WO2019124815A1 - 3차원 프린터 및 프린팅 시스템 - Google Patents
3차원 프린터 및 프린팅 시스템 Download PDFInfo
- Publication number
- WO2019124815A1 WO2019124815A1 PCT/KR2018/015170 KR2018015170W WO2019124815A1 WO 2019124815 A1 WO2019124815 A1 WO 2019124815A1 KR 2018015170 W KR2018015170 W KR 2018015170W WO 2019124815 A1 WO2019124815 A1 WO 2019124815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- light
- light emitting
- plate
- emitting member
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the present invention relates to a 3D printer, and more particularly, to a planar light source method which is enlarged to cure a photocurable resin using a self-luminous element including a micro LED, an LED, an OLED or a FED, To a photocurable 3D printer using a planar spontaneous light source capable of performing printing.
- a 3D printer (a three-dimensional molding machine) uses three-dimensional information of an object composed of a digital file to structure (slice) an object into a very thin layer and then stacks material materials from this information one by one, It is a technology to implement.
- FDM (FFF) method called Fused Deposition Modeling (or Fused Filament Fabrication).
- synthetic resins such as ABS and PLA are heated to a high temperature of about 200 ° C. to form a molten gel state.
- the resin is pushed out through a discharger, the gel-like resin is laminated on a substrate at room temperature, And then stacks them one by one to obtain the desired sculpture.
- Photocurable lamination system A photocurable resin (resin) is used as a material which hardens when light of a specific wavelength, for example, ultraviolet light is received.
- a photocurable resin resin
- SLR Step Lithographic Annealing
- DLP Digital Light Processing
- a light receiving portion is hardened, The hardened part is lifted vertically, and by repeating 'light irradiation - solid' one layer at a time, a precisely laminated molding can be obtained.
- a polyjet method in which an adhesive resin (photo-curable) is selectively applied to a powder-like material to obtain a desired molding, a high-power laser is selectively irradiated to powders such as metals and ceramics, And selective laser solidification (SLS), which embodies the sculpture through the laser.
- an adhesive resin photo-curable
- SLS selective laser solidification
- the DLP method in which light is irradiated to a photo-curing resin such as ultraviolet light and molding is performed one layer at a time, uses a projector (projector) equipped with an optical system for object molding to expand an image to be projected to a 'surface' And is also referred to as a mask projection image curing system.
- a projector projector equipped with an optical system for object molding to expand an image to be projected to a 'surface' And is also referred to as a mask projection image curing system.
- This DLP system consists of a material feeder called a water tank and a projector that further cures it to a desired shape. It consists of an actuator that moves a cured object to the next layer and a plate connected to it.
- a material feeder called a water tank
- a projector that further cures it to a desired shape. It consists of an actuator that moves a cured object to the next layer and a plate connected to it.
- the size of the DLP-type 3D printer is increased, and the size of the output image is limited.
- the configuration of the optical system is complicated, There is a disadvantage of rising.
- the method of expanding the shape image is performed, there is a disadvantage in that the peripheral uniformity of the water tank is difficult to be formed due to the problem of the light uniformity when the extended image is implemented.
- the prior art as described above is a structure in which a molding is laminated on a modeling plate by providing a light source in a lower portion of a tank containing a photo-curing substance.
- This prior art has a problem in that the light source may be deflected due to the lack of a structure for supporting the lower part of the light source, and there is a limit in that the molding is produced only on the bottom surface of the modeling plate.
- the background art described above is technical information acquired by the inventor for the derivation of the present invention or obtained in the derivation process of the present invention, and can not necessarily be a known technology disclosed to the general public before the application of the present invention .
- the embodiments disclosed herein are aimed at providing a three-dimensional printer and a printing system capable of realizing 3D printing by curing a photocurable resin using a self-luminous element, .
- the embodiments disclosed herein may provide a two-dimensional surface shape of the light of a self-luminous element, thereby omitting the construction of a separate switching device, Printer, and printing system.
- a three-dimensional printer comprising: a receiving portion formed in a hollow shape having an open upper portion to receive a photocurable resin therein; A light transmitting member that transmits light irradiated from a lower portion of the receiving portion to the receiving portion while forming a bottom surface of the receiving portion; A self light emitting member provided at a lower portion of the translucent member to irradiate light toward the accommodating portion and to irradiate light in a two-dimensional surface shape; A support member installed at a lower portion of the self light emitting member to prevent a sag of the self light emitting member while providing a supporting force; A plate which is installed on the upper portion of the receiving part so as to be elevated and contained in the photo-curing resin, and which forms a three-dimensional molding while laminating the photo-curing resin cured by the light of the self-light- And an elevating member for elevating and lowering the plate.
- a three-dimensional printer comprising: a receiving portion formed in a hollow shape having an open upper portion to receive a photocurable resin therein; A self-emission member provided on an upper portion of the storage portion and irradiating light toward the storage portion, the self-emission member irradiating light in a two-dimensional surface shape; A plate which is mounted on the housing part so as to be able to move up and down and which is contained in the photo-curing resin and forms a three-dimensional molding while laminating the photo-curable resin cured by the light of the self-light- And an elevating member for elevating and lowering the plate.
- one aspect of the printing system is to analyze a three-dimensional drawing of a molding object into a cross-sectional image at each height,
- Dimensional printer includes a control unit for controlling the self-emission member to irradiate light in a two-dimensional plane corresponding to the lateral cross-sectional image, wherein the three-dimensional printer includes a controller for sequentially transmitting the cross- can do.
- the self-light-emitting member provides light in a two-dimensional surface shape through the self-light-emitting element, the configuration of a separate switching device can be omitted, and light is provided without deteriorating the light efficiency Accordingly, a three-dimensional printer and a printing system capable of uniformly curing a photocurable resin can be proposed.
- the light of the self-emission member can be condensed, dispersed, or parallel- A three-dimensional printer and a printing system that can provide the present invention can be provided.
- the self-emission member can be physically bent by the curved member, the light of the self-emission member irradiated to the accommodation portion can be condensed to the central portion of the accommodation portion, A three-dimensional printer and a printing system which can be dispersed to the outer periphery of the printer.
- any one of the above-mentioned means for solving the above-mentioned problems when the self-emission member is provided on the upper portion of the storage portion so as to be laminated on the upper surface of the plate while irradiating light to the lower portion, A three-dimensional printer and a printing system in which the structure of the supporting member and the structure of the translucent member can be omitted can be presented.
- FIG. 1 is a configuration diagram showing a three-dimensional printer according to the first embodiment.
- FIG. 2 is a configuration diagram showing a state in which an additional configuration is added to the three-dimensional printer according to the first embodiment.
- FIG. 3 is a configuration diagram showing a three-dimensional printer according to the second embodiment.
- FIG. 4 is a configuration diagram showing a state in which an additional configuration is added to the three-dimensional printer according to the second embodiment.
- FIG. 5 is a block diagram illustrating a printing system in accordance with one embodiment.
- Fig. 1 is a configuration diagram showing a three-dimensional printer according to the first embodiment
- Fig. 2 is a configuration diagram showing a state in which a further configuration is added to the three-dimensional printer according to the first embodiment.
- the three-dimensional printer 10 includes a housing 100, a translucent member 200, a self-emission member 300, a support member 400, a plate 500, Member 600 as shown in FIG.
- the housing part 100 is configured in the form of a container having an opened upper part, and can accommodate the photo-curing resin which is elongated by light.
- the photocurable resin is cured when receiving light such as ultraviolet rays, and all the structures known in the art to which the present invention belongs can be applied.
- the translucent member 200 constitutes a bottom surface of the storage portion 100 and is a component that transmits light irradiated through a self light emitting member 300 to be described later from the lower portion of the storage portion 100 to the storage portion 100 .
- the translucent member 200 may be formed of a release film.
- the transparent member 200 may include an upper film 210 facing the plate 500 to be described later and forming a lower part of the release film, 300 may be in close contact with each other.
- the upper film 210 may be a fluororesin type film or a Teflon film
- the lower film 220 may be a PET film.
- the self-emission member 300 is a component installed under the translucent member 200 to irradiate light toward the storage unit 100 and irradiate light in a two-dimensional surface shape.
- the self-emission member 300 may be formed of any one of self-luminous display devices. More specifically, the self-light-emitting member 300 may be formed of a material selected from the group of self-luminous display devices including a micro LED (Light Emitting Diode), an LED, an OLED (Organic Light Emitting Diode) And may include an element that provides a light source having a predetermined wavelength. That is, the self-light-emitting member 300 can emit light in the form of a plane by forming a panel having a predetermined area as an aggregate of self-luminous display elements.
- a micro LED Light Emitting Diode
- LED Light Emitting Diode
- OLED Organic Light Emitting Diode
- the support member 400 is installed below the self light emitting member 300 to prevent the self light emitting member 300 from sagging.
- the support member 400 may be a planar structure having rigidity so as to provide a supporting force at a lower portion of the self-emission member 300. Since the support member 400 does not need to transmit light of the self-emission member 300, Lt; / RTI >
- the support member 400 includes a three-axis stage 300 capable of lifting and lowering the self-light-emitting member 300 while moving the self-light-emitting member 300 in the lateral or longitudinal direction so as to adjust the position of the self- As shown in FIG.
- the plate 500 is a component for forming a three-dimensional molding.
- the plate 500 is mounted on the upper part of the housing part 100 so as to be elevated and lowered.
- the plate 500 is contained in a photo-curable resin.
- a three-dimensional molding can be formed by laminating a photo-curing resin on the bottom surface of the photo-curable resin to be cured.
- the plate 500 is lowered by a lifting member 600 to be described later and confronts the translucent member 200 described above.
- the photo-curing resin corresponding to the shape can be stacked on the bottom while being cured and then raised by the elevating member 600 again.
- the elevating member 600 is a component for elevating and lowering the plate 500 from the upper portion of the receiving portion 100.
- the elevating member 600 may include a lifting rail 610 and a slider 620.
- the elevating rail 610 may be installed adjacent to the receiving part 100 and may extend in the vertical direction to provide a lifting and lowering path of the plate 500.
- the slider 620 is fixed to the plate 500 and is movably coupled to the lift rail 610.
- the slider 620 can move the plate 500 while moving along the lift rail 610 by control.
- the slider 620 and the lift rail 610 may be formed of a ball screw system, a linear motor system, or a rack gear and a pinion gear system, and may lift and lower the plate 500 while moving linearly.
- the elevating member 600 may be a horizontally moving member (not shown) for horizontally moving the slider 620 so as to correct the position of the plate 500.
- a microlens 350 may be provided on the upper side of the self-emission member 300.
- the microlens 350 is provided on the upper side of the light emitting member 300 to enhance the intensity and precision of the light source of the light emitting member 300.
- the microlens 350 condenses and disperses the light emitted from the light emitting member 300, Or parallel illumination.
- the microlenses 350 may be formed in various shapes such as convex, concave, flat, spherical, and polygonal shapes, and may be provided with the condensing, dispersing, or collimating light according to the shape to the receiving portion 100.
- the above-described support member 400 can be configured to be able to bend by pressing of an external force.
- the support member 400 may be formed of a thickness or a material such that the central portion thereof can be curved by gravity.
- the support member 400 may be bent along with the self-light-emitting member 300 described above while being curved upward or downward by the pressing of the curved member 450.
- the curved member 450 may be a hydraulic cylinder that supports a lower central portion of the support member 400.
- the support member 400 may be formed by pressing the support portion upward or downward,
- the member 300 can be bent upward or downward.
- the central portion of the self light emitting member 300 when the central portion of the self light emitting member 300 is curved downward, the light can be focused, and when it is bent upward, the light can be dispersed.
- FIG. 3 is a configuration diagram showing a three-dimensional printer according to a second embodiment
- Fig. 4 is a configuration diagram showing a state in which an additional configuration is added to the three-dimensional printer according to the second embodiment.
- the three-dimensional printer 10 ' differs from the three-dimensional printer 10 according to the first embodiment in that light is irradiated from the upper portion of the housing 100, And may be stacked on the upper surface of the plate 500.
- the three-dimensional printer 10 ' may include the housing 100, the self-emitting member 300, the plate 500, and the elevating member 600, The configuration of the translucent member 200 and the support member 400 may be omitted.
- the receiving part 100 is formed in a hollow shape having an opened upper part, and the bottom surface is made of the same material to accommodate the curing resin.
- the self-emission member 300 has the same configuration as that of the first embodiment described above, and may be installed on the upper portion of the storage unit 100 to irradiate light toward the lower storage unit 100 in the form of a surface.
- the plate 500 is installed inside the housing 100 to be elevated by a lifting member 600 to be described later and is contained in a photo-curable resin.
- the photo-curable resin 300 cured by the light of the self- The three-dimensional molding can be formed.
- the plate 500 is lifted by the lifting member 600 described later in a state of being contained in the photocurable resin in the housing 100, faces the self-light-emitting member 300, and in this state, The photocurable resin corresponding to the planar shape of the irradiated light is cured and stacked on the upper surface, and then can be lowered by the elevating member 600 again.
- the elevating member 600 is a component for raising and lowering the plate 500 and may include a plate lifting rail 650 and a plate slider 660.
- the plate lifting rails 650 may be installed on both side walls of the receiving part 100 and extend in the vertical direction to provide a lifting path of the plate 500.
- the plate slider 660 is movably coupled to the plate lifting rails 650 while being fixed to both sides of the plate 500 and moves up and down the plate 500 while moving along the plate lifting rails 650 .
- the plate slider 660 and the plate lifting and lowering rail 650 may be formed of a ball screw type, a linear motor type, or a rack gear and a pinion gear type so as to lift and lower the plate 500 while moving linearly.
- the micro-lens 350 may be installed under the self-light-emitting member 300 to condense, disperse, or collimate the light.
- the curved member 450 may be provided to bend the light emitting member 300 upward or downward.
- microlens 350 and the curved member 450 have the same configuration as the first embodiment, a detailed description thereof will be omitted.
- the three-dimensional printer 10 ' may further include a light source lifting member 700.
- the light source ascending / descending member 700 moves the self light emitting member 300 up and down according to the level of the photo-curable resin while vertically coupling the self light emitting member 300 to the receiving unit 100, Is a constituent element for uniformly maintaining the distance of the laminated surface of the substrate 500.
- the light source elevating member 700 moves down the self light emitting member 300 when the water level of the photo-curable resin is lowered, and raises the self light emitting member 300 when the water level of the photo- 300 can be uniformly irradiated onto the upper surface of the photocurable resin.
- the light source lifting member 700 may include a light source lifting rail 710 and a light source slider 720.
- the light source lifting and lowering rails 710 may be installed on both side walls of the storage unit 100 and may extend in the vertical direction to provide a lifting and lowering path of the light emitting unit 300.
- the light source lifting rails 710 may extend from the plate lifting rails 650 described above.
- the light source slider 720 is movably coupled to the light source raising and lowering rail 710 while being fixed to both sides of the light emitting member 300 and moves along the light source raising and lowering rail 710 ).
- the light source slider 720 and the light source lifting and lowering rail 710 may be a ball screw system, a linear motor system, or a rack gear and a pinion gear system.
- a water level sensor 730 for sensing the water level of the photo-curable resin is installed in the storage unit 100, and the light source slider 720 can be raised or lowered based on the water level detection signal of the photo-curing resin.
- the 3D printer 10 or 10 'including the above-described components is applied to the printing system 1 including the image processing unit 20 as shown in FIG. 5 to control the 3D control unit 30 Printing can be performed.
- the image processing unit 20 analyzes the three-dimensional drawing of the object to be shaped into a lateral sectional image for each height, and sequentially transmits the plurality of analyzed lateral sectional images to the three-dimensional printers 10 and 10 ' .
- the 3D printer 10 according to the first embodiment can be sequentially transmitted from the cross-sectional image of the upper end of the molding object.
- Images can be transmitted sequentially.
- the control unit 30 controls the self light emitting member 300 to irradiate the light receiving unit 100 with light having a two-dimensional plane shape corresponding to the cross-sectional image so that the photo- As shown in Fig.
- the self-emission member 300 can emit light in a two- The configuration of the separate switching device can be omitted, and the light curable resin can be uniformly cured as the light is provided without lowering the light efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
3차원 프린터 및 프린팅 시스템을 제시하며, 상부가 개방된 함체형으로 형성되어 내부에 광경화성 수지를 수용하는 수납부; 상기 수납부의 바닥면을 이루면서 상기 수납부의 하부에서 조사되는 빛을 상기 수납부로 투과시키는 투광부재; 상기 투광부재의 하부에 설치되어 상기 수납부를 향해 빛을 조사하되, 2차원의 면형태로 빛을 조사하는 자발광부재; 상기 자발광부재의 하부에 설치되어 지지력을 제공하면서 상기 자발광부재의 처짐을 방지하는 지지부재; 상기 수납부의 상부에 승강가능하게 설치되어 상기 광경화성 수지에 담기며, 상기 자발광부재의 빛에 의해 경화된 상기 광경화성 수지를 저면에 적층하면서 3차원 조형물을 형성하는 플레이트; 및 상기 플레이트를 승강시키는 승강부재를 포함한다.
Description
본 명세서에서 개시되는 실시예들은 3D 프린터에 관한 것으로, 보다 상세하게는 평면광원의 방법을 확대하여 마이크로 LED, LED, OLED또는 FED등을 포함하는 자체 발광소자를 사용하여 광경화성 수지를 경화시킴으로써 3D 프린팅을 수행할 수 있는 평면 자발광원을 이용한 광경화성 3D 프린터에 관한 것이다.
일반적으로 3D프린터(3차원 조형기)는 디지털 파일로 구성된 물체의 3차원 정보를 이용하여, 물체를 아주 얇은 층으로 구조화(슬라이싱) 한 후, 이 정보로부터 재료 물질들을 한 층씩 쌓아 올려서, 실제 조형물을 구현하는 기술이다.
이러한 3D프린터는 크게 다음과 같은 기술로 분류된다.
FDM (FFF) 방식 : Fused Deposition Modeling (또는 Fused Filament Fabrication)으로 부른다. 구체적으로, FDM 방식은 ABS, PLA등의 합성수지를 200도 내외의 고온으로 가열하여 용융된 젤(gel) 상태로 만든 후, 토출기를 통해 밀어내면 젤 상태의 수지가 상온의 기판에 적층 되면서 빠르게 굳게 되며, 이를 한 층씩 쌓아 올려 원하는 조형물을 얻는다.
광경화 적층 방식 : 특정 파장의 빛, 예를 들어 자외선 등의 빛을 받으면 굳어버리는 광경화성 수지 (레진, resin)를 재료로 사용한다. 자외선 레이저 (SLA, Stereo lithographic annealing)를 이용하거나, 자외선 램프 (DLP, Digital light processing)를 이용하여, 레진이 담겨 있는 통해, 조형하고자 하는 영역에 자외선을 조사하면, 빛을 받은 부분이 굳게 되고, 굳은 부분은 수직으로 들어내며, 한 층씩 '광조사-고형'을 반복하면, 정밀하게 적층된 조형물을 얻을 수 있다.
이외에도 분말 형태의 재료에, 접착수지 (광경화성)를 선택적으로 뿌려, 원하는 조형물을 얻는 폴리젯 (polyjet)방식과, 금속, 세라믹 등의 분말에 고출력 레이저를 선택적으로 조사하여, 순간 용융-소결을 통해 조형물을 구현하는 SLS (Selective laser solidification, 선택적 레이저 소결 방식)등이 있다.
이 중에서, 광경화성 수지에, 자외선 등의 빛을 조사하여, 한 층씩 조형을 진행하는 DLP방식은, 물체 조형 시 광학계가 구비된 Projector(프로젝터)를 이용하여 투영하고자 하는 이미지를 '면'으로 확장하여 투영하는 기술로, 마스크 투영이미지 경화방식이라고도 한다.
이런 DLP 방식은 수조라는 재료 공급 장치와 이를 한층 한층 원하는 모양으로 경화시키는 Projector 로 구성되어 있으며 경화된 물체 (Object) 를 다음 층으로 이동시키는 엑츄에이터 및 이와 연결된 Plate 등으로 구성되어 있다. DLP 방식은 광학계를 이용하여 작은 이미지를 확장하여 투영하기 때문에 대면적 조형물을 출력하기 위해서는 DLP 방식 3D 프린터의 크기가 커지게 되어 출력물 크기의 제약이 있으며, 광학계의 구성이 복잡해짐에 따라 가격이 매우 상승하는 단점이 있다. 게다가, 조형 이미지를 확장하는 방식이기 때문에 확장하여 투영된 이미지를 구현할 때 광균일도의 문제가 발생하여 수조의 주변부 조형이 어려운 단점이 있다.
상술한 방식들의 단점들을 개선하기 위하여 빛이 적층하고자 하는 위치에 일대일로 대응하여 광균일도를 확보하고, 대면적으로 큰 조형물 형성이 가능하여 한번에 여러 개를 동시에 적층할 수 있는 방법으로 LCD 와 평면광원인 LED를 이용하는 방법이 개발되었다.
그런데, 상기와 같은 선행기술은 평면광원으로써 LCD와 LED에 국한된 한계가 있다. 게다가 LED 광원이 LCD를 통해 이미지화 될 때 LED 광량이 LCD 구조를 거치며 흡수되어 LED 광원의 투과율 감소로 인해, 조형 시간 또는 노광 시간 (exposure time)을 증가시켜 빠른 속도로 조형물 (3차원 출력물)을 만들어 내는 데 한계가 있다.
관련된 선행기술로서, 대한민국 등록특허공보 제10-1787880호에 개시된 컬러 3D 프린터가 있다.
상기와 같은 선행기술은 광경화성 물질이 수용된 탱크의 하부에서 광원을 제공함으로써 모델링 플레이트에 조형물을 적층하는 구성이다.
이러한 선행기술은 광원의 하부를 지지하는 구성이 없어서 광원의 처짐이 발생할 수 있는 문제점이 있으며, 모델링 플레이트의 저면에서만 조형물이 생성되는 한계점이 있다.
따라서 상술된 문제점을 해결하기 위한 기술이 필요하게 되었다.
한편, 전술한 배경기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.
본 명세서에서 개시되는 실시예들은, 평면광원을 제공하는 구성을 기존의 기술에서 벗어나 자체발광소자를 이용하여 광경화성 수지를 경화시킴으로써 3D 프린팅을 구현할 수 있는 3차원 프린터 및 프린팅 시스템을 제시하는 데 목적이 있다.
구체적으로, 본 명세서에서 개시되는 실시예들은, 자체발광소자의 빛을 2차원의 면형태로 제공함으로써 별도의 스위칭 장치의 구성이 생략될 수 있으며, 자체발광소자의 처짐이 방지될 수 있는 3차원 프린터 및 프린팅 시스템을 제시하는 데 목적이 있다.
또한, 본 명세서에서 개시되는 실시예들은, 자체발광소자를 물리적으로 만곡시켜 빛을 집광형태로 제공할 수 있는 3차원 프린터 및 프린팅 시스템을 제시하는 데 목적이 있다.
또한, 본 명세서에서 개시되는 실시예들은, 수납부의 상부에서 빛을 제공함으로써 플레이트의 상면에서 조형물의 적층이 이루어질 수 있는 3차원 프린터 및 프린팅 시스템을 제시하는 데 목적이 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 일 실시예에 따른 3차원 프린터의 하나의 양상은, 상부가 개방된 함체형으로 형성되어 내부에 광경화성 수지를 수용하는 수납부; 상기 수납부의 바닥면을 이루면서 상기 수납부의 하부에서 조사되는 빛을 상기 수납부로 투과시키는 투광부재; 상기 투광부재의 하부에 설치되어 상기 수납부를 향해 빛을 조사하되, 2차원의 면형태로 빛을 조사하는 자발광부재; 상기 자발광부재의 하부에 설치되어 지지력을 제공하면서 상기 자발광부재의 처짐을 방지하는 지지부재; 상기 수납부의 상부에 승강 가능하게 설치되어 상기 광경화성 수지에 담기며, 상기 자발광부재의 빛에 의해 경화된 상기 광경화성 수지를 저면에 적층하면서 3차원 조형물을 형성하는 플레이트; 및 상기 플레이트를 승강시키는 승강부재를 포함할 수 있다.
또한, 상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 일 실시예에 따른 3차원 프린터의 다른 양상은, 상부가 개방된 함체형으로 형성되어 내부에 광경화성 수지를 수용하는 수납부; 상기 수납부의 상부에 설치되어 상기 수납부를 향해 빛을 조사하되, 2차원의 면 형태로 빛을 조사하는 자발광부재; 상기 수납부에 승강 가능하게 설치되면서 상기 광경화성 수지에 담기며, 상기 자발광부재의 빛에 의해 경화된 상기 광경화성 수지를 상면에 적층하면서 3차원 조형물을 형성하는 플레이트; 및 상기 플레이트를 승강시키는 승강부재를 포함할 수 있다.
또한, 상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 일 실시예에 따른 프린팅 시스템의 하나의 양상은, 조형대상의 3차원 도면을 높이별 횡방향 단면이미지로 분석하고, 분석된 각각의 횡방향 단면이미지를 순차적으로 상기 3차원 프린터로 전송하는 이미지처리부를 포함하고, 상기 3차원 프린터는, 상기 자발광부재를 제어하여 상기 횡방향 단면이미지에 대응하는 2차원 평면의 빛을 조사하는 제어부를 포함할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 자발광부재가 자발광소자를 통해 2차원의 면형태로 빛을 제공하므로 별도의 스위칭 장치의 구성이 생략될 수 있고, 빛이 광효율의 저하 없이 제공됨에 따라 광경화성 수지가 균일하게 경화될 수 있는 3차원 프린터 및 프린팅 시스템을 제시할 수 있다.
전술한 과제 해결 수단 중 어느 하나에 의하면, 자발광부재에 마이크로렌즈가 추가로 설치될 경우에는 자발광부재의 빛이 집광, 분산 또는 평행 조사될 수 있으므로 자발광부재의 빛을 다양한 형태와 깊이로 제공할 수 있는 3차원 프린터 및 프린팅 시스템을 제시할 수 있다.
또한, 전술한 과제 해결 수단 중 어느 하나에 의하면, 자발광부재가 만곡부재에 의해 물리적으로 만곡될 수 있으므로, 수납부로 조사되는 자발광부재의 빛을 수납부의 중앙부분으로 집광시키거나 수납부의 외곽으로 분산시킬 수 있는 3차원 프린터 및 프린팅 시스템을 제시할 수 있다.
또한, 전술한 과제 해결 수단 중 어느 하나에 의하면, 자발광부재가 수납부의 상부에 설치되어 빛을 하부로 조사하면서 플레이트의 상면에 조형물의 적층이 이루어지도록 구성될 경우에는 자발광부재에 수납부의 하중이 가해지지 않기 때문에 지지부재의 구성과 투광부재의 구성이 생략될 수 있는 3차원 프린터 및 프린팅 시스템을 제시할 수 있다.
개시되는 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 개시되는 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 제1 실시예에 따른 3차원 프린터를 나타내는 구성도이다.
도 2는 제1 실시예에 따른 3차원 프린터에 추가 구성이 부가된 상태를 나타내는 구성도이다.
도 3은 제2 실시예에 따른 3차원 프린터를 나타내는 구성도이다.
도 4는 제2 실시예에 따른 3차원 프린터에 추가 구성이 부가된 상태를 나타내는 구성도이다.
도 5는 일 실시예에 따른 프린팅 시스템을 나타내는 블록도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 제1 실시예에 따른 3차원 프린터를 나타내는 구성도이고, 도 2는 제1 실시예에 따른 3차원 프린터에 추가 구성이 부가된 상태를 나타내는 구성도이다.
도 1을 참조하면, 제1 실시예에 따른 3차원 프린터(10)는 수납부(100), 투광부재(200), 자발광부재(300), 지지부재(400), 플레이트(500) 및 승강부재(600)를 포함하여 구성될 수 있다.
수납부(100)는 상부가 개방된 용기형태로 구성되어 빛에 의해 경과되는 광경화성 수지를 수용할 수 있다.
여기서, 광경화성 수지는 자외선 등의 빛을 받을 경우 경화되는 것으로, 본 발명이 속하는 분야에 알려진 모든 구성이 적용될 수 있다.
상기 투광부재(200)는 수납부(100)의 바닥면을 이루면서 수납부(100)의 하부에서 후술되는 자발광부재(300)를 통해 조사되는 빛을 수납부(100)로 투과시키는 구성요소이다.
예컨대, 투광부재(200)는 이형필름으로 구성될 수 있으며, 이형필름의 상부를 이루면서 후술되는 플레이트(500)와 대면하는 상부필름(210)과, 이형필름의 하부를 이루면서 후술되는 자발광부재(300)가 밀착되는 하부필름(220)을 포함하여 구성될 수 있다.
여기서, 상부필름(210)은 불소수지 형태의 필름이나 테프론 필름으로 구성될 수 있으며, 하부필름(220)은 PET필름으로 구성될 수 있다.
상기 자발광부재(300)는 투광부재(200)의 하부에 설치되어 수납부(100)를 향해 빛을 조사하되 2차원의 면형태로 빛을 조사하는 구성요소이다.
이러한 자발광부재(300)는 자체 발광하는 디스플레이 소자 중 어느 하나로 구성될 수 있다. 좀 더 구체적으로 자발광부재(300)는 예컨대, 마이크로 LED(Light Emitting Diode), LED, OLED(Organic Light Emitting Diode), FED(Field Emission Display)를 포함하는 자체 발광 디스플레이 소자의 군에서 선택되는 어느 하나의 소자들의 집합체로 구성될 수 있으며, 이외에도 소정의 파장을 가지는 광원을 제공하는 소자를 포함할 수 있다. 즉, 자발광부재(300)는 자체 발광 디스플레이 소자들이 집합체로 소정의 면적을 갖는 패널을 이룸으로써 빛을 면형태로 발광할 수 있다.
상기 지지부재(400)는 자발광부재(300)의 하부에 설치되어 자발광부재(300)의 처짐을 방지하는 구성요소이다.
이러한 지지부재(400)는 자발광부재(300)의 하부에서 지지력을 제공할 수 있도록 강성을 갖는 평면구조물로 구성될 수 있으며, 자발광부재(300)의 빛을 투과시킬 필요가 없으므로 불투명 소재로 구성될 수 있다.
한편, 지지부재(400)는 자발광부재(300)를 지지하면서 자발광부재(300)의 위치를 조절할 수 있도록 자발광부재(300)를 가로 또는 세로방향으로 이동시키면서 승강시킬 수 있는 3축 스테이지의 구성을 포함할 수도 있다.
상기 플레이트(500)는 3차원 조형물을 형성하는 구성요소로, 수납부(100)의 상부에 승강 가능하게 설치되어 하강하면서 광경화성 수지에 담기며, 전술한 자발광부재(300)의 빛에 의해 경화되는 광경화성 수지를 저면에 광경화성 수지를 적층함으로써 3차원 조형물을 형성할 수 있다.
구체적으로, 플레이트(500)는 후술되는 승강부재(600)에 의해 하강하여 전술한 투광부재(200)에 대면하며, 이 상태에서 자발광부재(300)의 빛이 조사될 경우 조사된 빛의 평면형태에 대응하는 광경화성 수지가 경화되면서 저면에 적층된 후 다시 승강부재(600)에 의해 상승할 수 있다.
상기 승강부재(600)는 플레이트(500)를 수납부(100)의 상부에서 승강시키는 구성요소이다.
이러한 승강부재(600)는 승강레일(610) 및 슬라이더(620)를 포함하여 구성될 수 있다.
승강레일(610)은 수납부(100)에 인접 설치되면서 수직방향으로 연장되어 플레이트(500)의 승강경로를 제공할 수 있다.
슬라이더(620)는 플레이트(500)에 고정된 상태로 승강레일(610)에 이동 가능하게 결합되며, 제어에 의해 승강레일(610)을 따라 이동하면서 플레이트(500)를 승강시킬 수 있다.
여기서, 슬라이더(620) 및 승강레일(610)은 볼스크류 방식이나 리니어모터 방식 또는 랙기어와 피니언기어 방식으로 구성되어 직선운동하면서 플레이트(500)를 승강시킬 수 있다.
또한, 승강부재(600)는 플레이트(500)의 위치를 보정할 수 있도록 슬라이더(620)를 수평이동시키는 미도시된 수평이동부재가 구성될 수도 있다.
한편, 도 2를 참조하면, 전술한 자발광부재(300)의 상부에 마이크로렌즈(350)가 설치될 수 있다.
상기 마이크로렌즈(350)는 자발광부재(300)의 광원의 세기나 정밀도를 향상시키기 위한 것으로, 자발광부재(300)의 상부에 설치되어 자발광부재(300)에서 조사되는 빛을 집광, 분산 또는 평행 조사시킬 수 있다.
구체적으로, 마이크로렌즈(350)는 볼록, 오목, 평면, 구형, 다각형 등의 다양한 형상으로 구성되면서 형태에 따라 빛을 집광, 분산 또는 평행 조사시켜 수납부(100)로 제공할 수 있다.
한편, 전술한 지지부재(400)는 외력의 가압에 의해 만곡 가능하도록 구성될 수 있다. 예컨대, 지지부재(400)는 중력에 의해 중앙부분이 만곡될 수 있는 두께나 소재로 형성될 수 있다.
이러한 지지부재(400)는 만곡부재(450)의 가압에 의해 상부 또는 하부로 만곡되면서 전술한 자발광부재(300)와 함께 만곡될 수 있다.
구체적으로, 만곡부재(450)는 지지부재(400)의 중앙 하단부를 지지하는 유압실린더로 구성될 수 있으며, 지지부위를 상부로 가압하여 상승시키거나 하부로 하강시킴으로써 지지부재(400) 및 자발광부재(300)를 상부 또는 하부로 만곡시킬 수 있다.
여기서, 자발광부재(300)의 중앙부분이 하부로 만곡될 경우에는 빛이 집광될 수 있고, 상부로 만곡될 경우에는 빛이 분산될 수 있다.
한편, 도 3은 제2 실시예에 따른 3차원 프린터를 나타내는 구성도이고, 도 4는 제2 실시예에 따른 3차원 프린터에 추가 구성이 부가된 상태를 나타내는 구성도이다.
도 3을 참조하면, 제2 실시예에 따른 3차원 프린터(10')는 제1 실시예에 따른 3차원 프린터(10)와 달리 빛이 수납부(100)의 상부에서 조사되면서 광경화성 수지가 플레이트(500)의 상면에 적층될 수 있다.
구체적으로, 제2 실시예에 따른 3차원 프린터(10')는 수납부(100), 자발광부재(300), 플레이트(500) 및 승강부재(600)를 포함하여 구성될 수 있으며, 전술한 투광부재(200) 및 지지부재(400)의 구성이 생략될 수 있다.
상기 수납부(100)는 상부가 개방된 함체형으로 형성되며, 바닥면도 동일한 소재로 이루어져 경화성 수지를 수용할 수 있다.
상기 자발광부재(300)는 전술한 제1 실시예와 동일한 구성을 가지며, 수납부(100)의 상부에 설치되어 빛을 하부의 수납부(100)를 향해 면 형태로 조사할 수 있다.
상기 플레이트(500)는 수납부(100)의 내부에서 후술되는 승강부재(600)에 의해 승강이 가능하게 설치되면서 광경화성 수지에 담기며, 자발광부재(300)의 빛에 의해 경화된 광경화성 수지를 상면에 적층하면서 3차원 조형물을 형성할 수 있다.
구체적으로, 플레이트(500)는 수납부(100)의 내부에서 광경화성 수지에 담긴 상태로 후술되는 승강부재(600)에 의해 상승하여 자발광부재(300)에 대면하며, 이 상태에서 자발광부재(300)의 빛이 조사될 경우 조사된 빛의 평면형태에 대응하는 광경화성 수지가 경화되면서 상면에 적층된 후 다시 승강부재(600)에 의해 하강할 수 있다.
상기 승강부재(600)는 플레이트(500)를 승강시키기 위한 구성요소로, 플레이트승강레일(650) 및 플레이트슬라이더(660)를 포함하여 구성될 수 있다.
플레이트승강레일(650)은 수납부(100)의 양측벽에 설치되면서 수직방향으로 연장되어 플레이트(500)의 승강경로를 제공할 수 있다.
플레이트슬라이더(660)는 플레이트(500)의 양측에 고정된 상태로 플레이트승강레일(650)에 이동 가능하게 결합되며, 제어에 의해 플레이트승강레일(650)을 따라 이동하면서 플레이트(500)를 승강시킬 수 있다.
여기서, 플레이트슬라이더(660) 및 플레이트승강레일(650)은 볼스크류 방식이나 리니어모터 방식 또는 랙기어와 피니언기어 방식으로 구성되어 직선운동하면서 플레이트(500)를 승강시킬 수 있다.
한편, 도 4를 참조하면, 자발광부재(300)의 하부에는 전술한 마이크로렌즈(350)가 설치되어 빛을 집광, 분산 또는 평행 조사할 수 있으며, 자발광부재(300)의 상부에는 전술한 만곡부재(450)가 설치되어 자발광부재(300)를 상부 또는 하부로 만곡시킬 수 있다.
여기서, 마이크로렌즈(350) 및 만곡부재(450)는 제1 실시예와 동일한 구성을 가지므로 상세한 설명을 생략한다.
한편, 제2 실시예에 따른 3차원 프린터(10')는 광원승강부재(700)를 더 포함하여 구성될 수 있다.
상기 광원승강부재(700)는 자발광부재(300)를 수납부(100)에 승강 가능하게 결합시키면서 광경화성 수지의 수위에 따라 자발광부재(300)를 승강시킴으로써 자발광부재(300)와 플레이트(500)의 적층면의 거리를 균일하게 유지시키기 위한 구성요소이다.
즉, 광원승강부재(700)는 광경화성 수지의 수위가 하강할 경우 자발광부재(300)를 하강시키고, 광경화성 수지의 수위가 상승할 경우 자발광부재(300)를 상승시킴으로써 자발광부재(300)의 빛의 세기가 균일하게 광경화성 수지의 상면에 조사되도록 할 수 있다.
구체적으로, 광원승강부재(700)는 광원승강레일(710) 및 광원슬라이더(720)를 포함하여 구성될 수 있다.
광원승강레일(710)은 수납부(100)의 양측벽에 설치되면서 수직방향으로 연장되어 자발광부재(300) 의 승강경로를 제공할 수 있다.
이러한 광원승강레일(710)은 전술한 플레이트승강레일(650)에서 연장 형성될 수도 있다.
광원슬라이더(720)는 자발광부재(300)의 양측에 고정된 상태로 광원승강레일(710)에 이동 가능하게 결합되며, 제어에 의해 광원승강레일(710)을 따라 이동하면서 자발광부재(300)를 승강시킬 수 있다.
여기서, 광원슬라이더(720) 및 광원승강레일(710)은 볼스크류 방식이나 리니어모터 방식 또는 랙기어와 피니언기어 방식으로 구성되어 직선운동하면서 자발광부재(300)를 승강시킬 수 있다.
한편, 수납부(100)에는 광경화성 수지의 수위를 감지하기 위한 수위센서(730)가 설치되어 광경화성 수지의 수위감지 신호를 기반으로 광원슬라이더(720)가 승강할 수 있다.
상기와 같은 구성요소를 포함하는 3차원 프린터(10)(10')는 도 5에 도시된 바와 같이 이미지 처리부(20)를 포함하는 프린팅 시스템(1)에 적용되어 3D 제어부(30)의 제어에 의해 프린팅을 수행할 수 있다.
구체적으로, 이미지 처리부(20)는 조형대상의 3차원 도면을 높이별로 횡방향 단면이미지로 분석한 후, 분석된 복수의 횡방향 단면이미지를 순차적으로 3차원프린터(10)(10')로 전송할 수 있다.
이때, 제1 실시예에 따른 3차원 프린터(10)에는 조형대상의 상단부의 단면 이미지부터 순차적으로 전송될 수 있으며, 제2 실시예에 따른 3차원 프린터(10')에는 조형대상의 하단부의 단면이미지부터 순차적으로 전송될 수 있다.
그리고, 제어부(30)는 자발광부재(300)를 제어하여 해당 단면이미지에 대응하는 형태의 2차원 평면의 빛을 수납부(100)로 조사하여 광경화성 수지를 플레이트(500)의 저면 또는 상면에 적층시킬 수 있다.
이상에서 살펴 본 바와 같이 일 실시예에 따른 3차원 프린터(10)(10') 및 프린팅 시스템(1)에 의하면, 자발광부재(300)가 자발광소자를 통해 2차원의 면형태로 빛을 제공하므로 별도의 스위칭 장치의 구성이 생략될 수 있고, 빛이 광효율의 저하 없이 제공됨에 따라 광경화성 수지가 균일하게 경화될 수 있다.
상술된 실시예들은 예시를 위한 것이며, 상술된 실시예들이 속하는 기술분야의 통상의 지식을 가진 자는 상술된 실시예들이 갖는 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 상술된 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 명세서를 통해 보호 받고자 하는 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태를 포함하는 것으로 해석되어야 한다.
Claims (13)
- 상부가 개방된 함체형으로 형성되어 내부에 광경화성 수지를 수용하는 수납부;상기 수납부의 바닥면을 이루면서 상기 수납부의 하부에서 조사되는 빛을 상기 수납부로 투과시키는 투광부재;상기 투광부재의 하부에 설치되어 상기 수납부를 향해 빛을 조사하되, 2차원의 면형태로 빛을 조사하는 자발광부재;상기 자발광부재의 하부에 설치되어 지지력을 제공하면서 상기 자발광부재의 처짐을 방지하는 지지부재;상기 수납부의 상부에 승강 가능하게 설치되어 상기 광경화성 수지에 담기며, 상기 자발광부재의 빛에 의해 경화된 상기 광경화성 수지를 저면에 적층하면서 3차원 조형물을 형성하는 플레이트; 및상기 플레이트를 승강시키는 승강부재를 포함하는 3차원 프린터.
- 제 1 항에 있어서,상기 자발광부재는,마이크로 LED, LED, OLED(Organic Light Emitting Diode) 및 FED(Field Emission Display)를 포함하는 자체발광 디스플레이 소자의 군에서 선택되는 어느 하나의 소자들의 집합체로 이루어져 면 발광하는 3차원 프린터.
- 제 1 항에 있어서,상기 투광부재는,상기 플레이트와 대면하는 상부필름; 및상기 상부필름의 하부에 구비되어 상기 상부필름과 동일체를 이루며, 상기 자발광부재가 밀착되는 하부필름을 포함하는 3차원 프린터.
- 제 1 항에 있어서,상기 3차원 프린터는,상기 자발광부재의 상부에 설치되어 상기 자발광부재에서 조사되는 빛을 집광, 분산 또는 평행 조사시키는 마이크로렌즈를 더 포함하는 3차원 프린터.
- 제 1 항에 있어서,상기 지지부재는,외력의 가압에 의해 만곡 가능하게 구성되고,상기 3차원 프린터는,상기 지지부재의 중앙 하단부를 지지하면서 지지부위를 상승 또는 하강시키면서 상기 지지부재 및 상기 자발광부재를 만곡시키는 만곡부재를 더 포함하는 3차원 프린터.
- 상부가 개방된 함체형으로 형성되어 내부에 광경화성 수지를 수용하는 수납부;상기 수납부의 상부에 설치되어 상기 수납부를 향해 빛을 조사하되, 2차원의 면 형태로 빛을 조사하는 자발광부재;상기 수납부에 승강 가능하게 설치되면서 상기 광경화성 수지에 담기며, 상기 자발광부재의 빛에 의해 경화된 상기 광경화성 수지를 상면에 적층하면서 3차원 조형물을 형성하는 플레이트; 및상기 플레이트를 승강시키는 승강부재를 포함하는 3차원 프린터.
- 제 6 항에 있어서,상기 자발광부재는,마이크로 LED, LED, OLED(Organic Light Emitting Diode) 및 FED(Field Emission Display) 를 포함하는 자체발광 디스플레이 소자의 군에서 선택되는 어느 하나의 소자들의 집합체로 이루어져 면 발광하는 3차원 프린터.
- 제 6 항에 있어서,상기 3차원 프린터는,상기 자발광부재의 하부에 설치되어 상기 자발광부재에서 조사되는 빛을 집광, 분산 또는 평행 조사시키는 마이크로렌즈를 더 포함하는 3차원 프린터.
- 제 6 항에 있어서,상기 승강부재는,상기 수납부의 양측벽에 수직방향으로 형성되는 플레이트승강레일; 및상기 플레이트의 양측에 각각 구비되어 상기 승강레일에 이동 가능하게 결합되며, 상기 승강레일을 따라 이동하면서 상기 플레이트를 승강시키는 플레이트슬라이더를 포함하는 3차원 프린터.
- 제 6 항에 있어서,상기 3차원 프린터는,상기 자발광부재를 상기 수납부에 승강 가능하게 결합시키면서 상기 광경화성 수지의 수위에 따라 상기 자발광부재를 승강시키는 광원승강부재를 더 포함하는 3차원 프린터.
- 제 10 항에 있어서,상기 광원승강부재는,상기 수납부의 양측벽에 수직방향으로 형성되는 광원승강레일; 및상기 자발광부재의 양측에 각각 구비되어 상기 광원승강레일에 이동 가능하게 결합되며, 상기 광원승강레일을 따라 이동하면서 상기 자발광부재를 함께 승강시키는 광원슬라이더를 포함하는 3차원 프린터.
- 제 6 항에 있어서,상기 3차원 프린터는,상기 자발광부재의 중앙 상단부를 지지하면서 지지부위를 상승 또는 하강시키면서 상기 자발광부재를 만곡시키는 만곡부재를 더 포함하는 3차원 프린터.
- 제 1 항 내지 제 12 항 중 어느 하나에 의한 3차원 프린터를 포함하는 프린팅 시스템에 있어서,조형대상의 3차원 도면을 높이별 횡방향 단면이미지로 분석하고, 분석된 각각의 횡방향 단면이미지를 순차적으로 상기 3차원 프린터로 전송하는 이미지처리부를 포함하고,상기 3차원 프린터는,상기 자발광부재를 제어하여 상기 횡방향 단면이미지에 대응하는 2차원 평면의 빛을 조사하는 제어부를 포함하는 프린팅 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/955,907 US20200338826A1 (en) | 2017-12-22 | 2018-12-03 | 3d printer and printing system |
CN201880082570.6A CN111511530A (zh) | 2017-12-22 | 2018-12-03 | 三维打印机及打印系统 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0178491 | 2017-12-22 | ||
KR20170178491 | 2017-12-22 | ||
KR1020180153316A KR102180817B1 (ko) | 2017-12-22 | 2018-12-03 | 3차원 프린터 및 프린팅 시스템 |
KR10-2018-0153316 | 2018-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124815A1 true WO2019124815A1 (ko) | 2019-06-27 |
Family
ID=66994846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/015170 WO2019124815A1 (ko) | 2017-12-22 | 2018-12-03 | 3차원 프린터 및 프린팅 시스템 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019124815A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110341097A (zh) * | 2019-08-05 | 2019-10-18 | 浙江大学 | 一种基于dlp光固化3d打印的热塑性聚合物及应用 |
EP4215343A1 (en) * | 2022-01-24 | 2023-07-26 | DENTSPLY SIRONA Inc. | Additive manufacturing apparatus with optical means for diffusing projected uv light towards photocurable resin |
WO2023156154A1 (en) * | 2022-02-16 | 2023-08-24 | Dentsply Sirona Inc. | Additive manufacturing apparatus with optical means for diffusing/scattering projected uv light towards photocurable resin |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160112482A (ko) * | 2015-03-19 | 2016-09-28 | 엘지전자 주식회사 | 3d 프린터 |
KR101753207B1 (ko) * | 2016-06-13 | 2017-07-03 | (주)아이투스 인터내셔날 | 빌드 플레이트 고정식 삼차원 프린터 |
KR101776509B1 (ko) * | 2016-06-21 | 2017-09-19 | 강원대학교산학협력단 | 광센서 및 자세 센서를 이용하는 dlp 방식 3d 프린터용 오토레벨링 시스템 및 이를 구비하는 dlp 방식 3d 프린터 |
KR101800860B1 (ko) * | 2015-07-28 | 2017-11-23 | 주식회사 류진랩 | 3차원 프린터 및 프린팅 시스템 |
KR101800667B1 (ko) * | 2016-12-23 | 2017-12-20 | (주)레이 | Lcd 방식 3d 프린터 |
-
2018
- 2018-12-03 WO PCT/KR2018/015170 patent/WO2019124815A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160112482A (ko) * | 2015-03-19 | 2016-09-28 | 엘지전자 주식회사 | 3d 프린터 |
KR101800860B1 (ko) * | 2015-07-28 | 2017-11-23 | 주식회사 류진랩 | 3차원 프린터 및 프린팅 시스템 |
KR101753207B1 (ko) * | 2016-06-13 | 2017-07-03 | (주)아이투스 인터내셔날 | 빌드 플레이트 고정식 삼차원 프린터 |
KR101776509B1 (ko) * | 2016-06-21 | 2017-09-19 | 강원대학교산학협력단 | 광센서 및 자세 센서를 이용하는 dlp 방식 3d 프린터용 오토레벨링 시스템 및 이를 구비하는 dlp 방식 3d 프린터 |
KR101800667B1 (ko) * | 2016-12-23 | 2017-12-20 | (주)레이 | Lcd 방식 3d 프린터 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110341097A (zh) * | 2019-08-05 | 2019-10-18 | 浙江大学 | 一种基于dlp光固化3d打印的热塑性聚合物及应用 |
EP4215343A1 (en) * | 2022-01-24 | 2023-07-26 | DENTSPLY SIRONA Inc. | Additive manufacturing apparatus with optical means for diffusing projected uv light towards photocurable resin |
WO2023156154A1 (en) * | 2022-02-16 | 2023-08-24 | Dentsply Sirona Inc. | Additive manufacturing apparatus with optical means for diffusing/scattering projected uv light towards photocurable resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019124815A1 (ko) | 3차원 프린터 및 프린팅 시스템 | |
CN102414624B (zh) | 用于立体平版印刷设备中的照明系统 | |
WO2018117351A1 (ko) | Lcd 방식 3d 프린터 | |
RU2540585C2 (ru) | Осветительная система для применения в стереолитографическом устройстве | |
WO2018124457A1 (ko) | 자외선 led를 이용한 선형광원, 이를 포함하는 광중합형 3d 프린터 | |
WO2021162365A2 (ko) | 3d 프린터 | |
KR20190076854A (ko) | 3차원 프린터 및 프린팅 시스템 | |
CN107443731A (zh) | 基于紫外led微显示技术的光固化三维打印装置及其打印方法 | |
WO2016200016A1 (ko) | 적층식 광조형 장치 | |
WO2020096430A1 (ko) | 마이크로 led를 이용한 3d프린터 | |
WO2010077097A2 (ko) | 고속 적층식 광조형 장치 | |
US20190344504A1 (en) | Stereolithographic 3d printer | |
WO2017126947A1 (ko) | 3차원 프린터 | |
WO2022010332A1 (ko) | 3d 프린터 및 3d 프린팅 방법 | |
WO2018212458A1 (ko) | 3d 프린터, 3d 프린팅 방법 및 3d 프린터 제어 프로그램 | |
WO2011034322A2 (ko) | 발광다이오드의 밀봉 방법 및 이에 의해 밀봉된 발광다이오드 | |
WO2020141822A1 (ko) | 3d 프린터 및 프린팅 시스템 | |
JP2007190811A (ja) | 三次元造形物造形方法 | |
WO2021054793A1 (ko) | 3d 프린팅 시스템 | |
WO2021118116A1 (ko) | 선형광원 장치 및 이를 포함하는 3d프린터 | |
CN208216019U (zh) | 一种基于Micro LED的浸入式3D打印设备 | |
WO2022010333A1 (ko) | 3d 프린팅 시스템 | |
WO2017018837A1 (ko) | 3차원 프린터 및 프린팅 시스템 | |
CN113619112A (zh) | 光固化3d打印装置和光固化3d打印方法 | |
WO2022255620A1 (ko) | 3차원 프린터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18892675 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18892675 Country of ref document: EP Kind code of ref document: A1 |