WO2019124696A1 - Iron-nickel alloy foil having excellent flexural resistance - Google Patents

Iron-nickel alloy foil having excellent flexural resistance Download PDF

Info

Publication number
WO2019124696A1
WO2019124696A1 PCT/KR2018/012178 KR2018012178W WO2019124696A1 WO 2019124696 A1 WO2019124696 A1 WO 2019124696A1 KR 2018012178 W KR2018012178 W KR 2018012178W WO 2019124696 A1 WO2019124696 A1 WO 2019124696A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
alloy foil
nickel alloy
nickel
less
Prior art date
Application number
PCT/KR2018/012178
Other languages
French (fr)
Korean (ko)
Inventor
김종권
이재곤
김현태
이재륭
정관호
양홍석
홍재화
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019124696A1 publication Critical patent/WO2019124696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to an iron-nickel alloy foil, and more particularly to an iron-nickel alloy foil excellent in bending resistance.
  • Flexible Display is a next-generation display that can be folded or folded, unlike a flat panel display. Flexible displays can enhance space utilization through shape modification, and are thin, lightweight, and unbreakable. Accordingly, the present invention can be applied to fields such as smart phones, wearable smart devices, foldable IT devices, rollable IT devices, automobile displays, and digital signage. Flexible IT devices that can fold or warp are expected to provide convenience to consumers by enhancing portability and space utilization. In order to develop such next-generation IT equipment, development of parts that can be transformed, such as flexible display, should be preceded.
  • Flexible displays can be implemented in a variety of ways such as OLED, LCD, and E-paper. In the industry, however, OLED driving methods are suitable for flexible displays, and products are being developed using them.
  • a key component of flexible display production technology is the shadow mask, which is essential for high resolution.
  • This mask known as FMM (fine metal mask)
  • FMM fine metal mask
  • OLEDs of RGB Red, Green, Blue
  • a shadow mask In order to make OLED with resolution of 1 million pixels, a shadow mask .
  • the material shrinks or expands due to heat as the process is performed at a high temperature, so it is essential to select a material having excellent thermal expansion characteristics.
  • Korean Patent Publication No. 2016-0047193 and the like have been filed for a conventional shadow mask technology.
  • an iron-nickel (Fe-Ni) alloy-based invar alloy (Fe-36% Ni) is mainly used as a shadow mask material.
  • the Invar alloy produced through the rolling process has a high resolution (due to surface defects due to inclusions and an increase in manufacturing cost) due to limitations in the manufacture of thin shadow mask thin films (thickness of 18 ⁇ m or less), which is a key component for determining pixels of organic light emitting diode It is difficult to upgrade.
  • the mask has a thin thickness, and numerous fine holes are drilled to the extent that it is invisible by an etching technique.
  • OLED panels are made by placing a mask on a panel substrate and vacuum-depositing the RGB phosphor organic material. The thickness of the mask is small and the hole is finely pierced at a precise position so that the pixel can be deposited in place. As the hole becomes finer, a higher pixel can be realized. In addition, the phenomenon that the mask is stretched or stretched even at a high temperature must be minimized.
  • Patent Document 1 Korean Patent Publication No. 2016-0047193
  • the present invention provides an iron-nickel alloy foil excellent in strength and bending resistance.
  • the present invention also provides an iron-nickel alloy foil excellent in strength and bending resistance usable as a material for a flexible display.
  • a steel sheet comprising a nickel content of 36 to 42 wt%, a content of carbon and sulfur of 500 ppm or less, a balance of iron and unavoidable impurities, and a surface roughness (Ra) Nickel-iron alloy foil having a tensile strength of 800 MPa or more, an average grain size of 50 nm or more, and a weight deviation of iron-nickel alloy foil of 3 g / m 2 or less.
  • the tensile strength may be 800 MPa to 1200 MPa.
  • the average grain size may be 50 nm to 100 nm.
  • the iron-nickel alloy foil may have a crystal orientation of 20% or more.
  • the iron-nickel alloy foil may have a thermal expansion coefficient of 5 ppm / K or less.
  • the iron-nickel alloy foil may have a deviation of nickel component of 1 wt% / m 2 or less.
  • the iron-nickel alloy foil may have a thickness of 18 ⁇ or less.
  • the iron-nickel alloy foil can be used as a flexible display material.
  • the iron-nickel alloy foil according to the present invention not only has high strength but also excellent bending resistance and can be used as a material for a flexible display.
  • the iron-nickel alloy foil according to the present invention can be micro-etched and can realize high resolution.
  • Fig. 1 is a schematic view showing a pole electroplating apparatus used for producing an iron-nickel alloy foil of the present invention.
  • the inventors of the present invention confirmed that iron-nickel alloy foils satisfying a specific combination of physical properties among iron-nickel alloy foils have high strength and excellent bending resistance in spite of their small thickness, and have completed the present invention.
  • the iron-nickel alloy foil having high strength and excellent bending resistance contains 36 to 42 wt% of nickel, 500 ppm or less of carbon and sulfur respectively, and the balance iron and unavoidable impurities, A roughness Ra of 1.5 ⁇ m or less, a tensile strength of 800 MPa or more, an average grain size of 50 nm or more, and a weight deviation of iron-nickel alloy foil of 3 g / m 2 or less.
  • the physical properties of the alloy foil described in this specification are all physical properties after heat treatment.
  • the nickel content in the iron-nickel alloy foil (hereinafter, simply referred to as "alloy foil") is 36 wt% to 42 wt%.
  • alloy foil When the nickel content is low, there is a problem that the coefficient of thermal expansion sharply increases. Therefore, it is preferable that the nickel content is 36 wt% or more.
  • the content is excessively high and exceeds 42 wt%, the coefficient of thermal expansion of the alloy foil becomes excessively large compared to glass or the like, and thus the alloy foil can not be suitably used as a material for a flexible display.
  • the content of carbon and sulfur is 500ppm or less, respectively. If the content of carbon or sulfur exceeds 500 ppm, fine cracks are formed as carbon becomes carbon dioxide and sulfur becomes sulfur dioxide due to the heat reaction during the deposition process of the alloy foil.
  • Fe is the other component.
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
  • the surface roughness (Ra) of the drum surface and the solution surface is 1.5 ⁇ or less, respectively.
  • the surface roughness (Ra) of the drum surface and the solution surface should be 1.5 ⁇ m or less, respectively.
  • the drum surface refers to the surface in contact with the drum of the electrophotographic apparatus
  • the solution surface refers to the surface that comes into contact with the solution and the opposite surface to the drum surface.
  • the alloy foil of the present invention has a tensile strength of 800 MPa or more, preferably 800 to 1200 MPa.
  • the tensile strength is less than 800 MPa, it is difficult to secure the dent resistance during handling in the etching and vapor deposition processes.
  • the upper limit may be about 1200 MPa.
  • the average grain size is an average grain size after heat treatment, and the alloy foil of the present invention has an average grain size of 50 nm or more, preferably 50 nm to 100 nm.
  • the average grain size in the above range is preferable in terms of excellent bending resistance and tensile strength.
  • the average crystal grain size is less than 50 nm, the bending resistance is low, and when it exceeds 100 nm, the tensile strength is undesirably low.
  • the average grain size of the electrodeposited foil is 50 nm or less. However, the average grain size of the crystal grains in the heat treatment foil after the heat treatment process is grown to 50 nm or more. Generally, in the case of having fine crystal grains, it has high hardness and high strength, but low elongation. However, in order to have excellent flex resistance, the average grain size should be 50 nm or more.
  • the weight of the alloy foil of the present invention is 3 g / m 2 or less. If the weight deviation exceeds 3 g / m 2, the stress is concentrated on the high-weight portion, the flatness of the iron-nickel alloy foil is lowered, and the etching becomes uneven and there is a risk of fracture. The smaller the weight deviation is, the better, and the lower limit value is not particularly limited.
  • the iron-nickel alloy foil of the present invention preferably has a change in crystal orientation of 20% or more, more preferably 20% to 30%.
  • the surface roughness (Ra) of the iron-nickel alloy foil is not changed by the heat treatment process, but crystals grow in a low temperature range. Grain growth not only changes grain size but also changes texture.
  • the change of the crystal orientation is less than 20%, there is a problem that the surface curl increases due to the crystal structure change. If the surface curl increases, there is a problem that it can not be commercialized. In case of exceeding 30%, the shape of the pattern in the etching process becomes inaccurate due to the change of the plate shape of the alloy foil, and the uniformity is low and commercialization is impossible.
  • (200) plane peak intensity is I (200)
  • the crystal orientation orientation is I (200) when the peak intensity of the (111) plane in the peak obtained by X-ray diffraction analysis is I / I < / RTI > (111).
  • the iron-nickel alloy foil of the present invention preferably has a coefficient of thermal expansion (CTE) of 5 ppm / K or less. If the coefficient of thermal expansion is more than 5 ppm / K, it is not preferable because of the color blur due to the difference in dimension between the substrate and the mask during the deposition process. The smaller the coefficient of thermal expansion is, the better, and the lower limit value is not limited.
  • CTE coefficient of thermal expansion
  • the iron-nickel alloy foil of the present invention has a deviation of nickel component of 1 wt% / m 2 or less. If the deviation of the nickel component of the alloy foil exceeds 1 wt% / m 2 , the difference in thermal expansion coefficient becomes large, which may cause a problem of dimensional difference between the substrate and the mask during the deposition process.
  • the iron-nickel alloy foil of the present invention has a thickness of 18 ⁇ or less, preferably 4 ⁇ to 18 ⁇ . If the thickness of the alloy foil exceeds 18 ⁇ , it is not preferable for use as a high-resolution material. If the thickness is less than 4 ⁇ , the yield is lowered due to the handling problem of the etching process.
  • the iron-nickel alloy foil of the present invention can be used as a flexible display material (e.g., a mask, a substrate, or the like), and is not particularly limited thereto.
  • the iron-nickel alloy foil of the present invention satisfying the above physical properties can be produced by the electroforming method.
  • a method of manufacturing the iron-nickel alloy foil of the present invention by the electroforming method will be described with reference to the electroplating apparatus of FIG.
  • the electrophotographic method is a method in which a liquid-receiving portion 14 is formed in a gap surrounded by a rotating cylindrical negative-electrode drum 12 provided in an electrolytic bath 11 of a electrophotographic apparatus in Fig. 1 and a pair of circular insoluble anodes 13 opposed thereto Nickel alloy foil is electrodeposited on the surface of the negative electrode drum 12 while supplying an electric current to the negative electrode drum 12 while supplying an electric current to the negative electrode drum 12 and winding the same.
  • the iron-nickel alloy foil produced through the electroplating apparatus is referred to as an electrodeposited foil and the one subjected to the heat treatment under a predetermined temperature condition is referred to as a " heat-treated foil ".
  • the electrodeposited foil can be obtained by subjecting the electrodeposited foil to surface roughness, weight variation, carbon content, sulfur content, aggregate structure ratio, thermal expansion coefficient and the like of the electrodeposited foil according to the conditions of electrolytic solution, temperature, current density, pH, , Tensile strength, and other factors (physical properties) can be controlled.
  • the electrolytic solution may contain additives such as iron, a nickel compound, a stress relieving agent, a polishing agent, a pH stabilizer, and the like.
  • the electrolytic solution may contain 5 to 20 g / L of iron ion, 20 to 50 g / L of nickel ion, 30 g / L or less of sodium (excluding 0), 5 g / 100 ppm of saccharin, and more than 5 ppm to less than 25 ppm of polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • the remaining components of the electrolytic solution are water as a solvent, and water is not particularly limited, and pure water, ultrapure water, purified water, and distilled water can be used, and ultrapure water can be preferably used.
  • the concentration of iron ions and the concentration of nickel ions in the electrolyte are determined according to the content of iron and nickel in the iron-nickel alloy foil to be produced. By adjusting to the above-mentioned range, it is possible to produce iron-nickel bonded gold foil which can be applied to a desired application and has desired properties.
  • the iron ion may be dissolved in the form of a salt such as iron sulfate, iron chloride or ferrous sulfate, or may be supplied by dissolving the iron or iron powder in hydrochloric acid or sulfuric acid.
  • the nickel ion may be used in the form of a salt such as nickel chloride, nickel sulfate, and nickel sulfamate, or may be prepared by dissolving ferronickel or the like in an acid.
  • the sodium in the electrolyte solution is added to lower the cell voltage comprising the cathode, the anode and the electrolyte by reducing the resistance of the electrolyte solution.
  • the sodium component preferably has an intended effect when added at 30 g / L or less. If the concentration of the above-mentioned sodium exceeds 30 g / L, the cell voltage is further lowered, but the red powder phenomenon occurs and the target product can not be manufactured There is a problem.
  • the sodium component may be provided by any material commonly known to be compounded to provide the sodium component in the electrolyte, and may be, for example, sodium chloride, sodium carbonate, and the like, but is not limited thereto.
  • the boron may be suitably added so as to have an intended pH range as a component to be added in order to keep the pH of the electrolytic solution constant.
  • the pH can be adjusted by adding 5 g / L or less.
  • the pH of the electrolyte is an important factor affecting not only the electrolyte itself, but also the overall properties of the product. In particular, it is very important to maintain the pH at a constant value because the vicinity of the cathode is a region where the local pH easily changes.
  • the boron component may be provided by any material generally known to be compounded to provide the boron component in the electrolyte, for example, boric acid may be used, but is not limited thereto.
  • Saccharin and PPS are added to lower the surface roughness of the iron-nickel alloy foil and to increase the tensile strength.
  • stress is concentrated on the plated surface of the iron-nickel alloy foil through the electroplating process, the powder is discharged as a result of being obstructed by crystallization of the adsorbed element. As a result, .
  • saccharin may be added as an additive for relieving stress.
  • the saccharin may be added to exhibit a desired stress relaxation effect in the range of 1 to 100 ppm.
  • PPS is added in order to give a leveling effect in addition to a gloss effect in electrolytic plating, and further functions to lower the roughness of the plated tissue through interactions with the saccharin.
  • the PPS may be formulated so as to lower the surface roughness and to exhibit a leveling effect by alternating action in the range of more than 5 ppm and less than 25 ppm.
  • the pH of the electrolytic solution may be, for example, 1.0 to 3.0, and electrodeposition foil can be easily prepared at such a pH range.
  • the conditions of a flow rate of 10 ⁇ 100A / dm current density of 2 and 10 ⁇ 100m 3 / hr at the time of manufacture electrodeposited foil with the pole device of Fig. 1, 45 ⁇ 70 °C have. If the current density is too low, there is a disadvantage that the working speed is slow and the productivity is lowered accordingly. On the other hand, if the current density is too high, the stress increases, and the overvoltage necessary for high current density becomes large, and the side reaction relatively increases on the surface of the anode and the cathode other than the main reaction. As a result, the current efficiency is lowered and deterioration of the electrodeposit such as burning and hydrogen embrittlement occurs.
  • the nickel composition will be low, while if the temperature is too low or if the flow rate is too high, the nickel composition will increase.
  • an electrodeposited foil is obtained by the electrolytic solution and electroforming conditions as described above, and a heat treatment process is performed so that the crystal grains of the electrodeposited foil are grown.
  • the heat treatment step may be performed by keeping the temperature at 300 to 350 ° C. for 10 minutes or more, preferably 10 minutes to 60 minutes in order to suppress surface oxidation while flowing a reducing gas and to stabilize the texture of the alloy foil. More preferably 20 minutes to 40 minutes.
  • hydrogen hydrogen, nitrogen or a mixed gas (for example, a mixed gas of hydrogen: nitrogen at a ratio of 2: 8 by volume) may be used.
  • the heat treatment temperature is less than 300 ° C, there is a fear that the bending resistance due to insufficient tissue stabilization is lowered.
  • the shape of the alloy foil may be changed due to abrupt grain growth, which is not preferable.
  • the heat treatment time if it is less than 10 minutes, it is locally heat-treated. If it exceeds 60 minutes, the surface oxidation of the alloy foil is accelerated and the tensile strength is lowered due to grain growth.
  • Electrolytic foil was prepared by supplying an electrolytic solution having the composition shown in the following Table 1 at a flow rate of 35 m 3 / hr under the condition that the pH of the electrolytic solution was 2.0, the temperature was 57 ° C and the current density was 30 A / dm 2 . Thereafter, the obtained electrodeposited foil was subjected to heat treatment at a temperature range of 300 to 350 DEG C for 20 minutes to 40 minutes while flowing a mixed gas (mixed gas of hydrogen and nitrogen at a ratio of 2: 8 by volume) at 20 L / m with a reducing gas, - nickel alloy foil.
  • a mixed gas mixed gas of hydrogen and nitrogen at a ratio of 2: 8 by volume
  • the obtained heat-treated foil was subjected to the MIT bending test, and the physical properties and the number of MITs of the iron-nickel alloy foils manufactured in Examples and Comparative Examples are shown in Table 2 below.
  • the surface roughness of the drum surface and the solution surface was an arithmetic average roughness (Ra), which was measured by a 3D profiler as an optical non-contact surface roughness indicator, which represents the roughness according to JIS B 0601-2001.
  • Ra arithmetic average roughness
  • magnification was measured in the width direction of the iron-nickel foil surface at a magnification of 50 times in total of the viewing angle lens and objective lens magnification.
  • the grain size of the electrodeposited foil and heat treated foil was calculated using the Scherrer equation * , using the full width at half maximum (FWHM) of the diffraction peak by X-ray diffraction analysis. (* BDCullity; Elements of X-Ray diffraction, (2 nd ed., Addison-Wesley Pub., 1978)
  • Crystal size (d) 0.9? / (B cos?),?: X-ray wavelength, B: half-
  • the average grain size was analyzed by using X-ray, and the same value was indicated without any distinction between the drum surface and the solution surface.
  • the MIT bending test was performed by the MIT bending test apparatus. The bending test was repeated under the following conditions, and the number of times until the test piece was broken was obtained as the number of bending times.
  • the carbon and sulfur content in the alloy foil were measured using an elemental analyzer.
  • the weight deviation of the alloy foil is obtained by cutting the alloy foil to a size of 50 mm * 50 mm, preparing a specimen, measuring its weight, and converting the weight of the alloy foil per unit area. Then, the process of cutting the specimen along the width and the longitudinal direction was repeatedly performed. The weight values for each specimen were measured and then calculated by calculating the standard deviation.
  • the component of the nickel component was continuously measured using the fluorescent X-ray method.
  • the fluorescent X-ray method is a method commonly used as a method of measuring the component of an element constituting a specimen by measuring the intensity of a characteristic fluorescent X-ray emitted from the specimen after the primary X-ray is incident on the specimen.
  • standard specimens having known components are used.
  • five standard specimens of iron-nickel alloys were used.
  • the content of the nickel component of the alloy foil was also measured by the fluorescent X-ray method.
  • the heat-treated alloy foils were analyzed for thermal expansion behavior using TMA (Thermo-Mechanical Analysis). Stabilized at 20 ⁇ ⁇ , held for 1 minute, heated up to 200 ⁇ ⁇ by 5 ⁇ ⁇ / min, held for 5 minutes, and cooled to 20 ⁇ ⁇ at a rate of 5 ⁇ ⁇ / min.
  • the CTE was calculated at 30 ⁇ 100 °C in a straight line.
  • the iron ion used was iron sulfate, the nickel ion component was nickel chloride, the sodium component was sodium chloride, the boron component was boric acid, and the remainder was ultrapure water]
  • the iron-nickel alloy foils according to the embodiment of the present invention record at least 500 times of MIT, while the number of MITs of the iron-nickel alloy foils according to the comparative example is less than 500 . From this, it can be seen that the iron-nickel alloy foil satisfying the properties of the present invention exhibits excellent flex resistance.
  • Electrolytic foil 11 Electrolyzer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

The present invention relates to an iron-nickel alloy foil having excellent flexural resistance. The iron-nickel alloy foil of the present invention has a nickel amount of 36-42 wt%, remaining carbon and sulfur amounts of respectively 500 ppm or less, surface roughnesses (Ra) on a drum surface and solution surface, of respectively 1.5 μm or less, a tensile strength of 800 MPa or more, and an average grain size of 50 nm or more, and the weight deviation of the iron-nickel alloy foil is 3 g/m2 or less. The iron-nickel alloy foil of the present invention has a high strength and excellent flexural resistance and can be used as a material for a flexible display. In addition, the iron-nickel alloy foil of the present invention can be micro-etched and can implement a high resolution.

Description

내굴곡성이 우수한 철-니켈 합금박Fe-Ni alloy foil with excellent bendability
본 발명은 철-니켈 합금박에 관한 것으로, 보다 상세하게는 내굴곡성이 우수한 철-니켈 합금박에 관한 것이다.The present invention relates to an iron-nickel alloy foil, and more particularly to an iron-nickel alloy foil excellent in bending resistance.
플렉서블 디스플레이(Flexible Display)는 평면 디스플레이(Flat Panel Display)와 달리 접거나 휠 수 있는 등 형태를 변형시킬 수 있는 차세대 디스플레이이다. 플렉서블 디스플레이는 형태의 변형을 통해 공간 활용성을 높일 수 있으며, 얇고 가벼우며 깨지지 않는 장점 등이 있다. 따라서, 스마트폰을 비롯한 웨어러블 스마트 기기, 폴더블(Foldable) IT 기기, 롤러블(Rollable) IT 기기, 자동차용 디스플레이 및 디지털 사이니지(Digital Signage)등의 분야에 적용이 가능하다. 접거나 휘는 것이 가능한 플렉서블 형태의 IT 기기는 휴대성, 공간 활용성 등을 높여 소비자에게 편의성을 제공할 것으로 기대된다. 이러한 차세대의 IT 기기가 개발되기 위해서는 플렉서블 디스플레이 등 변형이 가능한 부품 개발이 선행되어야 한다. Flexible Display is a next-generation display that can be folded or folded, unlike a flat panel display. Flexible displays can enhance space utilization through shape modification, and are thin, lightweight, and unbreakable. Accordingly, the present invention can be applied to fields such as smart phones, wearable smart devices, foldable IT devices, rollable IT devices, automobile displays, and digital signage. Flexible IT devices that can fold or warp are expected to provide convenience to consumers by enhancing portability and space utilization. In order to develop such next-generation IT equipment, development of parts that can be transformed, such as flexible display, should be preceded.
플렉서블 디스플레이는 휘는 정도에 따라 약간 굽혀지는(Curved), 구부릴 수 있는(Bendable), 롤러블(Rollable) 및 폴더불(Foldable) 단계로 발전하고 있으며, 현재는 휘어진 형태로 고정되어 변형이 불가능한 약간 굽혀지는 (Curved) 단계의 디스플레이만 상용화(스마트폰, 스마트 워치 등)되고 있다.Flexible displays are progressing to a slightly curved, bendable, rollable and foldable stage depending on the degree of flexion and are now bent in a bent shape, Only the display of the curved stage is commercialized (smart phone, smart watch, etc.).
플렉서블 디스플레이는 OLED, LCD, E-페이퍼(Paper) 등 다양한 방식으로 구현될 수 있으나, 업계 내에서는 OLED 구동방식이 플렉서블 디스플레이에 적합한 방식으로, 이를 이용한 제품 개발이 되고 있다.Flexible displays can be implemented in a variety of ways such as OLED, LCD, and E-paper. In the industry, however, OLED driving methods are suitable for flexible displays, and products are being developed using them.
플렉서블 디스플레이 생산기술의 핵심 부품은 고해상도에 필수적인 섀도우 마스크(shadow mask)이다. FMM(Fine metal mask)으로 알려져 있는 이 마스크는 RGB(Red, Green, Blue) 구조의 고해상도 OLED를 생산하기 위한 필수 부품으로, 100만 화소의 해상도 OLED를 만들기 위해서는 40㎛ 정도의 박판으로 된 섀도우 마스크가 필요하다. 마스크는 유연성이 확보되면서, 고온에서 공정 수행이 이루어짐에 따라 열에 의한 수축, 팽창이 일어나기 때문에 열팽창 특성이 우수한 재료의 선택이 필수적이다. 종래 섀도우 마스크에 관한 기술로 한국특허공개 2016-0047193 등이 출원된 바 있다. A key component of flexible display production technology is the shadow mask, which is essential for high resolution. This mask, known as FMM (fine metal mask), is an essential part for producing high resolution OLEDs of RGB (Red, Green, Blue) structure. In order to make OLED with resolution of 1 million pixels, a shadow mask . As the flexibility of the mask is ensured, the material shrinks or expands due to heat as the process is performed at a high temperature, so it is essential to select a material having excellent thermal expansion characteristics. Korean Patent Publication No. 2016-0047193 and the like have been filed for a conventional shadow mask technology.
또한, 섀도우 마스크 소재로 철-니켈(Fe-Ni) 합금계인 인바 합금(Fe-36%Ni)을 주로 사용한다. 압연 공정을 통해 제조된 인바 합금은 유기발광다이오드(OLED) 디스플레이 패널 화소를 결정 짓는 핵심 부품인 섀도우 마스크 극박 제품(두께 18㎛ 이하) 제조 기술 한계(개재물에 의한 표면 불량 및 제조 비용 상승)로 고해상도 상향이 어려운 실정이다.In addition, an iron-nickel (Fe-Ni) alloy-based invar alloy (Fe-36% Ni) is mainly used as a shadow mask material. The Invar alloy produced through the rolling process has a high resolution (due to surface defects due to inclusions and an increase in manufacturing cost) due to limitations in the manufacture of thin shadow mask thin films (thickness of 18 μm or less), which is a key component for determining pixels of organic light emitting diode It is difficult to upgrade.
한편, 마스크는 두께가 얇고, 에칭(etching)공법의 제조기술로 눈에 보이지 않을 정도로 미세한 구멍이 수없이 많이 뚫려 있다. OLED 패널은 패널 기판 위에 마스크를 얹고 RGB 형광체 유기물질을 진공 증착시켜 만들어진다. 마스크 두께가 얇고 구멍이 정확한 위치에 미세하게 뚫려있어야 화소를 제 위치에 증착시킬 수 있고, 구멍이 세밀할수록 보다 높은 화소를 구현할 수 있다. 또한, 고온에서도 마스크가 쳐지거나 늘어나는 현상이 최소화되어야 한다. On the other hand, the mask has a thin thickness, and numerous fine holes are drilled to the extent that it is invisible by an etching technique. OLED panels are made by placing a mask on a panel substrate and vacuum-depositing the RGB phosphor organic material. The thickness of the mask is small and the hole is finely pierced at a precise position so that the pixel can be deposited in place. As the hole becomes finer, a higher pixel can be realized. In addition, the phenomenon that the mask is stretched or stretched even at a high temperature must be minimized.
한편, 기존의 압연법이 아닌 전주도금법을 통해 두께가 얇은 철-니켈 합금박을 제조할 수 있다. 그러나, 철-니켈 합금박의 두께가 얇아지면 강도 저하가 수반되고, 증착용 마스크 제작시 기판의 변형뿐만 아니라, 금속 박의 크랙 및 찢김 현상으로 인해 공정에서 다양한 문제가 발생한다. On the other hand, it is possible to manufacture a thin iron-nickel alloy foil by the electroplating method rather than the conventional rolling method. However, when the thickness of the iron-nickel alloy foil is reduced, the strength is lowered, and various problems arise in the process due to the cracking and tearing phenomenon of the metal foil as well as the deformation of the substrate during the production of the deposition mask.
이에 따라, 두께는 얇고, 우수한 강도 및 내굴곡성을 갖는 철-니켈 합극박이 요구된다. 또한, 에칭 공정과 증착 공정에서 핸들링시 내덴트성을 확보하기 위해서는 우수한 내굴곡성 및 높은 인장강도가 요구된다.Accordingly, there is a demand for an iron-nickel alloy foil having a thin thickness and excellent strength and bending resistance. In addition, excellent flexing resistance and high tensile strength are required to ensure the dent resistance during handling in the etching process and the deposition process.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국특허공개 2016-0047193(Patent Document 1) Korean Patent Publication No. 2016-0047193
본 발명은 강도 및 내굴곡성이 우수한 철-니켈 합금박을 제공하는 것이다. 본 발명은 또한, 플렉서블 디스플레이용 소재로 이용가능한 강도 및 내굴곡성이 우수한 철-니켈 합금박을 제공하는 것이다.The present invention provides an iron-nickel alloy foil excellent in strength and bending resistance. The present invention also provides an iron-nickel alloy foil excellent in strength and bending resistance usable as a material for a flexible display.
본 발명의 일 견지에 의하면, 니켈의 함량이 36~42wt%, 탄소 및 황 함유량이 각각 500ppm 이하이고 잔부 철 및 불가피한 불순물을 포함하고, 드럼면과 용액면이 표면 조도(Ra)가 각각 1.5㎛ 이하, 인장강도가 800MPa 이상, 평균 결정립 크기가 50nm 이상, 그리고 철-니켈 합금박의 중량 편차는 3g/㎡ 이하인 철-니켈 합금박이 제공된다. According to one aspect of the present invention, there is provided a steel sheet comprising a nickel content of 36 to 42 wt%, a content of carbon and sulfur of 500 ppm or less, a balance of iron and unavoidable impurities, and a surface roughness (Ra) Nickel-iron alloy foil having a tensile strength of 800 MPa or more, an average grain size of 50 nm or more, and a weight deviation of iron-nickel alloy foil of 3 g / m 2 or less.
상기 인장강도는 800MPa 내지 1200 MPa일 수 있다. The tensile strength may be 800 MPa to 1200 MPa.
상기 평균 결정립 크기는 50nm 내지 100nm일 수 있다. The average grain size may be 50 nm to 100 nm.
상기 철-니켈 합금박은 결정배향성이 20% 이상일 수 있다. The iron-nickel alloy foil may have a crystal orientation of 20% or more.
상기 철-니켈 합금박은 열팽창 계수가 5ppm/K 이하일 수 있다. The iron-nickel alloy foil may have a thermal expansion coefficient of 5 ppm / K or less.
상기 철-니켈 합금박은 니켈 성분의 편차가 1 wt%/㎡ 이하일 수 있다. The iron-nickel alloy foil may have a deviation of nickel component of 1 wt% / m 2 or less.
상기 철-니켈 합금박은 두께가 18 ㎛이하일 수 있다. The iron-nickel alloy foil may have a thickness of 18 탆 or less.
상기 철-니켈 합금박은 플렉서블 디스플레이 소재로 사용될 수 있다. The iron-nickel alloy foil can be used as a flexible display material.
본 발명에 의한 철-니켈 합금박은 강도가 높을 뿐만 아니라 및 내굴곡성이 우수하며 플렉서블 디스플레이용 소재로 사용될 수 있다. 또한, 본 발명에 의한 철-니켈 합금박은 미세 에칭 가공이 가능하며, 고해상도를 구현할 수 있다. The iron-nickel alloy foil according to the present invention not only has high strength but also excellent bending resistance and can be used as a material for a flexible display. In addition, the iron-nickel alloy foil according to the present invention can be micro-etched and can realize high resolution.
도 1은 본 발명의 철-니켈 합금박 제조에 사용되는 전주도금 장치를 나타내는 개략도이다. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a pole electroplating apparatus used for producing an iron-nickel alloy foil of the present invention. Fig.
본 발명자들은 철-니켈 합금박 중 특정한 물성의 조합을 만족하는 철-니켈 합금박은 두께가 얇음에도 불구하고, 높은 강도와 우수한 내굴곡성을 가짐을 확인하고 본 발명을 완성하기에 이르렀다. The inventors of the present invention confirmed that iron-nickel alloy foils satisfying a specific combination of physical properties among iron-nickel alloy foils have high strength and excellent bending resistance in spite of their small thickness, and have completed the present invention.
본 발명의 일 구현에 의한 높은 강도와 우수한 내굴곡성을 갖는 철-니켈 합금박은 니켈 36 내지 42wt%, 탄소 및 황을 각각 500ppm 이하 그리고 잔부 철 및 불가피한 불순물을 포함하고, 드럼면과 용액면의 표면 조도(Ra)가 각각 1.5㎛ 이하, 인장강도가 800MPa 이상, 평균 결정립 크기가 50nm 이상 그리고 철-니켈 합금박의 중량 편차는 3g/㎡ 이하이다. 이하, 본 명세서에서 기재한 합금박의 물성은 모두 열처리 후의 물성이다. The iron-nickel alloy foil having high strength and excellent bending resistance according to an embodiment of the present invention contains 36 to 42 wt% of nickel, 500 ppm or less of carbon and sulfur respectively, and the balance iron and unavoidable impurities, A roughness Ra of 1.5 μm or less, a tensile strength of 800 MPa or more, an average grain size of 50 nm or more, and a weight deviation of iron-nickel alloy foil of 3 g / m 2 or less. Hereinafter, the physical properties of the alloy foil described in this specification are all physical properties after heat treatment.
상기 철-니켈 합금박 (이하, 단지 '합금박'이라 하기도 함)에서 니켈함량은 36wt% 내지 42wt%이다. 니켈 함량이 낮을 경우 열팽창계수가 급격하게 증가하는 문제점이 있으므로, 상기 니켈의 함량이 36wt% 이상인 것이 바람직하다. 다만, 그 함량이 과도하게 높아 42wt%를 초과하는 경우, 합금박의 열팽창계수가 유리 등에 비해 지나치게 커져 플렉서블 디스플레이용 소재로 적합하게 사용할 수 없게 되는 문제가 있다. The nickel content in the iron-nickel alloy foil (hereinafter, simply referred to as "alloy foil") is 36 wt% to 42 wt%. When the nickel content is low, there is a problem that the coefficient of thermal expansion sharply increases. Therefore, it is preferable that the nickel content is 36 wt% or more. However, when the content is excessively high and exceeds 42 wt%, the coefficient of thermal expansion of the alloy foil becomes excessively large compared to glass or the like, and thus the alloy foil can not be suitably used as a material for a flexible display.
탄소 및 황의 함량은 각각 500ppm 이하이다. 탄소 또는 황 함유량이 500ppm을 초과하면, 합금박의 증착 공정시, 열에 의한 반응으로 탄소는 이산화탄소, 황은 이산화황이 되면서 미세 파단이 형성된다.The content of carbon and sulfur is 500ppm or less, respectively. If the content of carbon or sulfur exceeds 500 ppm, fine cracks are formed as carbon becomes carbon dioxide and sulfur becomes sulfur dioxide due to the heat reaction during the deposition process of the alloy foil.
상술한 니켈, 탄소 및 황 함량을 제외한 나머지 성분은 Fe이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.Except for the nickel, carbon and sulfur contents mentioned above, Fe is the other component. However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
상기 본원의 합금박은 드럼면과 용액면의 표면조도 (Ra)가 각각 1.5㎛ 이하이다. 에칭 공정 시 에칭 깊이의 차이를 최소화 하기 위해 드럼면과 용액면의 표면조도 (Ra)가 각각 1.5㎛ 이하이어야 한다. 드럼면은 전주장치의 드럼과 접촉되어 있는 면을 말하며, 용액면은 용액과 접촉되는 면으로서 드럼면의 반대면을 말한다. In the alloy foil of the present invention, the surface roughness (Ra) of the drum surface and the solution surface is 1.5 탆 or less, respectively. In order to minimize the etching depth difference in the etching process, the surface roughness (Ra) of the drum surface and the solution surface should be 1.5 μm or less, respectively. The drum surface refers to the surface in contact with the drum of the electrophotographic apparatus, and the solution surface refers to the surface that comes into contact with the solution and the opposite surface to the drum surface.
상기 본원의 합금박은 인장강도가 800MPa 이상이며, 바람직하게는 800 내지 1200 MPa이다. 인장강도가 800MPa 미만이면 에칭 및 증착 공정에서 핸들링 시 내덴트성을 확보하기 어렵다. 인장강도는 클수록 바람직하며, 상한값에 대하여 특히 한정하는 것은 아니지만, 강도를 1200 MPa를 초과하게 하기 위해서는 사카린의 함량을 증가시켜야 하며, 이 경우에는 연속적으로 합금박이 제조되지 않는 문제가 있으므로, 인장강도의 상한은 1200 MPa 정도일 수 있다. The alloy foil of the present invention has a tensile strength of 800 MPa or more, preferably 800 to 1200 MPa. When the tensile strength is less than 800 MPa, it is difficult to secure the dent resistance during handling in the etching and vapor deposition processes. The larger the tensile strength is, and the upper limit is not particularly limited. However, in order to make the strength exceed 1200 MPa, the content of saccharin must be increased. In this case, there is a problem that the alloy foil is not continuously produced. The upper limit may be about 1200 MPa.
상기 평균 결정립 크기는 열처리 후의 평균 결정립 크기로서, 상기 본원의 합금박은 평균 결정립 크기가 50nm 이상, 바람직하게는 50nm 내지 100nm이다. 평균 결정립 크기가 상기 범위인 것이 우수한 내굴곡성과 인장강도 측면에서 바람직하다. 평균 결정립 크기가 50nm 미만이면 내굴곡성이 저조하며, 100nm을 초과하면 인장강도가 저하되어 바람직하지 않다. The average grain size is an average grain size after heat treatment, and the alloy foil of the present invention has an average grain size of 50 nm or more, preferably 50 nm to 100 nm. The average grain size in the above range is preferable in terms of excellent bending resistance and tensile strength. When the average crystal grain size is less than 50 nm, the bending resistance is low, and when it exceeds 100 nm, the tensile strength is undesirably low.
전착박의 평균 결정립 크기는 50nm 이하이다. 하지만, 열처리 공정을 완료한 열처리박에서의 결정립은 평균 결정립 크기가 50nm 이상으로 성장한다. 일반적으로 미세한 결정립을 가지는 경우에, 경도와 강도는 높지만, 낮은 연신율을 갖는다. 그러나, 우수한 내굴곡성을 갖기 위해서는 평균 결정립 크기가 50nm 이상이 되어야 한다. The average grain size of the electrodeposited foil is 50 nm or less. However, the average grain size of the crystal grains in the heat treatment foil after the heat treatment process is grown to 50 nm or more. Generally, in the case of having fine crystal grains, it has high hardness and high strength, but low elongation. However, in order to have excellent flex resistance, the average grain size should be 50 nm or more.
상기 본원의 합금박은 중량 편차가 3g/㎡ 이하이다. 중량편차가 3g/㎡을 초과하면, 중량이 높은 부분에 응력이 집중되어 철-니켈 합금박의 평탄도가 저하되어 에칭이 불균일하게 되며, 파단의 위험이 있다. 중량 편차는 작을수록 좋으며, 하한값을 특히 한정하는 것은 아니다. The weight of the alloy foil of the present invention is 3 g / m 2 or less. If the weight deviation exceeds 3 g / m 2, the stress is concentrated on the high-weight portion, the flatness of the iron-nickel alloy foil is lowered, and the etching becomes uneven and there is a risk of fracture. The smaller the weight deviation is, the better, and the lower limit value is not particularly limited.
상기 본원의 철-니켈 합금박은 결정배향성의 변화가 20% 이상, 보다 바람직하게는 20% 내지 30%인 것이 바람직하다.The iron-nickel alloy foil of the present invention preferably has a change in crystal orientation of 20% or more, more preferably 20% to 30%.
열처리 공정에 의해 철-니켈 합금박의 표면조도(Ra)는 변화하지 않지만, 낮은 온도 범위에서 결정이 성장한다. 결정립 성장은 결정립 크기의 변화뿐만 아니라 집합조직 변화도 함께 일어난다. 결정배향성의 변화가 20% 미만 발생시 결정구조 변화로 인해 표면 컬(Curl)이 증가하는 문제가 있다. 표면 컬이 증가하면, 제품화할 수 없는 문제가 있다. 또한 30% 초과 발생시 합금박의 판 형상 변화로 인해 에칭 공정에서 패턴의 모양이 부정확하게 되고, 균일도가 낮아 제품화가 불가하다.The surface roughness (Ra) of the iron-nickel alloy foil is not changed by the heat treatment process, but crystals grow in a low temperature range. Grain growth not only changes grain size but also changes texture. When the change of the crystal orientation is less than 20%, there is a problem that the surface curl increases due to the crystal structure change. If the surface curl increases, there is a problem that it can not be commercialized. In case of exceeding 30%, the shape of the pattern in the etching process becomes inaccurate due to the change of the plate shape of the alloy foil, and the uniformity is low and commercialization is impossible.
상기 결정 배향성은 전착 박 표면을 X-Ray 회절 분석으로 얻어진 피크 중 (111)면 피크 강도를 I(111)이라 하고, (200)면 피크 강도를 I(200)이라고 할 때, I(200)/I(111)의 백분율을 말한다.(200) plane peak intensity is I (200), and the crystal orientation orientation is I (200) when the peak intensity of the (111) plane in the peak obtained by X-ray diffraction analysis is I / I < / RTI > (111).
상기 본원의 철-니켈 합금박은 열팽창 계수(CTE)가 5 ppm/K 이하인 것이 바람직하다. 열팽창 계수가 5 ppm/K를 초과하면 증착 공정시, 기판과 마스크의 치수 차이로 인한 색 번짐 등의 불량으로 바람직하지 않다. 열팽창 계수는 작을수록 바람직한 것으로, 하한값은 한정하지 않는다.The iron-nickel alloy foil of the present invention preferably has a coefficient of thermal expansion (CTE) of 5 ppm / K or less. If the coefficient of thermal expansion is more than 5 ppm / K, it is not preferable because of the color blur due to the difference in dimension between the substrate and the mask during the deposition process. The smaller the coefficient of thermal expansion is, the better, and the lower limit value is not limited.
나아가, 상기 본원의 철-니켈 합금박은 니켈 성분의 편차가 1wt%/m2 이하인 것이 바람직하다. 합금박의 니켈 성분의 편차가 1wt%/m2을 초과하면, 열팽창 계수 차이가 커지며, 이로 인하여, 증착 공정 시 기판과 마스크의 치수 차이의 문제가 발생될 수 있다.Further, it is preferable that the iron-nickel alloy foil of the present invention has a deviation of nickel component of 1 wt% / m 2 or less. If the deviation of the nickel component of the alloy foil exceeds 1 wt% / m 2 , the difference in thermal expansion coefficient becomes large, which may cause a problem of dimensional difference between the substrate and the mask during the deposition process.
상기한 본원의 철-니켈 합금박은 두께가 18㎛이하, 바람직하게는 4㎛ 내지 18㎛이다. 합금박의 두께가 18㎛를 초과할 경우, 고해상도 소재로 사용하기에는 바람직하지 않고, 4㎛ 미만이면 에칭 공정 핸들링 문제로 수율이 저하되는 점에서 바람직하지 않다. The iron-nickel alloy foil of the present invention has a thickness of 18 탆 or less, preferably 4 탆 to 18 탆. If the thickness of the alloy foil exceeds 18 탆, it is not preferable for use as a high-resolution material. If the thickness is less than 4 탆, the yield is lowered due to the handling problem of the etching process.
본 발명의 철-니켈 합금박은 플렉서블 디스플레이 소재(예컨대, 마스크, 기판 등) 등으로 사용될 수 있으며, 특별히 이에 한정하는 것은 아니다.The iron-nickel alloy foil of the present invention can be used as a flexible display material (e.g., a mask, a substrate, or the like), and is not particularly limited thereto.
상기 물성을 만족하는 본원의 철-니켈 합금박은 전주법으로 제조될 수 있다. 이하, 전주법에 의한 본원의 철-니켈 합금박의 제조방법을 도 1의 전주도금 장치를 참고하여 설명한다. The iron-nickel alloy foil of the present invention satisfying the above physical properties can be produced by the electroforming method. Hereinafter, a method of manufacturing the iron-nickel alloy foil of the present invention by the electroforming method will be described with reference to the electroplating apparatus of FIG.
전주법은 도 1의 전주도금장치의 전해조(11)내에 설치된 회전하는 원통형의 음극 드럼(12)과 이에 대향하는 한 쌍의 원호 형상의 불용성 양극(13)에 둘러싸인 틈으로 급액부(14)를 통해 전해액을 공급하여 전류를 흘려주면서, 상기 음극 드럼(12)의 표면에 철-니켈 합금박을 전착시키고, 이를 권취함으로써 전착박인 금속박(1)을 제조하는 방법이다. 본원에서, 전주도금 장치를 통해 제조된 철-니켈 합금박을 '전착박'이라 하고, 일정 온도 조건에서 열처리한 것은 '열처리박'이라 한다.The electrophotographic method is a method in which a liquid-receiving portion 14 is formed in a gap surrounded by a rotating cylindrical negative-electrode drum 12 provided in an electrolytic bath 11 of a electrophotographic apparatus in Fig. 1 and a pair of circular insoluble anodes 13 opposed thereto Nickel alloy foil is electrodeposited on the surface of the negative electrode drum 12 while supplying an electric current to the negative electrode drum 12 while supplying an electric current to the negative electrode drum 12 and winding the same. In the present invention, the iron-nickel alloy foil produced through the electroplating apparatus is referred to as an electrodeposited foil and the one subjected to the heat treatment under a predetermined temperature condition is referred to as a " heat-treated foil ".
상기 전착박은 첨가제의 종류 및 함량에 따른 전해액의 조성, 온도, 전류밀도, pH, 유량 등의 전주조건에 따라, 전착박의 표면조도, 중량편차, 탄소 함유량, 황 함유량, 집합조직 비율, 열팽창계수, 인장강도 등의 인자(물성)를 조절할 수 있다.The electrodeposited foil can be obtained by subjecting the electrodeposited foil to surface roughness, weight variation, carbon content, sulfur content, aggregate structure ratio, thermal expansion coefficient and the like of the electrodeposited foil according to the conditions of electrolytic solution, temperature, current density, pH, , Tensile strength, and other factors (physical properties) can be controlled.
예를 들어, 전해액은 철, 니켈 화합물, 응력완화제, 광택제, pH 안정제등의 첨가제 등을 포함할 수 있다. For example, the electrolytic solution may contain additives such as iron, a nickel compound, a stress relieving agent, a polishing agent, a pH stabilizer, and the like.
예를 들어, 전해액은 5~20g/L의 철 이온, 20~50g/L의 니켈 이온, 30g/L 이하(0은 제외)의 나트륨, 5g/L 이하(0은 제외)의 보론, 1~100ppm의 사카린, 5ppm 초과~25ppm 미만의 PPS(poly phenylene sulfide)를 포함할 수 있다.For example, the electrolytic solution may contain 5 to 20 g / L of iron ion, 20 to 50 g / L of nickel ion, 30 g / L or less of sodium (excluding 0), 5 g / 100 ppm of saccharin, and more than 5 ppm to less than 25 ppm of polyphenylene sulfide (PPS).
상기 전해액의 나머지 성분은 용매로서 물이며, 물은 특히 한정되는 것은 아니며, 순수, 초순수, 정제수, 증류수 등이 사용될 수 있으며, 바람직하게는 초순수를 사용할 수 있다.The remaining components of the electrolytic solution are water as a solvent, and water is not particularly limited, and pure water, ultrapure water, purified water, and distilled water can be used, and ultrapure water can be preferably used.
상기 전해액 내 철 이온의 농도와 니켈 이온의 농도는 제조하고자 하는 철-니켈 합금박 중 철 및 니켈의 함량에 따라 결정된다. 대략 상기 범위로 조절함으로써 원하는 용도에 적용가능하며 원하는 물성을 갖는 철-니켈 함금박이 제조될 수 있다.The concentration of iron ions and the concentration of nickel ions in the electrolyte are determined according to the content of iron and nickel in the iron-nickel alloy foil to be produced. By adjusting to the above-mentioned range, it is possible to produce iron-nickel bonded gold foil which can be applied to a desired application and has desired properties.
상기 철 이온은 황산철, 염화철, 설퍼민산철 등의 염의 형태에서 녹여 사용하거나 전해철, 철 파우더를 염산이나 황산에 녹여서 공급할 수 있다. 또한, 상기 니켈 이온은 염화니켈, 황산니켈, 설퍼민산니켈 등의 염 형태로 사용하거나 산에 페로니켈 등을 녹여 공급할 수 있다.The iron ion may be dissolved in the form of a salt such as iron sulfate, iron chloride or ferrous sulfate, or may be supplied by dissolving the iron or iron powder in hydrochloric acid or sulfuric acid. The nickel ion may be used in the form of a salt such as nickel chloride, nickel sulfate, and nickel sulfamate, or may be prepared by dissolving ferronickel or the like in an acid.
상기 전해액 성분 중 나트륨은 상기 전해액의 저항을 줄임으로써 음극(cathode), 양극(anode), 전해액(electrolyte)으로 구성하는 셀(cell) 전압을 낮추기 위해 첨가한다. 나트륨 성분은 바람직하게 30g/L 이하로 첨가할 때 의도하는 효과를 얻을 수 있다. 만일, 상기 나트늄의 농도가 30g/L를 초과하게 되면 오히려 셀 전압은 더 저하되나, 붉은 파우더 현상이 발생하여 목표로 하는 제품을 제조할 수 없게 되는 문제가 있다. 나트륨 성분은 전해액에 나트륨 성분을 제공하기 위해 배합되는 것으로 일반적으로 알려져 있는 어떠한 물질에 의해 제공될 수 있으며, 예를 들어, 염화나트륨, 탄산나트륨 등이 사용될 수 있고 이로써 한정하는 것은 아니다.Sodium in the electrolyte solution is added to lower the cell voltage comprising the cathode, the anode and the electrolyte by reducing the resistance of the electrolyte solution. The sodium component preferably has an intended effect when added at 30 g / L or less. If the concentration of the above-mentioned sodium exceeds 30 g / L, the cell voltage is further lowered, but the red powder phenomenon occurs and the target product can not be manufactured There is a problem. The sodium component may be provided by any material commonly known to be compounded to provide the sodium component in the electrolyte, and may be, for example, sodium chloride, sodium carbonate, and the like, but is not limited thereto.
상기 보론은 전해액의 pH를 일정하게 유지시키기 위해 첨가하는 성분으로서, 의도하는 pH 범위가 되도록 적합하게 첨가될 수 있다. 예를 들어, 5g/L 이하로 첨가하여, pH를 조절할 수 있다. 전해액의 pH는 전해액 자체뿐만 아니라, 제품의 특성 전체에 영향을 미치는 중요인자이다. 특히, 음극(cathode) 주변은 국부 pH가 쉽게 변화하는 영역이기 때문에, pH를 일정한 값으로 유지시키는 것은 매우 중요하다. 보론 성분은 전해액에 보론 성분을 제공하기 위해 배합되는 것으로 일반적으로 알려져 있는 어떠한 물질에 의해 제공될 수 있으며, 예를 들어, 붕산이 사용될 수 있고, 이로써 한정하는 것은 아니다.The boron may be suitably added so as to have an intended pH range as a component to be added in order to keep the pH of the electrolytic solution constant. For example, the pH can be adjusted by adding 5 g / L or less. The pH of the electrolyte is an important factor affecting not only the electrolyte itself, but also the overall properties of the product. In particular, it is very important to maintain the pH at a constant value because the vicinity of the cathode is a region where the local pH easily changes. The boron component may be provided by any material generally known to be compounded to provide the boron component in the electrolyte, for example, boric acid may be used, but is not limited thereto.
사카린 및 PPS는 철-니켈 합금박의 표면조도를 낮추고 인장강도를 증대시키기 위하여 첨가된다. 전주법을 통해 철-니켈 합금박의 제조시 도금된 면에 응력이 집중되면, 디스차지(discharge)되어 흡착된 원소가 결정화되는데 방해를 받아 외관상 파우더링(powdering) 현상으로 나타나게 되어, 미려한 도금면을 얻지 못하게 된다.Saccharin and PPS are added to lower the surface roughness of the iron-nickel alloy foil and to increase the tensile strength. When stress is concentrated on the plated surface of the iron-nickel alloy foil through the electroplating process, the powder is discharged as a result of being obstructed by crystallization of the adsorbed element. As a result, .
이를 방지하기 위하여, 응력을 완화시키는 첨가제로서 사카린이 첨가될 수 있다. 상기 사카린은 1~100ppm 범위에서 원하는 응력 완화 효과를 나타내도록 첨가될 수 있다.In order to prevent this, saccharin may be added as an additive for relieving stress. The saccharin may be added to exhibit a desired stress relaxation effect in the range of 1 to 100 ppm.
PPS는 전해 도금시 광택효과와 더불어 레벨링(leveling) 효과를 부여하기 위하여 첨가하며, 나아가 상기 사카린과 교호작용을 통해 도금되는 조직의 조도를 낮추는 기능을 한다. 상기 PPS는 5ppm 초과~25ppm 미만의 범위에서 교호작용에 의해 표면 조도를 낮추고 레벨링 효과를 나타내도록 배합될 수 있다.PPS is added in order to give a leveling effect in addition to a gloss effect in electrolytic plating, and further functions to lower the roughness of the plated tissue through interactions with the saccharin. The PPS may be formulated so as to lower the surface roughness and to exhibit a leveling effect by alternating action in the range of more than 5 ppm and less than 25 ppm.
상기 전해액의 pH는 예를 들어, 1.0~3.0일 수 있으며, 이러한 범위의 pH에서 전착박이 용이하게 제조된다.The pH of the electrolytic solution may be, for example, 1.0 to 3.0, and electrodeposition foil can be easily prepared at such a pH range.
예를 들어, 도 1의 전주장치를 사용한 전착박 제조시, 45~70℃의 온도, 10~100A/dm2의 전류밀도 및 10~100m3/hr의 유량의 조건으로 전착박을 제조할 수 있다. 전류밀도가 너무 낮으면 작업속도가 느리고, 그에 따라 생산성이 저하되는 단점이 있다. 반면, 전류밀도가 너무 높으면 응력이 증가하고, 고전류밀도에 필요한 과전압이 커져 주반응 외, 양극 및 음극 표면에서 부반응이 상대적으로 늘어나게 된다. 이로 인해, 전류 효율은 저하되고, 버닝(burning) 및 수소취성(hydrogen embrittlement) 등과 같은 전착물의 열화가 발생하는 문제가 있다.For example, possible to manufacture the electrodeposited foil to the temperature, the conditions of a flow rate of 10 ~ 100A / dm current density of 2 and 10 ~ 100m 3 / hr at the time of manufacture electrodeposited foil with the pole device of Fig. 1, 45 ~ 70 ℃ have. If the current density is too low, there is a disadvantage that the working speed is slow and the productivity is lowered accordingly. On the other hand, if the current density is too high, the stress increases, and the overvoltage necessary for high current density becomes large, and the side reaction relatively increases on the surface of the anode and the cathode other than the main reaction. As a result, the current efficiency is lowered and deterioration of the electrodeposit such as burning and hydrogen embrittlement occurs.
또한, 온도가 너무 높거나 유량이 너무 낮으면 니켈 조성이 낮아지고, 반면 온도가 너무 낮거나 유량이 너무 과도하면 니켈 조성이 증가하는 문제가 있다.Also, if the temperature is too high or the flow rate is too low, the nickel composition will be low, while if the temperature is too low or if the flow rate is too high, the nickel composition will increase.
예를 들어, 상기와 같은 전해액 및 전주조건으로 전착박을 얻고, 전착박의 결정립이 성장되도록 열처리 공정을 행한다. 열처리 공정은 환원성 기체를 흘러주면서 표면 산화를 억제하고, 합금박의 조직을 안정화하기 위해 300~350℃의 온도 범위에서 10분 이상, 바람직하게는 10분 내지 60분 동안 유지하여 행할 수 있다. 보다 바람직하게는 20분 내지 40분 동안 유지하는 것이 좋다.For example, an electrodeposited foil is obtained by the electrolytic solution and electroforming conditions as described above, and a heat treatment process is performed so that the crystal grains of the electrodeposited foil are grown. The heat treatment step may be performed by keeping the temperature at 300 to 350 ° C. for 10 minutes or more, preferably 10 minutes to 60 minutes in order to suppress surface oxidation while flowing a reducing gas and to stabilize the texture of the alloy foil. More preferably 20 minutes to 40 minutes.
환원성 기체로는 수소, 질소 혹은 혼합가스(예를 들어, 수소:질소의 2:8 부피비의 혼합가스)등이 사용될 수 있다.As the reducing gas, hydrogen, nitrogen or a mixed gas (for example, a mixed gas of hydrogen: nitrogen at a ratio of 2: 8 by volume) may be used.
열처리 온도가 300℃ 미만일 경우, 조직 안정화 미흡으로 인한 내굴곡성이 저하될 우려가 있다. 반면 350℃를 초과하면, 급격한 결정립 성장으로 인한 합금박의 형상 변화가 발생하여 바람직하지 않다. 열처리 시간의 경우, 10분 미만일 경우 국부적으로 열처리가 되고, 60분을 초과하면, 합금박의 표면산화 가속화 및 결정립 성장으로 인한 인장강도 저하 문제가 발생하기 때문에 바람직하지 않다.When the heat treatment temperature is less than 300 ° C, there is a fear that the bending resistance due to insufficient tissue stabilization is lowered. On the other hand, if it exceeds 350 ° C, the shape of the alloy foil may be changed due to abrupt grain growth, which is not preferable. In the case of the heat treatment time, if it is less than 10 minutes, it is locally heat-treated. If it exceeds 60 minutes, the surface oxidation of the alloy foil is accelerated and the tensile strength is lowered due to grain growth.
이 기술분야의 기술자는 상기 예시한 바와 같은 전해액 조성 및 전주 조건 등을 참고하여, 본원의 물성을 만족하는 철-니켈 합금을 제조할 수 있다.The skilled artisan will be able to prepare an iron-nickel alloy satisfying the properties of the present invention by referring to the electrolyte composition and electroplating conditions as described above.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate and specify the present invention, but not to limit the scope of the present invention. And the scope of the present invention is determined by the matters described in the claims and the matters reasonably deduced therefrom.
(실시예)(Example)
도 1에 도시된 전주도금 장치를 사용하여 철-니켈 합금박을 제조하였다. 전해액의 pH는 2.0, 온도는 57℃ 전류밀도는 30A/dm2인 조건에서 35m3/hr의 유량으로 하기 표 1의 조성으로 된 전해액을 공급하여 전착박을 제조하였다. 그 후, 얻어진 전착박을 환원가스로 혼합가스 (수소와 질소의 2:8 부피비 혼합가스)를 20 L/m로 흘려주면서, 300~350℃의 온도 범위에서 20분 내지 40분간 열처리하여, 철-니켈 합금박을 얻었다. An iron-nickel alloy foil was prepared using the electroplating apparatus shown in Fig. Electrolytic foil was prepared by supplying an electrolytic solution having the composition shown in the following Table 1 at a flow rate of 35 m 3 / hr under the condition that the pH of the electrolytic solution was 2.0, the temperature was 57 ° C and the current density was 30 A / dm 2 . Thereafter, the obtained electrodeposited foil was subjected to heat treatment at a temperature range of 300 to 350 DEG C for 20 minutes to 40 minutes while flowing a mixed gas (mixed gas of hydrogen and nitrogen at a ratio of 2: 8 by volume) at 20 L / m with a reducing gas, - nickel alloy foil.
얻어진 열처리박에 대해 MIT 굴곡 시험을 행하고, 실시예 및 비교예에서 제조된 철-니켈 합금박의 물성 및 MIT 횟수를 하기 표 2에 나타내었다.The obtained heat-treated foil was subjected to the MIT bending test, and the physical properties and the number of MITs of the iron-nickel alloy foils manufactured in Examples and Comparative Examples are shown in Table 2 below.
하기 표 2에 나타낸 물성 평가는 다음과 같은 방법으로 행하였다.The properties shown in Table 2 were evaluated in the following manner.
1. 표면조도1. Surface roughness
드럼면과 용액면의 표면조도는 산술 평균 거칠기(Ra)로서, JIS B 0601-2001 규격에 있는 거칠기를 나타내며, 광학식 비접촉 표면 조도계인 3D 프로파일러(profiler)로 측정하였다. 이때, 배율은 시야각 렌즈, 대물 렌즈 배율을 합계 50배로 철-니켈 박 표면의 폭 방향으로 측정하였다.The surface roughness of the drum surface and the solution surface was an arithmetic average roughness (Ra), which was measured by a 3D profiler as an optical non-contact surface roughness indicator, which represents the roughness according to JIS B 0601-2001. At this time, magnification was measured in the width direction of the iron-nickel foil surface at a magnification of 50 times in total of the viewing angle lens and objective lens magnification.
2. 인장강도2. Tensile strength
ASTM-SUB 기준으로 제작하여 strain speed 1㎛/sec 기준으로 미세 인장 시험기를 이용하여 측정하였다.ASTM-SUB, and measured using a microtensile tester at a strain speed of 1 탆 / sec.
3. 결정 배향성3. Crystal orientation
전착박 표면을 X-Ray 회절 분석으로 얻어진 피크 중 (111)면 피크 강도를 I(111)이라 하고, (200)면 피크 강도를 I(200)이라고 할 때, I(200)/I(111)의 백분율을 말한다. 즉, 결정 배향성 (%)=[I(200)/I(111)]*100I (200) / I (111), where I (111) is the peak intensity of the (111) plane in the peak obtained by X-ray diffraction analysis of the electrodeposited foil surface and I ). That is, the crystal orientation (%) = [I (200) / I (111)] * 100
4. 평균 결정립 크기4. Average grain size
X-Ray 회절 분석에 의한 회절 피크의 반가폭(FWHM, full width at half maximum)을 이용하여, 전착박 및 열처리 박의 결정립 크기를 Scherrer식*을 사용하여 계산하였다. (* B.D.Cullity; Elements of X-Ray diffraction, (2nd ed., Addison-Wesley Pub., 1978) 102.)The grain size of the electrodeposited foil and heat treated foil was calculated using the Scherrer equation * , using the full width at half maximum (FWHM) of the diffraction peak by X-ray diffraction analysis. (* BDCullity; Elements of X-Ray diffraction, (2 nd ed., Addison-Wesley Pub., 1978)
결정 크기 (d) = 0.9λ/(B cosθ), λ: X-선 파장, B: 반가폭, θ: 회절각Crystal size (d) = 0.9? / (B cos?),?: X-ray wavelength, B: half-
평균 결정립 크기는 X-선을 이용하여, 분석한 것으로, 드럼면과 용액면 구분이 없이, 모두 동일한 값으로 나타내었다.The average grain size was analyzed by using X-ray, and the same value was indicated without any distinction between the drum surface and the solution surface.
5. MIT 굴곡 시험5. MIT bending test
MIT 굴곡 시험 장치에 의해 MIT 굴곡 시험을 행하였다. 굴곡 시험은 하기 조건하에서 굴곡을 반복하고, 시험편이 단선될 때까지의 횟수를 굴곡횟수로서 구하였다.The MIT bending test was performed by the MIT bending test apparatus. The bending test was repeated under the following conditions, and the number of times until the test piece was broken was obtained as the number of bending times.
시편 규격: ED 150mm * TD 12.5mm, 굴곡반경(R): 0.38mm, 굴곡각도: 90° 굴곡속도: 90회/분, 하중: 450gSpecimen Specification: ED 150 mm * TD 12.5 mm, bending radius (R): 0.38 mm, bending angle: 90 ° bending speed: 90 times / min, load: 450 g
6. 탄소, 및 황 함유량 측정6. Carbon and sulfur content measurement
합금박 내에 존재하는 탄소, 및 황 함유량은 원소분석기(Elemental Analyzer)를 이용하여 측정하였다.The carbon and sulfur content in the alloy foil were measured using an elemental analyzer.
7. 중량 편차의 측정7. Measurement of weight deviation
합금박의 중량 편차는 합금박을 50mm*50mm의 크기로 절단 후 시편을 제작하여, 그 중량을 측정하여 단위면적당 합금박의 중량값을 환산한다. 그리고, 폭, 및 길이 방향을 따라 시편을 절단하는 과정을 반복적으로 수행하였다. 각 시편에 대한 중량값을 측정한 후 표준편차를 계산함으로써 산출하였다.The weight deviation of the alloy foil is obtained by cutting the alloy foil to a size of 50 mm * 50 mm, preparing a specimen, measuring its weight, and converting the weight of the alloy foil per unit area. Then, the process of cutting the specimen along the width and the longitudinal direction was repeatedly performed. The weight values for each specimen were measured and then calculated by calculating the standard deviation.
8. 니켈 함량 및 니켈 성분 편차의 측정성분은 형광 X선 방법을 이용하여 니켈 성분의 편차를 연속적으로 측정하였다. 형광 X선 방법은 시편에 일차 X선을 입사 시킨 후 시편에서 발행하는 특성 형광 X선의 강도를 측정하여 시편을 구성하고 있는 원소의 성분을 측정하는 방법으로 통상적으로 사용하는 방법이다. 이때, 검량선을 설정하기 위해서는 성분을 알고 있는 표준 시편을 이용하는데, 본 발명에서는 철-니켈 합금 5종의 표준시편을 이용하였다. 합금박의 니켈 성분의 함량 또한, 형광 X선 방법을 이용하여 측정하였다.8. Measurement of nickel content and nickel component variation The component of the nickel component was continuously measured using the fluorescent X-ray method. The fluorescent X-ray method is a method commonly used as a method of measuring the component of an element constituting a specimen by measuring the intensity of a characteristic fluorescent X-ray emitted from the specimen after the primary X-ray is incident on the specimen. At this time, For the setting, standard specimens having known components are used. In the present invention, five standard specimens of iron-nickel alloys were used. The content of the nickel component of the alloy foil was also measured by the fluorescent X-ray method.
9. 열팽창계수(CTE) 측정방법 9. How to measure the coefficient of thermal expansion (CTE)
열처리 된 합금박들은 TMA(Thermo-Mechanical Analysis)를 사용하여 열팽창 거동을 분석하였다. 20℃에서 안정화 시키고 1분간 유지, 200℃까지 5℃/min 승온하여 5분간 유지한 후 20℃까지 5℃/min 속도로 냉각 하였다. 냉각하면서 내려오는 30~100℃ 직선 구간에서 CTE를 계산하였다.The heat-treated alloy foils were analyzed for thermal expansion behavior using TMA (Thermo-Mechanical Analysis). Stabilized at 20 占 폚, held for 1 minute, heated up to 200 占 폚 by 5 占 폚 / min, held for 5 minutes, and cooled to 20 占 폚 at a rate of 5 占 폚 / min. The CTE was calculated at 30 ~ 100 ℃ in a straight line.
전해액의 조성 Composition of electrolytic solution
구분division 철 이온 (g/L)Iron ion (g / L) 니켈 이온 (g/L)Nickel ion (g / L) 나트륨 (g/L)Sodium (g / L) 보론 (g/L)Boron (g / L) 사카린 (ppm)Saccharin (ppm) PPS (ppm)PPS (ppm)
실시예 1Example 1 13.17 13.17 43.78 43.78 21.29 21.29 2.89 2.89 5050 1515
실시예 2Example 2 13.23 13.23 42.58 42.58 22.05 22.05 2.93 2.93 5050 1515
실시예 3Example 3 12.78 12.78 44.39 44.39 21.98 21.98 2.79 2.79 5050 1515
실시예 4Example 4 12.64 12.64 44.57 44.57 21.39 21.39 2.77 2.77 5050 1515
실시예 5Example 5 13.13 13.13 43.00 43.00 20.49 20.49 2.95 2.95 5050 1515
실시예 6Example 6 12.97 12.97 45.28 45.28 20.88 20.88 2.92 2.92 5050 1515
실시예 7Example 7 13.61 13.61 47.26 47.26 21.19 21.19 2.91 2.91 5050 1515
실시예 8Example 8 13.69 13.69 45.55 45.55 21.34 21.34 2.92 2.92 5050 1515
비교예 1Comparative Example 1 13.94 13.94 44.17 44.17 30.5 30.5 2.82 2.82 5050 1515
비교예 2Comparative Example 2 13.93 13.93 44.71 44.71 20.19 20.19 5.055.05 5050 1515
비교예 3Comparative Example 3 14.04 14.04 44.48 44.48 21.19 21.19 2.78 2.78 102102 1515
비교예 4Comparative Example 4 14.08 14.08 43.66 43.66 21.34 21.34 2.76 2.76 0.50.5 1515
비교예 5Comparative Example 5 12.73 12.73 44.43 44.43 22.72 22.72 2.54 2.54 5050 22
비교예 6Comparative Example 6 12.79 12.79 43.09 43.09 22.80 22.80 2.58 2.58 5050 2727
비교예 7Comparative Example 7 13.61 13.61 47.26 47.26 31.0 31.0 2.76 2.76 5050 44
비교예 8Comparative Example 8 13.45 13.45 47.20 47.20 22.34 22.34 6.06.0 0.50.5 1515
[표 1의 전해액에서, 철 이온은 성분으로는 황산철을, 니켈이온 성분으로는 염화니켈을, 나트륨 성분은 염화나트륨을, 보론 성분으로는 붕산을 사용하였으며, 잔부는 초순수이다][In the electrolytic solution of Table 1, the iron ion used was iron sulfate, the nickel ion component was nickel chloride, the sodium component was sodium chloride, the boron component was boric acid, and the remainder was ultrapure water]
철-니켈 합금박의 물성 Properties of iron-nickel alloy foil
구분division 두께(㎛)Thickness (㎛) 드럼면(Ra)The drum surface (Ra) 용액면(Ra)The solution surface (Ra) Ni 함량(wt%)Ni content (wt%) 탄소함유량(ppm)Carbon content (ppm) 황함유량(ppm)Sulfur content (ppm) 결정배향성(%)Crystal orientation (%) 열팽창계수(ppm/K)Coefficient of thermal expansion (ppm / K) 중량편차(g/㎡)Weight deviation (g / ㎡) Ni 성분편차(wt%/㎡)Ni component deviation (wt% / m 2) 평균 결정립크기(nm)Average grain size (nm) 인장강도(GPa)Tensile Strength (GPa) MIT횟수Number of MITs
실시예 1Example 1 1818 1.2 1.2 1.5 1.5 36.536.5 200200 400400 2727 3.713.71 22 0.50.5 84 84 1.3 1.3 602602
실시예 2Example 2 1818 1.2 1.2 1.5 1.5 36.536.5 200200 400400 2828 3.653.65 22 0.50.5 73 73 1.1 1.1 574574
실시예 3Example 3 1818 1.2 1.2 1.0 1.0 38.038.0 300300 400400 2727 4.334.33 22 0.40.4 85 85 1.0 1.0 558558
실시예 4Example 4 1818 1.2 1.2 1.5 1.5 38.038.0 100100 400400 2323 4.184.18 22 0.50.5 66 66 0.8 0.8 552552
실시예 5Example 5 1818 1.2 1.2 1.5 1.5 40.040.0 200200 100100 2323 4.434.43 22 0.40.4 77 77 1.1 1.1 546546
실시예 6Example 6 1818 1.2 1.2 1.5 1.5 40.040.0 200200 400400 2525 4.594.59 22 0.50.5 62 62 1.0 1.0 549549
실시예 7Example 7 1818 1.2 1.2 1.0 1.0 41.241.2 200200 400400 2727 4.774.77 22 0.50.5 52 52 0.9 0.9 560560
실시예 8Example 8 1818 1.2 1.2 1.0 1.0 41.241.2 200200 400400 2424 4.894.89 22 0.50.5 57 57 1.0 1.0 623623
비교예 1Comparative Example 1 1818 1.2 1.2 2.0 2.0 36.536.5 200200 600600 2121 4.134.13 22 0.40.4 61 61 0.7 0.7 464464
비교예 2Comparative Example 2 1818 1.2 1.2 1.7 1.7 36.536.5 200200 400400 1212 3.983.98 22 0.40.4 53 53 0.8 0.8 490490
비교예 3Comparative Example 3 1818 1.2 1.2 1.5 1.5 38.038.0 500500 400400 1111 4.534.53 22 0.50.5 55 55 0.9 0.9 495495
비교예 4Comparative Example 4 1818 1.2 1.2 1.5 1.5 38.038.0 200200 400400 1313 4.374.37 22 0.50.5 51 51 0.8 0.8 490490
비교예 5Comparative Example 5 1818 1.2 1.2 2.0 2.0 40.040.0 200200 400400 1919 4.604.60 22 0.50.5 60 60 1.0 1.0 463463
비교예 6Comparative Example 6 1818 1.2 1.2 1.5 1.5 40.040.0 200200 600600 2424 4.894.89 22 0.50.5 55 55 1.1 1.1 482482
비교예 7Comparative Example 7 1818 1.2 1.2 1.5 1.5 41.241.2 600600 400400 1818 4.974.97 22 0.50.5 52 52 0.7 0.7 488488
비교예 8Comparative Example 8 1818 1.2 1.2 1.0 1.0 41.241.2 200200 400400 1313 4.904.90 22 0.50.5 52 52 0.7 0.7 466466
상기 표 2로부터 알 수 있듯이, 본 발명의 실시예에 따른 철-니켈 합금박들은 MIT 횟수가 적어도 500회 이상을 기록하는 반면, 비교예에 따른 철-니켈 합금박들은 MIT 횟수가 500회 이하이다. 이로부터, 본원의 물성을 만족하는 철-니켈 합금박은 우수한 내굴곡성을 나타냄을 알 수 있다. As can be seen from the above Table 2, the iron-nickel alloy foils according to the embodiment of the present invention record at least 500 times of MIT, while the number of MITs of the iron-nickel alloy foils according to the comparative example is less than 500 . From this, it can be seen that the iron-nickel alloy foil satisfying the properties of the present invention exhibits excellent flex resistance.
[부호의 설명][Description of Symbols]
1... 전착박 11... 전해조 1 ... Electrolytic foil 11 ... Electrolyzer
12... 음극 드럼 13... 양극12 ... cathode drum 13 ... anode
14... 급액부 14 ... liquid level portion

Claims (8)

  1. 니켈의 함량이 36~42wt%, 탄소 및 황 함유량이 각각 500ppm 이하이고 잔부 철 및 불가피한 불순물을 포함하고, 드럼면과 용액면이 표면 조도(Ra)가 각각 1.5㎛ 이하, 인장강도가 800MPa 이상, 평균 결정립 크기가 50nm 이상, 그리고 철-니켈 합금박의 중량 편차는 3g/㎡ 이하인 철-니켈 합금박. Wherein the iron and the solution surface have a surface roughness (Ra) of 1.5 탆 or less, a tensile strength of 800 MPa or more, and a tensile strength of 500 MPa or less, An iron-nickel alloy foil having an average grain size of 50 nm or more and a weight deviation of iron-nickel alloy foil of 3 g / m 2 or less.
  2. 제1항에 있어서, 상기 인장강도는 800MPa 내지 1200 MPa인 철-니켈 합금박.The iron-nickel alloy foil according to claim 1, wherein the tensile strength is 800 MPa to 1200 MPa.
  3. 제1항에 있어서, 상기 평균 결정립 크기가 50nm 내지 100nm인 철-니켈 합금박.The iron-nickel alloy foil according to claim 1, wherein the average grain size is 50 nm to 100 nm.
  4. 제1항에 있어서, 결정배향성이 20% 이상인 철-니켈 합금박.The iron-nickel alloy foil according to claim 1, wherein the crystal orientation is 20% or more.
  5. 제1항에 있어서, 열팽창 계수 5 ppm/K 이하인 철-니켈 합금박.The iron-nickel alloy foil according to claim 1, having a thermal expansion coefficient of 5 ppm / K or less.
  6. 제1항에 있어서, 니켈 성분의 편차가 1 wt%/㎡ 이하인 철-니켈 합금박.The iron-nickel alloy foil according to claim 1, wherein the deviation of the nickel component is 1 wt% / m 2 or less.
  7. 제1항에 있어서, 두께가 18 ㎛이하인 철-니켈 합금박.The iron-nickel alloy foil according to claim 1, wherein the iron-nickel alloy foil has a thickness of 18 占 퐉 or less.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 철-니켈 합금박은 플렉서블 디스플레이 소재로 적용되는 철-니켈 합금박.8. The iron-nickel alloy foil according to any one of claims 1 to 7, wherein the iron-nickel alloy foil is applied as a flexible display material.
PCT/KR2018/012178 2017-12-19 2018-10-16 Iron-nickel alloy foil having excellent flexural resistance WO2019124696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170175495A KR102065216B1 (en) 2017-12-19 2017-12-19 Fe-Ni ALLOY FOIL WITH EXCELLENT FLEXIBILITY RESISTANCE
KR10-2017-0175495 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124696A1 true WO2019124696A1 (en) 2019-06-27

Family

ID=66993570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012178 WO2019124696A1 (en) 2017-12-19 2018-10-16 Iron-nickel alloy foil having excellent flexural resistance

Country Status (3)

Country Link
KR (1) KR102065216B1 (en)
TW (1) TWI678826B (en)
WO (1) WO2019124696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679219A (en) * 2022-11-14 2023-02-03 寰采星科技(宁波)有限公司 Iron-nickel alloy foil for precise metal mask plate and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062204A (en) * 2019-11-21 2021-05-31 에스케이넥실리스 주식회사 Copper foil free from generation of wrinkle, electrode comprisng the same, secondary battery comprising the same and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090039944A (en) * 2007-10-19 2009-04-23 성낙훈 Invar alloy and manufacturing method thereof
KR20160077465A (en) * 2014-12-23 2016-07-04 주식회사 포스코 Fe-Ni ALLOY HAVING EXCELLENT CURL PREVENTING PROPERTY AND METHOD FOR MANUFACTURING THE SAME
KR20170075134A (en) * 2015-12-22 2017-07-03 주식회사 포스코 Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT FLEXIBILITY AND STRENGTH
KR101798786B1 (en) * 2016-09-08 2017-11-17 주식회사 포스코 ELECTROLYTES FOR Fe-Ni ALLOY FOIL, METHOD FOR MANUFACTURING Fe-Ni ALLOY FOIL USING THE SAME, AND Fe-Ni ALLOY FOIL
US20170342581A1 (en) * 2014-12-23 2017-11-30 Posco Fe-ni alloy metal foil having excellent heat resilience and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490343B (en) * 2013-07-04 2015-07-01 China Steel Corp Austenitic alloy plate and method of making the same
KR20160047193A (en) 2014-10-22 2016-05-02 주식회사 엔앤비 OLED Cathode Composition for Manufacturing a Shadow Mask, OLED Shadow Mask Film Made from These Composition and Method for Manufacturing OLED

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090039944A (en) * 2007-10-19 2009-04-23 성낙훈 Invar alloy and manufacturing method thereof
KR20160077465A (en) * 2014-12-23 2016-07-04 주식회사 포스코 Fe-Ni ALLOY HAVING EXCELLENT CURL PREVENTING PROPERTY AND METHOD FOR MANUFACTURING THE SAME
US20170342581A1 (en) * 2014-12-23 2017-11-30 Posco Fe-ni alloy metal foil having excellent heat resilience and method for manufacturing same
KR20170075134A (en) * 2015-12-22 2017-07-03 주식회사 포스코 Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT FLEXIBILITY AND STRENGTH
KR101798786B1 (en) * 2016-09-08 2017-11-17 주식회사 포스코 ELECTROLYTES FOR Fe-Ni ALLOY FOIL, METHOD FOR MANUFACTURING Fe-Ni ALLOY FOIL USING THE SAME, AND Fe-Ni ALLOY FOIL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679219A (en) * 2022-11-14 2023-02-03 寰采星科技(宁波)有限公司 Iron-nickel alloy foil for precise metal mask plate and preparation method thereof

Also Published As

Publication number Publication date
TWI678826B (en) 2019-12-01
KR20190074107A (en) 2019-06-27
TW201929286A (en) 2019-07-16
KR102065216B1 (en) 2020-01-10

Similar Documents

Publication Publication Date Title
KR101819367B1 (en) Fe-Ni ALLOY FOIL AND METHOD FOR MANUFACTURING THEREOF
CN113621999B (en) High-extensibility electrolytic copper foil and preparation method thereof
US8153273B2 (en) Surface treated electrodeposited copper foil and circuit board
EP3239363B1 (en) Fe-ni alloy metal foil having excellent heat resilience and method for manufacturing same
US20150267313A1 (en) Electrodeposited copper foil
WO2011129633A2 (en) Copper electrolysis solution for producing electrolytic copper foil, method of producing electrolytic copper foil, and electrolytic copper foil
KR20090026128A (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
WO2019124696A1 (en) Iron-nickel alloy foil having excellent flexural resistance
KR101605071B1 (en) Electrolytic copper foil
JP2007294923A (en) Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
TW201428112A (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
KR101758510B1 (en) Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT FLEXIBILITY AND STRENGTH
KR101798786B1 (en) ELECTROLYTES FOR Fe-Ni ALLOY FOIL, METHOD FOR MANUFACTURING Fe-Ni ALLOY FOIL USING THE SAME, AND Fe-Ni ALLOY FOIL
US20210257603A1 (en) Electrolytic copper foil for secondary battery and method for producing the same
KR101571060B1 (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
KR20160127647A (en) Acid copper electroplating bath and method for electroplating low internal stress and good ductility copper deposits
KR20150062228A (en) Electrolytic copper foil, electric component and battery comprising the foil and preparation method thereof
CN111945191A (en) Additive for sulfur-containing nickel button and preparation and application thereof
KR102119942B1 (en) A manufacturing method of Fe-Ni alloy foil having excellent plate-shape
KR101478464B1 (en) Electrolytic copper foil, electric component and battery comprising the foil
KR101502373B1 (en) Electrolytic copper foil, electric component and battery comprising the foil
KR101867733B1 (en) Fe-Ni ALLOY ELECTROLYTES, Fe-Ni ALLOY FOIL HAVING EXCELLENT SURFACE ROUGHNESS AND METHOD FOR THE SAME
KR102065217B1 (en) Electrolytes for fe-ni alloy foil, and fe-ni alloy foil prepared therefrom
WO2016105009A1 (en) High-rigidity metal foil and method for manufacturing same
KR101676189B1 (en) Encapsulation for oled and method for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890763

Country of ref document: EP

Kind code of ref document: A1