WO2019127449A1 - 手术导航方法及系统 - Google Patents
手术导航方法及系统 Download PDFInfo
- Publication number
- WO2019127449A1 WO2019127449A1 PCT/CN2017/120080 CN2017120080W WO2019127449A1 WO 2019127449 A1 WO2019127449 A1 WO 2019127449A1 CN 2017120080 W CN2017120080 W CN 2017120080W WO 2019127449 A1 WO2019127449 A1 WO 2019127449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- puncture needle
- ultrasound image
- coordinate system
- puncture
- ultrasound
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/0841—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
- A61B8/4263—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors not mounted on the probe, e.g. mounted on an external reference frame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
- A61B2017/00119—Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00725—Calibration or performance testing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
- A61B2017/3413—Needle locating or guiding means guided by ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
Definitions
- the present invention relates to the field of medical technology, and in particular to a surgical navigation method and system.
- minimally invasive surgery has become a common treatment because of its small trauma and rapid recovery, such as percutaneous nephrolithotomy (PCNL).
- PCNL percutaneous nephrolithotomy
- accurate and rapid surgical puncture is the basis for ensuring successful surgery and shortening treatment time.
- the main role of minimally invasive surgery is puncture guidance.
- the current popular puncture guidance methods mainly include C-arm X-ray guidance and ultrasound guidance.
- C-arm X-ray guidance has radioactivity, which may cause radiation harm to doctors and patients.
- Ultrasound guidance has problems such as unclear fluoroscopy and insufficient visualization, which makes it difficult for doctors to accurately grasp the direction and depth of puncture.
- a surgical navigation method comprising:
- Optically positioning the ultrasonic probe and the puncture needle with the optical marker configured to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system
- ultrasound imaging data acquired by the ultrasound probe in real time wherein the ultrasound imaging data includes an ultrasound image corresponding to the second coordinate system
- the ultrasonic image is simultaneously displayed and the position and trajectory of the puncturing needle in the ultrasound image of the second coordinate system.
- the optical probe and the puncture needle configured with the optical marker are optically positioned to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system, including:
- the ultrasonic probe and the puncture needle of the configured optical marker are optically positioned according to the three-dimensional calibration information of the ultrasonic probe and the puncture needle with the optical marker configured to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system.
- the position and the trajectory of the puncturing needle in the ultrasonic image of the second coordinate system are generated according to the ultrasonic image corresponding to the second coordinate system and the three-dimensional positioning information of the ultrasonic probe and the puncturing needle relative to the first coordinate system.
- a position and a trajectory of the puncturing needle in the ultrasound image of the second coordinate system are generated.
- the method further includes:
- simultaneously displaying the ultrasonic image and the position and trajectory of the puncturing needle in the ultrasonic image of the second coordinate system include:
- the ultrasound image is displayed synchronously, the shape of the target puncture region and the position of the target puncture region in the ultrasound image, the distance of the puncture needle from the target puncture region in the ultrasound image, and the position and trajectory of the puncture needle.
- the position of the puncture needle in the ultrasound image of the second coordinate system comprises: three-dimensional coordinates of the puncture needle in the ultrasound image of the second coordinate system, an offset distance of the puncture needle from the ultrasound image, and The intersection of the needle extension line and the ultrasound image plane.
- the method further includes:
- An alarm is issued if the offset distance of the puncture needle from the ultrasound image or the distance between the puncture needle and the target puncture area is less than a preset threshold.
- a surgical navigation system comprising:
- a positioning module for optically positioning the ultrasonic probe and the puncture needle of the configured optical marker to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system
- An ultrasound imaging data acquisition module configured to acquire ultrasound imaging data acquired by the ultrasound probe in real time, wherein the ultrasound imaging data includes an ultrasound image corresponding to the second coordinate system;
- a puncture needle trajectory generating module configured to generate a position and a trajectory of the puncture needle in the ultrasonic image of the second coordinate system according to the ultrasonic image corresponding to the second coordinate system and the three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system ;
- a display module is configured to synchronously display the ultrasonic image and the position and trajectory of the puncturing needle in the ultrasonic image of the second coordinate system.
- An optical marker configuration module for configuring an optical marker for the ultrasound probe and the needle; and obtaining three-dimensional calibration information of the ultrasound probe and the needle of the configured optical marker.
- the method further includes:
- a target puncture area determining module configured to acquire a mark on a target puncture area in the ultrasonic image
- the surgical navigation system Also includes:
- the alarm module is configured to issue an alarm when the distance of the puncture needle from the ultrasonic image or the distance between the puncture needle and the target puncture area is less than a preset threshold.
- the above surgical navigation method and system can optically position the puncture needle and the ultrasonic probe through the surgical navigation system, and display the position and trajectory of the puncture needle in the ultrasonic image collected by the ultrasonic probe in real time, thereby eliminating X-ray radiation for doctors and patients.
- the harm also solves the shortcomings of traditional ultrasound-guided angiography, which is unclear and unintuitive, so that doctors can intuitively and efficiently grasp the puncture direction of the operation.
- FIG. 1 is a schematic diagram of an application of a surgical navigation system in an embodiment
- FIG. 2 is a schematic structural view of a surgical navigation system in an embodiment
- FIG. 3 is a schematic structural view of a surgical navigation system in an embodiment
- FIG. 4 is a schematic structural view of a surgical navigation system in an embodiment
- Figure 5 is a schematic structural view of a surgical navigation system in one embodiment
- FIG. 6 is a schematic flow chart of a surgical navigation method in an embodiment
- FIG. 7 is a schematic diagram of a coordinate system in which a surgical navigation method uses a positioning module as a reference in one embodiment
- FIG. 8 is a schematic diagram of a coordinate system in which a surgical navigation method uses an ultrasound image plane as a reference in one embodiment
- FIG. 9 is a schematic diagram of navigation display of a surgical navigation method in one embodiment.
- the embodiment of the present invention provides a surgical navigation system.
- the surgical navigation system 100 can optically perform the puncture needle 101 and the ultrasonic probe 102 .
- Positioning and displaying the position of the puncture needle 101 in the ultrasonic image 103 collected by the ultrasonic probe 102 in real time (as shown in FIG. 1 at T' and the cross No. C point, where T' is the projection of the puncture needle tip on the ultrasound image plane, the fork No.
- the curve around the area M) not only eliminates the X-ray radiation hazard for doctors and patients, but also solves the shortcomings of traditional ultrasound-guided angiography, which is unclear and unintuitive, so that doctors can intuitively and efficiently grasp the puncture direction of the operation. .
- the positioning module 201 is configured to optically position the ultrasonic probe and the puncture needle of the optical marker to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system.
- the optical marker may be an active illumination or reflective optics;
- the first coordinate system is a coordinate system with the positioning module 201 as a reference.
- the optical marker is configured on a device that needs to be used for surgery, such as an ultrasound probe and a puncture needle, so as to optically position the ultrasonic probe and the puncture needle of the configured optical marker through the positioning module 201, thereby obtaining the ultrasound probe and the puncture.
- the needle is located in the three-dimensional positioning information of the first coordinate system.
- the three-dimensional positioning information includes three-dimensional coordinates and directions of the ultrasonic probe and the puncture needle in the first coordinate system, and the positioning accuracy can reach within 2 mm.
- the ultrasound imaging data acquisition module 202 is configured to acquire ultrasound imaging data acquired by the ultrasound probe in real time.
- the ultrasound imaging data includes an ultrasound image corresponding to the second coordinate system.
- the second coordinate system is a coordinate system with the ultrasound image plane as a reference.
- the ultrasound imaging data acquisition module 202 can read the ultrasound imaging data acquired by the ultrasound probe in real time through the ultrasound machine's own data interface, or the ultrasound machine host onboard interface, or the medical information network server interface.
- the ultrasound imaging data includes, but is not limited to, an ultrasound image, time stamp data, working state data, and the like.
- the puncture needle trajectory generating module 203 is configured to generate a position of the puncture needle in the ultrasonic image of the second coordinate system according to the ultrasonic image corresponding to the second coordinate system and the three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system Track.
- the puncture is targeted to the first coordinate system.
- the three-dimensional coordinates and directions are converted into an ultrasound image of the second coordinate system, thereby generating a position and a trajectory of the puncturing needle in the ultrasound image of the second coordinate system.
- the display module 204 is configured to synchronously display the ultrasonic image and the position and trajectory of the puncturing needle in the ultrasonic image of the second coordinate system.
- the position of the puncture needle in the ultrasonic image of the second coordinate system includes quantitative information such as an offset angle of the puncture needle and the ultrasonic image, an offset distance, and the like.
- the trajectory of the puncturing needle in the ultrasound image of the second coordinate system includes the projection of the puncturing needle in the ultrasound image and the trajectory information such as the extension line.
- the surgical navigation system 100 of the present embodiment may further include an optical marker.
- the configuration module 301 is configured to perform optical marker mounting on the ultrasonic probe and the puncture needle.
- the optical marker can be disposed at the tail of the ultrasonic probe and the puncture needle, so that the positioning module 201 can be configured on the ultrasonic probe of the optical marker.
- the optical marker may be composed of three or more active or reflective optical markers.
- it may be an active light-emitting LED or a reflective ball (the reflected light source of which may be provided by the positioning module 201).
- the active light-emitting LED or the light source and the reflection band are preferably in the infrared band.
- the optical marker configuration module 301 can also acquire three-dimensional calibration information of the ultrasonic probe and the puncture needle of the configured optical marker.
- the three-dimensional calibration information refers to that the optical marker is fixed with the ultrasonic probe or the puncture needle to form a rigid body, and the three-dimensional shape of the rigid body and the positional relationship between the components can be determined by CAD design.
- the three-dimensional calibration information may include, but is not limited to, a starting position of the ultrasound probe imaging, an imaging depth, an imaging resolution, an imaging size, a three-dimensional shape of the ultrasonic probe and the puncture needle itself, a positional relationship between the components, and the like.
- the surgical navigation system 100 may further include a target puncture area determining module 401 for acquiring a mark on a target puncture area in the ultrasonic image; and determining a target puncture area according to the mark The shape and position of the target puncture area in the ultrasound image; and determining the needle and target in the ultrasound image based on the position of the target puncture area in the ultrasound image and the position and trajectory of the puncture needle in the ultrasound image of the second coordinate system The distance of the puncture area.
- a target puncture area determining module 401 for acquiring a mark on a target puncture area in the ultrasonic image; and determining a target puncture area according to the mark The shape and position of the target puncture area in the ultrasound image; and determining the needle and target in the ultrasound image based on the position of the target puncture area in the ultrasound image and the position and trajectory of the puncture needle in the ultrasound image of the second coordinate system The distance of the puncture area.
- the doctor can mark the target puncture area in the ultrasound image according to the displayed ultrasound image, which can specifically mark the position of the puncture target in the ultrasound image through the mouse keyboard or the display screen. Therefore, the surgical navigation system 100 can also acquire the mark of the target puncture area by the target puncture area determining module 401, thereby determining the shape of the target puncture area and the position of the target puncture area in the ultrasonic image according to the shape and the area of the mark, and then according to The position of the target puncture area in the ultrasound image and the position and trajectory of the puncture needle in the ultrasound image of the second coordinate system determine the distance of the puncture needle from the target puncture area in the ultrasound image and display the distance and the corresponding trajectory.
- the puncture needle is located at a position in the ultrasound image of the second coordinate system, including quantitative information such as an offset distance of the puncture needle relative to the ultrasound image, an offset angle, and the like. Therefore, in the embodiment, as shown in FIG. 5, the surgical navigation system 100 may further include an alarm module 501, for the distance between the puncture needle and the target puncture area being less than the preset distance of the puncture needle relative to the ultrasonic image. When the threshold is reached, an alert is issued.
- the way to issue an alarm may be an audible alarm, a light alarm, etc., in order to achieve the purpose of reminding the doctor, so that the doctor can more intuitively grasp the puncture direction and depth of the operation, and further improve the accuracy and efficiency of the puncture.
- the surgical navigation system provided by the embodiment does not require a separate ultrasound device, and can adapt the existing ultrasound machine and the ultrasound probe to work together without changing the handheld mode of the ultrasound probe. Therefore, the surgical navigation system will greatly improve the accuracy and efficiency of the puncture operation at a small cost.
- the embodiment of the present invention provides a surgical navigation method, and the execution subject may be the above-mentioned surgical navigation system. As shown in FIG. 6, the method includes the following steps:
- step S601 an optical marker is disposed on the ultrasonic probe and the puncture needle.
- the optical marker may be composed of three or more active or reflective optical markers.
- the optical markers are placed on the instruments to be used, such as the ultrasound probes and the needles, prior to surgery, thereby facilitating optical positioning of the ultrasound probes and needles in subsequent procedures.
- Step S602 acquiring three-dimensional calibration information of the ultrasonic probe and the puncture needle of the configured optical marker.
- the three-dimensional calibration information refers to that the optical marker is fixed with the ultrasonic probe or the puncture needle to form a rigid body, and the three-dimensional shape of the rigid body and the positional relationship between the components can be determined by CAD design.
- the three-dimensional calibration information may include, but is not limited to, a starting position of the ultrasound probe imaging, an imaging depth, an imaging resolution, an imaging size, a three-dimensional shape of the ultrasonic probe and the puncture needle itself, a positional relationship between the components, and the like.
- Step S603 optically positioning the ultrasonic probe and the puncture needle with the optical marker configured to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle relative to the first coordinate system.
- the optical probe and the puncture needle of the optical marker are optically positioned to obtain three-dimensional positioning information of the ultrasonic probe and the puncture needle in the first coordinate system.
- the three-dimensional positioning information includes three-dimensional coordinates and directions of the ultrasonic probe and the puncture needle in the first coordinate system.
- the first coordinate system is a coordinate system with the positioning module 201 as a reference.
- the three-dimensional positioning information of the ultrasound probe and the puncture needle in the coordinate system includes:
- P us-m-opt the three-dimensional coordinates of the geometric center of the optical positioning mark 1021 mounted on the ultrasonic probe 102 in the reference frame of the positioning module 201, such as the center point U0 of the optical positioning mark 1021 in FIG. 7;
- T us-m-cad For the three-dimensional CAD design, the relative positional relationship between the image acquisition starting point of the ultrasonic probe 102 and the geometric center of the optical positioning mark 1021 installed therein, as shown in the dotted line segment of T1 in FIG. 7 (ie, U0-P0) ;
- V us-opt the direction of the ultrasound probe 102 in the frame of reference of the positioning module 201 (as indicated by the arrow);
- P nd-m-opt is the reference frame of the positioning module 201, the three-dimensional coordinates of the optical positioning mark 1011 mounted on the puncture needle 101, such as the center point N0 of the optical positioning mark 1011 in FIG. 7;
- T nd-m-cad in the three-dimensional CAD design, the relative positional relationship between the needle tip of the puncture needle 101 and the geometric center of the mounted optical positioning mark 1011, as shown in the V1 line segment in FIG. 7 (ie, N0-N1);
- Step S604 acquiring ultrasound imaging data acquired by the ultrasound probe in real time, wherein the ultrasound imaging data includes an ultrasound image corresponding to the second coordinate system.
- the ultrasound imaging data includes, but is not limited to, an ultrasound image, time stamp data, working state data, and the like.
- the second coordinate system is a coordinate system with the ultrasound image plane as a reference.
- Step S605 generating a position and a trajectory of the puncturing needle in the ultrasonic image of the second coordinate system according to the ultrasonic image corresponding to the second coordinate system and the three-dimensional positioning information of the ultrasonic probe and the puncturing needle relative to the first coordinate system.
- the ultrasound image plane 800 is used as a frame of reference, and its corresponding coordinate axis is x us , y us , z us , where y us is V us-opt in FIG. 7 . (ie the direction of the ultrasound probe 102);
- o is the starting point of the ultrasound image plane reference system, that is, the P us-opt point P0 in FIG. 7 (the three-dimensional coordinates of the image acquisition starting point of the ultrasonic probe 102), and the size of the ultrasonic image plane 800 can pass through the three-dimensional calibration information. Imaging depth, imaging resolution, imaging size determination of the ultrasound probe 102;
- T' projection of the puncture tip point T on the plane of the ultrasound image
- TT' is the positional relationship between the puncture needle tip T and its projection T' in the plane reference frame of the ultrasound image, and the length thereof is the offset distance of the puncture needle from the ultrasound imaging plane;
- ET' projection of the puncture needle in the plane of the ultrasound image
- E is the intersection of the needle in the plane of the ultrasound image and the edge of the plane of the ultrasound image, which can be understood as the entry point of the needle projection ET' into the plane of the ultrasound image;
- EL the projection of the puncture needle in the ultrasound image and its extended line segment, which is the trajectory of the puncture needle in the ultrasound image;
- A the geometric center point of the puncture target area (circular area in the figure) on the ultrasound image plane, whose coordinates on the ultrasound image plane are determined by image recognition (the initial position is manually marked, and then the position is tracked by image recognition) ;
- Step S606 synchronously displaying the ultrasonic image and the position and trajectory of the puncturing needle in the ultrasonic image of the second coordinate system.
- the optical marker configuration module transmits the three-dimensional calibration information of the ultrasonic probe and the puncture needle and its optical positioning mark to the positioning module, and performs surgical puncture navigation after the calibration is completed. Specifically, the optical positioning of the optical positioning marks 1011 and 1021 is performed by the positioning module, thereby analyzing the three-dimensional positioning information of the puncture needle 101 and the ultrasonic probe 102 according to the collected optical signal, wherein the three-dimensional positioning information refers to the puncture needle. 101 and coordinate information of the ultrasound probe 102 in a coordinate system with a positioning module as a reference system.
- the ultrasonic imaging data acquired by the ultrasonic probe is acquired by the ultrasonic imaging data acquisition module, and may specifically include an ultrasound image, a time stamp data, and working state data.
- the puncture needle trajectory generating module converts the coordinates of the puncture needle into the ultrasonic image of the second coordinate system according to the three-dimensional positioning information of the puncture needle 101 and the ultrasonic probe 102 and the ultrasonic image, wherein the second coordinate system is an ultrasonic image The coordinate system of the reference.
- the position and trajectory of the puncturing needle at the ultrasound image is thus calculated and displayed by the display module.
- the position and the trajectory of the puncturing needle at the ultrasonic image include quantitative information such as an offset angle of the puncturing needle relative to the ultrasonic image, an offset distance, and the like.
- an alarm may also be issued by the alarm module.
- the direction and depth of the puncture and the position of the target puncture area can be clearly indicated, thereby facilitating the accurate and rapid completion of the surgical puncture.
- the line segment ET' and the line segment T'L constitute a trajectory of the puncture needle in the plane of the ultrasonic image
- the cross number C is the intersection of the puncture needle direction and the ultrasonic image plane
- the curve M is the contour of the target puncture region
- the contour The group shadow in the middle is the puncture target.
- the currently displayed picture is that the trajectory of the puncture needle in the plane of the ultrasound image (ie line segment EL) has passed through the target puncture area (ie curve M), but the predicted puncture needle is about to pass through the position of the ultrasound image plane (ie fork C) Located outside the target area, the needle can be adjusted to maintain the fork C in the target area (ie, M), and the needle can be advanced until the fork C coincides with the needle tip (ie, T') to complete the navigation. Achieve successful puncture.
- the ultrasonic image displayed in the display module 204 and the position and the trajectory of the puncture needle in the ultrasonic image can be displayed by color.
- the puncture needle is located in the ultrasonic image.
- the trajectory and its extension lines can be distinguished by line segments of different shapes, thicknesses, or colors, allowing doctors to view the surgical navigation screen more efficiently.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Robotics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种手术导航方法及系统(100),其中方法包括:对已配置光学标记件的超声探头和穿刺针进行光学定位(S603);获取超声探头实时采集的超声成像数据(S604);根据光学定位信息以及超声成像数据生成穿刺针位于超声图像中的位置及轨迹(S605);同步显示超声图像以及穿刺针位于超声图像中的位置及轨迹(S606)。其中系统(100)包括定位模块(201)、超声成像数据获取模块(202)、穿刺针轨迹生成模块(203)以及显示模块(204)。通过手术导航系统(100)可以对穿刺针(101)和超声探头(102)进行光学定位,并实时显示穿刺针(101)在超声探头采集的超声图像(103)中的位置和轨迹,不仅为医生和患者消除了X射线辐射的危害,还解决了传统超声引导的造影不清晰、引导不直观的缺点,从而使得医生可以直观、高效地掌握手术的穿刺方向。
Description
本发明涉及医疗技术领域,特别是涉及一种手术导航方法及系统。
目前,微创手术因其创伤小、恢复快等特点已经成为常见的治疗方法,例如经皮肾镜技术(PCNL)等。在微创手术中,其准确、快速的手术穿刺是保证手术成功、缩短治疗时间的基础。而在微创手术过程中起主导作用的是穿刺引导,目前流行的穿刺引导方法主要有C臂X光引导和超声引导,但是,C臂X光引导存在放射性,会对医生和患者造成辐射危害;而超声引导存在穿刺针造影不清晰、引导不够直观等问题,从而导致医生难以准确把握穿刺方向和深度。
发明内容
基于此,有必要针对目前微创手术中的穿刺引导方法存在辐射危害以及穿刺针造影不清晰、引导不直观的问题,提供一种手术导航方法及系统。
一种手术导航方法,包括:
对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取超声探头和穿刺针相对第一坐标系的三维定位信息;
获取超声探头实时采集的超声成像数据,其中,超声成像数据中包括对应于第二坐标系的超声图像;
根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息,生成穿刺针位于第二坐标系的超声图像中的位置及轨迹;
同步显示超声图像以及穿刺针位于第二坐标系的超声图像中的位置及轨迹。
在其中一个实施例中,在对已配置光学标记件的超声探头和穿刺针进行光学定位之前,还包括:
对超声探头和穿刺针配置光学标记件;
获取已配置光学标记件的超声探头和穿刺针的三维标定信息;
其中,对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取超声探头和穿刺针相对第一坐标系的三维定位信息,包括:
根据已配置光学标记件的超声探头和穿刺针的三维标定信息,对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取超声探头和穿刺针相对第一坐标系的三维定位信息。
在其中一个实施例中,根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息,生成穿刺针位于第二坐标系的超声图像中的位置及轨迹,包括:
根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息;
将穿刺针的坐标转换至第二坐标系的超声图像中;
生成穿刺针位于第二坐标系的超声图像中的位置及轨迹。
在其中一个实施例中,还包括:
获取对超声图像中目标穿刺区域的标记;
根据标记确定目标穿刺区域的形状和目标穿刺区域在超声图像中的位置;
根据目标穿刺区域在超声图像中的位置以及穿刺针位于第二坐标系的超声图像中的位置及轨迹,确定在超声图像中穿刺针与目标穿刺区域的距离;
其中,同步显示超声图像以及穿刺针位于第二坐标系的超声图像中的位置及轨迹,包括:
同步显示超声图像、目标穿刺区域的形状和目标穿刺区域在超声图像中的位置、在超声图像中穿刺针与目标穿刺区域的距离以及穿刺针的位置及轨迹。
在其中一个实施例中,穿刺针位于第二坐标系的超声图像中的位置,包括:穿刺针位于第二坐标系的超声图像中的三维坐标、穿刺针相对超声图像的偏移距离以及所述穿刺针延长线与超声图像平面的交点。
在其中一个实施例中,还包括:
若穿刺针相对超声图像的偏移距离或穿刺针与目标穿刺区域的距离小于预设阈值时,则发出警报。
一种手术导航系统,包括:
定位模块,用于对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取超声探头和穿刺针相对第一坐标系的三维定位信息;
超声成像数据获取模块,用于获取超声探头实时采集的超声成像数据,其中,超声成像数据中包括对应于第二坐标系的超声图像;
穿刺针轨迹生成模块,用于根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息,生成穿刺针位于第二坐标系的超声图像中的位置及轨迹;
显示模块,用于同步显示超声图像以及穿刺针位于第二坐标系的超声图像中的位置及轨迹。
在其中一个实施例中,还包括:
光学标记件配置模块,用于对超声探头和穿刺针配置光学标记件;并获取已配置光学标记件的超声探头和穿刺针的三维标定信息。
在其中一个实施例中,还包括:
目标穿刺区域确定模块,用于获取对超声图像中目标穿刺区域的标记;
还用于根据标记确定目标穿刺区域的形状和目标穿刺区域在超声图像中的位置;
还用于根据目标穿刺区域在超声图像中的位置以及穿刺针位于第二坐标系的超声图像中的位置及轨迹,确定在超声图像中穿刺针与目标穿刺区域的距离。
在其中一个实施例中,穿刺针位于第二坐标系的超声图像中的位置,包括穿刺针相对超声图像的偏移距离以及所述穿刺针延长线与超声图像平面的交点,则该手术导航系统还包括:
报警模块,用于当穿刺针相对超声图像的偏移距离或穿刺针与目标穿刺区域的距离小于预设阈值时,则发出警报。
上述手术导航方法及系统,通过手术导航系统可以对穿刺针和超声探头进行光学定位,并实时显示穿刺针在超声探头采集的超声图像中的位置和轨迹,不仅为医生和患者消除了X射线辐射的危害,还解决了传统超声引导的造影不清晰、引导不直观的缺点,从而使得医生可以直观、高效地掌握手术的穿刺方向。
图1为一个实施例中手术导航系统的应用原理图;
图2为一个实施例中手术导航系统的结构示意图;
图3为一个实施例中手术导航系统的结构示意图;
图4为一个实施例中手术导航系统的结构示意图;
图5为一个实施例中手术导航系统的结构示意图;
图6为一个实施例中手术导航方法的流程示意图;
图7为一个实施例中手术导航方法采用定位模块作为参照的坐标系示意图;
图8为一个实施例中手术导航方法采用超声图像平面作为参照的坐标系示意图;
图9为一个实施例中手术导航方法的导航显示示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
本发明实施例提供了一种手术导航系统,在一个具体的应用场景中,如图1所示,例如在微创手术中,通过该手术导航系统100可以对穿刺针101和超声探头102进行光学定位,并实时显示穿刺针101在超声探头102采集的超声图像103中的位置(如图1中T′处及叉号C点,其中T′处为穿刺针尖在超声图像平面上的投影,叉号C点为穿刺针延长线与超声图像平面的交点)和轨迹(如图1中EL虚线段,即穿刺针在超声图像平面上的投影及其延长线段)以及目标穿刺区域(如图1中的曲线围绕区域M),不仅为医生和患者消除了X射线辐射的危害,还解决了传统超声引导的造影不清晰、引导不直观的缺点,从而使得医生可以直观、高效地掌握手术的穿刺方向。
在一个实施例中,如图2所示,该手术导航系统100可以包括定位模块201、超声成像数据获取模块202、穿刺针轨迹生成模块203以及显示模块204,其中:
定位模块201,用于对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取超声探头和穿刺针相对第一坐标系的三维定位信息。
在本实施例中,光学标记件可以是主动发光式或反射式光学器件;第一坐标系则是以定位模块201作为参照的坐标系。本实施例通过在手术需要使用的器械如超声探头和穿刺针上配置该光学标记件,以便通过定位模块201对已配置光学标记件的超声探头和穿刺针进行光学定位,从而获取超声探头和穿刺针位于第一坐标系的三维定位信息。其中,三维定位信息包括超声探头和穿刺针位于第一坐标系中的三维坐标和方向,其定位精度可以达到2mm以内。
超声成像数据获取模块202,用于获取超声探头实时采集的超声成像数据。其中,超声成像数据中包括对应于第二坐标系的超声图像。在本实施例中,第二坐标系则是以超声图像平面作为参照的坐标系。在本实施例中,超声成像数据获取模块202可以通过超声机自身数据接口、或超声机主机板载接口、或医用信息网络服务器接口实现实时读取超声探头采集的超声成像数据。其中,超声成像数据包括但不限于超声图像、时间戳数据、工作状态数据等。
穿刺针轨迹生成模块203,用于根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息,生成穿刺针位于第二坐标系的超声图像中的位置及轨迹。
在本实施例中,根据超声探头和穿刺针位于第一坐标系中的三维坐标和方向,以及超声探头实时采集的对应于第二坐标系的超声图像,从而将穿刺针对应于第一坐标系中的三维坐标和方向转换至第二坐标系的超声图像中,进而生成穿刺针位于第二坐标系的超声图像中的位置及轨迹。
显示模块204,用于同步显示超声图像以及穿刺针位于第二坐标系的超声图像中的位置及轨迹。
其中,穿刺针位于第二坐标系的超声图像中的位置包括穿刺针与超声图像的偏移角度、偏移距离等量化信息。穿刺针位于第二坐标系的超声图像中的轨迹包括穿刺针在超声图像中的投影以及延长线等轨迹信息。从而使得医生可以通过显示模块204显示的内容直观地掌握手术的穿刺方向,进而提高穿刺的准确度和效率。
在一个具体的实施例中,显示模块204包括但不限于若干显示屏,其中,显示屏可以是普通显示屏、或可触摸显示屏。
在一个实施例中,如图3所示,为了使得在手术过程中,定位模块201能够对超声探头和穿刺针进行准确定位,因此,本实施例中的手术导航系统100还可以包括光学标记件配置模块301,用于对超声探头和穿刺针进行光学标记件的配置,具体可以在超声探头和穿刺针的尾部配置该光学标记件,从而使得定位模块201能够对已配置光学标记件的超声探头和穿刺针进行光学识别、跟踪及定位。在本实施例中,该光学标记件可以是由3枚或3枚以上主动发光式或反射式光学标记物组成。例如可以是主动发光式LED或反射式小球(其反射光源可以由定位模块201提供)。其中,主动式发光式LED或光源和反射波段优选为红外波段。
在本实施例中,该光学标记件配置模块301还可以获取已配置光学标记件的超声探头和穿刺针的三维标定信息。其中,三维标定信息是指光学标记件与超声探头或穿刺针固定后形成刚体,该刚体的三维形状和各部件之间的位置关系,其具体可以通过CAD设计确定。具体的,该三维标定信息可以包括但不限于超声探头成像的起始位置、成像深度、成像分辨率、成像尺寸,超声探头和穿刺针自身的三维形状、各部件之间的位置关系等。
在一个实施例中,如图4所示,该手术导航系统100还可以包括目标穿刺区域确定模块401,用于获取对超声图像中目标穿刺区域的标记;还可以根据所述标记确定目标穿刺区域的形状和目标穿刺区域在超声图像中的位置;并根据目标穿刺区域在超声图像中的位置以及穿刺针位于第二坐标系的超声图像中的位置及轨迹,确定在超声图像中穿刺针与目标穿刺区域的距离。
在本实施例中,医生可以根据显示的超声图像在超声图像中对目标穿刺区域进行标记,其具体可以通过鼠标键盘或显示屏触摸标记穿刺目标在超声图像中的位置。因此,手术导航系统100还可以通过目标穿刺区域确定模块401获取医生对目标穿刺区域的标记,从而根据标记的形状及区域确定目标穿刺区域的形状和目标穿刺区域在超声图像中的位置,进而根据目标穿刺区域在超声图像中的位置以及穿刺针位于第二坐标系的超声图像中的位置及轨迹,确定在超 声图像中穿刺针与目标穿刺区域的距离,并显示该距离以及对应的轨迹。
在一个实施例中,穿刺针位于第二坐标系的超声图像中的位置,包括穿刺针相对超声图像的偏移距离、偏移角度等量化信息。因此,在本实施例中,如图5所示,该手术导航系统100还可以包括报警模块501,用于当穿刺针相对超声图像的偏移距离或穿刺针与目标穿刺区域的距离小于预设阈值时,则发出警报。具体的,其发出警报的方式可以是声音警报、灯光警报等,以达到提醒医生的目的,使得医生能够更加直观地掌握手术的穿刺方向和深度,进一步提高了穿刺的准确度和效率。
本实施例提供的手术导航系统,无需单独的超声设备,可适配现有的超声机和超声探头协同工作,并且不改变超声探头的手持方式。因此,该手术导航系统将以较小的成本大大提高穿刺手术的准确度和效率。
本发明实施例提供了一种手术导航方法,其执行主体可以是上述的手术导航系统,如图6所示,包括如下步骤:
步骤S601,对超声探头和穿刺针配置光学标记件。
在本实施例中,该光学标记件可以是由3枚或3枚以上主动发光式或反射式光学标记物组成。通过在手术前对需要使用的器械如超声探头和穿刺针上配置光学标记件,从而便于后续手术中对超声探头和穿刺针进行光学定位。
步骤S602,获取已配置光学标记件的超声探头和穿刺针的三维标定信息。
其中,三维标定信息是指光学标记件与超声探头或穿刺针固定后形成刚体,该刚体的三维形状和各部件之间的位置关系,其具体可以通过CAD设计确定。具体的,该三维标定信息可以包括但不限于超声探头成像的起始位置、成像深度、成像分辨率、成像尺寸,超声探头和穿刺针自身的三维形状、各部件之间的位置关系等。
步骤S603,对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取超声探头和穿刺针相对第一坐标系的三维定位信息。
在本实施例中,通过对已配置光学标记件的超声探头和穿刺针进行光学定位,从而获取超声探头和穿刺针位于第一坐标系的三维定位信息。其中,三维定位信息包括超声探头和穿刺针位于第一坐标系中的三维坐标和方向。第一坐 标系则是以定位模块201作为参照的坐标系。
在一个具体实施例中,如图7所示,假设定位模块201的坐标轴为x
opt,y
opt,z
opt,则超声探头和穿刺针位于该坐标系的三维定位信息包括:
P
us-m-opt:为在定位模块201的参照系中,超声探头102上安装的光学定位标记1021几何中心的三维坐标,如图7中光学定位标记1021的中心点U0;
T
us-m-cad:为三维CAD设计中,超声探头102的图像采集起始点与其安装的光学定位标记1021几何中心之间的相对位置关系,如图7中T1虚线段(即U0-P0);
P
us-opt:为在定位模块201的参照系中,超声探头102的图像采集起始点的三维坐标,可以理解为P
us-opt=P
us-m-opt+R
cad-opt*T
us-m-cad(R
cad-opt为三维CAD设计参照系与定位模块201参照系的坐标变换关系),如图7中P0点;
V
us-opt:为在定位模块201的参照系中,超声探头102的方向(如箭头所示方向);
P
nd-m-opt:为在定位模块201的参照系中,穿刺针101上安装的光学定位标记1011的三维坐标,如图7中光学定位标记1011的中心点N0;
T
nd-m-cad:为三维CAD设计中,穿刺针101的针尖与其安装的光学定位标记1011几何中心之间的相对位置关系,如图7中V1线段(即N0-N1);
P
nd-opt:为在定位模块201的参照系中,穿刺针101的针尖的三维坐标,可以理解为P
nd-opt=P
nd-m-opt+R
cad-opt*T
nd-m-cad(R
cad-opt为三维CAD设计参照系与定位模块201参照系的坐标变换关系),如图7中N1点;
V
nd-opt:为在定位模块201的参照系中,穿刺针101的方向(如箭头所示方向)。
步骤S604,获取超声探头实时采集的超声成像数据,其中,超声成像数据中包括对应于第二坐标系的超声图像。
其中,超声成像数据包括但不限于超声图像、时间戳数据、工作状态数据等。第二坐标系则是以超声图像平面作为参照的坐标系。
步骤S605,根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息,生成穿刺针位于第二坐标系的超声图像中的位置及轨迹。
具体的,根据对应于第二坐标系的超声图像以及超声探头和穿刺针相对第一坐标系的三维定位信息,将穿刺针的坐标转换至第二坐标系的超声图像中,从而生成穿刺针位于第二坐标系的超声图像中的位置及轨迹。
在一个实施例中,如图8所示,假设以超声图像平面800为参照系,其对应的坐标轴为x
us,y
us,z
us,其中y
us即为图7中的V
us-opt(即超声探头102的方向);
o:为超声图像平面参照系的起点,即图7中的P
us-opt点P0(超声探头102的图像采集起始点的三维坐标),另,超声图像平面800的大小可通过三维标定信息中的超声探头102的成像深度、成像分辨率、成像尺寸确定;
V
nd-us:为在超声图像平面参照系中,穿刺针101的方向,可以理解为V
nd-us=V
nd-opt-V
us-opt;
T:为在超声图像平面参照系中,穿刺针尖的三维坐标,即图7中的P
nd-opt点,可以理解为T=P
nd-opt-P
us-opt;
T′:穿刺针尖点T在超声图像平面上的投影;
TT′:为在超声图像平面参照系中,穿刺针尖T与其投影T′的位置关系,其长度即为穿刺针相对超声成像平面的偏移距离;
ET′:为穿刺针在超声图像平面内的投影;
E:为穿刺针在超声图像平面内投影与超声图像平面边缘的交点,可以理解为穿刺针投影ET′进入超声图像平面的进入点;
T′L:穿刺针投影ET′的延长线;
L:穿刺针投影延长线T′L与超声图像平面边缘的交点,可以理解为穿刺针投影及其延长线段EL离开超声图像平面的离开点;
EL:穿刺针在超声图像中的投影及其延长线段,即为穿刺针在超声图像中的轨迹;
C:穿刺针延长线与超声图像平面的交点,位于穿刺针投影延长线T′L上,如图8中灰色叉号;
TCT′:超声图像平面参照系中,穿刺针方向与超声图像平面的夹角,其角度值即为穿刺针相对超声图像平面的偏移角度;
A:穿刺目标区域(如图中圆形区域)在超声图像平面上的几何中心点,其 在超声图像平面上的坐标通过图像识别确定(初始位置由人工标记,之后通过图像识别进行位置跟踪);
AT:为在超声图像平面参照系中,穿刺目标区域几何中心A与穿刺针尖T的位置关系,其长度即为穿刺针尖与穿刺目标区域的距离。
步骤S606,同步显示超声图像以及穿刺针位于第二坐标系的超声图像中的位置及轨迹。
以下通过一个具体的实施例进一步说明本发明,一般在进行手术穿刺导航前,通过光学标记件配置模块在医用超声探头102的尾部安装光学定位标记1021、在医用穿刺针101的尾部安装光学定位标记1011,然后采集、计算并保存超声探头和穿刺针及其光学定位标记的三维标定信息,其中,三维标定信息是指在三维CAD设计中,超声探头和穿刺针及其光学定位标记在CAD中的坐标信息。
在本实施例中,光学标记件配置模块将超声探头和穿刺针及其光学定位标记的三维标定信息传输给定位模块,并在标定完成后进行手术穿刺导航。具体可通过定位模块进行光学定位,即通过采集光学定位标记1011和1021的光学信号,从而根据采集的光学信号解析穿刺针101和超声探头102的三维定位信息,其中,三维定位信息是指穿刺针101和超声探头102在以定位模块为参照系的坐标系中的坐标信息。
同时通过超声成像数据获取模块获取超声探头实时采集的超声成像数据,具体可以包括超声图像、时间戳数据、工作状态数据等。然后通过穿刺针轨迹生成模块根据穿刺针101和超声探头102的三维定位信息以及超声图像,将穿刺针的坐标转换至第二坐标系的超声图像中,其中,第二坐标系是以超声图像为参照的坐标系。从而计算出穿刺针位于超声图像的位置和轨迹,并通过显示模块显示出来。其中,穿刺针位于超声图像的位置和轨迹包括穿刺针相对于超声图像的偏移角度、偏移距离等量化信息。
在本实施例中,还可以在显示的超声图像中标记出目标穿刺区域,从而通过目标穿刺区域确定模块获取该区域的标记,如图9所示的圆形区域M,其中,该区域的形状可以根据实际需要进行不同设置。进而可以根据该标记确定目标穿刺区域在超声图像800中的位置,并结合穿刺针位于第二坐标系的超声图像 中的位置及轨迹,确定在超声图像中穿刺针与目标穿刺区域的距离。当穿刺针与目标穿刺区域的距离小于预设阈值时,还可以通过报警模块发出警报。在本实施例中,当穿刺针相对于超声图像的偏移距离小于预设阈值时,也可以通过该报警模块发出警报。从而可以明确指示穿刺方向和深度以及目标穿刺区域的位置,进而有利于手术穿刺准确、快速地完成。
如图9所示,线段ET′与线段T′L组成穿刺针在超声图像平面内的轨迹,叉号C为穿刺针方向与超声图像平面的交点,曲线M为目标穿刺区域的轮廓,该轮廓中的团状阴影即为穿刺目标。当前显示的画面为穿刺针在超声图像平面内的轨迹(即线段EL)穿过了目标穿刺区域(即曲线M),但预测的穿刺针即将穿过超声图像平面的位置(即叉号C)位于目标区域外,因此可以通过调整穿刺针,使叉号C保持在目标区域(即M)内,同时推进穿刺针直至叉号C与穿刺针尖(即T′)相重合,即可完成导航,实现成功穿刺。
在上述实施例中,为了增强显示效果,使得显示结果更加直观,显示模块204中显示的超声图像以及穿刺针位于超声图像中的位置及轨迹可以通过彩色显示,具体的,穿刺针位于超声图像中的轨迹及其延长线可以分别通过不同形状、粗细、或颜色的线段加以区分,从而使得医生可以更加高效的查看手术导航画面。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种手术导航方法,其特征在于,包括:对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取所述超声探头和穿刺针相对第一坐标系的三维定位信息;获取所述超声探头实时采集的超声成像数据,所述超声成像数据中包括对应于第二坐标系的超声图像;根据所述对应于第二坐标系的超声图像以及所述超声探头和穿刺针相对第一坐标系的三维定位信息,生成所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹;同步显示所述超声图像以及所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹。
- 根据权利要求1所述的手术导航方法,其特征在于,在所述对已配置光学标记件的超声探头和穿刺针进行光学定位之前,还包括:对所述超声探头和穿刺针配置光学标记件;获取已配置光学标记件的超声探头和穿刺针的三维标定信息;所述对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取所述超声探头和穿刺针相对第一坐标系的三维定位信息,包括:根据已配置光学标记件的超声探头和穿刺针的三维标定信息,对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取所述超声探头和穿刺针相对第一坐标系的三维定位信息。
- 根据权利要求1所述的手术导航方法,其特征在于,所述根据所述对应于第二坐标系的超声图像以及所述超声探头和穿刺针相对第一坐标系的三维定位信息,生成所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹,包括:根据所述对应于第二坐标系的超声图像以及所述超声探头和穿刺针相对第一坐标系的三维定位信息;将所述穿刺针的坐标转换至第二坐标系的超声图像中;生成所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹。
- 根据权利要求1所述的手术导航方法,其特征在于,还包括:获取对超声图像中目标穿刺区域的标记;根据所述标记确定目标穿刺区域的形状和所述目标穿刺区域在所述超声图像中的位置;根据所述目标穿刺区域在所述超声图像中的位置以及所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹,确定在所述超声图像中穿刺针与目标穿刺区域的距离;所述同步显示所述超声图像以及所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹,包括:同步显示所述超声图像、目标穿刺区域的形状和所述目标穿刺区域在所述超声图像中的位置、在所述超声图像中穿刺针与目标穿刺区域的距离以及所述穿刺针的位置及轨迹。
- 根据权利要求4所述的手术导航方法,其特征在于,所述穿刺针位于所述第二坐标系的超声图像中的位置,包括:所述穿刺针位于所述第二坐标系的超声图像中的三维坐标、所述穿刺针相对所述超声图像的偏移距离以及所述穿刺针延长线与超声图像平面的交点。
- 根据权利要求5所述的手术导航方法,其特征在于,还包括:若所述穿刺针相对所述超声图像的偏移距离或所述穿刺针与所述目标穿刺区域的距离小于预设阈值时,则发出警报。
- 一种手术导航系统,其特征在于,包括:定位模块,用于对已配置光学标记件的超声探头和穿刺针进行光学定位,以获取所述超声探头和穿刺针相对第一坐标系的三维定位信息;超声成像数据获取模块,用于获取所述超声探头实时采集的超声成像数据,所述超声成像数据中包括对应于第二坐标系的超声图像;穿刺针轨迹生成模块,用于根据所述对应于第二坐标系的超声图像以及所述超声探头和穿刺针相对第一坐标系的三维定位信息,生成所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹;显示模块,用于同步显示所述超声图像以及所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹。
- 根据权利要求7所述的手术导航系统,其特征在于,还包括:光学标记件配置模块,用于对所述超声探头和穿刺针配置光学标记件;并获取已配置光学标记件的超声探头和穿刺针的三维标定信息。
- 根据权利要求7所述的手术导航系统,其特征在于,还包括:目标穿刺区域确定模块,用于获取对超声图像中目标穿刺区域的标记;还用于根据所述标记确定目标穿刺区域的形状和所述目标穿刺区域在所述超声图像中的位置;还用于根据所述目标穿刺区域在所述超声图像中的位置以及所述穿刺针位于所述第二坐标系的超声图像中的位置及轨迹,确定在所述超声图像中穿刺针与目标穿刺区域的距离。
- 根据权利要求9所述的手术导航系统,其特征在于,所述穿刺针位于所述第二坐标系的超声图像中的位置,包括所述穿刺针相对所述超声图像的偏移距离以及所述穿刺针延长线与超声图像平面的交点,所述手术导航系统还包括:报警模块,用于当所述穿刺针相对所述超声图像的偏移距离或所述穿刺针与所述目标穿刺区域的距离小于预设阈值时,则发出警报。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17936937.6A EP3753507A4 (en) | 2017-12-29 | 2017-12-29 | PROCEDURE AND SYSTEM FOR SURGICAL NAVIGATION |
US17/050,343 US20210307838A1 (en) | 2017-12-29 | 2017-12-29 | Surgical navigation method and system |
PCT/CN2017/120080 WO2019127449A1 (zh) | 2017-12-29 | 2017-12-29 | 手术导航方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/120080 WO2019127449A1 (zh) | 2017-12-29 | 2017-12-29 | 手术导航方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019127449A1 true WO2019127449A1 (zh) | 2019-07-04 |
Family
ID=67062903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/120080 WO2019127449A1 (zh) | 2017-12-29 | 2017-12-29 | 手术导航方法及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210307838A1 (zh) |
EP (1) | EP3753507A4 (zh) |
WO (1) | WO2019127449A1 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108784807A (zh) * | 2018-09-06 | 2018-11-13 | 山东大学齐鲁医院 | 一种具有穿刺定位功能的超声探头及定位方法 |
CN110755136A (zh) * | 2019-10-10 | 2020-02-07 | 中国科学院合肥肿瘤医院 | 一种穿刺方法 |
CN111150461A (zh) * | 2020-02-04 | 2020-05-15 | 赵天力 | 一种穿刺针定位系统及方法 |
CN111588999A (zh) * | 2020-05-25 | 2020-08-28 | 李硕 | 手术导向模型、头戴可穿戴设备辅助手术导航系统及方法 |
CN111671502A (zh) * | 2020-04-17 | 2020-09-18 | 长春理工大学 | 用于经皮穿刺微创手术智能引导的持针器 |
CN112137698A (zh) * | 2020-09-29 | 2020-12-29 | 珠海康弘健康投资管理有限公司 | 一种便携式穿刺器及其组成的穿刺装置和方法 |
CN112656511A (zh) * | 2020-12-31 | 2021-04-16 | 新博医疗技术有限公司 | 光学器械示踪器、微创介入针定位系统及定位方法 |
CN113520543A (zh) * | 2021-06-29 | 2021-10-22 | 深圳先进技术研究院 | 颅内穿刺方法、颅内穿刺装置、颅内穿刺系统及存储介质 |
CN113628277A (zh) * | 2021-06-24 | 2021-11-09 | 北京理工大学 | 手术导航中单目相机内外参动态标定方法及装置 |
CN113786228A (zh) * | 2021-09-15 | 2021-12-14 | 苏州朗润医疗系统有限公司 | 一种基于ar增强现实的辅助穿刺导航系统 |
CN115381542A (zh) * | 2022-08-24 | 2022-11-25 | 易达医(北京)健康科技有限公司 | 测量骨针定位深度的方法及系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113952031A (zh) | 2020-07-21 | 2022-01-21 | 巴德阿克塞斯系统股份有限公司 | 磁跟踪超声探头及生成其3d可视化的系统、方法和设备 |
CN113598948B (zh) * | 2021-08-25 | 2022-09-09 | 上海导向医疗系统有限公司 | 一种精确定位导航目标点的方法 |
CN113855188A (zh) * | 2021-10-20 | 2021-12-31 | 无锡祥生医疗科技股份有限公司 | 超声扫查设备、成像设备、穿刺针监控方法及系统 |
CN114886521A (zh) * | 2022-05-16 | 2022-08-12 | 上海睿刀医疗科技有限公司 | 用于确定穿刺针的位置的装置和方法 |
US12102481B2 (en) | 2022-06-03 | 2024-10-01 | Bard Access Systems, Inc. | Ultrasound probe with smart accessory |
US20240008929A1 (en) * | 2022-07-08 | 2024-01-11 | Bard Access Systems, Inc. | Systems and Methods for Intelligent Ultrasound Probe Guidance |
CN115153782A (zh) * | 2022-08-12 | 2022-10-11 | 哈尔滨理工大学 | 一种超声引导下的穿刺机器人空间注册方法 |
CN117137450B (zh) * | 2023-08-30 | 2024-05-10 | 哈尔滨海鸿基业科技发展有限公司 | 一种基于皮瓣血运评估的皮瓣移植术成像方法和系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007040270A1 (ja) * | 2005-10-06 | 2007-04-12 | Hitachi Medical Corporation | 穿刺治療支援装置 |
US20090005687A1 (en) * | 2007-06-27 | 2009-01-01 | Sotaro Kawae | Ultrasonic imaging apparatus |
CN102860841A (zh) * | 2012-09-25 | 2013-01-09 | 陈颀潇 | 超声图像引导下穿刺手术的辅助导航系统及方法 |
CN103027712A (zh) * | 2012-11-28 | 2013-04-10 | 浙江大学 | 一种电磁定位的超声穿刺导航系统 |
CN104434320A (zh) * | 2014-12-22 | 2015-03-25 | 东南大学 | 一种智能超声导航穿刺系统 |
CN106063726A (zh) * | 2016-05-24 | 2016-11-02 | 中国科学院苏州生物医学工程技术研究所 | 实时穿刺导航系统及其导航方法 |
CN106821499A (zh) * | 2017-02-16 | 2017-06-13 | 清华大学深圳研究生院 | 一种3d虚拟超声引导穿刺导航系统及方法 |
CN108210024A (zh) * | 2017-12-29 | 2018-06-29 | 威朋(苏州)医疗器械有限公司 | 手术导航方法及系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003609A1 (en) * | 1995-07-16 | 1997-02-06 | Ultra-Guide Ltd. | Free-hand aiming of a needle guide |
US6379302B1 (en) * | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies Inc. | Navigation information overlay onto ultrasound imagery |
KR20030058423A (ko) * | 2001-12-31 | 2003-07-07 | 주식회사 메디슨 | 중재적 초음파를 사용하는 3 차원 초음파 진단 시스템에서검침 도구의 관찰 및 이의 대상체로의 진입을 용이하게하기 위한 방법 및 장치 |
US8641621B2 (en) * | 2009-02-17 | 2014-02-04 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures |
US8632468B2 (en) * | 2009-02-25 | 2014-01-21 | Koninklijke Philips N.V. | Method, system and devices for transjugular intrahepatic portosystemic shunt (TIPS) procedures |
US9895135B2 (en) * | 2009-05-20 | 2018-02-20 | Analogic Canada Corporation | Freehand ultrasound imaging systems and methods providing position quality feedback |
US9655595B2 (en) * | 2012-06-14 | 2017-05-23 | Arcitrax Inc. | System, method and device for prostate diagnosis and intervention |
-
2017
- 2017-12-29 WO PCT/CN2017/120080 patent/WO2019127449A1/zh unknown
- 2017-12-29 EP EP17936937.6A patent/EP3753507A4/en active Pending
- 2017-12-29 US US17/050,343 patent/US20210307838A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007040270A1 (ja) * | 2005-10-06 | 2007-04-12 | Hitachi Medical Corporation | 穿刺治療支援装置 |
US20090005687A1 (en) * | 2007-06-27 | 2009-01-01 | Sotaro Kawae | Ultrasonic imaging apparatus |
CN102860841A (zh) * | 2012-09-25 | 2013-01-09 | 陈颀潇 | 超声图像引导下穿刺手术的辅助导航系统及方法 |
CN103027712A (zh) * | 2012-11-28 | 2013-04-10 | 浙江大学 | 一种电磁定位的超声穿刺导航系统 |
CN104434320A (zh) * | 2014-12-22 | 2015-03-25 | 东南大学 | 一种智能超声导航穿刺系统 |
CN106063726A (zh) * | 2016-05-24 | 2016-11-02 | 中国科学院苏州生物医学工程技术研究所 | 实时穿刺导航系统及其导航方法 |
CN106821499A (zh) * | 2017-02-16 | 2017-06-13 | 清华大学深圳研究生院 | 一种3d虚拟超声引导穿刺导航系统及方法 |
CN108210024A (zh) * | 2017-12-29 | 2018-06-29 | 威朋(苏州)医疗器械有限公司 | 手术导航方法及系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3753507A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108784807A (zh) * | 2018-09-06 | 2018-11-13 | 山东大学齐鲁医院 | 一种具有穿刺定位功能的超声探头及定位方法 |
CN110755136A (zh) * | 2019-10-10 | 2020-02-07 | 中国科学院合肥肿瘤医院 | 一种穿刺方法 |
CN111150461A (zh) * | 2020-02-04 | 2020-05-15 | 赵天力 | 一种穿刺针定位系统及方法 |
CN111671502A (zh) * | 2020-04-17 | 2020-09-18 | 长春理工大学 | 用于经皮穿刺微创手术智能引导的持针器 |
CN111671502B (zh) * | 2020-04-17 | 2023-06-13 | 长春理工大学 | 用于经皮穿刺微创手术智能引导的持针器 |
CN111588999B (zh) * | 2020-05-25 | 2022-07-08 | 李硕 | 手术导向模型、头戴可穿戴设备辅助手术导航系统 |
CN111588999A (zh) * | 2020-05-25 | 2020-08-28 | 李硕 | 手术导向模型、头戴可穿戴设备辅助手术导航系统及方法 |
CN112137698A (zh) * | 2020-09-29 | 2020-12-29 | 珠海康弘健康投资管理有限公司 | 一种便携式穿刺器及其组成的穿刺装置和方法 |
CN112656511A (zh) * | 2020-12-31 | 2021-04-16 | 新博医疗技术有限公司 | 光学器械示踪器、微创介入针定位系统及定位方法 |
CN113628277A (zh) * | 2021-06-24 | 2021-11-09 | 北京理工大学 | 手术导航中单目相机内外参动态标定方法及装置 |
CN113520543A (zh) * | 2021-06-29 | 2021-10-22 | 深圳先进技术研究院 | 颅内穿刺方法、颅内穿刺装置、颅内穿刺系统及存储介质 |
CN113786228A (zh) * | 2021-09-15 | 2021-12-14 | 苏州朗润医疗系统有限公司 | 一种基于ar增强现实的辅助穿刺导航系统 |
CN113786228B (zh) * | 2021-09-15 | 2024-04-12 | 苏州朗润医疗系统有限公司 | 一种基于ar增强现实的辅助穿刺导航系统 |
CN115381542A (zh) * | 2022-08-24 | 2022-11-25 | 易达医(北京)健康科技有限公司 | 测量骨针定位深度的方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3753507A4 (en) | 2021-11-17 |
EP3753507A1 (en) | 2020-12-23 |
US20210307838A1 (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019127449A1 (zh) | 手术导航方法及系统 | |
CN108210024B (zh) | 手术导航方法及系统 | |
US12059295B2 (en) | Three dimensional mapping display system for diagnostic ultrasound | |
US10932689B2 (en) | Model registration system and method | |
WO2017211225A1 (zh) | 一种基于实时反馈的增强现实人体定位导航方法及装置 | |
US9700281B2 (en) | Sensor attachment for three dimensional mapping display systems for diagnostic ultrasound machines | |
US20210186355A1 (en) | Model registration system and method | |
US20080123910A1 (en) | Method and system for providing accuracy evaluation of image guided surgery | |
EP2769689B1 (en) | Computer-implemented technique for calculating a position of a surgical device | |
CN106333748B (zh) | 一种基于摄像头的穿刺导航系统 | |
CN102860841B (zh) | 超声图像引导下穿刺手术的辅助导航系统 | |
BR102018077046A2 (pt) | Uso de realidade aumentada para ajudar na navegação durante procedimentos médicos | |
CN105361950A (zh) | 一种红外引导下的计算机辅助穿刺导航系统及方法 | |
JP5569711B2 (ja) | 手術支援システム | |
CN109620303B (zh) | 一种肺部辅助诊断方法及装置 | |
CN114246557A (zh) | 用于近红外脑功能成像装置的定位方法、设备及存储介质 | |
US20230329805A1 (en) | Pointer tool for endoscopic surgical procedures | |
CN104224321B (zh) | 采用无线面配准的手术导航系统及面配准信号采集方法 | |
WO2022206436A1 (zh) | 一种动态位置识别提示系统及其方法 | |
JP2016174788A (ja) | 画像処理装置、画像処理方法及び画像処理プログラム | |
CN117481709A (zh) | 一种前列腺穿刺导航系统 | |
CN219126680U (zh) | 一种激光雷达导航的介入手术装置 | |
TWI501749B (zh) | 手術導引系統之器械導引方法 | |
CN117618085A (zh) | 基于多模态医学影像的机器人穿刺系统及其控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17936937 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017936937 Country of ref document: EP Effective date: 20200729 |