WO2019127581A1 - 感光装置、感光模组、显示模组及电子设备 - Google Patents

感光装置、感光模组、显示模组及电子设备 Download PDF

Info

Publication number
WO2019127581A1
WO2019127581A1 PCT/CN2017/120409 CN2017120409W WO2019127581A1 WO 2019127581 A1 WO2019127581 A1 WO 2019127581A1 CN 2017120409 W CN2017120409 W CN 2017120409W WO 2019127581 A1 WO2019127581 A1 WO 2019127581A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
signal
unit
sensing
electrode
Prior art date
Application number
PCT/CN2017/120409
Other languages
English (en)
French (fr)
Inventor
李问杰
Original Assignee
深圳信炜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信炜科技有限公司 filed Critical 深圳信炜科技有限公司
Priority to CN201790000328.0U priority Critical patent/CN209044631U/zh
Priority to PCT/CN2017/120409 priority patent/WO2019127581A1/zh
Publication of WO2019127581A1 publication Critical patent/WO2019127581A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the utility model relates to a photosensitive device, a photosensitive module, a display module and an electronic device for sensing biological characteristic information.
  • optical fingerprint recognition has gradually become a standard component of electronic products such as mobile terminals. Since optical fingerprint recognition has stronger penetrability than capacitive fingerprint recognition, the application of optical fingerprint recognition to mobile terminals is a future development trend. However, the existing optical fingerprint recognition structure applied to mobile terminals still needs to be improved.
  • the embodiments of the present invention aim to at least solve one of the technical problems existing in the prior art. Therefore, the embodiments of the present invention need to provide a photosensitive device, a photosensitive module, a display module, and an electronic device.
  • a photosensitive device includes a substrate and a plurality of photosensitive pixels disposed on the substrate, the photosensitive pixels including a sensing unit and a signal output unit;
  • the sensing unit is configured to receive a light sensing control signal, perform light sensing when receiving the light sensing control signal, and generate a corresponding photosensitive signal;
  • the signal output unit is configured to receive an output control signal, and output the photosensitive signal generated by the sensing unit when the output control signal is received.
  • the photosensitive unit of the present invention whether the photosensitive unit is driven to perform light sensing by the switch unit is controlled, and the output of the electrical signal generated by the photosensitive unit to perform light sensing is controlled by the signal output unit, so that not only the photosensitive unit but also the photosensitive unit is realized. Independent control, and also realizes the timely and effective output of the electrical signal generated by the photosensitive unit, thereby improving the sensing accuracy of the photosensitive device.
  • the light sensing control signal includes a first scan driving signal
  • the sensing unit includes a switching unit and a photosensitive unit
  • the switching unit is configured to receive a reference signal and the first scan driving signal, and transmit the reference signal to the photosensitive unit when receiving the first scan driving signal;
  • the photosensitive unit is configured to receive a reference signal transmitted by the switching unit, and start performing light sensing after a first predetermined time to generate a corresponding photosensitive signal.
  • the photosensitive unit includes at least one photosensitive device, and the photosensitive device includes a first electrode for receiving a reference signal transmitted by the switching unit.
  • the photosensitive device is a photodiode
  • a negative electrode of the photodiode is a first electrode of the photosensitive device for receiving a reference signal transmitted by the switching unit, the photodiode
  • the positive pole is connected to a predetermined signal.
  • the photosensitive unit further includes a first capacitor, and the first plate of the first capacitor is configured to receive the reference signal transmitted by the switching unit, the first capacitor The second plate is coupled to the predetermined signal, and the first capacitor forms a discharge loop with the photosensitive device when performing light sensing.
  • the embodiment of the present invention increases the capacitance capacity of the entire photosensitive unit by setting the first capacitance, thereby reducing the discharge speed of the photodiode, thereby making the reading time of the voltage signal on the negative electrode of the photodiode more sufficient, thereby improving the target object. Sensing accuracy.
  • the first capacitor is a variable capacitor, or the first capacitor is a capacitor array composed of a plurality of capacitors. Since the first capacitor is set as a variable capacitor, by the capacity adjustment of the first capacitor, the photosensitive time of the photosensitive pixel can be adjusted to adapt to changes in ambient light, thereby obtaining an accurate photosensitive signal.
  • the switching unit includes a first transistor, and the first transistor includes a first control electrode, a first transmission electrode, and a second transmission electrode; wherein the first control electrode is for receiving The first scan driving signal, the first transfer electrode is configured to receive the reference signal, the second transfer electrode is coupled to a first electrode of the photosensitive device; and the first transistor receives the first A scan signal is turned on, and the reference signal is transmitted to the first electrode of the photosensitive device.
  • the signal output unit includes a second transistor and a buffer circuit; the buffer circuit is coupled between the second transistor and the sensing unit for performing the sensing unit The electrical signal generated during light sensing is buffered; the second transistor includes a second control electrode, a third transfer electrode, and a fourth transfer electrode, wherein the second control electrode is configured to receive the output control signal, the third a transfer electrode for connecting to the buffer circuit, the second transistor being turned on when receiving the output control signal, and outputting the buffered electrical signal by the fourth transfer electrode; wherein the high level signal in the output control signal Continue for the second predetermined time.
  • the buffer circuit functions as a buffer isolation, and the electrical signal generated by the photosensitive unit is isolated to prevent the other circuit load from affecting the sensing signal of the photosensitive unit, thereby obtaining accurate light sensing. signal.
  • the buffer circuit includes a third transistor, and the third transistor includes a third control electrode, a fifth transfer electrode, and a sixth transfer electrode; wherein the third control electrode is used for connection The photosensitive device, the fifth transmission electrode is configured to receive a voltage signal, and the sixth transmission electrode is coupled to a third transmission electrode of the second transistor.
  • the second predetermined time is dynamically adjusted based on the intensity of the optical signal received by the sensing unit.
  • the switch unit is further configured to end light sensing after the photosensitive unit performs light sensing for a predetermined time, and latch a photosensitive signal generated by performing light sensing to When the signal output unit receives the output control signal, the latched light sensing signal is output.
  • the switch unit is not only used to drive the photosensitive unit to perform light sensing, but also controls the photosensitive unit to end light sensing, and latches the electrical signal generated by the photosensitive unit to perform light sensing, and thus is in different rows.
  • the photosensitive pixels can perform light sensing at the same time, and even all of the photosensitive pixels perform light sensing at the same time, thereby providing sufficient time and flexibility for the output control of the light sensing signal.
  • the light sensing control signal further includes a second scan driving signal, the switching unit further comprising a fourth transistor, the fourth transistor comprising a fourth control electrode, a seventh transmission electrode, and an eighth transmission An electrode, the fourth control electrode is configured to receive the second scan driving signal, the seventh transfer electrode is connected to a first electrode of the photosensitive device, and the eighth transfer electrode is opposite to the first capacitor a first plate connected to the signal transmission unit; wherein a high level signal in the second scan driving signal continues for a third predetermined time, the third predetermined time being greater than a predetermined time.
  • the first capacitor is configured to latch a photosensitive signal generated when performing photo sensing when the photosensitive unit finishes performing light sensing.
  • the first capacitor not only forms a discharge loop with the photosensitive device when performing light sensing, but also latches an electrical signal generated by performing light sensing when the light sensing is finished.
  • the photosensitive pixel of the embodiment of the present invention has a simple structure and a small footprint.
  • the sensing units of the plurality of photosensitive pixels simultaneously perform light sensing.
  • the substrate is a silicon substrate, a metal substrate, a printed circuit board, or an insulating substrate.
  • the substrate is further provided with a scan line group, a data line group and a signal reference line group respectively electrically connected to the plurality of photosensitive pixels.
  • the photosensitive device further includes a photosensitive driving unit corresponding to the scan line group and the signal reference line group, and a signal processing unit connected to the data line group;
  • the photosensitive driving unit is configured to drive the The plurality of photosensitive pixels perform light sensing, and control an electrical signal output generated when the plurality of photosensitive pixels perform light sensing;
  • the signal processing unit is configured to read an electrical signal output by the plurality of photosensitive pixels, And obtaining predetermined biometric information contacting or approaching a target object above the photosensitive device according to the read electrical signal.
  • the photosensitive driving unit is disposed on the substrate or electrically connected to the scan line group and the signal reference line group through a connector; the signal processing unit is disposed on the substrate, Or electrically connected to the data line group through a connector.
  • the photosensitive device is a photosensitive chip.
  • the photosensitive device is for sensing fingerprint information.
  • a photosensitive module according to an embodiment of the present invention includes the photosensitive device of any of the above embodiments.
  • the photosensitive device includes a photosensitive panel, and the photosensitive panel includes a substrate and a plurality of photosensitive pixels disposed on the substrate; the photosensitive module further includes an anti-aliasing imaging element, and the An anti-aliasing imaging element is disposed on the photosensitive panel.
  • the photosensitive module further includes a filter film, and the filter film is disposed on a side of the anti-aliasing imaging element away from the photosensitive panel, or is disposed on the photosensitive panel Between the anti-aliasing imaging elements.
  • the photosensitive device includes a photosensitive panel, and the photosensitive panel includes a substrate and a plurality of photosensitive pixels disposed on the substrate; the photosensitive module further includes a filter film, and the A filter film is disposed on the photosensitive panel.
  • the photosensitive module is a biosensing chip.
  • a display module includes the above-mentioned photosensitive module, and the photosensitive module is located below the display device.
  • Another display module of the embodiment of the present invention includes the above-mentioned photosensitive module, and the photosensitive module is located under the display device; the display device includes a display panel, and the display panel has a display area; The photosensitive panel in the photosensitive module is configured to perform biometric information sensing on a target object at any position in the display area of the display panel; or the photosensitive panel in the photosensitive module has a sensing area, and The shape of the sensing area is consistent with the shape of the display area, and the size of the sensing area is greater than or equal to the size of the display area.
  • An electronic device includes the photosensitive device of any of the above embodiments.
  • the electronic device includes the photosensitive device of any of the above embodiments, the electronic device has all the effects of the above-described photosensitive device.
  • FIG. 1 is a schematic view showing an array of photosensitive pixels in a photosensitive device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the circuit structure of an embodiment of the photosensitive pixel shown in FIG. 1;
  • FIG. 3 is a timing diagram of signals at respective nodes when the photosensitive pixel shown in FIG. 2 performs light sensing
  • FIG. 4 is a structure of a connection relationship between a photosensitive pixel and a scan line, a data line, and a signal reference line in the photosensitive device according to an embodiment of the present invention, and the photosensitive pixel is a photosensitive pixel structure shown in FIG. 2;
  • FIG. 5 is a block diagram showing the structure of an embodiment of the photosensitive driving unit shown in Figure 4;
  • FIG. 6 is a schematic circuit diagram of another embodiment of the photosensitive pixel shown in FIG. 1;
  • FIG. 7 is a timing chart of signals at each node when the photosensitive pixel shown in FIG. 6 performs light sensing
  • FIG. 8 is a connection structure between a photosensitive pixel and a scan line, a data line, and a signal reference line in a photosensitive device according to another embodiment of the present invention, and the photosensitive pixel is a photosensitive pixel structure shown in FIG. 6;
  • Figure 9 is a block diagram showing the structure of an embodiment of the photosensitive driving unit shown in Figure 8.
  • FIG. 10 is a schematic structural view of a photosensitive panel in a photosensitive device according to an embodiment of the present invention.
  • FIG. 11 is a partial structural schematic view of a photosensitive module according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of optical signals that the anti-aliasing imaging element can pass through in the photosensitive module shown in FIG. 11;
  • FIG. 13 is a partial schematic structural view of an anti-aliasing imaging element according to an embodiment of the present invention.
  • FIG. 14 is a partial structural schematic view of an anti-aliasing imaging element according to another embodiment of the present invention.
  • Figure 15 is a schematic view showing the preparation process of the anti-aliasing imaging element shown in Figure 14;
  • 16 is a partial structural schematic view of an anti-aliasing imaging element according to still another embodiment of the present invention.
  • FIG. 17 is a partial structural schematic view of a photosensitive module according to another embodiment of the present invention.
  • FIG. 18 is a partial structural schematic view of a display module according to an embodiment of the present invention.
  • FIG. 19 is a partial structural schematic view of an embodiment of the display panel shown in FIG. 18;
  • FIG. 20 is a schematic view showing a corresponding position of a display area of a display panel and a sensing area of the photosensitive panel according to an embodiment of the present invention
  • 21 is a schematic structural diagram of an electronic device to which a photosensitive module according to an embodiment of the present invention is applied;
  • FIG. 22 is a cross-sectional view of an embodiment of the electronic device shown in FIG. 21 taken along line I-I, and FIG. 22 shows a partial structure of the electronic device;
  • Figure 23 is a cross-sectional view showing another embodiment of the electronic device shown in Figure 21 taken along line I-I, and Figure 23 shows a partial structure of the electronic device.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. .
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • Contact or “touch” includes direct or indirect contact.
  • connection is to be understood broadly, and may be, for example, a fixed connection or a Disassembling the connection, or connecting integrally; may be mechanical connection, electrical connection or communication with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or mutual interaction of two elements Role relationship.
  • installation is to be understood broadly, and may be, for example, a fixed connection or a Disassembling the connection, or connecting integrally; may be mechanical connection, electrical connection or communication with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or mutual interaction of two elements Role relationship.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the embodiment of the present invention provides a photosensitive device disposed in an electronic device, especially disposed under the display screen of the electronic device.
  • the display screen has a display device that emits an optical signal, such as, but not limited to, an OLED display panel.
  • the display emits an optical signal to perform the corresponding image display.
  • the target object touches or touches the electronic device
  • the light signal emitted by the display screen reaches the target object and reflects, and the reflected light signal passes through the display screen and is received by the photosensitive device, and the light receiving device receives the light signal. Converting to an electrical signal corresponding to the optical signal to form predetermined biometric information of the target object based on the electrical signal generated by the photosensitive device.
  • the biometric information of the target object is, for example but not limited to, skin texture information such as fingerprints, palm prints, ear prints, and soles, and other biometric information such as heart rate, blood oxygen concentration, and veins.
  • the target object such as but not limited to a human body, may also be other suitable types of objects.
  • the electronic device can also provide a light source for biometric information sensing.
  • the light source emits a corresponding optical signal, such as infrared light, to achieve sensing of heart rate, blood oxygen concentration, veins, and the like of the target object.
  • Electronic devices such as, but not limited to, suitable types of electronic products such as consumer electronics, home electronics, vehicle-mounted electronic products, and financial terminal products.
  • consumer electronic products such as mobile phones, tablets, notebook computers, desktop monitors, computer integrated machines.
  • Home-based electronic products such as smart door locks, TVs, refrigerators, wearable devices, etc.
  • Vehicle-mounted electronic products such as car navigation systems, car DVDs, etc.
  • Financial terminal products such as ATM machines, terminals for self-service business, etc.
  • FIG. 1 shows an array distribution structure of photosensitive pixels in a photosensitive device.
  • the photosensitive device 20 includes a plurality of photosensitive pixels 22, and the plurality of photosensitive pixels 22 are arrayed in a matrix to form a photosensitive array 201.
  • the photosensitive array 201 includes a plurality of rows of photosensitive pixels and a plurality of columns of photosensitive pixels, and each row of photosensitive pixels is spaced apart in the X direction, and each column of the photosensitive pixels is spaced apart in the Y direction.
  • each row of the photosensitive pixels 22 can be driven from the X direction to perform light sensing, and the electrical signals generated by the respective photosensitive pixels 22 to perform light sensing can be read from the Y direction.
  • each of the photosensitive pixels 22 forming the photosensitive array 201 is not limited to the vertical relationship shown in FIG. 1, and may be distributed in other regular manners or in an irregular manner.
  • each photosensitive pixel 22 includes a sensing unit and a signal output unit.
  • the sensing unit is configured to receive a light sensing control signal, and perform light sensing when receiving the light sensing control signal.
  • the sensing unit receives the optical signal and converts the received optical signal into a corresponding photosensitive signal, that is, an electrical signal;
  • the signal output unit is configured to receive the output control signal and receive the output control signal When the control signal is output, the sensing unit outputs a light sensing signal generated when the light sensing is performed.
  • FIG. 2 shows a circuit configuration of one photosensitive pixel 22 of FIG. 1. Therefore, the photosensitive pixel 22 can also be referred to as a photosensitive circuit.
  • a photosensitive pixel 22 in the embodiment of the present invention has a first input terminal In1, a second input terminal In2, a third input terminal In3, and a first output terminal Out1.
  • the light sensing control signal includes a first scan driving signal.
  • the photosensitive pixel 22 includes a sensing unit and a signal output unit 223.
  • the sensing unit further includes a switching unit 221 and a photosensitive unit 222, and the photosensitive unit 222 is connected between the switching unit 221 and the signal output unit 223.
  • the switch unit 221 receives a reference signal Vref through the third input terminal In3.
  • the switch unit 221 further receives a first scan driving signal through the first input terminal In1, and transmits the reference signal Vref when receiving the first scan driving signal.
  • the photosensitive unit 222 is driven to drive the photosensitive unit 222 to operate.
  • the photosensitive unit 222 is configured to receive an optical signal and convert the received optical signal into a corresponding electrical signal when the optical signal is received.
  • the signal output unit 223 receives the output control signal through the second input terminal In2, and outputs the electrical signal generated by the photosensitive unit 222 from the first output terminal Out1 according to the output control signal.
  • the first scan driving signal and the output control signal are both a pulse signal, and a duration of a high level in the first scan driving signal is a first predetermined time, and a duration of a high level in the output control signal is a second scheduled time.
  • the photosensitive unit 222 includes at least one photosensitive device, the photosensitive device includes a first electrode for receiving the reference signal Vref transmitted by the switching unit 221, and a second electrode for Receive a fixed electrical signal.
  • a driving voltage for driving the photosensitive device is formed by applying a reference signal Vref and a fixed electrical signal to both electrodes of the photosensitive device.
  • the photosensitive device is, for example but not limited to, a photodiode D1, which may alternatively be a photo resistor, a phototransistor, a thin film transistor or the like. It should be noted that the number of photosensitive devices may also be two, three, and the like.
  • the photodiode D1 includes a positive electrode and a negative electrode, wherein the positive electrode receives a predetermined electrical signal, such as a ground signal NGND; and the negative electrode serves as a first electrode of the photosensitive device for receiving the reference signal Vref transmitted by the switching unit 221. . It should be noted that as long as the reference signal Vref is applied to both ends of the photodiode D1 corresponding to the predetermined signal, a reverse voltage can be formed across the photodiode D1, thereby driving the photodiode D1 to perform photo sensing.
  • the reference signal Vref When the switch unit 221 is closed, the reference signal Vref is transmitted to the negative terminal of the photodiode D1 through the closed switch unit 221, and since the photodiode D1 has an equivalent capacitance inside, the reference signal Verf performs the equivalent capacitance inside the photodiode D1. Charging, so that the voltage Vg on the negative electrode of the photodiode D1 gradually rises and reaches the first predetermined time, the voltage Vg reaches the voltage value of the reference signal Vref and remains unchanged. At this time, the voltage difference across the photodiode D1 will reach the reverse voltage at which the photodiode is driven, that is, the photodiode D1 is in operation.
  • the switching unit 221 Since the first scan driving signal is turned to a low level signal when the first predetermined time arrives, the switching unit 221 is turned off according to the low level signal, and a discharge loop is formed inside the photodiode D1. At this time, if an optical signal is incident on the photodiode D1, the reverse current of the photodiode D1 rapidly increases, so that the voltage Vg on the negative node of the photodiode D1 changes, that is, gradually decreases. Moreover, since the intensity of the optical signal is larger, the reverse current generated by the photodiode D1 is also larger, and the rate of decrease of the voltage Vg at the negative node of the photodiode D1 is faster.
  • the photosensitive unit 222 further includes at least one first capacitor c1.
  • the first capacitor c1 is used to form a discharge loop with the photosensitive device when performing light sensing to obtain a corresponding photosensitive signal.
  • the first capacitor c1 is disposed in parallel with the photosensitive device, that is, the first plate of the first capacitor c1 is connected to the cathode of the photodiode D1, and the second plate of the first capacitor c1 is connected to a predetermined one.
  • An electrical signal such as the ground signal NGND.
  • the first capacitor c1 When the reference signal Vref is transmitted to the negative electrode of the photodiode D1, the first capacitor c1 is also charged, and when the switch unit 221 is turned off, the first capacitor c1 forms a discharge loop with the photodiode D1, and the first capacitor c1
  • the voltage of one plate ie, voltage Vg
  • the capacitance capacity of the photosensitive unit 222 is increased, thereby reducing the voltage drop speed on the negative electrode of the photodiode D1, thereby ensuring that an effective photosensitive signal is obtained, and the sensing accuracy of the photosensitive device 20 on the target object is improved.
  • the first capacitor c1 is a variable capacitor, for example, a capacitor array formed by a plurality of capacitors, and the plurality of capacitors are disposed in parallel, and the capacity change of the first capacitor c1 is realized by controlling whether the plurality of capacitors are connected. Since the first capacitor c1 is set as a variable capacitor, the capacity adjustment of the first capacitor c1 is adapted to the change of the received optical signal, thereby obtaining an accurate and effective photosensitive signal. Specifically, if the intensity of the received optical signal is larger, the capacity of the first capacitor c1 is larger, and if the intensity of the received optical signal is smaller, the capacity of the first capacitor c1 is smaller.
  • the switching unit 221 includes a first transistor T1, such as but not limited to any one or several of a triode, a MOS transistor, and a thin film transistor.
  • the first transistor T1 includes a first control electrode C1, a first transfer electrode S1, and a second transfer electrode S2, wherein the first control electrode is a gate of the MOS transistor, and the first transfer electrode S1 is a MOS transistor.
  • the drain of the second transfer electrode S2 is the source of the MOS transistor.
  • the first control electrode C1 is connected to the first input terminal In1 for receiving the first scan driving signal; the first transfer electrode S1 is connected to the third input terminal In3 for receiving the reference signal Vref; the second transfer electrode S2 and the photosensitive unit
  • the negative electrode of the photodiode D1 is connected in 222.
  • signal output unit 223 includes a second transistor T2 and a buffer circuit.
  • the snubber circuit is used to buffer the electrical signal generated by the photosensitive unit 222.
  • the second transistor T2 is, for example but not limited to, one or more of a triode, a MOS transistor, and a thin film transistor. Taking the MOS transistor as an example, the second transistor T2 includes a second control electrode C2, a third transfer electrode S3, and a fourth transfer electrode S4, wherein the second control electrode C2 is the gate of the MOS transistor, and the third transfer electrode S3 is the MOS transistor. The drain of the fourth transfer electrode S4 is the source of the MOS transistor.
  • the second control electrode C2 is connected to the second input terminal In2 for receiving an output control signal;
  • the third transmission electrode S3 is connected to the buffer circuit for receiving an electrical signal output by the buffer circuit;
  • the fourth transmission electrode S4 is The first output terminal Out1 is connected for outputting an electrical signal buffered by the buffer circuit.
  • a buffer circuit is connected between the photosensitive unit 222 and the second transistor T2 for buffering the electrical signal converted by the photosensitive unit 222, and outputs a buffered electrical signal when the second transistor T2 is turned on.
  • the buffer circuit includes a third transistor T3, such as but not limited to any one or several of a triode, a MOS transistor, and a thin film transistor.
  • the third transistor T3 includes a third control electrode C3, a fifth transmission electrode S5, and a sixth transmission electrode S6, wherein the third control electrode C3 is the gate of the MOS transistor, and the fifth transmission electrode S5 is the MOS.
  • the drain of the tube, the sixth transfer electrode S6 is the source of the MOS tube.
  • the third control electrode C3 is connected to the negative electrode of the photodiode D1 for receiving an electrical signal generated when the photodiode D1 performs photo sensing; the fifth transmission electrode S5 is for receiving a voltage signal Vcc; and the sixth transmission electrode S6 is second.
  • the third transfer electrode S3 of the transistor T2 is connected for outputting a buffered electrical signal when the second transistor T2 is turned on.
  • the voltage Vs of the sixth transfer electrode S6 changes according to the voltage Vg of the third control electrode C3, that is, the sixth transfer electrode S6 is not affected regardless of the circuit load connected to the sixth transfer electrode S6. Voltage. Moreover, due to the transistor characteristics, the voltage Vs is always lower than the voltage Vg by a threshold voltage which is the threshold voltage of the transistor T3. Therefore, the buffer circuit functions as a buffer isolation to isolate the electrical signal generated when the photosensitive unit 222 performs light sensing, thereby preventing other circuit loads from affecting the photosensitive signal generated by the photosensitive unit 222, thereby ensuring accurate execution of the photosensitive pixel 22. The light sensing improves the sensing accuracy of the photosensitive device 20 on the target object.
  • FIG. 3 shows the signal timing at each node when the photosensitive pixel 22 shown in FIG. 2 performs light sensing, wherein Vg is the voltage on the negative electrode of the photodiode D1, and is also the third of the third transistor T3. The voltage on the electrode C3 is controlled; Vs is the voltage on the sixth transfer electrode S6 of the third transistor T3.
  • the first scan driving signal is input through the first input terminal In1, so that the first transistor T1 is turned on and continues for a first predetermined time (ie, t2-t1), and is turned off.
  • the reference signal Vref is turned on.
  • the first transfer electrode S1 and the second transfer electrode S2 are transmitted to the negative electrode of the photodiode D1 and the first plate of the first capacitor c1. Since the photodiode D1 has an equivalent capacitance inside, the reference signal Verf charges the equivalent capacitance inside the photodiode D1, so that the voltage Vg on the negative electrode of the photodiode D1 gradually rises and reaches the voltage value of the reference signal Vref. constant.
  • the reference signal Vref also charges the first capacitor c1, so that the voltage on the first plate gradually rises and remains unchanged after reaching the voltage value of the reference signal Vref. .
  • the first scan driving signal changes from a high level to a low level signal, that is, the first input terminal In1 becomes a low level signal, the first transistor T1 is turned off, the equivalent capacitance and the first capacitance c1 and the photodiode D1 A discharge loop is formed between them. If there is an optical signal on the photodiode D1, a current signal proportional to the optical signal is generated inside the photodiode D1, and thus the voltage Vg on the negative electrode of the photodiode D1 gradually decreases. Moreover, the stronger the optical signal, the faster the voltage Vg is lowered.
  • the voltage Vs on the sixth transfer electrode S6 of the third transistor T3 changes with the voltage Vg on the negative electrode of the photodiode D1, and the voltage Vs is always lower than the voltage Vg by Vth, which Vth is the threshold voltage of the third transistor T3.
  • the first predetermined time is to ensure that the photodiode and the first capacitor c1 in the photosensitive unit 22 are charged to the reference signal Vref.
  • the second control terminal In2 inputs and outputs a control signal, and the second transistor T2 is turned on according to the high level signal.
  • the voltage Vs on the sixth transfer electrode S6 of the third transistor T3 is output from the first output terminal Out1 via the third transfer electrode S3 and the fourth transfer electrode S4 of the second transistor T2.
  • the voltage outputted by the first output terminal Out1 is gradually increased from a low level to a voltage Vs on the sixth transfer electrode S6, and then changes in accordance with a change in the voltage Vs on the sixth transfer electrode S6.
  • the fourth predetermined time is at least one clock cycle, and the fourth predetermined time is not too long, and of course, not too short, so as to ensure that the photosensitive signal generated when the photosensitive unit 222 performs light sensing can be effectively and timely output. .
  • the output control signal changes from a high level signal to a low level signal, that is, the second input terminal In2 becomes a low level signal, the second transistor T2 is turned off, and the voltage outputted by the first output terminal Out1 gradually decreases or remains unchanged. change.
  • the output voltage of the first output terminal Out1 needs to gradually drop to a low level.
  • the voltage Vs on the sixth transfer electrode S6 of the third transistor T3 (that is, the voltage Vg on the negative electrode of the photodiode D1) will pass through the period between the time t4 and the time t3, that is, the second predetermined time ⁇ t1.
  • the second transistor T2 is outputted from the first output terminal Out1. Therefore, by reading the voltage signal of the first output terminal Out1, the size of the photosensitive signal generated by the photodiode D1 due to the reception of the optical signal can be obtained, thereby generating the target object.
  • Feature information
  • the second predetermined time ⁇ t1 may be a fixed value or a change value. Due to the larger the optical signal received by the photodiode D1, the faster the voltage Vg falls, and the faster the voltage Vs falls. Therefore, in order to achieve accurate and efficient acquisition of the photosensitive signal, according to the intensity of the received optical signal. Adjust the size of ⁇ t1. Specifically, the greater the intensity of the optical signal, the shorter the second predetermined time ⁇ t1; the smaller the intensity of the optical signal, the longer the second predetermined time ⁇ t1 is.
  • FIG. 4 shows a connection structure of the photosensitive pixels 22 in the photosensitive device 20 with respective scan lines, data lines, and signal reference lines, and the photosensitive pixels are the circuit structure shown in FIG. .
  • the photosensitive device 20 further includes a scan line group, a data line group, and a signal reference line group electrically connected to the plurality of photosensitive pixels 22.
  • the scan line group includes a first scan line group composed of a plurality of first scan lines and a second scan line group composed of a plurality of second scan lines
  • the data line group includes a plurality of data lines
  • the signal reference line group includes Multiple signal reference lines.
  • a row of photosensitive pixels in the X direction includes n photosensitive pixels 22 arranged at intervals, and a column of photosensitive pixels in the Y direction includes m photosensitive pixels 22 arranged at intervals, thereby
  • the photosensitive array 201 includes a total of m*n photosensitive pixels 22.
  • the first scan line group includes m first scan lines, and the m first scan lines are arranged along the Y direction, for example, G11, G12, . . . G1m; the second scan line group further includes m second scans.
  • the scan line group, the data line group, and the signal reference line group of the photosensitive device 20 may also be distributed in other regular manners or in an irregular manner.
  • the first scan line, the second scan line, the signal reference line, and the data line are electrically conductive, the first scan line, the second scan line, the signal reference line, and the data line at the intersection position are made of an insulating material. isolation.
  • the m first scan lines are connected to the first input end In1 of the plurality of photosensitive pixels 22, and the m second scan lines are connected to the second input end In2 of the plurality of photosensitive pixels 22, and the m signal reference lines are connected.
  • the n data lines are connected to the first output end Out1 of the plurality of photosensitive pixels 22.
  • the first scan line, the second scan line, and the signal reference line are all drawn from the X direction, and the data line is taken out from the Y direction.
  • the photosensitive device 20 further includes a photosensitive driving circuit for providing a first scan driving signal and a reference signal Vref to the plurality of photosensitive pixels to drive the plurality of photosensitive pixels 22 to perform light perception. After the photosensitive pixel 22 starts performing light sensing, an output control signal is provided to the plurality of photosensitive pixels, and the electrical signal output generated when the photosensitive pixel 22 performs light sensing is controlled.
  • the photosensitive driving circuit is further configured to: provide a first scan driving signal to the plurality of photosensitive pixels row by row or interlaced to drive the plurality of photosensitive pixels to perform light sense row by row or interlaced After measuring and starting the light sensing of the photosensitive pixel of the current line, the photosensitive pixels of the current line are controlled to perform the electrical signal output generated by the light sensing. In this way, the photosensitive driving circuit can drive one row of photosensitive pixels at a time while performing light sensing, thereby speeding up the sensing speed.
  • the photosensitive driving circuit includes a photosensitive driving unit 24, and the first scanning line, the second scanning line, and the signal reference line in the photosensitive device 20 are all connected to the photosensitive driving unit 24.
  • FIG. 5 shows the structure of an embodiment of the photosensitive driving unit 24 of FIG.
  • the photosensitive driving unit 24 includes a first driving circuit 241 that supplies a first scan driving signal, a second driving circuit 242 that provides an output control signal, and a reference circuit 243 that supplies a reference signal Vref.
  • the circuits of the photosensitive driving unit 24 can be integrated into one control chip through a silicon process. Of course, the circuits of the photosensitive driving unit 24 can also be formed separately in different control chips.
  • the first driving circuit 241 and the second driving circuit 242 are formed on the same substrate together with the photosensitive pixels 22, and the reference circuit 243 passes through a connecting member (for example, a flexible circuit board) and a plurality of signal reference lines on the photosensitive device 20. connection.
  • a connecting member for example, a flexible circuit board
  • the reference circuit 243 is configured to provide a reference signal Vref that is selectable by a first switch of the photosensitive pixel 22 (eg, the first transistor T1 in the switching unit 221 shown in FIG. 2) The ground is electrically connected to the photosensitive unit 222. When the first switch is closed, the reference signal Vref is transmitted to the corresponding photosensitive unit 222 through the closed first switch.
  • the first driving circuit 241 is electrically connected to the first scan line of the photosensitive device 20 for providing a first scan driving signal to the first switch to control the first switch to be closed, and to control when the first predetermined time arrives
  • the first switch is turned off, thereby driving the photosensitive unit 222 to start performing light sensing.
  • the first scan driving signal is a pulse signal
  • the duration of the high level in the pulse signal is a first predetermined time, such as t2-t1 shown in FIG.
  • the first switch is closed according to the high level signal and is disconnected according to the low level signal.
  • the second driving circuit 242 is electrically connected to the second scan line of the photosensitive device 20 for providing an output control signal after the first switch is turned off and reaches a fourth predetermined time (for example, t3-t2 shown in FIG. 3).
  • the second switch to the photosensitive pixel 22 controls the second switch to be closed to cause the photosensitive unit 222 to output an electrical signal generated when the light is sensed.
  • the output control signal is a pulse signal
  • the duration of the high level in the pulse signal is a second predetermined time, such as t4-t3 shown in FIG.
  • the second switch is closed according to the high level signal and is disconnected according to the low level signal.
  • the photosensitive driving circuit further includes a signal processing unit 25, and the data lines in the photosensitive device 20 shown in FIG. 4 are connected to the signal processing unit 25, and the signal processing unit 25 can be Integrated in a test chip by a silicon process.
  • the signal processing unit 25 can also be integrated with the photosensitive driving unit 24 in one processing chip.
  • the signal processing unit 25 is configured to read an electrical signal generated when the photosensitive unit 222 performs light sensing, and obtain a predetermined biological object that contacts or approaches the target object of the photosensitive device according to the read electrical signal. Feature information. It can be understood that, in order to collect an accurate and effective electrical signal, the signal processing unit 25 can perform multiple readings on the electrical signal generated when the photosensitive unit 222 performs light sensing for a second predetermined time.
  • the signal processing unit 25 includes a plurality of processing channels, and optionally each processing channel is connected to a data line. However, it is also possible to change at least two data lines corresponding to each processing channel, and to select an electrical signal on one data line each time by means of time division multiplexing, and then select another data line. Electrical signals, and so on, until the electrical signals on all data lines are read. In this way, the number of processing channels can be reduced, thereby saving the cost of the photosensitive device 20.
  • FIG. 6 shows another circuit structure of one photosensitive pixel 22 in FIG.
  • a photosensitive pixel 22 in the embodiment of the present invention has a first input end In1', a second input end In2', a third input end In3', a fourth input end, and a first output end Out1'.
  • the light sensing control signal includes a first scan driving signal and a second scan driving signal.
  • the photosensitive pixel 22 includes a switching unit 221', a photosensitive unit 222', and a signal output unit 223'.
  • the switch unit 221' receives a reference signal Vref through the third input terminal In3'.
  • the switch unit 221' receives a first scan driving signal through the first input terminal In1', and receives a first scan terminal through the fourth input terminal In4'.
  • the second scan driving signal and when receiving the first scan driving signal and the second scan driving signal, transmitting the reference signal Vref to the photosensitive unit 222' to drive the photosensitive unit 222' to perform light sensing, and in the photosensitive
  • the unit 222' starts performing light sensing and ends the light sensing after a predetermined time, and latches the photosensitive signal generated by performing the light sensing.
  • the photosensitive unit 222' receives the optical signal and converts the received optical signal into a corresponding electrical signal upon receiving the optical signal.
  • the signal output unit 223' receives the output control signal through the second input terminal In2', and outputs the electrical signal generated by the photosensitive unit 222' from the first output terminal Out1' according to the output control signal.
  • the first scan driving signal and the second scan driving signal and the output control signal are both a pulse signal, and the duration of the high level signal in the first scan driving signal is a first predetermined time, and the output control signal is in a high level.
  • the duration of the signal is a second predetermined time, the duration of the high level signal in the second scan driving signal is a third predetermined time, and the third predetermined time is greater than the first predetermined time.
  • the switching unit 221' further includes a fourth transistor T4 in addition to the structure of the switching unit 221 shown in FIG. 2.
  • the fourth transistor T4 is, for example but not limited to, one or more of a triode, a MOS transistor, and a thin film transistor. Taking the MOS transistor as an example, the fourth transistor T4 includes a fourth control electrode C4, a seventh transmission electrode S7, and an eighth transmission electrode S8, wherein the fourth control electrode C4 is the gate of the MOS transistor, and the seventh transmission electrode S7 is the MOS.
  • the drain of the tube, the eighth transfer electrode S8 is the source of the MOS tube.
  • the fourth control electrode C4 is connected to the fourth input terminal In4 for receiving the second scan driving signal;
  • the seventh transfer electrode S7 is connected to the first electrode of the photosensitive device (for example, the negative electrode of the photodiode), and the eighth transfer electrode S8 and the A first plate of a capacitor c1 is connected.
  • the first plate of the first capacitor c1 is used to connect the signal output unit 223', that is, the first plate of the first capacitor c1 is connected to the third control electrode C3 of the third transistor T3.
  • FIG. 7 shows the signal timing when the photosensitive pixel 22 of FIG. 6 performs light sensing, wherein Vg is the voltage on the first plate of the first capacitor c1, and the photosensitive unit 222' ends the light sensing.
  • the light-sensing signal latched at the time is also the voltage on the third control electrode C3 of the third transistor T3;
  • Vs is the voltage on the sixth transfer electrode S8 of the third transistor T3.
  • the first scan driving signal is input through the first input terminal In1', and the second scan driving signal is input through the fourth input terminal In4.
  • the first transistor T1 is turned on for a first predetermined time (ie, t2-t1) according to the first scan driving signal, and the reference signal Vref is applied through the first transfer electrode S1 and the second transfer electrode S2 during the first predetermined time To the negative pole of photodiode D1. Since the photodiode D1 has an equivalent capacitance inside, the reference signal Verf charges the equivalent capacitance inside the photodiode D1, so that the voltage on the cathode of the photodiode D1 gradually rises and remains after reaching the voltage value of the reference signal Vref. constant.
  • the fourth transistor T4 is turned on for a third predetermined time ⁇ t2 (ie, t3-t1), and the reference signal Vref is applied to the first pole of the first capacitor c1 via the first transistor T1 and the fourth transistor T4.
  • the board thereby charging the first capacitor c1, the voltage on the first plate of the first capacitor c1 gradually rises and remains unchanged after reaching the voltage value of the reference signal Vref.
  • the first scan driving signal changes from a high level to a low level, and the second scan driving signal remains at a high level.
  • the first input terminal In1' becomes a low level signal
  • the first transistor T1 is turned off, and the first capacitor c1 forms a discharge loop with the photodiode D1, that is, the first capacitor c1 discharges the photodiode D1, and the first capacitor c1
  • the voltage Vg on the first plate gradually decreases.
  • the current inside the photodiode D1 is very weak, so that the voltage Vg on the first plate of the first capacitor c1 remains substantially unchanged; if there is an optical signal on the photodiode D1, the photoelectric A current signal proportional to the optical signal is generated inside the diode D1, and the stronger the optical signal, the larger the current generated by the photodiode D1, so the faster the voltage Vg on the first plate of the first capacitor c1 falls.
  • the voltage Vs on the sixth transfer electrode S6 of the third transistor T3 varies with the voltage Vg on the first plate of the first capacitor c1, and the voltage Vs is always lower than the voltage Vg by Vth, which Vth is the threshold voltage of the third transistor T3.
  • the second scan driving signal changes from a high level to a low level.
  • the fourth input terminal In4 becomes a low level signal
  • the fourth transistor T4 is turned off, and the first capacitor c1 cannot form a discharge loop, and the voltage Vg on the first plate of the first capacitor c1 remains unchanged.
  • the photosensitive signal generated when the photosensitive unit 222' performs light sensing is latched.
  • an output control signal is input through the third input terminal In3', the output control signal is a pulse signal, and the duration of the high level in the pulse signal is a second predetermined time.
  • the second transistor T2 is turned on, at which time the voltage Vg on the first plate of the first capacitor c1 passes through the sixth transfer electrode S6 of the third transistor T3, the third transfer electrode S3 of the second transistor T2, and
  • the fourth transfer electrode S4 is output from the first output terminal Out1'.
  • the voltage outputted by the first output terminal Out1' first rises from a low level to a voltage Vs on the sixth transfer electrode S6, and then changes in accordance with a change in the voltage Vs on the sixth transfer electrode S6. Since the start of time t3, the first capacitor c1 latches the voltage Vg, and the voltage Vs on the sixth transfer electrode S6 will remain unchanged, so the voltage outputted by the first output terminal Out1' will be maintained at the magnitude of the voltage Vs.
  • the output control signal changes from a high level to a low level
  • the third input terminal In3' becomes a low level signal
  • the second transistor T2 is turned off, and the voltage outputted by the first output terminal Out1' gradually decreases or remains unchanged.
  • the output voltage of the first output terminal Out1 needs to gradually drop to a low level. Since the voltage outputted by the first output terminal Out1' reflects the electrical signal converted by the photodiode D1, the photodiode D1 can be changed by receiving the optical signal by reading the voltage signal of the first output terminal Out1'. The size of the electrical signal, which in turn generates biometric information of the target object.
  • the switch unit 221 ′ is not only used to drive the photosensitive unit 222 ′ to perform light sensing, but also controls the photosensitive unit 222 ′ to end light sensing, and the photosensitive unit 222 ′ performs light sensing to generate electricity.
  • the signal is latched, so that the photosensitive pixels in different rows can perform light sensing at the same time, and even all the photosensitive pixels simultaneously perform light sensing, thereby providing sufficient time and flexibility for the output control of the light sensing signal.
  • the third predetermined time ⁇ t2 may be a fixed value or a change value. Due to the larger the optical signal received by the photodiode D1, the faster the voltage Vg falls, and the faster the voltage Vs falls. Therefore, in order to achieve accurate and efficient acquisition of the photosensitive signal, according to the intensity of the received optical signal. Adjust the size of ⁇ t2. Specifically, the greater the intensity of the optical signal, the shorter the third predetermined time ⁇ t2; the smaller the optical signal strength, the longer the third predetermined time ⁇ t2.
  • the photosensitive device 20 further includes a scan line group, a data line group, and a signal reference line group electrically connected to the plurality of photosensitive pixels 22 .
  • the scan line group includes a first scan line group composed of a plurality of first scan lines, a second scan line group composed of a plurality of second scan lines, and a third scan line group composed of a plurality of third scan lines.
  • the data line group includes a plurality of data lines
  • the signal reference line group includes a plurality of signal reference lines.
  • a row of photosensitive pixels in the X direction includes n photosensitive pixels 22 arranged at intervals, and a column of photosensitive pixels in the Y direction includes m photosensitive pixels 22 arranged at intervals, thereby
  • the photosensitive array 201 includes a total of m*n photosensitive pixels 22.
  • the first scan line group includes m first scan lines, and the m first scan lines are arranged in the Y direction, for example, G11, G12, . . . G1m; and the second scan line group includes m second scan lines.
  • the m second scan lines are also arranged in the Y direction, for example, G21, G22, ..., G2m;
  • the third scan line group includes m third scan lines, and the m third scan lines are also spaced along the Y direction.
  • the signal reference line group includes m signal reference lines, and the m signal reference lines are arranged along the Y direction, for example, L1, L2, ... Lm;
  • the data line group includes n data lines And the n data lines are arranged in the X direction, for example, Sn1, Sn2, ... Sn-1, Sn.
  • the scan line group, the data line group, and the signal reference line group of the photosensitive device 20 may also be distributed in other regular manners or in an irregular manner.
  • the first scan line, the second scan line, the third scan line, the signal reference line, and the data line have conductivity, the first scan line, the second scan line, the third scan line, and the signal reference at the intersection position
  • the wire and the data line are separated by an insulating material.
  • the first scan line is connected to the first input end In1 ′ of the photosensitive pixel 22
  • the second scan line is connected to the second input end In 2 ′ of the photosensitive pixel 22
  • the signal reference line and the third input end In 3 of the photosensitive pixel 22 'Connected
  • the third scan line is connected to the fourth input terminal In4 of the photosensitive pixel 22
  • the data line is connected to the first output terminal Out1' of the photosensitive pixel 22.
  • the first scan line, the second scan line, the third scan line, and the signal reference line are all drawn from the X direction, and the data line is taken out from the Y direction.
  • the photosensitive driving circuit of the photosensitive device 20 is further configured to: provide the first scan driving signal and the second scan driving signal to the plurality of photosensitive pixels to start the photosensitive pixel 22 when the first predetermined time arrives After performing the light sensing, controlling the photosensitive pixel to finish performing the light sensing when the third predetermined time arrives, to latch the electrical signal generated when the photosensitive pixel performs the light sensing, and providing an output control signal to the plurality of photosensitive signals Pixels to control the electrical signal output of the photosensitive pixel latch.
  • the photosensitive driving circuit is further configured to: provide the first scan driving signal and the second scan driving signal to the plurality of photosensitive pixels row by row or interlaced to drive the The plurality of photosensitive pixels perform light sensing row by row or interlaced; or, the first scan driving signal and the second scan driving signal are simultaneously supplied to all of the photosensitive pixels to drive all of the photosensitive pixels to simultaneously perform light sensing.
  • the photosensitive driving circuit can drive one row of photosensitive pixels at a time, and even all of the photosensitive pixels simultaneously perform light sensing, thereby accelerating the sensing speed.
  • the photosensitive driving circuit includes a photosensitive driving unit 24 , and the first scanning line, the second scanning line, the third scanning line, and the signal reference line are all connected to the photosensitive driving unit 24 .
  • FIG. 9 shows the structure of an embodiment of the photosensitive driving unit 24 of FIG.
  • the photosensitive driving unit 24 includes a first driving circuit 241' that supplies a first scan driving signal, a second driving circuit 242' that provides an output control signal, a signal reference circuit 243' that provides a reference signal Vref, and a second scan driving signal.
  • the circuits of the photosensitive driving unit 24 can be integrated into one control chip through a silicon process.
  • the circuits of the photosensitive driving unit 24 can also be formed separately.
  • the first driving circuit 241' and the second driving circuit 242', the third driving circuit 244 are formed on the same substrate together with the photosensitive pixels 22, and the signal reference circuit 243' passes through the flexible circuit board and the plurality of photosensitive devices 20. Signal reference line connection.
  • the reference circuit 243' is configured to provide a reference signal Vref that is selectively traversable by a first switch (eg, the first transistor T1 in the switching unit 221' shown in FIG. 6) It is electrically connected to the photosensitive unit 222'. When the first switch is closed, the reference signal Vref is transmitted to the corresponding photosensitive unit 222' through the closed first switch.
  • a first switch eg, the first transistor T1 in the switching unit 221' shown in FIG. 6
  • the reference signal Vref is transmitted to the corresponding photosensitive unit 222' through the closed first switch.
  • the first driving circuit 241 ′ is electrically connected to the first scan line of the photosensitive device 20 for providing a first scan driving signal to the first switch to control the first switch to be closed, and at a first predetermined time (for example, FIG. 7 When t2-t1) is shown, the first switch is controlled to be turned off, thereby driving the photosensitive unit 222' to start performing light sensing.
  • the third driving circuit 244 is electrically connected to the third scan line of the photosensitive device 20 for providing the second scan driving signal to the third switch (for example, the figure while the first driving circuit 241 ′ provides the first scanning driving signal.
  • the fourth transistor T4) of the switching unit 221' shown in FIG. 6 is such that the third switch is also closed while the first switch is closed, and the third switch is closed and reaches a third predetermined time (for example, as shown in FIG. At t3-t1), the third switch is controlled to be turned off, thereby controlling the photosensitive unit 222' to end performing light sensing, and the electrical signal generated when the photosensitive unit 222' performs light sensing is latched by the first capacitor c1.
  • the second driving circuit 242 ′ is electrically connected to the second scan line of the photosensitive device 20 for controlling the photosensitive unit 222 ′ to finish performing light sensing, for example, when the third switch is turned off and reaches a fifth predetermined time (for example, At time t4 shown in FIG. 7, an output control signal is supplied to the second switch (for example, the second transistor T2 in the signal output unit 223' shown in FIG. 6), and the second switch is controlled to be closed for a second predetermined time. An electrical signal generated when the photosensitive unit 222' performs light sensing is output.
  • the photosensitive driving circuit further includes a signal processing unit 25 , and the data lines in the photosensitive device 20 shown in FIG. 9 are connected to the signal processing unit 25 , and the signal processing unit 25 can be Integrated in a test chip by a silicon process.
  • the signal processing unit 25 can also be integrated with the photosensitive driving unit 24 in one processing chip.
  • the signal processing unit 25 is configured to perform reading on the electrical signal generated by the light sensing of the photosensitive unit 222 ′, and obtain a predetermined biological object that contacts or approaches the target object of the photosensitive panel according to the read electrical signal. Feature information.
  • the signal reading of the signal processing unit 25 provides more time and flexibility, and also saves sensing time and speeds up. The speed of sensing.
  • the signal processing unit 25 may perform multiple readings on the electrical signal generated when the photosensitive unit 222' performs light sensing for a second predetermined time.
  • the signal processing unit 25 includes a plurality of processing channels, and optionally each processing channel is connected to a data line. However, it is also possible to change at least two data lines corresponding to each processing channel, and to select an electrical signal on one data line each time by means of time division multiplexing, and then select another data line. Electrical signals, and so on, until the electrical signals on all data lines are read. In this way, the number of processing channels can be reduced, thereby saving the cost of the photosensitive device 20.
  • FIG. 10 illustrates the structure of a photosensitive device according to another embodiment of the present invention.
  • the photosensitive device 20 further includes a photosensitive panel 200.
  • the photosensitive panel 200 further includes a substrate 26 on which a plurality of photosensitive pixels 22 are disposed.
  • the photosensitive pixels 22 are distributed in an array.
  • the photosensitive pixel 22 is configured to receive an optical signal from above and convert the received optical signal into a corresponding electrical signal, so that the photosensitive regions of the plurality of photosensitive pixels 22 define a sensing region 203, and an area other than the sensing region 203. Then it is the non-sensing area 202.
  • the non-sensing area 202 is used to set the driving circuit required for the photosensitive pixel 22 to perform light sensing, or to set the line bonding area to which the power supply connector is connected.
  • Some or even all of the above-described photosensitive driving circuit may be disposed on the substrate 26.
  • the first driving circuit 241, the second driving circuit 242, and the reference circuit 243 are both formed on the substrate 26.
  • the first driving circuit 241, the second driving circuit 242, and the reference circuit 243 are electrically connected to the photosensitive pixel 22 through an electrical connection member (for example, a flexible circuit board).
  • the signal processing unit 25 described above can be selectively formed on the substrate 26 depending on the type of the substrate 26, or can be selectively electrically connected to the photosensitive pixel 22, for example, by an electrical connector (eg, a flexible circuit board).
  • an electrical connector eg, a flexible circuit board
  • the signal processing unit 25 may be selectively formed on the substrate 26, or may be electrically connected to the photosensitive pixel 22, for example, by a flexible circuit board; when the substrate 26 is an insulating substrate The signal processing unit 25 then needs to be electrically connected to the photosensitive pixels 22, for example, via a flexible circuit board.
  • the photosensitive panel 200 is a photosensitive die (Diie), that is, a semiconductor integrated circuit device.
  • FIG. 11 shows the structure of a photosensitive module according to an embodiment of the present invention.
  • the photosensitive module includes the photosensitive device of any of the above embodiments.
  • the photosensitive module 2 further includes an anti-aliasing imaging element 28 disposed on the photosensitive panel 200 of the photosensitive device 20 for preventing the optical signals received by the adjacent photosensitive pixels 22. The aliasing is generated, thereby improving the sensing accuracy of the photosensitive module 2.
  • the anti-aliasing imaging element 28 includes a plurality of first light-transmitting regions 282 through which the light-transmitting signals pass, and the photosensitive cells 222 of the plurality of photosensitive pixels 22 are disposed under the plurality of first light-transmitting regions 282.
  • the biometric information of the target object is, for example but not limited to, skin texture information such as fingerprints, palm prints, ear prints, and soles, and other biometric information such as heart rate, blood oxygen concentration, and veins.
  • the target object such as but not limited to a human body, may also be other suitable types of objects.
  • the photosensitive module 2 of the embodiment of the present invention is provided with an anti-aliasing imaging element 28 on the photosensitive panel 200, and the photosensitive unit 222 of the photosensitive pixel 22 is disposed corresponding to the first light-transmitting region 282 of the anti-aliasing imaging element 28, thereby The biometric information obtained by the photosensitive unit 222 after performing the light sensing is relatively clear, thereby improving the sensing accuracy of the photosensitive device 20.
  • the photosensitive unit 222 is disposed opposite to the first light-transmitting region 282, so that the light signals passing through the first light-transmitting region 282 are all received by the photosensitive unit 222, thereby improving the sensing of the photosensitive device 20. Precision.
  • the anti-aliasing imaging element 28 has light absorbing properties that illuminate the optical signal on the anti-aliasing imaging element 28, only the optical signal that is approximately perpendicular to the substrate 26 can be removed from the anti-aliasing imaging element 28.
  • the first light transmissive region 282 passes through to be received by the photosensitive unit 222, and the remaining optical signals are absorbed by the anti-aliasing imaging element 28. In this way, aliasing of the optical signals received between the adjacent photosensitive cells 222 can be prevented.
  • the optical signal that is approximately perpendicular to the substrate 26 includes an optical signal that is perpendicular to the substrate 26 and that is offset from the vertical direction of the substrate 26 by an optical signal within a predetermined range of angles. The preset angle range is within ⁇ 20°.
  • FIG. 12 illustrates a range of optical signals that pass through the anti-aliasing imaging element 28. Due to the light absorption characteristics of the anti-aliasing imaging element 28, only the optical signal between the optical signal L1 and the optical signal L2 can pass through the first light-transmitting region 282 to the photosensitive unit 222, and the remaining optical signals are absorbed by the anti-aliasing imaging element 28. Wall 281 is absorbed. As can be seen from FIG. 12, the smaller the cross-sectional area of the first light-transmitting region 282, the smaller the range of the angle ⁇ of the light signal passing through the first light-transmitting region 282, and therefore the anti-aliasing effect of the anti-aliasing imaging element 28 is better. .
  • the anti-aliasing effect of the anti-aliasing imaging element 28 can be improved by the smaller area of the first light-transmitting region 282 provided by the anti-aliasing imaging element 28.
  • the cross-sectional area of the first light-transmitting region 282 of the anti-aliasing imaging element 28 is small, each photosensitive unit 222 will correspond to the plurality of light-transmitting first light-transmitting regions 282, so that the photosensitive unit 222 can sense A sufficient light signal is provided to improve the sensing accuracy of the photosensitive module 2.
  • the anti-aliasing imaging element 28 includes a light absorbing wall 281 formed by the light absorbing wall 282 .
  • the light absorbing wall 281 is formed of a light absorbing material.
  • the light absorbing material includes a metal oxide, a carbon black paint, a black ink, and the like.
  • the metal in the metal oxide is, for example but not limited to, one of chromium (Cr), nickel (Ni), iron (Fe), tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo) or Several.
  • the axial direction of the first light-transmitting region 282 extends in a direction perpendicular to the substrate 26 such that an optical signal in a direction approximately perpendicular to the substrate 26 can pass through the first light signal that is incident on the anti-aliasing imaging element 28.
  • the remaining light signals are absorbed by the light absorbing wall 281.
  • the light absorbing wall 281 has a multi-layer structure, and the light absorbing wall includes a light absorbing block 281a and a height block 281b which are alternately stacked.
  • the light absorbing block 281a is formed of a light absorbing material.
  • the light absorbing material is, for example but not limited to, a metal oxide, a carbon black paint, a black ink, or the like.
  • the metal in the metal oxide is, for example but not limited to, one of chromium (Cr), nickel (Ni), iron (Fe), tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo) or Several.
  • the height block 281b is, for example but not limited to, a transparent layer formed of a transparent material such as a translucent material, a light absorbing material, or the like.
  • the plurality of light absorbing blocks 281a located in the same layer are spaced apart, and the area corresponding to the interval between the light absorbing blocks 281a in the same layer is the first light transmitting area 282.
  • the plurality of light absorption blocks 281a and the plurality of height blocks 281b of the same layer may be fabricated at one time. Specifically, by providing a mask, the mask is an integrally formed diaphragm, and the diaphragm forms an opening corresponding to the position of the light absorbing block 281a, and the shape and size of the opening are consistent with the shape and size of the light absorbing block 283. .
  • the light absorbing block 281a and the height block 281b which are alternately disposed are sequentially vapor-deposited on a carrier by the mask, thereby forming the anti-aliasing imaging element 28.
  • the padding block 281b By the arrangement of the padding block 281b, not only the process of the anti-aliasing imaging element 28 is accelerated, but also the anti-aliasing effect of the anti-aliasing imaging element 28 can be ensured by the height setting of the padding block 281b.
  • the first light-transmissive region 282 can be filled with a transparent material to increase the strength of the anti-aliasing imaging element layer, and impurities can be prevented from entering the first light-transmitting region 282 to affect the light-transmitting effect.
  • a material having a relatively high light transmittance such as glass, PMMA (acrylic), PC (polycarbonate) or the like may be selected as the transparent material.
  • FIG. 14 illustrates the structure of an anti-aliasing imaging element of another embodiment of the present invention.
  • the anti-aliasing imaging element 28 is of a multi-layer structure, and the anti-aliasing imaging element 28 includes a light absorbing layer 283 and a transparent supporting layer 284 which are alternately stacked; the light absorbing layer 283 includes a plurality of spaced light absorbing blocks 283a;
  • the transparent support layer 284 is formed by filling a transparent material and filling the space 283b between the light absorption blocks 283a together; wherein the area corresponding to the space 283b forms the first light transmission area 282.
  • FIG. 15 illustrates a process of preparing an anti-aliasing imaging element according to an embodiment of the present invention.
  • a light-absorbing material is first coated on a carrier, and a corresponding portion of the first light-transmitting region 282 is etched away on the light-absorbing material layer, which is not etched.
  • a plurality of light absorbing blocks 283a are partially formed.
  • the etching technique is, for example but not limited to, photolithography, X-ray etching, electron beam etching, and ion beam etching.
  • the etching type may include both dry etching and wet etching.
  • the etched light absorbing block 283 is coated with a transparent material, and the transparent material covers not only the plurality of light absorbing blocks 283a but also the space 283b between the plurality of light absorbing blocks 283a, thereby forming the transparent supporting layer 284. .
  • a plurality of light absorbing blocks 283a are formed on the transparent supporting layer 284 in the manner in which the light absorbing layer 283 is formed, and the light absorbing layer 283 and the transparent supporting layer 284 which are alternately stacked in a plurality of layers are sequentially formed, thereby forming the anti-aliasing imaging element 28.
  • the transparent material forming the transparent supporting layer 284 may be selected from materials having a large light transmittance, such as glass, PMMA, PC (polycarbonate), and ring. Oxygen resin, etc.
  • FIG. 16 illustrates the structure of an anti-aliasing imaging element of another embodiment of the present invention.
  • the anti-aliasing imaging element 28 includes a light absorbing layer 283 and a transparent support layer 284 which are alternately stacked, each of the light absorbing layers 283 including a plurality of spaced light absorbing blocks 283a.
  • the thickness of each transparent support layer 284 is not equal. That is, the values of the thicknesses h1, h2, and h3 in FIG. 18 are not equal.
  • the thickness of the transparent support layer 284 is increased layer by layer, that is, h1 ⁇ h2 ⁇ h3.
  • the optical signal outside the vertical direction of the substrate by ⁇ 20° can be prevented from passing through the transparent supporting layer 284 between the light absorbing blocks 283a, thereby improving the sensing accuracy of the photosensitive module 2.
  • the thickness parameter of each layer of the transparent supporting layer 284 and the width and height parameters of the light absorbing block 283a can be differently set and combined in various combinations to improve the sensing accuracy of the photosensitive module 2.
  • the anti-aliasing imaging element 28 is formed directly on the photosensitive panel 200, that is, the carrier when the anti-aliasing imaging element 28 is formed is the photosensitive panel 200 provided with the photosensitive pixels 22.
  • the anti-aliasing imaging element 28 can be modified, for example, and then placed on the photosensitive panel 200 provided with the photosensitive pixels 22, thereby speeding up the process of the photosensitive module 2.
  • the plurality of first light transmissive regions 282 in the anti-aliasing imaging element 28 are evenly distributed such that the fabrication process of the anti-aliasing imaging element 28 is relatively simple.
  • the finger when the finger touches or approaches the photosensitive module 2, if the ambient light is irradiated on the finger, the finger has many organizational structures, such as the epidermis, the bone, Meat, blood vessels, etc., so part of the light signal in the ambient light will penetrate the finger, and some of the light signal will be absorbed by the finger.
  • the light signal penetrating the finger will reach the photosensitive unit 222.
  • the photosensitive unit 222 not only senses the light signal reflected by the target object, but also senses the light signal that the ambient light penetrates the finger, so that accurate sensing cannot be performed. .
  • FIG. 17 shows the structure of the photosensitive module according to another embodiment of the present invention.
  • the photosensitive module 2 further includes a filter film 29 disposed between the anti-aliasing imaging element 28 and the photosensitive panel 200, wherein the filter film is used to preset a wavelength band Filtering is performed outside the optical signal.
  • the anti-aliasing imaging element 28 is disposed between the filter film 29 and the photosensitive panel 200.
  • the filter film 29 is disposed on a side of the anti-aliasing imaging element 28 away from the photosensitive panel 200. .
  • the optical signal outside the predetermined wavelength band of the reflected optical signal is filtered by the filter film 29, thereby improving the sensing accuracy of the photosensitive module 2.
  • the predetermined wavelength band is a wavelength band corresponding to the blue light signal, that is, the filter film 29 filters out optical signals other than the blue light signal.
  • the predetermined band is a band corresponding to the green light signal, that is, the filter film 29 filters out the light signals other than the green light signal.
  • the target object F such as a finger absorbs the weakest red light signal, and the green light signal, and the blue light signal absorbs the strongest. That is, ambient light illuminates the finger, and a large amount of blue light signal is absorbed by the finger, and only a small amount or even no blue light signal penetrates the finger. Therefore, selecting the optical signal of the band other than the blue light signal or the green light signal for filtering can greatly eliminate the interference of the ambient light and improve the sensing accuracy of the photosensitive module 2.
  • the photosensitive module 2 is a bio-sensing chip for sensing biometric information of a target object above the photosensitive module 2.
  • the photosensitive module 2 is a fingerprint sensing chip for sensing a fingerprint image of a user's finger.
  • the photosensitive module 2 further includes a package (not shown) for packaging the photosensitive panel 200 and all devices above the photosensitive panel 200, such as an anti-aliasing imaging layer. 28 and the filter film 29 are packaged. In particular, when the anti-aliasing imaging layer 28 is positioned above the filter film 29, the package can fill the light-transmissive region 282 together.
  • FIG. 18 shows a partial structure of a display module 1 according to an embodiment of the present invention.
  • the display module 1 includes a display device (not shown) and a photosensitive module 2.
  • the display device further includes a display panel 300 for performing image display, and a second light-transmitting region (not shown) is disposed in the display area of the display panel 300.
  • the photosensitive module 2 is the photosensitive module 2 of any of the above embodiments, and the photosensitive module 2 is disposed under the display panel 300 for sensing an optical signal emitted from the second transparent region to obtain contact or proximity.
  • the display panel 300 Since the photosensitive module 2 is located below the display panel 300, the display panel 300 has a second transparent region through which the optical signal reflected by the target object passes, so that the photosensitive panel 200 in the photosensitive module 2 can receive the through-display.
  • the optical signal of the panel 300 converts the received optical signal into an electrical signal, and acquires predetermined biometric information of the target object contacting or approaching the display module 1 according to the converted electrical signal.
  • the display panel 300 is, for example but not limited to, an OLED display device, as long as the display device capable of realizing the display effect and having a light-transmitting region through which the optical signal passes is within the scope of the present invention.
  • FIG. 19 shows a partial structure of the OLED display screen when the display panel 300 is an OLED display screen.
  • the display panel 300 includes a transparent substrate 301, an anode 302 formed on the transparent substrate 301, a light-emitting layer 303 formed on the anode 302, and a cathode 304 formed on the light-emitting layer 303.
  • FIG. 19 only shows a partial structure of the OLED display screen, and the OLED display screen has other structures, which are not described herein.
  • the display panel 300 can be a bottom emission structure, a top emission structure, and a double-sided light transmission structure.
  • the display screen can be a rigid screen of a rigid material or a flexible screen of a flexible material.
  • the cathode 302 and the cathode 304 and the light emitting layer 303 form the display pixel 32
  • the display pixel 32 includes three display pixels of a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B, wherein the red pixel R emits light.
  • the signal is a red light signal
  • the light signal emitted by the green pixel G is a green light signal
  • the light signal emitted by the blue pixel B is a blue light signal.
  • the display pixel 32 may further include a black sub-pixel, a white sub-pixel, or a red sub-pixel, a green sub-pixel, a blue sub-pixel, a white sub-pixel, and the like.
  • the display pixel 32 since the display pixel 32 uses the transparent substrate 301 as a substrate, the area where the non-transparent device and the non-transparent line are not provided is a light-transmitting region, that is, an optical signal can be passed therethrough. Therefore, in the embodiment of the present invention, the photosensitive unit 222 of the photosensitive pixel 22 is correspondingly located below the area through which the optical signal can pass, so that the photosensitive device receives the optical signal reflected by the target object, thereby realizing the biological object to the target object. Feature information sensing.
  • the display panel 300 further includes a driving circuit (not shown) that drives each of the display pixels 32 to emit light
  • the display device further includes a display driving circuit (not shown), and the corresponding driving circuit can be disposed in each
  • the display pixels 32 may be disposed below each of the display pixels 32.
  • the display driving circuit may be disposed on the display panel 300 or may be connected to the display pixels 32 through the flexible circuit board.
  • the display driving circuit is configured to drive a plurality of display pixels 32 to emit light for use as a light source when the photosensitive module 2 performs light sensing.
  • the photosensitive panel 200 is configured to perform biometric information sensing of a target object at any position within the display area of the display panel 300.
  • the display panel 300 has a display area 305 and a non-display area 306 defined by the light-emitting areas of all the display pixels 32 of the display panel 300.
  • the area other than the display area 305 is a non-display area 306 for setting a circuit such as a display driving circuit for driving the display pixels 32 or a line bonding area for connecting the flexible circuit boards.
  • the photosensitive panel 200 has a sensing area 203 and a non-sensing area 204 defined by the sensing areas of all the photosensitive pixels 22 of the photosensitive panel 200, and the area other than the sensing area 203 is the non-sensing area 204.
  • the non-sensing area 204 is for setting a circuit such as the photosensitive driving unit 24 that drives the photosensitive pixel 22 to perform light sensing or a line bonding area for connecting the flexible circuit board.
  • the shape of the sensing region 203 is consistent with the shape of the display region 305, and the size of the sensing region 203 is greater than or equal to the size of the display region 305, such that the photosensitive panel 200 can be placed at any position adjacent to or adjacent to the display region 305 of the display panel 300. Sensing of predetermined biometric information of the target object. Further, the area of the photosensitive panel 200 is less than or equal to the area of the display panel 300, and the shape of the photosensitive panel 200 is consistent with the shape of the display panel 300, so that the assembly of the photosensitive panel 200 and the display panel 300 is facilitated. However, in some embodiments, the area of the photosensitive panel 200 may also be larger than the area of the display panel 300.
  • the sensing area 203 of the photosensitive panel 200 may also be smaller than the display area 305 of the display panel 300 to achieve the sense of predetermined biometric information of the target object of the display area 300 displaying the local area of the area 305. Measurement.
  • the display device is further configured to perform touch sensing, and the display driving circuit drives the display pixels of the corresponding touch regions to emit light after the display device detects the touch or proximity of the target object.
  • FIG. 21 shows a structure of an electronic device according to an embodiment of the present invention
  • FIG. 22 shows a cross-sectional structure of an embodiment of the electronic device shown in FIG. 21 along line II.
  • FIG. 22 shows only a partial structure of the electronic device.
  • the electronic device includes the photosensitive device or the photosensitive module and the display module of any one of the above embodiments, which is used for image display of an electronic device and for sensing biometric information of a target object contacting or approaching the electronic device.
  • Electronic devices such as, but not limited to, suitable types of electronic products such as consumer electronics, home electronics, vehicle-mounted electronic products, and financial terminal products.
  • consumer electronic products such as mobile phones, tablets, notebook computers, desktop monitors, computer integrated machines.
  • Home-based electronic products such as smart door locks, TVs, refrigerators, wearable devices, etc.
  • Vehicle-mounted electronic products such as car navigation systems, car DVDs, etc.
  • Financial terminal products such as ATM machines, terminals for self-service business, etc.
  • the electronic device shown in FIG. 21 is exemplified by a mobile terminal type mobile terminal.
  • the above-described bio-sensing module can also be applied to other suitable electronic products, and is not limited to a mobile phone type mobile terminal.
  • a display device (not shown) is disposed on the front surface of the mobile terminal 3, and the display device includes a display panel 300.
  • the protective cover 400 is disposed above the display panel 300.
  • the screen of the display panel 300 is relatively high, for example, 80% or more.
  • the screen ratio refers to the ratio of the display area 305 of the display panel 300 to the front area of the mobile terminal 3.
  • the photosensitive panel 200 of the photosensitive module 2 is a panel structure that is adapted to the display panel 300 and is disposed below the display panel 300. If the display panel 300 is in the form of a flexible curved surface, the photosensitive panel 200 is also in the form of a flexible curved surface. Therefore, the photosensitive panel 200 not only has a planar structure but also a curved surface structure. In this way, the lamination of the photosensitive panel 200 and the display panel 300 is facilitated.
  • the electronic device not only has the effect of the photosensitive module 2 described in the above embodiment, but also utilizes the optical signal emitted by the display panel 300 to realize the biometric information sensing of the target object, without additionally setting a light source.
  • the photosensitive module 2 can be independently fabricated, and then assembled with an electronic device, thereby accelerating the preparation of the electronic device.
  • the display panel 300 emits an optical signal.
  • the photosensitive device 20 receives the optical signal reflected by the object, converts the received optical signal into a corresponding electrical signal, and acquires predetermined biometric information of the object according to the electrical signal. For example, fingerprint image information.
  • the photosensitive device 20 can realize sensing of a target object that contacts or approaches an arbitrary position of the display area.
  • FIG. 23 shows a cross-sectional structure of another embodiment of the electronic device shown in FIG. 21 along line II, and FIG. 23 only shows the electronic Part of the structure of the device.
  • the photosensitive module of the embodiment of the present invention is applied to a mobile terminal 3, and a display panel 300 is disposed on the front surface of the mobile terminal, and a protective cover 400 is disposed above the display panel 300.
  • the screen of the display panel 300 is relatively high, for example, 80% or more.
  • the screen ratio refers to the ratio of the actual display area 305 of the display panel 300 to the front area of the mobile terminal.
  • a bio-sensing area for the target object touch is provided at a middle-lower position of the actual display area 305 of the display panel 300 to perform biometric information sensing of the target object.
  • the bio-sensing area is Fingerprint identification area for fingerprint recognition.
  • a photosensitive module 2 is disposed at a position corresponding to the fingerprint recognition area below the display panel 300, and the photosensitive module 2 is configured to acquire a fingerprint image of the finger when the finger is placed in the fingerprint recognition area S.
  • the middle and lower positions of the display panel 300 are for the convenience of the finger to touch the position of the display panel 300 when the user holds the mobile terminal. Of course, it can also be placed at other locations that are convenient for finger touch.
  • the electronic device further includes a touch sensor (not shown) by which the touch area of the target object on the protective cover 400 can be determined.
  • the touch sensor adopts capacitive touch sensing technology, and of course, other methods, such as resistive touch sensing, pressure sensitive touch sensing, and the like.
  • the touch sensor is configured to determine a touch area of the target object when a target object contacts the protective cover 400 to drive a display pixel corresponding to the touch area to light and the photosensitive pixel to perform light sensing.
  • the touch sensor is either integrated with the protective cover 400, or integrated with the photosensitive panel 200, or integrated with the display panel 300.
  • the integrated touch sensor not only realizes the touch detection of the target object, but also reduces the thickness of the electronic device, which is beneficial to the development of the electronic device in the direction of thinning and thinning.

Abstract

一种感光装置、感光模组、显示模组以及电子设备。感光装置(20)包括一基底(26)以及设置在基底(26)上的多个感光像素(22),感光像素(22)包括传感单元和信号输出单元;其中,传感单元用于接收光感测控制信号,在接收到光感测控制信号时,执行光感测,并产生相应的感光信号;信号输出单元用于接收输出控制信号,并在接收到输出控制信号时,将传感单元产生的感光信号输出。感光模组、显示模组以及电子设备均包括该感光装置。

Description

感光装置、感光模组、显示模组及电子设备 技术领域
本实用新型涉及一种感测生物特征信息的感光装置、感光模组、显示模组及电子设备。
背景技术
目前,指纹识别,已逐渐成为移动终端等电子产品的标配组件。由于光学式指纹识别比电容式指纹识别具有更强的穿透能力,因此光学式指纹识别应用于移动终端是未来的发展趋势。然,应用于移动终端的现有光学式指纹识别结构仍有待改进。
实用新型内容
本实用新型实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本实用新型实施方式需要提供一种感光装置、感光模组、显示模组及电子设备。
本实用新型实施方式的一种感光装置,包括一基底以及设置在所述基底上的多个感光像素,所述感光像素包括传感单元和信号输出单元;其中,
所述传感单元用于接收光感测控制信号,在接收到光感测控制信号时,执行光感测,并产生相应的感光信号;
所述信号输出单元用于接收输出控制信号,并在接收到所述输出控制信号时,将所述传感单元产生的感光信号输出。
本实用新型的感光装置中,通过开关单元控制是否驱动所述感光单元执行光感测,通过信号输出单元控制感光单元在执行光感测而产生的电信号的输出,如此不但实现了感光单元的独立控制,而且还实现了感光单元产生的电信号及时、有效地输出,从而提高了感光装置的感测精度。
在某些实施方式中,所述光感测控制信号包括第一扫描驱动信号,所述传感单元包括开关单元以及感光单元;其中,
所述开关单元用于接收一参考信号以及所述第一扫描驱动信号,在接收到第一扫描驱动信号时,将所述参考信号传输至所述感光单元;
所述感光单元用于接收所述开关单元传输过来的参考信号,并在第一预定时间后开 始执行光感测,产生相应的感光信号。
在某些实施方式中,所述感光单元包括至少一感光器件,且所述感光器件包括第一电极,用于接收所述开关单元传输过来的参考信号。
在某些实施方式中,所述感光器件为光电二极管,且所述光电二极管的负极为所述感光器件的第一电极,用于接收所述开关单元传输过来的参考信号,所述光电二极管的正极接一预定信号。
在某些实施方式中,所述感光单元进一步包括一第一电容,且所述第一电容的第一极板用于接收所述开关单元传输过来的所述参考信号,所述第一电容的第二极板接预定信号,而且所述第一电容在执行光感测时与所述感光器件形成放电回路。
本实用新型实施方式通过设置第一电容,增大了整个感光单元的电容容量,从而降低光电二极管的放电速度,从而使得光电二极管负极上的电压信号的读取时间更充足,从而提高了目标物体的感测精度。
在某些实施方式中,所述第一电容为可变电容,或者所述第一电容为由多个电容组成的电容阵列。由于第一电容设置为可变电容,因此通过该第一电容的容量调整,可以调整感光像素的感光时间,以适应环境光的变化,从而获得准确的感光信号。
在某些实施方式中,所述开关单元包括一第一晶体管,且所述第一晶体管包括第一控制电极、第一传输电极和第二传输电极;其中,所述第一控制电极用于接收所述第一扫描驱动信号,所述第一传输电极用于接收所述参考信号,所述第二传输电极与所述感光器件的第一电极连接;所述第一晶体管在接收到所述第一扫描驱动信号时导通,将所述参考信号传输至所述感光器件的第一电极。
在某些实施方式中,所述信号输出单元包括一第二晶体管和缓冲电路;所述缓冲电路连接在所述第二晶体管与所述传感单元之间,用于将所述传感单元执行光感测时产生的电信号进行缓冲;所述第二晶体管包括第二控制电极、第三传输电极和第四传输电极,其中第二控制电极用于接收所述输出控制信号,所述第三传输电极用于连接缓冲电路,所述第二晶体管在接收到输出控制信号时导通,将缓冲的电信号由所述第四传输电极输出;其中,所述输出控制信号中的高电平信号持续第二预定时间。
本实用新型实施方式中,缓冲电路起到缓冲隔离的作用,将感光单元执行光感测产生的电信号进行隔离,避免其他的电路负载影响感光单元的感测信号,从而获得准确的光感测信号。
在某些实施方式中,所述缓冲电路包括一第三晶体管,且所述第三晶体管包括第三控制电极、第五传输电极、第六传输电极;其中,所述第三控制电极用于连接所述感光 器件,所述第五传输电极用于接收一电压信号,所述第六传输电极与所述第二晶体管的第三传输电极连接。
在某些实施方式中,所述第二预定时间根据所述传感单元接收到的光信号强度动态调整。
在某些实施方式中,所述接收到的光信号的强度越大,第二预定时间越短;所述接收到的光信号的强度越小,第二预定时间越长。
在某些实施方式中,所述开关单元进一步用于,在所述感光单元执行光感测并持续一预定时间后结束光感测,并对执行光感测产生的感光信号进行锁存,以使信号输出单元接收到所述输出控制信号时,将所述锁存的感光信号输出。
本实用新型实施方式中,开关单元不但用于驱动感光单元执行光感测,而且还控制感光单元结束光感测,并将感光单元执行光感测产生的电信号进行锁存,因此处于不同行的感光像素能同时执行光感测,甚至所有的感光像素同时执行光感测,从而给感光信号的输出控制提供了足够的时间以及灵活性。
在某些实施方式中,所述光感测控制信号进一步包括第二扫描驱动信号,所述开关单元进一步包括第四晶体管,该第四晶体管包括第四控制电极、第七传输电极、第八传输电极,所述第四控制电极用于接收所述第二扫描驱动信号,所述第七传输电极与所述感光器件的第一电极连接,所述第八传输电极与所述第一电容的第一极板连接;而且所述第一电容的第一极板与所述信号传输单元连接;其中第二扫描驱动信号中的高电平信号持续第三预定时间,所述第三预定时间大于第一预定时间。
在某些实施方式中,所述第一电容用于在所述感光单元结束执行光感测时,将执行光感测时产生的感光信号进行锁存。
本实用新型实施方式中第一电容不但用于执行光感测时,与感光器件形成放电回路,而且还在结束光感测时,将执行光感测产生的电信号进行锁存。如此,本实用新型实施方式的感光像素结构简单,而且占用空间小。
在某些实施方式中,所述多个感光像素的传感单元同时执行光感测。
在某些实施方式中,所述基底为硅基底、金属基底、印刷电路板或绝缘基底。
在某些实施方式中,所述基底上还设有分别与所述多个感光像素电性连接的扫描线组、数据线组和信号参考线组。
在某些实施方式中,所述感光装置进一步包括对应与扫描线组和信号参考线组连接的感光驱动单元,以及与数据线组连接的信号处理单元;所述感光驱动单元用于驱动所述多个感光像素执行光感测,并控制所述多个感光像素执行光感测时产生的电信号输出;所述信号 处理单元用于对所述多个感光像素输出的电信号进行读取,并根据读取的电信号获取接触或接近所述感光装置上方的目标物体的预定生物特征信息。
在某些实施方式中,所述感光驱动单元设置在所述基底上,或通过连接件与所述扫描线组和信号参考线组电性连接;所述信号处理单元设置在所述基底上,或通过连接件与所述数据线组电性连接。
在某些实施方式中,所述感光装置为一感光芯片。
在某些实施方式中,所述感光装置用于感测指纹信息。
本实用新型实施方式的一种感光模组,包括上述任意一实施方式的感光装置。
在某些实施方式中,感光装置包括一感光面板,且所述感光面板包括基底以及设置在所述基底上的多个感光像素;所述感光模组进一步包括抗混叠成像元件,且所述抗混叠成像元件设置于所述感光面板上。
在某些实施方式中,所述感光模组进一步包括滤光膜,且所述滤光膜设于所述抗混叠成像元件远离所述感光面板的一侧,或者设于所述感光面板与所述抗混叠成像元件之间。
在某些实施方式中,所述感光装置包括一感光面板,且所述感光面板包括基底以及设置在所述基底上的多个感光像素;所述感光模组进一步包括滤光膜,且所述滤光膜设于所述感光面板上。
在某些实施方式中,所述感光模组为一生物感测芯片。
本实用新型实施方式的一种显示模组,包括上述感光模组,且感光模组位于显示装置下方。
本实用新型实施方式的另一种显示模组,包括上述感光模组,且所述感光模组位于所述显示装置下方;所述显示装置包括一显示面板,且所述显示面板具有显示区域;所述感光模组中的感光面板用于执行对所述显示面板的显示区域内任意位置的目标物体的生物特征信息感测;或者,所述感光模组中的感光面板具有感测区域,且所述感测区域的形状与所述显示区域的形状一致,所述感测区域的大小大于或等于所述显示区域的大小。
本实用新型实施方式的一种电子设备,包括上述任一实施方式的感光装置。
由于该电子设备包括上述任一实施方式的感光装置,因此该电子设备具有上述感光装置具有的所有效果。
本实用新型实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本实用新型实施方式的实践了解到。
附图说明
本实用新型实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本实用新型一实施方式的感光装置中感光像素的阵列分布示意图;
图2是图1所示的感光像素一实施方式的电路结构示意图;
图3是图2所示的感光像素在执行光感测时,各节点处的信号时序图;
图4是本实用新型一实施方式的感光装置中,感光像素与扫描线、数据线和信号参考线之间的连接关系结构,且该感光像素为图2示出的感光像素结构;
图5是图4所示的感光驱动单元一实施方式的结构框图;
图6是图1所示的感光像素另一实施方式的电路结构示意图;
图7是图6所示的感光像素在执行光感测时,各节点处的信号时序图;
图8是本实用新型另一实施方式的感光装置中,感光像素与扫描线、数据线和信号参考线之间的连接结构,而且该感光像素为图6示出的感光像素结构;
图9是图8所示的感光驱动单元一实施方式的结构框图;
图10是本实用新型一实施方式的感光装置中感光面板的结构示意图;
图11是本实用新型一实施方式的感光模组的局部结构示意图;
图12是图11所示的感光模组中抗混叠成像元件能穿过的光信号示意图;
图13是本实用新型一实施方式的抗混叠成像元件的局部结构示意图;
图14是本实用新型另一实施方式的抗混叠成像元件的局部结构示意图;
图15是图14所示的抗混叠成像元件的制备过程示意图;
图16是本实用新型又一实施方式的抗混叠成像元件的局部结构示意图;
图17是本实用新型另一实施方式的感光模组的局部结构示意图;
图18是本实用新型一实施方式的显示模组的局部结构示意图;
图19是图18所示的显示面板一实施方式的局部结构示意图;
图20是本实用新型一实施方式的显示面板的显示区域与感光面板的感测区域的对应位置示意图;
图21是本实用新型一实施方式的感光模组所应用的电子设备的结构示意图;
图22是图21所示的电子设备沿I-I线的一实施方式的剖面示意图,且图22示出了电子设备的部分结构;
图23是图21所示的电子设备沿I-I线的另一实施方式的剖面示意图,且图23示出 了电子设备的部分结构。
具体实施方式
下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。
在本实用新型的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“接触”或“触摸”包括直接接触或间接接触。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本实用新型的不同结构。为了简化本实用新型的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本实用新型。此外,本实用新型可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本实用新型提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
进一步地,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本实用新型的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本实用新型的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本实用新型。
本实用新型实施方式提出一种设置于电子设备内的感光装置,尤其设置于电子设备的显示屏下方。该显示屏例如但不限于OLED显示面板等具有发出光信号的显示装置。 电子设备工作时,显示屏发出光信号,以执行相应的图像显示。此时,若有目标物体接触或触摸该电子设备,显示屏发出的光信号到达目标物体后发生反射,反射回来的光信号穿过显示屏后被感光装置接收,感光装置将接收到的光信号转换为与光信号对应的电信号,以根据该感光装置产生的电信号,形成目标物体的预定生物特征信息。
上述目标物体的生物特征信息例如但不限于指纹、掌纹、耳纹、脚掌等皮肤纹路信息,以及心率、血氧浓度、静脉等其他生物特征信息。目标物体例如但不限于人体,也可以为其他合适类型的物体。
在某些实施方式中,该电子设备也可以设置用于生物特征信息感测的光源。当该电子设备执行生物特征信息感测时,该光源发出相应的光信号,例如红外光,从而实现对目标物体的心率、血氧浓度、静脉等信息的感测。
电子设备例如但不局限为消费性电子产品、家居式电子产品、车载式电子产品、金融终端产品等合适类型的电子产品。其中,消费性电子产品如为手机、平板电脑、笔记本电脑、桌面显示器、电脑一体机等。家居式电子产品如为智能门锁、电视、冰箱、穿戴式设备等。车载式电子产品如为车载导航仪、车载DVD等。金融终端产品如为ATM机、自助办理业务的终端等。
请参照图1,图1示出了一感光装置中感光像素的阵列分布结构,该感光装置20包括多个感光像素22,该多个感光像素22按行列方式进行阵列分布,以形成感光阵列201。具体地,该感光阵列201包括多行感光像素和多列感光像素,每行感光像素沿X方向间隔分布,每列感光像素沿Y方向间隔分布。在感光装置20进行图像感测时,可以从X方向上逐行驱动各行感光像素22执行光感测,再从Y方向上读取各感光像素22执行光感测而产生的电信号。当然,形成感光阵列201的各感光像素22不限于图1示出的垂直关系,另外也可以为其他规则方式分布或非规则方式分布。
在某些实施方式中,每一感光像素22均包括传感单元和信号输出单元。其中,所述传感单元用于接收光感测控制信号,在接收到光感测控制信号时,执行光感测。在执行光感测时,所述传感单元接收光信号,并将接收到的光信号转换为相应的感光信号,即电信号;所述信号输出单元用于接收输出控制信号,并在接收到所述输出控制信号时,将所述传感单元执行光感测时产生的感光信号输出。
具体地,参照图2,图2示出了图1中一个感光像素22的一种电路结构。因此,该感光像素22也可称为感光电路。本实用新型实施方式中的一感光像素22具有第一输入端In1、第二输入端In2、第三输入端In3,以及一第一输出端Out1。光感测控制信号包括第一扫描驱动信号。感光像素22包括传感单元和信号输出单元223,传感单元又包括 开关单元221和感光单元222,感光单元222连接在开关单元221和信号输出单元223之间。开关单元221通过第三输入端In3接收一参考信号Vref,另外,开关单元221还通过第一输入端In1接收一第一扫描驱动信号,并在接收到第一扫描驱动信号时将参考信号Vref传输至感光单元222,以驱动感光单元222工作。感光单元222用于接收光信号,并在接收到光信号时将接收到的光信号转换为相应的电信号。信号输出单元223通过第二输入端In2接收输出控制信号,并根据输出控制信号将感光单元222产生的电信号从第一输出端Out1输出。
可选地,上述第一扫描驱动信号和输出控制信号均为一脉冲信号,且第一扫描驱动信号中高电平的持续时间为第一预定时间,输出控制信号中高电平的持续时间为第二预定时间。
在某些实施方式中,感光单元222包括至少一感光器件,该感光器件包括一第一电极和第二电极,第一电极用于接收开关单元221传输过来的参考信号Vref,第二电极用于接收一固定电信号。通过参考信号Vref和固定电信号施加于感光器件的两电极,形成驱动感光器件的驱动电压。该感光器件例如但不限于光电二极管D1,可变更地,该感光器件还可以为光电阻、光敏三极管、薄膜晶体管等等。需要说明的是,感光器件的数量也可以为2个、3个等等。以光电二极管D1为例,该光电二极管D1包括正极和负极,其中正极接收一预定电信号,例如接地信号NGND;负极作为感光器件的第一电极,用于接收开关单元221传输过来的参考信号Vref。需要说明的是,只要参考信号Vref与该预定信号对应施加在光电二极管D1的两端时,能使光电二极管D1两端形成反向电压,从而驱动光电二极管D1执行光感测即可。
当开关单元221闭合时,该参考信号Vref通过闭合的开关单元221传输至光电二极管D1的负极,由于光电二极管D1内部具有一等效电容,因此参考信号Verf对光电二极管D1内部的等效电容进行充电,从而使得光电二极管D1的负极上的电压Vg逐渐上升并在第一预定时间到达时,电压Vg达到参考信号Vref的电压值并保持不变。此时,光电二极管D1两端的电压差将达到驱动光电二极管工作的反向电压,即光电二极管D1处于工作状态。由于第一扫描驱动信号在第一预定时间到达时,由高电平信号转为低电平信号,开关单元221根据低电平信号断开,则光电二极管D1内部形成放电回路。此时,若有光信号照射到该光电二极管D1,光电二极管D1的反向电流迅速增大,从而光电二极管D1的负极节点上的电压Vg随之发生变化,即逐渐下降。而且,由于光信号的强度越大,光电二极管D1产生的反向电流也越大,则光电二极管D1的负极节点上的电压Vg的下降速度越快。
进一步地,感光单元222还包括至少一第一电容c1。该第一电容c1用于执行光感测时,与感光器件形成放电回路,以获得相应的感光信号。具体地,如图2所示,该第一电容c1与感光器件并联设置,即第一电容c1的第一极板与光电二极管D1的负极连接,第一电容c1的第二极板接一预定电信号,例如地信号NGND。在参考信号Vref传输至光电二极管D1的负极时,也对第一电容c1进行充电,且在开关单元221断开时,第一电容c1与光电二极管D1形成放电回路,且第一电容c1的第一极板的电压(即电压Vg)也逐渐下降。通过设置第一电容c1,增大了感光单元222的电容容量,从而降低光电二极管D1负极上的电压下降速度,可以保证获取到有效的感光信号,提高了感光装置20对目标物体的感测精度。
进一步地,上述第一电容c1为可变电容,例如由多个电容形成的电容阵列,且该多个电容并联设置,通过控制该多个电容是否接入来实现第一电容c1的容量变化。由于第一电容c1设置为可变电容,因此通过该第一电容c1的容量调整,适应接收到的光信号的变化,从而获得准确、有效的感光信号。具体地,若接收到的光信号强度越大,则第一电容c1的容量越大,若接收到的光信号强度越小,则第一电容c1的容量越小。
在某些实施方式中,开关单元221包括一第一晶体管T1,该第一晶体管T1例如但不限于三极管、MOS管、薄膜晶体管中的任意一个或几个。以MOS管为例,该第一晶体管T1包括第一控制电极C1、第一传输电极S1和第二传输电极S2,其中第一控制电极为MOS管的栅极,第一传输电极S1为MOS管的漏极,第二传输电极S2为MOS管的源极。第一控制电极C1与第一输入端In1连接,用于接收第一扫描驱动信号;第一传输电极S1与第三输入端In3连接,用于接收参考信号Vref;第二传输电极S2与感光单元222中光电二极管D1的负极连接。当通过第一输入端In1输入第一扫描驱动信号时,第一晶体管T1根据第一扫描驱动信号导通,参考信号Vref经第一传输电极S1、第二传输电极S2加载到光电二极管D1的负极以及第一电容c1的第一极板;第一晶体管T1导通并持续第一预定时间后截止,第一电容c1与光电二极管D1形成放电回路,开始执行光感测。
在某些实施方式中,信号输出单元223包括一第二晶体管T2和缓冲电路。缓冲电路用于将感光单元222产生的电信号进行缓冲。该第二晶体管T2例如但不限于三极管、MOS管、薄膜晶体管中的任意一个或几个。以MOS管为例,第二晶体管T2包括第二控制电极C2、第三传输电极S3和第四传输电极S4,其中第二控制电极C2为MOS管的栅极,第三传输电极S3为MOS管的漏极,第四传输电极S4为MOS管的源极。第二控制电极C2与第二输入端In2连接,用于接收输出控制信号;所述第三传输电极S3 与所述缓冲电路连接,用于接收缓冲电路输出的电信号;第四传输电极S4与第一输出端Out1连接,用于将经过所述缓冲电路缓冲后的电信号输出。
进一步地,缓冲电路连接在感光单元222和第二晶体管T2之间,用于将所述感光单元222转换后的电信号进行缓冲,并在第二晶体管T2导通时,输出缓冲的电信号。本实施例中,该缓冲电路包括一第三晶体管T3,该第三晶体管T3例如但不限于三极管、MOS管、薄膜晶体管中的任意一个或几个。以MOS管为例,该第三晶体管T3包括第三控制电极C3、第五传输电极S5、第六传输电极S6,其中第三控制电极C3为MOS管的栅极,第五传输电极S5为MOS管的漏极,第六传输电极S6为MOS管的源极。第三控制电极C3与光电二极管D1的负极连接,用于接收光电二极管D1执行光感测时产生的电信号;第五传输电极S5用于接收一电压信号Vcc;第六传输电极S6与第二晶体管T2的第三传输电极S3连接,用于在第二晶体管T2导通时输出缓冲的电信号。
上述第三晶体管T3中,第六传输电极S6的电压Vs随第三控制电极C3的电压Vg变化而变化,即不论第六传输电极S6连接的电路负载如何变化,都不影响第六传输电极S6的电压。而且,由于晶体管特性,电压Vs比电压Vg始终低一个阈值电压,该阈值电压为晶体管T3的门限电压。因此,缓冲电路起到缓冲隔离的作用,将感光单元222执行光感测时产生的电信号进行隔离,避免其他的电路负载影响感光单元222产生的感光信号,从而保证了感光像素22准确地执行光感测,提高了感光装置20对目标物体的感测精度。
请参照图3,图3示出了图2所示的感光像素22执行光感测时各节点处的信号时序,其中Vg为光电二极管D1负极上的电压,也为第三晶体管T3的第三控制电极C3上的电压;Vs为第三晶体管T3的第六传输电极S6上的电压。
t1时刻,通过第一输入端In1输入第一扫描驱动信号,使得第一晶体管T1导通并持续第一预定时间(即t2-t1)后截止,在该第一预定时间内,参考信号Vref经第一传输电极S1和第二传输电极S2传输至光电二极管D1的负极以及第一电容c1的第一极板。由于光电二极管D1内部具有一等效电容,因此参考信号Verf对光电二极管D1内部的等效电容进行充电,从而使得光电二极管D1的负极上的电压Vg逐渐上升并在达到参考信号Vref的电压值后保持不变。另外,由于第一电容c1与光电二极管D1并联,因此参考信号Vref也对第一电容c1进行充电,从而使得第一极板上的电压逐渐上升并在达到参考信号Vref的电压值后保持不变。
t2时刻,第一扫描驱动信号由高电平变为低电平信号,即第一输入端In1变为低电平信号,第一晶体管T1截止,等效电容和第一电容c1与光电二极管D1之间形成放电 回路。若光电二极管D1上有光信号照射,则光电二极管D1内部产生与光信号成正比的电流信号,因此光电二极管D1负极上的电压Vg逐渐降低。而且,光信号越强,电压Vg降低的速度越快。另外,由于第三晶体管T3的电压跟随特性,第三晶体管T3的第六传输电极S6上的电压Vs随光电二极管D1负极上的电压Vg变化而变化,而且电压Vs始终比电压Vg低Vth,该Vth为第三晶体管T3的门限电压。需要说明的是,该第一预定时间以保证感光单元22中光电二极管以及第一电容c1充电至参考信号Vref。
t3时刻,也就是感光单元222开始执行光感测并达到第四预定时间(即t3-t2)后,通过第二输入端In2输入输出控制信号,第二晶体管T2根据高电平信号导通,此时第三晶体管T3的第六传输电极S6上的电压Vs经第二晶体管T2的第三传输电极S3和第四传输电极S4,从第一输出端Out1输出。该第一输出端Out1输出的电压先从低电平逐渐上升至第六传输电极S6上的电压Vs,然后跟随第六传输电极S6上的电压Vs的变化而变化。需要说明的是,该第四预定时间为至少一个时钟周期,而且第四预定时间不能过长,当然也不能过短,以保证感光单元222执行光感测时产生的感光信号能有效及时地输出。
t4时刻,输出控制信号由高电平信号变为低电平信号,即第二输入端In2变为低电平信号,第二晶体管T2截止,第一输出端Out1输出的电压逐渐下降或保持不变。为了保证下次信号的有效输出,该第一输出端Out1输出电压需逐渐下降至低电平。上述t4时刻与t3时刻之间这段时间,亦即第二预定时间Δt1内,第三晶体管T3的第六传输电极S6上的电压Vs(即相当于光电二极管D1负极上的电压Vg)将经第二晶体管T2从第一输出端Out1输出,因此通过读取第一输出端Out1的电压信号,即可获得光电二极管D1因接收到光信号而产生的感光信号的大小,进而生成目标物体的生物特征信息。
进一步地,上述第二预定时间Δt1可以为固定值,也可以为变化值。由于光电二极管D1接收到的光信号越大,电压Vg的下降速度越快,从而电压Vs的下降速度也越快,因此,为实现感光信号的准确有效地获取,根据接收到的光信号的强度调整Δt1的大小。具体地,光信号强度越大,则第二预定时间Δt1越短;光信号强度越小,则增大第二预定时间Δt1越长。
在某些实施方式中,参照图4,图4示出了感光装置20中感光像素22与各扫描线、数据线以及信号参考线的连接结构,且该感光像素为图2示出的电路结构。该感光装置20进一步包括与多个感光像素22电性连接的扫描线组、数据线组、信号参考线组。其中,扫描线组包括由多条第一扫描线组成的第一扫描线组和由多条第二扫描线组成的第二扫描线组,数据线组包括多条数据线,信号参考线组包括多条信号参考线。以图1中 的感光阵列201为例,感光阵列201中,X方向上一行感光像素包括间隔排列的n个感光像素22,Y方向上的一列感光像素包括间隔排列的m个感光像素22,因此该感光阵列201一共包括m*n个感光像素22。对应地,第一扫描线组包括m条第一扫描线,且该m条第一扫描线沿Y方向间隔排列,例如G11、G12、…G1m;第二扫描线组还包括m条第二扫描线,且该m条第二扫描线也沿Y方向间隔排列,例如G21、G22、…G2m;信号参考线组包括m条信号参考线,且该m条信号参考线沿Y方向间隔排列,例如L1、L2、…Lm;数据线组包括n条数据线,且该n条数据线沿X方向间隔排列,例如S1、S2、…Sn-1、Sn。当然,感光装置20的扫描线组、数据线组和信号参考线组也可以为其他规则方式分布或非规则方式分布。另外,由于第一扫描线、第二扫描线、信号参考线和数据线具有导电性,因此处于交叉位置的第一扫描线、第二扫描线、信号参考线和数据线之间通过绝缘材料进行隔离。
具体地,m条第一扫描线对应与多个感光像素22的第一输入端In1连接,m条第二扫描线对应与多个感光像素22的第二输入端In2连接,m条信号参考线对应与多个感光像素22的第三输入端In3连接,n条数据线对应与多个感光像素22的第一输出端Out1连接。其中,为了布线方便,第一扫描线、第二扫描线、信号参考线均从X方向上引出,数据线从Y方向上引出。
在某些实施方式中,感光装置20进一步包括感光驱动电路,该感光驱动电路用于提供第一扫描驱动信号和参考信号Vref给所述多个感光像素,以驱动多个感光像素22执行光感测,并在感光像素22开始执行光感测后,提供一输出控制信号给所述多个感光像素,控制感光像素22执行光感测时产生的电信号输出。
进一步地,多个感光像素22呈阵列分布,感光驱动电路进一步用于:逐行或隔行提供第一扫描驱动信号给所述多个感光像素,以驱动多个感光像素逐行或隔行执行光感测,并在驱动当前行的感光像素开始执行光感测后,控制当前行的感光像素执行光感测产生的电信号输出。如此,通过该感光驱动电路一次能驱动一行感光像素同时执行光感测,从而加快了感测速度。
进一步地,请继续参照图4,该感光驱动电路包括一感光驱动单元24,感光装置20中的第一扫描线、第二扫描线、信号参考线均连接至该感光驱动单元24。请参照图5,图5示出了图4中感光驱动单元24一实施方式的结构。该感光驱动单元24包括提供第一扫描驱动信号的第一驱动电路241、提供输出控制信号的第二驱动电路242和提供参考信号Vref的参考电路243。该感光驱动单元24的各电路可通过硅工艺集成在一颗控制芯片中,当然该感光驱动单元24的各电路也可以分开形成在不同的控制芯片中。例 如,第一驱动电路241和第二驱动电路242与感光像素22一起形成在同一基板上,参考电路243则通过一连接件(例如,柔性电路板)与感光装置20上的多条信号参考线连接。
在某些实施方式中,参考电路243用于提供参考信号Vref,该参考电路243通过感光像素22的第一开关(例如,图2所示的开关单元221中的第一晶体管T1)可选择性地与所述感光单元222电性连接。在第一开关闭合时,该参考信号Vref则通过闭合的第一开关传输给相应的感光单元222。
第一驱动电路241与感光装置20的第一扫描线电性连接,用于提供第一扫描驱动信号给所述第一开关,以控制第一开关闭合,并在第一预定时间到达时,控制第一开关断开,从而驱动感光单元222开始执行光感测。可选地,该第一扫描驱动信号为一脉冲信号,且该脉冲信号中高电平的持续时间为第一预定时间,例如图3所示的t2-t1。第一开关根据高电平信号闭合,根据低电平信号断开。
第二驱动电路242与感光装置20的第二扫描线电性连接,用于在第一开关断开并达到第四预定时间(例如,图3所示的t3-t2)后,提供输出控制信号给感光像素22的第二开关(例如,图2所示的信号输出单元223中的第二晶体管T2),控制第二开关闭合,以使感光单元222执行光感测时产生的电信号输出。可选地,该输出控制信号为一脉冲信号,且该脉冲信号中高电平的持续时间为第二预定时间,例如图3所示的t4-t3。第二开关根据高电平信号闭合,根据低电平信号断开。
在某些实施方式中,请继续参照图4,该感光驱动电路进一步包括信号处理单元25,图4所示的感光装置20中的数据线均连接该信号处理单元25,该信号处理单元25可通过硅工艺集成在一颗检测芯片中。当然,该信号处理单元25也可以和感光驱动单元24集成在一颗处理芯片中。具体地,该信号处理单元25用于对所述感光单元222执行光感测时产生的电信号进行读取,并根据读取的电信号获得接触或接近所述感光装置的目标物体的预定生物特征信息。可以理解的是,为了采集到准确有效的电信号,在第二预定时间内,该信号处理单元25可以对感光单元222执行光感测时产生的电信号进行多次读取。
在某些实施方式中,该信号处理单元25包括多个处理通道,可选地,每个处理通道对应连接一条数据线。然,可变更地,也可以每个处理通道对应连接至少两条数据线,通过分时复用的方式,每次选择读取一条数据线上的电信号,然后再选择另一条数据线上的电信号,以此类推,直到所有数据线上的电信号均被读取。如此,可以减少处理通道的个数,从而节省了感光装置20的成本。
请参照图6,图6示出了图1中一个感光像素22的另一种电路结构。本实用新型实施方式中的一感光像素22具有第一输入端In1'、第二输入端In2'、第三输入端In3'、第四输入端,以及一第一输出端Out1'。光感测控制信号包括第一扫描驱动信号以及第二扫描驱动信号。该感光像素22包括开关单元221'、感光单元222'和信号输出单元223'。其中,开关单元221'通过第三输入端In3'接收一参考信号Vref,另外,开关单元221'还通过第一输入端In1'接收一第一扫描驱动信号,以及通过第四输入端In4接收一第二扫描驱动信号,并在接收到第一扫描驱动信号和第二扫描驱动信号时,将参考信号Vref传输至感光单元222',以驱动感光单元222'执行光感测,而且在所述感光单元222'开始执行光感测并持续一预定时间后结束光感测,并对执行光感测产生的感光信号进行锁存。感光单元222'接收光信号,并在接收到光信号时将接收到的光信号转换为相应的电信号。信号输出单元223'通过第二输入端In2'接收输出控制信号,并根据输出控制信号,将感光单元222'产生的电信号从第一输出端Out1'输出。
可选地,第一扫描驱动信号和第二扫描驱动信号、输出控制信号均为一脉冲信号,且第一扫描驱动信号中高电平信号的持续时间为第一预定时间,输出控制信号中高电平信号的持续时间为第二预定时间,第二扫描驱动信号中高电平信号的持续时间为第三预定时间,而且第三预定时间大于第一预定时间。
具体地,本实施方式中的感光单元222'与信号输出单元223'的结构与图2所示的感光单元222和信号输出单元223的结构一致,在此不再赘述。开关单元221'除了包括图2所示的开关单元221结构外,还进一步包括第四晶体管T4。该第四晶体管T4例如但不限于三极管、MOS管、薄膜晶体管中的任意一个或几个。以MOS管为例,该第四晶体管T4包括第四控制电极C4、第七传输电极S7和第八传输电极S8,其中第四控制电极C4为MOS管的栅极,第七传输电极S7为MOS管的漏极,第八传输电极S8为MOS管的源极。第四控制电极C4与第四输入端In4连接,用于接收第二扫描驱动信号;第七传输电极S7与感光器件的第一电极(例如光电二极管的负极)连接,第八传输电极S8与第一电容c1的第一极板连接。而且第一电容c1的第一极板用于连接信号输出单元223',即第一电容c1的第一极板与第三晶体管T3的第三控制电极C3连接。
请参照图7,图7示出了图6的感光像素22执行光感测时的信号时序,其中Vg为第一电容c1的第一极板上的电压,也是感光单元222'结束光感测时锁存的感光信号,也为第三晶体管T3的第三控制电极C3上的电压;Vs为第三晶体管T3的第六传输电极S8上的电压。
t1时刻,通过第一输入端In1'输入第一扫描驱动信号,同时通过第四输入端In4 输入第二扫描驱动信号。根据第一扫描驱动信号,第一晶体管T1导通并持续第一预定时间(即t2-t1),在该第一预定时间内,参考信号Vref经第一传输电极S1和第二传输电极S2施加至光电二极管D1的负极上。由于光电二极管D1内部具有一等效电容,因此参考信号Verf对光电二极管D1内部的等效电容进行充电,从而使得光电二极管D1的负极上的电压逐渐上升并在达到参考信号Vref的电压值后保持不变。根据第二扫描驱动信号,第四晶体管T4导通并持续第三预定时间Δt2(即t3-t1),参考信号Vref经第一晶体管T1以及第四晶体管T4施加至第一电容c1的第一极板,从而对第一电容c1进行充电,第一电容c1的第一极板上的电压逐渐上升并在达到参考信号Vref的电压值后保持不变。
t2时刻,第一扫描驱动信号由高电平变为低电平,第二扫描驱动信号仍然为高电平。此时,第一输入端In1'变为低电平信号,第一晶体管T1截止,第一电容c1与光电二极管D1形成放电回路,即第一电容c1对光电二极管D1进行放电,第一电容c1的第一极板上的电压Vg逐渐下降。若光电二极管D1上没有光信号照射,光电二极管D1内部的电流非常弱,如此第一电容c1的第一极板上的电压Vg基本保持不变;若光电二极管D1上有光信号照射,则光电二极管D1内部产生与光信号成正比的电流信号,而且光信号越强,光电二极管D1产生的电流越大,因此第一电容c1的第一极板上的电压Vg的下降速度越快。由于第三晶体管的特性,第三晶体管T3的第六传输电极S6上的电压Vs随第一电容c1的第一极板上的电压Vg变化而变化,而且电压Vs始终比电压Vg低Vth,该Vth为第三晶体管T3的门限电压。
t3时刻,第二扫描驱动信号由高电平变为低电平。此时,第四输入端In4变为低电平信号,第四晶体管T4截止,第一电容c1无法形成放电回路,则第一电容c1的第一极板上的电压Vg将维持不变,如此则将感光单元222'执行光感测时产生的感光信号进行锁存。
t4时刻,通过第三输入端In3'输入输出控制信号,该输出控制信号为一脉冲信号,且该脉冲信号中高电平的持续时间为第二预定时间。根据输出控制信号,第二晶体管T2导通,此时第一电容c1的第一极板上的电压Vg经第三晶体管T3的第六传输电极S6、第二晶体管T2的第三传输电极S3和第四传输电极S4,从第一输出端Out1'输出。该第一输出端Out1'输出的电压先从低电平逐渐上升至第六传输电极S6上的电压Vs,然后跟随第六传输电极S6上的电压Vs的变化而变化。由于t3时刻开始,第一电容c1将电压Vg进行锁存,第六传输电极S6上的电压Vs将维持不变,因此该第一输出端Out1'输出的电压将维持在电压Vs的幅值。
t5时刻,输出控制信号由高电平变为低电平,第三输入端In3'变为低电平信号,第二晶体管T2截止,第一输出端Out1'输出的电压逐渐下降或保持不变。为了保证下次信号的有效输出,该第一输出端Out1输出电压需逐渐下降至低电平。由于该第一输出端Out1'输出的电压反映了光电二极管D1转换后的电信号,因此通过读取第一输出端Out1'的电压信号,即可获得光电二极管D1因接收到光信号而发生变化的电信号大小,进而生成目标物体的生物特征信息。
由于本实用新型实施方式中,开关单元221'不但用于驱动感光单元222'执行光感测,而且还控制感光单元222'结束光感测,并将感光单元222'执行光感测产生的电信号进行锁存,因此处于不同行的感光像素能同时执行光感测,甚至所有的感光像素同时执行光感测,从而给感光信号的输出控制提供了足够的时间以及灵活性。
进一步地,上述第三预定时间Δt2可以为固定值,也可以为变化值。由于光电二极管D1接收到的光信号越大,电压Vg的下降速度越快,从而电压Vs的下降速度也越快,因此,为实现感光信号的准确有效地获取,根据接收到的光信号的强度调整Δt2的大小。具体地,光信号强度越大,则第三预定时间Δt2越短;光信号强度越小,则第三预定时间Δt2越长。
进一步地,参照图8,感光装置20还包括与多个感光像素22电性连接的扫描线组、数据线组、信号参考线组。其中,扫描线组包括由多条第一扫描线组成的第一扫描线组、由多条第二扫描线组成的第二扫描线组和由多条第三扫描线组成的第三扫描线组,数据线组包括多条数据线,信号参考线组包括多条信号参考线。以图1中的感光阵列201为例,感光阵列201中,X方向上一行感光像素包括间隔排列的n个感光像素22,Y方向上的一列感光像素包括间隔排列的m个感光像素22,因此该感光阵列201一共包括m*n个感光像素22。对应地,第一扫描线组包括m条第一扫描线,且该m条第一扫描线沿Y方向间隔排列,例如G11、G12、…G1m;第二扫描线组包括m条第二扫描线,且该m条第二扫描线也沿Y方向间隔排列,例如G21、G22、…G2m;第三扫描线组包括m条第三扫描线,且该m条第三扫描线也沿Y方向间隔排列,例如G31、G32、…G3m;信号参考线组包括m条信号参考线,且该m条信号参考线沿Y方向间隔排列,例如L1、L2、…Lm;数据线组包括n条数据线,且该n条数据线沿X方向间隔排列,例如Sn1、Sn2、…Sn-1、Sn。当然,感光装置20的扫描线组、数据线组和信号参考线组也可以为其他规则方式分布或非规则方式分布。另外,由于第一扫描线、第二扫描线、第三扫描线、信号参考线和数据线具有导电性,因此处于交叉位置的第一扫描线、第二扫描线、第三扫描线、信号参考线和数据线之间通过绝缘材料进行隔离。
具体地,第一扫描线与感光像素22的第一输入端In1'连接,第二扫描线与感光像素22的第二输入端In2'连接,信号参考线与感光像素22的第三输入端In3'连接,第三扫描线与感光像素22的第四输入端In4连接,数据线与感光像素22的第一输出端Out1'连接。其中,为了布线方便,第一扫描线、第二扫描线、第三扫描线、信号参考线均从X方向上引出,数据线从Y方向上引出。
在某些实施方式中,感光装置20的感光驱动电路进一步用于:提供第一扫描驱动信号和第二扫描驱动信号给多个感光像素,以使感光像素22在第一预定时间到达时开始开始执行光感测后,在第三预定时间到达时控制感光像素结束执行光感测,以将感光像素执行光感测时产生的电信号进行锁存,提供一输出控制信号给所述多个感光像素,以控制感光像素锁存的电信号输出。
进一步地,多个感光像素22呈阵列分布,该感光驱动电路进一步用于:逐行或隔行提供所述第一扫描驱动信号和第二扫描驱动信号给所述多个感光像素,以驱动所述多个感光像素逐行或隔行执行光感测;或者,同时提供所述第一扫描驱动信号和第二扫描驱动信号给所有的感光像素,以驱动所有的感光像素同时执行光感测。如此,通过该感光驱动电路一次能驱动一行感光像素,甚至所有的感光像素同时执行光感测,从而加快了感测速度。
进一步地,继续参照图8,该感光驱动电路包括一感光驱动单元24,第一扫描线、第二扫描线、第三扫描线、信号参考线均连接至该感光驱动单元24。具体地,请参照图9,图9示出了图8中感光驱动单元24一实施方式的结构。该感光驱动单元24包括提供第一扫描驱动信号的第一驱动电路241'、提供输出控制信号的第二驱动电路242'、提供参考信号Vref的信号参考电路243'和提供第二扫描驱动信号的第三驱动电路244。其中,该感光驱动单元24的各电路可通过硅工艺集成在一颗控制芯片中,当然该感光驱动单元24的各电路也可以分开形成。例如,第一驱动电路241'和第二驱动电路242'、第三驱动电路244与感光像素22一起形成在同一基板上,信号参考电路243'则通过柔性电路板与感光装置20上的多条信号参考线连接。
在某些实施方式中,参考电路243'用于提供参考信号Vref,该参考电路243'通过第一开关(例如,图6所示的开关单元221'中的第一晶体管T1)可选择性地与所述感光单元222'电性连接。在第一开关闭合时,该参考信号Vref通过闭合的第一开关传输给相应的感光单元222'。
第一驱动电路241'与感光装置20的第一扫描线电性连接,用于提供第一扫描驱动信号给第一开关,以控制第一开关闭合,并在第一预定时间(例如,图7所示的t2-t1)到达时,控制第一开关断开,从而驱动感光单元222'开始执行光感测。
第三驱动电路244与感光装置20的第三扫描线电性连接,用于在第一驱动电路241'提供第一扫描驱动信号的同时,提供第二扫描驱动信号给第三开关(例如,图6所示的开关单元221'中的第四晶体管T4),以在第一开关闭合的同时第三开关也闭合,且在第三开关闭合并达到第三预定时间(例如,图7所示的t3-t1)时,控制第三开关断开,从而控制感光单元222'结束执行光感测,且该感光单元222'执行光感测时产生的电信号被第一电容c1锁存。
第二驱动电路242'与感光装置20的第二扫描线电性连接,用于在控制感光单元222'结束执行光感测后,例如在第三开关断开并达到第五预定时间(例如图7所示的t4时刻)时,提供输出控制信号给第二开关(例如,图6所示的信号输出单元223'中的第二晶体管T2),控制第二开关闭合并持续第二预定时间,以将感光单元222'执行光感测时产生的电信号输出。
在某些实施方式中,请继续参照图8,该感光驱动电路进一步包括信号处理单元25,图9所示的感光装置20中的数据线均连接该信号处理单元25,该信号处理单元25可通过硅工艺集成在一颗检测芯片中。当然,该信号处理单元25也可以和感光驱动单元24集成在一颗处理芯片中。具体地,该信号处理单元25用于对所述感光单元222'执行光感测产生的电信号进行读取,并根据读取的电信号获得接触或接近所述感光面板的目标物体的预定生物特征信息。可以理解的是,由于感光单元执行光感测时产生的电信号被锁存,因此给信号处理单元25的信号读取提供了更充足的时间以及灵活性,同时也节省了感测时间,加快了感测速度。另外,为了采集到准确有效的电信号,在第二预定时间内,该信号处理单元25可以对感光单元222'执行光感测时产生的电信号进行多次读取。
在某些实施方式中,该信号处理单元25包括多个处理通道,可选地,每个处理通道对应连接一条数据线。然,可变更地,也可以每个处理通道对应连接至少两条数据线,通过分时复用的方式,每次选择读取一条数据线上的电信号,然后再选择另一条数据线上的电信号,以此类推,直到所有数据线上的电信号均被读取。如此,可以减少处理通道的个数,从而节省了感光装置20的成本。
在某些实施方式中,请参照图10,图10示出了本实用新型另一实施方式的感光装置的结构。该感光装置20进一步包括一感光面板200,该感光面板200又包括一基底26,多个感光像素22设置于该基底26上。可选地,该感光像素22呈阵列分布。该感光像素22用于接收上方来的光信号,并将接收到的光信号转换为相应的电信号,因此多个感光像素22的感光区域界定形成感测区域203,感测区域203以外的区域则为非感 测区域202。为了方便线路布设,该非感测区域202用于设置感光像素22执行光感测所需的驱动电路,或者设置供电性连接件连接的线路绑定区。上述感光驱动电路的部分电路甚至全部电路可设置在基底26上。例如,以图4所示的感光装置20为例,第一驱动电路241和第二驱动电路242、参考电路243均形成在基底26上。或者,第一驱动电路241、第二驱动电路242、参考电路243通过电性连接件(例如,柔性电路板)与感光像素22电性连接。
在某些实施方式中,上述信号处理单元25可根据基底26的类型是选择形成在基底26上,还是选择例如通过电性连接件(例如,柔性电路板)与感光像素22电性连接。例如,当所述基底26为硅基底时,所述信号处理单元25可选择形成在基底26上,也可选择例如通过柔性电路板与感光像素22电性连接;当所述基底26为绝缘基底时,所述信号处理单元25则需要例如通过柔性电路板与感光像素22电性连接。
在某些实施方式中,该感光面板200为一感光裸片(Die),即为一半导体集成电路器件。
进一步地,请参照图11,图11示出了本实用新型一实施方式的感光模组的结构。该感光模组包括上述任意一实施方式的感光装置。进一步地,该感光模组2还包括一抗混叠成像元件28,该抗混叠成像元件28设置在感光装置20的感光面板200上,用于防止相邻的感光像素22接收到的光信号产生混叠,从而提高了感光模组2的感测精度。进一步地,抗混叠成像元件28包括多个供光信号穿过的第一透光区域282,多个感光像素22的感光单元222对应设置于该多个第一透光区域282下方。
上述目标物体的生物特征信息例如但不限于指纹、掌纹、耳纹、脚掌等皮肤纹路信息,以及心率、血氧浓度、静脉等其他生物特征信息。目标物体例如但不限于人体,也可以为其他合适类型的物体。
本实用新型实施方式的感光模组2通过在感光面板200上设置抗混叠成像元件28,而且感光像素22的感光单元222与抗混叠成像元件28的第一透光区域282对应设置,从而使得感光单元222执行光感测后获得的生物特征信息较清晰,从而提高了感光装置20的感测精度。
在某些实施方式中,感光单元222与第一透光区域282正对设置,如此能保证穿过第一透光区域282的光信号全部被感光单元222接收,提高了感光装置20的感测精度。
在某些实施方式中,抗混叠成像元件28具有吸光特性,照射到抗混叠成像元件28上的光信号中,只有与所述基底26近似垂直的光信号才能从抗混叠成像元件28的第一透光区域282穿过,从而被感光单元222接收,其余的光信号均被抗混叠成像元件28 吸收。如此,可以防止相邻的感光单元222之间接收的光信号产生混叠。需要说明的是,与基底26近似垂直的光信号包括垂直于所述基底26的光信号,以及相对所述基底26的垂直方向偏移预设角度范围内的光信号。该预设角度范围为±20°内。
在某些实施方式中,如图12所示,图12示出了穿过抗混叠成像元件28的光信号范围。由于抗混叠成像元件28的吸光特性,只有光信号L1和光信号L2之间的光信号可以通过第一透光区域282到达感光单元222,其余的光信号均被抗混叠成像元件28的吸光墙281吸收。由图12可知,第一透光区域282的横截面积越小,通过第一透光区域282的光信号的角度α的范围越小,因此抗混叠成像元件28的抗混叠效果越好。如此,通过抗混叠成像元件28设置的较小面积的第一透光区域282,能提高抗混叠成像元件28的抗混叠效果。另外,由于抗混叠成像元件28的第一透光区域282的横截面积较小,因此每一感光单元222将对应多个透光第一透光区域282,从而使得感光单元222能感测到足够的光信号,提高了感光模组2的感测精度。
在某些实施方式中,请继续参照图11,抗混叠成像元件28包括吸光墙281,上述多个第一透光区域282由吸光墙282围合形成。该吸光墙281由吸光材料形成。该吸光材料包括金属氧化物、炭黑涂料、黑色油墨等。其中,金属氧化物中的金属例如但不限于铬(Cr)、镍(Ni)、铁(Fe)、钽(Ta)、钨(W)、钛(Ti)、钼(Mo)的一种或几种。第一透光区域282的轴向延伸方向为与基底26垂直的方向,以使照射到抗混叠成像元件28的光信号中,与基底26近似垂直的方向上的光信号可以穿过第一透光区域282,其余的光信号均被吸光墙281吸收。
进一步地,请参照图13,图13示出了本实用新型一实施方式的抗混叠成像元件28的结构。吸光墙281为多层结构,且该吸光墙包括交替层叠设置的吸光块281a和垫高块281b。一实施方式中,该吸光块281a由吸光材料形成。该吸光材料例如但不限于金属氧化物、炭黑涂料、黑色油墨等。其中,金属氧化物中的金属例如但不限于铬(Cr)、镍(Ni)、铁(Fe)、钽(Ta)、钨(W)、钛(Ti)、钼(Mo)的一种或几种。垫高块281b例如但不限于由透明材料形成的透明层,例如半透明材料、吸光材料等。
在某些实施方式中,位于同一层的多个吸光块281a间隔设置,且该同一层中各吸光块281a之间的间隔所对应的区域为第一透光区域282。进一步地,同一层的多个吸光块281a以及多个垫高块281b可以一次制成。具体地,通过提供一掩膜,所述掩膜为一体成型的膜片,且该膜片对应吸光块281a的位置形成开孔,且该开孔的形状与大小与吸光块283的形状大小一致。通过该掩膜依次在一承载物上蒸镀形成交替设置的吸光块281a以及垫高块281b,从而形成抗混叠成像元件28。
通过垫高块281b的设置,不但加快了抗混叠成像元件28的制程,而且通过垫高块281b的高度设置,能保证抗混叠成像元件28的抗混叠效果。
在某些实施方式中,上述第一透光区域282内均可以填充透明材料,以增加抗混叠成像元件层的强度,也可避免杂质进入第一透光区域282内而影响透光效果。为了保证第一透光区域282的透光效果,透明材料可以选用透光率较大的材料,例如玻璃、PMMA(亚克力)、PC(聚碳酸酯)等等。
在某些实施方式中,请参照图14,图14示出了本实用新型另一实施方式的抗混叠成像元件的结构。该抗混叠成像元件28为多层结构,且该抗混叠成像元件28包括交替层叠设置的吸光层283和透明支撑层284;所述吸光层283包括多个间隔设置的吸光块283a;所述透明支撑层284由透明材料填充形成,且一并填充所述吸光块283a之间的间隔283b;其中所述间隔283b对应的区域形成所述第一透光区域282。
进一步地,请参照图15,图15示出了本实用新型一实施方式的抗混叠成像元件的制备过程。具体地,在制备抗混叠成像元件28时,在一承载物上先涂覆一层吸光材料,并在吸光材料层上将第一透光区域282对应的部分刻蚀掉,未被蚀刻的部分形成多个吸光块283a。该刻蚀技术例如但不局限于光刻蚀、X射线刻蚀、电子束刻蚀和离子束刻蚀。而且刻蚀类型可包括干法刻蚀和湿法刻蚀两种。然后,在蚀刻后的吸光块283上涂覆一层透明材料,且该透明材料不但覆盖多个吸光块283a,还一并填充多个吸光块283a之间的间隔283b,从而形成透明支撑层284。然后,按照吸光层283的形成方式在透明支撑层284上形成多个吸光块283a,依次类推形成多层交替层叠的吸光层283和透明支撑层284,从而形成抗混叠成像元件28。
进一步地,为了保证第一透光区域282的透光效果,形成透明支撑层284的透明材料可以选用透光率较大的材料,例如玻璃、PMMA(亚克力)、PC(聚碳酸酯)、环氧树脂等。
在某些实施方式中,请参照图16,图16示出了本实用新型另一实施方式的抗混叠成像元件的结构。该抗混叠成像元件28包括交替层叠设置的吸光层283和透明支撑层284,每层吸光层283包括多个间隔设置的吸光块283a。且每层透明支撑层284的厚度不相等。即图18中厚度h1、h2和h3的值不相等。可选地,该透明支撑层284的厚度逐层增大,即h1<h2<h3。如此可以避免相对基底垂直方向偏移±20°以外的光信号穿过吸光块283a之间的透明支撑层284,从而提高了感光模组2的感测精度。需要说明的是,每层透明支撑层284的厚度参数,以及吸光块283a的宽度和高度参数,可进行不同的设置以及多种设置组合方式,来提高感光模组2的感测精度。
在某些实施方式中,抗混叠成像元件28直接形成于感光面板200上,即上述抗混叠成像元件28形成时的承载物为设有感光像素22的感光面板200。然,可变更地,该抗混叠成像元件28例如独立制成后再设置于设有感光像素22的感光面板200上,从而加快了感光模组2的制程。
在某些实施方式中,抗混叠成像元件28中多个第一透光区域282均匀分布,从而使得抗混叠成像元件28的制备工艺较简单。
在某些实施方式中,以目标物体为手指等生物体为例,当手指接触或接近感光模组2时,若有环境光照射于手指上,而手指具有很多组织结构,例如表皮、骨头、肉、血管等,因此环境光中的部分光信号会穿透手指,部分光信号则被手指吸收。穿透手指的光信号将到达感光单元222,此时感光单元222不但感测到经目标物体反射回来的光信号,还感测到环境光穿透手指的光信号,如此无法进行准确地感测。因此,为了避免环境光影响感光单元222对目标物体的感测,请参照图17,图17示出了本实用新型另一实施方式的感光模组的结构。该感光模组2进一步包括滤光膜29,所述滤光膜29设置在所述抗混叠成像元件28与所述感光面板200之间,其中,所述滤光膜用于将预设波段以外的光信号进行过滤。然,可变更地,该抗混叠成像元件28设置在所述滤光膜29与所述感光面板200之间,例如滤光膜29设置于抗混叠成像元件28远离感光面板200的一侧。
本实用新型实施方式通过该滤光膜29,将反射回来的光信号中预设波段以外的光信号滤除,从而提高了感光模组2的感测精度。
在某些实施方式中,预设波段为蓝色光信号对应的波段,即滤光膜29将蓝色光信号以外的光信号滤除。
在某些实施方式中,预设波段为绿色光信号对应的波段,即滤光膜29将绿色光信号以外的光信号滤除。
在环境光的红色光信号、蓝色光信号以及绿色光信号中,手指等目标物体F对红色光信号的吸收最弱,其次是绿色光信号,对蓝色光信号的吸收最强。即环境光照射于手指上,大量的蓝色光信号被手指吸收,只有少量的,甚至没有蓝色光信号穿透手指。因此,选择蓝色光信号或绿色光信号以外波段的光信号进行过滤,可以大大消除环境光的干扰,提高感光模组2的感测精度。
在某些实施方式中,该感光模组2为一生物感测芯片,用于感测感光模组2上方的目标物体的生物特征信息。可选地,该感光模组2为一指纹感测芯片,用于感测用户手指的指纹图像。
进一步地,该感光模组2进一步包括封装体(图未示出),所述封装体用于将所述感光面板200以及所述感光面板200上方的所有器件进行封装,例如抗混叠成像层28以及滤光膜29进行封装。尤其地,当抗混叠成像层28位于该滤光膜29上方时,该封装体可以一并填充透光区域282。
请参照图18,图18示出了本实用新型一实施方式的显示模组1的局部结构。该显示模组1包括一显示装置(图中未示出)和感光模组2。该显示装置又包括一显示面板300,用于执行图像显示,且所述显示面板300的显示区中设有第二透光区域(图中未示出)。感光模组2为上述任一实施方式的感光模组2,且该感光模组2设置在显示面板300下方,用于感测从该第二透光区域射出的光信号,以获取接触或接近该显示模组1的目标物体的预定生物特征信息。
由于感光模组2位于显示面板300下方,因此显示面板300具有供目标物体反射回来的光信号穿过的第二透光区域,从而使得感光模组2中的感光面板200能接收到穿过显示面板300的光信号,并将接收到的光信号转换为电信号,根据转换后的电信号获取接触或接近显示模组1的目标物体的预定生物特征信息。
在某些实施方式中,显示面板300例如但不限于OLED显示器件,只要能实现显示效果且具有供光信号穿过的透光区域的显示器件均在本实用新型的保护范围。
在某些实施方式中,请参照图19,图19示出了显示面板300为OLED显示屏时,OLED显示屏的部分组成结构。以显示面板300为OLED显示屏为例,该显示面板300包括透明基板301、形成在透明基板301上的阳极302、形成在阳极302上的发光层303、形成在发光层303的阴极304。当阳极302与阴极304上对应施加电压信号时,聚集在阳极302与阴极304上的大量载流子将向发光层303移动并进入发光层303,从而激发发光层303发出相应的光信号。需要说明的是,图19仅示出了OLED显示屏的部分结构,OLED显示屏还具有其他的结构,在此不一一说明。
在某些实施方式中,该显示面板300可以为底发射结构、顶发射结构、双面透光结构,而且,该显示屏可以为刚性材质的硬屏,也可以为柔性材质的柔性屏。
进一步地,阴极302和阴极304以及发光层303形成显示像素32,且该显示像素32包括红色子像素R、绿色子像素G和蓝色子像素B三种显示像素,其中红色像素R射出的光信号为红色光信号,绿色像素G射出的光信号为绿色光信号,蓝色像素B射出的光信号为蓝色光信号。当然,该显示像素32还可以包括黑色子像素、白色子像素;或者红色子像素、绿色子像素、蓝色子像素和白色子像素等。
在某些实施方式中,由于显示像素32采用透明基板301作为衬底,故未设置非透 明器件以及非透明线路的区域则为透光区域,即可供光信号穿过。因此,本实用新型实施方式中,将感光像素22的感光单元222对应位于可供光信号穿过的区域的下方,以使感光器件接收经目标物体反射回来的光信号,实现对目标物体的生物特征信息感测。
进一步地,显示面板300还包括驱动各显示像素32发光的驱动线路(图中未示出),而且显示装置进一步包括显示驱动电路(图中未示出),该相应的驱动线路可以设置于各显示像素32之间,也可以设置于各显示像素32下方。显示驱动电路可以设置于显示面板300上,也可以通过柔性电路板与显示像素32连接。该显示驱动电路用于驱动多个显示像素32发光,以用作所述感光模组2进行光感测时的光源。
在某些实施方式中,感光面板200用于执行对显示面板300的显示区域内任意位置的目标物体的生物特征信息感测。例如,具体地,例如请结合参照图18、图19和图20,显示面板300具有一显示区域305和非显示区域306,该显示区域305由显示面板300的所有显示像素32的发光区域界定,显示区域305以外的区域为非显示区域306,非显示区域306用于设置驱动显示像素32的显示驱动电路等电路或者设置供柔性电路板连接的线路绑定区。感光面板200具有一感测区域203和非感测区域204,该感测区域203由感光面板200的所有感光像素22的感测区域界定,感测区域203以外的区域为非感测区域204,非感测区域204用于设置驱动感光像素22执行光感测的感光驱动单元24等电路或者供柔性电路板连接的线路绑定区。感测区域203的形状与显示区域305的形状一致,且感测区域203的大小大于或等于显示区域305的大小,如此使得感光面板200能对接触或接近显示面板300的显示区域305任意位置的目标物体的预定生物特征信息的感测。进一步地,感光面板200的面积小于或等于显示面板300的面积,且感光面板200的形状与显示面板300的形状一致,如此便于感光面板200与显示面板300的组装。然,可变更地,在某些实施方式中,感光面板200的面积也可以大于显示面板300的面积。
在某些实施方式中,所述感光面板200的感测区域203也可为小于显示面板300的显示区域305,以实现显示面板300显示区域305的局部区域的目标物体的预定生物特征信息的感测。
进一步地,显示装置进一步用于执行触摸感测,当所述显示装置检测到目标物体的触摸或接近之后,所述显示驱动电路驱动对应触摸区域的显示像素发光。
进一步地,参照图21和图22,图21示出了本实用新型一实施方式的电子设备的结构,图22示出了图21所示的电子设备沿I-I线的一实施方式的剖面结构,而且图22仅示出了电子设备的部分结构。该电子设备包括上述任意一实施结构的感光装置或者感光 模组、显示模组,既用于电子设备的图像显示,又用于对接触或接近电子设备的目标物体的生物特征信息进行感测。
电子设备例如但不局限为消费性电子产品、家居式电子产品、车载式电子产品、金融终端产品等合适类型的电子产品。其中,消费性电子产品如为手机、平板电脑、笔记本电脑、桌面显示器、电脑一体机等。家居式电子产品如为智能门锁、电视、冰箱、穿戴式设备等。车载式电子产品如为车载导航仪、车载DVD等。金融终端产品如为ATM机、自助办理业务的终端等。图21示出的电子设备以手机类的移动终端为例,然上述生物感测模组也可适用于其它合适的电子产品,并不局限于手机类的移动终端。
具体地,该移动终端3的正面设有一显示装置(未示出),该显示装置包括一显示面板300,该显示面板300上方设有保护盖板400。可选地,该显示面板300的屏占比较高,例如80%以上。屏占比是指显示面板300的显示区域305占移动终端3的正面区域的比例。该感光模组2中感光面板200为一与显示面板300适配的面板结构,且对应设置在该显示面板300的下方。若该显示面板300为柔性曲面状,则该感光面板200也为柔性曲面状。因此,该感光面板200并不仅表示平面结构,也可以为曲面结构。如此,便于感光面板200与显示面板300的层叠组装。
本实用新型实施方式中,该电子设备除了具有上述实施方式中描述的感光模组2的效果外,还利用显示面板300发出的光信号实现目标物体的生物特征信息感测,不需要额外设置光源,从而不但节省了电子设备的成本,而且还实现了对接触或触摸显示面板300的显示区域305内目标物体进行生物特征信息感测。另外,该感光模组2可以独立制成后,再进行电子设备的组装,从而加快了电子设备的制备。
当移动终端3处于亮屏状态、且处于生物特征信息感测模式时,该显示面板300发出光信号。当一物体接触或接近该显示区时,该感光装置20接收由该物体反射回来的光信号,转换接收到的光信号为相应的电信号,并根据该电信号获取该物体的预定生物特征信息,例如,指纹图像信息。从而,该感光装置20可实现对接触或接近显示区域任意位置的目标物体进行感测。
然,可变更地,在某些实施方式中,请参照图23,图23示出了图21所示的电子设备沿I-I线的另一实施方式的剖面结构,而且图23仅示出了电子设备的部分结构。本实用新型实施方式的感光模组应用于一移动终端3,该移动终端的正面设有一显示面板300,该显示面板300上方设有保护盖板400。该显示面板300的屏占比较高,例如80%以上。屏占比是指显示面板300的实际显示区域305占移动终端的正面区域的比例。该显示面板300的实际显示区域305的中下位置处设有一供目标物体触摸的生物感测区域,以进 行目标物体的生物特征信息感测,例如目标物体为手指,则该生物感测区域为指纹识别区域,以进行指纹识别。对应地,显示面板300下方对应该指纹识别区域的位置设有一感光模组2,该感光模组2用于在手指放置于指纹识别区域S时,获取该手指的指纹图像。可以理解的是,设置于显示面板300的中下位置是为了用户手持移动终端时,方便手指触摸显示面板300的位置。当然,也可以设置于方便手指触摸的其他位置。
在某些实施方式中,电子设备进一步包括一触摸传感器(图中未示出),通过该触摸传感器可以确定目标物体在保护盖板400上的触摸区域。该触摸传感器采用电容触摸感测技术,当然也可以通过其他方式,例如电阻式触摸感测、压感式触摸感测等等。所述触摸传感器用于在一目标物体接触所述保护盖板400时,确定所述目标物体的触摸区域,以驱动对应触摸区域的显示像素点亮以及感光像素执行光感测。
在某些实施方式中,所述触摸传感器或者与所述保护盖板400集成,或者与感光面板200集成,或者与显示面板300集成。通过集成的触摸传感器,不但实现了对目标物体的触摸检测,而且也减小了电子设备的厚度,有利于电子设备朝轻薄化方向发展。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本实用新型的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (29)

  1. 一种感光装置,其特征在于:包括一基底以及设置在所述基底上的多个感光像素,所述感光像素包括传感单元和信号输出单元;其中,
    所述传感单元用于接收光感测控制信号,在接收到光感测控制信号时,执行光感测,并产生相应的感光信号;
    所述信号输出单元用于接收输出控制信号,并在接收到所述输出控制信号时,将所述传感单元产生的感光信号输出。
  2. 如权利要求1所述的感光装置,其特征在于:所述光感测控制信号包括第一扫描驱动信号,所述传感单元包括开关单元以及感光单元;其中,
    所述开关单元用于接收一参考信号以及所述第一扫描驱动信号,在接收到第一扫描驱动信号时,将所述参考信号传输至所述感光单元;
    所述感光单元用于接收所述开关单元传输过来的参考信号,并在第一预定时间到达时开始执行光感测,产生相应的感光信号。
  3. 如权利要求2所述的感光装置,其特征在于:所述感光单元包括至少一感光器件,且所述感光器件包括第一电极,用于接收所述开关单元传输过来的参考信号。
  4. 如权利要求3所述的感光装置,其特征在于:所述感光器件为光电二极管,且所述光电二极管的负极为所述感光器件的第一电极,用于接收所述开关单元传输过来的参考信号Vref,所述光电二极管的正极接一预定电压信号。
  5. 如权利要求3所述的感光装置,其特征在于:所述感光单元进一步包括一第一电容;所述第一电容的第一极板用于接收所述开关单元传输过来的所述参考信号,所述第一电容的第二极板接一预定电压信号,而且所述第一电容在传感单元执行光感测时与所述感光器件形成放电回路。
  6. 如权利要求5所述的感光装置,其特征在于:所述第一电容为一可变电容,或者所述第一电容为由多个电容组成的电容阵列。
  7. 如权利要求5所述的感光装置,其特征在于:所述开关单元包括一第一晶体管,且所述第一晶体管包括第一控制电极、第一传输电极和第二传输电极;其中,所述第一控制电极用于接收所述第一扫描驱动信号,所述第一传输电极用于接收所述参考信号,所述第二传输电极与所述感光器件的第一电极连接;所述第一晶体管在接收到所述第一扫描驱动信号时导通,将所述参考信号传输至所述感光器件的第一电极。
  8. 如权利要求1-7中任意一项所述的感光装置,其特征在于:所述信号输出单元包括 一第二晶体管和缓冲电路;所述缓冲电路连接在所述第二晶体管与所述传感单元之间,用于将所述传感单元执行光感测时产生的电信号进行缓冲;所述第二晶体管包括第二控制电极、第三传输电极和第四传输电极,其中第二控制电极用于接收所述输出控制信号,所述第三传输电极用于连接缓冲电路,所述第二晶体管在接收到输出控制信号时闭合,将缓冲的电信号由所述第四传输电极输出;其中,所述输出控制信号中的高电平信号持续第二预定时间。
  9. 如权利要求8所述的感光装置,其特征在于:所述缓冲电路包括一第三晶体管,且所述第三晶体管包括第三控制电极、第五传输电极、第六传输电极;其中,所述第三控制电极用于连接所述感光器件的第一电极,所述第五传输电极用于接收一电压信号,所述第六传输电极与所述第二晶体管的第三传输电极连接。
  10. 如权利要求8所述的感光装置,其特征在于:所述第二预定时间根据所述传感单元接收到的光信号的强度动态调整。
  11. 如权利要求10所述的感光装置,其特征在于:所述接收到的光信号的强度越大,第二预定时间越短;所述接收到的光信号的强度越小,第二预定时间越长。
  12. 如权利要求7所述的感光装置,其特征在于:所述开关单元进一步用于,在所述感光单元开始执行光感测并持续一预定时间后结束光感测,并对执行光感测产生的感光信号进行锁存,以使所述信号输出单元接收到所述输出控制信号时,将所述锁存的感光信号输出。
  13. 如权利要求12所述的感光装置,其特征在于:所述光感测控制信号进一步包括第二扫描驱动信号,所述开关单元进一步包括第四晶体管,该第四晶体管包括第四控制电极、第七传输电极、第八传输电极,所述第四控制电极用于接收所述第二扫描驱动信号,所述第七传输电极与所述感光器件的第一电极连接,所述第八传输电极与所述第一电容的第一极板连接,所述第一电容的第一极板与所述信号传输单元连接;其中第二扫描驱动信号中的高电平信号持续第三预定时间,所述第三预定时间大于第一预定时间。
  14. 如权利要求12所述的感光装置,其特征在于:所述第一电容用于在所述感光单元结束执行光感测时,将执行光感测时产生的感光信号进行锁存。
  15. 如权利要求1所述的感光装置,其特征在于:所述多个感光像素的传感单元同时执行光感测。
  16. 如权利要求1所述的感光装置,其特征在于:所述基底为硅基底、金属基底、印刷电路板或绝缘基底。
  17. 如权利要求1所述的感光装置,其特征在于:所述基底上还设有分别与所述多个感光像素电性连接的扫描线组、数据线组和信号参考线组。
  18. 如权利要求17所述的感光装置,其特征在于:所述感光装置进一步包括对应与扫描 线组和信号参考线组连接的感光驱动单元,以及与数据线组连接的信号处理单元;所述感光驱动单元用于驱动所述多个感光像素执行光感测,并控制所述多个感光像素执行光感测时产生的电信号输出;所述信号处理单元用于对所述多个感光像素输出的电信号进行读取,并根据读取的电信号获取接触或接近所述感光装置上方的目标物体的预定生物特征信息。
  19. 如权利要求18所述的感光装置,其特征在于:所述感光驱动单元设置在所述基底上,或通过连接件与所述扫描线组和信号参考线组电性连接;所述信号处理单元设置在所述基底上,或通过连接件与所述数据线组电性连接。
  20. 如权利要求1所述的感光装置,其特征在于:所述感光装置为一感光芯片。
  21. 如权利要求1所述的感光装置,其特征在于:所述感光装置用于感测指纹信息。
  22. 一种感光模组,其特征在于:包括如权利要求1-21中任意一项所述的感光装置。
  23. 如权利要求22所述的感光模组,其特征在于:所述感光装置包括一感光面板,且所述感光面板包括基底以及设置在所述基底上的多个感光像素;所述感光模组进一步包括抗混叠成像元件,且所述抗混叠成像元件设置于所述感光面板上。
  24. 如权利要求23所述的感光模组,其特征在于:所述感光模组进一步包括滤光膜,且所述滤光膜设于所述抗混叠成像元件远离所述感光面板的一侧,或者设于所述感光面板与所述抗混叠成像元件之间。
  25. 如权利要求23所述的感光模组,其特征在于:所述感光装置包括一感光面板,且所述感光面板包括基底以及设置在所述基底上的多个感光像素;所述感光模组进一步包括滤光膜,且所述滤光膜设于所述感光面板上。
  26. 如权利要求22-25中任意一项所述的感光模组,其特征在于:所述感光模组为一生物感测芯片。
  27. 一种显示模组,其特征在于:包括一显示装置以及如权利要求22-26中任意一项所述的感光模组,且所述感光模组位于所述显示装置下方。
  28. 一种显示模组,其特征在于:包括一显示装置以及如权利要求22-25中任意一项所述的感光模组,且所述感光模组位于所述显示装置下方;所述显示装置包括一显示面板,且所述显示面板具有显示区域;所述感光模组中的感光面板用于执行对所述显示面板的显示区域内任意位置的目标物体的生物特征信息感测;或者,所述感光模组中的感光面板具有感测区域,且所述感测区域的形状与所述显示区域的形状一致,所述感测区域的大小大于或等于所述显示区域的大小。
  29. 一种电子设备,包括如权利要求1-21中任意一项所述的感光装置,或者如权利要求22-26中任意一项所述的感光模组,或者如权利要求27或28所述的显示模组。
PCT/CN2017/120409 2017-12-30 2017-12-30 感光装置、感光模组、显示模组及电子设备 WO2019127581A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790000328.0U CN209044631U (zh) 2017-12-30 2017-12-30 感光装置、感光模组、显示模组及电子设备
PCT/CN2017/120409 WO2019127581A1 (zh) 2017-12-30 2017-12-30 感光装置、感光模组、显示模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/120409 WO2019127581A1 (zh) 2017-12-30 2017-12-30 感光装置、感光模组、显示模组及电子设备

Publications (1)

Publication Number Publication Date
WO2019127581A1 true WO2019127581A1 (zh) 2019-07-04

Family

ID=67029120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120409 WO2019127581A1 (zh) 2017-12-30 2017-12-30 感光装置、感光模组、显示模组及电子设备

Country Status (2)

Country Link
CN (1) CN209044631U (zh)
WO (1) WO2019127581A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200784A (zh) * 2014-07-24 2014-12-10 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、阵列基板、透反式显示装置
US20150054793A1 (en) * 2011-05-03 2015-02-26 Samsung Electronics Co., Ltd. Optical touch screen apparatuses and methods of driving the optical touch screen apparatuses
KR20150136198A (ko) * 2014-05-26 2015-12-07 삼성디스플레이 주식회사 액정 표시 장치
CN106886767A (zh) * 2017-02-23 2017-06-23 京东方科技集团股份有限公司 一种光学指纹识别装置和显示面板
CN107004130A (zh) * 2015-06-18 2017-08-01 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN107204172A (zh) * 2017-06-02 2017-09-26 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150054793A1 (en) * 2011-05-03 2015-02-26 Samsung Electronics Co., Ltd. Optical touch screen apparatuses and methods of driving the optical touch screen apparatuses
KR20150136198A (ko) * 2014-05-26 2015-12-07 삼성디스플레이 주식회사 액정 표시 장치
CN104200784A (zh) * 2014-07-24 2014-12-10 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、阵列基板、透反式显示装置
CN107004130A (zh) * 2015-06-18 2017-08-01 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN106886767A (zh) * 2017-02-23 2017-06-23 京东方科技集团股份有限公司 一种光学指纹识别装置和显示面板
CN107204172A (zh) * 2017-06-02 2017-09-26 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板

Also Published As

Publication number Publication date
CN209044631U (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
CN108090467B (zh) 感光装置、感光模组、显示模组及电子设备
CN108073911B (zh) 感光装置、感光模组、显示模组及电子设备
WO2019127576A1 (zh) 感光装置的光感测方法
CN107944335B (zh) 感光模组、显示模组及电子设备
CN107958186B (zh) 电子设备
CN107958185B (zh) 显示模组的生物特征信息感测方法
CN107946338B (zh) 显示模组及电子设备
WO2019033348A1 (zh) 显示模组及电子设备
CN107944334B (zh) 感光装置及电子设备
WO2019127577A1 (zh) 感光装置的光感测方法
WO2019127573A1 (zh) 感光驱动电路、感光装置及电子设备
CN108288031B (zh) 感光驱动电路、感光装置及电子设备
CN108133194B (zh) 感光电路、感光装置及电子设备
CN107958195B (zh) 光电传感装置及电子设备
WO2019127580A1 (zh) 感光电路、感光装置及电子设备
WO2019127574A1 (zh) 感光驱动电路、感光装置及电子设备
WO2019127579A1 (zh) 感光装置、感光模组、显示模组及电子设备
WO2019127575A1 (zh) 感光驱动电路、感光装置及电子设备
WO2019033350A1 (zh) 显示模组及电子设备
WO2019127572A1 (zh) 感光驱动电路及感光装置、电子设备
CN108229388B (zh) 感光驱动电路、感光装置及电子设备
WO2019127581A1 (zh) 感光装置、感光模组、显示模组及电子设备
CN108108714B (zh) 感光驱动电路、感光装置及电子设备
CN108229387B (zh) 感光驱动电路及感光装置、电子设备
CN107958191B (zh) 显示模组以及显示模组的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17936376

Country of ref document: EP

Kind code of ref document: A1