WO2019126887A1 - Composición estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; método de estabilización de suelos; método de preparación de caminos estabilizados; uso de la composición estabilizadora de suelos - Google Patents

Composición estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; método de estabilización de suelos; método de preparación de caminos estabilizados; uso de la composición estabilizadora de suelos Download PDF

Info

Publication number
WO2019126887A1
WO2019126887A1 PCT/CL2018/050120 CL2018050120W WO2019126887A1 WO 2019126887 A1 WO2019126887 A1 WO 2019126887A1 CL 2018050120 W CL2018050120 W CL 2018050120W WO 2019126887 A1 WO2019126887 A1 WO 2019126887A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
solution
composition according
alginase
soils
Prior art date
Application number
PCT/CL2018/050120
Other languages
English (en)
French (fr)
Inventor
Jonathan Pedro HENRÍQUEZ PERALTA
Original Assignee
Hydra Research Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydra Research Spa filed Critical Hydra Research Spa
Priority to MX2020006811A priority Critical patent/MX2020006811A/es
Priority to PE2020000870A priority patent/PE20201417A1/es
Priority to US16/958,591 priority patent/US11884861B2/en
Publication of WO2019126887A1 publication Critical patent/WO2019126887A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/123Consolidating by placing solidifying or pore-filling substances in the soil and compacting the soil
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/22Materials not provided for elsewhere for dust-laying or dust-absorbing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4806Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely rollers for consolidating or finishing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C21/00Apparatus or processes for surface soil stabilisation for road building or like purposes, e.g. mixing local aggregate with binder

Definitions

  • the present invention relates to a formulation for soil stabilization, wherein said formulation for soil stabilization comprises bacteria, enzymes and cations, where the bacteria preferably correspond to Azotobacter vinelandii and to Acidithiobacillus ferrooxidans, the enzyme preferably corresponds to an alginase, and the cations are preferably provided in the form of calcium chloride.
  • a soil stabilization method comprising contacting a soil stabilizing formulation with a soil and allowing the composition to act on the soil, obtaining a stabilized soil, where said formulation for soil stabilization preferably comprises Azotobacter vinelandii,
  • Acidithiobacillus ferrooxidans, alginase and calcium chloride Acidithiobacillus ferrooxidans, alginase and calcium chloride.
  • a method for preparing a stabilized road comprising reconditioning the soil by incorporating filler or structural material, homogenously incorporating the soil stabilizing composition of the invention, mixing with the filler or with the soil already extracted, to spread the homogenized material on the road to be built, to humidify, and to mechanically compact the area of the road to be built.
  • a composition containing at least Azotobacter vinelandii, Acidithiobacillus ferrooxidans, alginase and calcium chloride is described, to stabilize soils and build stabilized roads.
  • soil from the point of view of engineering, covers loose or moderately cohesive deposits, such as gravel, sands, clays or any of their mixtures.
  • Cohesive soils contain small particles where superficial electrochemical effects predominate, so that the particles tend to come together (water / particle interaction) in plastic soils such as clays.
  • the main characteristic of cohesive soils is their plasticity, and their ability to expand and contract under different moisture and temperature contents.
  • non-cohesive soils are formed by relatively large particles that do not tend to agglomerate or adhere. These soils are also called granular soils (sands, gravels and silts).
  • soil stabilizers On public roads, soil stabilizers must meet the regulatory requirements of the Ministry of Public Works, Chile, and / or other countries, including geodetic, topographic, hydrological, hydraulic, sediment transport, geotechnical, demand and traffic characteristics aspects and environmental aspects (impact and mitigation), as well as safety standards, fines control, and they must improve the load capacity and water resistance against various types of soil.
  • Soil stabilization is the process by which an existing soil in a given sector remains with its natural properties unchanged against external factors such as erosion, climate change and cargo transit.
  • a soil is stabilized in order to take advantage of its qualities, obtaining a more stable wheeled folder with a long useful life.
  • soil stabilization comprises a commonly chemical or mechanical treatment that maintains and improves the stability of a soil mass, with engineering objectives.
  • Soil stabilization methods can be classified into:
  • the mechanical stabilization consists of exerting a mechanical action of short duration of repeated way on a mass of ground in order to increase the resistance to the cut.
  • Mechanical stabilization procedures include kneading, load impacts, static pressure, vibration and mixed methods.
  • physical stabilization is used to improve the soil of a certain sector producing various physical changes. There are several techniques such as mixing floors together with compaction, geotextiles, vibroflotation and previous consolidation.
  • mechanical stabilization has a number of disadvantages, among them: a limited duration of stabilization (generally less than a year) depending on the type of vehicular traffic, climate, tonnage of the vehicles ; high cost depending on the type of soil, for example for clay roads.
  • chemical stabilization includes the addition of specific chemical stabilizing agents, producing the chemical reaction of the stabilizer product with the soil, in order to obtain the modification of the properties and characteristics of the soil, providing a better response capacity to the dynamic load requirements to which a transited soil will be subject.
  • the chemical stabilizers can be divided into those that provide cohesive force to a soil covering or waterproofing the grains of the soil, which provide durability and strength through a cementitious adhesion between soil particles, and those that are applied in cohesive soils, generating an alteration in the nature of the water system - clay, thereby decreasing plasticity, volume changes, and increasing resistance.
  • the best known chemical stabilizers are portland cement, lime, asphalt, sodium chloride, magnesium chloride hexahydrate (bischofite) and calcium chloride.
  • bischofite molecular formula MgC ⁇ 2 x6H 2 0
  • Other stabilizers of common use such as calcium chloride, sodium chloride, among others (Durotoye TO, Akinmusuru JO 2016. International Journal of Research in Engineering and Technology, Vol 5. Pp. 11-16).
  • Ionic stabilization is generally applied to fine soils, producing a strong ion exchange with the mineral clay particles in the soil. In this way, the absorption water is displaced by occupying the vacant ionic space, blocking the water absorption capacity of the active particles, which are responsible for the swelling and the loss of their support capacity. The particles that are then free of the electrostatic charges that were separated, and the water particles that are close to them, approach and agglomerate, increasing the load capacity due to friction between particles, resulting in an increase in the density of compaction.
  • polymers are used because they have a good mechanical resistance, due to the large polymer chains that attract the soil particles, through a network formation that surrounds the soil folder (Teresa López Lara and Col. 2010. Volume 11 (3), pp. 159-168). These intermolecular attractive forces depend on the chemical composition of the polymer. Its use to stabilize soils generates a high resistance to traction, fatigue and the impact of treated soils. These products are generally used in asphalt binders, in order to give them greater resistance, waterproofing and prolong their useful life.
  • Enzymes have the advantage of being completely biodegradable, as well as their effectiveness in soil stabilization clayey After the application of the enzyme, the clay particles present in the soil are already not attracted by the water, allowing the water in the soil to drain freely resulting in the settlement of clay particles (David Cede ⁇ o Plaza, 2013. University Central of Ecuador).
  • the present invention overcomes said disadvantages, providing a greater compaction capacity, less expensive than the methods widely used in the art, reducing operational costs, easy to apply, non-toxic, biodegradable and long-lasting.
  • the present invention corresponds to a new product for the stabilization of soils, comprising at least bacteria, enzymes and cations, where the bacteria preferably correspond to Azotobacter vinelandii and Acidithiobacillus ferrooxidans, the enzyme preferably to alginase, and the cations are preferably provided in the form of calcium chloride.
  • the stabilizer composition of Soils are preferably composed of A. vinelandii, calcium chloride, A. ferrooxidans, and alginase enzyme.
  • the present composition object of the invention has applications in road construction, tailings control, dust control and slope stabilization, and promotes preferred improvements, but not limited to: improvements in soil compaction, controlling dust (DustKill), non-toxic and friendly to the environment.
  • the stabilizer composition described which comprises at least Azotobacter vinelandii, Acidithiobacillus ferrooxidans, alginase and calcium chloride
  • CBR (%) (unit load of the test / standard unit load) * 100.
  • It is another aspect of the present invention to provide a method for preparing a stabilized road comprising reconditioning the soil by incorporating filler or structural material, homogenously incorporating the soil stabilizing composition comprising preferably Azotobacter vinelandii, Acidithiobacillus ferrooxidans, alginase and chloride of calcium, mix said homogenous stabilizer with the filling material or with the soil already extracted, spread the homogenized material on the way to build, humidify, and mechanically compact the area of the road to be built.
  • composition of the invention which comprises at least Azotobacter vinelandii, Acidithiobacillus ferrooxidans, alginase and calcium chloride, is described to stabilize cohesive and non-cohesive soils, improving soil stability characteristics.
  • a composition comprising at least Azotobacter vinelandii, Acidithiobacillus ferrooxidans, alginase and calcium chloride is provided, which stabilizes soils upon contact with said soil.
  • the soil stabilizer composition is a bi-component formulation comprising a solution A and a solution B.
  • solution A comprises as a percentage by weight based on the total weight of solution A, approximately 8% to 15% of Azotobacter vinelandii, a percentage by volume based on the total volume of solution A of 11-19. % of Acidithiobacillus ferrooxidans, and an approximate concentration of alginase up to about 5% by weight based on the total weight of solution A.
  • solution B comprises as a percentage by weight based on the total weight of solution B, approximately 20% to 35% calcium chloride. Said preferred proportions are understood as illustrative by one skilled in the art, and do not correspond in any way to limitations of the present invention, since said Conditions can be varied depending on the characteristics of the soil, or the climatic conditions.
  • solution A comprises as percentage by weight based on the total weight of solution A, about 8% of Azotobacter vinelandii, a percentage by volume based on the total volume of solution A of 15% Acidithiobacillus. ferrooxidans, and an approximate concentration of alginase of about 5% by weight based on the total weight of solution A.
  • solution B comprises as a percentage by weight based on the total weight of solution B, approximately 20% calcium chloride.
  • the alginase enzyme is an unpurified native or recombinant enzyme. In yet another preferred embodiment, the alginase enzyme is a purified native or recombinant enzyme. In an even more preferred embodiment, the alginase is a Pseudomonas aeruginosa algaease.
  • Pseudomonas aeruginosa alginase is one of multiple options, and can be interchangeably exchanged for another alginase with activity and required reaction conditions similar to the Pseudomonas aeruginosa algaease.
  • a road stabilization method comprises adding the soil stabilizing composition of the invention to a soil, obtaining a stabilized soil as a result.
  • the soil stabilization method of the present invention comprises the steps of: a) adding solution A of the present invention to the water tank of a first tank truck;
  • step (c) emptying the diluted solution from step (a) on a floor;
  • step (c) emptying the diluted solution from step (b) onto a floor, where the dilute solution from step (a) was previously emptied onto said soil, as specified in step (c).
  • the described solutions A and B of the present invention are diluted in an approximate proportion of 1 liter of solution per 1000 liters of water, where said diluted solutions of steps (a) and (b) are completely emptied onto the soil. It is understood by an expert that other proportions are possible for the method object of the present invention, obtaining similar results.
  • the soil to be stabilized is further compacted subsequent to step (d), by means of methodologies known in the art, such as for example a roller, in order to further compress the soil particles, improving the stabilizing effect of the soil.
  • soil stabilizing composition object of the present invention is provided.
  • a method for preparing a stabilized path comprising the steps of:
  • the surface should be free of both potholes and longitudinal deformations (rutting and accumulation of materials), and transverse deformations (corrugations and corrugations), leaving laterally lateral bleedings to drain rainwater to prevent the destruction of the road folder , before applying the floor stabilizing composition of the invention.
  • the compaction of the soil to be treated with the stabilizing composition of the invention should be at least 95%.
  • the soil stabilizing composition of the present invention improves at least one of the soil properties, such as volumetric stability, strength, permeability. , compressibility and durability. These properties improved ones correspond to only a group of those identified, and do not limit the positive effects of the present soil stabilizing invention.
  • composition of the present invention and the soil stabilization method improve the CBR, resulting in an approximate value of 136%.
  • the soil stabilized by the composition and method of the invention produces a stabilized soil for about 1 to 1.5 years.
  • the term used to "improve volumetric stability" is defined as keeping the volume of the soil relatively constant, with the objective of using it for road construction, the increase of which is desired for liquefying, expansive and collapsible soils, such as clay soils. .
  • the "soil strength”, and which is significantly improved by the application of the composition of the invention, is defined based on the parameters known for the soil stabilization technique, among them, the support ratio of California or CBR
  • Permeability is understood as the ability of a medium to transmit water or other substances. In soils the permeability is due to the existence of interconnected pores. Said factor is improved by the application of the composition of the invention, since in general the compaction of soils, causes the surface layer of the roads to be sealed, making the permeability of the water impossible.
  • the composition of the invention does not negatively affect the permeability, making possible the flow of water, preventing it from being stuck on the surface of the road.
  • “Compressibility” is defined as the degree to which the mass of soil decreases its volume under the effect of a load. It is a property that in itself affects others such as permeability, modifying the resistance of the ground to the shear stress or being able to cause landslides. The compressibility is proportional to the plasticity index, so the higher the plastic index the greater the compressibility of the soil.
  • “Durability” is related to the resistance to weather conditions, such as erosion or abrasion of traffic, which is improved by applying the composition object of the present invention, given that a higher percentage of compaction is generated greater cohesion of the particles, increasing the support of the road (CBR), having an impact on the durability of the road.
  • CBR support of the road
  • composition and method object of the present invention can be applied to roads and floors of many natures.
  • roads are rural roads, work roads, tunnels, parking lots, landing strips, interior streets of farms, secondary roads, farm roads, beaches and esplanades, and highway berms.
  • Example 1 Method of preparing the soil stabilizer composition
  • the culture of A. vinelandii is carried out under standard conditions known in the art. In particular for this example, culturing the bacteria at 30 ° C for two days, in standard culture media for A. vinelandii at a pH of approximately 7.3 (Table 1), which contained for every 1000 liters of total medium components described in table 1.
  • Table 1 Culture medium of A. vinelandii.
  • the culture of A. ferrooxidans is also carried out under standard conditions known in the art.
  • said culture of A. ferrooxidans was carried out by culturing the bacteria at 25 ° C for three to seven days, in standard culture media for A. ferrooxidans at an approximate pH of 1.8, which is obtained at Mix 950 mL of a solution 1, with 50 mL of a solution 2, and 1 mL of a solution
  • the alginase is prepared as known in the art.
  • the preparation of the alginase is described as follows:
  • step (b) Add the alginase solution from step (b) to 2 liters of distilled water while maintaining constant stirring; d) Add 100 ml of a mixture with a volume proportion of the culture of A. vinelandii against the culture volume of the A ferrooxidans culture of approximately 4: 1, making sure that it shakes strongly;
  • the solution obtained from mixing the bacterial cultures with the reconstituted alginase corresponds to solution A without dilution.
  • the concentrated solution B of the present invention is prepared by means of what is known to the person skilled in the art, corresponding to a calcium chloride solution at 70% w / w, in distilled water.
  • Example 2 Method of applying the soil stabilizer composition.
  • the support ratio or CBR is measured in percentage (%) and 0.2 "penetration in a saturated sample and previously compacted to a density equal to or greater than 95% of the DMCS, obtained in the modified Proctor test (NChl534 / 2 ).
  • the CBR test is carried out on unsaturated samples, provided that it is previously authorized by the Supervisory Officer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Civil Engineering (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Se describe una formulación para la estabilización de suelos que comprende bacterias, enzimas y cationes, donde las bacterias corresponden preferentemente a Azotobacter vinelandii y a Acidithiobacillus ferrooxidans, la enzima corresponde preferentemente a una alginasa, y los cationes son proporcionados preferentemente en forma de cloruro de calcio. Se describen además método de estabilización de suelos; método de preparación de caminos estabilizados; y uso de la composición estabilizadora de suelos.

Description

COMPOSICION ESTABILIZADORA DE SUELOS QUE COMPRENDE AZOTOBACTER
VINELANDII , ACIDITHIOBACILLUS FERROOXIDANS , ALGINASA, Y
CLORURO DE CALCIO; MÉTODO DE ESTABILIZACIÓN DE SUELOS; MÉTODO DE PREPARACIÓN DE CAMINOS ESTABILIZADOS; USO DE LA COMPOSICIÓN ESTABILIZADORA DE SUELOS CAMPO DE LA INVENCIÓN
La presente invención se refiere a una formulación para la estabilización de suelos, donde dicha formulación para la estabilización de suelos comprende bacterias, enzimas y cationes, donde las bacterias corresponden preferentemente a Azotobacter vinelandii y a Acidithiobacillus ferrooxidans, la enzima corresponde preferentemente a una alginasa, y los cationes son proporcionados preferentemente en forma de cloruro de calcio.
En otro aspecto de la invención, se proporciona un método de estabilización de suelos que comprende poner en contacto una formulación estabilizadora de suelos con un suelo y dejar actuar la composición en el suelo, obteniendo un suelo estabilizado, donde dicha formulación para la estabilización de suelos comprende preferentemente Azotobacter vinelandii,
Acidithiobacillus ferrooxidans, alginasa y cloruro de calcio.
En otro aspecto de la invención, se proporciona un método para preparar un camino estabilizado que comprende reacondicionar el suelo mediante la incorporación de material de relleno o estructural, incorporar homogéneamente la composición estabilizadora de suelos de la invención, mezclar con el material de relleno o con el suelo ya extraído, esparcir el material homogeneizado en el camino a construir, humectar, y compactar mecánicamente el área del camino a construir. En aún otro aspecto de la invención, se describe el uso de una composición que contiene al menos Azotobacter vinelandii , Acidithiobacillus ferrooxidans, alginasa y cloruro de calcio, para estabilizar suelos y construir caminos estabilizados.
ANTECEDENTES
El concepto de suelo, desde el punto de vista de la ingeniería, abarca los depósitos sueltos o moderadamente cohesivos, tales como gravas, arenas, arcillas o cualquiera de sus mezclas.
En este sentido, los suelos pueden ser clasificados como cohesivos o no cohesivos. Los suelos cohesivos contienen partículas pequeñas donde predominan los efectos electroquímicos superficiales, por lo que las partículas tienden a juntarse (interacción agua/partícula) en suelos plásticos como las arcillas. La característica principal de los suelos cohesivos es su plasticidad, y su capacidad de expandirse y contraerse bajo diferentes contenidos de humedad y temperatura.
Por otro lado, los suelos no cohesivos están formados por partículas relativamente grandes que no tienden a aglomerarse ni adherirse. Estos suelos también son llamados suelos granulares (arenas, gravas y limos) .
En Chile, más del 70% de los caminos está compuesto por caminos no pavimentados, los que son dañados tempranamente por el tránsito de vehículos y la pérdida de humedad de los suelos.
Entonces, y con el fin de utilizar a medio y largo plazo dichos suelos no pavimentados como caminos transitables, éstos se estabilizan con diferentes productos, mediante un proceso denominado estabilización de suelos.
En caminos públicos, los estabilizadores de suelos deben cumplir las condiciones de normativa del Ministerio de Obras Públicas, Chile, y/o de otros países, entre ellas aspectos geodésicos, topográficos, hidrológicos, hidráulica, transporte de sedimentos, geotécnicos, demanda y características del tránsito y Aspectos ambientales (impacto y mitigación), además de estándares de seguridad, control de finos, y deben mejorar la capacidad de carga y resistencia al agua frente varios tipos de suelos .
La estabilización de suelos es el proceso mediante el cual, un suelo existente en un sector determinado permanece con sus propiedades naturales inalteradas frente a factores externos como la erosión, el cambio climático y el tránsito de cargas. En este contexto, un suelo se estabiliza con el fin de aprovechar sus cualidades, obteniéndose una carpeta de rodado más estable y de vida útil prolongada.
Generalmente, la estabilización de suelos comprende un tratamiento comúnmente químico o mecánico que mantiene y mejora la estabilidad de una masa de suelo, con objetivos ingenieriles . Los métodos de estabilización de suelos se pueden clasificar en:
• Estabilización mecánica (Compactación) ;
• Estabilización física;
• Estabilización química; y
• Estabilización química utilizando nuevas tecnologías.
La estabilización mecánica consiste en ejercer una acción mecánica de corta duración de manera reiterada sobre una masa de suelo con el fin de aumentar la resistencia al corte. Entre los procedimientos de estabilización mecánica existe el amasado, impactos de cargas, presión estática, vibración y métodos mixtos . Por otro lado, la estabilización física se utiliza para mejorar el suelo de un determinado sector produciendo variados cambios físicos. Existen varias técnicas como mezcla suelos en conjunto con la compactación, geotextiles, vibroflotación y consolidación previa.
Sin embargo su amplia utilización, es conocido en la técnica que la estabilización mecánica posee una serie de desventajas, entre ellas: una duración limitada de la estabilización (generalmente inferior a un año) dependiendo del tipo de tránsito vehicular, clima, tonelaje de los vehículos; alto costo dependiendo del tipo de suelo, por ejemplo para caminos arcillosos.
Por otro lado, se debe transitar con vehículos de poco tonelaje en caminos estabilizados mecánicamente, debido a que se deterioran más rápido .
Con el fin de subsanar las desventajas de los métodos mecánicos y físicos, se desarrolló la estabilización química, la cual comprende la adición de agentes estabilizantes químicos específicos, produciendo la reacción química del producto estabilizador con el suelo, con el fin de obtener la modificación de las propiedades y características del suelo, otorgando una mejor capacidad de respuesta a los requerimientos de carga dinámica a los que estará sometido un suelo transitado. Los estabilizadores químicos se pueden dividir en los que proveen de fuerza cohesiva a un suelo cubriendo o impermeabilizando los granos del suelo, los que proporcionan durabilidad y fuerza mediante una adhesión cementante entre las partículas del suelo, y los que se aplican en suelos cohesivos, generando una alteración en la naturaleza del sistema agua - arcilla, disminuyendo por ende la plasticidad, los cambios de volumen, y aumentando en la resistencia.
Los estabilizadores químicos más conocidos son el cemento portland, la cal, el asfalto, el cloruro de sodio, cloruro de magnesio hexahidratado (bischofita) y el cloruro de calcio.
Más comúnmente, los caminos y suelos no pavimentados se estabilizan químicamente con hormigón y asfalto (Asi, I. et al . 2002. Geotechnical Testing Journal. Vol. 25, No. 2, pp . 168- 176) . Dichos estabilizadores, a pesar de su durabilidad, son costosos en su implementación, lo que encarece y tarda su ej ecución .
Como opción mayormente disponible en el mercado, especialmente en Chile, se utiliza la bischofita (fórmula molecular MgCÍ2x6H20) en la estabilización de caminos (Vergara Ravanal, Raúl Andrés. 2011. Estabilización y control de polvo con bischofita), junto con otros estabilizadores de común uso como el cloruro de calcio, cloruro de sodio, entre otros (Durotoye T.O, Akinmusuru J.O. 2016. International Journal of Research in Engineering and Technology. Vol 5. Pp . 11-16) .
A pesar de las ventajas conocidas de la estabilización química por sobre la estabilización física, la primera sigue teniendo deficiencias sin subsanar en la técnica, principalmente, su impacto en el medio ambiente y su baja eficiencia en ambientes húmedos, dada su alta solubilidad en agua.
Considerando entonces las desventajas técnicas que presentan los estabilizadores químicos, se han desarrollado nuevas tecnologías que incluyen, entre otras, agentes intercambiadores de iones (estabilización iónica), polímeros, y enzimas. La estabilización iónica se aplica generalmente a suelos finos, produciendo un fuerte intercambio iónico con las partículas de arcilla mineral del suelo. De esta forma, se desplaza el agua de absorción ocupando el espacio iónico vacante, bloqueándose la capacidad de absorción de agua de las partículas activas, las cuales son responsables del hinchamiento y la pérdida de su capacidad de soporte. Las partículas que quedan entonces libres de las cargas electroestáticas que estaban separadas, y las partículas de agua que están cerca de ellas se aproximan y aglomeran, aumentando así la capacidad de carga por fricción entre partículas, resultando en un aumento en la densidad de compactación .
Por otra parte, los polímeros se utilizan dado que tienen una buena resistencia mecánica, debido a las grandes cadenas poliméricas que atraen las partículas de suelo, a través de una formación de red que envuelve a la carpeta del suelo (Teresa López Lara and Col. 2010. Volumen 11(3) . Pp . 159-168) . Estas fuerzas de atracción intermolecular dependen de la composición química del polímero. Su utilización para estabilizar suelos genera una alta resistencia a la tracción, a la fatiga y al impacto de los suelos tratados. Estos productos se utilizan generalmente en carpetas asfálticas, con el fin de darles mayor resistencia, impermeabilización y prolongar su vida útil.
Finalmente, es conocido en el arte la utilización de enzimas como estabilizadores de suelos, las que catalizan la degradación de los materiales orgánicos en el suelo, alterando favorablemente sus atributos físicos y químicos.
Las enzimas poseen la ventaja de ser completamente biodegradable, además su eficacia en la estabilización de suelos arcillosos. Después de la aplicación de la enzima, las partículas de arcilla presentes en el suelo ya son no atraídas por el agua, permitiendo que el agua en el suelo drene libremente teniendo como resultado el asentamiento de partículas de arcilla (David Cedeño Plaza, 2013. Universidad Central de Ecuador) .
A pesar de la existencia de una multiplicidad de métodos de estabilización de suelos, existen deficiencias en cada uno de ellos que no han sido abordados en la técnica conocida, principalmente que no son aplicables en todo tipo de territorio, debido a que por ejemplo algunos son hidroscopios , otros emulsionan, otros dependen estrictamente del tipo de suelo, repentizan el proceso de colocación, debido a que deben ser premezclados para su uso (como en el caso de la bischofita) , y son generalmente de alto costo, representando aproximadamente el 40% del costo de construcción de un camino.
La presente invención subsana dichas desventajas, proveyendo una mayor capacidad de compactación, menos costoso que los métodos ampliamente utilizados en el arte, disminuir los costos operacionales , de fácil aplicación, no tóxico, biodegradable y de larga duración.
DESCRIPCIÓN BREVE DE LA INVENCIÓN
El presente invento corresponde a un nuevo producto para la estabilización de suelos, que comprende al menos bacterias, enzimas y cationes, donde las bacterias corresponden preferentemente a Azotobacter vinelandii y Acidithiobacillus ferrooxidans, la enzima preferentemente a alginasa, y los cationes de manera preferida son proveídos en forma de cloruro de calcio. Preferentemente, la composición estabilizadora de suelos está conformada preferentemente por A. vinelandii , cloruro de calcio, A. ferrooxidans, y enzima alginasa.
La presente composición objeto de la invención tiene aplicaciones en la construcción de caminos, control de relaves, control de polvos y estabilización de laderas, y promueve mejoras preferidas, mas no limitadas a: mejoras la compactación del suelo, controlando el polvo (DustKill) , no tóxico y amigable con el medio ambiente.
Junto con la composición estabilizadora descrita, la cual comprende al menos Azotobacter vinelandii , Acidithiobacillus ferrooxidans, alginasa y cloruro de calcio, es objetivo de la presente invención el proveer además un método de estabilización de suelos que consiste en poner en contacto un suelo y la composición de la invención, produciendo un suelo estabilizado, lo que produce una mejora en características del suelo como una razón de soporte del Suelo (CBR) aumentada, promover la cohesión de partículas en materiales adherentes y no adherentes, y mantener el color natural del suelo, donde la CBR es conocida en la técnica y se define como:
CBR (% )= (carga unitaria del ensayo / carga unitaria patrón) * 100.
Es otro aspecto de la presente invención el proporcionar un método para preparar un camino estabilizado que comprende reacondicionar el suelo mediante la incorporación de material de relleno o estructural, incorporar homogéneamente la composición estabilizadora de suelos que comprende preferentemente Azotobacter vinelandii , Acidithiobacillus ferrooxidans, alginasa y cloruro de calcio, mezclar dicho estabilizador homogéneo con el material de relleno o con el suelo ya extraído, esparcir el material homogeneizado en el camino a construir, humectar, y compactar mecánicamente el área del camino a construir.
Asimismo, se describe el uso de la composición de la invención, la cual comprende al menos Azotobacter vinelandii , Acidithiobacillus ferrooxidans, alginasa y cloruro de calcio, para estabilizar suelos cohesivos y no cohesivos, mejorando las características de estabilidad del suelo.
DESCRIPCIÓN DE TALLADA DE LA INVENCIÓN
Se provee una composición que comprende al menos Azotobacter vinelandii , Acidithiobacillus ferrooxidans, alginasa y cloruro de calcio, la cual estabiliza suelos al ser puesta en contacto con dicho suelo.
En una realización preferida, la composición estabilizadora de suelos es una formulación bi-componente que comprende una solución A y una solución B.
En una realización preferida, la solución A comprende como porcentaje en peso en base al peso total de la solución A, aproximadamente 8% a 15% de Azotobacter vinelandii , un porcentaje en volumen en base al volumen total de la solución A de 11-19 % de Acidithiobacillus ferrooxidans, y una concentración aproximada de alginasa de hasta aproximadamente 5% en peso en base al peso total de la solución A.
En dicha realización preferida, la solución B comprende como porcentaje en peso en base al peso total de la solución B, aproximadamente 20% a 35% de cloruro de calcio. Dichas proporciones preferidas son entendidas como ilustrativas por un experto en la materia técnica, y no corresponden de ninguna manera a limitaciones de la presente invención, dado que dichas condiciones pueden ser variadas dependiendo de las características del suelo, o de las condiciones climáticas.
En una modalidad aún más preferida, la solución A comprende como porcentaje en peso en base al peso total de la solución A, aproximadamente 8% de Azotobacter vinelandii, un porcentaje en volumen en base al volumen total de la solución A de 15% de Acidithiobacillus ferrooxidans, y una concentración aproximada de alginasa de aproximadamente 5% en peso en base al peso total de la solución A.
En dicha modalidad aún más preferida, la solución B comprende como porcentaje en peso en base al peso total de la solución B, aproximadamente 20% de cloruro de calcio.
En algunas realizaciones preferidas, la enzima alginasa es una enzima nativa o recombinante sin purificar. En aún otra realización preferida, la enzima alginasa es una enzima nativa o recombinante purificada. En una realización aún más preferida, la alginasa es una alginasa de Pseudomonas aerugínosa. Un experto en la materia entenderá que dicha alginasa de Pseudomonas aerugínosa es una de múltiples opciones, y puede ser indistintamente intercambiada por otra alginasa con actividad y condiciones de reacción requeridas similar a la alginasa de Pseudomonas aerugínosa.
En otro aspecto de la invención, se provee un método de estabilización de caminos que comprende adicionar la composición estabilizadora de suelos de la invención a un suelo, obteniendo un suelo estabilizado como resultado.
En una modalidad preferida, el método de estabilización de suelos de la presente invención comprende las etapas de: a) adicionar la solución A de la presente invención al tanque de agua de un primer camión aljibe;
b) adicionar la solución B de la presente invención al tanque de agua de un segundo camión aljibe;
c) vaciar la solución diluida del paso (a) sobre un suelo; y luego
d) vaciar la solución diluida del paso (b) sobre un suelo, donde sobre dicho suelo se vació previamente la solución diluida del paso (a) , como se especifica en el paso (c) .
Preferentemente, para obtener las soluciones diluidas de los pasos (a) y (b) del método de la presente invención, se diluyen las soluciones A y B descritas de la presente invención en una proporción aproximada de 1 litro de solución por cada 1000 litros de agua, donde dichas soluciones diluidas de los pasos (a) y (b) se vacian completamente sobre el suelo. Es de entender para un experto que otras proporciones son posibles para el método objeto de la presente invención, obteniendo resultados similares .
De manera preferente, el suelo a estabilizar se compacta adicionalmente posterior al paso (d) , mediante las metodologías conocidas en la técnica, como por ejemplo un rodillo, con el fin de comprimir aún más las partículas del suelo, mejorando el efecto estabilizador de la composición estabilizadora de suelos objeto de la presente invención.
En otra modalidad aún más preferida, se provee un método para preparar un camino estabilizado que comprende los pasos de:
a) reacondicionar el suelo dependiendo de los análisis granulométricos , mediante la incorporación de material de relleno o estructural, en una profundidad aproximada de 10 a 15 cm;
b) incorporar la composición estabilizadora de suelos de la invención manera homogénea;
c) mezclar el estabilizador de suelo con material de relleno o con el mismo suelo ya extraído;
d) esparcir el material previamente homogeneizado en el camino que se quiere construir;
e) humectar, donde la cantidad de agua necesaria para humectar dependerá del resultado del ensayo de Proctor modificado; y f) compactar mecánicamente el área del camino a construir, donde la compactación mecánica se realiza preferentemente con rodillo.
Preferentemente, la superficie debe quedar libre tanto de baches como de deformaciones longitudinales ( ahuellamientos y acumulación de materiales), y deformaciones transversales (ondulaciones y calaminas), dejando longitudinalmente sangrías laterales que permitan drenar las aguas lluvias para evitar la destrucción de la carpeta de rodado, antes de aplicar la composición estabilizadora de suelos de la invención.
De modo preferido, la compactación del suelo a tratar con la composición estabilizadora de la invención debería ser de al menos un 95%.
Generalmente, la composición estabilizadora de suelos de la presente invención, el método de estabilización de suelos y el método para preparar un camino estabilizado de la presente invención, mejoran al menos una de las propiedades del suelo, tales como la estabilidad volumétrica, resistencia, permeabilidad, compresibilidad y durabilidad. Dichas propiedades mejoradas corresponden a sólo un grupo de las identificadas, y no limitan los efectos positivos de la presente invención estabilizadora de suelos.
En un aspecto preferido, la composición de la presente invención y el método de estabilización de suelos mejoran la CBR, resultando en un valor aproximado de 136%.
En aún otro aspecto preferido, el suelo estabilizado mediante la composición y método de la invención producen un suelo estabilizado por aproximadamente 1 a 1,5 años.
El término utilizado "mejorar la estabilidad volumétrica" se define como mantener relativamente constante el volumen del suelo, con el objetivo de utilizarlo para la construcción de caminos, cuyo aumento es deseado para suelos propensos a la licuación, expansivos y colapsables, como los suelos arcillosos. La "resistencia del suelo", y que se mejora significativamente mediante la aplicación de la composición de la invención, se define en base a los parámetros conocidos para la técnica en materia de estabilización de suelos, entre ellos, la razón de soporte de california o CBR.
La "permeabilidad" se entiende como la capacidad que tiene un medio para transmitir agua u otras sustancias. En los suelos la permeabilidad se debe a la existencia poros interconectados entre si. Dichos factor se mejora mediante la aplicación de la composición de la invención, dado que en general la compactación de suelos, genera que la capa superficial de los caminos quede sellada, imposibilitando la permeabilidad del agua. La composición de la invención no afecta de manera negativa a la permeabilidad, posibilitando el fluyo de agua, evitando que se apose en la superficie del camino. La "compresibilidad" se define cómo el grado en que la masa de suelo disminuye su volumen bajo el efecto de una carga. Es una propiedad que de por si afecta a otras como a la permeabilidad, modificando la resistencia del suelo al esfuerzo cortante o pudiendo provocar deslizamientos. La compresibilidad es proporcional al indice de plasticidad, por lo que mientras mayor es el indice plástico mayor es la compresibilidad del suelo.
La "durabilidad", tiene relación con la resistencia a las condiciones de intemperie, como la erosión o a la abrasión del tránsito, lo que se ve mejorado al aplicar la composición objeto de la presente invención, dado que a mayor porcentaje de compactación, se genera mayor cohesión de las partículas, aumentando el soporte del camino (CBR) , repercutiendo en la durabilidad del camino.
La composición y método objeto de la presente invención puede ser aplicada a caminos y suelos de múltiples naturalezas. Ejemplos no limitantes de dichos caminos son caminos rurales, caminos de faenas, túneles, estacionamientos, pistas de aterrizaje, calles interiores de fundos, carreteras secundarias, caminos agrícolas, playas y explanadas, y bermas de autopistas.
FORMAS DE REALIZACIÓN DE LA INVENCIÓN
Se describen a continuación, modalidades preferidas para implementar la invención, además de resultados experimentales ilustrativos relacionados con la invención. Sin embargo lo anterior, los presentes ejemplos deben ser entendidos por un experto como ilustrativos, y de ninguna manera corresponden a limitaciones del alcance la presente invención.
Ejemplo 1: Método de preparación de la composición estabilizadora de suelos El cultivo de A. vinelandii se realiza bajo condiciones estándar conocidas en la técnica. En particular para este ejemplo, cultivando las bacterias a 30°C durante dos dias, en medios de cultivo estándar para A. vinelandii a un pH aproximado de 7,3 (Tabla 1), el cual contenia por cada 1000 litros de medio total los componentes descritos en la tabla 1.
Tabla 1: Medio de cultivo de A. vinelandii.
Figure imgf000016_0001
El cultivo de A. ferrooxidans se realiza también bajo condiciones estándar conocidas en la técnica. En particular para este ejemplo, dicho cultivo de A. ferrooxidans se realizó cultivando las bacterias a 25°C durante tres a siete dias, en medios de cultivo estándar para A. ferrooxidans a un pH aproximado de 1,8, el cual se obtiene al mezclar 950 mL de una solución 1, con 50 mL de una solución 2, y 1 mL de una solución
3, de acuerdo con la tabla 2. Tabla 2: Medio de cultivo de A. ferrooxidans .
Figure imgf000017_0001
Por su parte, la alginasa se prepara según lo conocido en la técnica. Para fines ilustrativos, se describe la preparación de la alginasa como sigue:
a) Agregar 50 mL de agua destilada filtrada a un vaso precipitado de 100 mL;
b) Añadir aproximadamente entre 20 a 50 mg de alginasa a los 50 mL de agua, y agitar por al menos 5 minutos;
c) Añadir la solución de alginasa del paso (b) a 2 litros de agua destilada manteniendo agitación constante; d) Agregar 100 mi de una mezcla con una proporción en volumen del cultivo de A. vinelandii frente al volumen de cultivo del cultivo de A ferrooxidans de aproximadamente 4:1, procurando que se agite fuertemente;
e) Dejar reposar mínimo 3 horas e idealmente toda la noche, y confirmar que la solución pierde viscosidad mediante metodologías convencionales conocidas en la técnica; y
g) Comenzar nuevamente la agitación por 30 minutos adicionales, y luego detener la agitación.
La solución obtenida de la mezcla de los cultivos bacterianos con la alginasa reconstituida corresponde a la solución A sin diluir .
La solución B concentrada de la presente invención se prepara mediante lo conocido por el experto en la técnica, correspondiendo a una solución de cloruro de calcio al 70% peso/peso, en agua destilada.
Ejemplo 2: Método de aplicación de la composición estabilizadora de suelos.
En general, para aplicar este estabilizador se diluyó aproximadamente 1 litro de solución A o de solución B, en aproximadamente 1.000 litros de agua. En general, 1 litro de cada solución concentrada A y B permite estabilizar aproximadamente 200 m2 de suelo compactado.
Los resultados de estabilización de la composición de la invención, obtenidos mediante el método de estabilización también objeto de la invención se ilustran en la Tabla 3, a continuación : Tabla 3 Resultados de estabilización de suelos de la composición de la invención, respecto de otros estabilizadores. ión
Figure imgf000019_0002
compactación
(CBR)
Figure imgf000019_0001
Costos Altos Valores Altos Valores Altos Valores Altos Valores Altos Valores Bajo costo económicos económicos económicos económicos económicos económicos económico
Toxicidad
(medio nte ambiente)
Aplicabilid
Figure imgf000019_0003
momento
Figure imgf000019_0004
Costos Altos costos Altos costos Altos costos Altos costos Altos costos Muy bajos
Operacionales operacionales operacionales operacionales operacionales operacionales costos
(Maquinaria, operacionales n
Figure imgf000020_0002
resbalosas en presencia de neblina, lluvias, resbalosas en seguridad Vial
Figure imgf000020_0001
La razón de soporte o CBR se mide en porcentaje (%) y a 0,2" de penetración en una muestra saturada y previamente compactada a una densidad igual o superior al 95% de la D.M.C.S., obtenida en el ensayo Proctor Modificado (NChl534/2) .
En zonas donde la precipitación media anual sea inferior a 50 mm, el ensayo de CBR se ejecuta sobre muestras no saturadas, siempre que sea autorizado previamente por el Fiscalizador .
En relación a la compactación a la sub-base se compacta hasta obtener una densidad no inferior a un 95% de la D.M.C.S., obtenida en el ensayo Proctor Modificado (NChl534/2) .

Claims

RE IVINDICACIONES
1. Una composición estabilizadora de suelos, caracterizada porque comprende bacterias, enzimas y cationes.
2. La composición estabilizadora de suelos de conformidad con la reivindicación 1, caracterizada porque comprende al menos dos especies diferentes de bacterias.
3. La composición estabilizadora de suelos de conformidad con la reivindicación 2, caracterizada porque las al menos dos especies diferentes de bacterias son Azotobacter vinelandii y Acidithiobacillus ferrooxidans .
4. La composición estabilizadora de suelos de conformidad con la reivindicación 1, caracterizada porque la enzima es una alginasa .
5. La composición estabilizadora de suelos de conformidad con la reivindicación 4, caracterizada porque la alginasa es una alginasa de Pseudomona Aerugínosa.
6. La composición estabilizadora de conformidad con cualquiera de las reivindicaciones 1, 4 ó 5, caracterizada porque la enzima es una enzima nativa o recombinante.
7. La composición estabilizadora de suelos de conformidad con cualquiera de las reivindicaciones 1 ó 4 a 6, caracterizada porque la enzima puede ser un extracto sin purificar o una enzima purificada.
8. La composición estabilizadora de suelos de conformidad con la reivindicación 1, caracterizada porque los cationes son aportados en forma de cloruro de calcio.
9. La composición estabilizadora de suelos de conformidad con la reivindicación 1, caracterizada porque es una formulación bi-componente formada por una solución A y una solución B.
10. La composición estabilizadora de suelos de conformidad con la reivindicación 9, caracterizada porque:
i) la solución A comprende Azotobacter vinelandii , Acidithiobacillus ferrooxidans, y una alginasa; y ii) la solución B comprende cloruro de calcio.
11. La composición estabilizadora de suelos de conformidad con la reivindicación 9 ó 10, caracterizada porque:
i) la solución A comprende como porcentaje en peso en base al peso total de la solución A aproximadamente 8% a 15% de Azotobacter vinelandii, un porcentaje en volumen en base al volumen total de la solución A de 11-19 % de Acidithiobacillus ferrooxidans, y una concentración aproximada de alginasa hasta aproximadamente 5% en peso en base al peso total de la solución A; y
ii) la solución B comprende como porcentaje en peso en base al peso total de la solución B, aproximadamente 20% a 35% de cloruro de calcio.
12. La composición estabilizadora de suelos de conformidad con la reivindicación 11, caracterizada porque:
i) la solución A comprende como porcentaje en peso en base al peso total de la solución A, aproximadamente 8% de Azotobacter vinelandii, un porcentaje en volumen en base al volumen total de la solución A de 15% de Acidithiobacillus ferrooxidans, y una concentración aproximada de alginasa de aproximadamente 5% en peso en base al peso total de la Solución A; y ii) la solución B comprende como porcentaje en peso en base al peso total de la solución B, aproximadamente 20% de cloruro de calcio.
13. Un método para estabilizar suelos, caracterizado porque comprende los pasos de:
a) adicionar la solución A de conformidad con cualquiera de las reivindicaciones 9 a 12, al tanque de agua de un primer camión aljibe;
b) adicionar la solución B de conformidad con cualquiera de las reivindicaciones 9 a 12, al tanque de agua de un segundo camión aljibe;
c) vaciar la solución A diluida del paso (a) sobre un suelo; y
d) vaciar la solución B diluida del paso (b) sobre un suelo, donde sobre dicho suelo se vació previamente la solución diluida del paso (a) , como se especifica en el paso (c) , obteniendo un suelo estabilizado.
14. El método de conformidad con la reivindicación 13, caracterizado porque se adiciona independientemente 1 litro de la solución A a 1000 litros de agua contenidos en el tanque de agua del primer camión de aljibe del paso (a), y 1 litro de la solución B a 1000 litros de agua contenidos en el tanque de agua del segundo camión de aljibe del paso
(b) .
15. El método de conformidad con cualquiera de las reivindicaciones 13 ó 14, caracterizado porque adicionalmente, el suelo se compacta posterior al paso (d) .
16. El método de conformidad con la reivindicación 15, caracterizado porque la compactación se realiza mediante un rodillo.
17. Un método para preparar un camino estabilizado, caracterizado porque comprende los pasos de:
a) reacondicionar el suelo mediante la incorporación de material de relleno o estructural, aproximadamente en una profundidad de alrededor de 10 a 15 cm;
b) incorporar homogéneamente la composición estabilizadora de suelos de conformidad con cualquiera de las reivindicaciones 1 a 12;
c) mezclar el estabilizador homogéneo del paso (b) con el material de relleno o con el suelo ya extraído del paso
(a) ;
d) esparcir el material homogeneizado del paso (c) en el camino a construir;
e) humectar; y
f) compactar mecánicamente el área del camino a construir.
18. El método de conformidad con la reivindicación 17, caracterizado porque la cantidad de agua utilizada para humectar en el paso (e) depende del resultado del ensayo de Proctor modificado.
19. El método de conformidad con cualquiera de las reivindicaciones 17 ó 18, caracterizado porque la compactación mecánica del paso (f) se realiza mediante un rodillo .
20. El método de conformidad con cualquiera de las reivindicaciones 13 a 19, caracterizado porque mejora al menos una de las propiedades del suelo, donde la al menos una propiedad del suelo mejorada se selecciona del grupo que consiste en estabilidad volumétrica, resistencia, permeabilidad, compresibilidad y durabilidad.
21. El método de conformidad con cualquiera de las reivindicaciones 13 a 19, caracterizado porque mejora la razón de soporte de california (CBR) hasta un valor de al menos alrededor de 136%.
22. El método de conformidad con cualquiera de las reivindicaciones 13 a 19, caracterizado porque estabiliza un método por al menos aproximadamente 1 a 1,5 años.
23. Uso de la composición estabili zadora de suelos de conformidad con cualquiera de las reivindicaciones 1 a 12, caracterizado porque sirve para estabilizar suelos o para preparar caminos estabilizados.
24. El uso de conformidad con la reivindicación 23, caracterizado porque el suelo se selecciona del grupo que consiste en suelos arenosos y suelos arcillosos.
25. El uso de conformidad con la reivindicación 23, caracterizado porque los caminos se seleccionan del grupo que consiste en caminos rurales, caminos de faenas, túneles, estacionamientos, pistas de aterrizaje, calles interiores de fundos, carreteras secundarias, caminos agrícolas, playas y explanadas, y bermas de autopistas.
PCT/CL2018/050120 2017-12-28 2018-12-03 Composición estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; método de estabilización de suelos; método de preparación de caminos estabilizados; uso de la composición estabilizadora de suelos WO2019126887A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2020006811A MX2020006811A (es) 2017-12-28 2018-12-03 Composicion estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; metodo de estabilizacion de suelos; metodo de preparacion de caminos estabilizados; uso de la composicion estabilizadora de suelos.
PE2020000870A PE20201417A1 (es) 2017-12-28 2018-12-03 Composicion estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; metodo de estabilizacion de suelos; metodo de preparacion de caminos estabilizados; uso de la composicion estabilizadora de suelos
US16/958,591 US11884861B2 (en) 2017-12-28 2018-12-03 Soil-stabilising composition comprising Azobacter vinelandii, Acidithiobacillus ferrooxidans, alginase, and calcium chloride; method for stabilising soils; method for preparing stabilised paths; use of the soil-stabilising composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2017003464A CL2017003464A1 (es) 2017-12-28 2017-12-28 Composición estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; método de estabilización de suelos; método de preparación de caminos estabilizados; uso de la composición estabilizadora de suelos.
CL3464-2017 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019126887A1 true WO2019126887A1 (es) 2019-07-04

Family

ID=63046590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/050120 WO2019126887A1 (es) 2017-12-28 2018-12-03 Composición estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; método de estabilización de suelos; método de preparación de caminos estabilizados; uso de la composición estabilizadora de suelos

Country Status (5)

Country Link
US (1) US11884861B2 (es)
CL (1) CL2017003464A1 (es)
MX (1) MX2020006811A (es)
PE (1) PE20201417A1 (es)
WO (1) WO2019126887A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501454A (zh) * 2020-04-23 2020-08-07 山东交通学院 一种基于生物酶固化材料的桥头路基过渡段软土路基处理方法及施工工艺
CN111877269A (zh) * 2020-06-24 2020-11-03 重庆大学 一种微生物修复库区消落带劣质岩体的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743288A (en) * 1983-08-29 1988-05-10 Sarea Ag Treatment of soil
US8182604B2 (en) * 2004-12-20 2012-05-22 Murdoch University Microbial biocementation
WO2013162707A1 (en) * 2012-04-27 2013-10-31 Halliburton Energy Services,Inc. Methods of cryodesiccating a broth comprising a biopolymer of an exopolysaccharide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0078643B1 (en) * 1981-11-02 1986-02-05 Kelco Biospecialties Limited Polysaccharide production
CL2012002854A1 (es) * 2012-10-11 2014-03-14 Biosigma Sa Capsulas de microorganismos biomineros viables, con alginato e iones de hierro; metodo de inoculación de microorganismos biomineros que comprende agregar dichas capsulas a un medio que se desea inocular; metodo de biolixiviacion de minerales que controla la inoculación de microorganismos biomineros.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743288A (en) * 1983-08-29 1988-05-10 Sarea Ag Treatment of soil
US8182604B2 (en) * 2004-12-20 2012-05-22 Murdoch University Microbial biocementation
WO2013162707A1 (en) * 2012-04-27 2013-10-31 Halliburton Energy Services,Inc. Methods of cryodesiccating a broth comprising a biopolymer of an exopolysaccharide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501454A (zh) * 2020-04-23 2020-08-07 山东交通学院 一种基于生物酶固化材料的桥头路基过渡段软土路基处理方法及施工工艺
CN111877269A (zh) * 2020-06-24 2020-11-03 重庆大学 一种微生物修复库区消落带劣质岩体的方法

Also Published As

Publication number Publication date
CL2017003464A1 (es) 2018-06-22
US20210002553A1 (en) 2021-01-07
PE20201417A1 (es) 2020-12-09
MX2020006811A (es) 2020-10-28
US11884861B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
Negi et al. Soil stabilization using lime
Scholen Non-standard stabilizers
US5018906A (en) Pulverulent product stabilizing soils in place and method of application
Lo et al. Durable and ductile double-network material for dust control
US6695545B2 (en) Soil stabilization composition
CN101400860A (zh) 土壤稳定化
US20080300346A1 (en) Composition and method for stabilizing road base
Onyelowe Ken et al. A comparative review of soil modification methods
Hassan et al. Microstructural characteristics of organic soils treated with biomass silica stabilizer
WO2019126887A1 (es) Composición estabilizadora de suelos que comprende azotobacter vinelandii, acidithiobacillus ferrooxidans, alginasa, y cloruro de calcio; método de estabilización de suelos; método de preparación de caminos estabilizados; uso de la composición estabilizadora de suelos
Hatipoglu et al. Evaluation of base prepared from road surface gravel stabilized with fly ash
JP3649657B2 (ja) 土壌改良方法
Wu et al. Mechanistic performance evaluation of chemically and mechanically stabilized granular roadways
Syed et al. Tube suction test for evaluating aggregate base materials in frost-and moisture-susceptible environments
RU2714547C1 (ru) Способ строительства дорожной одежды и конструкция дорожной одежды
US7798743B2 (en) Composition and method of use of soy-based binder material
Kumar et al. Effect of lime (content &duration) on strength of cohesive soil
DE202018002355U1 (de) Bodenverbundsystem zur Verfestigung einer Schicht im Straßenbau mit fein- oder gemischtkörnigen Böden mit Anrechnung auf den frostsicheren Oberbau und zur Wiederverfüllung von Bodenmassen
DE202017003382U1 (de) Bodenverbundsystem zur Verfestigung und Unterdrückung der kapillaren Saugfähigkeit für Böden mit erhöhten Feinanteilen für die qualifizierte Bodenverbesserung und Bodenverfestigung im Straßenbau
Almasi et al. Experimental evaluation of calcium chloride powder effect on the reduction of the pavement surface layer performance
ES2891176B2 (es) Procedimiento de obtencion de un producto estabilizador de suelos y producto obtenido
CN109505210A (zh) 一种高液限土用于路基填筑的改良方法
AU2013273765A1 (en) A Stabilising Composition
Jahren et al. Stabilization Procedures to Mitigate Edge Rutting for Granular Shoulders–Phase II
Ibrahim et al. Experimental study on geogrid-reinforced subbase over soft subgrade soil under repeated loading

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893396

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18893396

Country of ref document: EP

Kind code of ref document: A1