的问题。
本公开要解决的技术问题包括,针对现有技术的上述缺陷,提供一种蓝牙壁炉系统,解决电壁炉电路结构复杂、稳定性不高的问题。
本公开解决其技术问题所采用的技术方案包括:提供一种蓝牙壁炉装置,包括:第一 控制模块、第一蓝牙模块、控制按键、AC-DC降压电路、驱动模块、发热体和风扇;所述AC-DC降压电路分别与市电、第一控制模块和第一蓝牙模块连接,并将市电降压后为第一控制模块和第一蓝牙模块供电;所述驱动模块分别与发热体和风扇连接,所述第一控制模块分别与第蓝牙模块、控制按键、驱动模块连接,并根据第一蓝牙模块接收的蓝牙信号或者控制按键的控制信号控制驱动模块驱动发热体和风扇工作;所述市电为发热体和风扇供电。
其中,可选方案包括:所述AC-DC降压电路包括电磁兼容子电路、整流桥堆DB1、π型滤波子电路、高频变压器T1、驱动芯片U1、变压器T1、二极管D3、电容C9、电容C10。所述电磁兼容子电路的正极和负极输入端接入市电,所述电磁兼容子电路的输出端与所述整流桥堆DB1连接,所述整流桥堆DB1还与所述π型滤波子电路连接,所述π型滤波子电路还与所述高频变压器T1的初级线圈端连接,所述高频变压器T1的初级线圈端还与所述驱动芯片U1连接,所述高频变压器T1的次级线圈端与所述二极管D3的正极连接,所述二极管D3的负极分别与相互并联的电容C9和电容C10的一端连接,所述电容C9和电容C10的另一端相互连接并输出为降压后的市电。
其中,可选方案包括:所述蓝牙壁炉装置还包括第二降压电路和第三降压电路,所述第二降压电路设置在AC-DC降压电路和第一控制模块之间,所述第三降压电路设置在AC-DC降压电路和第一蓝牙模块之间。
其中,可选方案包括:所述蓝牙壁炉装置还包括第二降压电路,所述第二降压电路设置在AC-DC降压电路和第一控制模块之间。
其中,可选方案包括:所述蓝牙壁炉装置还包括第三降压电路,所述第三降压电路设置在AC-DC降压电路和第一蓝牙模块之间。
其中,可选方案包括:所述第二降压电路包括降压芯片U4、电容C12以及电容C23所述AC-DC降压电路输出端与所述降压芯片U4的输入端连接,所述降压芯片U4还分别与所述电容C12和所述电容C23的两端连接,所述降压芯片U4的输出端输出降压后的电压。
其中,可选方案包括:所述降压芯片U4的型号为LN5R12C。
其中,可选方案包括:所述第三降压电路包括降压芯片U9、电阻R76、电阻R77、电阻R78、电容C24、电容C25、电容C26、电容C27、电容C28、二极管D12、稳压二极管ZD1、电磁线圈L4。所述降压芯片U9的IN引脚与所述AC-DC降压电路输出端和所述电阻R76的一端和所述电容C28的一端以及所述电容C27的一端连接、EN引脚与所述电容C28的另一端以及所述电阻R76的另一端连接、GND引脚分别与所述电容C27的另一端和所述二极管12的正极和所述电阻R78的一端和所述电容C24的一端以及所述稳压二极管 ZD1的正极连接、FB引脚与所述电阻R78的另一端和所述电阻R77的一端以及所述电容C25的一端连接、SW引脚与所述二极管D12的负极和所述电容C26的一端以及所述电磁线圈L4的一端连接、BS引脚与所述电容C26的另一端连接,所述电磁线圈L4的另一端与所述电阻R77的另一端、所述电容C25的另一端、所述电容C24的另一端、所述稳压二极管ZD1的负极连接,并输出降压后的电压。
其中,可选方案包括:所述降压芯片U9的型号为Si3116。
其中,可选方案包括:所述第一控制模块与所述第一蓝牙模块共用芯片,所述共用芯片的型号为TLSR8266。
其中,可选方案包括:所述驱动模块包括驱动电路和继电器,所述驱动电路分别与第一控制模块和继电器连接,所述继电器分别与AC-DC降压电路、发热体和风扇连接,所述第一控制模块通过驱动电路控制继电器工作,并通过继电器控制发热体和风扇工作。
其中,可选方案包括:所述蓝牙壁炉装置还包括仿真火焰,所述仿真火焰分别与AC-DC降压电路和继电器连接,所述第一控制模块通过驱动电路控制继电器工作,并通过继电器控制仿真火焰工作;或者,所述仿真火焰分别与AC-DC降压电路和第一控制模块连接,所述第一控制模块控制仿真火焰工作。
其中,可选方案包括:所述蓝牙壁炉装置还包括与第一控制模块连接的温度检测模块,所述温度检测模块获取蓝牙壁炉装置的温度。
本公开解决其技术问题所采用的技术方案包括:提供一种蓝牙壁炉系统,包括:蓝牙壁炉装置和蓝牙控制器,所述蓝牙控制器包括第二控制模块、第二蓝牙模块、矩阵按键和LED显示屏;所述第二控制模块分别与第二蓝牙模块、LED显示屏和矩阵按键连接,所述第二控制模块根据矩阵按键的控制且通过第二蓝牙模块发送蓝牙信号至蓝牙壁炉装置的第一蓝牙模块,并在LED显示屏中显示相应的控制信息。
其中,可选方案包括:所述蓝牙控制器包括背光灯和背光升压电路,所述背光升压电路分别与背光灯、第二控制模块和电源连接,所述背光升压电路在第二控制模块控制下将电源升压后为背光灯供电;所述背光灯设置在LED显示屏中,调节LED显示屏中的背光亮度。
其中,可选方案包括:所述第二控制模块包括一第二控制芯片,所述背光升压电路包括三极管Q1、滤波电路、升压芯片,所述升压芯片的一端依次连接、滤波电路、三极管Q1的集电极,其另一端与背光灯连接;所述三极管Q1的基极与第二控制模块的一控制输出引脚连接,其发射极与电源连接。
其中,可选方案包括:所述第二控制模块包括一第二控制芯片,所述矩阵按键包括多个矩阵排列的按键开关,每一行所述按键开关的一端均接入第二控制芯片的同一控制输入 引脚,每一列所述按键开关的一端均接入第二控制芯片的同一控制输入引脚。
其中,可选方案包括:所述蓝牙壁炉系统还包括蓝牙移动终端,所述蓝牙移动终端发送蓝牙信号至蓝牙壁炉装置的第一蓝牙模块;所述蓝牙移动终端为手机、平板、智能穿戴和笔记本中的一种。
本公开的有益效果包括,与现有技术相比,本公开通过设计一种蓝牙壁炉装置和系统,为蓝牙壁炉装置提供蓝牙远程控制功能,提高用户体验;以及,整体结构简单,且性能稳定,便于用户的控制和使用;同时,提供多种电压控制,提高抗干扰能力。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面将结合附图及实施例对本公开作进一步说明,附图中:
图1是本公开蓝牙壁炉装置的结构框图;
图2是本公开蓝牙壁炉装置的具体结构框图;
图3是本公开AC-DC降压电路的电路示意图;
图4是本公开第三降压电路的电路示意图;
图5是本公开驱动模块、发热体和风扇连接的电路示意图;
图6是本公开仿真火焰的电路示意图;
图7是本公开蓝牙壁炉系统的结构示框图;
图8是本公开蓝牙控制器的结构示框图;
图9是本公开背光灯的结构示框图;
图10是本公开第二控制芯片的电路示意图;
图11是本公开第二蓝牙芯片的电路示意图;
图12是本公开背光升压电路的电路示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,如出现术语“第一”、“第二”、“第三”仅配置成描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
现结合附图,对本公开的较佳实施例作详细说明。
如图1所示,本公开提供一种蓝牙壁炉装置的一种实施例。
一种蓝牙壁炉装置,包括:第一控制模块11、第一蓝牙模块12、控制键15、AC-DC降压电路13、驱动模块14、发热体16和风扇17;所述AC-DC降压电路13分别与市电、第一控制模块11和第一蓝牙模块12连接,并将市电降压后为第一控制模块11和第一蓝牙模块12供电;所述驱动模块14分别与发热体16和风扇17连接,所述第一控制模块11分别与第一蓝牙模块12、控制按键15、驱动模块14连接,并根据第一蓝牙模块12接收的蓝牙信号或者控制按键15的控制信号控制驱动模块14驱动发热体16和风扇17工作;所述市电为发热体16和风扇17供电。
具体地,如图1所示,第一控制模块11获取第一蓝牙模块12发送的控制信号,以及获取控制按键15的控制信号,其中,所述第一蓝牙模块12获取外部蓝牙控制信号,并将该蓝牙控制信号转化成对应的控制信号并发送至第一控制模块11中,所述第一控制模块11还读取控制按键15的按键信号。当用户通过蓝牙发送设备或其他类似的能够发出蓝牙信号的设备向第一蓝牙模块12发送蓝牙控制信号,或者,当用户通过控制按键15启动按键信号,所述第一控制模块11根据第一蓝牙模块12接收的蓝牙信号,或者根据控制按键15的控制信号控制驱动模块14,驱动模块14驱动发热体16和风扇17工作,例如,控制发热 体16发热,以及控制风扇17转动。市电对发热体16和风扇17的工作供电,示例的,市电指普通城市电网提供的220V交流电,市电一方面直接为发热体16和风扇17提供工作电压,另一方面也通过AC-DC降压电路13将220V交流电转化为12V的直流电为装置中其他部件供电。
优选地,可以使第一控制模块11和第一蓝牙模块12共用一芯片,示例的,可以选用芯片型号为TLSR8266的芯片。
参考图3,图3包括AC-DC降压电路13的电路原理图。
通过正极(ACL)和负极(COM1)接入市电,通过DB1桥式整流后将交流电转换为直流电,并通过变压器T1对直流电进行降压处理,降压后输出为12V的直流电。
具体地,100-240V交流电从ACL和COM1端输入,经过电磁兼容(EMC)子电路到整流桥堆DB1,整流成直流电后再经过C1、L1、C2组成的π型滤波子电路,并到达高频变压器T1,经过驱动IC(U1)的驱动,变压器T1以开关型势工作,变压器次级线圈感应出12V的电压,经过D3整流和C9、C10滤波后,形成稳定的12V直流电输出。
示例的,如图3所示,AC-DC降压电路13包括电磁兼容子电路、整流桥堆DB1、π型滤波子电路、高频变压器T1、驱动芯片U1、变压器T1、二极管D3、电容C9、电容C10。电磁兼容子电路的正极和负极输入端接入市电,电磁兼容子电路的输出端与整流桥堆DB1连接,整流桥堆DB1还与π型滤波子电路连接,π型滤波子电路还与高频变压器T1的初级线圈端连接,高频变压器T1的初级线圈端还与驱动芯片U1连接,高频变压器T1的次级线圈端与二极管D3的正极连接,二极管D3的负极分别与相互并联的电容C9和电容C10的一端连接,电容C9和电容C10的另一端相互连接并输出为降压后的市电。
如图2所示,本公开提供一种蓝牙壁炉装置的一种实施例。
在本实施例中,所述蓝牙壁炉装置包括第二降压电路191和/或第三降压电路192,所述第二降压电路191设置在AC-DC降压电路13和第一控制模块11之间,所述第三降压电路192设置在AC-DC降压电路13和第一蓝牙模块12之间。
并参考图3和图4,图3还描述有第二降压电路191的电路原理图,图4描述有第三降压电路192的电路原理图。在第二降压电路191中,与AC-DC降压电路13的电压输出端连接,用于接收AC-DC降压电路13输出的12V直流电,12V直流电通过降压芯片U4进行降压,输出5V电压,所述的5V电压为第一控制模块11提供工作电压。示例的,第二降压电路191可以包括型号为LN5R12C的芯片。
示例的,如图3所示,第二降压电路191包括降压芯片U4、电容C12以及电容C23。AC-DC降压电路输出端与降压芯片U4的输入端连接,降压芯片U4还分别与电容C12和电容C23的两端连接,降压芯片U4的输出端输出降压后的电压。
在第三降压电路192中,与AC-DC降压电路13的电压输出端连接,用于接收AC-DC降压电路13输出的12V直流电,12V直流电通过降压芯片U9进行降压,输出3V电压,所述的3V电压为第一蓝牙模块12提供工作电压。示例的,第三降压电路192可以包括型号为Si3116的芯片。
示例的,如图4所示,第三降压电路包括降压芯片U9、电阻R76、电阻R77、电阻R78、电容C24、电容C25、电容C26、电容C27、电容C28、二极管D12、稳压二极管ZD1、电磁线圈L4。降压芯片U9的IN引脚与AC-DC降压电路输出端和电阻R76的一端和电容C28的一端以及电容C27的一端连接、EN引脚与电容C28的另一端以及电阻R76的另一端连接、GND引脚分别与电容C27的另一端和二极管12的正极和电阻R78的一端和电容C24的一端以及稳压二极管ZD1的正极连接、FB引脚与电阻R78的另一端和电阻R77的一端以及电容C25的一端连接、SW引脚与二极管D12的负极和电容C26的一端以及电磁线圈L4的一端连接、BS引脚与电容C26的另一端连接,电磁线圈L4的另一端与电阻R77的另一端、电容C25的另一端、电容C24的另一端、稳压二极管ZD1的负极连接,并输出降压后的电压。
如图2所示,在本实施例中,所述驱动模块14包括驱动电路141和继电器142,所述驱动电路141分别与第一控制模块11和继电器142连接,所述继电器142还分别与AC-DC降压电路13、发热体16和风扇17连接,所述第一控制模块11通过驱动电路141控制继电器142工作,并通过继电器142分别控制发热体16和风扇17工作。
并参考图5,在驱动电路141中,包括驱动芯片U5,所述驱动芯片U5的1、3、5、7输入引脚分别与第一控制模块11的控制芯片的控制输出引脚连接(图5中仅引出引脚连线,未示出与第一控制模块11之间的连接),驱动芯片U5的输入引脚1接收HIGH信号,输入引脚3接收LOW信号,输入引脚5接收SWING信号,输入引脚7接收FAN信号。其中,HIGH信号表示高档加热,LOW信号表示低档加热,SWING信号表示同步马达,FAN信号表示风扇。
以及,所述驱动芯片U5的10、12、14、16输出引脚分别与继电器K3、继电器K4、继电器K1、继电器K2连接,继电器K3、继电器K4、继电器K1、继电器K2分别与其对应的开关连接,每一开关的另一端共市电(如图5中ACL1),另一端分别与同步马达、风扇17、HIGH和LOW连接,通过继电器142驱动对应开关工作,并控制同步马达(SWING信号)、风扇17(FAN信号)、高档加热(HIGH)或低档加热(LOW)工作。其中,继电器K1、继电器K2、继电器K3、继电器K4的另一端分别与AC-DC降压电路13的输出端连接(12V直流电压)。示例的,驱动芯片U5可以选用型号为ULN2003的芯片;此外,同步马达可以是任意一种低速马达,HIGH信号可以连接1500W的加热丝,LOW信号可 以连接750W的加热丝。
在本实施例中,如图2所示,蓝牙壁炉装置还可以包括设置仿真火焰18,所述仿真火焰18分别与AC-DC降压电路13和继电器142连接,仿真火焰18与AC-DC降压电路13之间包括有两条连通通路,仿真火焰18可以有两种驱动工作的方式,所述第一控制模块11通过驱动电路141控制继电器142工作,并通过继电器142控制仿真火焰18工作;或者,所述仿真火焰18分别与AC-DC降压电路13和第一控制模块11连接,所述第一控制模块11控制仿真火焰18工作。
并参考图6,仿真火焰18优选为仿真火焰18灯模块,通过12V电压驱动,控制开关CN01的正极接入12V电压,其负极接入场效应管Q01的一端,同时场效应管Q01还与第一控制模块11的控制芯片的控制端连接(图6中示出引出线,未示出第一控制模块11的连接端)。
在本实施例中,如图2所示,所述蓝牙壁炉装置还包括与第一控制模块11连接的温度检测模块161,所述温度检测模块161获取蓝牙壁炉装置的温度。
具体地,通过温度检测模块161获取蓝牙壁炉装置内部的温度,或者获取发热体16的温度,从而实现对本公开实施例的蓝牙壁炉装置内温度的监控,并在温度过高或者出现其他温度异常时及时作出反应,如关机、降温、警报等。
如图7和图8所示,本公开提供一种蓝牙壁炉系统及蓝牙控制器的优选实施例。
一种蓝牙壁炉系统,如图7所示,包括:蓝牙壁炉装置和蓝牙控制器20,如图8所示,所述蓝牙控制器20包括第二控制模块21、第二蓝牙模块22、矩阵按键23和LED显示屏24;所述第二控制模块21分别与第二蓝牙模块22、LED显示屏24和矩阵按键23连接,所述第二控制模块21根据矩阵按键23的控制,通过第二蓝牙模块22发送蓝牙信号至蓝牙壁炉装置的第一蓝牙模块12,并在LED显示屏24中显示相应的控制信息。示例的,第二控制模块21可以选用型号为CP1612的芯片,第二蓝牙模块22可以选用型号为TSLR8266的芯片。
示例的,第二控制模块21获取矩阵按键23的控制信号,即第二控制模块21读取矩阵按键23的按键信号。所述第二控制模块21根据控制信号通过第二蓝牙模块22发送控制命令至蓝牙壁炉装置的第一蓝牙模块12,以控制驱动模块驱动发热体和风扇工作,例如,控制发热体发热,和/或控制风扇转动。
示例的,如图7所示,所述蓝牙壁炉系统还可以包括蓝牙移动终端30,所述蓝牙移动终端30发送蓝牙信号至蓝牙壁炉装置的第一蓝牙模块12;所述蓝牙移动终端30可以为手机、平板、智能穿戴和笔记本中的任意一种或多种。
如图9所示,本公开还提供了一种LED显示屏24中使用的背光灯的一种实施例。
所述蓝牙控制器20包括背光灯26和背光升压电路25,所述背光升压电路25分别与背光灯26、第二控制模块21和电源连接,所述背光升压电路25在第二控制模块21控制下将电源升压后为背光灯26供电;所述背光灯26设置在LED显示屏24中,调节LED显示屏24中的背光亮度。
如图10至图12所示,本公开提供蓝牙控制器的电路原理的一种实施例。
如图10所示,所述第二控制模块21包括一第二控制芯片MUC1,如图12所示,所述背光升压电路25包括三极管Q1、滤波电路、升压芯片U2,所述升压芯片U2的一端依次连接滤波电路、三极管Q1的集电极,其另一端与背光灯26连接;所述三极管Q1的基极与第二控制模块21的一控制输出引脚连接(图12中未示出第二控制模块21),其发射极与电源连接。示例的,升压芯片U2可选用型号为ME2188的升压芯片U2。
具体地,并参考图12,背光升压电路25包括一升压芯片U2,其输入端与三极管Q1连接,三极管Q1分别与3V电源和第二控制模块21的第二控制芯片连接,根据第二控制模块21的控制芯片的控制,将3V电源接入升压芯片U2中,升压芯片U2的输出端与背光灯26连接,背光灯26包括多个LED灯,如图12中所示的相互并联的LED灯D1、D2和D3。
进一步地,如图10所示,所述第二控制模块21包括一第二控制芯片MUC1,所述矩阵按键23包括多个矩阵排列的按键开关,每一行所述按键开关的一端均接入第二控制芯片MUC1的同一控制输入引脚,每一列所述按键开关的一端均接入第二控制芯片MUC1的同一控制输入引脚。
参考图11,第二蓝牙模块22包括第二蓝牙芯片U1及其外部电路。如天线ANT和天线匹配电路(L1、L2、R2、C2等),如晶振电路(C11、C12)。
以上所述者,仅为本公开最佳实施例而已,并非用于限制本公开的范围,凡依本公开申请专利范围所作的等效变化或修饰,皆为本公开所涵盖。
工业实用性
综上所述,本公开提供了一种蓝牙壁炉装置和系统,其结构简单巧妙,安装方便,可适用于各种场景的室内取暖使用,在使用过程中不但能够稳定有效升温的保证取暖要求,同时还能够提供较佳的视觉效果,提升用户体验,在此基础上,本公开的蓝牙壁炉装置和系统还能够实现蓝牙远程控制,蓝牙遥控操作的性能稳定,使用方便。

Claims (18)

  1. 一种蓝牙壁炉装置,其特征在于,包括:第一控制模块、第一蓝牙模块、控制按键、AC-DC降压电路、驱动模块、发热体和风扇;所述AC-DC降压电路分别与市电、第一控制模块和第一蓝牙模块连接,并将市电降压后为第一控制模块和第一蓝牙模块供电;所述驱动模块分别与发热体和风扇连接,所述第一控制模块分别与第一蓝牙模块、控制按键、驱动模块连接,并根据第一蓝牙模块接收的蓝牙信号或者控制按键的控制信号控制驱动模块驱动发热体和风扇工作;所述市电为发热体和风扇供电。
  2. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述AC-DC降压电路包括电磁兼容子电路、整流桥堆DB1、π型滤波子电路、高频变压器T1、驱动芯片U1、变压器T1、二极管D3、电容C9和电容C10;
    所述电磁兼容子电路的正极和负极输入端接入市电,所述电磁兼容子电路的输出端与所述整流桥堆DB1连接,所述整流桥堆DB1还与所述π型滤波子电路连接,所述π型滤波子电路还与所述高频变压器T1的初级线圈端连接,所述高频变压器T1的初级线圈端还与所述驱动芯片U1连接,所述高频变压器T1的次级线圈端与所述二极管D3的正极连接,所述二极管D3的负极分别与相互并联的电容C9和电容C10的一端连接,所述电容C9和电容C10的另一端相互连接并输出为降压后的市电。
  3. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述蓝牙壁炉装置还包括第二降压电路和第三降压电路,所述第二降压电路设置在AC-DC降压电路和第一控制模块之间,所述第三降压电路设置在AC-DC降压电路和第一蓝牙模块之间。
  4. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述蓝牙壁炉装置还包括第二降压电路,所述第二降压电路设置在AC-DC降压电路和第一控制模块之间。
  5. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述蓝牙壁炉装置还包括第三降压电路,所述第三降压电路设置在AC-DC降压电路和第一蓝牙模块之间。
  6. 根据权利要求3或4所述的蓝牙壁炉装置,其特征在于:所述第二降压电路包括降压芯片U4、电容C12以及电容C23;
    所述AC-DC降压电路输出端与所述降压芯片U4的输入端连接,所述降压芯片U4还分别与所述电容C12和所述电容C23的两端连接,所述降压芯片U4的输出端输出降压后的电压。
  7. 根据权利要求6所述的蓝牙壁炉装置,其特征在于:所述降压芯片U4的型号为LN5R12C。
  8. 根据权利要求3或5所述的蓝牙壁炉装置,其特征在于:所述第三降压电路包括 降压芯片U9、电阻R76、电阻R77、电阻R78、电容C24、电容C25、电容C26、电容C27、电容C28、二极管D12、稳压二极管ZD1和电磁线圈L4;
    所述降压芯片U9的IN引脚与所述AC-DC降压电路输出端和所述电阻R76的一端和所述电容C28的一端以及所述电容C27的一端连接、EN引脚与所述电容C28的另一端以及所述电阻R76的另一端连接、GND引脚分别与所述电容C27的另一端和所述二极管12的正极和所述电阻R78的一端和所述电容C24的一端以及所述稳压二极管ZD1的正极连接、FB引脚与所述电阻R78的另一端和所述电阻R77的一端以及所述电容C25的一端连接、SW引脚与所述二极管D12的负极和所述电容C26的一端以及所述电磁线圈L4的一端连接、BS引脚与所述电容C26的另一端连接,所述电磁线圈L4的另一端与所述电阻R77的另一端、所述电容C25的另一端、所述电容C24的另一端、所述稳压二极管ZD1的负极连接,并输出降压后的电压。
  9. 根据权利要求8所述的蓝牙壁炉装置,其特征在于:所述降压芯片U9的型号为Si3116。
  10. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述第一控制模块与所述第一蓝牙模块共用芯片,所述共用芯片的型号为TLSR8266。
  11. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述驱动模块包括驱动电路和继电器,所述驱动电路分别与第一控制模块和继电器连接,所述继电器分别与AC-DC降压电路、发热体和风扇连接,所述第一控制模块通过驱动电路控制继电器工作,并通过继电器控制发热体和风扇工作。
  12. 根据权利要求11所述的蓝牙壁炉装置,其特征在于:所述蓝牙壁炉装置还包括仿真火焰,所述仿真火焰分别与AC-DC降压电路和继电器连接,所述第一控制模块通过驱动电路控制继电器工作,并通过继电器控制仿真火焰工作;或者,所述仿真火焰分别与AC-DC降压电路和第一控制模块连接,所述第一控制模块控制仿真火焰工作。
  13. 根据权利要求1所述的蓝牙壁炉装置,其特征在于:所述蓝牙壁炉装置还包括与第一控制模块连接的温度检测模块,所述温度检测模块获取蓝牙壁炉装置的温度。
  14. 一种蓝牙壁炉系统,其特征在于,包括:如权利要求1-13任一项所述的蓝牙壁炉装置和蓝牙控制器,所述蓝牙控制器包括第二控制模块、第二蓝牙模块、矩阵按键和LED显示屏;所述第二控制模块分别与第二蓝牙模块、LED显示屏和矩阵按键连接,所述第二控制模块根据矩阵按键的控制且通过第二蓝牙模块发送蓝牙信号至蓝牙壁炉装置的第一蓝牙模块,并在LED显示屏中显示相应的控制信息。
  15. 根据权利要求14所述的蓝牙壁炉系统,其特征在于:所述蓝牙控制器包括背光灯和背光升压电路,所述背光升压电路分别与背光灯、第二控制模块和电源连接,所 述背光升压电路在第二控制模块控制下将电源升压后为背光灯供电;所述背光灯设置在LED显示屏中,调节LED显示屏中的背光亮度。
  16. 根据权利要求15所述的蓝牙壁炉系统,其特征在于:所述第二控制模块包括一第二控制芯片,所述背光升压电路包括三极管Q1、滤波电路、升压芯片,所述升压芯片的一端依次连接、滤波电路、三极管Q1的集电极,其另一端与背光灯连接;所述三极管Q1的基极与第二控制模块的一控制输出引脚连接,其发射极与电源连接。
  17. 根据权利要求14所述的蓝牙壁炉系统,其特征在于:所述第二控制模块包括一第二控制芯片,所述矩阵按键包括多个矩阵排列的按键开关,每一行所述按键开关的一端均接入第二控制芯片的同一控制输入引脚,每一列所述按键开关的一端均接入第二控制芯片的同一控制输入引脚。
  18. 根据权利要求14所述的蓝牙壁炉系统,其特征在于:所述蓝牙壁炉系统还包括蓝牙移动终端,所述蓝牙移动终端发送蓝牙信号至蓝牙壁炉装置的第一蓝牙模块;所述蓝牙移动终端为手机、平板、智能穿戴和笔记本中的一种。
PCT/CN2018/085413 2017-12-30 2018-05-03 一种蓝牙壁炉装置和系统 WO2019128017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721909904.1 2017-12-30
CN201721909904.1U CN207849529U (zh) 2017-12-30 2017-12-30 一种蓝牙壁炉装置和系统

Publications (1)

Publication Number Publication Date
WO2019128017A1 true WO2019128017A1 (zh) 2019-07-04

Family

ID=63420279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085413 WO2019128017A1 (zh) 2017-12-30 2018-05-03 一种蓝牙壁炉装置和系统

Country Status (2)

Country Link
CN (1) CN207849529U (zh)
WO (1) WO2019128017A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927435A (zh) * 2021-01-22 2021-06-08 四川杰斯顿电气设备有限公司 一种远程电能充值系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003469A1 (de) * 2013-03-04 2014-09-04 Tekmar Regelsysteme Gmbh Verfahren zur Raum- oder Gebäudebeheizung unter Benutzung regenerativer ,volatiler elektrischer Energie
CN204697378U (zh) * 2015-05-15 2015-10-07 泉州师范学院 小功率hid灯驱动电路
CN205560938U (zh) * 2016-02-22 2016-09-07 上海宝路通电器有限公司 一种电壁炉
CN205790853U (zh) * 2016-05-30 2016-12-07 深圳市蚂蚁雄兵物联技术有限公司 一种蓝牙感应转换灯座
CN205793503U (zh) * 2016-05-30 2016-12-07 深圳市蚂蚁雄兵物联技术有限公司 一种蓝牙控制电源
CN106482198A (zh) * 2016-08-29 2017-03-08 四川万豪电子科技有限公司 一种可以与手机交互的智能壁炉系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003469A1 (de) * 2013-03-04 2014-09-04 Tekmar Regelsysteme Gmbh Verfahren zur Raum- oder Gebäudebeheizung unter Benutzung regenerativer ,volatiler elektrischer Energie
CN204697378U (zh) * 2015-05-15 2015-10-07 泉州师范学院 小功率hid灯驱动电路
CN205560938U (zh) * 2016-02-22 2016-09-07 上海宝路通电器有限公司 一种电壁炉
CN205790853U (zh) * 2016-05-30 2016-12-07 深圳市蚂蚁雄兵物联技术有限公司 一种蓝牙感应转换灯座
CN205793503U (zh) * 2016-05-30 2016-12-07 深圳市蚂蚁雄兵物联技术有限公司 一种蓝牙控制电源
CN106482198A (zh) * 2016-08-29 2017-03-08 四川万豪电子科技有限公司 一种可以与手机交互的智能壁炉系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927435A (zh) * 2021-01-22 2021-06-08 四川杰斯顿电气设备有限公司 一种远程电能充值系统及方法
CN112927435B (zh) * 2021-01-22 2024-02-02 四川杰斯顿电气设备有限公司 一种远程电能充值系统及方法

Also Published As

Publication number Publication date
CN207849529U (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
US9837928B1 (en) Single fire-wire phase-front dynamic AC power fetching module
CN203590555U (zh) 一种可调光led灯
CN105050246A (zh) 一种移动终端调节灯光亮度的方法和移动终端
CN113691675A (zh) 一种应用于智能家居的大功率驱动电源
WO2013120299A1 (zh) 应急照明电路及应急照明系统
WO2019128017A1 (zh) 一种蓝牙壁炉装置和系统
CN208154530U (zh) 一种升降式燃气灶
CN202857076U (zh) 一种智能多功能台灯
CN202160313U (zh) 智能控制led灯
WO2018058298A1 (zh) 调光开关系统及方法
CN201718075U (zh) 一种智能led灯
CN105909541A (zh) 智能无线遥控电风扇
CN105952678A (zh) 电风扇智能控制系统
CN201748257U (zh) 一种新型的led树叶形状节能保健读写台灯
CN202132821U (zh) 一种感应式led壁灯
CN205336612U (zh) 一种具有雷达扫描功能的灯具
CN204100025U (zh) Led床灯
CN205336608U (zh) 一种led恒流驱动电源
CN204205990U (zh) 带蓝牙控制功能的四通道电源
CN203984739U (zh) 自动调光触摸台灯
CN210348241U (zh) 基于电池的无线智能墙壁开关装置
CN202488833U (zh) 智能感控灯
CN205356766U (zh) 智能家居照明控制设备
JP3194276U (ja) Usbソケット付きナイトライト
CN214338180U (zh) 直流供电型红外感应高功率投光灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896249

Country of ref document: EP

Kind code of ref document: A1