WO2019126948A1 - 一种参数调整方法及相关设备 - Google Patents

一种参数调整方法及相关设备 Download PDF

Info

Publication number
WO2019126948A1
WO2019126948A1 PCT/CN2017/118315 CN2017118315W WO2019126948A1 WO 2019126948 A1 WO2019126948 A1 WO 2019126948A1 CN 2017118315 W CN2017118315 W CN 2017118315W WO 2019126948 A1 WO2019126948 A1 WO 2019126948A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
parameter
power
access network
network device
Prior art date
Application number
PCT/CN2017/118315
Other languages
English (en)
French (fr)
Inventor
郑小金
伏玉笋
周勋
沈思多
郭子钰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17936251.2A priority Critical patent/EP3709721A4/en
Priority to CN201780097694.7A priority patent/CN111466140B/zh
Priority to PCT/CN2017/118315 priority patent/WO2019126948A1/zh
Publication of WO2019126948A1 publication Critical patent/WO2019126948A1/zh
Priority to US16/905,690 priority patent/US11395241B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a parameter adjustment method and related equipment.
  • a Cell-specific Reference Signal is introduced.
  • the power of the CRS is related to the coverage of the cell. The larger the power of the CRS is, the larger the coverage of the cell is. The smaller the power of the CRS is, the smaller the coverage of the cell is.
  • the Radio Remote Unit is a basic functional module of the base station, which can convert the RF signal from the baseband signal to the wireless interface.
  • the power of the RRU is constant, the power of the CRS cannot exceed the power of the RRU. Therefore, if the frequency parameter of the cell (for example, the cell bandwidth) is increased, in order to ensure that the total RRU power does not exceed the standard, it is necessary to reduce the power of the CRS.
  • the power of the CRS is related to the coverage of the cell, and the power of the CRS is reduced, and the coverage of the cell is reduced.
  • the technical problem to be solved by the present application is how to ensure the coverage of a cell when the RRU power is constant.
  • the frequency parameter as the cell bandwidth when the power of the RRU is constant, the maximum transmit power of the cell is constant, and the maximum transmit power cannot exceed the power of the RRU.
  • the maximum transmit power of the cell is positively correlated with the cell bandwidth and the power of the CRS, when the cell bandwidth is increased, by reducing the power of the CRS, the power of the RRU is not exceeded, but the coverage of the cell is The power of the CRS is reduced and reduced.
  • the first aspect of the embodiment of the present invention discloses a parameter adjustment method, which is applied to an access network device, and the method includes:
  • the frequency parameter of the cell corresponding to the access network device Monitoring the frequency parameter of the cell corresponding to the access network device; if the frequency parameter of the cell is increased, the location relationship between the first terminal residing in the cell and the access network device may be determined; a positional relationship between the first terminal and the access network device, the target power parameter of the first terminal is adjusted, so that the power of the RRU does not exceed a preset power, where the target power parameter is power of the CRS. External power parameters.
  • the target power parameter other than the power of the CRS can be adjusted according to the positional relationship between the first terminal and the access network device, The power of the RRU is not exceeded, and the power of the CRS is also guaranteed, which ensures the coverage of the cell.
  • determining the location relationship between the terminal in the terminal set and the access network device may include: acquiring a channel quality parameter (CQI) of the first terminal, and determining, according to the channel quality parameter, a positional relationship between the first terminal and the access network device.
  • CQI channel quality parameter
  • the access network device can determine the distance of the first terminal according to the channel quality parameter fed back by the first terminal, without acquiring the real-time location coordinate of the first terminal, and improving the access network.
  • the device determines the efficiency of the location relationship.
  • the determining, by the access network device, the location relationship between the first terminal and the access network device according to the channel quality parameter may include: if the channel quality parameter of the first terminal is greater than the first
  • the preset parameter threshold may be determined that the distance between the first terminal and the access network device is less than a first preset distance threshold, that is, the first terminal is a near-point terminal;
  • the channel quality parameter of the first terminal is greater than the second preset parameter threshold and less than or equal to the first preset parameter threshold, determining that the distance between the first terminal and the access network device is greater than or equal to the The first preset distance threshold is less than or equal to the second preset distance threshold, that is, the first terminal is a medium-to-nearpoint terminal;
  • the channel quality parameter of the first terminal is less than or equal to the second preset parameter threshold, determining that the distance between the first terminal and the access network device is greater than or equal to the second preset distance threshold, that is, The first terminal is a far end terminal.
  • the access network device can accurately determine whether the first terminal is a near-point terminal, a medium-to-near-point terminal, or a far point according to the correspondence between the size of the channel quality parameter and the location of the first terminal.
  • the terminal improves the efficiency of determining the location relationship of the access network device.
  • the target power parameter may include: a transmit power spectral density.
  • the adjusting the target power parameter of the first terminal according to the location relationship between the first terminal and the access network device may include: if the distance between the first terminal and the access network device is smaller than the first a preset distance threshold, that is, the first terminal is a near-point terminal, and the power value of the CRS may be decreased without changing the power value of the CRS, so that the power of the RRU does not exceed the preset power. .
  • the transmit power spectral density is a transmit power spectral density of a Physical Downlink Shared Channel (PDSCH).
  • the power of the PDSCH is the product of the transmit power spectral density and the frequency parameter.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the target power spectrum parameter may further include: user level parameters and/or demodulation reference signal power.
  • the adjusting the target power parameter of the first terminal according to the location relationship between the first terminal and the access network device may include: if the distance between the first terminal and the access network device is greater than or equal to The second preset distance threshold is smaller than the third preset distance threshold, that is, the first terminal is a medium-to-nearpoint terminal, and the user-level parameter and/or the first terminal may be used according to the transmission manner of the first terminal. Demodulation reference signal power is adjusted.
  • the access network device can adjust the user level parameter (PA) or the demodulation reference signal (DMRS) power by the mid-point terminal, and can be more practical when the frequency parameter is increased, and the power of the RRU is not exceeded. Bandwidth resources, and the power of the CRS is not adjusted, ensuring that the coverage of the cell does not shrink.
  • PA user level parameter
  • DMRS demodulation reference signal
  • the user-level parameter and/or the demodulation reference signal power of the first terminal are adjusted according to the transmission mode of the first terminal, including:
  • the transmission mode of the first terminal is a transmission mode without demodulation reference power, adjusting user level parameters
  • the demodulation reference signal power is adjusted.
  • the modulation order of the first terminal is higher than the modulation order of Quadrature Phase Shift Keying (QPSK), and at this time, for the first terminal
  • QPSK Quadrature Phase Shift Keying
  • the exact value of the offset of the power of the PDSCH subcarrier relative to the CRS needs to be known when performing demodulation, which is related to the user level parameter. Since the transmission of user-level parameters is a necessary operation for reducing the transmission power spectral density in a transmission mode without a demodulation parameter signal (for example, R8 mode), the purpose of reducing the transmission power spectral density can be achieved by adjusting user-level parameters. It ensures that the power of the RRU does not exceed the standard, and the coverage of the cell does not shrink.
  • the access network device may notify the first terminal by using RRC reset signaling.
  • the PDSCH can be adjusted by adjusting the power of the DMRS.
  • the power that is, the power of the RRU is not exceeded, and the coverage of the cell does not shrink.
  • the access network device adjusts the target power parameter of the first terminal according to the location relationship between the first terminal and the access network device, and may include: if the first terminal The distance between the access terminal and the access network device is greater than or equal to the third preset distance threshold, that is, the first terminal is a far-end terminal, and the transmit power spectral density of the first terminal may be increased.
  • the transmit power spectral density is increased, but the actual transmitted bandwidth is reduced, so that the power of the RRU is not exceeded.
  • the present application provides an access network device, which may include multiple functional modules for performing the method provided by the first aspect, or in a possible implementation manner of the first aspect. Any of the methods provided.
  • the application provides an access network device for performing the parameter adjustment method described in the first aspect.
  • the access network device can include a memory and a processor, a transceiver, wherein the transceiver is for communicating with other communication devices, such as the first terminal.
  • the memory is for storing implementation code of a parameter adjustment method described in the first aspect
  • the processor is for executing program code stored in the memory, that is, performing the method provided by the first aspect, or a possible implementation of the first aspect The method provided by any of the modes.
  • a fourth aspect a computer readable storage medium having stored thereon a parameter adjustment method provided by implementing the first aspect, or provided by any one of the possible implementations of the first aspect
  • a program code of a parameter adjustment method the program code comprising a parameter adjustment method provided by the first aspect, or an execution instruction of the parameter adjustment method provided by any one of the possible implementations of the first aspect.
  • a computer program product which, when run on a computer, causes the computer to perform the parameter adjustment method of the first aspect described above and the implementation of each of the possible methods of the first aspect.
  • a communication apparatus comprising a processing element and a storage element, wherein the storage element is for storing a program, and when the program is called by the processing element, for performing the method provided by the first aspect Or the method provided by any of the possible embodiments of the first aspect.
  • FIG. 1 is a schematic structural diagram of a parameter adjustment system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a scenario of a radio interface protocol layer according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an OFDM symbol according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a parameter adjustment method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another parameter adjustment method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of still another parameter adjustment method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a scenario for transmitting power control parameters of a medium and near-point terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another access network device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a parameter adjustment system according to an embodiment of the present invention.
  • the parameter adjustment system may be not limited to a Long Term Evolution (LTE) mobile communication system, a future evolution of the 5th Generation (5G) system, a new air interface (NR) system, and machine and machine communication ( Machine to Machine, M2M) system, etc.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • NR new air interface
  • M2M Machine to Machine
  • the parameter adjustment system may include: an access network device 101, and one or more first terminals 102. among them:
  • the access network device 101 can be a base station, and the base station can be used for communicating with one or more first terminals, and can also be used for communicating with one or more base stations having partial terminal functions (such as a macro base station and a micro base station, Such as access points, communication between).
  • the base station may be a Base Transceiver Station (BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or may be an evolved base station in an LTE system (Evolutional Node B). , eNodeB), and base stations in 5G systems, new air interface (NR) systems.
  • the base station may also be an Access Point (AP), a TransNode (Trans TRP), a Central Unit (CU), or other network entity, and may include some or all of the functions of the above network entities. .
  • the access network device 101 may be composed of two basic functional modules: an indoor baseband unit (BBU) and a radio remote unit RRU.
  • BBU indoor baseband unit
  • RRU radio remote unit
  • the BBU can perform the functions of baseband processing (encoding, multiplexing, modulation, and spreading) of the Uu interface, signaling processing, local and remote operation and maintenance, and the working status monitoring and alarm information reporting of the access network device.
  • the RRU can be used for modulation and demodulation of optical transmission, digital up-conversion, A/D conversion, etc., and can be used to complete the conversion of the intermediate frequency signal to the radio frequency signal, and to transmit the radio frequency signal through the antenna port.
  • a BBU can support multiple RRUs.
  • the cell setting may be on the control board of the BBU.
  • Several RRUs may be connected behind one BBU.
  • the area of the signal coverage area of one RRU may constitute one cell, and the area of signal coverage of multiple RRUs may also constitute a cell.
  • the embodiment of the invention does not impose any limitation on this.
  • the cell 103 may correspond to one RRU or multiple RRUs. However, for the following description, the following description refers to the case where the cell 103 corresponds to one RRU, but it should be noted that in some embodiments, the cell 103 can also correspond to multiple RRUs.
  • the first terminal 102 can be a terminal residing in the cell 103. In an embodiment, the first terminal 102 may be distributed in the entire parameter adjustment system. According to the positional relationship between the first terminal 102 and the access network device 101, the first terminal 102 may be divided into a near-point terminal, Near-point terminal and far-end terminal. In some embodiments of the present application, the first terminal 102 may be stationary, such as a desktop computer, a fixed mainframe computer, etc., or may be mobile, such as a mobile device, a mobile station, or a mobile unit. Unit), M2M terminal, wireless unit, remote unit, user agent, mobile client, etc.
  • the access network device 101 can be configured to communicate with the first terminal 102 over the wireless interface 104.
  • FIG. 2 is a schematic diagram of a scenario of a radio interface protocol layer according to an embodiment of the present invention.
  • the interface between the radio interface protocol layers shown in FIG. 2 can be expressed as a channel, and specifically includes: a logical channel, a transport channel, and a physical channel. among them:
  • the Physical Layer (PHY) transmits a specific signal through a physical channel.
  • the physical channel corresponds to a set of Resource Elements (REs) that carry high-level information.
  • the basic entities that make up the physical channel are Resource Factor (RE) and Resource Block (RB).
  • the physical channel may include: a PDCCH (Physical Downlink Control Channel), a Physical Downlink Shared Channel (PDSCH), a Physical Broadcast Channel (PBCH), and a PMCH (Physical Broadcast Channel).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PMCH Physical Broadcast Channel
  • Physical Multicast Channel Physical Multicast Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the interface between the PHY layer and the Medium Access Control (MAC) layer is a transport channel, and the PHY layer provides services for the MAC layer through a transport channel.
  • MAC Medium Access Control
  • the transport channel may include: DL-SCH (Downlink Shared Channel), BCH (Broadcast Channel), MCH (Multicast Channel), PCH (Paging Channel)
  • DL-SCH Downlink Shared Channel
  • BCH Broadcast Channel
  • MCH Multicast Channel
  • PCH Policy Channel
  • the present invention does not impose any limitation on the channel, the UL-SCH (Uplink Shared Channel), the RACH (Random Access Channel), and the like.
  • the interface between the Media Access Control (MAC) layer and the Radio Link Control (RLC) layer is a logical channel, and the MAC layer can provide services for the RLC layer through a logical channel.
  • MAC Media Access Control
  • RLC Radio Link Control
  • the logical channel may include: a PCCH (Paging Control Channel), a CCCH (Common Control Channel), a DCCH (Dedicated Control Channel), and a DTCH (Dedicated Traffic Channel).
  • PCCH Policy Control Channel
  • CCCH Common Control Channel
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic Channel
  • the embodiment of the present invention provides a parameter adjustment method.
  • inventive principles of the present application can include:
  • the access network device can allocate power to each channel according to the power of the RRU and preset rules, such as a PDCCH, a PDSCH channel, etc.
  • preset rules such as a PDCCH, a PDSCH channel, etc.
  • the embodiment of the present invention mainly relates to a PDSCH channel, which will be described below with a PDSCH channel).
  • the power that can be acquired for each OFDM symbol can be determined by the power of the RRU.
  • OFDM symbols on a PDSCH channel can be classified into two types, that is, a class A PDSCH OFDM (Type A) symbol and a class B PDSCH OFDM (Type B) symbol.
  • each square can be used to represent one RE, and all squares shown in FIG. 3 can represent one RB.
  • Type A A PDSCH OFDM symbol indicating that there is no CRS signal.
  • the PDSCH OFDM symbols of the second column, the third column, and the fourth column in FIG. 3 are all the Type A symbols.
  • the power of TypeA can satisfy the following formula:
  • P TypeA represents the power of Type A
  • P CRS represents the power of each RE of the CRS signal (ie, EPRE, Energy Per Resource Element)
  • ⁇ A represents the ratio of the power of the data channel on the Type A symbol to the P CRS .
  • K A is the number of RBs.
  • Type B indicates a PDSCH OFDM symbol in which a CRS signal exists.
  • a blank RE that is, an RE that does not transmit power
  • the column PDSCH OFDM symbols are all TypeB symbols.
  • the power of the TypeB symbol can satisfy the following formula:
  • P represents TypeB TypeB power
  • P CRS indicates EPRE CRS signal
  • ⁇ B Type B represents the symbol data channel power ratio with respect to P CRS
  • K B is the number of RBs
  • N BW indicates the number of RBs corresponding to the cell bandwidth
  • N CRS indicates the CRS subcarriers owned by each RB on the Type B symbol. Number.
  • the power of the Type B is the sum of the power of the CRS (including the EPRE of the multiple CRSs) and the power of the PDSCH power (including the power of the REs of the plurality of transmittable powers without the CRS signal).
  • the power of the TypeB symbol is constant, the PDSCH is guaranteed.
  • the power is constant, that is, the power of the CRS can be guaranteed to be constant.
  • the PDSCH power may be a product of a transmit power spectral density and a frequency parameter, which may refer to a transmit power spectral density of the PDSCH, which may be a bandwidth. If the frequency parameter changes, the PDSCH power can be changed by adjusting the transmit power spectral density.
  • the issuance of the user-level parameter PA is a necessary operation for reducing the transmission power spectral density. Therefore, by adjusting the user-level parameter PA, the purpose of reducing the transmission power spectral density can be achieved, that is, the PDSCH power is kept unchanged. purpose.
  • the ratio between the power of the demodulation reference signal (DMRS) and the PDSCH power is fixed, and by adjusting the power of the DMRS, the PDSCH power can be kept constant without changing the frequency parameter.
  • resource element Resource Element, RE
  • resource block RB
  • symbol subcarrier
  • subcarrier subcarrier
  • FIG. 4 is a schematic flowchart diagram of a parameter adjustment method according to an embodiment of the present invention.
  • the parameter adjustment method involved in FIG. 4 may include:
  • the cell may be a cell corresponding to the access network device, that is, an area covered by the signal of the access network device.
  • the access network device can include a BBU unit and an RRU unit.
  • the cell can also be an area covered by the signal of the RRU.
  • the frequency parameter may be a cell bandwidth, or may be an RB resource in a channel, or may be an RE resource in a channel, etc., and the present invention does not impose any limitation.
  • the frequency parameters of the cell may also increase.
  • the first terminal is a terminal that resides in a cell.
  • the first terminal may have multiple, and each terminal residing in the cell may serve as the first terminal.
  • the access network device may determine a location relationship between the first terminal and the access network device according to a channel quality parameter (CQI) fed back by the first terminal.
  • CQI channel quality parameter
  • the manner in which the access network device acquires the channel quality parameter of the first terminal may include the steps shown in FIG. 5.
  • the access network device may monitor the frequency parameter increase of the cell in S201, and may send an acquisition request to the first terminal in S202, where the acquisition request is used to acquire the channel of the first terminal. Quality parameters.
  • the first terminal receives the acquisition request and sends its own channel quality parameter to the access network device.
  • the access network device may directly obtain the channel quality parameter of the first terminal without using the obtaining request, for example, when the first terminal broadcasts its own channel quality parameter, the access network The device can directly obtain the channel quality parameter of the first terminal.
  • the first terminal may obtain a channel quality parameter of the first terminal, and determine a positional relationship between the first terminal and the access network device according to the channel quality parameter.
  • the determining the location relationship between the first terminal and the access network device according to the channel quality parameter may include: if the channel quality parameter of the first terminal is greater than a first preset parameter threshold, Determining that the distance between the first terminal and the access network device is less than a first preset distance threshold.
  • the channel quality parameter of the first terminal is greater than the second preset parameter threshold and is less than or equal to the first preset parameter threshold, determining that the distance between the first terminal and the access network device is greater than or equal to the first A preset distance threshold and less than or equal to the second preset distance threshold.
  • the channel quality parameter of the first terminal is less than or equal to the second preset parameter threshold, determining that the distance between the first terminal and the access network device is greater than or equal to the second preset distance threshold.
  • the first preset parameter threshold is greater than the second preset parameter threshold, and the first preset distance threshold is smaller than the second preset parameter threshold.
  • the first terminal may be determined as a near-point terminal, that is, the first terminal and the access network.
  • the distance between the devices is less than the first preset distance threshold.
  • the first terminal When the channel quality parameter is at a medium level, if the channel quality parameter of the first terminal is greater than the second preset parameter threshold and less than or equal to the first preset parameter threshold, the first terminal may be determined to be a medium-to-nearpoint terminal. That is, the distance between the first terminal and the access network device is greater than or equal to the first preset distance threshold and less than or equal to the second preset distance threshold.
  • the first terminal When the channel quality parameter is lower, if the channel quality parameter of the first terminal is less than or equal to the second preset parameter threshold, the first terminal may be determined to be a remote terminal, that is, the first terminal is connected to the first terminal.
  • the distance between the network access devices is greater than or equal to the second preset distance threshold.
  • the remote radio unit is a radio remote unit (RRU) in the access network device, and the preset power is a threshold value that the power of the preset RRU cannot exceed.
  • RRU radio remote unit
  • the target power parameter of the first terminal is a power parameter other than the power of the cell reference signal.
  • the target power parameter may include a transmit power spectral density, a user level parameter PA, and a power to demodulate the reference signal.
  • the transmit power spectral density may be a transmit power spectral density of the PDSCH.
  • the user level parameter PA can be used to measure the relationship between the power of the TypeA symbol and the power of the CRS. The smaller the user level parameter PA, the smaller the power of the Type A symbol relative to the CRS.
  • the power of the demodulation reference signal is a power value of a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • the access network device may adjust the target power parameter according to a different positional relationship between the access network device and the first terminal when the frequency parameter of the cell increases, and maintain the power of the CRS.
  • the PDSCH power is adjusted by adjusting the target power parameter to ensure that the power of the RRU does not exceed the preset power by changing the power parameter of the corresponding CRS.
  • the power of the RRU determines the maximum transmit power of the cell, and the maximum transmit power of the cell is the sum of the powers of the OFDM symbols.
  • the PDSCH power can be adjusted, thereby ensuring that the power of the RRU does not exceed the standard.
  • the power of the control CRS remains unchanged, which ensures the coverage of the cell.
  • FIG. 6 is a schematic flowchart diagram of still another parameter adjustment method according to an embodiment of the present invention.
  • the method as shown in FIG. 6 may include:
  • the first terminal is a terminal that resides in a cell.
  • the target power parameter can include a transmit power spectral density of the first terminal.
  • the transmit power spectral density may refer to the transmit power spectral density of the PDSCH.
  • the PDSCH power is the product of the transmit power spectral density and the frequency parameter.
  • the first terminal may be a near-point terminal.
  • the transmission power spectral density is lowered, and more bandwidth resources can be scheduled, that is, more RB resources are scheduled, and the bandwidth of the actual transmission is increased.
  • the cell bandwidth can represent the available RB resources.
  • the near-end terminal can increase the TB size by reducing the transmit power spectral density and scheduling more RB resources, thereby improving user throughput.
  • the power corresponding to the CRS can be configured as the power corresponding to the smaller bandwidth, and the transmit power spectral density can be reduced to increase the actual transmit bandwidth.
  • the total power of the TypeB symbol is kept unchanged, thereby ensuring that the total power of the RRU does not exceed the preset power.
  • the user-level parameter of the first terminal is determined according to the transmission mode of the first terminal. And/or demodulate the reference signal power for adjustment.
  • the target power spectrum parameter can include: user level parameters and/or demodulation reference signal power.
  • the first terminal When the distance between the first terminal and the access network device is greater than or equal to the second preset distance threshold and less than the third preset distance threshold, the first terminal may be a medium-to-nearpoint terminal. For the mid- and near-point terminals, reducing the power spectral density requires delivering the user-level parameter PA or modifying the power of the DMRS.
  • the user-level parameter and/or the demodulation reference signal power of the first terminal are adjusted according to the transmission mode of the first terminal, including: if the transmission mode of the first terminal is a transmission without demodulation reference power In the mode, the user level parameters are adjusted.
  • the modulation order of the first terminal is higher than the modulation order of Quadrature Phase Shift Keying (QPSK), and at this time, for the first terminal
  • QPSK Quadrature Phase Shift Keying
  • the exact value of the offset of the power of the PDSCH subcarrier relative to the CRS needs to be known when performing demodulation, which is related to the user level parameter. Since in a transmission mode without a demodulation parameter signal (e.g., R8 mode), the issuance of user-level parameters is a necessary operation to reduce the transmission power spectral density.
  • the transmission mode without demodulation reference power may be, for example, an R8 mode, a TM3 (Transmission Mode 3) mode, a TM4 (Transmission Mode 4) mode, or the like.
  • the access network device may notify the first terminal by using RRC reset signaling.
  • FIG. 7 is a schematic diagram of a scenario for power control parameter transmission of a medium and near-point terminal according to an embodiment of the present invention.
  • Figure 7 can be used to indicate the transfer relationship between the inter-layer protocol layers and the external power control parameters.
  • the power of the maximum transmit power does not exceed the power of the RRU, and the user-level parameter PA, the cell-level parameter PB, the maximum transmit power of the cell Pmax, RS1, and the PCRS are calculated, and the PA, PB , Pmax, and PCRS are passed to the MAC layer, RS1 and cell level parameters PB are passed to the PHY layer, and Pmax is passed to the RRU for the RRU to perform model transmission.
  • the access network device may adjust the user-level parameter PA based on the baseline scheduling scheme to adjust the schedulable resources of the first terminal.
  • the baseline scheduling scheme refers to a scheduling scheme in which PDSCH subcarrier power is uniformly allocated.
  • the subcarrier powers scheduled by different users can be adjusted according to the user's transmission mode and channel quality parameter (CQI).
  • the MAC layer can obtain the adjusted user-level parameter PA according to the baseline scheduling scheme and the fast power control scheme (QPC). If the adjusted PA has a larger transport block size (TB size) than the unadjusted PA, then The adjusted user level parameter PA is passed to the PHY layer.
  • QPC fast power control scheme
  • the adjustment of the power of the PDSCH can be performed at the MAC layer.
  • the adjustment of the user-level parameter PA is necessary to adjust the transmission power spectral density.
  • the RRC reconfiguration signaling is required to be sent.
  • the first terminal PA changes.
  • the baseband digital domain power Pbase can be obtained through the user-level parameter PA passed by the MAC layer, and the Pbase is delivered to the RRU for the RRU to transmit signals.
  • the demodulation reference signal power is adjusted if the transmission mode of the first terminal is a transmission mode with demodulation reference power.
  • the transmission method with demodulation reference power may be, for example, a TM9 (Transmission Mode 9) mode.
  • the PDSCH can be adjusted by adjusting the power of the DMRS.
  • the power that is, the power of the RRU is not exceeded, and the coverage of the cell does not shrink.
  • the first terminal may be a remote terminal.
  • the far-end terminal reduces the scheduled RB resources, which can increase the TB size, thereby improving user throughput.
  • the RB resource that is upgraded by the near-end terminal and the RB resource that is reduced by the far-end terminal are controlled, and when the frequency parameter is increased, the CRS power is guaranteed to be unchanged, and the power of the RRU does not exceed the preset power.
  • the different target power spectrum parameters can be adjusted to ensure that when the frequency parameter of the cell increases, the cell is implemented.
  • the coverage does not shrink and the power of the RRU does not exceed the preset power.
  • the access network device may include:
  • the monitoring module 801 is configured to monitor a frequency parameter of the cell.
  • the determining module 802 is configured to determine a location relationship between the first terminal and the access network device if the frequency parameter of the cell is increased, where the first terminal is a terminal that resides in the cell.
  • the adjusting module 803 is configured to adjust the target power parameter of the first terminal according to the positional relationship between the first terminal and the access network device, so that the power of the remote radio unit does not exceed the preset power,
  • the target power parameter is a power parameter other than the power of the cell reference signal.
  • the determining module 802 includes: an obtaining unit 8021, configured to acquire a channel quality parameter of the first terminal.
  • the determining unit 8022 is configured to determine a positional relationship between the first terminal and the access network device according to the channel quality parameter.
  • the determining unit 8022 is configured to: if the channel quality parameter of the first terminal is greater than the first preset parameter threshold, determine that the distance between the first terminal and the access network device is less than a first preset distance threshold; if the channel quality parameter of the first terminal is greater than a second preset parameter threshold and less than or equal to the first preset parameter threshold, determining between the first terminal and the access network device The distance value is greater than or equal to the first preset distance threshold and less than or equal to the second preset distance threshold; if the channel quality parameter of the first terminal is less than or equal to the second preset parameter threshold, determining the first terminal The distance value with the access network device is greater than or equal to the second preset distance threshold.
  • the target power parameter comprises: a transmit power spectral density.
  • the adjusting module 803 is specifically configured to reduce the transmit power spectral density of the first terminal if a distance between the first terminal and the access network device is less than a first preset distance threshold.
  • the target power spectrum parameter comprises: user level parameters and/or demodulation reference signal power
  • the adjusting module 803 is specifically configured to: according to the transmission of the first terminal, if the distance between the first terminal and the access network device is greater than or equal to a second preset distance threshold and less than a third preset distance threshold The method adjusts the user level parameter and/or the demodulation reference signal power of the first terminal.
  • the adjusting module 803 is specifically configured to: if the transmission mode of the first terminal is a transmission mode that does not have a demodulation reference power, adjust a user level parameter, if the transmission mode of the first terminal is The demodulation reference signal power is adjusted by demodulating the reference power transmission mode.
  • the adjusting module 803 is specifically configured to: if the distance between the first terminal and the access network device is greater than or equal to the third preset distance threshold, increase the first terminal Transmit power spectral density.
  • FIG. 9 is a schematic structural diagram of another access network device according to an embodiment of the present invention.
  • the access network device described in this embodiment includes: one or more processors 901, a memory 902, a communication interface 903, a transmitter 905, a receiver 906, a coupler 907, and an antenna 908. These components can be connected by bus 904 or other types, and FIG. 9 is exemplified by a bus connection. among them:
  • Communication interface 903 can be used for access network devices to communicate with other communication devices, such as terminal devices or other network devices.
  • the terminal device may be the first terminal shown in this application.
  • the communication interface 903 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a 5G or a future communication interface of a new air interface.
  • LTE Long Term Evolution
  • the access network device may also be configured with a wired communication interface 903 to support wired communication.
  • the backhaul link between one access network device and other access network devices may be a wired communication connection.
  • Transmitter 905 can be used to perform transmission processing, such as signal modulation, on signals output by processor 901.
  • Receiver 906 can be used to perform reception processing on the mobile communication signals received by antenna 908. For example, signal demodulation.
  • transmitter 905 and receiver 906 can be viewed as a wireless modem. In the access network device, the number of the transmitter 905 and the receiver 906 may each be one or more.
  • the antenna 908 can be used to convert electromagnetic energy in the transmission line into electromagnetic waves in free space or to convert electromagnetic waves in free space into electromagnetic energy in the transmission line.
  • Coupler 907 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 906.
  • Memory 902 is coupled to processor 901 for storing various software programs and/or sets of instructions.
  • memory 902 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 902 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 902 can also store programs that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the processor 901 can be used to perform wireless channel management, implement call and communication link establishment and teardown, and perform power control and the like for terminals in the control area.
  • the processor 901 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM) (for completing a call). Processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code conversion and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) Wait.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code conversion and sub-multiplexer
  • the processor 901 can be used to read and execute computer readable instructions. Specifically, the processor 901 can be used to invoke a program stored in the memory 902.
  • the parameter adjustment method provided by one or more embodiments of the present application is implemented on the access network device side, and executes:
  • the frequency parameter of the cell is increased, determining a location relationship between the first terminal and the access network device, where the first terminal is a terminal that resides in the cell;
  • the access network device can be a base station in the parameter adjustment system shown in FIG. 1, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), an extended service set (ESS), and a NodeB. , eNodeB, access point or TRP, etc.
  • the access network device shown in FIG. 9 is only one implementation manner of the embodiment of the present invention. In an actual application, the access network device may further include more or fewer components, which are not limited herein.
  • a computer readable storage medium storing a program, when executed by a processor, may implement: monitoring a frequency parameter of a cell; If the frequency parameter is increased, determining a positional relationship between the first terminal and the access network device, where the first terminal is a terminal that resides in the cell; and according to a positional relationship between the first terminal and the access network device, the first The target power parameter of the terminal is adjusted so that the power of the radio remote unit does not exceed the preset power, and the target power parameter is a power parameter other than the power of the cell reference signal.
  • Yet another embodiment of the present invention also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above method embodiments.
  • the computer readable storage medium may be an internal storage unit of the terminal described in any of the foregoing embodiments, such as a hard disk or a memory of the terminal.
  • the computer readable storage medium may also be an external storage device of the computer, such as a plug-in hard disk equipped on the computer, a smart memory card (SMC), and a Secure Digital (SD) card. , Flash Card, etc.
  • the computer readable storage medium may also include both an internal storage unit of the terminal and an external storage device.
  • the computer readable storage medium is for storing the program and other programs and data required by the terminal.
  • the computer readable storage medium can also be used to temporarily store data that has been output or is about to be output.
  • the principle of the computer to solve the problem in the embodiment of the present invention is similar to the method embodiment of the present invention. Therefore, the implementation of the computer can refer to the implementation of the method, and is not described here.
  • a computer program product is also provided in the embodiment of the present invention. When it is run on a computer, the computer is caused to execute the embodiment shown in the foregoing method embodiment.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种参数调整方法及相关设备,其中方法包括:监测小区的频率参数;若监测到该小区的频率参数增大,则确定第一终端与该接入网设备之间的位置关系,该第一终端为驻留在该小区的终端;根据该第一终端与该接入网设备之间的位置关系,对该第一终端的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率,该目标功率参数为除小区参考信号的功率之外的功率参数,通过上述方法可以在RRU功率一定的情况下保证小区的覆盖范围。

Description

一种参数调整方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种参数调整方法及相关设备。
背景技术
在移动通信网络中,为了便于对下行信道质量测量和信道估计,用于用户设备(UE,User Experience)侧的相干检测和解调,引入了小区参考信号(Cell-specific Reference Signal,CRS)。CRS的功率与小区的覆盖范围相关,CRS的功率越大,则小区的覆盖范围越大,CRS的功率越小,则小区的覆盖范围越小。
射频拉远单元(Radio Remote Unit,RRU)是基站的一个基本功能模块,可以实现基带信号到无线接口的射频信号的转换。当RRU的功率一定时,CRS的功率不能超过该RRU的功率。因此,如果小区的频率参数(例如小区带宽)增大,为了保证RRU总功率不超标,需要降低CRS的功率。
然而,CRS的功率与小区的覆盖范围相关,CRS的功率降低,则小区的覆盖范围缩小。
发明内容
本申请所要解决的技术问题在于如何在RRU功率一定的情况下保证小区的覆盖范围。
以频率参数为小区带宽为例,RRU的功率一定时,小区的最大发射功率一定,且该最大发射功率不能超过RRU的功率。另一方面,由于该小区的最大发射功率跟小区带宽以及CRS的功率成正相关关系,当小区带宽增大,通过降低该CRS的功率,可以保证该RRU的功率不超标,但小区的覆盖范围因CRS的功率降低而缩小。
本发明实施例第一方面公开了一种参数调整方法,应用于接入网设备,该方法包括:
监测该接入网设备对应的小区的频率参数;如果监测到该小区的频率参数增大,则可以确定驻留在该小区的第一终端与该接入网设备之间的位置关系;根据该第一终端与该接入网设备之间的位置关系,对该第一终端的目标功率参数进行调整,以使RRU的功率不超过预设功率,其中,该目标功率参数为除CRS的功率之外的功率参数。
可见,通过实施上述第一方面的实施方式,在频率参数增大时,可以根据第一终端与该接入网设备之间的位置关系来调整除CRS的功率之外的目标功率参数,既保证了RRU的功率不超标,也保证了CRS的功率不变,也就保证了小区的覆盖范围。
作为一种可行的实施方式,确定该终端集合中的终端与该接入网设备之间的位置关系,可以包括:获取该第一终端的信道质量参数(CQI),并根据该信道质量参数确定该第一终端与该接入网设备之间的位置关系。
可见,通过实施上述可选的实施方式,接入网设备可以依据第一终端反馈的信道质量参数来确定第一终端的远近,而无需获取第一终端的实时位置坐标,提高了该接入网设备确定位置关系的效率。
作为一种可行的实施方式,该接入网设备根据该信道质量参数确定该第一终端与该接入网设备之间的位置关系,可以包括:如果该第一终端的信道质量参数大于第一预设参数 阈值,则可以确定该第一终端与该接入网设备之间的距离值小于第一预设距离阈值,也即该第一终端是近点终端;
如果该第一终端的信道质量参数大于第二预设参数阈值且小于或等于该第一预设参数阈值,则可以确定该第一终端与该接入网设备之间的距离值大于或等于该第一预设距离阈值、且小于或等于第二预设距离阈值,也即该第一终端是中近点终端;
如果该第一终端的信道质量参数小于或等于该第二预设参数阈值,则确定该第一终端与该接入网设备之间的距离值大于或等于该第二预设距离阈值,也即该第一终端为远点终端。
可见,通过实施上述可行的实施方式,接入网设备根据信道质量参数的大小与第一终端的位置的对应关系,可以准确判断出该第一终端是近点终端、中近点终端还是远点终端,提高了该接入网设备确定位置关系的效率。
作为一种可行的实施方式,该目标功率参数,可以包括:发射功率谱密度。根据该第一终端与该接入网设备之间的位置关系,对该第一终端的目标功率参数进行调整,可以包括:如果该第一终端与该接入网设备之间的距离值小于第一预设距离阈值,也即该第一终端为近点终端,则可以不改变CRS的功率值,而是降低该第一终端的发射功率谱密度,以使该RRU的功率不超过预设功率。
其中,该发射功率谱密度为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的发射功率谱密度。PDSCH的功率为发射功率谱密度与频率参数的乘积。对于带有CRS信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号而言,其OFDM符号的总功率为CRS的功率与PDSCH功率之和,OFDM符号的总功率由RRU的功率确定。
可见,通过实施上述可选的实施方式,当小区频率参数(例如小区带宽)增大时,通过保持CRS功率不变,降低发射功率谱密度,可以使用更多的带宽资源,且保持RRU的功率不超标。
作为一种可行的实施方式,该目标功率谱参数还可以包括:用户级参数和/或解调参考信号功率。
根据该第一终端与该接入网设备之间的位置关系,对该第一终端的目标功率参数进行调整,可以包括:如果该第一终端与该接入网设备之间的距离值大于等于第二预设距离阈值、且小于第三预设距离阈值,即该第一终端为中近点终端,则可以根据该第一终端的传输方式对该第一终端的该用户级参数和/或解调参考信号功率进行调整。
可见,该接入网设备可以通过对中近点终端调整用户级参数(PA)或者解调参考信号(DMRS)功率,可以在频率参数增大时,在RRU的功率不超标的前提下多实用带宽资源,且未调整CRS的功率,保证了小区的覆盖范围不收缩。
作为一种可选的实施方式,根据该第一终端的传输方式对该第一终端的该用户级参数和/或解调参考信号功率进行调整,包括:
如果该第一终端的传输方式为不具有解调参考功率的传输方式,则调整用户级参数;
如果该第一终端的传输方式为具有该解调参考功率的传输方式,则调整解调参考信号功率。
当该第一终端为中近点终端时,则该第一终端的调制阶数高于正交相移键控(Quadrature Phase Shift Keying,QPSK)的调制阶数,这时,针对该第一终端进行解调时需要知道PDSCH子载波相对于CRS的功率的偏移量的准确值,该准确值与用户级参数有关。由于在不具有解调参数信号的传输模式下(例如R8模式),下发用户级参数是降低发射功率谱密度的必要操作,因此,通过调整用户级参数可以达到降低发射功率谱密度的目的,保证了RRU的功率不超标,且小区的覆盖范围不收缩。
在一个实施例中,如果用户级参数发生了变化,该接入网设备可以通过RRC重置信令来通知该第一终端。
由于在具有解调参数信号的传输模式下(例如TM9模式),解调参考信号(Demodulation Reference Signal,DMRS)的功率与PDSCH功率之间的比例固定,通过调整DMRS的功率,即可以调整PDSCH的功率,也即保证了RRU的功率不超标,且小区的覆盖范围不收缩。
在一些可行的实施方式中,该接入网设备根据该第一终端与该接入网设备之间的位置关系,对该第一终端的目标功率参数进行调整,可以包括:若该第一终端与该接入网设备之间的距离值大于或等于该第三预设距离阈值,即该第一终端为远点终端,则可以增大该第一终端的发射功率谱密度。
对于远点终端而言,提升该发射功率谱密度,但实际发射的带宽减少,因此可以保证RRU的功率不会超标。
第二方面,本申请提供了一种接入网设备,该接入网设备可包括多个功能模块,用于相应的执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
第三方面,本申请提供了一种接入网设备,用于执行第一方面描述的参数调整方法。所述接入网设备可包括:存储器以及处理器、收发器,其中:所述收发器用于与其他通信设备(如第一终端)通信。所述存储器用于存储第一方面描述的参数调整方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
第四方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有实现第一方面所提供的参数调整方法,或者第一方面可能的实施方式中的任意一种所提供的参数调整方法的程序代码,该程序代码包含运行第一方面所提供的参数调整方法,或者第一方面可能的实施方式中的任意一种所提供的参数调整方法的执行指令。
第五方面,提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面的参数调整方法和第一方面的各可能的方法的实施方式。
第六方面,提供了一种通信装置,包括处理元件和存储元件,其中所述存储元件用于存储程序,当所述程序被所述处理元件调用时,用于执行第一方面所提供的方法,或者第一方面可能的实施方式中的任意一种所提供的方法。
附图说明
图1是本发明实施例提供的一种参数调整系统的架构示意图;
图2是本发明实施例提供的一种无线接口协议层的情景示意图;
图3是本发明实施例提供的一种OFDM符号的示意图;
图4是本发明实施例提供的一种参数调整方法的流程示意图;
图5是本发明实施例提供的另一种参数调整方法的流程示意图;
图6是本发明实施例提供的又一种参数调整方法的流程示意图;
图7是本发明实施例提供的一种针对中近点终端的功控参数传递的情景示意图;
图8是本发明实施例提供的一种接入网设备的结构示意图;
图9是本发明实施例提供的另一种接入网设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行说明。
为了更好理解本发明实施例提供的一种参数调整方法及相关设备,下面先描述本申请所涉及的系统架构。
请参阅图1,是本发明实施例提供的一种用于参数调整系统的架构示意图。
该参数调整系统可以不限于长期演进(Long Term Evolution,LTE)的移动通信系统、未来演进的第五代移动通信(the 5th Generation,5G)系统、新空口(NR)系统、机器与机器通信(Machine to Machine,M2M)系统等。如图1所示,该参数调整系统可包括:接入网设备101,一个或多个第一终端102。其中:
接入网设备101可以为基站,该基站可以用于与一个或多个第一终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNodeB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
具体的,该接入网设备101可由室内基带处理单元(Bui lding Base band Unite,BBU)和射频拉远单元RRU这两个基本功能模块组成。其中,BBU可完成Uu接口的基带处理功能(编码、复用、调制和扩频等)、信令处理、本地和远程操作维护等功能,以及该接入网设备的工作状态监控和告警信息上报功能。RRU可用于光传输的调制解调、数字上下变频、A/D转换等,以及可用于完成中频信号到射频信号的变换,将射频信号通过天线口发射出去的功能。
一个BBU可以支持多个RRU。小区设定可以是在BBU的控制板子上,一个BBU后边可能连接几个RRU,一个RRU的信号覆盖范围的区域可以构成一个小区,多个RRU的信号覆盖范围的区域也可以构成一个小区,本发明实施例对此不作任何限制。图1中,小区103可对应一个RRU,也可对应多个RRU,但为了以下便于说明,以下叙述过程均以小区103对应一个RRU为例,但应知,在某些实施例中,该小区103还可以对应多个RRU。
该第一终端102可以为驻留在该小区103的终端。在一个实施例中,第一终端102可 以分布在整个参数调整系统中,根据第一终端102与接入网设备101之间的位置关系,可将该第一终端102分为近点终端、中近点终端以及远点终端。在本申请的一些实施例中,该第一终端102可以是静止的,例如台式电脑、固定的大型计算机等,也可以是移动的,例如移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等。
在一个实施例中,接入网设备101可用于通过无线接口104与第一终端102通信。
图2为本发明实施例提供的一种无线接口协议层的情景示意图。图2所示的无线接口协议层之间的接口可表达为信道,具体可包括:逻辑信道、传输信道和物理信道。其中:
(1)物理层(Physical Layer,PHY)通过物理信道进行具体信号的传输。物理信道和承载高层信息的资源因子(Resource Element,RE)集合相对应。组成物理信道的基本实体是资源因子(RE)和资源块(Resource Block,RB)。
在一个实施例中,物理信道可包括:PDCCH(Physical Downlink Control Channel,物理下行控制信道)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、PBCH(Physical Broadcast Channel,物理广播信道)、PMCH(Physical Multicast Channel,物理多播信)、PHICH(Physical Hybrid ARQ Indicator Channel,物理H-ARQ指示信道)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)、PRACH(Physical Random Access Channel,物理随机接入信道)等等,本发明实施例对此不作任何限制。
(2)PHY层和媒体接入控制(MAC)层之间的接口为传输信道,PHY层通过传输信道为MAC层提供服务。
在一个实施例中,传输信道可包括:DL-SCH(Downlink Shared Channel,下行共享信道)、BCH(Broadcast Channel,广播信道)、MCH(Multicast Channel,多播信道)、PCH(Paging Channel,寻呼信道)、UL-SCH(Uplink Shared Channel;上行共享信道)、RACH(Random Access Channel,随机接入信道)等等,本发明实施例对此不作任何限制。
(3)媒体接入控制(Media Access Control,MAC)层与无线链路控制(Radio Link Control,RLC)层之间的接口为逻辑信道,MAC层可以通过逻辑信道为RLC层提供服务。
在一个实施例中,逻辑信道可包括:PCCH(Paging Control Channel,寻呼控制信道)、CCCH(Common Control Channel,公共控制信道)、DCCH(Dedicated Control Channel,专用控制信道)、DTCH(Dedicated Traffic Channel,专用业务信道)等,本发明实施例对此不作任何限制。
基于前述参数调整系统对应的实施例,本发明实施例提供了一种参数调整方法。
本申请的发明原理可包括:
接入网设备可以按照RRU的功率,并以预设规则将功率分配到各个信道上,例如PDCCH、PDSCH信道等(本发明实施例主要涉及PDSCH信道,下面将以PDSCH信道进行说明)。
在时域上,每个OFDM符号所能获取的功率可由RRU的功率确定。
请参阅图3,根据OFDM符号是否存在CRS信号,可以把PDSCH信道上的OFDM符号分为两类,即,A类PDSCH OFDM(TypeA)符号,B类PDSCH OFDM(TypeB)符号。 其中,每个方格可用于表示一个RE,图3所示的所有方格可表示一个RB。
(1)TypeA(A类):表示不存在CRS信号的PDSCH OFDM符号。图3中的第二列、第三列、第四列等PDSCH OFDM符号均为该TypeA符号。TypeA的功率可满足以下公式:
Figure PCTCN2017118315-appb-000001
其中,P TypeA表示TypeA的功率,P CRS表示CRS信号的每个RE上的功率(即EPRE,Energy Per Resource Element),ρ A表示Type A符号上数据信道的功率相对于P CRS的比例,
Figure PCTCN2017118315-appb-000002
表示Type A符号上每个RE拥有的PDSCH子载波个数,K A为RB的个数。
(2)TypeB(B类):表示存在CRS信号的PDSCH OFDM符号,其中,为了避免CRS信号产生干扰,可以设置空白RE,也即不发射功率的RE,图3中的第一列、第五列PDSCHOFDM符号均为该TypeB符号。TypeB符号的功率可满足以下公式:
Figure PCTCN2017118315-appb-000003
其中,P TypeB表示TypeB的功率,P CRS表示CRS信号的EPRE,ρ B表示Type B符号上数据信道的功率相对于P CRS的比例,
Figure PCTCN2017118315-appb-000004
表示Type B符号上每个RE拥有的PDSCH子载波个数,K B为RB的个数,N BW表示小区带宽对应的RB个数,N CRS表示Type B符号上每个RB拥有的CRS子载波个数。
TypeB的功率为CRS的功率(包括多个CRS的EPRE)与PDSCH功率(包括多个未存在CRS信号的可发射功率的RE的功率)之和,当TypeB符号的功率一定时,通过保证该PDSCH功率不变,即可以保证该CRS的功率不变。
在一个实施例中,该PDSCH功率可以为发射功率谱密度与频率参数的乘积,该发射功率谱密度可以是指PDSCH的发射功率谱密度,该频率参数可以为带宽。如若频率参数改变,通过调整该发射功率谱密度可实现该PDSCH功率不变。
在一个实施例中,下发用户级参数PA是降低发射功率谱密度的必要操作,因此,通过调整用户级参数PA可以达到降低发射功率谱密度的目的,也即达到使PDSCH功率保持不变的目的。
在一个实施例中,解调参考信号(DMRS)的功率与PDSCH功率之间的比例固定,通过调整DMRS的功率,即可以在频率参数改变的情况下保持PDSCH功率不变。
需要说明的是,以上发明原理仅仅用于解释,不应构成限定。
需要说明的,本申请涉及的资源粒子(Resource Element,RE),资源块(Resource Block,RB),符号(symbol),子载波(subcarrier)等概念的定义可以参考LTE标准,但是不限于LTE标准,未来通信标准中关于上述概念的定义可能不同。
基于上述主要发明原理,下面说明本申请提供的参数调整方法的方法实施例。需要说明的是,本申请所涉及的方法实施例可引用于接入网设备,该接入网设备包括但不限于图1中对接入网设备中的举例。
请参阅图4,为本发明实施例提供的一种参数调整方法的流程示意图。图4所涉及的参数调整方法可包括:
S101、监测小区的频率参数。
需要说明的是,该小区可以是该接入网设备对应的小区,也即该接入网设备的信号所 覆盖的区域。该接入网设备可包括BBU单元以及RRU单元,在一个实施例中,该小区也可以为RRU的信号所覆盖的区域。
在一个实施例中,该频率参数可以为小区带宽,也可以是信道中的RB资源,还可以是信道中的RE资源等等,本发明对此不作任何限制。
在一个实施例中,如果通信运营商的频谱资源增大(如由15MHz增大到20MHz),那么小区的频率参数(如小区带宽)也可以随之增大。
S102、若监测到小区的频率参数增大,则确定第一终端与接入网设备之间的位置关系。
其中,第一终端为驻留在小区的终端。该第一终端可以具有多个,驻留在小区中的每一个终端均可以作为该第一终端。
接入网设备可以依据第一终端反馈的信道质量参数(CQI)来确定第一终端与该接入网设备之间的位置关系。
举例来说,该接入网设备获取第一终端的信道质量参数的方式可包括图5所示的步骤。在图5中,接入网设备可以在S201中,监测到小区的频率参数增大,并可以在S202中,向该第一终端发送获取请求,该获取请求用于获取该第一终端的信道质量参数。
在S203中,该第一终端接收到该获取请求,并发送自身的信道质量参数至该接入网设备。
在一个实施例中,该接入网设备也可以不通过该获取请求便可直接获取到该第一终端的信道质量参数,例如,该第一终端广播自身的信道质量参数时,该接入网设备便可直接获取到该第一终端的信道质量参数。
在S204中,该第一终端便可获取到该第一终端的信道质量参数,并根据该信道质量参数确定该第一终端与接入网设备之间的位置关系。
在一个实施例中,该根据该信道质量参数确定该第一终端与该接入网设备之间的位置关系,可以包括:若该第一终端的信道质量参数大于第一预设参数阈值,则确定该第一终端与该接入网设备之间的距离值小于第一预设距离阈值。
若该第一终端的信道质量参数大于第二预设参数阈值且小于或等于该第一预设参数阈值,则确定该第一终端与该接入网设备之间的距离值大于或等于该第一预设距离阈值、且小于或等于第二预设距离阈值。
若该第一终端的信道质量参数小于或等于该第二预设参数阈值,则确定该第一终端与该接入网设备之间的距离值大于或等于该第二预设距离阈值。
需要说明的是,该第一预设参数阈值大于该第二预设参数阈值,该第一预设距离阈值小于该第二预设参数阈值。
当信道质量参数很大时,如该第一终端的信道质量参数大于第一预设参数阈值时,则可确定该第一终端为近点终端,也即,该第一终端与该接入网设备之间的距离值小于第一预设距离阈值。
当信道质量参数处于中等水平时,如该第一终端的信道质量参数大于第二预设参数阈值且小于或等于该第一预设参数阈值,则可确定该第一终端为中近点终端,也即,该第一终端与该接入网设备之间的距离值大于或等于该第一预设距离阈值、且小于或等于第二预设距离阈值。
当信道质量参数较低时,如该第一终端的信道质量参数小于或等于该第二预设参数阈值,则可确定该第一终端为远点终端,也即,该第一终端与该接入网设备之间的距离值大于或等于该第二预设距离阈值。
S103、根据所述第一终端与所述接入网设备之间的位置关系,对所述第一终端的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率。
该射频拉远单元为该接入网设备中的射频拉远单元(RRU),该预设功率为预设的RRU的功率不能超过的门限值。
需要说明的是,该第一终端的目标功率参数为除小区参考信号的功率之外的功率参数。
在一个实施例中,该目标功率参数可包括发射功率谱密度,用户级参数PA,解调参考信号的功率。
其中,该发射功率谱密度可以为PDSCH的发射功率谱密度。
其中,该用户级参数PA可用于衡量TypeA符号的功率与CRS的功率之间的关系。用户级参数PA越小,则可以表示TypeA符号的功率相对于CRS的功率越小。
其中,该解调参考信号的功率为解调参考信号(DMRS)的功率值。
在一个实施例中,该接入网设备可以在小区的频率参数增大时,根据该接入网设备与第一终端之间不同的位置关系,来调整目标功率参数,并保持CRS的功率不变(即仍配置为频率参数较小时对应的CRS的功率值),通过调整该目标功率参数,使PDSCH功率得到调整,从而保证了RRU的功率不超过预设功率。
可见,在本发明实施例中,当小区的频率参数增大时,RRU的功率决定了小区的最大发射功率,小区的最大发射功率为各个OFDM符号的功率之和。通过调整目标功率参数,可以调整PDSCH功率,进而保证了RRU的功率不超标。同时,控制CRS的功率保持不变,也就保证了小区的覆盖范围。
下面请参阅图6,为本发明实施例提供的又一种参数调整方法的流程示意图。如图6所示的方法可包括:
S301、监测小区的频率参数。
S302、若监测到小区的频率参数增大,则确定第一终端与接入网设备之间的位置关系。
其中,第一终端为驻留在小区的终端。
需要说明的是,上述S301以及S302的具体实现过程可参考前述实施例中S101以及S102步骤的相关描述,在此不作赘述。
S303、若第一终端与接入网设备之间的距离值小于第一预设距离阈值,则降低第一终端的发射功率谱密度。
在一个实施例中,该目标功率参数可以包括该第一终端的发射功率谱密度。该发射功率谱密度可以是指PDSCH的发射功率谱密度。该PDSCH功率为发射功率谱密度与频率参数的乘积。
如果该第一终端与接入网设备之间的距离值小于第一预设距离阈值,则可以说明该第一终端为近点终端。对于近点终端而言,在OFDM符号的总功率一定的情况下,降低该发射功率谱密度,可以调度更多的带宽资源,也即调度更多的RB资源,提高实际发射的带 宽。
以该频率参数为小区带宽为例,小区带宽可表示可使用的RB资源。在一个实施例中,如果RB资源有剩余,近点终端可以通过降低发射功率谱密度,调度更多的RB资源的方式来提升TB size,可以提高用户吞吐率。
举例来说,当接入网设备监测到小区带宽增大时,可以配置该CRS的功率仍为较小带宽时对应的功率,并且可降低该发射功率谱密度,使实际发射带宽增大,从而保持TypeB符号的总功率不变,从而保证了RRU的总功率不超过预设功率。
S304、若第一终端与接入网设备之间的距离值大于等于第二预设距离阈值、且小于第三预设距离阈值,则根据第一终端的传输方式对第一终端的用户级参数和/或解调参考信号功率进行调整。
在一个实施例中,该目标功率谱参数可以包括:用户级参数和/或解调参考信号功率。
当该第一终端与接入网设备之间的距离值大于等于第二预设距离阈值、且小于第三预设距离阈值时,可以说明该第一终端为中近点终端。对于中近点终端而言,降低功率谱密度需要下发用户级参数PA或者修改DMRS的功率。
在一个实施例中,根据第一终端的传输方式对第一终端的用户级参数和/或解调参考信号功率进行调整,包括:若第一终端的传输方式为不具有解调参考功率的传输方式,则调整用户级参数。
当该第一终端为中近点终端时,则该第一终端的调制阶数高于正交相移键控(Quadrature Phase Shift Keying,QPSK)的调制阶数,这时,针对该第一终端进行解调时需要知道PDSCH子载波相对于CRS的功率的偏移量的准确值,该准确值与用户级参数有关。由于在不具有解调参数信号的传输模式下(例如R8模式),下发用户级参数是降低发射功率谱密度的必要操作。
需要说明的是,不具有解调参考功率的传输方式,例如可以是R8模式、TM3(Transmission Mode 3)模式、TM4(Transmission Mode 4)模式等等。
在一个实施例中,如果用户级参数发生了变化,该接入网设备可以通过RRC重置信令来通知该第一终端。
举例来说,请参阅图7,为本发明实施例提供的一种针对中近点终端的功控参数传递的情景示意图。图7可用于表示下行功率控制参数的在各层间协议层以及外部的传递关系。
P CRS可以表示CRS子载波上的EPRE;用户级参数PA和小区级参数PB可以共同确定PDSCH的功率相对于P CRS的偏移量;P max=max{P TypeA,P TypeB}表示小区的最大发射功率,其中P TypeA表示TypeA符号的功率,P TypeB表示TypeB符号的功率,RS L1可以表示相对导频功率,P base表示基带数字域功率,它们分别可以看做P CRS及下行发射功率在L1的归一化表示。
在RLC层,可以通过功率校验来确定最大发射功率不超过RRU的功率,并计算得到用户级参数PA,小区级参数PB,小区的最大发射功率Pmax,RS1以及PCRS,并将该PA,PB,Pmax,以及PCRS传递到MAC层,将RS1以及小区级参数PB传递到PHY层,将Pmax传递到RRU,以便于RRU进行型号发射。
在RLC层,该接入网设备可以在基线调度方案的基础上,调整该用户级参数PA,以对第一终端的可调度资源进行调整。
需要说明的是,该基线调度方案是指PDSCH子载波功率均匀分配的调度方案。通过该基线调度方案,可以使不同的用户调度的子载波功率根据用户的传输模式和信道质量参数(CQI)进行调整。
该MAC层可以根据该基线调度方案以及快速功控方案(QPC)得到调整后的用户级参数PA,如果调整后的PA相比于未调整的PA的传输块大小(TB size)变大,那么将该调整后的用户级参数PA传递到PHY层。
在一个实施例中,PDSCH的功率的调整可在MAC层进行。在第一终端处于具有DMRS的传输模式(如R8模式)下,调整用户级参数PA是调整发射功率谱密度必要操作,在调整了用户级参数PA之后,需要通过下发RRC重配置信令通知第一终端PA变化。
在PHY层,可以通过MAC层传递的用户级参数PA得到基带数字域功率Pbase,并将Pbase传递给RRU,以使该RRU进行信号发射。
在一个实施例中,若第一终端的传输方式为具有解调参考功率的传输方式,则调整解调参考信号功率。
该具有解调参考功率的传输方式,例如可以为TM9(Transmission Mode9)模式。
由于在具有解调参数信号的传输模式下(例如TM9模式),解调参考信号(Demodulation Reference Signal,DMRS)的功率与PDSCH功率之间的比例固定,通过调整DMRS的功率,即可以调整PDSCH的功率,也即保证了RRU的功率不超标,且小区的覆盖范围不收缩。
S305、若第一终端与接入网设备之间的距离值大于或等于第三预设距离阈值,则增大第一终端的发射功率谱密度。
需要说明的是,当该第一终端与接入网设备之间的距离值大于或等于该第三预设距离阈值时,可以说明该第一终端为远点终端。
对于远点终端而言,提升发射功率谱密度,可以减少调度的RB资源,实际发射的带宽减少,因此可以保证PDSCH的功率不变,从而保证该RRU的功率不会超过预设功率。
在一个实施例中,远点终端减少调度的RB资源,可以提升TB size,从而提高用户吞吐率。
在一个实施例中,控制近点终端提升的RB资源以及远点终端降低的RB资源,可以在频率参数增大时,保证CRS功率不变,且RRU的功率不超过预设功率。
可见,通过实施本发明实施例,可以在第一终端与接入网设备存在不同的位置关系时,通过不同的目标功率谱参数的调整方式,保证了在小区的频率参数增大时,小区的覆盖范围不收缩,且RRU的功率不超过预设功率。
上面详细阐述了本发明实施例的方法,为了便于更好地实施本发明实施例的上述方案,相应地,下面描述对应的装置实施例,具体如图8所示,为本发明实施例提供的一种接入网设备的结构示意图。该接入网设备,可包括:
监测模块801,用于监测小区的频率参数。
确定模块802,用于若监测到该小区的频率参数增大,则确定第一终端与该接入网设备之间的位置关系,该第一终端为驻留在该小区的终端。
调整模块803,用于根据该第一终端与该接入网设备之间的位置关系,对该第一终端 的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率,该目标功率参数为除小区参考信号的功率之外的功率参数。
在一个实施例中,该确定模块802,包括:获取单元8021,用于获取该第一终端的信道质量参数。
确定单元8022,用于根据该信道质量参数确定该第一终端与该接入网设备之间的位置关系。
在一个实施例中,该确定单元8022,具体用于:若该第一终端的信道质量参数大于第一预设参数阈值,则确定该第一终端与该接入网设备之间的距离值小于第一预设距离阈值;若该第一终端的信道质量参数大于第二预设参数阈值且小于或等于该第一预设参数阈值,则确定该第一终端与该接入网设备之间的距离值大于或等于该第一预设距离阈值、且小于或等于第二预设距离阈值;若该第一终端的信道质量参数小于或等于该第二预设参数阈值,则确定该第一终端与该接入网设备之间的距离值大于或等于该第二预设距离阈值。
在一个实施例中,该目标功率参数包括:发射功率谱密度。
该调整模块803,具体用于若该第一终端与该接入网设备之间的距离值小于第一预设距离阈值,则降低该第一终端的该发射功率谱密度。
在一个实施例中,该目标功率谱参数包括:用户级参数和/或解调参考信号功率;
该调整模块803,具体用于若该第一终端与该接入网设备之间的距离值大于等于第二预设距离阈值、且小于第三预设距离阈值,则根据该第一终端的传输方式对该第一终端的该用户级参数和/或解调参考信号功率进行调整。
在一个实施例中,该调整模块803,具体用于若该第一终端的传输方式为不具有解调参考功率的传输方式,则调整用户级参数,若该第一终端的传输方式为具有该解调参考功率的传输方式,则调整解调参考信号功率。
在一个实施例中,该调整模块803,具体用于若该第一终端与该接入网设备之间的距离值大于或等于该第三预设距离阈值,则增大该第一终端的该发射功率谱密度。
请参阅图9,为本发明实施例提供的另一种接入网设备的结构示意图。本实施例中所描述的接入网设备,包括:一个或多个处理器901、存储器902、通信接口903、发射器905、接收器906、耦合器907和天线908。这些部件可通过总线904或者其他式连接,图9以通过总线连接为例。其中:
通信接口903可用于接入网设备与其他通信设备,例如终端设备或其他网络设备,进行通信。具体的,所述终端设备可以是本申请所示的第一终端。具体的,通信接口903可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,接入网设备还可以配置有有线的通信接口903来支持有线通信,例如一个接入网设备与其他接入网设备之间的回程链接可以是有线通信连接。
发射器905可用于对处理器901输出的信号进行发射处理,例如信号调制。接收器906可用于对天线908接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器905和接收器906可看作一个无线调制解调器。在接入网设备中,发射器905和接收器906的数量均可以是一个或者多个。天线908可用于将传输线中的电磁能转 换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器907可用于将移动通信号分成多路,分配给多个的接收器906。
存储器902与处理器901耦合,用于存储各种软件程序和/或多组指令。具体的,存储器902可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器902可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器902还可以存储程序,该程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
处理器901可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的终端进行功率控制等。具体的,处理器901可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本发明实施例中,处理器901可用于读取和执行计算机可读指令。具体的,处理器901可用于调用存储于存储器902中的程序,例如本申请的一个或多个实施例提供的参数调整方法在接入网设备侧的实现程序,并执行:
监测小区的频率参数;
若监测到小区的频率参数增大,则确定第一终端与接入网设备之间的位置关系,第一终端为驻留在小区的终端;
根据第一终端与接入网设备之间的位置关系,对第一终端的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率,目标功率参数为除小区参考信号的功率之外的功率参数。
可以理解的,接入网设备可以是图1示出的参数调整系统中的基站,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,接入点或TRP等等。
需要说明的,图9所示的接入网设备仅仅是本发明实施例的一种实现方式,实际应用中,接入网设备还可以包括更多或更少的部件,这里不作限制。
应理解,本发明实施例是对应方法实施例的实体装置实施例,对方法实施例的描述,也适用于本发明实施例。
在本发明的另一实施例中提供一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序被处理器执行时,可以实现:监测小区的频率参数;若监测到小区的频率参数增大,则确定第一终端与接入网设备之间的位置关系,第一终端为驻留在小区的终端;根据第一终端与接入网设备之间的位置关系,对第一终端的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率,目标功率参数为除小区参考信号的功率之外的功率参数。
需要说明的是,该计算机可读存储介质被处理器执行的具体过程可参见上述方法实施例中所描述的方法,在此不再赘述。
在本发明的又一实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例所述的方法。
所述计算机可读存储介质可以是前述任一实施例所述的终端的内部存储单元,例如终端的硬盘或内存。所述计算机可读存储介质也可以是所述计算机的外部存储设备,例如所述计算机上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述终端的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述程序以及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
基于同一发明构思,本发明实施例中提供的计算机解决问题的原理与本发明方法实施例相似,因此该计算机的实施可以参见方法的实施,为简洁描述,在这里不再赘述。
本发明实施例中还提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例所示的实施方式。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,上述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。

Claims (17)

  1. 一种参数调整方法,其特征在于,应用于接入网设备,所述方法包括:
    监测小区的频率参数;
    若监测到所述小区的频率参数增大,则确定第一终端与所述接入网设备之间的位置关系,所述第一终端为驻留在所述小区的终端;
    根据所述第一终端与所述接入网设备之间的位置关系,对所述第一终端的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率,所述目标功率参数为除小区参考信号的功率之外的功率参数。
  2. 如权利要求1所述的方法,其特征在于,所述确定终端集合中的终端与所述接入网设备之间的位置关系,包括:
    获取所述第一终端的信道质量参数;
    根据所述信道质量参数确定所述第一终端与所述接入网设备之间的位置关系。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述信道质量参数确定所述第一终端与所述接入网设备之间的位置关系,包括:
    若所述第一终端的信道质量参数大于第一预设参数阈值,则确定所述第一终端与所述接入网设备之间的距离值小于第一预设距离阈值;
    若所述第一终端的信道质量参数大于第二预设参数阈值且小于或等于所述第一预设参数阈值,则确定所述第一终端与所述接入网设备之间的距离值大于或等于所述第一预设距离阈值、且小于或等于第二预设距离阈值;
    若所述第一终端的信道质量参数小于或等于所述第二预设参数阈值,则确定所述第一终端与所述接入网设备之间的距离值大于或等于所述第二预设距离阈值。
  4. 如权利要求3所述的方法,其特征在于,所述目标功率参数包括:发射功率谱密度,所述根据所述第一终端与所述接入网设备之间的位置关系,对所述第一终端的目标功率参数进行调整,包括:
    若所述第一终端与所述接入网设备之间的距离值小于第一预设距离阈值,则降低所述第一终端的所述发射功率谱密度。
  5. 如权利要求3所述的方法,其特征在于,所述目标功率谱参数包括:用户级参数和/或解调参考信号功率,所述根据所述第一终端与所述接入网设备之间的位置关系,对所述第一终端的目标功率参数进行调整,包括:
    若所述第一终端与所述接入网设备之间的距离值大于等于第二预设距离阈值、且小于第三预设距离阈值,则根据所述第一终端的传输方式对所述第一终端的所述用户级参数和/或解调参考信号功率进行调整。
  6. 如权利要求5所述的方法,其特征在于,根据所述第一终端的传输方式对所述第一终端的所述用户级参数和/或解调参考信号功率进行调整,包括:
    若所述第一终端的传输方式为不具有解调参考功率的传输方式,则调整用户级参数;
    若所述第一终端的传输方式为具有所述解调参考功率的传输方式,则调整解调参考信号功率。
  7. 如权利要求4所述的方法,其特征在于,所述根据所述第一终端与所述接入网设备之间的位置关系,对所述第一终端的目标功率参数进行调整,包括:
    若所述第一终端与所述接入网设备之间的距离值大于或等于所述第三预设距离阈值,则增大所述第一终端的所述发射功率谱密度。
  8. 一种接入网设备,其特征在于,包括:
    监测模块,用于监测小区的频率参数;
    确定模块,用于若监测到所述小区的频率参数增大,则确定第一终端与所述接入网设备之间的位置关系,所述第一终端为驻留在所述小区的终端;
    调整模块,用于根据所述第一终端与所述接入网设备之间的位置关系,对所述第一终端的目标功率参数进行调整,以使射频拉远单元的功率不超过预设功率,所述目标功率参数为除小区参考信号的功率之外的功率参数。
  9. 如权利要求8所述的接入网设备,其特征在于,所述确定模块,包括:
    获取单元,用于获取所述第一终端的信道质量参数;
    确定单元,用于根据所述信道质量参数确定所述第一终端与所述接入网设备之间的位置关系。
  10. 如权利要求9所述的接入网设备,其特征在于,所述确定单元,具体用于:
    若所述第一终端的信道质量参数大于第一预设参数阈值,则确定所述第一终端与所述接入网设备之间的距离值小于第一预设距离阈值;
    若所述第一终端的信道质量参数大于第二预设参数阈值且小于或等于所述第一预设参数阈值,则确定所述第一终端与所述接入网设备之间的距离值大于或等于所述第一预设距离阈值、且小于或等于第二预设距离阈值;
    若所述第一终端的信道质量参数小于或等于所述第二预设参数阈值,则确定所述第一终端与所述接入网设备之间的距离值大于或等于所述第二预设距离阈值。
  11. 如权利要求10所述的接入网设备,其特征在于,所述目标功率参数包括:发射功率谱密度;
    所述调整模块,具体用于若所述第一终端与所述接入网设备之间的距离值小于第一预设距离阈值,则降低所述第一终端的所述发射功率谱密度。
  12. 如权利要求10所述的接入网设备,其特征在于,所述目标功率谱参数包括:用户级参数和/或解调参考信号功率;
    所述调整模块,具体用于若所述第一终端与所述接入网设备之间的距离值大于等于第二预设距离阈值、且小于第三预设距离阈值,则根据所述第一终端的传输方式对所述第一终端的所述用户级参数和/或解调参考信号功率进行调整。
  13. 如权利要求12所述的接入网设备,其特征在于,所述调整模块,具体用于若所述第一终端的传输方式为不具有解调参考功率的传输方式,则调整用户级参数,若所述第一终端的传输方式为具有所述解调参考功率的传输方式,则调整解调参考信号功率。
  14. 如权利要求11所述的接入网设备,其特征在于,所述调整模块,具体用于若所述第一终端与所述接入网设备之间的距离值大于或等于所述第三预设距离阈值,则增大所述第一终端的所述发射功率谱密度。
  15. 一种接入网设备,其特征在于,所述计算机包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器中的程序,以使得所述计算机执行如权利要求1至7任意一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序,所述程序被处理器执行时使所述计算机执行如权利要求1至7任意一项所述的方法。
  17. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至7任意一项所述的方法。
PCT/CN2017/118315 2017-12-25 2017-12-25 一种参数调整方法及相关设备 WO2019126948A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17936251.2A EP3709721A4 (en) 2017-12-25 2017-12-25 PARAMETER SETTING PROCEDURE AND RELATED DEVICE
CN201780097694.7A CN111466140B (zh) 2017-12-25 2017-12-25 一种参数调整方法及相关设备
PCT/CN2017/118315 WO2019126948A1 (zh) 2017-12-25 2017-12-25 一种参数调整方法及相关设备
US16/905,690 US11395241B2 (en) 2017-12-25 2020-06-18 Parameter adjustment method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118315 WO2019126948A1 (zh) 2017-12-25 2017-12-25 一种参数调整方法及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/905,690 Continuation US11395241B2 (en) 2017-12-25 2020-06-18 Parameter adjustment method and related device

Publications (1)

Publication Number Publication Date
WO2019126948A1 true WO2019126948A1 (zh) 2019-07-04

Family

ID=67064230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118315 WO2019126948A1 (zh) 2017-12-25 2017-12-25 一种参数调整方法及相关设备

Country Status (4)

Country Link
US (1) US11395241B2 (zh)
EP (1) EP3709721A4 (zh)
CN (1) CN111466140B (zh)
WO (1) WO2019126948A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112333697B (zh) * 2020-10-28 2022-07-15 武汉虹旭信息技术有限责任公司 Lte中物理下行共享信道的解码方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045724A (zh) * 2009-10-22 2011-05-04 中兴通讯股份有限公司 用于高速分组接入的小区间干扰协调方法及装置
WO2013000305A1 (zh) * 2011-06-30 2013-01-03 电信科学技术研究院 一种实施上行功率控制的方法及装置
CN103249131A (zh) * 2013-04-27 2013-08-14 京信通信技术(广州)有限公司 一种基站下行发射功率自校准的方法和装置
CN104918275A (zh) * 2015-06-26 2015-09-16 大唐移动通信设备有限公司 一种rru自适应功率调整方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7996032B2 (en) * 2006-03-27 2011-08-09 Qualcomm Incorporated Power control and resource management in orthogonal wireless systems
RU2414058C2 (ru) * 2006-11-01 2011-03-10 Квэлкомм Инкорпорейтед Управление межсотовой мощностью для регулирования помех
BRPI0808251B1 (pt) * 2007-03-07 2020-04-14 Interdigital Tech Corp método para controlar a potência de transmissão de uma unidade de transmissão e recepção sem fio e unidade de transmissão e de recepção sem fio
CN101971329B (zh) 2008-03-17 2012-11-21 三菱综合材料株式会社 带散热片的功率模块用基板及其制造方法、以及带散热片的功率模块、功率模块用基板
US8340593B2 (en) * 2009-11-10 2012-12-25 Intel Corporation Techniques to control uplink power
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
CN102118842B (zh) * 2011-03-18 2013-11-06 电信科学技术研究院 一种应用于lte系统的下行功率控制方法及装置
WO2013115554A1 (ko) * 2012-01-30 2013-08-08 엘지전자 주식회사 무선 접속 시스템에서 phich 검출 방법 및 이를 위한 단말
US11122520B2 (en) * 2013-09-18 2021-09-14 Qualcomm Incorporated Coverage enhancements for physical broadcast channel (PBCH)
EP3075194B1 (en) * 2013-11-27 2018-04-11 Telefonaktiebolaget LM Ericsson (publ) A method, base station and computer-readable storage media for downlink power allocation in a wireless communication system
JP2015154184A (ja) * 2014-02-13 2015-08-24 株式会社日立製作所 無線通信システム、基地局装置及び制御装置
US9854532B2 (en) * 2014-12-05 2017-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Method, network nodes, and computer program products for load based adaptive CRS power adjustment
US10477442B2 (en) * 2015-09-21 2019-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Source and a target network node and respective methods performed thereby for performing handover of a wireless device
US11019577B2 (en) * 2015-10-30 2021-05-25 Telecom Italia S.P.A. Method and system for dynamically varying reference signals' power in a mobile radio network
CN108353364B (zh) * 2015-11-16 2021-08-03 瑞典爱立信有限公司 无线网络中的功率控制
WO2017085534A1 (en) * 2015-11-20 2017-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic downlink power allocation for supporting higher order modulation
US9826408B2 (en) * 2015-12-07 2017-11-21 Cisco Technology, Inc. System and method to provide uplink interference coordination in a network environment
US10039062B2 (en) * 2016-04-01 2018-07-31 Electronics And Telecommunications Research Institute Uplink transmit power of a mobile controlled by base station based on difference between target and received quality
JP2020031251A (ja) * 2016-12-21 2020-02-27 シャープ株式会社 基地局装置、端末装置及び通信方法
WO2018176421A1 (zh) * 2017-03-31 2018-10-04 深圳前海达闼云端智能科技有限公司 获取系统消息的方法、装置以及终端和基站
CN107820718B (zh) * 2017-04-21 2020-07-31 深圳前海达闼云端智能科技有限公司 小区重选的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045724A (zh) * 2009-10-22 2011-05-04 中兴通讯股份有限公司 用于高速分组接入的小区间干扰协调方法及装置
WO2013000305A1 (zh) * 2011-06-30 2013-01-03 电信科学技术研究院 一种实施上行功率控制的方法及装置
CN103249131A (zh) * 2013-04-27 2013-08-14 京信通信技术(广州)有限公司 一种基站下行发射功率自校准的方法和装置
CN104918275A (zh) * 2015-06-26 2015-09-16 大唐移动通信设备有限公司 一种rru自适应功率调整方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709721A4 *

Also Published As

Publication number Publication date
EP3709721A4 (en) 2020-11-11
US11395241B2 (en) 2022-07-19
CN111466140A (zh) 2020-07-28
CN111466140B (zh) 2021-12-03
EP3709721A1 (en) 2020-09-16
US20200322902A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US11626952B2 (en) Signal configuration method and related device
US11277760B2 (en) Communication apparatus, communication control method, and computer program for beam measurement
CN111989955B (zh) 一种功率调整方法及相关设备
US11582720B2 (en) Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
WO2021253150A1 (en) Dynamic disabling of cli measurements
US11716610B2 (en) Wideband uplink control channel capability indication during initial access
EP4197276B1 (en) Channel occupancy time (cot) sharing under heterogeneous bandwidth conditions
JP2024511588A (ja) ページング早期指示
KR20240071378A (ko) 주기적 포지셔닝 보고 강화
US11395241B2 (en) Parameter adjustment method and related device
US20240097851A1 (en) Defining prs & srs association to improve multi-rtt positioning in processing capability constrained scenarios
US11540224B2 (en) Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
US11831572B2 (en) Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
US20220338035A1 (en) Determination of ue-specific pdcch monitoring occasions
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling
US20230276421A1 (en) Rx-tx time difference reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017936251

Country of ref document: EP

Effective date: 20200610

NENP Non-entry into the national phase

Ref country code: DE