WO2019124476A1 - Curable epoxy resin composition, cured product thereof, and optical semiconductor device - Google Patents

Curable epoxy resin composition, cured product thereof, and optical semiconductor device Download PDF

Info

Publication number
WO2019124476A1
WO2019124476A1 PCT/JP2018/046899 JP2018046899W WO2019124476A1 WO 2019124476 A1 WO2019124476 A1 WO 2019124476A1 JP 2018046899 W JP2018046899 W JP 2018046899W WO 2019124476 A1 WO2019124476 A1 WO 2019124476A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
epoxy resin
curable epoxy
weight
Prior art date
Application number
PCT/JP2018/046899
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木弘世
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2019124476A1 publication Critical patent/WO2019124476A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, a curable resin composition for light reflection comprising the curable epoxy resin composition, and an optical semiconductor element
  • the present invention relates to an optical semiconductor device including at least a reflector made of the cured product.
  • Such a light emitting device generally includes an optical semiconductor device and a transparent resin for protecting the periphery of the optical semiconductor device, and further, to enhance the extraction efficiency of light emitted from the optical semiconductor device, light A light emitting device having a reflector (reflecting material) for reflecting light is widely used.
  • the reflector is required to have high light reflectivity, and to continuously exert such high light reflectivity.
  • a resin composition etc. which made an inorganic filler etc. disperse in a polyamide resin (polyphthalamide resin) which makes a terephthalic acid unit an essential constitutional unit are known (patent document 1 to 3).
  • thermosetting resin composition for light reflection which further contains a thermosetting resin containing an epoxy resin and an inorganic oxide having a refractive index of 1.6 to 3.0 in a specific ratio
  • thermosetting resin composition for light reflection contains a thermosetting resin component and one or more filler components, and the difference between the refractive index of the entire thermosetting resin component and the refractive index of each filler component, and the volume ratio of each filler component
  • a thermosetting resin composition for light reflection in which the calculated parameter is controlled within a specific range
  • a curable resin composition for light reflection in which a monoallyl diglycidyl isocyanurate compound and a white pigment are mixed with an alicyclic epoxy compound is known (see Patent Document 6).
  • the reflectors made of the above polyamide resins described in Patent Documents 1 to 3 are particularly light emitting devices using high-power blue light semiconductors and white light semiconductors as light sources, and are aged over time by light and heat emitted from the light semiconductor elements. It has been deteriorated by yellowing and has a problem that sufficient light reflectivity can not be maintained. Furthermore, while the heating temperature in the reflow process (solder reflow process) at the time of manufacturing the light emitting device tends to be higher along with the adoption of lead-free solder, the reflector is aged over time by the heat applied in such a manufacturing process. And the light reflectivity is reduced.
  • the reflector is generally manufactured by subjecting a material (resin composition) for forming the reflector to transfer molding or compression molding.
  • a material resin composition
  • the reflector formed from the resin composition is excellent in heat resistance, but the reflector formed by compression molding has heat resistance. Many were relatively inferior.
  • an object of the present invention is that it is suitable for compression molding, has high light reflectivity, is excellent in heat resistance and light resistance, is also tough and excellent in crack resistance, and is hard to be deteriorated in light reflectivity over time It is providing the curable epoxy resin composition which gives a thing.
  • another object of the present invention is to have high light reflectivity obtained by curing the above curable epoxy resin composition, to be excellent in heat resistance and light resistance, and also to be tough and excellent in crack resistance, to reflect light. It is an object of the present invention to provide a cured product which is less likely to deteriorate with time.
  • Another object of the present invention is to provide a curable resin composition for light reflection which can provide an optical semiconductor device in which the decrease in luminance of light with time is suppressed.
  • Another object of the present invention is to provide a highly reliable optical semiconductor device in which the luminance of light is unlikely to decrease with time.
  • the present inventor contains a specific alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a white pigment as essential components, and further a curing agent and a curing accelerator, or A curable epoxy resin composition containing a curing catalyst has high light reflectivity, is excellent in heat resistance and light resistance, and is also tough and excellent in crack resistance, and it is found that light reflectivity is unlikely to decrease with time.
  • the present inventor includes, as an essential component, a specific alicyclic epoxy compound, monoallyl diglycidyl isocyanurate compound, a siloxane derivative having two or more epoxy groups in the molecule, an alicyclic polyester resin, and a white pigment.
  • a curable epoxy resin composition containing a curing agent and a curing accelerator or a curing catalyst particularly has high light reflectivity, is excellent in heat resistance and light resistance, and is also tough and excellent in crack resistance, It has been found that it gives a cured product which is less likely to decrease in light reflectivity over time.
  • the present invention has been completed based on these findings.
  • the present invention has the following formula (I) [Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent .
  • Curable epoxy resin composition comprising: monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing agent (D), and curing accelerator (F) Provide the goods.
  • R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent .
  • a curable epoxy resin composition comprising the monoallyl diglycidyl isocyanurate compound (B), a white pigment (C), and a curing catalyst (E).
  • alicyclic epoxy compound (A) is represented by the following formula (I-1)
  • the above-mentioned curable epoxy resin composition which is a compound represented by
  • the curable epoxy resin composition is preferably liquid at 25 ° C.
  • the curable epoxy resin composition as described above which comprises a siloxane derivative (G) having two or more epoxy groups in the molecule.
  • the said curable epoxy resin composition whose said alicyclic polyester resin (H) is an alicyclic polyester resin which has an alicyclic ring in a principal chain is provided.
  • the above-mentioned curable epoxy resin composition comprises at least one leveling agent selected from the group consisting of a silicone-based leveling agent and a fluorine-based leveling agent.
  • the stress relaxation agent (I) may be at least one selected from the group consisting of silicone rubber particles (I1) and silicone oil (I2).
  • the silicone rubber particles (I1) may be crosslinked polydimethylsiloxane having a silicone resin on the surface.
  • the silicone oil (I2) may be a polyalkylene ether modified silicone compound having a structure represented by the following formula (10) having an epoxy equivalent of 3000 to 15000.
  • xa is an integer of 80 to 140
  • ya is an integer of 1 to 5
  • za is an integer of 5 to 20
  • R 26 is a C 2 or C 3 alkylene group.
  • A is a polyalkylene ether group having a structure represented by the following formula (10a). (Wherein, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group.)
  • the present invention also provides a cured product of the curable epoxy resin composition described above.
  • the present invention also provides a curable resin composition for light reflection comprising the above-mentioned curable epoxy resin composition.
  • the present invention provides an optical semiconductor device comprising at least an optical semiconductor element and a reflector comprising a cured product of the above-described curable resin composition for light reflection.
  • the curable epoxy resin composition of the present invention Since the curable epoxy resin composition of the present invention has the above-mentioned constitution, the curable epoxy resin composition is suitable for compression molding, and a cured product obtained by curing has high light reflectivity, and further, It is excellent in heat resistance and light resistance, and is tough and hardly causes cracks, so that the light reflectivity does not easily decrease with time. Therefore, the curable epoxy resin composition of the present invention can be preferably used as a curable resin composition for light reflection for various applications related to an optical semiconductor device, in particular, an LED package.
  • a reflector (reflecting material) formed of a cured product of the curable epoxy resin composition (curable resin composition for light reflection) of the present invention can continuously exhibit high light reflectivity for a long time, so that an optical semiconductor
  • An optical semiconductor device (light emitting device) including at least an element and the reflector can exhibit high reliability as a long-life optical semiconductor device.
  • FIG. 5 is a schematic view (sectional view; in the case of having a heat sink) showing another example of the optical semiconductor device of the present invention. It is the schematic (when it has a heat sink (heat dissipation fin)) which shows another example of the optical semiconductor device of this invention.
  • the left figure (a) is a top view
  • the right figure (b) is an AA 'cross section in (a).
  • the curable epoxy resin composition of the present invention has the following formula (I) [Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent .
  • a cycloaliphatic epoxy compound (A) represented by the following formula (1) [Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
  • a resin composition comprising, as essential components, the monoallyl diglycidyl isocyanurate compound (B), the white pigment (C), the curing agent (D), and the curing accelerator (F), or Alicyclic epoxy compound (A) represented by formula (I), monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1), white pigment (C), curing catalyst (E) And the like as an essential component.
  • the curable epoxy resin composition of this invention may contain the other component as needed other than the said essential component.
  • the curable epoxy resin composition of the present invention can be used as a thermosetting composition (thermosetting epoxy resin composition) which can be cured by heating and converted to a cured product.
  • curable resin composition for light reflection refers to a curable resin composition capable of forming a cured product having light reflectivity. Specifically, for example, a curable resin composition capable of forming a cured product having a reflectance of 50% or more (particularly 90% or more) to light with a wavelength of 450 nm is preferable.
  • the curable epoxy resin composition of the present invention is preferably liquid at 25 ° C.
  • it When it is a liquid at 25 ° C., it tends to be suitable for compression molding, and its cured product (reflector) tends to be excellent in light reflectivity, and also excellent in heat resistance and light resistance.
  • liquid at 25 ° C.” means that the viscosity measured at 25 ° C. under normal pressure is 1,000,000 mPa ⁇ s or less (preferably, 800,000 mPa ⁇ s or less).
  • the viscosity is measured using, for example, a digital viscometer (model number “DVU-EII type” manufactured by Tokimec Co., Ltd.), rotor: standard 1 ° 34 ′ ⁇ R24, temperature: 25 ° C., rotation speed: 0. It can be measured under the condition of 5 to 10 rpm.
  • the curable epoxy resin composition of the present invention which is liquid at 25 ° C. is, for example, a component (eg, alicyclic epoxy compound (A), liquid stress relaxation agent (I), curing agent (E), curing accelerator) It becomes easy to obtain by using the component of a liquid at 25 degreeC as (F) and a curing catalyst (G) etc.).
  • a component solid at 25 ° C. may be used as the above component, the content is adjusted so that the curable epoxy resin composition of the present invention becomes liquid at 25 ° C.
  • the content of components which are solid at 25 ° C. such as rubber particles, white pigment (C), inorganic filler (J), solid stress relaxation agent (I), etc. is within the range which does not impair the effects of the present invention. It will be easier to obtain by making adjustments.
  • the alicyclic epoxy compound (A) which comprises the curable epoxy resin composition of this invention is a compound represented by following formula (I).
  • the cured product has high light reflectivity, is excellent in heat resistance and light resistance, and is tough and crack resistant. Excellent, in particular, tend to improve the crack resistance to cold cycles.
  • R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a R 16a , R 17a and R 18a are the same or different and each is a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent Indicates
  • halogen atoms in R 1a to R 18a include fluorine, chlorine, bromine and iodine atoms.
  • the hydrocarbon group in the “hydrocarbon group which may have an oxygen atom or a halogen atom” includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded. Can be mentioned.
  • the aliphatic hydrocarbon group is, for example, a linear or branched alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl or decyl group (for example, carbon number 1-10, preferably an alkyl group having about 1 to 5 carbon atoms); alkenyl groups such as vinyl and allyl (eg, an alkenyl group having about 2 to 10 carbon atoms, preferably about 2 to 5 carbon atoms); ethynyl group and the like And the like (for example, an alkynyl group having about 2 to 10 carbon atoms, preferably about 2 to 5 carbon atoms).
  • alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl
  • cycloalkyl groups such as a cyclopentyl and a cyclohexyl group; cycloalkenyl group; bridged cyclic group etc.
  • aromatic hydrocarbon group examples include phenyl and naphthyl groups.
  • hydrocarbon group which has an oxygen atom the group (For example, alkoxyalkyl groups, such as a methoxymethyl group and an ethoxymethyl group etc., etc.) etc. are mentioned, for example, in the carbon chain of the above-mentioned hydrocarbon group. .
  • hydrocarbon group which has a halogen atom 1 or 2 or more of hydrogen atoms which the said hydrocarbon groups, such as a chloromethyl group, a trifluoromethyl group, a chlorophenyl group, have, for example, have a halogen atom (a fluorine, chlorine, a bromine or an iodine atom And the like.
  • the alkoxy group in the “optionally substituted alkoxy group” is an alkoxy group having about 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as methoxy, ethoxy, propyloxy, isopropyloxy and butyloxy groups Groups and the like.
  • the said halogen atom etc. are mentioned, for example.
  • the alicyclic epoxy compounds (A) can be used alone or in combination of two or more.
  • (3,4,3 ′, 4′-diepoxy) bicyclohexyl represented by the above formula (I-1) is particularly preferable as the alicyclic epoxy compound (A).
  • the use amount (content) of the alicyclic epoxy compound (A) is not particularly limited, but when the curable epoxy resin composition of the present invention contains a curing agent (D) as an essential component, a white pigment (C 5 to 90% by weight is preferable, more preferably 5 to 80% by weight, still more preferably 5 to 70% by weight based on the total amount (100% by weight) of the curable epoxy resin composition excluding the inorganic filler (J). %.
  • the amount (content) of the alicyclic epoxy compound (A) used is the white pigment (C) and the inorganic
  • the content is preferably 25 to 95% by weight, more preferably 30 to 92% by weight, still more preferably 30 to 90% by weight based on the total amount (100% by weight) of the curable epoxy resin composition excluding the filler (J). .
  • the curable epoxy resin composition of the present invention contains one or both of a siloxane derivative (G) having two or more epoxy groups in the molecule and an alicyclic polyester resin (H) (especially, both)
  • the amount (content) of the cycloaliphatic epoxy compound (A) used is not particularly limited, but when the curable epoxy resin composition of the present invention contains a curing agent (D) as an essential component, It is preferably 5 to 90% by weight, more preferably 8 to 80% by weight, still more preferably 8% by weight, based on the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J). It is ⁇ 75% by weight.
  • the curing catalyst (E) is an essential component.
  • the used amount (content) of the alicyclic epoxy compound (A) is the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J)
  • the amount is preferably 10 to 95% by weight, more preferably 15 to 85% by weight, and still more preferably 20 to 75% by weight.
  • the use amount (content) of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is particularly limited. Although not preferred, it is preferably 30 to 95% by weight, more preferably 35 to 95% by weight, still more preferably 40 to 95% by weight. If the amount of the alicyclic epoxy compound (A) used is less than 30% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) may not be sufficient, and precipitation at room temperature may be facilitated. On the other hand, when the use amount of the alicyclic epoxy compound (A) exceeds 95% by weight, the toughness of the cured product may be reduced, and a crack may easily occur.
  • an alicyclic epoxy compound other than the alicyclic epoxy compound (A) (hereinafter sometimes referred to as "other alicyclic epoxy compound"), the effect of the present invention May be included in the range which does not impair.
  • Another alicyclic epoxy compound is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule), and is a compound other than the alicyclic epoxy compound (A). More specifically, other alicyclic epoxy compounds include, for example, (i) an epoxy group ("alicyclic epoxy group") composed of two adjacent carbon atoms constituting an alicyclic ring and an oxygen atom; And compounds having an epoxy group directly bonded to the alicyclic ring by a single bond, and the like.
  • the siloxane derivative (G) which has two or more epoxy groups in the below-mentioned molecule shall not be contained in other alicyclic epoxy compounds.
  • any compound selected from known or common ones may be used. be able to.
  • the above-mentioned compound has an epoxy group constituted of two adjacent carbon atoms constituting a cyclohexane ring and an oxygen atom, that is, a compound having a cyclohexene oxide group (alicyclic epoxy compound) preferable.
  • alicyclic epoxy compound (alicyclic epoxy resin) represented by II) is preferable.
  • X represents a linking group (a divalent group having one or more atoms). Examples of the linking group include divalent hydrocarbon groups, carbonyl groups, ether groups (ether bonds), thioether groups (thioether bonds), ester groups (ester bonds), carbonate groups (carbonate bonds), amide groups (amides (amides) A bond, and a group in which a plurality of these are linked, and the like.
  • substituents, such as an alkyl group may be couple
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene group, methyl methylene group, dimethyl methylene group, ethylene group, propylene group, trimethylene group and the like.
  • Examples of the divalent alicyclic hydrocarbon group include a 1,2-cyclopentylene group, a 1,3-cyclopentylene group, a cyclopentylidene group, a 1,2-cyclohexylene group, and a 1,3-cyclohexene group.
  • bivalent cycloalkylene groups (including cycloalkylidene groups) such as silene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • a linking group containing an oxygen atom is preferable as the linking group X, and specifically, for example, -CO- (carbonyl group), -O-CO-O- (carbonate group), -COO- ( Ester group), -O- (ether group), -CONH- (amide group), a group in which a plurality of these groups are linked, one or two or more of these groups and one or more of divalent hydrocarbon groups And the like.
  • a bivalent hydrocarbon group what was illustrated above is mentioned, for example.
  • Representative examples of the alicyclic epoxy compound represented by the above formula (II) include compounds represented by the following formulas (II-1) to (II-10). As these compounds, for example, commercially available products such as trade names “Ceroxide 2021 P” and “Ceroxide 2081” (manufactured by Daicel Co., Ltd.) can also be used. In the following formulas (II-5) and (II-7), l and m each represent an integer of 1 to 30.
  • R in the following formula (II-5) is an alkylene group having 1 to 8 carbon atoms, and is methylene, ethylene, propylene, isopropylene, butylene, isobutylene, s-butylene, pentylene, hexylene And linear or branched alkylene groups such as heptylene group and octylene group. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms, such as methylene, ethylene, propylene and isopropylene are preferable.
  • n1 to n6 each represent an integer of 1 to 30.
  • Examples of the compound in which an epoxy group is directly bonded to an alicyclic ring by a single bond include a compound represented by the following formula (III).
  • R ′ is a group obtained by removing p —OH from a p-valent alcohol, and p and n each represent a natural number.
  • Examples of p-valent alcohol [R '-(OH) p ] include alcohols having 1 to 15 carbon atoms, and more specifically, 2,2-bis (hydroxymethyl) -1-butanol and the like. And polyhydric alcohols.
  • p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each group in () (in parentheses) may be the same or different.
  • the other alicyclic epoxy compounds can be used alone or in combination of two or more.
  • the curable epoxy resin composition of the present invention contains another alicyclic epoxy compound, the other relative to the total amount (100% by weight) of the other alicyclic epoxy compound and the alicyclic epoxy compound (A)
  • the use amount (content) of the alicyclic epoxy compound is not particularly limited, but is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, still more preferably 5 to 30% by weight, particularly preferably 5 to 5 It is 20% by weight.
  • the amount of the other alicyclic epoxy compound used exceeds 50% by weight, the heat resistance, light resistance and toughness of the cured product deteriorate, and cracks easily occur due to the decrease in light reflectivity over time or the cold cycle. There is.
  • the monoallyl diglycidyl isocyanurate compound (B) which comprises the curable epoxy resin composition of this invention is represented by following General formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl and octyl groups.
  • Examples include chain or branched alkyl groups. Among them, linear or branched alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group are preferable.
  • R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
  • monoallyl diglycidyl isocyanurate compound (B) examples include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl 2-isocyanate) Propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methyl epoxypropyl) isocyanurate and the like.
  • monoallyl diglycidyl isocyanurate compound (B) can be used individually or in combination of 2 or more types.
  • the monoallyl diglycidyl isocyanurate compound (B) can be optionally mixed in the range which dissolves in the above-mentioned alicyclic epoxy compound (A), and the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B)
  • the proportion of the alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is preferably 50:50 to 95: 5 (by weight), and more preferably 50:50. It is 50 to 90:10 (weight ratio). Outside this range, the solubility of the monoallyl diglycidyl isocyanurate compound (B) becomes difficult to obtain.
  • the monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group, such as an alcohol or an acid anhydride.
  • the white pigment (C) which is an essential component of the curable epoxy resin composition of the present invention, plays a role of exerting high light reflectivity to a cured product obtained by curing the curable epoxy resin composition.
  • white pigment (C) known or commonly used white pigments can be used, and it is not particularly limited.
  • Inorganic white pigments such as white earth, boehmite, pseudo-boehmite, inorganic oxides, metal salts such as alkaline earth metal salts; styrenic resins, benzoguanamine resins, urea-formalin resins, melamine-formalin resins, amide resins, etc.
  • organic white pigments such as plastic pigments (plastic pigments); hollow particles having a hollow structure (balloon structure); These white pigments can be used alone or in combination of two or more.
  • the white pigment (C) it is preferable to use a white pigment having a high refractive index in order to increase the reflectance of the reflector.
  • a white pigment having a refractive index of 1.5 or more is preferable.
  • the shell portion may be made of a material having a refractive index of less than 1.5 .
  • those having a refractive index of 1.5 or more are regarded as the white pigment (C) and those having a refractive index of 1.5 are also applicable to the inorganic filler (J). The smaller one is the inorganic filler (J).
  • the inorganic oxide examples include aluminum oxide (alumina), magnesium oxide, antimony oxide, titanium oxide (rutile type titanium oxide, anatase type titanium oxide, brookite type titanium oxide), zirconium oxide, zinc oxide and the like.
  • the alkaline earth metal salt for example, magnesium carbonate, calcium carbonate, barium carbonate, magnesium silicate, calcium silicate, magnesium hydroxide, magnesium phosphate, magnesium hydrogen phosphate, magnesium sulfate, calcium sulfate, sulfuric acid Barium etc. are mentioned.
  • metal salts other than alkaline-earth metal salt aluminum silicate, aluminum hydroxide, a zinc sulfide etc. are mentioned, for example.
  • the hollow particles are not particularly limited, and examples thereof include inorganic glass (for example, sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, quartz and the like), metal oxides such as silica and alumina, calcium carbonate, barium carbonate, Inorganic hollow particles (including natural products such as Shirasu balloon) composed of inorganic substances such as nickel carbonate, calcium silicate etc.
  • inorganic glass for example, sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, quartz and the like
  • metal oxides such as silica and alumina
  • calcium carbonate barium carbonate
  • Inorganic hollow particles including natural products such as Shirasu balloon
  • inorganic hollow particles including natural products such as Shirasu balloon
  • inorganic substances such as nickel carbonate, calcium silicate etc.
  • styrenic resins acrylic resins, silicone resins, acrylic-styrene resins, vinyl chloride Polymers such as vinyl-based resins, vinylidene chloride-based resins, amide-based resins, urethane-based resins, phenol-based resins, styrene-conjugated diene resins, acrylic-conjugated diene resins, olefin resins (including crosslinked products of these polymers), etc.
  • the said hollow particle may be comprised from a single material, and may be comprised from 2 or more types of materials.
  • the hollow portion of the hollow particle (the space inside the hollow particle) may be in a vacuum state or may be filled with a medium, but in particular, the refractive index is low from the viewpoint of improving the reflectance.
  • Hollow particles filled with a medium for example, an inert gas such as nitrogen or argon, air or the like are preferred.
  • the white pigment (C) is subjected to known or conventional surface treatment (for example, surface treatment with a surface treatment agent such as metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone etc.) It may be done. By performing such surface treatment, compatibility or dispersibility with other components of the white pigment (C) in the curable epoxy resin composition may be able to be improved.
  • a surface treatment agent such as metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone etc.
  • inorganic pigments and inorganic hollow particles are preferable as the white pigment (C) from the viewpoints of availability, heat resistance and light resistance, and more preferably aluminum oxide, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, Silicon oxide and at least one white pigment selected from the group consisting of inorganic hollow particles.
  • titanium oxide is preferable as the white pigment (C) in that it has a higher refractive index.
  • the shape of the white pigment (C) is not particularly limited, and examples thereof include spherical, crushed, fibrous, needle, scaly, and whiskers. Among them, spherical white pigments are preferable, and spherical white pigments (for example, spherical white pigments having an aspect ratio of 1.2 or less) are particularly preferable from the viewpoint of dispersibility of the white pigment (C).
  • the central particle size of the white pigment (C) is not particularly limited, but is preferably 0.1 to 50 ⁇ m from the viewpoint of improving light reflectivity.
  • the central particle size of the inorganic oxide is not particularly limited, but is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, and still more preferably It is 0.1 to 20 ⁇ m, particularly preferably 0.1 to 10 ⁇ m, and most preferably 0.1 to 5 ⁇ m.
  • the central particle diameter of the hollow particles is not particularly limited, but preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 50 It is 30 ⁇ m.
  • the said center particle diameter means the particle size (median diameter) in 50% of the integration value in the particle size distribution measured by the laser diffraction and the scattering method.
  • the use amount (blending amount) of the white pigment (C) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of epoxy group-containing compounds contained in the curable epoxy resin composition (all epoxy groups
  • the content is preferably 80 to 500 parts by weight, more preferably 90 to 400 parts by weight, and still more preferably 100 to 380 parts by weight with respect to 100 parts by weight of the contained compound. If the amount used is less than 80 parts by weight, the light reflectivity of the cured product tends to decrease. On the other hand, when the amount used exceeds 500 parts by weight, the toughness of the cured product tends to decrease.
  • the white pigment (C) can be produced by a known or conventional production method.
  • a white pigment (C) a commercial item can also be used, for example, brand name "SR-1", “R-42”, “R-45M”, “R-650”, “R-32” “R-5N”, “GTR-100”, “R-62N”, “R-7E”, “R-44”, “R-3L”, “R-11P”, “R-21”, “R-25”, “TCR-52", “R-310”, “D-918”, “FTR-700” (above, made by Suga Chemical Industry Co., Ltd.), trade name “Typek CR-50”, “CR-50-2”, “CR-60”, “CR-60-2”, “CR-63”, “CR-80”, “CR-90”, “CR-90-2”, “CR -93 “,” CR-95 “,” CR-97 “(above, made by Ishihara Sangyo Co., Ltd.), brand name” JR-301 “,” JR-403 “,” JR-405 " "JR
  • the curing agent (D) constituting the curable epoxy resin composition of the present invention plays a role of curing a compound having an epoxy group.
  • the curing agent (D) known or commonly used curing agents can be used as curing agents for epoxy resins.
  • acid anhydride liquid at 25 ° C. is preferable, and more specifically, for example, methyl tetrahydrophthalic anhydride, methyl hexahydrophthalic anhydride, dodecenyl succinic anhydride, methyl endo methylene Tetrahydrophthalic anhydride and the like can be mentioned.
  • acid anhydrides which are solid at normal temperature such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, etc. are liquid at normal temperature (about 25 ° C.) It can be preferably used as a curing agent (D) by dissolving it in an acid anhydride of the above to form a liquid mixture.
  • a hardening agent (D) can be used individually or in combination of 2 or more types.
  • anhydrides of saturated monocyclic hydrocarbon dicarboxylic acids are used. preferable.
  • a curing agent (D) as a curing agent (D), a trade name “Rikasid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), a trade name “HN-5500” (manufactured by Hitachi Chemical Co., Ltd.), etc. A commercial item can also be used.
  • the amount (content) of the curing agent (D) used is not particularly limited, but it is 50 to 200 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. Is preferred, and more preferably 80 to 145 parts by weight. More specifically, it is preferable to use at a ratio of 0.5 to 1.5 equivalents per equivalent of epoxy groups in all the epoxy-containing compounds contained in the curable epoxy resin composition of the present invention. .
  • the amount of the curing agent (D) used is less than 50 parts by weight, curing tends to be insufficient, and the toughness of the cured product tends to decrease.
  • the amount of the curing agent (D) used exceeds 200 parts by weight, the cured product may be colored to deteriorate the hue.
  • the curing accelerator (F) is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the curing agent (D).
  • the curing accelerator (F) known or commonly used curing accelerators can be used, and it is not particularly limited.
  • 1,8-diazabicyclo [5.4.0] undecene-7 DBU
  • the salt thereof eg, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt
  • 1,5-diazabicyclo [4.3.0] nonene-5 DBN
  • the salt thereof Eg, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt
  • Imidazole compounds phosphoric acid esters, phosphines such as triphenylphosphine; tetraphenylphosphonium tetra (p- tolyl) phosphonium compounds such as borate, tin octylate, organic metal salts such as zinc octylate; metal chelate and the like.
  • a hardening accelerator (F) can be used individually or in combination of 2 or more types.
  • the amount (content) of the curing accelerator (F) is not particularly limited, but it is preferably 0.05 to 0.05 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, and particularly preferably 0.25 to 2.5 parts by weight.
  • the amount of the curing accelerator (F) used is less than 0.05 parts by weight, the curing acceleration effect may be insufficient.
  • the use amount of the curing accelerator (F) exceeds 5 parts by weight, the cured product may be colored to deteriorate the hue.
  • the curable epoxy resin composition of the present invention may contain a curing catalyst (E) instead of the above-mentioned curing agent (D).
  • a curing catalyst (E) instead of the above-mentioned curing agent (D).
  • the curing reaction of the compound having an epoxy group can be advanced to obtain a cured product.
  • the curing catalyst (E) is not particularly limited.
  • a cationic catalyst cationic polymerization initiator capable of initiating polymerization by generating cationic species by ultraviolet irradiation or heat treatment can be used. .
  • produces a cationic species by ultraviolet irradiation
  • These cationic catalysts can be used alone or in combination of two or more.
  • the brand name "UVACURE1590" made by Daicel ⁇ Cytec Co., Ltd.
  • Examples of the cation catalyst that generates a cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes. These cationic catalysts can be used alone or in combination of two or more. Examples of the cationic catalyst include, for example, trade names “PP-33”, “CP-66”, “CP-77” (all manufactured by ADEKA Co., Ltd.), trade name “FC-509” (manufactured by 3M), and trade names Name "UVE 1014" (manufactured by G.
  • a compound of a chelate compound of metal such as aluminum or titanium with acetoacetic acid or diketones and silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid or diketones It is also possible to use a compound of the chelate compound of the above and a phenol such as bisphenol S.
  • the use amount (content) of the curing catalyst (E) is not particularly limited, but it is 0.01 to 15 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. It is preferable to use parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 10 parts by weight.
  • the curable epoxy resin composition of the present invention may contain a siloxane derivative (G) having two or more epoxy groups in the molecule and / or an alicyclic polyester resin (H).
  • the curable epoxy resin composition of the present invention preferably contains a siloxane derivative (G) having two or more epoxy groups in the molecule and an alicyclic polyester resin (H).
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) represented by the above formula (I) and a monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1) ), A siloxane derivative (G) having two or more epoxy groups in the molecule, an alicyclic polyester resin (H), a white pigment (E), a curing agent (F), and a curing accelerator (H) And a cycloaliphatic epoxy compound (A) represented by the above formula (I) and a monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1); A resin composition comprising at least a siloxane derivative (G) having two or more epoxy groups in the molecule, an alicyclic polyester resin (H), a white pigment (E), and a curing catalyst (G) preferable.
  • the curable epoxy resin composition of the present invention may contain a siloxane derivative (G) having two or more epoxy groups in the molecule (in one molecule).
  • the siloxane derivative (G) having two or more epoxy groups in the molecule is a compound having a siloxane skeleton and having two or more epoxy groups in the molecule.
  • the siloxane derivative (G) having two or more epoxy groups in the molecule plays a role of improving the heat resistance, light resistance and crack resistance of the cured product and suppressing the decrease in light intensity of the optical semiconductor device.
  • the siloxane skeleton of the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited.
  • cyclic siloxane skeleton ; linear silicone, cage-type or ladder-type polysilsesquioxane And the like.
  • a cyclic siloxane skeleton and a linear silicone skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product to suppress the decrease in light intensity.
  • siloxane derivative (G) having two or more epoxy groups in the molecule a cyclic siloxane having two or more epoxy groups in the molecule and a linear silicone having two or more epoxy groups in the molecule are preferable.
  • numerator can be used individually or in combination of 2 or more types.
  • the siloxane derivative (G) having two or more epoxy groups in the molecule is a cyclic siloxane having two or more epoxy groups
  • the number of Si—O units forming the siloxane ring (a silicon atom forming the siloxane ring
  • the number is not particularly limited, but is preferably 2 to 12, and more preferably 4 to 8 from the viewpoint of improving the heat resistance and light resistance of the cured product.
  • the weight average molecular weight of the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited, but it is preferably 100 to 3000, more preferably 180, from the viewpoint of improving the heat resistance and light resistance of the cured product. It is -2000.
  • the weight average molecular weight of the siloxane derivative (G) having two or more epoxy groups in the molecule can be measured, for example, by GPC (gel permeation chromatography) as a value in terms of standard polystyrene.
  • the number of epoxy groups (number of epoxy groups in one molecule) possessed by the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited as long as it is two or more, but the heat resistance of the cured product From the viewpoint of improving the light resistance, two to four are preferable.
  • the epoxy equivalent (based on JIS K 7236) of the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited, but it is preferably 180 to 400 from the viewpoint of improving the heat resistance and light resistance of the cured product. More preferably, it is 240 to 400, and more preferably 240 to 350.
  • the epoxy group in the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited, but from the viewpoint of improving the heat resistance and light resistance of the cured product, adjacent two carbons constituting an aliphatic ring It is preferable that it is an epoxy group (alicyclic epoxy group) comprised by an atom and an oxygen atom, and it is especially preferable that it is a cyclohexene oxide group especially.
  • siloxane derivative (G) having two or more epoxy groups in the molecule examples include 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] ] -2,4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,2 , 4,6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -6,8-dipropyl-2, 4,6,8-Tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,6-dipropyl-2,4, 6,8-T
  • siloxane derivative (G) having two or more epoxy groups in the molecule for example, an alicyclic epoxy group-containing silicone resin described in JP-A-2008-248169, or JP-A-2008-19422 It is also possible to use an organopolysilsesquioxane resin or the like having at least two epoxy functional groups in one molecule.
  • siloxane derivative (G) having two or more epoxy groups in the molecule for example, cyclic siloxane having two or more epoxy groups in the molecule, trade name “X-40-2678” (Shin-Etsu Chemical Co., Ltd. (Trade name) “X-40-2670” (Shin-Etsu Chemical Co., Ltd.), trade name “X-40-2720” (Shin-Etsu Chemical Co., Ltd.), etc. may be used. .
  • numerator is not specifically limited
  • the total amount (100 weight) of component (A), component (B), and component (G) % Is preferably 5 to 90% by weight, more preferably 5 to 85% by weight, still more preferably 5 to 80% by weight, and particularly preferably 8 to 75% by weight.
  • the amount of the siloxane derivative (G) having two or more epoxy groups in the molecule is less than 5% by weight, the heat resistance and light resistance of the cured product may be reduced.
  • the amount of the siloxane derivative (G) having two or more epoxy groups in the molecule exceeds 90% by weight, the crack resistance of the cured product may be reduced.
  • the total amount of the derivative (G) is not particularly limited, it is preferably 30% by weight or more (for example, 30 to 100% by weight) and particularly preferably 40% by weight or more from the viewpoint of improving heat resistance, light resistance and crack resistance. preferable.
  • the said alicyclic polyester resin (H) is a polyester resin which has an alicyclic structure (aliphatic ring structure) at least.
  • the alicyclic polyester resin (H) improves the heat resistance, light resistance and crack resistance of the cured product and plays a role in suppressing the decrease in light intensity of the optical semiconductor device.
  • the alicyclic polyester resin (H) is preferably an alicyclic polyester having an alicyclic (alicyclic structure) in its main chain. .
  • the alicyclic polyester resin (H) is preferably a polyester resin in which a polymer main chain is constituted by a part or all of carbon atoms constituting an alicyclic ring.
  • an alicyclic polyester resin (H) can be used individually or in combination of 2 or more types.
  • the alicyclic structure in the alicyclic polyester resin (H) is not particularly limited, and examples thereof include a monocyclic hydrocarbon structure and a bridged ring hydrocarbon structure (eg, bicyclic hydrocarbon etc.) And a saturated single ring hydrocarbon structure or a saturated bridged ring hydrocarbon structure in which an alicyclic ring (a carbon-carbon bond constituting an alicyclic ring) is entirely constituted by a carbon-carbon single bond.
  • the alicyclic structure in the above-mentioned alicyclic polyester resin (H) may be introduced into either one of the structural unit derived from dicarboxylic acid and the structural unit derived from diol, or both may be introduced.
  • Well not particularly limited.
  • the alicyclic polyester resin (H) has a structural unit derived from a monomer component having an alicyclic structure.
  • the monomer having an alicyclic structure include diols and dicarboxylic acids having a known or common alicyclic structure, and are not particularly limited.
  • the alicyclic polyester resin (H) may have a structural unit derived from a monomer component having no alicyclic structure.
  • the monomer component not having an alicyclic structure is not particularly limited, and examples thereof include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalene dicarboxylic acid (including derivatives such as acid anhydrides); adipic acid Aliphatic dicarboxylic acids such as sebacic acid, azelaic acid, succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides); ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propane Diol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol,
  • the ratio of the monomer unit having an alicyclic group to the total monomer units (all monomer components) (100 mol%) constituting the alicyclic polyester resin (H) is not particularly limited, it is 10 mol% or more (for example, 10 to 80) It is preferably mol%), more preferably 25 to 70 mol%, still more preferably 40 to 60 mol%.
  • the proportion of monomer units having an alicyclic group is less than 10 mol%, the heat resistance, light resistance and crack resistance of the cured product may be reduced.
  • an alicyclic polyester resin containing at least one or more structural units represented by the following formulas (2) to (4) is particularly preferable.
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain And the two selected from R 4 to R 7 may combine to form a ring).
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
  • the structural unit represented by said Formula (2)-(4) As a preferable specific example of the structural unit represented by said Formula (2)-(4), the structure derived from 4-methyl- 1, 2- cyclohexane dicarboxylic acid and ethylene glycol represented by following formula (5) is mentioned, for example Unit is mentioned.
  • the alicyclic polyester resin (H) having the structural unit can be obtained, for example, by polycondensation of methylhexahydrophthalic anhydride and ethylene glycol.
  • the structural unit represented by said Formula (2)-(4) it is derived from the 1, 4- cyclohexane dicarboxylic acid represented by following formula (6), and neopentyl glycol, for example A structural unit is mentioned.
  • the alicyclic polyester resin (H) having the structural unit can be obtained, for example, by polycondensation of 1,4-cyclohexanedicarboxylic acid and neopentyl glycol.
  • the terminal structure of the alicyclic polyester resin (H) is not particularly limited, and may be a hydroxyl group or a carboxyl group, or a structure in which these hydroxyl groups or carboxyl groups are appropriately modified (for example, the terminal hydroxyl group is mono It may be a structure esterified with a carboxylic acid or an acid anhydride, a structure in which a terminal carboxyl group is esterified with an alcohol, and the like.
  • the total content of the constituent units (total content; all monomers constituting the constituent unit The unit) is not particularly limited, but is 20 mol% or more (eg, 100 mol%; all monomer units constituting the alicyclic polyester resin (H)) of the alicyclic polyester resin (H) 20 to 100 mol%) is preferable, more preferably 50 to 100 mol%, and still more preferably 80 to 100 mol%.
  • the content of the structural unit represented by the above formulas (2) to (4) is less than 20 mol%, the heat resistance, light resistance and crack resistance of the cured product may be lowered.
  • the number average molecular weight of the alicyclic polyester resin (H) is not particularly limited, but is preferably 300 to 100,000, and more preferably 300 to 30,000. If the number average molecular weight of the alicyclic polyester resin (H) is less than 300, the toughness of the cured product may not be sufficient, and the crack resistance may be reduced. On the other hand, when the number average molecular weight of the alicyclic polyester resin (H) exceeds 100,000, the compatibility with other components (for example, the curing agent (D)) decreases, which adversely affects the mechanical properties of the cured product, Crack resistance may be reduced. In addition, the number average molecular weight of alicyclic polyester resin (H) can be measured as a value of standard polystyrene conversion, for example by GPC (gel permeation chromatography) method.
  • an alicyclic polyester resin (H) can be used individually by 1 type or in combination of 2 or more types.
  • the alicyclic polyester resin (H) is not particularly limited, and can be produced by a known or conventional method. More specifically, for example, the alicyclic polyester resin (H) may be obtained by polycondensation of the above-mentioned dicarboxylic acid and diol according to a conventional method, or a derivative of the above-mentioned dicarboxylic acid (acid anhydride, ester The acid halide may be obtained by polycondensation of an acid halide and the like with a diol according to a conventional method.
  • the compounding amount (content) of the alicyclic polyester resin (H) is not particularly limited, but when the curing agent (D) is an essential component, the alicyclic polyester resin The amount is preferably 1 to 60% by weight, more preferably 5 to 30% by weight, based on the total amount (100% by weight) of (H) and the curing agent (D).
  • cured material may fall that the compounding quantity of alicyclic polyester resin (H) is less than 1 weight%.
  • the compounding amount (content) of the alicyclic polyester resin (H) is not particularly limited, but the alicyclic polyester The amount is preferably 50 to 99% by weight, more preferably 65 to 99% by weight, based on the total amount (100% by weight) of the resin (H) and the curing catalyst (E).
  • cured material may fall that the compounding quantity of alicyclic polyester resin (H) is less than 50 weight%.
  • the curable epoxy resin composition of the present invention preferably further contains at least one leveling agent selected from the group consisting of a silicone-based leveling agent (polysiloxane-based leveling agent) and a fluorine-based leveling agent.
  • the curable epoxy resin composition of the present invention can form a cured product exhibiting higher heat resistance, light resistance, and crack resistance by containing the above-mentioned leveling agent, and an optical semiconductor produced using the cured product The device is even less prone to loss of light intensity over time.
  • the silicone-based leveling agent is a leveling agent containing a compound having a polysiloxane skeleton.
  • silicone-based leveling agent known or commonly used silicone-based leveling agents can be used and are not particularly limited.
  • the silicone type polymer (However, component (C) is remove
  • R 8 in the above formula (7) represents a linear or branched alkyl group which may have a substituent.
  • the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group (n-butyl group), an isobutyl group, an s-butyl group, a t-butyl group, and pentyl.
  • C 1 -C 30 linear or branched alkyl groups such as groups.
  • the substituent that the linear or branched alkyl group may have in R 8 is not particularly limited, and examples thereof include a hydroxyl group which may be protected by a protecting group [eg, a hydroxyl group, A substituted oxy group (for example, an alkoxy group having a carbon number of 1 to 4 such as methoxy group, ethoxy group and propoxy group) and the like, a carboxyl group which may be protected by a protecting group [for example, -COOR a group and the like: Ra Represents a hydrogen atom or an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, a t-butyl group and a hexyl group C1-C6 linear or branched alkyl group is mentioned], acryloyl group, methacryloy
  • R 9 in the above formula (7) is a linear or branched alkyl group which may have a substituent, an aralkyl group which may have a substituent, an organic group containing a polyether chain, Or an organic group containing a polyester chain.
  • the linear or branched alkyl group for R 9 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group (n-butyl group), an isobutyl group and an s-butyl group. Examples thereof include linear or branched alkyl groups having 1 to 30 carbon atoms such as a group, t-butyl group and pentyl group.
  • the aralkyl group is not particularly limited, and examples thereof include a benzyl group, a methylbenzyl group, a phenethyl group, a methylphenethyl group, a phenylpropyl group and a naphthylmethyl group.
  • the substituent that the linear or branched alkyl group may have in R 9 and the substituent that the aralkyl group may have is not particularly limited, and for example, in R 8 described above The exemplified substituents and the like can be mentioned.
  • the organic group containing a polyether chain in R 9 is a monovalent organic group containing at least a polyether structure.
  • the polyether structure in the organic group containing a polyether chain is not particularly limited as long as it has a structure having a plurality of ether bonds, and examples thereof include polyethylene glycol structure (polyethylene oxide structure) and polypropylene glycol structure (polypropylene oxide structure) And polyoxyalkylene structures such as a polybutylene glycol (polytetramethylene glycol) structure, a polyether structure derived from a plurality of alkylene glycols (or alkylene oxides) (eg, a poly (propylene glycol / ethylene glycol) structure, etc.) Be
  • the addition form of each alkylene glycol in the polyether structure derived from plural kinds of alkylene glycols may be block type (block copolymer type) or random type (random copolymer type), It is also good.
  • the organic group containing the above polyether chain may be an organic group consisting only of the above polyether structure, or one or more of the above polyether structure, and one or more of the linking groups (one or more atoms It may be an organic group having a structure in which it is connected to a divalent group having one).
  • the linking group in the organic group containing the polyether chain is, for example, a divalent hydrocarbon group (in particular, a linear or branched alkylene group), a thioether group (-S-), an ester group (-COO- And an amide group (-CONH-), a carbonyl group (-CO-), a carbonate group (-OCOO-), and a group in which two or more of these are bonded.
  • the organic group containing a polyether chain exemplified substituent in R 8 above (e.g., hydroxyl group, carboxyl group, an acryloyl group, a methacryloyl group, acryloyloxy group, methacryloyloxy group, a vinyl group, such as propenyl
  • substituent in R 8 above e.g., hydroxyl group, carboxyl group, an acryloyl group, a methacryloyl group, acryloyloxy group, methacryloyloxy group, a vinyl group, such as propenyl
  • an organic group having the above-mentioned substituent at the end may be mentioned.
  • the organic group containing a polyester chain in R 9 is a monovalent organic group containing at least a polyester structure.
  • the polyester structure in the organic group containing the polyester chain may be any structure having a plurality of ester bonds, and is not particularly limited.
  • Aromatic polyester structures, aliphatic / alicyclic polyester structures, alicyclic / aromatic polyester structures and the like can be mentioned.
  • examples of the polyester structure include a polyester structure formed by polymerization of a polycarboxylic acid (in particular, a dicarboxylic acid) and a polyol (in particular, a diol).
  • the above polycarboxylic acid is not particularly limited, and examples thereof include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalene dicarboxylic acid (including derivatives of acid anhydride and ester); adipic acid and sebacic acid Aliphatic dicarboxylic acids such as azelaic acid, succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides and esters); 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4 Cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, hymic acid, 1,4-deca
  • polyol is not particularly limited, but, for example, ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 1,4- Butanediol (tetramethylene glycol), neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 2,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4- Trimethyl-1,6-hexanediol, 3-methylpentanediol, diethylene glycol, dipropylene glycol, hexylene glycol (2-methylpentane-2,4-diol), 3-methyl-1,5-pentanediol, 2- Methyl-1,5-pentanediol, 2,
  • polyester structure the polyester structure formed by superposition
  • the hydroxycarboxylic acid is not particularly limited, and examples thereof include p-hydroxybenzoic acid, m-hydroxybenzoic acid, o-hydroxybenzoic acid (salicylic acid), 3-methoxy-4-hydroxybenzoic acid (vanillic acid), 4 -Methoxy-3-hydroxybenzoic acid (isovanillic acid), 3,5-dimethoxy-4-hydroxybenzoic acid (silingic acid), 2,6-dimethoxy-4-hydroxybenzoic acid, 3-methyl-4-hydroxybenzoic acid 4-methyl-3-hydroxybenzoic acid, 3-phenyl-4-hydroxybenzoic acid, 4-phenyl-3-hydroxybenzoic acid, 2-phenyl-4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 3,4-Dihydroxycinnamic acid (caffeic acid), (E) -3- (4-hydroxy-3-methoxy-fu) Hydroxy aromatic carboxylic acids such as propane-2-enolic acid (ferulic acid) and 3- (4-hydroxy
  • the lactone is not particularly limited, and examples thereof include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -enantholactone, ⁇ -caprylolactone and the like.
  • the polyester structure may be formed of a single hydroxycarboxylic acid or lactone, or may be formed of two or more hydroxycarboxylic acids or lactones.
  • the above-mentioned polyester structure is not limited to the above-exemplified structures, and, for example, a polyester structure formed by polymerization of the above-mentioned polycarboxylic acid and polyol, a polyester structure formed by polymerization of hydroxycarboxylic acid, polymerization of lactone It may be a structure in which two or more of the polyester structures to be formed are combined.
  • the organic group containing the above polyester chain may be an organic group consisting only of the above polyester structure, or an organic group having a structure in which one or more of the above polyester structures are linked to one or more of the linking groups. It may be Examples of the linking group in the organic group containing the polyester chain include a divalent hydrocarbon group (in particular, a linear or branched alkylene group), a thioether group (-S-), an ester group (-COO-) And an amide group (-CONH-), a carbonyl group (-CO-), a carbonate group (-OCOO-), and a group in which two or more of these are bonded.
  • the organic group containing the said polyester chain is a substituent (for example, a hydroxyl group, a carboxyl group, an acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, a vinyl group, propenyl group etc.) illustrated in the above-mentioned R 8
  • a substituent for example, a hydroxyl group, a carboxyl group, an acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, a vinyl group, propenyl group etc.
  • the silicone polymer may be a polymer having only the structural unit represented by Formula (7) as the repeating structural unit, or has a structural unit other than the structural unit represented by Formula (7) It may be a polymer.
  • the structural unit other than the structural unit represented by the formula (7) in the silicone polymer is not particularly limited, and examples thereof include a structural unit having a hydrosilyl group (Si-H).
  • the silicone polymer may be a polymer having only one type of structural unit represented by formula (7), or a polymer having two or more types of structural units represented by formula (7) It may be Moreover, the polymer which has 2 or more types of structural units other than the structural unit represented by Formula (7) may be sufficient.
  • silicone-based polymer examples include, for example, polymers (polydimethylsiloxane or modified polydimethylsiloxane) represented by the following formulas (7a) to (7e).
  • the silicone polymer represented by the above formula (7a) is polydimethylsiloxane.
  • the number x1 (the repeating number of the dimethylsilyloxy structural unit [-Si (CH 3 ) 2 -O-]) in the formula (7a) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500.
  • the silicone polymer represented by the above formula (7b) is a polyether modified product of polydimethylsiloxane in which a polyether structure is introduced to the side chain of polydimethylsiloxane.
  • R 10 in the formula (7b) represents a hydrogen atom or a methyl group.
  • R 11 represents a hydrogen atom or a linear or branched alkyl group which may have a substituent.
  • the substituent in R 11 include the substituents exemplified in R 8 above.
  • m1 (the number of repeating of the methylene structural unit) in the formula (7b) is not particularly limited, it can be appropriately selected, for example, from the range of 1 to 30.
  • n1 (the number of repeating of the oxyethylene structural unit or the oxypropylene structural unit) is not particularly limited, but can be appropriately selected, for example, from the range of 2 to 3,000.
  • y1 (the repeating number of the structural unit containing a polyether structure (polyether side chain)) in the formula (7b) is not particularly limited, but is preferably 1 to 3000, more preferably 3 to 1,500.
  • x 2 (the number of repeating dimethylsilyloxy structural units) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500.
  • the addition form of the structural unit having a polyether structure and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7b) may be a block type or a random type.
  • structural units having a polyether structure enclosed by parentheses with y1 may be identical to or different from each other.
  • the silicone polymer represented by the above formula (7c) is a long-chain alkyl-modified polydimethylsiloxane (polymethylalkylsiloxane) in which an alkyl group having a longer chain than a methyl group is introduced into the side chain of polydimethylsiloxane. It is.
  • R 12 in the formula (7c) represents a linear or branched alkyl group having 2 or more carbon atoms.
  • y 2 (the number of repeating units of the methylalkylsilyloxy structural unit) in the formula (7c) is not particularly limited, it is preferably 2 to 3,000, and more preferably 3 to 1,500.
  • x3 (the number of repeating of the dimethylsilyloxy structural unit) is not particularly limited, but is preferably 0 to 3,000, and more preferably 2 to 1,500.
  • the addition form of the methylalkylsilyloxy structural unit and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7c) may be a block type or a random type.
  • the methylalkylsilyloxy structural units enclosed in parentheses with y2 may be identical to or different from each other.
  • the silicone polymer represented by the above formula (7d) is an aralkyl modified product of polydimethylsiloxane in which an aralkyl group is introduced into the side chain of polydimethylsiloxane.
  • the m 2 (the number of repeating of the methylene structural unit) in the formula (7d) is not particularly limited, but can be appropriately selected, for example, from the range of 1 to 30.
  • y 3 (the number of repeating units of the methylaralkylsilyloxy structural unit) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500.
  • x 4 (the number of repeating of the dimethylsilyloxy structural unit) is not particularly limited, but is preferably 0 to 3,000, and more preferably 2 to 1,500.
  • the addition form of the methylaralkylsilyloxy structural unit and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7d) may be a block type or a random type.
  • the methylaralkylsilyloxy structural units enclosed in parentheses with y3 may be identical to or different from each other.
  • the silicone polymer represented by the above formula (7e) is a polyester modified product of polydimethylsiloxane in which a polyester structure is introduced into the side chain of polydimethylsiloxane.
  • R 13 and R 14 in the formula (7e) are the same or different and each represents a divalent organic group (eg, a divalent hydrocarbon group or the like).
  • R 15 represents a hydrogen atom or a linear or branched alkyl group which may have a substituent.
  • the substituent in R 15 include the substituents exemplified in R 8 above.
  • the m 3 (the number of repeating methylene structural units) in the formula (7e) is not particularly limited, but can be appropriately selected, for example, from the range of 1 to 30.
  • n2 (the number of repeating of the condensation structure of the polyol and the polycarboxylic acid) is not particularly limited, but can be appropriately selected, for example, from the range of 2 to 3,000.
  • y 4 (the number of repeating of the structural unit containing a polyester structure (polyester side chain)) in the formula (7e) is not particularly limited, but is preferably 1 to 3000, more preferably 3 to 1,500.
  • x5 (the number of repeating dimethylsilyloxy structural units) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500.
  • the addition form of the structural unit having a polyester structure and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7e) may be a block type or a random type.
  • y4 is an integer greater than or equal to 2
  • subjected may be respectively the same, and may differ.
  • the silicone polymer can be obtained by a known or commonly used production method, and the production method is not particularly limited.
  • a polymer having a structure corresponding to the structural unit represented by the formula (7) is polymerized A compound having a predetermined structure (eg, polyether structure) with respect to the reactive group of a silicone polymer having a reactive group in the side chain (polydimethylsiloxane having a reactive group in the side chain, etc.) Or a compound having a polyester structure) by reaction and bonding.
  • a commercial item can also be used as said silicone type polymer.
  • the fluorine-based leveling agent is a leveling agent including a compound having a fluorinated alkyl group in which part or all of the hydrogen atoms of the alkyl group are substituted with a fluorine atom.
  • the fluorine-based leveling agent any known or commonly used fluorine-based leveling agent can be used, and it is not particularly limited.
  • the compound having a fluorinated alkyl group in particular, a fluorine-containing acrylic polymer having at least a structural unit (repeating structural unit) represented by the following formula (8), a structural unit represented by the following formula (9)
  • the fluorine-containing polyether polymer which has at least (repeating structural unit) is preferable. That is, the fluorine-based leveling agent is preferably a leveling agent containing at least the fluorine-containing acrylic polymer or a leveling agent containing at least the fluorine-containing polyether polymer.
  • R 16 in the above formula (8) is a hydrogen atom, a fluorine atom, or a linear or branched alkyl having 1 to 4 carbon atoms in which part or all of the hydrogen atoms may be substituted with a fluorine atom Indicates a group.
  • the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an s-butyl group and a t-butyl group.
  • R 17 in the above formula (8) represents a fluorinated alkyl group (an alkyl group in which a part or all of hydrogen atoms are substituted with a fluorine atom).
  • the fluorinated alkyl group is not particularly limited. For example, difluoromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group , Perfluoroethyl methyl group, 2,2,3,3,4,4-hexafluorobutyl group, 1,1-dimethyl-2,2,3,3-tetrafluoropropyl group, 1,1-dimethyl-2 2,2,3,3,3-pentafluoropropyl group, 2- (perfluoropropyl) ethyl group, 2,2,3,3,4,4,5,5-octafluoropentyl group, 1,1-dimethyl -2,2,3,3,4,4-hexafluoro
  • the above-mentioned fluorine-containing acrylic polymer may be a polymer having only the structural unit represented by the formula (8) as a repeating structural unit, and it may be other than the structural unit represented by the formula (8) It may be a polymer having a structural unit.
  • the fluorine-containing acrylic polymer may be a polymer having only one type of structural unit represented by formula (8) or may have two or more types of structural units represented by formula (8) It may be a polymer.
  • the polymer which has 2 or more types of structural units other than the structural unit represented by Formula (8) may be sufficient.
  • the structural unit other than the structural unit represented by the formula (8), which the above-mentioned fluorine-containing acrylic polymer may have, is not particularly limited, and a monomer component (monomer component) of the acrylic polymer And structural units derived from known or commonly used monomers.
  • Examples of the above monomers include acrylic esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate and the like (including those having a functional group such as a hydroxyl group and a carboxyl group); methacrylic acid Methacrylates such as methyl, ethyl methacrylate, propyl methacrylate and butyl methacrylate (including those having functional groups such as hydroxyl and carboxyl); acrylamides such as acrylamide and N-methyl acrylamide; methacrylamide and the like Methacrylamides; allyl compounds; vinyl compounds such as aromatic vinyl compounds, vinyl ethers, vinyl esters and the like. Further, esters of polyalkylene glycol ethers with acrylic acid or methacrylic acid can also be used as the above-mentioned monomer.
  • the fluorine-containing acrylic polymer etc. which are represented by following formula (8a) etc. are mentioned, for example.
  • R 18 in the formula (8a) represents a hydrogen atom or a methyl group.
  • R 19 represents a linear or branched alkyl group.
  • the linear or branched alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group (n-butyl group), an isobutyl group, an s-butyl group, and a t group.
  • —C1-C30 linear or branched alkyl groups such as butyl group and pentyl group.
  • R 20 in Formula (8a) represents a hydrogen atom or a methyl group.
  • R 21 represents a perfluoroalkyl group. Examples of the perfluoroalkyl group is not particularly limited, for example, perfluoroalkyl groups such as exemplified as R 17 in the formula (8) below.
  • R 22 in the formula (8a) represents a hydrogen atom or a methyl group.
  • R 23 represents an organic group containing a polyether chain.
  • the organic group comprising the polyether chain is not particularly limited, for example, such as those exemplified as R 9 in the formula (7) below.
  • R, s and t in the formula (8a) each represent an integer of 1 to 3000.
  • the fluorine-containing acrylic polymer can be obtained by a known or commonly used production method, and the production method is not particularly limited.
  • a monomer giving a structural unit represented by the formula (8) by polymerization For example, it can be produced by a method of polymerizing perfluoroalkyl acrylate, perfluoroalkyl methacrylate or the like.
  • a commercial item can also be used as said fluorine-containing acrylic polymer.
  • R 24 in the above formula (9) represents a trivalent linear or branched hydrocarbon group.
  • the trivalent linear or branched hydrocarbon group include methane, ethane, propane, n-butane, isobutane, n-pentane, n-hexane, 2-methylpentane, 3-methylpentane, heptane
  • groups in which three hydrogen atoms have been removed from linear or branched alkanes such as 2-methylheptane, 3-methylheptane, octane, nonane and decane (alkane-triyl group) and the like.
  • a group in which 3 hydrogen atoms have been removed from a linear or branched alkane having 1 to 10 carbon atoms is preferable.
  • R 25 in the above formula (9) represents a fluorinated alkyl group.
  • the fluorinated alkyl group is not particularly limited as long as it is an alkyl group in which a part or all of hydrogen atoms are substituted with a fluorine atom, for example, those exemplified as R 17 in the above formula (8) It can be mentioned.
  • R 25 above an alkyl group in which a part of hydrogen atoms are substituted by fluorine atoms is preferable.
  • Z (the repeating number of methylene structural units) in the above formula (9) represents an integer of 1 to 30. Among them, the integer of 1 to 10 is preferable.
  • the above-mentioned fluorine-containing polyether polymer may be a polymer having only the structural unit represented by the formula (9) as a repeating structural unit, and may be other than the structural unit represented by the formula (9) It may be a polymer having a structural unit of
  • the fluorine-containing polyether polymer may be a polymer having only one structural unit represented by the formula (9), or two or more structural units represented by the formula (9). It may be a polymer having one.
  • the polymer which has 2 or more types of structural units other than the structural unit represented by Formula (9) may be sufficient.
  • the structural unit other than the structural unit represented by the formula (9), which may be possessed by the fluorine-containing polyether polymer, is not particularly limited.
  • an oxyethylene unit [-OCH 2 CH 2- And oxyalkylene structural units such as oxypropylene unit [—OCH (CH 3 ) CH 2 —].
  • R 26 in the following formula represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, propyl group, n-butyl group, etc.).
  • R 25 and z in the following formulas are as defined above.
  • the fluorine-containing polyether polymer etc. which are represented by following formula (9a) etc. are mentioned, for example.
  • U, v and w in the formula (9a) each represent an integer of 1 to 50.
  • the sum of u and w is preferably an integer of 2 to 80, more preferably an integer of 4 to 30, and still more preferably an integer of 6 to 14.
  • v is preferably an integer of 2 to 50, more preferably an integer of 5 to 20.
  • the above-mentioned fluorine-containing polyether polymer can be obtained by a known or commonly used production method, and the production method is not particularly limited.
  • a monomer giving a structural unit represented by formula (9) by polymerization (For example, cyclic ether compounds such as epoxy compounds and oxetane compounds, etc.) can be produced by polymerization (for example, ring-opening polymerization).
  • a commercial item can also be used as said fluorine-containing polyether type polymer.
  • the content (compounding amount) of the nonvolatile component of the leveling agent in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount (100 parts by weight of the compound having an epoxy group) contained in the curable epoxy resin composition Is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and still more preferably 0.1 to 4 parts by weight.
  • cured material may fall that content (Level of non volatile matter conversion) of a leveling agent is less than 0.1 weight part.
  • the content of the leveling agent in terms of nonvolatile content
  • exceeds 10 parts by weight the heat resistance of the cured product may be lowered.
  • the content (blending amount) of the silicone polymer, the fluorine-containing acrylic polymer, and the fluorine-containing polyether polymer in the curable epoxy resin composition of the present invention is not particularly limited.
  • the amount is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, still more preferably 0.1 to 10 parts by weight, based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. 0.1 to 4 parts by weight.
  • the content of the silicone polymer, the fluorine-containing acrylic polymer, and the fluorine-containing polyether polymer is less than 0.1 parts by weight, the crack resistance of the cured product may be reduced.
  • the content (compounding amount) of the above-mentioned silicone polymer, the above-mentioned fluorine-containing acrylic polymer, and the above-mentioned fluorine-containing polyether polymer means the above-mentioned silicone polymer, the above-mentioned fluorine-containing acrylic polymer And when it contains 2 or more types among the said fluorine-containing polyether type polymers, the sum total (total content) of these content is meant.
  • the curable epoxy resin composition of the present invention contains the above-mentioned specific leveling agent, a reflector made of a cured product of the above resin composition can exhibit even higher levels of heat resistance and crack resistance.
  • a decrease in luminous intensity over time of the optical semiconductor device provided with the reflector (in particular, a decrease in luminous intensity of the optical semiconductor device that emits high-intensity light) is suppressed.
  • Such an effect is obtained by improving the adhesion of the curable epoxy resin composition (or the cured product thereof) of the present invention to the sealing material (the sealing resin for an optical semiconductor element) or the like by the blending of the leveling agent. It is presumed that
  • the curable epoxy resin composition of the present invention preferably further contains a polyol compound.
  • the curable epoxy resin composition of the present invention can form a cured product exhibiting higher heat resistance and crack resistance by containing the above-mentioned polyol compound, and an optical semiconductor device produced using the cured product will be aged over time. Less likely to occur at
  • the above-mentioned polyol compound is a polymer (oligomer or polymer) having a number average molecular weight of 200 or more having two or more hydroxyl groups in one molecule (in one molecule), for example, polyether polyol, polyester polyol, polycarbonate polyol, etc. Is included.
  • the said polyol compound can be used individually or in combination of 2 or more types.
  • the hydroxyl group (two or more hydroxyl groups) of the polyol compound may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • the number of hydroxyl groups (the number of hydroxyl groups in one molecule) of the polyol compound is not particularly limited as long as it is two or more.
  • the position of the hydroxyl group (two or more hydroxyl groups) possessed by the polyol compound is not particularly limited, but may be present at least at the end of the polyol (end of the polymer main chain) from the viewpoint of reactivity with the curing agent. It is particularly preferable to be present at least at both ends of the polyol.
  • the polyol compound may be solid or liquid as long as it can form a liquid curable epoxy resin composition after compounding with other components.
  • the number average molecular weight of the polyol compound may be 200 or more, and is not particularly limited, but is preferably 200 to 100,000, more preferably 300 to 50,000, and still more preferably 400 to 40,000. If the number average molecular weight is less than 200, peeling of the cured product or cracks may occur in the cured product when the solder reflow process is performed. On the other hand, when the number average molecular weight exceeds 100,000, it may be precipitated from the liquid curable epoxy resin composition or may not be dissolved.
  • the number average molecular weight of the said polyol compound means the number average molecular weight of standard polystyrene conversion measured by gel permeation chromatography (GPC).
  • polyol compound examples include a polyester polyol (including a polyester polyol oligomer) having an ester skeleton (polyester skeleton) in the molecule, and a polyether polyol (polyether polyol oligomer) having an ether skeleton (polyether skeleton) in the molecule.
  • polycarbonate polyols including polycarbonate polyol oligomers having a carbonate skeleton (polycarbonate skeleton) in the molecule.
  • phenoxy resin, epoxy equivalent is 1000 g / eq.
  • bisphenol-type high molecular weight epoxy resins polybutadienes having hydroxyl groups, acrylic polyols and the like.
  • polyester polyol examples include polyester polyols obtained by condensation polymerization (for example, transesterification reaction) of polyols, polycarboxylic acids (polybasic acids) and hydroxycarboxylic acids, and polyester polyols obtained by ring-opening polymerization of lactones Etc.
  • polyol as a monomer component constituting the above polyester polyol examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, 1,4- Butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,3,3, 5-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 2,6-hexanediol 1,8-octanediol, 1,4-cyclohexanedimethanol, 1,2-dimethylol Rohexan
  • polycarboxylic acid as a monomer component which constitutes the above-mentioned polyester polyol, for example, oxalic acid, adipic acid, sebacic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, azelaic acid, citric acid, 2,6-naphthalene Dicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, citraconic acid, 1,10-decanedicarboxylic acid, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, pyroanhydride Merit acid, trimellitic anhydride and the like can be mentioned.
  • hydroxycarboxylic acid examples include lactic acid, malic acid, glycolic acid, dimethylol propionic acid, and dimethylol butanoic acid.
  • lactones examples include ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -butyrolactone and the like.
  • the polyester polyol can be produced by a known or commonly used production method, and is not particularly limited.
  • condensation polymerization (polycondensation) of the above polyol and polycarboxylic acid condensation polymerization of the above hydroxycarboxylic acid, the above lactones It can be produced by ring-opening polymerization of
  • the conditions for polymerization are also not particularly limited, and can be appropriately selected from known or commonly used reaction conditions.
  • polyol polycarboxylic acid and hydroxycarboxylic acid
  • known or commonly used derivatives for example, a hydroxyl group is protected by an acyl group, an alkoxycarbonyl group, an organic silyl group, an alkoxyalkyl group, an oxacycloalkyl group etc.
  • derivatives derivatives in which a carboxyl group is derived from an alkyl ester, an acid anhydride, an oxidized halide, and the like.
  • polyester polyol examples include “Placcel 205”, “Placcel 205H”, “Placcel 205U”, “Placcel 205BA”, “Placcel 208”, “Placcel 210”, “Placcel 210CP”, and “Placcel 210BA”, for example.
  • polyether polyol the polyether polyol obtained by the addition reaction of the cyclic ether compound to polyols, the polyether polyol obtained by the ring-opening polymerization of an alkylene oxide, etc. are mentioned, for example.
  • examples of the polyether polyol include ethylene glycol, diethylene glycol, 1,2-propanediol (propylene glycol), 2-methyl-1,3-propanediol, 1,3-propanediol, and the like.
  • 2,4-butanediol (tetramethylene glycol), 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5 -Pentanediol, 2,3,5-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1,6-hexane Diol, 2,6-hexanediol, 1,8-octanediol, 1,4-cyclohexanedimethano 1,2-dimethylolcyclohexane, 1,3-dimethylolcyclohexane, 1,4-dimethylolcyclohexane, 1,12-dodecanediol, polybutadienediol
  • the polyether polyol can be produced by a known or commonly used production method, and is not particularly limited. For example, addition reaction (ring-opening addition polymerization) of cyclic ether compound to polyols, ring-opening polymerization of alkylene oxide ( It can manufacture by homopolymerization or copolymerization).
  • the conditions for polymerization are also not particularly limited, and can be appropriately selected from known or commonly used reaction conditions.
  • polyether polyol for example, trade name "PEP-101” (made by Freund Sangyo Co., Ltd.), trade name “Adecaplulonic L”, “Adecaplulonic P”, “Adecaplulonic F”, “Adecaplulonic R” , “Adecaplulonic TR”, “Adeca PEG” (all, manufactured by Adeka Co., Ltd.), trade names “PEG # 1000”, “PEG # 1500”, “PEG # 1 1000” (all, manufactured by NOF Corporation) , Brand name "New pole PE-34", “New pole PE-61", “New pole PE-78”, “New pole PE-108", "PEG-200”, “PEG-600”, “PEG- 2000, “PEG-6000”, “PEG-10000”, “PEG-20000” (all manufactured by Sanyo Chemical Industries, Ltd.), trade name “P MG1000 “,” PTMG1800 “,” PTMG2000 “(or, Mitsubishi Chemical Co., Ltd.), can be used” PTMG prepo
  • the polycarbonate polyol is a polycarbonate having two or more hydroxyl groups in the molecule.
  • polycarbonate polyol polycarbonate diol having two terminal hydroxyl groups in the molecule is preferable.
  • the polycarbonate polyol is a phosphation method or a carbonate exchange reaction using a dialkyl carbonate such as dimethyl carbonate or diethyl carbonate or diphenyl carbonate as in the method for producing a conventional polycarbonate polyol (JP-A-62-187725, JP-A-62-187725). No. 2-175721, JP-A-2-49025, JP-A-3-220233, JP-A-3-252420, etc.) and the like. Since the carbonate bond in the polycarbonate polyol is not susceptible to thermal decomposition, the resin cured product containing the polycarbonate polyol exhibits excellent stability even under high temperature and high humidity.
  • polyols used in a carbonate exchange reaction with the above dialkyl carbonate or diphenyl carbonate include, for example, 1,6-hexanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butane Diol, 2,3-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,8-octanediol, 1,9-nonanediol, 1 , 12-dodecanediol, butadiene diol, neopentyl glycol, tetramethylene glycol, propylene glycol, dipropylene glycol and the like.
  • polycarbonate polyol for example, trade names “Placcel CD 205 PL”, “Placcel CD 205 HL”, “Placcel CD 210 PL”, “Placcel CD 210 HL”, “Placcel CD 220 PL”, “Placcel CD 220 HL” (manufactured by Daicel Co., Ltd.), products Names "UH-CARB50”, “UH-CARB100”, “UH-CARB300”, “UH-CARB90 (1/3)”, “UH-CARB90 (1/1)”, “UC-CARB100” (all above, Ube Use commercial products such as Kosan Co., Ltd., trade names “PCDL T4671”, “PCDL T4672”, “PCDL T5650J”, “PCDL T5651”, “PCDL T5652” (all manufactured by Asahi Kasei Chemicals Corporation) be able to
  • polyol compounds other than the said polyether polyol, polyester polyol, and polycarbonate polyol the brand names "YP-50”, “YP-50S”, “YP-55U”, “YP-70”, “ZX-1356-” are mentioned, for example.
  • the use amount (content amount) of the polyol compound is not particularly limited, but it is preferably 1 to 50 parts by weight, and more preferably, the total amount (100 parts by weight) of the component (A) and the component (B).
  • the amount is 1.5 to 40 parts by weight, more preferably 5 to 30 parts by weight.
  • the content of the polyol compound exceeds 50 parts by weight, the Tg of the cured product is too low, and the volume change due to heating becomes large, which may cause a failure such as failure of the optical semiconductor device.
  • the content of the polyol compound is less than 1 part by weight, the light reflectivity may easily decrease with time.
  • the amount (content) of the above-mentioned polyol compound is not particularly limited. 1 to 50 parts by weight is preferable, more preferably 1.5 to 40 parts by weight, still more preferably 5 to 30 parts by weight, based on 100 parts by weight of the total amount of component (B) and component (G). It is a department.
  • the content of the polyol compound exceeds 50 parts by weight, the Tg of the cured product is too low, and the volume change due to heating becomes large, which may cause a failure such as failure of the optical semiconductor device.
  • the content of the polyol compound is less than 1 part by weight, the light reflectivity may easily decrease with time.
  • the curable epoxy resin composition of the present invention preferably further contains an acrylic block copolymer. More specifically, when the curable epoxy resin composition of the present invention contains an acrylic block copolymer, an optical semiconductor device produced using the curable epoxy resin composition has a particularly high luminance and high output. Even if there is a tendency, the light intensity does not easily decrease. That is, by using the acrylic block copolymer, the cured product obtained by curing the curable epoxy resin composition of the present invention can exhibit higher levels of heat resistance, light resistance and crack resistance.
  • the said acryl block copolymer is a block copolymer which contains an acryl-type monomer as an essential monomer component.
  • the acrylic monomers include methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methacryl (Meth) acrylic acid alkyl esters such as t-butyl acid, 2-ethylhexyl methacrylate, lauryl methacrylate and stearyl methacrylate; (meth) acrylic acid esters having an alicyclic structure such as cyclohexyl acrylate and cyclohexyl methacrylate; methacryl (Meth) acrylic acid ester having an aromatic ring such as benzyl acid; (fluoro) alkyl ester of (meth) acrylic acid such as
  • monomers other than the acrylic monomer may be used as a monomer component.
  • monomers other than the above acrylic monomers include aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, conjugated dienes such as butadiene and isoprene, and olefins such as ethylene, propylene and isobutene.
  • the above-mentioned acrylic block copolymer is not particularly limited.
  • the multiblock copolymer etc. which are comprised are comprised.
  • a polymer block [S] soft block having a low glass transition temperature (Tg) and a polymer block [a] from the viewpoint of heat resistance, light resistance and crack resistance improvement.
  • Tg of the polymer which comprises polymer block [S] of the said acryl block copolymer is not specifically limited, Less than 30 degreeC is preferable.
  • Tg of the polymer which comprises polymer block [H] is although it does not specifically limit, 30 degreeC or more is preferable.
  • each polymer block [H] may have the same composition, and may differ.
  • each polymer block [S] may have the same composition, and may differ.
  • the monomer component constituting the polymer block [H] in the above acrylic block copolymer is not particularly limited.
  • the monomer which is 30 degreeC or more is mentioned, More specifically, methyl methacrylate, styrene, acrylamide, an acrylonitrile etc. are mentioned.
  • the monomer component constituting the polymer block [S] in the above acrylic block copolymer is not particularly limited, but for example, a monomer having a homopolymer Tg of less than 30 ° C. can be mentioned, more specifically, Acrylic acid C 2-10 alkyl esters such as butyl acrylate and 2-ethylhexyl acrylate, butadiene (1,4-butadiene) and the like can be mentioned.
  • the said polymer block [S] is a polymer comprised as a main monomer, for example with a butyl acrylate (BA), and said Polymethyl methacrylate-block-polybutyl acrylate-block-polymethyl methacrylate terpolymer (PMMA-b-PBA-b-) which is a polymer in which the polymer block [H] is composed mainly of methyl methacrylate (MMA) PMMA) and the like.
  • BA butyl acrylate
  • PMMA-b-PBA-b-PMMA Polymethyl methacrylate-block-polybutyl acrylate-block-polymethyl methacrylate terpolymer
  • PMMA-b-PBA-b-PMMA is preferable in view of heat resistance, light resistance and improvement of crack resistance.
  • the above-mentioned PMMA-b-PBA-b-PMMA is a hydrophilic group (for example, a hydroxyl group, a carboxyl group, an amino acid, etc.) for the purpose of improving the compatibility with the component (A) and the component (B) etc., if necessary.
  • / or (meth) acrylic acid such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid and the like are copolymerized with a PMMA block and / or PBA block. Good.
  • the number average molecular weight of the acrylic block copolymer is not particularly limited, but is preferably 3,000 to 500,000, and more preferably 30,000 to 400,000. If the number average molecular weight is less than 3000, the toughness of the cured product may not be sufficient, and the crack resistance may be reduced. On the other hand, when the number average molecular weight exceeds 500000, the compatibility with the alicyclic epoxy compound (A) may be reduced, and the mechanical properties of the cured product may be adversely affected and the crack resistance may be reduced.
  • the above acrylic block copolymer can be produced by a known or commonly used method for producing a block copolymer.
  • living polymerization living radical polymerization, living anionic polymerization, living
  • Cationic polymerization etc. is preferred.
  • the above living polymerization can be carried out by known or conventional methods.
  • the brand name "nano strength M52N”, “nano strength M22 N”, “nano strength M51”, “nano strength M52”, “nano strength M53” (made by Arkema, PMMA-) is mentioned, for example.
  • Commercially available products such as b-PBA-b-PMMA), “NanoStrength E21” and “NanoStrength E41” (manufactured by Arkema, PSt (polystyrene) -b-PBA-b-PMMA) can be used.
  • the amount of use (content) of the acrylic block copolymer is not particularly limited, but preferably 1 to 30 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B). More preferably, it is 3 to 15 parts by weight, still more preferably 3 to 10 parts by weight. If the amount of the acrylic block copolymer used is less than 1 part by weight, the toughness of the cured product may not be sufficient, and heat resistance and light resistance may be reduced. On the other hand, when the use amount of the acrylic block copolymer exceeds 30 parts by weight, the compatibility with the alicyclic epoxy compound (A) may be reduced, and the crack resistance of the cured product may be reduced.
  • the amount (content) of the above acrylic block copolymer is not particularly limited, The amount is preferably 1 to 30 parts by weight, more preferably 3 to 15 parts by weight, still more preferably 3 to 15 parts by weight based on the total amount (100 parts by weight) of the components (A), (B) and (G). It is 10 parts by weight. If the amount of the acrylic block copolymer used is less than 1 part by weight, the toughness of the cured product may not be sufficient, and heat resistance and light resistance may be reduced. On the other hand, when the use amount of the acrylic block copolymer exceeds 30 parts by weight, the compatibility with the alicyclic epoxy compound (A) may be reduced, and the crack resistance of the cured product may be reduced.
  • the curable epoxy resin composition of the present invention may further contain rubber particles other than silicone rubber particles (hereinafter sometimes simply referred to as "rubber particles").
  • rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal free NBR, particulate SBR (styrene-butadiene rubber) and the like.
  • the rubber particle is preferably a rubber particle having a multilayer structure (core-shell structure) comprising a core portion having rubber elasticity and at least one shell layer covering the core portion.
  • the rubber particles are particularly composed of a polymer (polymer) containing (meth) acrylic acid ester as an essential monomer component, and react with a compound having an epoxy group such as an alicyclic epoxy compound (A) on the surface.
  • Rubber particles having a hydroxyl group and / or a carboxyl group (any one or both of a hydroxyl group and a carboxyl group) as a functional group to be obtained are preferable.
  • the cured product may be susceptible to cracking.
  • the polymer constituting the core portion having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and the like It is preferable to use an essential monomer component.
  • the polymer constituting the core portion having the rubber elasticity is, for example, other, for example, conjugated vinyl such as styrene, aromatic vinyl (aromatic vinyl compound) such as ⁇ -methylstyrene, nitrile such as acrylonitrile and methacrylonitrile, butadiene, isoprene and the like Diene, ethylene, propylene, isobutene or the like may be contained as a monomer component.
  • the polymer constituting the core portion having rubber elasticity is, as a monomer component, together with a (meth) acrylic acid ester, one or more selected from the group consisting of aromatic vinyl, nitrile, and conjugated diene. It is preferable to include in combination. That is, as a polymer which comprises the said core part, binary copolymers, such as (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene, for example; (meth) acrylic acid ester / aroma And terpolymers such as vinyl group / conjugated diene.
  • the polymer constituting the core portion may contain silicone such as polydimethyl siloxane and polyphenyl methyl siloxane, polyurethane and the like.
  • the polymer constituting the above core portion includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. It may contain a reactive crosslinking monomer having two or more reactive functional groups in one monomer (one molecule).
  • the core portion of the rubber particles is, among others, from the viewpoint of heat resistance, a binary copolymer of (meth) acrylic ester / aromatic vinyl (especially butyl acrylate / styrene) or (meth) acrylic ester /
  • the core portion is preferably composed of a vinyl aromatic / reactive cross-linking monomer terpolymer (in particular, butyl acrylate / styrene / divinyl benzene).
  • the core portion of the rubber particles can be produced by a commonly used method, and can be produced, for example, by a method of polymerizing the above-mentioned monomers by an emulsion polymerization method.
  • the entire amount of the above monomers may be charged at once and then polymerized, or after polymerization of a part of the above monomers, the remainder may be continuously or intermittently added and polymerized.
  • polymerization methods using seed particles may be used.
  • the polymer which comprises the shell layer of the said rubber particle is a polymer different from the polymer which comprises the said core part.
  • the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A).
  • a compound having an epoxy group such as an alicyclic epoxy compound (A)
  • the adhesiveness can be improved at the interface with the alicyclic epoxy compound (A), and a cured product obtained by curing a curable epoxy resin composition containing a rubber particle having the shell layer is obtained. And can exhibit excellent crack resistance.
  • cured material can also be prevented.
  • the polymer which comprises the said shell layer contains (meth) acrylic acid esters, such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, as an essential monomer component.
  • acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate
  • an essential monomer component such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate
  • acrylic acid esters other than butyl acrylate (eg, (meth) acrylic acid) as monomer components of the polymer constituting the shell layer
  • methyl acid, ethyl (meth) acrylate, butyl methacrylate etc. is preferred to use methyl acid, ethyl (meth) acrylate, butyl methacrylate etc.
  • a monomer component which may be contained other than (meth) acrylic acid ester for example, aromatic vinyl such as styrene and ⁇ -methylstyrene, and nitrile such as acrylonitrile and methacrylonitrile can be mentioned.
  • the rubber particles preferably contain the above monomers alone or in combination of two or more as a monomer component constituting the shell layer, together with the (meth) acrylic acid ester, and in particular, at least from the viewpoint of heat resistance. It is preferable to contain aromatic vinyl.
  • a polymer constituting the above-mentioned shell layer Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, ⁇ , ⁇ -unsaturated acids such as (meth) acrylic acid, ⁇ , ⁇ -unsaturated acid anhydrides such as maleic anhydride It is preferable to contain the following monomers.
  • the polymer which comprises the shell layer in the said rubber particle contains the (meth) acrylic acid ester as a monomer component in combination of 1 type, or 2 or more types selected from the said monomer.
  • the shell layer is, for example, (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid, (meth) acrylic acid
  • the shell layer is composed of a ternary copolymer such as an acid ester / ⁇ , ⁇ -unsaturated acid / reactive crosslinking monomer (methyl methacrylate / acrylic acid / allyl methacrylate etc.).
  • the polymer constituting the shell layer may contain, as the other monomer components, divinyl benzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triaryl in addition to the above-mentioned monomers as the core portion.
  • You may contain the reactive crosslinking monomer which has a 2 or more reactive functional group in 1 monomer (1 molecule), such as allyl cyanurate, a diallyl phthalate, a butylene glycol diacrylate.
  • the rubber particles can be obtained by coating the core portion with a shell layer.
  • a method of coating the core portion with a shell layer for example, a method of coating the surface of the core portion having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, the above method
  • the core part which has the rubber elasticity obtained by these is used as a trunk component, and the method of graft-polymerizing each component which comprises a shell layer as a branch component etc. can be mentioned.
  • the average particle size of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, and more preferably 20 to 400 nm.
  • the maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, and more preferably 100 to 800 nm.
  • the average particle size exceeds 500 nm, or when the maximum particle size exceeds 1000 nm, the dispersibility of the rubber particles in the cured product may be reduced, and the crack resistance may be reduced.
  • the average particle size is less than 10 nm or the maximum particle size is less than 50 nm, it may be difficult to obtain the effect of improving the crack resistance of the cured product.
  • the content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition
  • 0.5 to 30 parts by weight is preferable, and more preferably 1 to 20 parts by weight.
  • the content of the rubber particles is less than 0.5 parts by weight, the crack resistance of the cured product tends to decrease.
  • the content of the rubber particles exceeds 30 parts by weight, the heat resistance of the cured product tends to decrease.
  • the curable epoxy resin composition of the present invention preferably contains a stress relaxation agent (I).
  • the stress relaxation agent (I) is a compound capable of relieving internal stress in the cured product.
  • the curable epoxy resin composition of the present invention uses the stress relaxation agent (I) in combination with the alicyclic epoxy compound (A), the monoallyl diglycidyl isocyanurate compound (B), and the white pigment (C).
  • Compression molding is possible even if the filling amount of the white pigment (C) and the inorganic filler (J) described later is increased, and the light reflectivity, heat resistance, and light resistance of a cured product formed by compression molding It tends to be excellent in
  • the stress relaxation agent (I) can also relieve the internal stress of the cured product, thereby reducing the warpage of the molded product by compression molding.
  • the stress relaxation agent (I) is not particularly limited, and examples thereof include silicone rubber particles (I1), silicone oil (I2), liquid rubber component (I3), thermoplastic resin (I4) and the like.
  • the silicone rubber particles (I1) are not particularly limited, and examples thereof include those composed of polysiloxanes such as polymethylsiloxane and polymethylphenylsiloxane. Moreover, it is preferable that the polysiloxane which comprises silicone rubber particle (I1) is bridge
  • the crosslinked polysiloxane is not particularly limited, and is crosslinked, for example, by condensation reaction such as silanol group, radical reaction of mercaptosilyl group and vinylsilyl group, addition reaction of vinylsilyl group and hydrosilyl group (SiH group), etc.
  • a polysiloxane obtained by addition reaction of a vinyl group-containing organopolysiloxane and an organohydrogenpolysiloxane in the presence of a platinum-based catalyst is preferred.
  • the silicone rubber particles (I1) may be surface-treated from the viewpoint of compatibility with the resin composition, improvement of dispersibility, and adjustment of viscosity of the resin composition after dispersion.
  • the aspect of the surface treatment is not particularly limited, and examples thereof include silicone rubber particles coated with methyl methacrylate, silicone rubber particles coated with a silicone resin, and the like.
  • the average particle size (d 50 ) of the silicone rubber particles (I1) is not particularly limited, but is preferably 0.1 to 100 ⁇ m, and more preferably 0.5 to 50 ⁇ m.
  • the maximum particle diameter of the silicone rubber particles (I1) is not particularly limited, but is preferably 0.1 to 250 ⁇ m, and more preferably 0.1 to 150 ⁇ m.
  • the average particle size is 100 ⁇ m or less (or the maximum particle size to 250 ⁇ m or less)
  • the crack resistance of the cured product tends to be further improved.
  • the average particle size is 0.1 ⁇ m or more (or the maximum particle size is 0.1 ⁇ m or more)
  • the shape of the silicone rubber particles (I1) is also not particularly limited, but is preferably spherical from the viewpoint of improving the workability.
  • the silicone rubber particles (I1) are made of crosslinked polysiloxane or The surface is preferably coated with a silicone resin, and from the viewpoint of the compatibility of the resin component and the silicone rubber particles (I1), the surface of the crosslinked polydimethylsiloxane is preferably coated with a silicone resin.
  • the silicone rubber particles (I1) can be used alone or in combination of two or more. Further, the silicone rubber particles (I1) can be produced by a known or commonly used method, and the production method thereof is, for example, silicone rubber particles produced by the method described in JP-A-7-196815. Or the brand names "KMP-600”, “KMP-601”, “KMP-602”, “KMP-605", “X-52-7030”, “KMP-597”, “ It is also possible to use commercially available products such as KMP-598 “,” KMP-594 “,” X-52-875 “,” KMP-590 ",” KMP-701 "(all manufactured by Shin-Etsu Chemical Co., Ltd.). it can.
  • the silicone oil (I2) is not particularly limited, and examples thereof include non-modified silicone oil and modified silicone oil.
  • the non-modified silicone oil is not particularly limited, and examples thereof include polydimethylsiloxane type, polymethyl hydrogen siloxane type, and polymethyl phenyl siloxane type.
  • the modified silicone oil is not particularly limited.
  • any of reactive silicone oil having reactivity with epoxy resin and non-reactive silicone oil having no reactivity with epoxy resin may be used.
  • the reactive silicone oil include amino-modified type, epoxy-modified type, carboxyl-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type, and phenol-modified type.
  • non-reactive silicone oils include polyalkylene ether modified type, methylstyryl modified type, alkyl modified type, fatty acid ester modified type, alkoxy modified type, fluorine modified type and the like.
  • the reactive silicone oil may have a non-reactive modifying group, and examples thereof include polyalkylene ether-amino-modified silicone oil, polyalkylene ether-epoxy-modified silicone oil, etc.
  • Alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), a polyalkylene derivative having reactivity with a compound having an epoxy group such as a siloxane derivative (G), and capable of controlling flowability and viscosity, and epoxy modified Silicone oil is preferred.
  • silicone oil (I2) a polyalkylene ether-epoxy-modified silicone oil is preferable from the viewpoint of being able to form a cured product excellent in light reflectivity, heat resistance and light resistance by compression molding, and epoxy is particularly preferable.
  • a polyalkylene ether-modified silicone compound having a structure represented by the following formula (10) having an equivalent weight of 3000 to 15,000 (hereinafter, may be referred to as “polyalkylene ether-modified silicone compound (10)”) is preferable.
  • R 26 is a C 2 or C 3 alkylene group.
  • alkylene group having 2 or 3 carbon atoms include a methyl methylene group, a dimethyl methylene group, an ethylene group, a propylene group, a trimethylene group and the like, and a trimethylene group is preferable.
  • xa represents an integer of 80 to 140.
  • ya represents an integer of 1 to 5.
  • za represents an integer of 5 to 20.
  • the structures in the brackets with za may be identical to or different from each other.
  • A is a polyalkylene ether group which has a structure represented by following formula (10a).
  • a and b are each independently an integer of 0 to 40.
  • a is 40 or less, the water resistance of the cured product tends to be improved.
  • b is 40 or less, the flowability of the curable epoxy resin composition tends to be improved.
  • the sum of a and b is not particularly limited, it is preferably an integer of 1 to 80. When the sum of a and b is in the above range, the water resistance of the cured product and the flowability of the curable epoxy resin composition can be easily controlled.
  • B is a hydrogen atom or a methyl group. From the viewpoint of water resistance of the cured product, B is preferably a methyl group.
  • each structural unit in the above formula (10) may be random or block as long as the two trimethylsilyl groups in formula (10) are present at both ends.
  • the addition form of each structural unit in the above formula (10a) may also be random or block as long as B is present at the end.
  • the order of arrangement of each structural unit in the above formulas (10) and (10a) is not particularly limited.
  • the epoxy equivalent of the polyalkylene ether-modified silicone compound (10) is, as described above, 3,000 to 15,000, preferably 4,000 to 15,000, and more preferably 5,000 to 13,000.
  • the epoxy equivalent is 3000 or more, the stress relaxation inside the cured product tends to be further improved.
  • the epoxy equivalent is 15,000 or less, the compatibility with the resin tends to be further improved.
  • the epoxy equivalent of a polyalkylene ether modified silicone compound (10) can be measured based on JISK7236: 2001.
  • silicone oil (I2) may be used alone or in combination of two or more. Moreover, as said silicone oil (I2), it can manufacture by a well-known thru
  • the liquid rubber component (I3) is not particularly limited.
  • the liquid rubber component (I3) may be used alone or in combination of two or more.
  • thermoplastic resin (I4) is not particularly limited, and examples thereof include polyimide resin, polyamide resin, polyetherimide resin, polyester resin, polyesterimide resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, Polyether ketone resin etc. are mentioned. Among these, phenoxy resin and polyimide resin are preferable from the viewpoint of heat resistance. These thermoplastic resins can be used alone or in combination of two or more.
  • the glass transition temperature (Tg) of the said thermoplastic resin (I4) is not specifically limited, It is preferable that it is 200 degrees C or less.
  • the stress relaxation agents (I) may be used alone or in combination of two or more. From the viewpoint that a cured product excellent in light reflectivity, heat resistance, and light resistance can be formed as the stress relaxation agent (I) by compression molding, silicone rubber particles (I1) and silicone oil (I2) can be used. Preferably, at least one selected from the group consisting of: a crosslinked polydimethylsiloxane having a silicone resin on its surface as the silicone rubber particles (I1); and a polyalkylene ether modified as the silicone oil (I2) The silicone compound (10) is preferred.
  • the content (blending amount) of the stress relaxation agent (I) of the present invention is not particularly limited, but it is preferably 1 to 250 parts by weight, more preferably 5 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the amount is about 230 parts by weight, more preferably 10 to 200 parts by weight.
  • the content (compounding amount) of the stress relaxation agent (I) of the present invention is not particularly limited, but it is 1 to 200 parts by weight with respect to 100 parts by weight of the compound having an epoxy group contained in the curable epoxy resin composition. It is preferably part, more preferably 5 to 150 parts by weight, still more preferably 8 to 120 parts by weight.
  • the content of the stress relaxation agent (I) is 1 part by weight or more, compression molding is possible even if the loading amount of the white pigment (C) and the inorganic filler (J) described later is increased, and molding The light reflectivity, heat resistance, and light resistance of the cured product tend to be further improved. In addition, the warpage of the molded article is alleviated, and dimensional stability tends to be improved.
  • the content of the stress relaxation agent (I) is 200 parts by weight or less, the curability of the curable epoxy resin composition tends to be further improved.
  • the curable epoxy resin composition of the present invention preferably contains an inorganic filler (J) separately from the white pigment (C).
  • the inorganic filler (J) mainly imparts excellent heat resistance and light resistance (particularly, excellent heat resistance) to the cured product formed when the curable epoxy resin composition is formed by compression molding. . It also has the function of reducing the coefficient of linear expansion of the cured product (reflector). Moreover, depending on the type of the inorganic filler (J), it may be possible to impart excellent light reflectivity to the cured product (reflector).
  • inorganic filler (J) known or commonly used inorganic fillers can be used, and it is not particularly limited.
  • examples of the inorganic filler (J) include those obtained by subjecting the above-mentioned inorganic filler to known or customary surface treatment.
  • examples of the inorganic filler (J) silica, silicon nitride, aluminum nitride and boron nitride are preferable from the viewpoints of heat resistance (especially yellowing resistance), light resistance and fluidity of a cured product (reflector), More preferably, it is silica (silica filler).
  • the silica is not particularly limited, and for example, known or commonly used silicas such as fused silica, crystalline silica, high purity synthetic silica and the like can be used.
  • silica those to which a known or commonly used surface treatment [for example, a surface treatment with a surface treatment agent such as a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, a silicone, etc.] Can also be used.
  • the shape of the silica is not particularly limited, and examples thereof include powder, sphere, crushed, fibrous, needle, and scaly. Among them, spherical silica is preferable from the viewpoint of dispersibility, and spherical silica (for example, spherical silica having an aspect ratio of 1.2 or less) is particularly preferable.
  • the central particle size of the silica is not particularly limited, but is preferably 0.1 to 50 ⁇ m, and more preferably 0.1 to 30 ⁇ m from the viewpoint of improving the light reflectivity of the cured product (reflector).
  • the said center particle diameter means the particle size (median diameter) in 50% of the integration value in the particle size distribution measured by the laser diffraction and the scattering method.
  • an inorganic filler (J) can also be used individually by 1 type, and can also be used in combination of 2 or more types.
  • the inorganic filler (J) can also be produced by a known or commonly used production method, for example, under the trade names "FB-910", “FB-940”, “FB-950”, “FB-105".
  • the content (blending amount) of the inorganic filler (J) in the curable epoxy resin composition of the present invention is not particularly limited, but it is 10 to 90% by weight with respect to the curable epoxy resin composition (100% by weight) Is more preferably 13 to 75% by weight, still more preferably 15 to 70% by weight, and still more preferably 20 to 70% by weight.
  • the content of the inorganic filler (J) is 10% by weight or more, the heat resistance and light resistance of the formed cured product (particularly, excellent when forming the curable epoxy resin composition by compression molding) Heat resistance tends to be further improved.
  • the linear expansion coefficient of the cured product (reflector) tends to be low, and defects such as warpage of a lead frame in a substrate for mounting an optical semiconductor element using the reflector tend not to occur easily.
  • the content of the inorganic filler (J) is 90% by weight or less, the moldability of the cured product (reflector) is improved, and the mass tends to be more suitable.
  • the content (blending amount) of the inorganic filler (J) in the curable epoxy resin composition of the present invention is not particularly limited, but 100 parts by weight in total of the compound having an epoxy group contained in the curable epoxy resin composition
  • the amount is preferably 10 to 1500 parts by weight, more preferably 50 to 1200 parts by weight, and still more preferably 100 to 1000 parts by weight.
  • the content of the inorganic filler (J) is 10 parts by weight or more, the heat resistance and light resistance of the formed cured product (particularly, excellent when forming the curable epoxy resin composition by compression molding) Heat resistance tends to be further improved.
  • the linear expansion coefficient of the cured product (reflector) tends to be low, and defects such as warpage of a lead frame in a substrate for mounting an optical semiconductor element using the reflector tend not to occur easily.
  • the content of the inorganic filler (J) is 1,500 parts by weight or less, the moldability of the cured product (reflector) is improved, and the mass tends to be more suitable.
  • the maximum particle diameter of the white pigment (C) and the inorganic filler (J) in the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 200 ⁇ m or less, more preferably 185 ⁇ m or less, still more preferably 175 ⁇ m or less Particularly preferably, it is 150 ⁇ m or less.
  • the heat resistance of the formed cured product formed by compression molding of the curable epoxy resin composition that the maximum particle diameter is 200 ⁇ m or less than when the white pigment or the inorganic filler having a maximum particle diameter exceeding 200 ⁇ m is used Properties, light resistance, and crack resistance (particularly, excellent heat resistance) tend to be further excellent.
  • the lower limit of the maximum particle diameter is, for example, 0.01 ⁇ m or more.
  • the maximum particle size is the total maximum particle size of the white pigment (C) and the inorganic filler (J) contained in the curable epoxy resin composition of the present invention.
  • the said largest particle diameter means the largest particle size in the particle size distribution measured by the laser diffraction and scattering method.
  • the ratio of titanium oxide to the total amount (100% by weight) of the white pigment (C) and the inorganic filler (J) is not particularly limited. From the viewpoint of the balance between heat resistance (yellowing resistance) and light reflectivity of the (reflector), it is preferably 5 to 70% by weight, more preferably 5 to 60% by weight. By setting the ratio of titanium oxide to 5% by weight or more, the light reflectivity of the cured product (reflector) tends to be further improved. In addition, heat resistance (in particular, yellowing resistance) and light resistance (in particular, ultraviolet resistance) tend to be further improved. On the other hand, by setting the ratio of titanium oxide to 70% by weight or less, the moldability of the cured product (reflector) is improved, and there is a tendency that mass production is more suitable.
  • the curable epoxy resin composition of the present invention may further contain a release agent.
  • a release agent By including the release agent, continuous molding by a molding method using a mold such as transfer molding becomes easy, and it becomes possible to manufacture a cured product (reflector) with high productivity.
  • the releasing agent known or commonly used releasing agents can be used, and it is not particularly limited.
  • fluorine-based releasing agents fluorine-containing compounds; for example, fluorine oil, polytetrafluoroethylene etc.
  • Silicone-based release agent silicone compound; for example, silicone oil, silicone wax, silicone resin, polyorganosiloxane having a polyoxyalkylene unit, etc.
  • wax-based release agent wax-based release agent
  • vegetable wax such as carnauba wax
  • animal waxes such as wool wax
  • paraffins such as paraffin wax
  • polyethylene wax polyethylene wax
  • oxidized polyethylene wax etc. higher fatty acids or their salts (eg, metal salts etc.), higher fatty acid esters, higher fatty acid amides, mineral oil etc. .
  • a mold release agent in the curable epoxy resin composition of this invention, can also be used individually by 1 type, and can also be used in combination of 2 or more types. Further, the release agent can be produced by a known or conventional method, or a commercially available product can be used.
  • the content (blending amount) of the release agent is not particularly limited, but the compound having an epoxy group contained in the curable epoxy resin composition
  • the amount is preferably 1 to 12 parts by weight, more preferably 2 to 10 parts by weight, based on 100 parts by weight of the total amount.
  • the curable epoxy resin composition of the present invention may contain an antioxidant.
  • an antioxidant By including the antioxidant, it is possible to produce a cured product (reflector) that is further excellent in heat resistance (particularly, yellowing resistance).
  • known or commonly used antioxidants can be used and are not particularly limited. For example, phenolic antioxidants (phenolic compounds), hindered amine antioxidants (hindered amine compounds), phosphorus And antioxidants (phosphorus compounds) and sulfur antioxidants (sulfur compounds).
  • phenolic antioxidants examples include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3 Monophenols such as 2, 5-di-t-butyl-4-hydroxyphenyl) propionate; 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl- 6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 3,9-bis [1 , 1-Dimethyl-2- ⁇ - (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl] 2,4,8,10-tetraoxaspi [5.5] Bisphenols such as undecane; 1,1,3-tris (2-methyl-4-hydroxy-5-t
  • hindered amine antioxidants include bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl Butyl malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate, 4-benzoyloxy- 2,2,6,6-tetramethylpiperidine etc. may be mentioned.
  • phosphorus-based antioxidants examples include triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecyl pentaerythritol phosphite, and tris (2,4-di-t-).
  • sulfur-based antioxidants examples include dodecanethiol, dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, etc. Can be mentioned.
  • the antioxidant may be used singly or in combination of two or more.
  • the antioxidant can also be produced by a known or conventional method, for example, under the trade name “Irganox 1010” (manufactured by BASF, a phenolic antioxidant), under the trade name “AO-60”, “AO-80 (Made by ADEKA Corporation, phenolic antioxidant), trade name “Irgafos 168” (manufactured by BASF, phosphorus antioxidant), trade name “Adekastab HP-10”, “Adekastab PEP-36” (traded) It is also possible to use commercially available products such as ADEKA, phosphorus-based antioxidants, and trade name "HCA” (manufactured by Sanko Co., Ltd., phosphorus-based antioxidants).
  • the content (blending amount) of the antioxidant is not particularly limited, but the compound having an epoxy group contained in the curable epoxy resin composition
  • the amount is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight in total.
  • the curable epoxy resin composition of the present invention may contain various additives in addition to the components described above as long as the effects of the present invention are not impaired.
  • a compound having a hydroxy group such as ethylene glycol, diethylene glycol, propylene glycol, glycerin etc. (particularly, aliphatic polyhydric alcohol, but excluding the above-mentioned polyol compound) is contained as the above additive, the reaction proceeds slowly It can be done.
  • antifoaming agents silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, fluorescent whitening agents, and interfaces within limits that do not impair viscosity and light reflectivity.
  • Conventional additives such as activators, flame retardants, colorants, ion adsorbents, UV absorbers, light stabilizers, and pigments other than white pigment (C) can be used.
  • the content of these additives is not particularly limited, and can be appropriately selected.
  • fluorescent whitening agents known to conventional fluorescent whitening agents can be used.
  • the curable epoxy resin composition of the present invention contains a fluorescent whitening agent, it tends to be more excellent in light reflectivity, heat resistance, light resistance and crack resistance of a cured product formed by compression molding.
  • the fluorescent whitening agent include pyrazoline derivatives, stilbene derivatives, triazine derivatives, thiazole derivatives, benzoxazole derivatives, xanthone derivatives, triazole derivatives, oxazole derivatives, thiophene derivatives, coumarin derivatives, naphthalimide derivatives and the like.
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), a white pigment (C), a curing agent (D), and a curing accelerator (F).
  • the viscosity at 25 ° C. of the mixture comprising the alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), curing agent (D), and curing accelerator (F) is particularly limited. Although not preferred, it is preferably 5000 mPa ⁇ s or less.
  • the curable epoxy resin composition of the present invention is a group comprising the above-mentioned siloxane derivative (G), alicyclic polyester resin (H), rubber particles other than silicone rubber particles, a silicone-based leveling agent and a fluorine-based leveling agent.
  • other optional components A
  • D curing agent
  • F curing accelerator
  • the curable epoxy resin composition of the present invention contains an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), a white pigment (C), and a curing catalyst (E),
  • the viscosity at 25 ° C. of the mixture comprising the alicyclic epoxy compound (A), the monoallyl diglycidyl isocyanurate compound (B), and the curing catalyst (E) is not particularly limited, but is preferably 5000 mPa ⁇ s or less .
  • the curable epoxy resin composition of the present invention may contain other optional components, in which case the above-mentioned mixture is an alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), It is a mixture consisting of a curing catalyst (E) and other optional components.
  • the viscosity in 25 degreeC of said 2 types of mixtures may be generically called "resin viscosity.”
  • the resin viscosity is a viscosity measured at 25 ° C. under normal pressure.
  • the viscosity of the resin is preferably 5000 mPa ⁇ s or less, more preferably 4000 mPa ⁇ s or less, still more preferably 3500 mPa ⁇ s or less, and particularly preferably 3000 mPa ⁇ s or less.
  • the heat resistance, light resistance, and heat resistance of the formed cured product formed by compression molding of the curable epoxy resin composition that the resin viscosity is 5000 mPa ⁇ s or less than when the resin viscosity exceeds 5000 mPa ⁇ s. Crack resistance (particularly, excellent heat resistance) tends to be further excellent.
  • the resin viscosity is relatively low, the content of other components such as the white pigment (C) and the inorganic filler (J) can be increased, and the light reflectivity of the cured product, heat resistance, and The light resistance tends to be further improved.
  • the lower limit of the resin viscosity is, for example, 100 mPa ⁇ s or more.
  • the resin viscosity is measured using, for example, a digital viscometer (model number “DVU-EII type” manufactured by Tokimec Corporation), rotor: standard 1 ° 34 ′ ⁇ R24, temperature: 25 ° C., rotation number: 0 It can be measured under the condition of 5 to 10 rpm.
  • the resin viscosity is, for example, a component to be used (for example, an alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), a curing agent (D), a curing accelerator (F), a curing catalyst (E)
  • a component to be used for example, an alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), a curing agent (D), a curing accelerator (F), a curing catalyst (E)
  • a liquid component at 25 ° C. as a siloxane derivative (G), an alicyclic polyester resin (H), a liquid stress relaxation agent (I) and the like.
  • a component solid at 25 ° C. may be used as the above component, the content thereof is adjusted so that the viscosity of the resin becomes 5000 mPa ⁇ s or less.
  • the curable epoxy resin composition of the present invention can be obtained by heating to react a part of the alicyclic epoxy compound (A) and the curing agent (D) in the curable epoxy resin composition, B. It may be a curable epoxy resin composition (curable epoxy resin composition in a B-stage state) which has been staged.
  • the curable epoxy resin composition of the present invention is excellent in light reflectivity, heat resistance and light resistance after curing, it is particularly preferably used as a resin composition for transfer molding or a resin composition for compression molding. it can.
  • the curable epoxy resin composition of the present invention is a resin composition for compression molding, because it is particularly excellent in light reflectivity, heat resistance and light resistance of a cured product (reflector) formed by compression molding. Is particularly preferred.
  • ⁇ Method of Preparing Curable Epoxy Resin Composition It does not specifically limit as a manufacturing method of the curable epoxy resin composition of this invention, A well-known thru
  • a mixer such as a dissolver or homogenizer
  • the curable epoxy resin composition of the present invention is, for example, a cycloaliphatic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), a siloxane having two or more epoxy groups in the molecule
  • a cycloaliphatic epoxy compound (A) monoallyl diglycidyl isocyanurate compound (B), a siloxane having two or more epoxy groups in the molecule
  • Separately alpha agent containing a compound having an epoxy group such as derivative (G) as an essential component and beta agent containing a curing agent (D) and a curing accelerator (F) or a curing catalyst (E) as an essential component
  • the .alpha. Agent and the .beta. Agent are stirred and mixed in a predetermined ratio, and defoamed under vacuum if necessary.
  • the alicyclic polyester resin (H) may be mixed (blended) in advance as a component of the ⁇ agent and / or the ⁇ agent, or when the ⁇ agent and the ⁇ agent are mixed, the ⁇ agent, You may mix
  • the white pigment (C) may be mixed (blended) in advance as a component of the ⁇ agent and / or the ⁇ agent, or when the ⁇ agent and the ⁇ agent are mixed, the ⁇ agent, ⁇ You may mix
  • the temperature at the time of stirring and mixing when preparing the above-mentioned ⁇ -agent is not particularly limited, but it is preferably 30 to 150 ° C., more preferably 35 to 130 ° C. Further, the temperature at the time of stirring and mixing when preparing the above-mentioned ⁇ -agent (when it is composed of two or more components) is not particularly limited, but it is preferably 30 to 100 ° C, more preferably 35 to 80 ° C .
  • known devices for example, various mixers such as a dissolver and a homogenizer, a kneader, a roll, a beads mill, a self-revolution type stirring device and the like can be used. Moreover, after stirring and mixing, you may degas under pressure reduction or under a vacuum.
  • the alicyclic polyester resin (H) and the curing agent (D) are mixed beforehand to obtain a mixture thereof (a mixture of an alicyclic polyester resin (H) and a curing agent (D)), and then the mixture is blended with a curing accelerator (F) and other additives to obtain ⁇
  • the agent is prepared and subsequently mixed by mixing the beta agent and the alpha agent.
  • the temperature at which the alicyclic polyester resin (H) and the curing agent (D) are mixed is not particularly limited, but it is preferably 60 to 130 ° C., more preferably 90 to 120 ° C.
  • the mixing time is not particularly limited, but is preferably 30 to 100 minutes, more preferably 45 to 80 minutes.
  • the mixing is not particularly limited, but is preferably performed under a nitrogen atmosphere. Also, for mixing, the above-mentioned known apparatus can be used.
  • alicyclic polyester resin (H) and the curing agent (D) After mixing the alicyclic polyester resin (H) and the curing agent (D), there is no particular limitation, but even if appropriate chemical treatment (for example, hydrogenation or terminal modification of alicyclic polyester, etc.) is performed, etc. Good.
  • a part of the curing agent (D) is an alicyclic polyester resin (H) (for example, an alicyclic polyester resin (H) Or the like) and may react with
  • alicyclic polyester resin (H) and a curing agent (D) for example, “HN-7200” (manufactured by Hitachi Chemical Co., Ltd.), “HN-5700” (manufactured by Hitachi Chemical Co., Ltd.) Commercial products such as) can also be used.
  • the rubber particles may be compounded in the state of a composition dispersed in advance in the alicyclic epoxy compound (A) (the composition may be referred to as “rubber particle dispersed epoxy compound”).
  • the curable epoxy resin composition of the present invention comprises the rubber particle dispersed epoxy compound, a white pigment (C), a curing agent (D) and a curing accelerator (F), or a curing catalyst (E), It is preferable to prepare by mixing with other components as needed. By such a preparation method, in particular, the dispersibility of rubber particles in the curable epoxy resin composition can be improved.
  • the blending method of the rubber particles is not limited to the above method, and it may be a blending method by itself.
  • the rubber particle-dispersed epoxy compound is obtained by dispersing rubber particles in an alicyclic epoxy compound (A).
  • the total amount of the alicyclic epoxy compound (A) in the rubber particle-dispersed epoxy compound may be the total amount of the alicyclic epoxy compound (A) constituting the curable epoxy resin composition, or a partial amount thereof. It may be.
  • the rubber particles in the rubber particle-dispersed epoxy compound may be all or part of the rubber particles constituting the curable epoxy resin composition.
  • the viscosity of the rubber particle-dispersed epoxy compound can be adjusted, for example, by using a reactive diluent (that is, the rubber particle-dispersed epoxy compound may further contain a reactive diluent).
  • a reactive diluent that is, the rubber particle-dispersed epoxy compound may further contain a reactive diluent.
  • aliphatic polyglycidyl ether having a viscosity of 200 mPa ⁇ s or less at normal temperature (25 ° C.) can be preferably used.
  • aliphatic polyglycidyl ethers having a viscosity (25 ° C.) of 200 mPa ⁇ s or less for example, cyclohexane dimethanol diglycidyl ether, cyclohexane diol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether And trimethylolpropane triglycidyl ether, polypropylene glycol diglycidyl ether and the like.
  • the use amount of the reactive diluent can be appropriately adjusted and is not particularly limited, but preferably 30 parts by weight or less, more preferably 25 parts by weight or less based on 100 parts by weight of the total of the rubber particle dispersed epoxy compound. (For example, 5 to 25 parts by weight). If the amount used is 30 parts by weight or less, desired properties such as toughness (improvement in crack resistance) tend to be obtained easily.
  • the manufacturing method of the said rubber particle dispersion epoxy compound is not specifically limited, A well-known and usual method can be used. For example, after the rubber particles are dehydrated and dried to form a powder, they are mixed with the alicyclic epoxy compound (A) and dispersed, or the emulsion of the rubber particles and the alicyclic epoxy compound (A) are directly mixed. Then, the method of dehydrating etc. is mentioned.
  • the viscosity at 25 ° C. of the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 100 to 1,000,000 mPa ⁇ s, more preferably 200 to 800,000 mPa ⁇ s, and still more preferably 300 to 800,000 mPa ⁇ s.
  • the viscosity at 25 ° C. to 100 mPa ⁇ s or more By setting the viscosity at 25 ° C. to 100 mPa ⁇ s or more, the workability at the time of casting tends to be improved, and the heat resistance and light resistance of the cured product tend to be further improved.
  • the viscosity at 25 ° C. to 1,000,000 mPa ⁇ s or less the workability at the time of casting tends to be improved, and problems caused by casting defects in the cured product tend not to occur easily.
  • cured material which hardened the curable epoxy resin composition of this invention ie, the hardened
  • the heating temperature (curing temperature) during curing is not particularly limited, but it is preferably 50 to 200 ° C., more preferably 80 to 180 ° C.
  • the heating time (curing time) at the time of curing is not particularly limited, but it is preferably 60 to 1800 seconds, more preferably 90 to 900 seconds.
  • the curing conditions depend on various conditions, for example, when the curing temperature is raised, the curing time can be appropriately adjusted by shortening the curing time, and when the curing temperature is lowered, prolonging the curing time or the like.
  • the curing process may be performed in one step (for example, only compression molding) or, for example, may be performed in multiple steps (for example, further heating in an oven as post curing (second curing) after compression molding). It is also good.
  • the heating temperature at this time is preferably 50 to 200 ° C., more preferably 60 to 180 ° C., and more preferably about the same as the curing temperature.
  • the post curing time is preferably 0.5 to 10 hours, more preferably 1 to 8 hours.
  • the cured product of the present invention has high light reflectivity and is excellent in heat resistance, light resistance and cracking resistance. For this reason, the said hardened
  • the reflectance of the cured product of the present invention is not particularly limited, but for example, the reflectance of light with a wavelength of 450 nm is preferably 90% or more, more preferably 90.5% or more. In particular, the reflectance of light of 450 to 800 nm is preferably 90% or more, more preferably 90.5% or more.
  • the reflectance is measured, for example, using the cured product of the present invention (thickness: 3 mm) as a test piece and using a spectrophotometer (trade name "Spectrophotometer UV-2450" manufactured by Shimadzu Corporation). can do.
  • the retention of the reflectance of light with a wavelength of 450 nm after heating at 120 ° C. for 250 hours (sometimes referred to as “reflectance after heat aging for 250 hours”) relative to the initial reflectance ([[ The reflectance after heat aging for 250 hours] / [initial reflectance] ⁇ 100) is not particularly limited, but is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably Is 98% or more.
  • the retention for light of 450 to 800 nm is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 98% or more.
  • the cured product formed by compression molding can have the retention of 98% or more.
  • the reflectance of the reflectance of light with a wavelength of 450 nm after heating at 120 ° C. for 500 hours (sometimes referred to as “the reflectance after heat aging for 500 hours”) to the initial reflectance ([ The reflectance after heat aging for 500 hours] / [initial reflectance] ⁇ 100) is not particularly limited, but is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably Is 98% or more.
  • the retention for light of 450 to 800 nm is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 98% or more.
  • the curable epoxy resin composition of the present invention it is possible for the cured product formed by compression molding to have the retention of 90% or more.
  • Retention of the reflectance of the cured product of the present invention to light having a wavelength of 450 nm after irradiation with ultraviolet light having an intensity of 10 mW / cm 2 for 250 hours (sometimes referred to as “reflectance after ultraviolet aging”) relative to the initial reflectance
  • the rate ([reflectance after ultraviolet light aging] / [initial reflectance] ⁇ 100) is not particularly limited, but is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more .
  • the retention for light of 450 to 800 nm is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.
  • the reflectance is measured, for example, using the cured product of the present invention (thickness: 3 mm) as a test piece and using a spectrophotometer (trade name "Spectrophotometer UV-2450" manufactured by Shimadzu Corporation). can do.
  • the cured product of the present invention has high light reflectivity, is excellent in heat resistance and light resistance, and is tough. For this reason, since the said hardened
  • a curable resin composition for an LED package in particular, a curable resin composition for a reflector (reflecting material) in an optical semiconductor device.
  • the curable resin composition for light reflection of the present invention comprises the curable epoxy resin composition of the present invention.
  • curable resin composition for light reflection means a curable resin composition capable of forming a cured product having high light reflectivity by curing, specifically, For example, it means a curable resin composition capable of forming a cured product having a reflectance of 90% or more for light with a wavelength of 450 nm.
  • the light semiconductor device including the reflector Since the reflector is unlikely to cause a decrease in reflectance over time, the light semiconductor device including the reflector has a decrease in light intensity over time, particularly even when including a high-power, high-brightness optical semiconductor device. It is difficult and can exhibit high reliability.
  • the cured product of the present invention is excellent in crack resistance, in particular, resistance to cracking under cold temperature cycles, and has high reliability.
  • the curable epoxy resin composition of the present invention is a curable resin composition for a reflector in an optical semiconductor device
  • the curable epoxy resin composition of the present invention is a substrate for an optical semiconductor element in an optical semiconductor device (optical semiconductor element It is a molding material (material used for molding with a metal mold etc.) used for the use which forms the reflector (light reflection member) which a mounting substrate has. Therefore, by molding (and curing) the curable epoxy resin composition of the present invention, it has high light reflectivity, is excellent in heat resistance and light resistance, and is further excellent in crack resistance (for example, high quality) A highly durable) optical semiconductor element mounting substrate can be manufactured.
  • the reflector is a member for reflecting the light emitted from the optical semiconductor element in the optical semiconductor device to enhance the directivity and brightness of the light and to improve the light extraction efficiency.
  • a substrate used for mounting an optical semiconductor device having at least a reflector formed of the cured product of the present invention may be referred to as "substrate for mounting an optical semiconductor device according to the present invention".
  • the optical semiconductor element mounting substrate of the present invention is a substrate having at least a reflector (white reflector) formed of the cured product of the present invention.
  • FIG. 1 is a schematic view showing an example of the optical semiconductor element mounting substrate of the present invention, wherein (a) is a perspective view and (b) is a cross-sectional view.
  • 100 is a white reflector
  • 101 is a metal wiring (lead frame)
  • 102 is a mounting area of the optical semiconductor device
  • 103 is a package substrate.
  • a metal wiring 101 and a white reflector 100 are attached to the package substrate 103, and the optical semiconductor element 107 is placed at the center (mounting area 102 of the optical semiconductor element) and die-bonded.
  • the metal wiring 101 on the package substrate 103 are connected by wire bonding.
  • Resin, ceramic or the like is used as the material of the package substrate 103, but it may be the same as the white reflector.
  • the upper white reflector 100 in the optical semiconductor element mounting substrate of the present invention annularly surrounds the periphery of the mounting area 102 of the optical semiconductor element, and has a concave shape inclined such that the diameter of the ring expands upward. Have.
  • the inner surface of the above-mentioned concave shape may be formed at least by the cured product of the present invention. Further, as shown in FIG.
  • the portion surrounded by the metal wiring 101 may be the package substrate 103 or the white reflector 100 (ie, “100/103 in FIG. 1”. “Means may be a white reflector 100 or a package substrate 103).
  • the optical semiconductor element mounting substrate of the present invention is not limited to the mode shown in FIG.
  • a known or commonly used molding method for example, compression molding etc.
  • a known or commonly used molding method for example, compression molding etc.
  • conditions of hardening at the time of forming a reflector it can choose suitably from conditions etc. at the time of forming the above-mentioned hardened material, for example.
  • heat treatment is performed in multiple stages in that it can prevent foaming due to a rapid hardening reaction and relieve stress strain due to hardening to improve toughness (crack resistance). Curing is preferred.
  • the optical semiconductor device mounting substrate of the present invention is used as a substrate in an optical semiconductor device, and the optical semiconductor device is mounted on the substrate to obtain the optical semiconductor device of the present invention.
  • the optical semiconductor device of the present invention is an optical semiconductor device provided with at least an optical semiconductor element as a light source and a reflector (reflecting material) made of the cured product of the present invention. More specifically, the optical semiconductor device of the present invention is an optical semiconductor device having at least the optical semiconductor element mounting substrate of the present invention and the optical semiconductor element mounted on the substrate. The optical semiconductor device of the present invention has a reflector formed of the cured product of the present invention as a reflector, so that the luminance of light does not easily decrease with time, and the reliability is high.
  • FIG. 2 is a schematic view (cross-sectional view) showing an example of the optical semiconductor device of the present invention. In FIG.
  • 100 is a white reflector
  • 101 is a metal wiring (lead frame)
  • 103 is a package substrate
  • 104 is a bonding wire
  • 105 is a sealing material
  • 106 is a die bonding
  • 107 is an optical semiconductor element (LED element).
  • the light emitted from the optical semiconductor element 107 is reflected by the surface (reflecting surface) of the white reflector 100, so the light from the optical semiconductor element 107 is extracted with high efficiency.
  • the optical-semiconductor element in the optical semiconductor device of this invention is normally sealed by the transparent sealing material (105 in FIG. 2).
  • FIGS. 3 and 4 show another example of the optical semiconductor device of the present invention.
  • Reference numeral 108 in FIGS. 3 and 4 denotes a heat sink (case heat sink), and by having such a heat sink 108, the heat dissipation efficiency in the optical semiconductor device is improved.
  • FIG. 3 is an example in which the heat dissipation path of the heat sink is located immediately below the optical semiconductor device
  • FIG. 4 is an example in which the heat dissipation path of the heat sink is located in the lateral direction of the optical semiconductor device [(a) is a top view, (B) shows the AA 'cross section in (a)].
  • the heat sink 108 protruding to the side surface of the optical semiconductor device in FIG. 4 may be referred to as a radiation fin.
  • 109 in FIG. 4 indicates a cathode mark.
  • the optical semiconductor device of the present invention is not limited to the embodiments shown in FIGS.
  • the optical semiconductor device of the present invention has at least a reflector made of the cured product of the present invention, light can be emitted stably for a long period of time even when outputting high-intensity light. Furthermore, since the reflector made of the cured product of the present invention is excellent in crack resistance (in particular, crack resistance with respect to a cold cycle), problems such as a decrease in light intensity over time are less likely to occur. Therefore, the optical semiconductor device of the present invention can exhibit high reliability as an optical semiconductor device having a long life.
  • the present invention will be described in more detail based on examples given below, but the present invention is not limited by these examples.
  • the unit of the compounding amount of each component of the curable epoxy resin composition in Tables 1 to 7 is part by weight.
  • silicone type leveling agents BYK-300", “AC FS 180”
  • fluorine type leveling agents BYK-340", “AC 110a”
  • stress relaxation agents KMP-600” in Tables 4 to 7
  • the blending amounts of “KMP-602”, “SF8421”, and “Y-19268” indicate the amount as a product (the amount of the product itself).
  • “-” in Tables 1 to 7 indicates that the corresponding component was not blended.
  • Production Example 3 (Production of a curing agent composition containing at least a curing agent (hereinafter referred to as “agent K”): Examples 1 to 4, Comparative Examples 1 to 4, 9) Curing agent (acid anhydride) (Shin Nippon Rika Co., Ltd., trade name "Rikasid MH-700”), Hardening accelerator (San Apro Co., Ltd.
  • Examples 1 to 5 and Comparative Examples 1 to 10 (Production of a curable epoxy resin composition)
  • the mixture was uniformly mixed (2000 rpm, 5 minutes) and degassed to obtain a curable epoxy resin composition.
  • the curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
  • Production Example 4 (Production of White Pigment-Containing Epoxy Resin: Examples 6 to 14, Comparative Examples 11 to 21) Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd.
  • MA-DGIC Monoallyl diglycidyl isocyanurate
  • alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd.
  • Examples 6 to 14 and Comparative Examples 11 to 21 (Production of a curable epoxy resin composition)
  • the white pigment-containing epoxy resin obtained in Production Example 4 and the K agent obtained in Production Example 5 were mixed in a self-revolution stirring apparatus (product: The mixture was uniformly mixed (2000 rpm, 5 minutes) using the name "Awatori Neritaro AR-250" (manufactured by Shinky Co., Ltd.), and defoamed to obtain a curable epoxy resin composition.
  • the curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
  • Production Example 6 Manufacture of rubber particles
  • 500 g of ion exchanged water and 0.68 g of sodium dioctyl sulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion was added here.
  • the mixture is stirred and emulsified for 20 minutes, and then 9.5 mg of potassium peroxodisulfate is added and stirred for 1 hour to perform the first seed polymerization, followed by addition of 180.5 mg of potassium peroxodisulfate, 5 Stir for a minute.
  • the remaining amount (about 95% by weight) of 180.5 g of butyl acrylate, 48.89 g of styrene, 7.33 g of divinylbenzene and 0.95 g of sodium dioctyl sulfosuccinate in the amount necessary to form the core portion
  • the dissolved monomer mixture was continuously added over 2 hours, and a second seed polymerization was performed, followed by aging for 1 hour to obtain a core portion.
  • the average particle size of the rubber particles, maximum particle size is dynamic light scattering method was as a measurement principle "Nanotrac TM” format Nanotrac particle size distribution measuring apparatus (trade name “UPA-EX150", manufactured by Nikkiso Co., Ltd.
  • the cumulative average diameter at which the cumulative curve becomes 50% is the average particle diameter
  • the frequency (%) of the particle size distribution measurement result is The largest particle diameter at the time of exceeding 0.00% was made into the largest particle diameter.
  • a sample obtained by dispersing 1 part by weight of the rubber particle-dispersed epoxy compound obtained in Production Example 7 in 20 parts by weight of tetrahydrofuran was used as a sample.
  • Production Example 7 (Production of rubber particle dispersed epoxy compound) Using 10 parts by weight of the rubber particles obtained in Production Example 6 in a state of being heated to 60 ° C. in a nitrogen stream, using a dissolver (1000 rpm, 60 minutes) (3,4,3 ′, 4′-diepoxy) It was dispersed in 48 parts by weight of bicyclohexyl (manufactured by Daicel Co., Ltd.) and degassed under vacuum to obtain a rubber particle-dispersed epoxy compound (viscosity at 25 ° C .: 3023 mPa ⁇ s).
  • the viscosity (25 ° C.) of the rubber particle-dispersed epoxy compound (10 parts by weight of rubber particles dispersed in 48 parts by weight of (3,4,3 ′, 4′-diepoxy) bicyclohexyl) obtained in Production Example 7 The viscosity in the above was measured using a digital viscometer (trade name “DVU-EII type”, manufactured by Tokimec Co., Ltd.).
  • Production Example 8 (Production of White Pigment-Containing Epoxy Resin: Examples 15 to 46) Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd.
  • MA-DGIC Monoallyl diglycidyl isocyanurate
  • alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd.
  • a siloxane derivative having two epoxy groups in the molecule (trade name "X-40-2678", manufactured by Shin-Etsu Chemical Co., Ltd.), a siloxane derivative having three epoxy groups in the molecule (trade name) "X-40-2720", Shin-Etsu Chemical Co., Ltd.), Siloxane derivative having 4 epoxy groups in the molecule (trade name "X-40-2670", Shin-Etsu Chemical Co., Ltd.), silicone Leveling agent (trade name "BYK-300”, manufactured by BIC Chemie Japan Ltd .; trade name “AC FS 180", manufactured by Algin Chemie), fluorine-based leveling agent (trade name "B "K-340”, made by BIC Chemie Japan Ltd .; trade name “AC 110a”, made by Algin Chemie, polycarbonate diol (trade name "PLACSEL CD220PL”, made by Daicel Co., Ltd.), polytetramethylene ether glycol (trade name) "PTMG 2000”, manufactured by Mitsubishi Chemical Corporation, poly
  • the above-mentioned epoxy resin and white pigment (Titanium oxide; trade name “DCF-T-17050", manufactured by Resino Color Industrial Co., Ltd.) and inorganic filler (trade name "FB-970FD", silica (without surface treatment), average A particle size of 16.7 ⁇ m, maximum particle size of 70 ⁇ m) and Denka Co., Ltd.) are uniformly mixed using a dissolver according to the formulation (blending ratio) (unit: weight part) shown in Tables 4 and 5. The mixture was kneaded by a roll mill under predetermined conditions (roll pitch: 0.2 mm, rotational speed: 25 Hz, 3 passes) to obtain a white pigment-containing epoxy resin (epoxy resin composition).
  • a dissolver according to the formulation (blending ratio) (unit: weight part) shown in Tables 4 and 5.
  • Examples 15 to 46 (Production of a curable epoxy resin composition)
  • the white pigment-containing epoxy resin obtained in Production Example 8 and the K agent obtained in Production Example 9 were mixed in a self-revolution stirring apparatus (product: The mixture was uniformly mixed (2000 rpm, 5 minutes) using the name "Awatori Neritaro AR-250" (manufactured by Shinky Co., Ltd.), and defoamed to obtain a curable epoxy resin composition.
  • the curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
  • Production Example 10 (Production of White Pigment-Containing Epoxy Resin: Examples 47 to 74, Comparative Examples 22 to 25) Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd.
  • MA-DGIC Monoallyl diglycidyl isocyanurate
  • alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd.
  • Examples 47-74, Comparative Examples 22-25 (Production of a curable epoxy resin composition)
  • White pigment-containing epoxy resin obtained in Production Example 10 alicyclic polyester resin obtained in Production Example 11, curing catalyst (trade name) so as to obtain compounding formulations (unit: parts by weight) shown in Tables 6 and 7
  • Mix “San Aid SI-100L” manufactured by Sanshin Chemical Industry Co., Ltd.
  • a self-revolution stirring device trade name “Awatori Neritaro AR-250, manufactured by Shinky Co., Ltd.) Defoaming (2000 rpm, 5 minutes) gave a curable epoxy resin composition.
  • the curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
  • Tables 1 to 7 show the reflow treatment of 10 test pieces per sample, and the number of pieces of test pieces (number of cracks) of which the occurrence of cracks was confirmed is shown as the evaluation results.
  • the number of test pieces (number of cracks) in which occurrence of cracks was confirmed is n. Indicated.
  • evaluation was not implemented about what the crack generate
  • Thermal shock test (TST)
  • the test piece (width 5 mm ⁇ length 5 mm ⁇ thickness 3 mm) obtained by the above-mentioned cutting is exposed for 30 minutes in an atmosphere at ⁇ 60 ° C., and then exposed for 30 minutes in an atmosphere at 150 ° C.
  • the thermal shock with 1 cycle as the cycle was given for 200 cycles using a thermal shock tester (small thermal shock device TSE-11-A, manufactured by ESPEC Corp.). Thereafter, whether or not a crack was generated in the test piece by the thermal shock test was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation) and confirmed.
  • Examples and Comparative Examples are as follows.
  • [Epoxy resin] (3,4,3 ′, 4′-diepoxy) bicyclohexyl, manufactured by Daicel Co., Ltd.
  • CEL 2021 P (Ceroxide 2021 P): 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexane carboxylate, manufactured by Daicel Co., Ltd.
  • MA-DGIC monoallyl diglycidyl isocyanurate, manufactured by Shikoku Chemical Industries, Ltd.
  • EHPE 3150 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol , Daicel Co., Ltd.
  • TEPIC-PAS B26 Trisglycidyl isocyanurate
  • X-40-2678 Siloxane derivative having two epoxy groups in the molecule, Shin-Etsu Chemical Co., Ltd.
  • X -40-2720 having 3 epoxy groups in the molecule Siloxane derivative, Shin-Etsu Chemical Co., Ltd.
  • X-40-2670 Siloxane derivative having four epoxy groups in the molecule, Shin-Etsu Chemical Co., Ltd.
  • BYK-300 silicone leveling agent (silicone polymer) Containing leveling agent
  • Bic Chemie Japan KK AC FS 180 silicone leveling agent (leveling agent including silicone type polymer)
  • Algin Chemie made BYK-340 fluorine type leveling agent (fluorinated acrylic polymer) Containing leveling agent)
  • BIC Chemie Japan KK AC 110a fluorine-based leveling agent (leveling agent including fluorine-containing polyether-based polymer)
  • Algin Chemie CD 220 PL Placcel CD 220 PL
  • polycarbonate diol DAICE CO., LTD.
  • PTMG 2000 polytetramethylene ether glycol, Mitsubishi Chemical Corp.
  • Plaxel 308 polycaprolactone polyol, Daicel Co., Ltd.
  • YP-70 phenoxy resin
  • epototo YD-6020 hydroxyl group-containing length Chain epoxy resin, manufactured by Nippon Steel Chemical Co., Ltd.
  • M52N nano strength M52N: acrylic block copolymer, manufactured by Arkema KMP-600: crosslinked polydimethylsiloxane having silicone resin on the surface, Shin-Etsu Chemical Co., Ltd.
  • KMP-602 Cross-linked polydimethylsiloxane having silicone resin on the surface, Shin-Etsu Chemical Co., Ltd.
  • SF8421 Polyalkylene ether-modified silicone compound represented by formula (10), Toray Dow Corning Co., Ltd. Made by Y-19268: Polyalkylene ether-modified silicone compound represented by (10)), Momentive Performance Materials Japan (same) manufactured by Inorganic Filler]
  • Silica trade name "FB-970FD” (silica, no surface treatment, average particle diameter 16.7 ⁇ m, maximum particle diameter 70 ⁇ m), manufactured by Denka Co., Ltd. [White pigment] Titanium oxide, trade name "DCF-T-17050", manufactured by Resino Color Industrial Co., Ltd.
  • the cured product (example) of the curable epoxy resin composition of the present invention has excellent light reflectivity, and also in cutting, reflow, and thermal shock test. It was excellent in the crack resistance especially to a thermal shock test, and was strong, without producing a crack. Furthermore, even after heat aging and ultraviolet light aging, high light reflectivity was maintained, and heat resistance and light resistance were excellent.
  • an alicyclic polyester resin (or, furthermore, an alicyclic polyester resin and a siloxane derivative having two or more epoxy groups in the molecule) ( In Examples 8, 9, 12, 14, 17, 45, 48, 73), the light reflectivity was hardly lowered even by heating for a longer time (500 hours), and exhibited extremely excellent heat resistance.
  • the cured product (comparative example) formed from the curable epoxy resin composition not satisfying the definition of the present invention was deteriorated in light reflectivity after heat aging and ultraviolet aging, and was inferior in heat resistance and light resistance. Furthermore, it was easy to produce a crack at the time of a thermal shock test, and was inferior also in toughness.
  • R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each is a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent (preferably Represents a hydrogen atom).
  • a cycloaliphatic epoxy compound (A) represented by the following formula (1) [Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms (preferably a hydrogen atom)]
  • Curable epoxy resin composition comprising: monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing agent (D), and curing accelerator (F) object.
  • the amount (content) of the alicyclic epoxy compound (A) used is the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J),
  • the curable epoxy resin composition according to the above [1] which is 5 to 90% by weight (preferably 5 to 80% by weight, more preferably 5 to 70% by weight).
  • the amount (content) of the alicyclic epoxy compound (A) used is the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J),
  • the curable epoxy resin composition according to the above [3] which is 25 to 95% by weight (preferably 30 to 92% by weight, more preferably 30 to 90% by weight).
  • the alicyclic epoxy compound (A) is represented by the following formula (I-1)
  • the amount (content) of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 30
  • the curable epoxy resin composition according to any one of the above [1] to [5] which is ⁇ 95 wt% (preferably 35-95 wt%, more preferably 40-95 wt%).
  • an alicyclic epoxy compound other than the alicyclic epoxy compound (A) (hereinafter, may be referred to as “other alicyclic epoxy compound”), of the above-mentioned [1] to [6]
  • the curable epoxy resin composition as described in any one.
  • Another alicyclic epoxy compound is (i) an epoxy group (sometimes referred to as “alicyclic epoxy group”) composed of two adjacent carbon atoms constituting an alicyclic ring and an oxygen atom [7] which is at least one member selected from the group consisting of compounds having (excluding alicyclic epoxy compound (A)), and (ii) compounds in which an epoxy group is directly bonded to an alicyclic group by a single bond Curable epoxy resin composition as described in 4.
  • the amount (content) of the other alicyclic epoxy compound used is 1 to 50% by weight based on the total amount (100% by weight) of the other alicyclic epoxy compound and the alicyclic epoxy compound (A)
  • Alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is 50: 50 to 95: 5 (weight ratio) (preferably 50: 50 to 90: 10 (weight ratio))
  • the curable epoxy resin composition according to any one of the above [1] to [11].
  • the white pigment (C) is at least one selected from the group consisting of aluminum oxide, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, silicon oxide, and inorganic hollow particles (preferably titanium oxide)
  • the center particle diameter of the white pigment (C) is 0.1 to 50 ⁇ m (preferably 0.1 to 30 ⁇ m, more preferably 0.1 to 20 ⁇ m, particularly preferably 0.1 to 10 ⁇ m, most preferably 0)
  • the use amount (blending amount) of the white pigment (C) is 80 to 500 based on 100 parts by weight of the total amount of epoxy group-containing compounds contained in the curable epoxy resin composition (total epoxy group-containing compound)
  • the amount (content) of the curing agent (D) used is preferably 50 to 200 parts by weight (preferably 100 parts by weight) based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition Is 80 to 145 parts by weight).
  • the amount (content) of the curing accelerator (F) is 0.05 to 5 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition Parts (preferably 0.1 to 3 parts by weight, more preferably 0.2 to 3 parts by weight, particularly preferably 0.25 to 2.5 parts by weight), the above [1], [2], [5] ]
  • the curable epoxy resin composition as described in any one of--[19].
  • the amount (content) of the curing catalyst (E) used is 0.01 to 15 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition In any one of the above [3] to [20], which is (preferably 0.01 to 12 parts by weight, more preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 10 parts by weight). Curable epoxy resin composition as described.
  • a siloxane derivative (G) having two or more epoxy groups in the molecule comprises a cyclic siloxane having two or more epoxy groups in the molecule, and a linear silicone having two or more epoxy groups in the molecule.
  • a cyclic siloxane having two or more epoxy groups in one molecule wherein the siloxane derivative (G) having two or more epoxy groups in the molecule is represented by the following formulas (S-1) to (S-7)
  • the curable epoxy resin composition according to any one of the above [22] to [27], which is at least one selected from the group consisting of [29]
  • the used amount (content) of the siloxane derivative (G) having two or more epoxy groups in the molecule is the total amount (100% by weight) of the component (A), the component (B), and the component (G) Any of [22] to [28] above, which is 5 to 90% by weight (preferably 5 to 85% by weight, more preferably 5 to 80% by weight, and particularly preferably 8 to 75% by weight).
  • Curable epoxy resin composition as described in one.
  • R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain And the two selected from R 4 to R 7 may combine to form a ring).
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
  • the alicyclic polyester resin (H) is an alicyclic polyester resin containing at least one structural unit represented by the following formulas (5) and (6)
  • the curable epoxy resin composition according to any one of the items.
  • the amount (content) of the alicyclic polyester resin (H) contains the curing agent (D) as an essential component
  • the total amount of the alicyclic polyester resin (H) and the curing agent (D) (The curable epoxy resin composition according to any one of the above [31] to [35], which is 1 to 60% by weight (preferably 5 to 30% by weight) with respect to 100% by weight).
  • the amount (content) of the alicyclic polyester resin (H) contains the curing catalyst (E) as an essential component
  • the total amount of the alicyclic polyester resin (H) and the curing catalyst (E) (The curable epoxy resin composition according to any one of the above [31] to [35], which is 50 to 99% by weight (preferably 65 to 99% by weight) with respect to 100% by weight).
  • the curing agent (D) as an essential component Any one of the above [22] to [37], which is 5 to 90% by weight (preferably 8 to 80% by weight, more preferably 8 to 75% by weight) based on the total amount (100% by weight) of the composition.
  • the curable epoxy resin composition as described in 1).
  • the curable epoxy resin composition as described in 1).
  • Rubber particles other than silicone rubber particles are composed of a polymer containing (meth) acrylic acid ester as an essential monomer component, and have hydroxy and / or carboxy groups on the surface and have an average particle diameter of 10 to 500 nm
  • the curable epoxy resin composition according to the above [40] which has a (preferably 20 to 400 nm) and a maximum particle diameter of 50 to 1000 nm (preferably 100 to 800 nm).
  • the curable epoxy resin composition according to the above [40] or [41], wherein the rubber particles other than silicone rubber particles are rubber particles having a core-shell structure.
  • the content (blending amount) of rubber particles other than silicone rubber particles is 0.5 to 30 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the content (blending amount) of the non-volatile component of the leveling agent is 0.1 to 10 parts by weight with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition
  • the curable epoxy resin composition according to the above [44] which is a part (preferably 0.1 to 5 parts by weight, more preferably 0.1 to 4 parts by weight).
  • the above polyol compound is at least one selected from the group consisting of polyester polyol, polyether polyol, polycarbonate polyol, phenoxy resin, bisphenol type polymer epoxy resin, polybutadiene having hydroxyl group, and acrylic polyol 46.
  • the use amount (content amount) of the polyol compound is 1 to 50 parts by weight (preferably 1.5 to 40 parts by weight) with respect to the total amount (100 parts by weight) of the component (A) and the component (B) (More preferably 5 to 30 parts by weight), the curable epoxy resin composition according to any one of the above [46] to [48].
  • the amount (content) of the polyol compound used is the above component (A), component (B) And 1 to 50 parts by weight (preferably 1.5 to 40 parts by weight, more preferably 5 to 30 parts by weight) based on the total amount (100 parts by weight) of the component (G) [46]
  • the curable epoxy resin composition according to any one of [49].
  • the acrylic block copolymer is a triblock copolymer of the HSH structure having a polymer block [S] in the middle and having polymer blocks [H] at both ends thereof, 52.
  • the amount (content) of the acrylic block copolymer is 1 to 30 parts by weight (preferably 3 to 15 parts by weight) with respect to the total amount (100 parts by weight) of the component (A) and the component (B)
  • the amount (content) of the acrylic block copolymer used is component (A), component (A) B) and 1 to 30 parts by weight (preferably 3 to 15 parts by weight, more preferably 3 to 10 parts by weight) based on the total amount (100 parts by weight) of the component (G) [51]
  • the curable epoxy resin composition according to any one of [55].
  • At least one stress-relaxing agent (I) is preferably selected from the group consisting of silicone rubber particles (I1), silicone oil (I2), liquid rubber component (I3), and thermoplastic resin (I4) (preferably The curable epoxy resin composition as described in the above [57], which is at least one selected from the group consisting of silicone rubber particles (I1) and silicone oil (I2).
  • thermoplastic resin (I4) preferably The curable epoxy resin composition as described in the above [57], which is at least one selected from the group consisting of silicone rubber particles (I1) and silicone oil (I2).
  • silicone rubber particle (I1) is a crosslinked polydimethylsiloxane having a silicone resin on its surface.
  • the average particle size (d 50 ) of the silicone rubber particles (I1) is 0.1 to 100 ⁇ m (preferably 0.5 to 50 ⁇ m), and the maximum particle size is 0.1 to 250 ⁇ m (preferably 0)
  • the curable epoxy resin composition according to any one of the above [58] to [60].
  • R 26 is an alkylene group having 2 or 3 carbon atoms (preferably a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, more preferably a trimethylene group).
  • A is a polyalkylene ether group having a structure represented by the following formula (10a). (Wherein, a and b are each independently an integer of 0 to 40.
  • the content (blending amount) of the stress relaxation agent (I) is preferably 1 to 250 parts by weight (preferably 5 to 230 parts by weight, more preferably 100 parts by weight of the alicyclic epoxy compound (A).
  • the content (blending amount) of the stress relaxation agent (I) is preferably 1 to 200 parts by weight (preferably 5 parts) per 100 parts by weight of the total amount of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the content (blending amount) of the inorganic filler (J) is 10 to 90% by weight (preferably 13 to 75% by weight, more preferably 10 to 90% by weight) based on the curable epoxy resin composition (100% by weight)
  • the curable epoxy resin composition according to any one of the above [65] to [67], which is 15 to 70% by weight, more preferably 20 to 70% by weight.
  • the content (blending amount) of the inorganic filler (J) is 10 to 1500 parts by weight (preferably 50 parts by weight) based on 100 parts by weight of the total amount of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the maximum particle diameter of the white pigment (C) and the inorganic filler (J) is 200 ⁇ m or less (preferably 185 ⁇ m or less, more preferably 175 ⁇ m or less, particularly preferably 150 ⁇ m or less), and is 0.01 ⁇ m or more
  • a curable resin composition for light reflection which comprises the curable epoxy resin composition according to any one of the above [1] to [71].
  • An optical semiconductor device comprising at least an optical semiconductor element and a reflector comprising the cured product according to any one of the above [72] to [76].
  • White reflector 101 Metal wiring (electrode) 102: Mounting area of optical semiconductor element 103: Package substrate 104: Bonding wire 105: Sealing material of optical semiconductor element 106: Die bonding 107: Optical semiconductor element 108: Heat sink 109: Cathode mark
  • the curable epoxy resin composition of the present invention is used for LED package applications (components of LED packages, for example, reflector materials for optical semiconductor devices, housing materials, etc.), applications for bonding electronic components, applications for liquid crystal displays (for example, reflectors, etc.) ), Ink for white substrate, sealer, etc. can be preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a curable epoxy resin composition capable of producing a cured product which is suitable for compression molding and has high light reflectivity, excellent heat resistance and light resistance, and excellent toughness and crack resistance, and in which the light reflectivity does not significantly decrease over time. The present invention provides: a curable epoxy resin composition containing an alicyclic epoxy compound (A) represented by formula (I) [in the formula, R1a-R18a are identical or different and represent hydrogen atoms, halogen atoms, hydrocarbon groups that may have oxygen atoms or halogen atoms, or alkoxy groups that may have substituents], a monoallyl diglycidyl isocyanurate compound (B) represented by formula (1) [in the formula, R1-R2 represent hydrogen atoms or C1-C8 alkyl groups], a white pigment (C), a curing agent (D), and a curing accelerator (F); a cured product of the curable epoxy resin composition; and an optical semiconductor device including a reflector made of the cured product.

Description

硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置Curable epoxy resin composition, cured product thereof, and optical semiconductor device
 本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化してなる硬化物、該硬化性エポキシ樹脂組成物からなる光反射用硬化性樹脂組成物、及び、光半導体素子と上記硬化物からなるリフレクターとを少なくとも備える光半導体装置に関する。本願は、2017年12月21日に日本に出願した、特願2017-245102の優先権を主張し、その内容をここに援用する。 The present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, a curable resin composition for light reflection comprising the curable epoxy resin composition, and an optical semiconductor element The present invention relates to an optical semiconductor device including at least a reflector made of the cured product. Priority is claimed on Japanese Patent Application No. 2017-245102, filed Dec. 21, 2017, the content of which is incorporated herein by reference.
 近年、各種の屋内又は屋外表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニットなどにおいては、光半導体素子(LED素子)を光源とする発光装置(光半導体装置)の採用が進んでいる。このような発光装置としては、一般的に、光半導体素子と、該光半導体素子の周辺を保護する透明樹脂とを有し、さらに、光半導体素子から発せられる光の取り出し効率を高めるため、光を反射するためのリフレクター(反射材)を有する発光装置が広く利用されている。 In recent years, in various indoor or outdoor display boards, light sources for image reading, traffic signals, units for large displays, etc., adoption of light emitting devices (optical semiconductor devices) using optical semiconductor elements (LED elements) as light sources is in progress . Such a light emitting device generally includes an optical semiconductor device and a transparent resin for protecting the periphery of the optical semiconductor device, and further, to enhance the extraction efficiency of light emitted from the optical semiconductor device, light A light emitting device having a reflector (reflecting material) for reflecting light is widely used.
 上記リフレクターには、高い光反射性を有すること、さらには、このような高い光反射性を継続的に発揮し続けることが求められている。従来、上記リフレクターの構成材としては、テレフタル酸単位を必須の構成単位とするポリアミド樹脂(ポリフタルアミド樹脂)中に、無機フィラー等を分散させた樹脂組成物などが知られている(特許文献1~3参照)。 The reflector is required to have high light reflectivity, and to continuously exert such high light reflectivity. Conventionally, as a constituent material of the above-mentioned reflector, a resin composition etc. which made an inorganic filler etc. disperse in a polyamide resin (polyphthalamide resin) which makes a terephthalic acid unit an essential constitutional unit are known (patent document 1 to 3).
 また、上記リフレクターの構成材としては、そのほか、エポキシ樹脂を含む熱硬化性樹脂と、屈折率1.6~3.0の無機酸化物とを特定割合で含有する光反射用熱硬化性樹脂組成物が知られている(特許文献4参照)。さらに、熱硬化性樹脂成分と1以上の充填剤成分とを含有し、熱硬化性樹脂成分全体の屈折率と各充填剤成分の屈折率との差、及び、各充填剤成分の体積割合より算出されるパラメータを特定範囲に制御した光反射用熱硬化性樹脂組成物が知られている(特許文献5参照)。また、脂環式エポキシ化合物にモノアリルジグリシジルイソシアヌレート化合物と白色顔料を配合した光反射用硬化性樹脂組成物が知られている(特許文献6参照)。 In addition, as a component of the above-mentioned reflector, a thermosetting resin composition for light reflection, which further contains a thermosetting resin containing an epoxy resin and an inorganic oxide having a refractive index of 1.6 to 3.0 in a specific ratio A thing is known (refer to patent documents 4). Furthermore, it contains a thermosetting resin component and one or more filler components, and the difference between the refractive index of the entire thermosetting resin component and the refractive index of each filler component, and the volume ratio of each filler component There is known a thermosetting resin composition for light reflection in which the calculated parameter is controlled within a specific range (see Patent Document 5). In addition, a curable resin composition for light reflection in which a monoallyl diglycidyl isocyanurate compound and a white pigment are mixed with an alicyclic epoxy compound is known (see Patent Document 6).
特開2000-204244号公報Japanese Patent Laid-Open No. 2000-204244 特開2004-75994号公報Unexamined-Japanese-Patent No. 2004-75994 特開2006-257314号公報JP, 2006-257314, A 特開2010-235753号公報Unexamined-Japanese-Patent No. 2010-235753 特開2010-235756号公報JP, 2010-235756, A 国際公開WO2013/008680号パンフレットInternational Publication WO 2013/008680 Brochure
 しかしながら、特許文献1~3に記載の上記ポリアミド樹脂からなるリフレクターは、特に、高出力の青色光半導体や白色光半導体を光源とする発光装置において、光半導体素子から発せられる光や熱によって経時で黄変するなどして劣化し、十分な光反射性を維持できないという問題を有していた。さらに、鉛フリーハンダの採用に伴い、発光装置の製造の際のリフロー工程(ハンダリフロー工程)における加熱温度がより高くなる傾向にある中、このような製造工程において加わる熱によっても上記リフレクターが経時で劣化し、光反射性が低下するという問題も発生していた。 However, the reflectors made of the above polyamide resins described in Patent Documents 1 to 3 are particularly light emitting devices using high-power blue light semiconductors and white light semiconductors as light sources, and are aged over time by light and heat emitted from the light semiconductor elements. It has been deteriorated by yellowing and has a problem that sufficient light reflectivity can not be maintained. Furthermore, while the heating temperature in the reflow process (solder reflow process) at the time of manufacturing the light emitting device tends to be higher along with the adoption of lead-free solder, the reflector is aged over time by the heat applied in such a manufacturing process. And the light reflectivity is reduced.
 また、特許文献4、5に記載の光反射用熱硬化性樹脂組成物の硬化物からなるリフレクターにおいては、上記熱硬化性樹脂の主成分としてトリスグリシジルイソシアヌレートが使用されており、耐熱性が十分でなく、光半導体素子から発せられる熱やリフロー工程における熱によって、光反射性が経時で低下するという問題が発生していた。特許文献6に記載の光反射用硬化性樹脂組成物の硬化物からなるリフレクターにおいては、特許文献1~5よりも耐熱性が改善されているものの、光半導体装置の高出力化に伴い、より高温長時間の使用で光反射性が低下するという問題があった。 Moreover, in the reflector which consists of a hardened | cured material of the thermosetting resin composition for light reflections of the patent documents 4 and 5, tris glycidyl isocyanurate is used as a main component of the said thermosetting resin, and heat resistance is This is not sufficient, and the problem arises that the light reflectivity decreases with time due to the heat generated from the optical semiconductor element and the heat in the reflow process. In the reflector formed of a cured product of the curable resin composition for light reflection described in Patent Document 6, although the heat resistance is improved more than Patent Documents 1 to 5, with the increase in output of the optical semiconductor device, There has been a problem that the light reflectivity is lowered by the use for a long time at high temperature.
 また、上記リフレクターは、一般に、該リフレクターを形成するための材料(樹脂組成物)を、トランスファー成型やコンプレッション成型に付すことによって製造される。しかしながら、従来のリフレクターを形成するための樹脂組成物は、トランスファー成型に適したものが多いため、該樹脂組成物より形成したリフレクターは耐熱性に優れるが、コンプレッション成型により形成したリフレクターは耐熱性が比較的劣るものが多かった。 In addition, the reflector is generally manufactured by subjecting a material (resin composition) for forming the reflector to transfer molding or compression molding. However, since many resin compositions for forming a conventional reflector are suitable for transfer molding, the reflector formed from the resin composition is excellent in heat resistance, but the reflector formed by compression molding has heat resistance. Many were relatively inferior.
 さらに、上記リフレクターには、上述の耐熱性、耐光性以外にも、切削加工や温度変化(例えば、リフロー工程のような非常に高温での加熱や、冷温サイクルなど)等による応力が加わった場合に、クラック(ひび割れ)を生じにくい(このような特性を「耐クラック性」と称する場合がある)等、強靭であることが求められている。リフレクターにクラックが生じてしまうと、光反射性が低下して(即ち、光の取り出し効率が低下して)、発光装置の信頼性を担保することが困難となるためである。特許文献6に記載の光反射用硬化性樹脂組成物の硬化物からなるリフレクターにおいては、冷温サイクル等によりクラックが生じやすいという問題があった。 Furthermore, when stress is applied to the above-mentioned reflector due to cutting or temperature change (for example, heating at a very high temperature such as a reflow process, cooling cycle, etc.) in addition to the above heat resistance and light resistance. In addition, it is required to be tough, such as being hard to cause cracks (such characteristics may be referred to as “crack resistance”). When the reflector is cracked, the light reflectivity is lowered (that is, the light extraction efficiency is lowered), which makes it difficult to secure the reliability of the light emitting device. In the reflector which consists of hardened | cured material of the curable resin composition for light reflections of patent document 6, there existed a problem of being easy to produce a crack by a cold temperature cycle etc.
 このため、コンプレッション成型に適し、より高出力、短波長の光や高温、冷温サイクル等によっても劣化やクラック発生等の不具合を生じず、光反射性が経時で低下しにくいリフレクターを形成可能な、耐熱性及び耐光性に優れ、なおかつ強靭で耐クラック性に優れる材料が求められているのが現状である。 Therefore, it is possible to form a reflector suitable for compression molding without causing problems such as deterioration or cracking even with high output, short wavelength light, high temperature, cold temperature cycle, etc., and light reflectivity is unlikely to decrease with time. At present, there is a demand for a material which is excellent in heat resistance and light resistance, and is also tough and excellent in crack resistance.
 従って、本発明の目的は、コンプレッション成型に適しており、高い光反射性を有し、耐熱性及び耐光性に優れ、なおかつ強靭で耐クラック性に優れ、光反射性が経時で低下しにくい硬化物を与える硬化性エポキシ樹脂組成物を提供することにある。
 また、本発明の他の目的は、上記硬化性エポキシ樹脂組成物を硬化してなる、高い光反射性を有し、耐熱性及び耐光性に優れ、なおかつ強靭で耐クラック性に優れ、光反射性が経時で低下しにくい硬化物を提供することにある。
 また、本発明の他の目的は、経時での光の輝度低下が抑制された光半導体装置を得ることができる光反射用硬化性樹脂組成物を提供することにある。
 また、本発明の他の目的は、経時で光の輝度が低下しにくく、信頼性の高い光半導体装置を提供することにある。
Therefore, an object of the present invention is that it is suitable for compression molding, has high light reflectivity, is excellent in heat resistance and light resistance, is also tough and excellent in crack resistance, and is hard to be deteriorated in light reflectivity over time It is providing the curable epoxy resin composition which gives a thing.
In addition, another object of the present invention is to have high light reflectivity obtained by curing the above curable epoxy resin composition, to be excellent in heat resistance and light resistance, and also to be tough and excellent in crack resistance, to reflect light. It is an object of the present invention to provide a cured product which is less likely to deteriorate with time.
Another object of the present invention is to provide a curable resin composition for light reflection which can provide an optical semiconductor device in which the decrease in luminance of light with time is suppressed.
Another object of the present invention is to provide a highly reliable optical semiconductor device in which the luminance of light is unlikely to decrease with time.
 本発明者は、上記課題を解決するため鋭意検討した結果、特定の脂環式エポキシ化合物、モノアリルジグリシジルイソシアヌレート化合物、及び白色顔料を必須成分として含み、さらに硬化剤及び硬化促進剤、又は、硬化触媒を含む硬化性エポキシ樹脂組成物が、高い光反射性を有し、耐熱性及び耐光性に優れ、なおかつ強靭で耐クラック性に優れ、光反射性が経時で低下しにくいことを見出した。さらに、本発明者は、特定の脂環式エポキシ化合物、モノアリルジグリシジルイソシアヌレート化合物、分子内に2以上のエポキシ基を有するシロキサン誘導体、脂環式ポリエステル樹脂、及び白色顔料を必須成分として含み、さらに硬化剤及び硬化促進剤、又は、硬化触媒を含む硬化性エポキシ樹脂組成物が、特に、高い光反射性を有し、耐熱性及び耐光性に優れ、なおかつ強靭で耐クラック性に優れ、光反射性が経時で低下しにくい硬化物を与えることを見出した。本発明は、これらの知見に基づいて完成されたものである。 As a result of intensive studies to solve the above problems, the present inventor contains a specific alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a white pigment as essential components, and further a curing agent and a curing accelerator, or A curable epoxy resin composition containing a curing catalyst has high light reflectivity, is excellent in heat resistance and light resistance, and is also tough and excellent in crack resistance, and it is found that light reflectivity is unlikely to decrease with time. The Furthermore, the present inventor includes, as an essential component, a specific alicyclic epoxy compound, monoallyl diglycidyl isocyanurate compound, a siloxane derivative having two or more epoxy groups in the molecule, an alicyclic polyester resin, and a white pigment. Further, a curable epoxy resin composition containing a curing agent and a curing accelerator or a curing catalyst particularly has high light reflectivity, is excellent in heat resistance and light resistance, and is also tough and excellent in crack resistance, It has been found that it gives a cured product which is less likely to decrease in light reflectivity over time. The present invention has been completed based on these findings.
 すなわち、本発明は、下記式(I)
Figure JPOXMLDOC01-appb-C000008
[式中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000009
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化剤(D)と、硬化促進剤(F)とを含有することを特徴とする硬化性エポキシ樹脂組成物を提供する。
That is, the present invention has the following formula (I)
Figure JPOXMLDOC01-appb-C000008
[Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent . ]
And a cycloaliphatic epoxy compound (A) represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000009
[Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
Curable epoxy resin composition comprising: monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing agent (D), and curing accelerator (F) Provide the goods.
 また、本発明は、下記式(I)
Figure JPOXMLDOC01-appb-C000010
[式中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000011
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化触媒(E)とを含有することを特徴とする硬化性エポキシ樹脂組成物を提供する。
Further, the present invention provides the following formula (I)
Figure JPOXMLDOC01-appb-C000010
[Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent . ]
And a cycloaliphatic epoxy compound (A) represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000011
[Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
A curable epoxy resin composition comprising the monoallyl diglycidyl isocyanurate compound (B), a white pigment (C), and a curing catalyst (E).
 さらに、前記脂環式エポキシ化合物(A)が、下記式(I-1)
Figure JPOXMLDOC01-appb-C000012
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
Furthermore, the alicyclic epoxy compound (A) is represented by the following formula (I-1)
Figure JPOXMLDOC01-appb-C000012
The above-mentioned curable epoxy resin composition which is a compound represented by
 前記硬化性エポキシ樹脂組成物は、25℃において液状であることが好ましい。 The curable epoxy resin composition is preferably liquid at 25 ° C.
 さらに、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition as described above is provided, which comprises a siloxane derivative (G) having two or more epoxy groups in the molecule.
 さらに、脂環式ポリエステル樹脂(H)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition containing an alicyclic polyester resin (H) is provided.
 さらに、前記脂環式ポリエステル樹脂(H)が、主鎖に脂環を有する脂環式ポリエステル樹脂である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the said curable epoxy resin composition whose said alicyclic polyester resin (H) is an alicyclic polyester resin which has an alicyclic ring in a principal chain is provided.
 さらに、シリコーンゴム粒子以外のゴム粒子を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition containing rubber particles other than silicone rubber particles is provided.
 さらに、シリコーン系レベリング剤及びフッ素系レベリング剤からなる群より選ばれた少なくとも1種のレベリング剤を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition is provided, which comprises at least one leveling agent selected from the group consisting of a silicone-based leveling agent and a fluorine-based leveling agent.
 さらに、ポリオール化合物を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition containing a polyol compound is provided.
 さらに、アクリルブロック共重合体を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition containing an acrylic block copolymer is provided.
 さらに、応力緩和剤(I)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition containing stress relaxation agent (I) is provided.
 前記応力緩和剤(I)は、シリコーンゴム粒子(I1)及びシリコーンオイル(I2)からなる群より選択される少なくとも1種であってもよい。 The stress relaxation agent (I) may be at least one selected from the group consisting of silicone rubber particles (I1) and silicone oil (I2).
 前記シリコーンゴム粒子(I1)は、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンであってもよい。 The silicone rubber particles (I1) may be crosslinked polydimethylsiloxane having a silicone resin on the surface.
 前記シリコーンオイル(I2)は、エポキシ当量3000~15000の下記式(10)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物であってもよい。
Figure JPOXMLDOC01-appb-C000013
[式中、xaは80~140の整数、yaは1~5の整数、zaは5~20の整数である。R26は炭素数2又は3のアルキレン基である。Aは、下記式(10a)で表される構造を有するポリアルキレンエーテル基である。
Figure JPOXMLDOC01-appb-C000014
(式中、a及びbはそれぞれ独立して、0~40の整数である。Bは水素原子またはメチル基である。)]
The silicone oil (I2) may be a polyalkylene ether modified silicone compound having a structure represented by the following formula (10) having an epoxy equivalent of 3000 to 15000.
Figure JPOXMLDOC01-appb-C000013
[Wherein, xa is an integer of 80 to 140, ya is an integer of 1 to 5 and za is an integer of 5 to 20] R 26 is a C 2 or C 3 alkylene group. A is a polyalkylene ether group having a structure represented by the following formula (10a).
Figure JPOXMLDOC01-appb-C000014
(Wherein, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group.)
 さらに、無機充填剤(J)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the above-mentioned curable epoxy resin composition containing an inorganic filler (J) is provided.
 また、本発明は、前記の硬化性エポキシ樹脂組成物の硬化物を提供する。 The present invention also provides a cured product of the curable epoxy resin composition described above.
 また、本発明は、前記の硬化性エポキシ樹脂組成物からなる光反射用硬化性樹脂組成物を提供する。 The present invention also provides a curable resin composition for light reflection comprising the above-mentioned curable epoxy resin composition.
 また、本発明は、光半導体素子と、前記の光反射用硬化性樹脂組成物の硬化物からなるリフレクターとを少なくとも備えることを特徴とする光半導体装置を提供する。 Further, the present invention provides an optical semiconductor device comprising at least an optical semiconductor element and a reflector comprising a cured product of the above-described curable resin composition for light reflection.
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、該硬化性エポキシ樹脂組成物はコンプレッション成型に適しており、硬化させて得られる硬化物は、高い光反射性を有し、さらに、耐熱性及び耐光性に優れ、なおかつ強靭でクラックが生じにくいため、光反射性が経時で低下しにくい。このため、本発明の硬化性エポキシ樹脂組成物は、光半導体装置関連の様々な用途、特に、LEDパッケージ用の光反射用硬化性樹脂組成物として好ましく使用できる。さらに、本発明の硬化性エポキシ樹脂組成物(光反射用硬化性樹脂組成物)の硬化物からなるリフレクター(反射材)は、高い光反射性を長期間発揮し続けることができるため、光半導体素子と上記リフレクターとを少なくとも備える光半導体装置(発光装置)は、長寿命の光半導体装置として高い信頼性を発揮できる。 Since the curable epoxy resin composition of the present invention has the above-mentioned constitution, the curable epoxy resin composition is suitable for compression molding, and a cured product obtained by curing has high light reflectivity, and further, It is excellent in heat resistance and light resistance, and is tough and hardly causes cracks, so that the light reflectivity does not easily decrease with time. Therefore, the curable epoxy resin composition of the present invention can be preferably used as a curable resin composition for light reflection for various applications related to an optical semiconductor device, in particular, an LED package. Furthermore, a reflector (reflecting material) formed of a cured product of the curable epoxy resin composition (curable resin composition for light reflection) of the present invention can continuously exhibit high light reflectivity for a long time, so that an optical semiconductor An optical semiconductor device (light emitting device) including at least an element and the reflector can exhibit high reliability as a long-life optical semiconductor device.
本発明の光半導体素子搭載用基板の一例を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows an example of the optical semiconductor element mounting substrate of this invention. The left figure (a) is a perspective view, and the right figure (b) is a cross-sectional view. 本発明の光半導体装置の一例を示す概略図(断面図)である。It is the schematic (cross-sectional view) which shows an example of the optical semiconductor device of this invention. 本発明の光半導体装置の他の一例を示す概略図(断面図;ヒートシンクを有する場合)である。FIG. 5 is a schematic view (sectional view; in the case of having a heat sink) showing another example of the optical semiconductor device of the present invention. 本発明の光半導体装置の他の一例を示す概略図(ヒートシンク(放熱フィン)を有する場合)である。左側の図(a)は上面図であり、右側の図(b)は(a)におけるA-A'断面図である。It is the schematic (when it has a heat sink (heat dissipation fin)) which shows another example of the optical semiconductor device of this invention. The left figure (a) is a top view, and the right figure (b) is an AA 'cross section in (a).
 <硬化性エポキシ樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、下記式(I)
Figure JPOXMLDOC01-appb-C000015
[式中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
で表される脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000016
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化剤(D)と、硬化促進剤(F)とを必須成分として含有する樹脂組成物、又は、上記式(I)で表される脂環式エポキシ化合物(A)と、上記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化触媒(E)とを必須成分として含有する樹脂組成物である。なお、本発明の硬化性エポキシ樹脂組成物は、上記必須成分以外にも、必要に応じてその他の成分を含んでいてもよい。なお、本発明の硬化性エポキシ樹脂組成物は、加熱により硬化させて硬化物へと転化可能な熱硬化性組成物(熱硬化性エポキシ樹脂組成物)として使用できる。
<Curable epoxy resin composition>
The curable epoxy resin composition of the present invention has the following formula (I)
Figure JPOXMLDOC01-appb-C000015
[Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent . ]
And a cycloaliphatic epoxy compound (A) represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000016
[Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
A resin composition comprising, as essential components, the monoallyl diglycidyl isocyanurate compound (B), the white pigment (C), the curing agent (D), and the curing accelerator (F), or Alicyclic epoxy compound (A) represented by formula (I), monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1), white pigment (C), curing catalyst (E) And the like as an essential component. In addition, the curable epoxy resin composition of this invention may contain the other component as needed other than the said essential component. The curable epoxy resin composition of the present invention can be used as a thermosetting composition (thermosetting epoxy resin composition) which can be cured by heating and converted to a cured product.
 なお、本明細書において「光反射用硬化性樹脂組成物」とは、光反射性を有する硬化物を形成可能な硬化性樹脂組成物をいう。具体的には、例えば、波長450nmの光に対する反射率が50%以上(特に、90%以上)である硬化物を形成可能な硬化性樹脂組成物が好ましい。 In the present specification, the term "curable resin composition for light reflection" refers to a curable resin composition capable of forming a cured product having light reflectivity. Specifically, for example, a curable resin composition capable of forming a cured product having a reflectance of 50% or more (particularly 90% or more) to light with a wavelength of 450 nm is preferable.
 本発明の硬化性エポキシ樹脂組成物は25℃において液状であることが好ましい。25℃で液体である場合、コンプレッション成型に適する傾向があり、その硬化物(リフレクター)は、光反射性に優れ、且つ、耐熱性及び耐光性に優れる傾向がある。なお、本明細書において「25℃において液状」とは、常圧において25℃で測定した粘度が1000000mPa・s以下(好ましくは、800000mPa・s以下)であることをいう。なお、上記粘度は、例えば、デジタル粘度計(型番「DVU-EII型」、(株)トキメック製)を用いて、ローター:標準1°34'×R24、温度:25℃、回転数:0.5~10rpmの条件で測定することができる。 The curable epoxy resin composition of the present invention is preferably liquid at 25 ° C. When it is a liquid at 25 ° C., it tends to be suitable for compression molding, and its cured product (reflector) tends to be excellent in light reflectivity, and also excellent in heat resistance and light resistance. In the present specification, “liquid at 25 ° C.” means that the viscosity measured at 25 ° C. under normal pressure is 1,000,000 mPa · s or less (preferably, 800,000 mPa · s or less). The viscosity is measured using, for example, a digital viscometer (model number “DVU-EII type” manufactured by Tokimec Co., Ltd.), rotor: standard 1 ° 34 ′ × R24, temperature: 25 ° C., rotation speed: 0. It can be measured under the condition of 5 to 10 rpm.
 25℃において液体である本発明の硬化性エポキシ樹脂組成物は、例えば、成分(例えば、脂環式エポキシ化合物(A)、液状の応力緩和剤(I)、硬化剤(E)、硬化促進剤(F)、硬化触媒(G)等)として、25℃で液体の成分を用いることにより得やすくなる。なお、上記成分として25℃で固体の成分を用いてもよいが、その含有量は、本発明の硬化性エポキシ樹脂組成物が25℃において液状となるように調整される。また、ゴム粒子、白色顔料(C)、無機充填剤(J)、固体の応力緩和剤(I)等の25℃で固体である成分の含有量を、本発明の効果を損なわない範囲内で調整することによっても得やすくなる。 The curable epoxy resin composition of the present invention which is liquid at 25 ° C. is, for example, a component (eg, alicyclic epoxy compound (A), liquid stress relaxation agent (I), curing agent (E), curing accelerator) It becomes easy to obtain by using the component of a liquid at 25 degreeC as (F) and a curing catalyst (G) etc.). In addition, although a component solid at 25 ° C. may be used as the above component, the content is adjusted so that the curable epoxy resin composition of the present invention becomes liquid at 25 ° C. In addition, the content of components which are solid at 25 ° C., such as rubber particles, white pigment (C), inorganic filler (J), solid stress relaxation agent (I), etc. is within the range which does not impair the effects of the present invention. It will be easier to obtain by making adjustments.
 [脂環式エポキシ化合物(A)]
 本発明の硬化性エポキシ樹脂組成物を構成する脂環式エポキシ化合物(A)は、下記式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
[Alicyclic epoxy compound (A)]
The alicyclic epoxy compound (A) which comprises the curable epoxy resin composition of this invention is a compound represented by following formula (I).
Figure JPOXMLDOC01-appb-C000017
 本発明の硬化性エポキシ樹脂組成物が上記脂環式エポキシ化合物(A)を含むことにより、硬化物が高い光反射性を有し、耐熱性及び耐光性に優れ、なおかつ強靭で耐クラック性に優れ、特に、冷温サイクルに対する耐クラック性が改善される傾向がある。 When the curable epoxy resin composition of the present invention contains the above-mentioned alicyclic epoxy compound (A), the cured product has high light reflectivity, is excellent in heat resistance and light resistance, and is tough and crack resistant. Excellent, in particular, tend to improve the crack resistance to cold cycles.
 式(1)中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。 In the formula (1), R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a R 16a , R 17a and R 18a are the same or different and each is a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent Indicates
 式(1)中、R1a~R18aにおけるハロゲン原子には、フッ素、塩素、臭素、ヨウ素原子が含まれる。「酸素原子若しくはハロゲン原子を有していてもよい炭化水素基」における炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基が挙げられる。脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、ペンチル、ヘキシル、オクチル、デシル基等の直鎖状又は分岐鎖状アルキル基(例えば、炭素数1~10、好ましくは炭素数1~5程度のアルキル基);ビニル、アリル基等のアルケニル基(例えば、炭素数2~10、好ましくは炭素数2~5程度のアルケニル基);エチニル基等のアルキニル基(例えば、炭素数2~10、好ましくは炭素数2~5程度のアルキニル基)などが挙げられる。脂環式炭化水素基としては、例えば、シクロペンチル、シクロヘキシル基等のシクロアルキル基;シクロアルケニル基;橋架け環式基などが挙げられる。芳香族炭化水素基としては、フェニル、ナフチル基等が挙げられる。酸素原子を有する炭化水素基としては、例えば、前記炭化水素基の炭素鎖中に酸素原子が介在している基(例えば、メトキシメチル基、エトキシメチル基等のアルコキシアルキル基等)などが挙げられる。ハロゲン原子を有する炭化水素基としては、例えば、クロロメチル基、トリフルオロメチル基、クロロフェニル基等の前記炭化水素基の有する水素原子の1又は2以上がハロゲン原子(フッ素、塩素、臭素又はヨウ素原子)により置換された基が挙げられる。「置換基を有していてもよいアルコキシ基」におけるアルコキシ基としては、メトキシ、エトキシ、プロピルオキシ、イソプロピルオキシ、ブチルオキシ基等の炭素数1~10(好ましくは炭素数1~5)程度のアルコキシ基などが挙げられる。アルコキシ基の置換基としては、例えば、前記ハロゲン原子などが挙げられる。 In the formula (1), halogen atoms in R 1a to R 18a include fluorine, chlorine, bromine and iodine atoms. The hydrocarbon group in the “hydrocarbon group which may have an oxygen atom or a halogen atom” includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded. Can be mentioned. The aliphatic hydrocarbon group is, for example, a linear or branched alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, octyl or decyl group (for example, carbon number 1-10, preferably an alkyl group having about 1 to 5 carbon atoms); alkenyl groups such as vinyl and allyl (eg, an alkenyl group having about 2 to 10 carbon atoms, preferably about 2 to 5 carbon atoms); ethynyl group and the like And the like (for example, an alkynyl group having about 2 to 10 carbon atoms, preferably about 2 to 5 carbon atoms). As an alicyclic hydrocarbon group, cycloalkyl groups, such as a cyclopentyl and a cyclohexyl group; cycloalkenyl group; bridged cyclic group etc. are mentioned, for example. Examples of the aromatic hydrocarbon group include phenyl and naphthyl groups. As a hydrocarbon group which has an oxygen atom, the group (For example, alkoxyalkyl groups, such as a methoxymethyl group and an ethoxymethyl group etc., etc.) etc. are mentioned, for example, in the carbon chain of the above-mentioned hydrocarbon group. . As a hydrocarbon group which has a halogen atom, 1 or 2 or more of hydrogen atoms which the said hydrocarbon groups, such as a chloromethyl group, a trifluoromethyl group, a chlorophenyl group, have, for example, have a halogen atom (a fluorine, chlorine, a bromine or an iodine atom And the like. The alkoxy group in the “optionally substituted alkoxy group” is an alkoxy group having about 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as methoxy, ethoxy, propyloxy, isopropyloxy and butyloxy groups Groups and the like. As a substituent of an alkoxy group, the said halogen atom etc. are mentioned, for example.
 式(I)で表される脂環式エポキシ化合物(A)のなかでも、R1a~R18aがすべて水素原子である下記式(I-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
Among the alicyclic epoxy compounds (A) represented by the formula (I), compounds represented by the following formula (I-1) in which all of R 1a to R 18a are hydrogen atoms are preferable.
Figure JPOXMLDOC01-appb-C000018
 脂環式エポキシ化合物(A)は単独で、又は2種以上を組み合わせて使用することができる。上記の中でも、脂環式エポキシ化合物(A)としては、上記式(I-1)で表される(3,4,3',4'-ジエポキシ)ビシクロヘキシルが特に好ましい。 The alicyclic epoxy compounds (A) can be used alone or in combination of two or more. Among the above, (3,4,3 ′, 4′-diepoxy) bicyclohexyl represented by the above formula (I-1) is particularly preferable as the alicyclic epoxy compound (A).
 脂環式エポキシ化合物(A)の使用量(含有量)は、特に限定されないが、本発明の硬化性エポキシ樹脂組成物が硬化剤(D)を必須成分として含む場合には、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対して、5~90重量%が好ましく、より好ましくは5~80重量%、さらに好ましくは5~70重量%である。一方、本発明の硬化性エポキシ樹脂組成物が硬化触媒(E)を必須成分として含む場合には、脂環式エポキシ化合物(A)の使用量(含有量)は、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対して、25~95重量%が好ましく、より好ましくは30~92重量%、さらに好ましくは30~90重量%である。 The use amount (content) of the alicyclic epoxy compound (A) is not particularly limited, but when the curable epoxy resin composition of the present invention contains a curing agent (D) as an essential component, a white pigment (C 5 to 90% by weight is preferable, more preferably 5 to 80% by weight, still more preferably 5 to 70% by weight based on the total amount (100% by weight) of the curable epoxy resin composition excluding the inorganic filler (J). %. On the other hand, when the curable epoxy resin composition of the present invention contains the curing catalyst (E) as an essential component, the amount (content) of the alicyclic epoxy compound (A) used is the white pigment (C) and the inorganic The content is preferably 25 to 95% by weight, more preferably 30 to 92% by weight, still more preferably 30 to 90% by weight based on the total amount (100% by weight) of the curable epoxy resin composition excluding the filler (J). .
 特に、本発明の硬化性エポキシ樹脂組成物が分子内に2以上のエポキシ基を有するシロキサン誘導体(G)及び脂環式ポリエステル樹脂(H)のいずれか一方又は両方を含む場合(特に、両方を含む場合)、脂環式エポキシ化合物(A)の使用量(含有量)は、特に限定されないが、本発明の硬化性エポキシ樹脂組成物が硬化剤(D)を必須成分として含む場合には、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対し、5~90重量%が好ましく、より好ましくは8~80重量%、さらに好ましくは8~75重量%である。一方、本発明の硬化性エポキシ樹脂組成物が成分(G)及び成分(H)のいずれか一方又は両方を含む場合(特に、両方を含む場合)であって、硬化触媒(E)を必須成分として含む場合には、脂環式エポキシ化合物(A)の使用量(含有量)は、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対し、10~95重量%が好ましく、より好ましくは15~85重量%、さらに好ましくは20~75重量%である。 In particular, when the curable epoxy resin composition of the present invention contains one or both of a siloxane derivative (G) having two or more epoxy groups in the molecule and an alicyclic polyester resin (H) (especially, both) The amount (content) of the cycloaliphatic epoxy compound (A) used is not particularly limited, but when the curable epoxy resin composition of the present invention contains a curing agent (D) as an essential component, It is preferably 5 to 90% by weight, more preferably 8 to 80% by weight, still more preferably 8% by weight, based on the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J). It is ̃75% by weight. On the other hand, when the curable epoxy resin composition of the present invention contains either one or both of the component (G) and the component (H) (especially when it contains both), the curing catalyst (E) is an essential component. In the case where it is contained, the used amount (content) of the alicyclic epoxy compound (A) is the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J) The amount is preferably 10 to 95% by weight, more preferably 15 to 85% by weight, and still more preferably 20 to 75% by weight.
 また、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)との総量(100重量%)に対する、脂環式エポキシ化合物(A)の使用量(含有量)は、特に限定されないが、30~95重量%が好ましく、より好ましくは35~95重量%、さらに好ましくは40~95重量%である。脂環式エポキシ化合物(A)の使用量が30重量%未満では、モノアリルジグリシジルイソシアヌレート化合物(B)の溶解性が十分でなく、室温に置くと析出しやすくなる場合がある。一方、脂環式エポキシ化合物(A)の使用量が95重量%を超えると、硬化物の強靭性が低下し、クラックが生じやすくなる場合がある。 In addition, the use amount (content) of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is particularly limited. Although not preferred, it is preferably 30 to 95% by weight, more preferably 35 to 95% by weight, still more preferably 40 to 95% by weight. If the amount of the alicyclic epoxy compound (A) used is less than 30% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) may not be sufficient, and precipitation at room temperature may be facilitated. On the other hand, when the use amount of the alicyclic epoxy compound (A) exceeds 95% by weight, the toughness of the cured product may be reduced, and a crack may easily occur.
 本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)以外の脂環式エポキシ化合物(以下、「他の脂環式エポキシ化合物」と称する場合がある)を、本発明の効果を損なわない範囲で含んでいてもよい。 In the curable epoxy resin composition of the present invention, an alicyclic epoxy compound other than the alicyclic epoxy compound (A) (hereinafter sometimes referred to as "other alicyclic epoxy compound"), the effect of the present invention May be included in the range which does not impair.
 他の脂環式エポキシ化合物は、分子内(1分子内)に脂環(脂肪族環)構造とエポキシ基とを少なくとも有する化合物であって、脂環式エポキシ化合物(A)以外の化合物ある。より具体的には、他の脂環式エポキシ化合物には、例えば、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する場合がある)を有する化合物(脂環式エポキシ化合物(A)を除く)、及び(ii)脂環にエポキシ基が直接単結合で結合している化合物等が含まれる。但し、他の脂環式エポキシ化合物には、後述の分子内に2以上のエポキシ基を有するシロキサン誘導体(G)は含まれないものとする。 Another alicyclic epoxy compound is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule), and is a compound other than the alicyclic epoxy compound (A). More specifically, other alicyclic epoxy compounds include, for example, (i) an epoxy group ("alicyclic epoxy group") composed of two adjacent carbon atoms constituting an alicyclic ring and an oxygen atom; And compounds having an epoxy group directly bonded to the alicyclic ring by a single bond, and the like. However, the siloxane derivative (G) which has two or more epoxy groups in the below-mentioned molecule shall not be contained in other alicyclic epoxy compounds.
 (i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。中でも、上記化合物は、シクロヘキサン環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有すること、即ち、シクロヘキセンオキシド基を有する化合物(脂環式エポキシ化合物)であることが好ましい。 (I) As a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms constituting an alicyclic ring and an oxygen atom, any compound selected from known or common ones may be used. be able to. Among them, the above-mentioned compound has an epoxy group constituted of two adjacent carbon atoms constituting a cyclohexane ring and an oxygen atom, that is, a compound having a cyclohexene oxide group (alicyclic epoxy compound) preferable.
 (i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、特に、耐熱性、耐光性の点で、下記式(II)で表される脂環式エポキシ化合物(脂環式エポキシ樹脂)が好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(II)中、Xは連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル基(エーテル結合)、チオエーテル基(チオエーテル結合)、エステル基(エステル結合)、カーボネート基(カーボネート結合)、アミド基(アミド結合)、及びこれらが複数個連結した基等が挙げられる。なお、式(II)における脂環(脂環式エポキシ基)を構成する炭素原子の1以上には、アルキル基等の置換基が結合していてもよい。
(I) As a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms constituting an alicyclic ring and an oxygen atom, particularly in terms of heat resistance and light resistance, The alicyclic epoxy compound (alicyclic epoxy resin) represented by II) is preferable.
Figure JPOXMLDOC01-appb-C000019
In formula (II), X represents a linking group (a divalent group having one or more atoms). Examples of the linking group include divalent hydrocarbon groups, carbonyl groups, ether groups (ether bonds), thioether groups (thioether bonds), ester groups (ester bonds), carbonate groups (carbonate bonds), amide groups (amides (amides) A bond, and a group in which a plurality of these are linked, and the like. In addition, substituents, such as an alkyl group, may be couple | bonded with one or more of the carbon atom which comprises alicyclic (alicyclic epoxy group) in Formula (II).
 上記2価の炭化水素基としては、例えば、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene group, methyl methylene group, dimethyl methylene group, ethylene group, propylene group, trimethylene group and the like. Examples of the divalent alicyclic hydrocarbon group include a 1,2-cyclopentylene group, a 1,3-cyclopentylene group, a cyclopentylidene group, a 1,2-cyclohexylene group, and a 1,3-cyclohexene group. And bivalent cycloalkylene groups (including cycloalkylidene groups) such as silene group, 1,4-cyclohexylene group, and cyclohexylidene group.
 上記連結基Xとしては、中でも、酸素原子を含有する連結基が好ましく、具体的には、例えば、-CO-(カルボニル基)、-O-CO-O-(カーボネート基)、-COO-(エステル基)、-O-(エーテル基)、-CONH-(アミド基)、これらの基が複数個連結した基、これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基などが挙げられる。2価の炭化水素基としては、例えば、上記で例示したものが挙げられる。 Among them, a linking group containing an oxygen atom is preferable as the linking group X, and specifically, for example, -CO- (carbonyl group), -O-CO-O- (carbonate group), -COO- ( Ester group), -O- (ether group), -CONH- (amide group), a group in which a plurality of these groups are linked, one or two or more of these groups and one or more of divalent hydrocarbon groups And the like. As a bivalent hydrocarbon group, what was illustrated above is mentioned, for example.
 上記式(II)で表される脂環式エポキシ化合物の代表的な例としては、下記式(II-1)~(II-10)で表される化合物などが挙げられる。これらの化合物として、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」((株)ダイセル製)等の市販品を使用することもできる。なお、下記式(II-5)、(II-7)中のl、mは、それぞれ1~30の整数を表す。下記式(II-5)中のRは炭素数1~8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s-ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状アルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状アルキレン基が好ましい。また、下記式(II-9)、(II-10)中のn1~n6は、それぞれ1~30の整数を示す。 Representative examples of the alicyclic epoxy compound represented by the above formula (II) include compounds represented by the following formulas (II-1) to (II-10). As these compounds, for example, commercially available products such as trade names “Ceroxide 2021 P” and “Ceroxide 2081” (manufactured by Daicel Co., Ltd.) can also be used. In the following formulas (II-5) and (II-7), l and m each represent an integer of 1 to 30. R in the following formula (II-5) is an alkylene group having 1 to 8 carbon atoms, and is methylene, ethylene, propylene, isopropylene, butylene, isobutylene, s-butylene, pentylene, hexylene And linear or branched alkylene groups such as heptylene group and octylene group. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms, such as methylene, ethylene, propylene and isopropylene are preferable. In the following formulas (II-9) and (II-10), n1 to n6 each represent an integer of 1 to 30.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 (ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(III)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 式(III)中、R'はp価のアルコールからp個の-OHを除した基であり、p、nは、それぞれ自然数を表す。p価のアルコール[R'-(OH)p]としては、例えば、炭素数1~15のアルコール等が挙げられ、より具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコールなどが挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(丸括弧内)の基におけるnは同一でもよく異なっていてもよい。上記化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、商品名「EHPE3150」((株)ダイセル製)などが挙げられる。
(Ii) Examples of the compound in which an epoxy group is directly bonded to an alicyclic ring by a single bond include a compound represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000022
In formula (III), R ′ is a group obtained by removing p —OH from a p-valent alcohol, and p and n each represent a natural number. Examples of p-valent alcohol [R '-(OH) p ] include alcohols having 1 to 15 carbon atoms, and more specifically, 2,2-bis (hydroxymethyl) -1-butanol and the like. And polyhydric alcohols. p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each group in () (in parentheses) may be the same or different. Specific examples of the above compounds include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, trade name “EHPE 3150” (trade name) Made by Daicel) and the like.
 他の脂環式エポキシ化合物は単独で、又は2種以上を組み合わせて使用することができる。上記の中でも、他の脂環式エポキシ化合物としては、上記式(II-1)で表される3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、商品名「セロキサイド2021P」が特に好ましい。 The other alicyclic epoxy compounds can be used alone or in combination of two or more. Among the above, as another alicyclic epoxy compound, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexane carboxylate represented by the above formula (II-1), trade name “Ceroxide 2021 P” Particularly preferred.
 本発明の硬化性エポキシ樹脂組成物が他の脂環式エポキシ化合物を含有する場合、他の脂環式エポキシ化合物と脂環式エポキシ化合物(A)との総量(100重量%)に対する、他の脂環式エポキシ化合物の使用量(含有量)は、特に限定されないが、1~50重量%が好ましく、より好ましくは5~40重量%、さらに好ましくは5~30重量%、特に好ましくは5~20重量%である。他の脂環式エポキシ化合物の使用量が50重量%を超えると、硬化物の耐熱性、耐光性、強靭性が低下し、経時の光反射性の低下や冷温サイクルによりクラックが生じやすくなる場合がある。 When the curable epoxy resin composition of the present invention contains another alicyclic epoxy compound, the other relative to the total amount (100% by weight) of the other alicyclic epoxy compound and the alicyclic epoxy compound (A) The use amount (content) of the alicyclic epoxy compound is not particularly limited, but is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, still more preferably 5 to 30% by weight, particularly preferably 5 to 5 It is 20% by weight. When the amount of the other alicyclic epoxy compound used exceeds 50% by weight, the heat resistance, light resistance and toughness of the cured product deteriorate, and cracks easily occur due to the decrease in light reflectivity over time or the cold cycle. There is.
 [モノアリルジグリシジルイソシアヌレート化合物(B)]
 本発明の硬化性エポキシ樹脂組成物を構成するモノアリルジグリシジルイソシアヌレート化合物(B)は、下記の一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000023
 上記式(1)中、R1及びR2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。
[Monoallyl diglycidyl isocyanurate compound (B)]
The monoallyl diglycidyl isocyanurate compound (B) which comprises the curable epoxy resin composition of this invention is represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000023
In the above formula (1), R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3の直鎖又は分岐鎖状のアルキル基が好ましい。上記式(1)中のR1及びR2は、水素原子であることが特に好ましい。 Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl and octyl groups. Examples include chain or branched alkyl groups. Among them, linear or branched alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group and isopropyl group are preferable. R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
 モノアリルジグリシジルイソシアヌレート化合物(B)の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート等が挙げられる。なお、モノアリルジグリシジルイソシアヌレート化合物(B)は単独で、又は2種以上を組み合わせて使用することができる。 Representative examples of the monoallyl diglycidyl isocyanurate compound (B) include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl 2-isocyanate) Propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methyl epoxypropyl) isocyanurate and the like. In addition, monoallyl diglycidyl isocyanurate compound (B) can be used individually or in combination of 2 or more types.
 モノアリルジグリシジルイソシアヌレート化合物(B)は、上記脂環式エポキシ化合物(A)に溶解する範囲で任意に混合でき、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)の割合は特に限定されないが、脂環式エポキシ化合物(A):モノアリルジグリシジルイソシアヌレート化合物(B)が50:50~95:5(重量比)であることが好ましく、より好ましくは50:50~90:10(重量比)である。この範囲外では、モノアリルジグリシジルイソシアヌレート化合物(B)の溶解性が得られにくくなる。 The monoallyl diglycidyl isocyanurate compound (B) can be optionally mixed in the range which dissolves in the above-mentioned alicyclic epoxy compound (A), and the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) The proportion of the alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is preferably 50:50 to 95: 5 (by weight), and more preferably 50:50. It is 50 to 90:10 (weight ratio). Outside this range, the solubility of the monoallyl diglycidyl isocyanurate compound (B) becomes difficult to obtain.
 モノアリルジグリシジルイソシアヌレート化合物(B)は、アルコールや酸無水物など、エポキシ基と反応する化合物を加えてあらかじめ変性して用いても良い。 The monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group, such as an alcohol or an acid anhydride.
[白色顔料(C)]
 本発明の硬化性エポキシ樹脂組成物の必須成分である白色顔料(C)は、上記硬化性エポキシ樹脂組成物を硬化して得られる硬化物に対し、高い光反射性を発揮させる役割を担う。白色顔料(C)としては、公知乃至慣用の白色顔料を使用することができ、特に限定されないが、例えば、ガラス、クレー、雲母、タルク、カオリナイト(カオリン)、ハロイサイト、ゼオライト、酸性白土、活性白土、ベーマイト、擬ベーマイト、無機酸化物、アルカリ土類金属塩等の金属塩などの無機白色顔料;スチレン系樹脂、ベンゾグアナミン系樹脂、尿素-ホルマリン系樹脂、メラミン-ホルマリン系樹脂、アミド系樹脂等の樹脂顔料などの有機白色顔料(プラスチックピグメントなど);中空構造(バルーン構造)を有する中空粒子などが挙げられる。これらの白色顔料は単独で、又は2種以上を組み合わせて使用することができる。
[White pigment (C)]
The white pigment (C), which is an essential component of the curable epoxy resin composition of the present invention, plays a role of exerting high light reflectivity to a cured product obtained by curing the curable epoxy resin composition. As the white pigment (C), known or commonly used white pigments can be used, and it is not particularly limited. For example, glass, clay, mica, talc, kaolinite (kaolin), halloysite, zeolite, acid clay, active Inorganic white pigments such as white earth, boehmite, pseudo-boehmite, inorganic oxides, metal salts such as alkaline earth metal salts; styrenic resins, benzoguanamine resins, urea-formalin resins, melamine-formalin resins, amide resins, etc. And organic white pigments such as plastic pigments (plastic pigments); hollow particles having a hollow structure (balloon structure); These white pigments can be used alone or in combination of two or more.
 白色顔料(C)としては、リフレクターの反射率を高くするため屈折率が高い白色顔料を使用することが好ましく、例えば、屈折率が1.5以上の白色顔料が好ましい。但し、中空粒子構造を有する白色顔料は内部(コア)に低屈折率の気体を含み表面反射率が非常に大きいので、シェル部分は屈折率が1.5より低い材料で構成されていてもよい。なお、白色顔料(C)として例示するもののうち、無機充填剤(J)にも該当するものについては、屈折率が1.5以上のものは白色顔料(C)とし、屈折率が1.5より小さいものは無機充填剤(J)とする。 As the white pigment (C), it is preferable to use a white pigment having a high refractive index in order to increase the reflectance of the reflector. For example, a white pigment having a refractive index of 1.5 or more is preferable. However, since the white pigment having a hollow particle structure contains a gas of low refractive index inside (core) and the surface reflectance is very large, the shell portion may be made of a material having a refractive index of less than 1.5 . Among those exemplified as the white pigment (C), those having a refractive index of 1.5 or more are regarded as the white pigment (C) and those having a refractive index of 1.5 are also applicable to the inorganic filler (J). The smaller one is the inorganic filler (J).
 上記無機酸化物としては、例えば、酸化アルミニウム(アルミナ)、酸化マグネシウム、酸化アンチモン、酸化チタン(ルチル型酸化チタン、アナターゼ型酸化チタン、ブルッカイト型酸化チタン)、酸化ジルコニウム、酸化亜鉛などが挙げられる。また、上記アルカリ土類金属塩としては、例えば、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ケイ酸マグネシウム、ケイ酸カルシウム、水酸化マグネシウム、リン酸マグネシウム、リン酸水素マグネシウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウムなどが挙げられる。また、アルカリ土類金属塩以外の金属塩としては、例えば、ケイ酸アルミニウム、水酸化アルミニウム、硫化亜鉛などが挙げられる。 Examples of the inorganic oxide include aluminum oxide (alumina), magnesium oxide, antimony oxide, titanium oxide (rutile type titanium oxide, anatase type titanium oxide, brookite type titanium oxide), zirconium oxide, zinc oxide and the like. Also, as the alkaline earth metal salt, for example, magnesium carbonate, calcium carbonate, barium carbonate, magnesium silicate, calcium silicate, magnesium hydroxide, magnesium phosphate, magnesium hydrogen phosphate, magnesium sulfate, calcium sulfate, sulfuric acid Barium etc. are mentioned. Moreover, as metal salts other than alkaline-earth metal salt, aluminum silicate, aluminum hydroxide, a zinc sulfide etc. are mentioned, for example.
 上記中空粒子としては、特に限定されないが、例えば、無機ガラス(例えば、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、石英など)、シリカ、アルミナ等の金属酸化物、炭酸カルシウム、炭酸バリウム、炭酸ニッケル、珪酸カルシウム等の金属塩などの無機物により構成された無機中空粒子(シラスバルーンなどの天然物も含む);スチレン系樹脂、アクリル系樹脂、シリコーン系樹脂、アクリル-スチレン系樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、アミド系樹脂、ウレタン系樹脂、フェノール系樹脂、スチレン-共役ジエン系樹脂、アクリル-共役ジエン系樹脂、オレフィン系樹脂等のポリマー(これらポリマーの架橋体も含む)などの有機物により構成された有機中空粒子;無機物と有機物のハイブリッド材料により構成された無機-有機中空粒子などが挙げられる。なお、上記中空粒子は、単一の材料より構成されたものであってもよいし、2種以上の材料より構成されたものであってもよい。また、上記中空粒子の中空部(中空粒子の内部の空間)は、真空状態であってもよいし、媒質で満たされていてもよいが、特に、反射率向上の観点では、屈折率が低い媒質(例えば、窒素、アルゴン等の不活性ガスや空気等)で満たされた中空粒子が好ましい。 The hollow particles are not particularly limited, and examples thereof include inorganic glass (for example, sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, quartz and the like), metal oxides such as silica and alumina, calcium carbonate, barium carbonate, Inorganic hollow particles (including natural products such as Shirasu balloon) composed of inorganic substances such as nickel carbonate, calcium silicate etc. metal salts; styrenic resins, acrylic resins, silicone resins, acrylic-styrene resins, vinyl chloride Polymers such as vinyl-based resins, vinylidene chloride-based resins, amide-based resins, urethane-based resins, phenol-based resins, styrene-conjugated diene resins, acrylic-conjugated diene resins, olefin resins (including crosslinked products of these polymers), etc. Hollow particles composed of organic matter of organic matter; hybrid of inorganic matter and organic matter Inorganic constructed of a material - such as an organic hollow particles. In addition, the said hollow particle may be comprised from a single material, and may be comprised from 2 or more types of materials. The hollow portion of the hollow particle (the space inside the hollow particle) may be in a vacuum state or may be filled with a medium, but in particular, the refractive index is low from the viewpoint of improving the reflectance. Hollow particles filled with a medium (for example, an inert gas such as nitrogen or argon, air or the like) are preferred.
 なお、白色顔料(C)は、公知乃至慣用の表面処理(例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理など)が施されたものであってもよい。このような表面処理を施すことにより、硬化性エポキシ樹脂組成物における白色顔料(C)の他の成分との相溶性や分散性を向上させることができる場合がある。 The white pigment (C) is subjected to known or conventional surface treatment (for example, surface treatment with a surface treatment agent such as metal oxide, silane coupling agent, titanium coupling agent, organic acid, polyol, silicone etc.) It may be done. By performing such surface treatment, compatibility or dispersibility with other components of the white pigment (C) in the curable epoxy resin composition may be able to be improved.
 中でも、白色顔料(C)としては、入手性、耐熱性、耐光性の観点で、無機酸化物、無機中空粒子が好ましく、より好ましくは酸化アルミニウム、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化ケイ素、及び無機中空粒子からなる群より選ばれた1種以上の白色顔料である。特に、白色顔料(C)としては、より高い屈折率を有する点で、酸化チタンが好ましい。 Among them, inorganic pigments and inorganic hollow particles are preferable as the white pigment (C) from the viewpoints of availability, heat resistance and light resistance, and more preferably aluminum oxide, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, Silicon oxide and at least one white pigment selected from the group consisting of inorganic hollow particles. In particular, titanium oxide is preferable as the white pigment (C) in that it has a higher refractive index.
 白色顔料(C)の形状は、特に限定されないが、例えば、球状、破砕状、繊維状、針状、鱗片状、ウィスカー状などが挙げられる。中でも、白色顔料(C)の分散性の観点で、球状の白色顔料が好ましく、特に真球状の白色顔料(例えば、アスペクト比が1.2以下の球状の白色顔料)が好ましい。 The shape of the white pigment (C) is not particularly limited, and examples thereof include spherical, crushed, fibrous, needle, scaly, and whiskers. Among them, spherical white pigments are preferable, and spherical white pigments (for example, spherical white pigments having an aspect ratio of 1.2 or less) are particularly preferable from the viewpoint of dispersibility of the white pigment (C).
 白色顔料(C)の中心粒径は、特に限定されないが、光反射性向上の観点で、0.1~50μmが好ましい。特に、白色顔料(C)として無機酸化物を用いる場合、該無機酸化物の中心粒径は、特に限定されないが、0.1~50μmが好ましく、より好ましくは0.1~30μm、さらに好ましくは0.1~20μm、特に好ましくは0.1~10μm、最も好ましくは0.1~5μmである。一方、白色顔料(C)として中空粒子(特に、無機中空粒子)を用いる場合、該中空粒子の中心粒径は、特に限定されないが、0.1~50μmが好ましく、より好ましくは0.1~30μmである。なお、上記中心粒径は、レーザー回折・散乱法で測定した粒度分布における積算値50%での粒径(メディアン径)を意味する。 The central particle size of the white pigment (C) is not particularly limited, but is preferably 0.1 to 50 μm from the viewpoint of improving light reflectivity. In particular, when using an inorganic oxide as the white pigment (C), the central particle size of the inorganic oxide is not particularly limited, but is preferably 0.1 to 50 μm, more preferably 0.1 to 30 μm, and still more preferably It is 0.1 to 20 μm, particularly preferably 0.1 to 10 μm, and most preferably 0.1 to 5 μm. On the other hand, when hollow particles (in particular, inorganic hollow particles) are used as the white pigment (C), the central particle diameter of the hollow particles is not particularly limited, but preferably 0.1 to 50 μm, more preferably 0.1 to 50 It is 30 μm. In addition, the said center particle diameter means the particle size (median diameter) in 50% of the integration value in the particle size distribution measured by the laser diffraction and the scattering method.
 本発明の硬化性エポキシ樹脂組成物における白色顔料(C)の使用量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を含有する化合物の全量(全エポキシ基含有化合物)100重量部に対し、80~500重量部が好ましく、より好ましくは90~400重量部、さらに好ましくは100~380重量部である。使用量が80重量部を下回ると、硬化物の光反射性が低下する傾向がある。一方、使用量が500重量部を上回ると、硬化物の靭性が低下する傾向がある。 The use amount (blending amount) of the white pigment (C) in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount of epoxy group-containing compounds contained in the curable epoxy resin composition (all epoxy groups The content is preferably 80 to 500 parts by weight, more preferably 90 to 400 parts by weight, and still more preferably 100 to 380 parts by weight with respect to 100 parts by weight of the contained compound. If the amount used is less than 80 parts by weight, the light reflectivity of the cured product tends to decrease. On the other hand, when the amount used exceeds 500 parts by weight, the toughness of the cured product tends to decrease.
 なお、白色顔料(C)は、公知乃至慣用の製造方法により製造することができる。また、白色顔料(C)としては、市販品を用いることもでき、例えば、商品名「SR-1」、「R-42」、「R-45M」、「R-650」、「R-32」、「R-5N」、「GTR-100」、「R-62N」、「R-7E」、「R-44」、「R-3L」、「R-11P」、「R-21」、「R-25」、「TCR-52」、「R-310」、「D-918」、「FTR-700」(以上、堺化学工業(株)製)、商品名「タイペークCR-50」、「CR-50-2」、「CR-60」、「CR-60-2」、「CR-63」、「CR-80」、「CR-90」、「CR-90-2」、「CR-93」、「CR-95」、「CR-97」(以上、石原産業(株)製)、商品名「JR-301」、「JR-403」、「JR-405」、「JR-600A」、「JR-605」、「JR-600E」、「JR-603」、「JR-805」、「JR-806」、「JR-701」、「JRNC」、「JR-800」、「JR」(以上、テイカ(株)製)、商品名「TR-600」、「TR-700」、「TR-750」、「TR-840」、「TR-900」(以上、富士チタン工業(株)製)、商品名「KR-310」、「KR-380」、「KR-380N」(以上、チタン工業(株)製)、商品名「ST-410WB」、「ST-455」、「ST-455WB」、「ST-457SA」、「ST-457EC」、「ST-485SA15」、「ST-486SA」、「ST-495M」(以上、チタン工業(株)製)などのルチル型酸化チタン;商品名「A-110」、「TCA-123E」、「A-190」、「A-197」、「SA-1」、「SA-1L」、「SSPシリーズ」、「CSBシリーズ」(以上、堺化学工業(株)製)、商品名「JA-1」、「JA-C」、「JA-3」(以上、テイカ(株)製)、商品名「KA-10」、「KA-15」、「KA-20」、「STT-65C-S」、「STT-30EHJ」(以上、チタン工業(株)製)、商品名「DCF-T-17007」、「DCF-T-17008」、「DCF-T-17050」(以上、レジノカラー工業(株)製)などのアナターゼ型酸化チタンなどが使用できる。 The white pigment (C) can be produced by a known or conventional production method. Moreover, as a white pigment (C), a commercial item can also be used, For example, brand name "SR-1", "R-42", "R-45M", "R-650", "R-32" “R-5N”, “GTR-100”, “R-62N”, “R-7E”, “R-44”, “R-3L”, “R-11P”, “R-21”, "R-25", "TCR-52", "R-310", "D-918", "FTR-700" (above, made by Suga Chemical Industry Co., Ltd.), trade name "Typek CR-50", "CR-50-2", "CR-60", "CR-60-2", "CR-63", "CR-80", "CR-90", "CR-90-2", "CR -93 "," CR-95 "," CR-97 "(above, made by Ishihara Sangyo Co., Ltd.), brand name" JR-301 "," JR-403 "," JR-405 " "JR-600A", "JR-605", "JR-600E", "JR-603", "JR-805", "JR-806", "JR-701", "JRNC", "JR-800" "JR" (above, made by Tayca Co., Ltd.), trade name "TR-600", "TR-700", "TR-750", "TR-840", "TR-900" (above, Fuji Titanium Industry Co., Ltd., trade name "KR-310", "KR-380", "KR-380N" (above, titanium industry Co., Ltd.) trade name "ST-410WB", "ST-455" , “ST-455 WB”, “ST-457 SA”, “ST-457 EC”, “ST-485 SA15”, “ST-486 SA”, “ST-495 M” (all manufactured by Titan Kogyo Co., Ltd.), etc. -Type titanium oxide; trade name "A-110 , “TCA-123E”, “A-190”, “A-197”, “SA-1”, “SA-1L”, “SSP series”, “CSB series” (all, Sakai Chemical Industry Co., Ltd.) ), Brand names “JA-1”, “JA-C”, “JA-3” (all manufactured by Tayka Co., Ltd.), brand names “KA-10”, “KA-15”, “KA-20” , “STT-65C-S”, “STT-30EHJ” (all, manufactured by Titan Kogyo Co., Ltd.), trade names “DCF-T-17007”, “DCF-T-17008”, “DCF-T-17050” Anatase-type titanium oxide such as that of Reshino Color Industrial Co., Ltd. can be used.
 [硬化剤(D)]
 本発明の硬化性エポキシ樹脂組成物を構成する硬化剤(D)は、エポキシ基を有する化合物を硬化させる役割を担う。硬化剤(D)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができる。中でも、硬化剤(D)としては、25℃で液状の酸無水物が好ましく、より具体的には、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸などが挙げられる。また、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの常温(約25℃)で固体状の酸無水物についても、常温(約25℃)で液状の酸無水物に溶解させて液状の混合物とすることで、硬化剤(D)として好ましく使用することができる。なお、硬化剤(D)は単独で、又は2種以上を組み合わせて使用することができる。硬化剤(D)としては、耐熱性、耐光性、耐クラック性の観点で、特に、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。
[Hardener (D)]
The curing agent (D) constituting the curable epoxy resin composition of the present invention plays a role of curing a compound having an epoxy group. As the curing agent (D), known or commonly used curing agents can be used as curing agents for epoxy resins. Among them, as the curing agent (D), acid anhydride liquid at 25 ° C. is preferable, and more specifically, for example, methyl tetrahydrophthalic anhydride, methyl hexahydrophthalic anhydride, dodecenyl succinic anhydride, methyl endo methylene Tetrahydrophthalic anhydride and the like can be mentioned. Also, for example, acid anhydrides which are solid at normal temperature (about 25 ° C.) such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, etc. are liquid at normal temperature (about 25 ° C.) It can be preferably used as a curing agent (D) by dissolving it in an acid anhydride of the above to form a liquid mixture. In addition, a hardening agent (D) can be used individually or in combination of 2 or more types. As the curing agent (D), particularly from the viewpoint of heat resistance, light resistance and crack resistance, anhydrides of saturated monocyclic hydrocarbon dicarboxylic acids (including those in which a substituent such as an alkyl group is bonded to the ring) are used. preferable.
 また、本発明においては、硬化剤(D)として、商品名「リカシッド MH-700」(新日本理化(株)製)、商品名「HN-5500」(日立化成工業(株)製)等の市販品を使用することもできる。 Further, in the present invention, as a curing agent (D), a trade name “Rikasid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), a trade name “HN-5500” (manufactured by Hitachi Chemical Co., Ltd.), etc. A commercial item can also be used.
 硬化剤(D)の使用量(含有量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、50~200重量部が好ましく、より好ましくは80~145重量部である。より具体的には、本発明の硬化性エポキシ樹脂組成物中に含有する全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。硬化剤(D)の使用量が50重量部を下回ると、硬化が不十分となり、硬化物の強靱性が低下する傾向がある。一方、硬化剤(D)の使用量が200重量部を上回ると、硬化物が着色して色相が悪化する場合がある。 The amount (content) of the curing agent (D) used is not particularly limited, but it is 50 to 200 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. Is preferred, and more preferably 80 to 145 parts by weight. More specifically, it is preferable to use at a ratio of 0.5 to 1.5 equivalents per equivalent of epoxy groups in all the epoxy-containing compounds contained in the curable epoxy resin composition of the present invention. . When the amount of the curing agent (D) used is less than 50 parts by weight, curing tends to be insufficient, and the toughness of the cured product tends to decrease. On the other hand, when the amount of the curing agent (D) used exceeds 200 parts by weight, the cured product may be colored to deteriorate the hue.
 [硬化促進剤(F)]
 本発明の硬化性エポキシ樹脂組成物において硬化促進剤(F)は、エポキシ基を有する化合物が硬化剤(D)により硬化する際に、硬化速度を促進する機能を有する化合物である。硬化促進剤(F)としては、公知乃至慣用の硬化促進剤を使用することができ、特に限定されないが、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール類;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛などの有機金属塩;金属キレートなどが挙げられる。なお、硬化促進剤(F)は単独で、又は2種以上を組み合わせて使用することができる。
[Hardening accelerator (F)]
In the curable epoxy resin composition of the present invention, the curing accelerator (F) is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the curing agent (D). As the curing accelerator (F), known or commonly used curing accelerators can be used, and it is not particularly limited. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), and The salt thereof (eg, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and the salt thereof (Eg, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt); benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexyl Tertiary amines such as amines; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole etc. Imidazole compounds; phosphoric acid esters, phosphines such as triphenylphosphine; tetraphenylphosphonium tetra (p- tolyl) phosphonium compounds such as borate, tin octylate, organic metal salts such as zinc octylate; metal chelate and the like. In addition, a hardening accelerator (F) can be used individually or in combination of 2 or more types.
 また、本発明においては、硬化促進剤(F)として、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「12XD(開発品)」(以上、サンアプロ(株)製)、商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製)、商品名「PX-4ET」(日本化学工業(株)製)等の市販品を使用することもできる。 In the present invention, as the curing accelerator (F), trade names “U-CAT SA 506”, “U-CAT SA 102”, “U-CAT 5003”, “U-CAT 18X”, “12XD ( "Development products" (above, San-Apro Co., Ltd.), trade names "TPP-K", "TPP-MK" (Hokuko Chemical Co., Ltd.), trade name "PX-4ET" (Nippon Chemical Industries, Ltd.) It is also possible to use commercially available products such as manufactured by Co., Ltd.).
 硬化促進剤(F)の使用量(含有量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.05~5重量部が好ましく、より好ましくは0.1~3重量部、さらに好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部である。硬化促進剤(F)の使用量が0.05重量部を下回ると、硬化促進効果が不十分となる場合がある。一方、硬化促進剤(F)の使用量が5重量部を上回ると、硬化物が着色して色相が悪化する場合がある。 The amount (content) of the curing accelerator (F) is not particularly limited, but it is preferably 0.05 to 0.05 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. The amount is preferably 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, and particularly preferably 0.25 to 2.5 parts by weight. When the amount of the curing accelerator (F) used is less than 0.05 parts by weight, the curing acceleration effect may be insufficient. On the other hand, when the use amount of the curing accelerator (F) exceeds 5 parts by weight, the cured product may be colored to deteriorate the hue.
 [硬化触媒(E)]
 本発明の硬化性エポキシ樹脂組成物は、上述の硬化剤(D)の代わりに、硬化触媒(E)を含んでいてもよい。硬化剤(D)を用いた場合と同様に、硬化触媒(E)を用いることにより、エポキシ基を有する化合物の硬化反応を進行させ、硬化物を得ることができる。上記硬化触媒(E)としては、特に限定されないが、例えば、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、重合を開始させることができるカチオン触媒(カチオン重合開始剤)を使用できる。
[Curing catalyst (E)]
The curable epoxy resin composition of the present invention may contain a curing catalyst (E) instead of the above-mentioned curing agent (D). As in the case of using the curing agent (D), by using the curing catalyst (E), the curing reaction of the compound having an epoxy group can be advanced to obtain a cured product. The curing catalyst (E) is not particularly limited. For example, a cationic catalyst (cationic polymerization initiator) capable of initiating polymerization by generating cationic species by ultraviolet irradiation or heat treatment can be used. .
 紫外線照射によりカチオン種を発生するカチオン触媒としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩などが挙げられる。これらのカチオン触媒は単独で、又は2種以上を組み合わせて使用することができる。上記カチオン触媒としては、例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製)、商品名「CD-1010」、「CD-1011」、「CD-1012」(以上、米国サートマー製)、商品名「イルガキュア264」(チバ・ジャパン(株)製)、商品名「CIT-1682」(日本曹達(株)製)等の市販品を好ましく使用することもできる。 As a cation catalyst which generate | occur | produces a cationic species by ultraviolet irradiation, a hexafluoroantimonate salt, a pentafluoro hydroxyantimonate salt, a hexafluorophosphate salt, a hexafluoroarsenate salt etc. are mentioned, for example. These cationic catalysts can be used alone or in combination of two or more. As said cation catalyst, the brand name "UVACURE1590" (made by Daicel ・ Cytec Co., Ltd. product), the brand name "CD-1010", "CD-1011", "CD-1012" (above, the United States Sartomer make), Commercial products such as trade name “IRGACURE 264” (manufactured by Ciba Japan Ltd.) and trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can also be preferably used.
 加熱処理を施すことによりカチオン種を発生するカチオン触媒としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体などが挙げられる。これらのカチオン触媒は単独で、又は2種以上を組み合わせて使用することができる。上記カチオン触媒としては、例えば、商品名「PP-33」、「CP-66」、「CP-77」(以上、(株)ADEKA製)、商品名「FC-509」(スリーエム製)、商品名「UVE1014」(G.E.製)、商品名「サンエイド SI-60L」、「サンエイド SI-80L」、「サンエイド SI-100L」、「サンエイド SI-110L」、「サンエイド SI-150L」(以上、三新化学工業(株)製)、商品名「CG-24-61」(チバ・ジャパン(株)製)等の市販品を好ましく使用することができる。上記カチオン触媒としては、さらに、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物などを用いることもできる。 Examples of the cation catalyst that generates a cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes. These cationic catalysts can be used alone or in combination of two or more. Examples of the cationic catalyst include, for example, trade names “PP-33”, “CP-66”, “CP-77” (all manufactured by ADEKA Co., Ltd.), trade name “FC-509” (manufactured by 3M), and trade names Name "UVE 1014" (manufactured by G. E.), trade name "San Aid SI-60L", "San Aid SI-80 L", "San Aid SI-100 L", "San Aid SI-110 L", "San Aid SI-150 L" Commercial products such as Sanshin Chemical Industry Co., Ltd., trade name "CG-24-61" (Ciba Japan Co., Ltd.), etc. can be preferably used. Further, as the above-mentioned cation catalyst, a compound of a chelate compound of metal such as aluminum or titanium with acetoacetic acid or diketones and silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid or diketones It is also possible to use a compound of the chelate compound of the above and a phenol such as bisphenol S.
 硬化触媒(E)の使用量(含有量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.01~15重量部が好ましく、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.1~10重量部である。硬化触媒(E)を上記範囲内で使用することにより、耐熱性、耐光性に優れた硬化物を得ることができる。 The use amount (content) of the curing catalyst (E) is not particularly limited, but it is 0.01 to 15 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. It is preferable to use parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 10 parts by weight. By using the curing catalyst (E) within the above range, a cured product excellent in heat resistance and light resistance can be obtained.
 本発明の硬化性エポキシ樹脂組成物は、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)及び/又は脂環式ポリエステル樹脂(H)を含んでいてもよい。特に、本発明の硬化性エポキシ樹脂組成物は、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)及び脂環式ポリエステル樹脂(H)を含むことが好ましい。即ち、本発明の硬化性エポキシ樹脂組成物は、上記式(I)で表される脂環式エポキシ化合物(A)と、上記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)と、脂環式ポリエステル樹脂(H)と、白色顔料(E)と、硬化剤(F)と、硬化促進剤(H)とを少なくとも含む樹脂組成物、又は、上記式(I)で表される脂環式エポキシ化合物(A)と、上記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)と、脂環式ポリエステル樹脂(H)と、白色顔料(E)と、硬化触媒(G)とを少なくとも含む樹脂組成物であることが好ましい。 The curable epoxy resin composition of the present invention may contain a siloxane derivative (G) having two or more epoxy groups in the molecule and / or an alicyclic polyester resin (H). In particular, the curable epoxy resin composition of the present invention preferably contains a siloxane derivative (G) having two or more epoxy groups in the molecule and an alicyclic polyester resin (H). That is, the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) represented by the above formula (I) and a monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1) ), A siloxane derivative (G) having two or more epoxy groups in the molecule, an alicyclic polyester resin (H), a white pigment (E), a curing agent (F), and a curing accelerator (H) And a cycloaliphatic epoxy compound (A) represented by the above formula (I) and a monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1); A resin composition comprising at least a siloxane derivative (G) having two or more epoxy groups in the molecule, an alicyclic polyester resin (H), a white pigment (E), and a curing catalyst (G) preferable.
[分子内に2以上のエポキシ基を有するシロキサン誘導体(G)]
 上述のように、本発明の硬化性エポキシ樹脂組成物は、分子内(一分子中)に2以上のエポキシ基を有するシロキサン誘導体(G)を含んでいてもよい。分子内に2以上のエポキシ基を有するシロキサン誘導体(G)は、シロキサン骨格を有し、なおかつ分子内に2以上のエポキシ基を有する化合物である。分子内に2以上のエポキシ基を有するシロキサン誘導体(G)は、硬化物の耐熱性、耐光性、耐クラック性を向上させ、光半導体装置の光度低下を抑制する役割を担う。
[Siloxane derivative (G) having two or more epoxy groups in the molecule]
As described above, the curable epoxy resin composition of the present invention may contain a siloxane derivative (G) having two or more epoxy groups in the molecule (in one molecule). The siloxane derivative (G) having two or more epoxy groups in the molecule is a compound having a siloxane skeleton and having two or more epoxy groups in the molecule. The siloxane derivative (G) having two or more epoxy groups in the molecule plays a role of improving the heat resistance, light resistance and crack resistance of the cured product and suppressing the decrease in light intensity of the optical semiconductor device.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)におけるシロキサン骨格としては、特に限定されないが、例えば、環状シロキサン骨格;直鎖状のシリコーンや、かご型やラダー型のポリシルセスキオキサンなどのポリシロキサン骨格などが挙げられる。中でも、上記シロキサン骨格としては、硬化物の耐熱性、耐光性を向上させて光度低下を抑制する観点で、環状シロキサン骨格、直鎖状シリコーン骨格が好ましい。即ち、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)としては、分子内に2以上のエポキシ基を有する環状シロキサン、分子内に2以上のエポキシ基を有する直鎖状シリコーンが好ましい。なお、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)は単独で、又は2種以上を組み合わせて使用できる。 The siloxane skeleton of the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited. For example, cyclic siloxane skeleton; linear silicone, cage-type or ladder-type polysilsesquioxane And the like. Among them, as the above-mentioned siloxane skeleton, a cyclic siloxane skeleton and a linear silicone skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product to suppress the decrease in light intensity. That is, as the siloxane derivative (G) having two or more epoxy groups in the molecule, a cyclic siloxane having two or more epoxy groups in the molecule and a linear silicone having two or more epoxy groups in the molecule are preferable. In addition, the siloxane derivative (G) which has a 2 or more epoxy group in a molecule | numerator can be used individually or in combination of 2 or more types.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)が、2以上のエポキシ基を有する環状シロキサンである場合、シロキサン環を形成するSi-O単位の数(シロキサン環を形成するケイ素原子の数に等しい)は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、2~12が好ましく、より好ましくは4~8である。 When the siloxane derivative (G) having two or more epoxy groups in the molecule is a cyclic siloxane having two or more epoxy groups, the number of Si—O units forming the siloxane ring (a silicon atom forming the siloxane ring The number is not particularly limited, but is preferably 2 to 12, and more preferably 4 to 8 from the viewpoint of improving the heat resistance and light resistance of the cured product.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の重量平均分子量は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、100~3000が好ましく、より好ましくは180~2000である。なお、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の重量平均分子量は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)法により、標準ポリスチレン換算の値として測定することができる。 The weight average molecular weight of the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited, but it is preferably 100 to 3000, more preferably 180, from the viewpoint of improving the heat resistance and light resistance of the cured product. It is -2000. The weight average molecular weight of the siloxane derivative (G) having two or more epoxy groups in the molecule can be measured, for example, by GPC (gel permeation chromatography) as a value in terms of standard polystyrene.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)が有するエポキシ基の数(一分子中のエポキシ基の数)は、2個以上であれば特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、2~4個が好ましい。 The number of epoxy groups (number of epoxy groups in one molecule) possessed by the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited as long as it is two or more, but the heat resistance of the cured product From the viewpoint of improving the light resistance, two to four are preferable.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)のエポキシ当量(JIS K7236に準拠)は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、180~400が好ましく、より好ましくは240~400、さらに好ましくは240~350である。 The epoxy equivalent (based on JIS K 7236) of the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited, but it is preferably 180 to 400 from the viewpoint of improving the heat resistance and light resistance of the cured product. More preferably, it is 240 to 400, and more preferably 240 to 350.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)におけるエポキシ基は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、脂肪族環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)であることが好ましく、中でも、シクロヘキセンオキシド基であることが特に好ましい。 The epoxy group in the siloxane derivative (G) having two or more epoxy groups in the molecule is not particularly limited, but from the viewpoint of improving the heat resistance and light resistance of the cured product, adjacent two carbons constituting an aliphatic ring It is preferable that it is an epoxy group (alicyclic epoxy group) comprised by an atom and an oxygen atom, and it is especially preferable that it is a cyclohexene oxide group especially.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)としては、具体的には、例えば、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8,8-ヘキサメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,2,4,6,6,8-ヘキサメチル-シクロテトラシロキサン、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6,8-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,6-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8-ペンタメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6-プロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,6,8-テトラ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,8-テトラメチル-シクロテトラシロキサン、エポキシ基を有するシルセスキオキサン等が挙げられる。より具体的には、例えば、下記式(S-1)~(S-7)で表される一分子中に2以上のエポキシ基を有する環状シロキサン等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Specific examples of the siloxane derivative (G) having two or more epoxy groups in the molecule include 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] ] -2,4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,2 , 4,6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6,8-dipropyl-2, 4,6,8-Tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,6-dipropyl-2,4, 6,8-Tetramethyl-cyclotetrasiloxane, 2,4,8- [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6,8-pentamethyl-cyclotetrasiloxane, 2,4,8-tri [2- ( 3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6-propyl-2,4,6,8-tetramethyl-cyclotetrasiloxane, 2,4,6,8-tetra [2- (2 3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,8-tetramethyl-cyclotetrasiloxane, silsesquioxane having an epoxy group, and the like. More specifically, for example, cyclic siloxanes having two or more epoxy groups in one molecule represented by the following formulas (S-1) to (S-7) can be mentioned.
Figure JPOXMLDOC01-appb-C000024
 また、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)としては、例えば、特開2008-248169号公報に記載の脂環エポキシ基含有シリコーン樹脂や、特開2008-19422号公報に記載の一分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂などを用いることもできる。 Moreover, as a siloxane derivative (G) having two or more epoxy groups in the molecule, for example, an alicyclic epoxy group-containing silicone resin described in JP-A-2008-248169, or JP-A-2008-19422 It is also possible to use an organopolysilsesquioxane resin or the like having at least two epoxy functional groups in one molecule.
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)としては、例えば、分子内に2以上のエポキシ基を有する環状シロキサンである、商品名「X-40-2678」(信越化学工業(株)製)、商品名「X-40-2670」(信越化学工業(株)製)、商品名「X-40-2720」(信越化学工業(株)製)などの市販品を用いることもできる。 As a siloxane derivative (G) having two or more epoxy groups in the molecule, for example, cyclic siloxane having two or more epoxy groups in the molecule, trade name “X-40-2678” (Shin-Etsu Chemical Co., Ltd. (Trade name) “X-40-2670” (Shin-Etsu Chemical Co., Ltd.), trade name “X-40-2720” (Shin-Etsu Chemical Co., Ltd.), etc. may be used. .
 分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の使用量(含有量)は、特に限定されないが、成分(A)、成分(B)、及び成分(G)の合計量(100重量%)に対して、5~90重量%が好ましく、より好ましくは5~85重量%、さらに好ましくは5~80重量%、特に好ましくは8~75重量%である。分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の使用量が5重量%未満であると、硬化物の耐熱性、耐光性が低下する場合がある。一方、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の使用量が90重量%を超えると、硬化物の耐クラック性が低下する場合がある。 Although the usage-amount (content) of the siloxane derivative (G) which has a 2 or more epoxy group in a molecule | numerator is not specifically limited, The total amount (100 weight) of component (A), component (B), and component (G) % Is preferably 5 to 90% by weight, more preferably 5 to 85% by weight, still more preferably 5 to 80% by weight, and particularly preferably 8 to 75% by weight. When the amount of the siloxane derivative (G) having two or more epoxy groups in the molecule is less than 5% by weight, the heat resistance and light resistance of the cured product may be reduced. On the other hand, when the amount of the siloxane derivative (G) having two or more epoxy groups in the molecule exceeds 90% by weight, the crack resistance of the cured product may be reduced.
 エポキシ基を有する化合物(エポキシ樹脂)の総量(100重量%)に対する、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、及び分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の総量は、特に限定されないが、耐熱性、耐光性、及び耐クラック性向上の観点で、30重量%以上(例えば、30~100重量%)が好ましく、40重量%以上が特に好ましい。 Alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), and siloxane having two or more epoxy groups in the molecule with respect to the total amount (100% by weight) of the compound having epoxy group (epoxy resin) Although the total amount of the derivative (G) is not particularly limited, it is preferably 30% by weight or more (for example, 30 to 100% by weight) and particularly preferably 40% by weight or more from the viewpoint of improving heat resistance, light resistance and crack resistance. preferable.
[脂環式ポリエステル樹脂(H)]
 上記脂環式ポリエステル樹脂(H)は、脂環構造(脂肪族環構造)を少なくとも有するポリエステル樹脂である。脂環式ポリエステル樹脂(H)は、硬化物の耐熱性、耐光性、耐クラック性を向上させ、光半導体装置の光度低下を抑制する役割を担う。特に、硬化物の耐熱性、耐光性、耐クラック性向上の観点で、脂環式ポリエステル樹脂(H)は、主鎖に脂環(脂環構造)を有する脂環式ポリエステルであることが好ましい。即ち、脂環式ポリエステル樹脂(H)は、脂環を構成する炭素原子の一部又は全部によりポリマー主鎖が構成されたポリエステル樹脂であることが好ましい。なお、脂環式ポリエステル樹脂(H)は単独で、又は2種以上を組み合わせて使用できる。
[Alicyclic polyester resin (H)]
The said alicyclic polyester resin (H) is a polyester resin which has an alicyclic structure (aliphatic ring structure) at least. The alicyclic polyester resin (H) improves the heat resistance, light resistance and crack resistance of the cured product and plays a role in suppressing the decrease in light intensity of the optical semiconductor device. In particular, from the viewpoint of improving the heat resistance, light resistance and crack resistance of the cured product, the alicyclic polyester resin (H) is preferably an alicyclic polyester having an alicyclic (alicyclic structure) in its main chain. . That is, the alicyclic polyester resin (H) is preferably a polyester resin in which a polymer main chain is constituted by a part or all of carbon atoms constituting an alicyclic ring. In addition, an alicyclic polyester resin (H) can be used individually or in combination of 2 or more types.
 脂環式ポリエステル樹脂(H)における脂環構造としては、特に限定されないが、例えば、単環炭化水素構造や橋かけ環炭化水素構造(例えば、二環系炭化水素等)などが挙げられ、特に、脂環(脂環を構成する炭素-炭素結合)が全て炭素-炭素単結合により構成された、飽和単環炭化水素構造や飽和橋かけ環炭化水素構造が好ましい。また、上記脂環式ポリエステル樹脂(H)における脂環構造は、ジカルボン酸由来の構成単位とジオール由来の構成単位のいずれか一方のみに導入されていてもよいし、両方共に導入されていてもよく、特に限定されない。 The alicyclic structure in the alicyclic polyester resin (H) is not particularly limited, and examples thereof include a monocyclic hydrocarbon structure and a bridged ring hydrocarbon structure (eg, bicyclic hydrocarbon etc.) And a saturated single ring hydrocarbon structure or a saturated bridged ring hydrocarbon structure in which an alicyclic ring (a carbon-carbon bond constituting an alicyclic ring) is entirely constituted by a carbon-carbon single bond. In addition, the alicyclic structure in the above-mentioned alicyclic polyester resin (H) may be introduced into either one of the structural unit derived from dicarboxylic acid and the structural unit derived from diol, or both may be introduced. Well, not particularly limited.
 脂環式ポリエステル樹脂(H)は、脂環構造を有するモノマー成分由来の構成単位を有する。上記脂環構造を有するモノマーとしては、公知乃至慣用の脂環構造を有するジオールやジカルボン酸が挙げられ、特に限定されないが、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ハイミック酸、1,4-デカヒドロナフタレンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、2,6-デカヒドロナフタレンジカルボン酸、2,7-デカヒドロナフタレンジカルボン酸などの脂環構造を有するジカルボン酸(酸無水物等の誘導体も含む)等;1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロペンタンジメタノール、1,3-シクロペンタンジメタノール、ビス(ヒドロキシメチル)トリシクロ[5.2.1.0]デカン等の5員環ジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ビス-(4-ヒドロキシシクロヘキシル)プロパン等の6員環ジオール、水素添加ビスフェノールAなどの脂環構造を有するジオール(これらの誘導体も含む)等が挙げられる。 The alicyclic polyester resin (H) has a structural unit derived from a monomer component having an alicyclic structure. Examples of the monomer having an alicyclic structure include diols and dicarboxylic acids having a known or common alicyclic structure, and are not particularly limited. For example, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, hymic acid, 1,4-decahydronaphthalenedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 2,6-decahydronaphthalene Dicarboxylic acids (including derivatives such as acid anhydrides) having an alicyclic structure such as dicarboxylic acids and 2,7-decahydronaphthalenedicarboxylic acid, etc .; 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1 , 2-cyclopentadimethanol, 1,3-cyclopentadimethanol 5-membered ring diols such as bis (hydroxymethyl) tricyclo [5.2.1.0] decane, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanediol 6-membered ring diols such as methanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2-bis- (4-hydroxycyclohexyl) propane, and diols having an alicyclic structure such as hydrogenated bisphenol A (Including their derivatives) and the like.
 脂環式ポリエステル樹脂(H)は、脂環構造を有しないモノマー成分に由来する構成単位を有していてもよい。上記脂環構造を有しないモノマー成分としては、特に限定されないが、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸(酸無水物等の誘導体も含む);アジピン酸、セバシン酸、アゼライン酸、コハク酸、フマル酸、マレイン酸等の脂肪族ジカルボン酸(酸無水物等の誘導体も含む);エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチルペンタンジオール、ジエチレングリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、キシリレングリコール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などのジオール(これらの誘導体も含む)等が挙げられる。なお、上記脂環構造を有しないジカルボン酸やジオールに適宜な置換基(例えば、アルキル基、アルコキシ基、ハロゲン原子等)が結合したものも、脂環構造を有しないモノマー成分に含まれる。 The alicyclic polyester resin (H) may have a structural unit derived from a monomer component having no alicyclic structure. The monomer component not having an alicyclic structure is not particularly limited, and examples thereof include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalene dicarboxylic acid (including derivatives such as acid anhydrides); adipic acid Aliphatic dicarboxylic acids such as sebacic acid, azelaic acid, succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides); ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propane Diol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, diethylene glycol, 3-methyl-1,5- Pentanediol, 2-methyl-1,3-propanediol, 2,2-diethyl- , 3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, xylylene glycol, ethylene oxide adduct of bisphenol A, and propylene oxide adduct of bisphenol A (including their derivatives) Etc. In addition, those in which an appropriate substituent (for example, an alkyl group, an alkoxy group, a halogen atom, etc.) is bonded to the dicarboxylic acid or diol having no alicyclic structure are also included in the monomer component having no alicyclic structure.
 脂環式ポリエステル樹脂(H)を構成する全モノマー単位(全モノマー成分)(100モル%)に対する脂環を有するモノマー単位の割合は、特に限定されないが、10モル%以上(例えば、10~80モル%)が好ましく、より好ましくは25~70モル%、さらに好ましくは40~60モル%である。脂環を有するモノマー単位の割合が10モル%未満であると、硬化物の耐熱性、耐光性、耐クラック性が低下する場合がある。 Although the ratio of the monomer unit having an alicyclic group to the total monomer units (all monomer components) (100 mol%) constituting the alicyclic polyester resin (H) is not particularly limited, it is 10 mol% or more (for example, 10 to 80) It is preferably mol%), more preferably 25 to 70 mol%, still more preferably 40 to 60 mol%. When the proportion of monomer units having an alicyclic group is less than 10 mol%, the heat resistance, light resistance and crack resistance of the cured product may be reduced.
 脂環式ポリエステル樹脂(H)としては、特に、下記式(2)~(4)で表される構成単位を少なくとも一種以上含む脂環式ポリエステル樹脂が好ましい。 As the alicyclic polyester resin (H), an alicyclic polyester resin containing at least one or more structural units represented by the following formulas (2) to (4) is particularly preferable.
Figure JPOXMLDOC01-appb-C000025
(式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合して環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000025
(Wherein, R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms. R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain And the two selected from R 4 to R 7 may combine to form a ring).
Figure JPOXMLDOC01-appb-C000026
(式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合した環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000026
(Wherein, R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms. R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
Figure JPOXMLDOC01-appb-C000027
(式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合した環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000027
(Wherein, R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms. R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
 上記式(2)~(4)で表される構成単位の好ましい具体例としては、例えば、下記式(5)で表される4-メチル-1,2-シクロヘキサンジカルボン酸及びエチレングリコール由来の構成単位が挙げられる。当該構成単位を有する脂環式ポリエステル樹脂(H)は、例えば、メチルヘキサヒドロ無水フタル酸とエチレングリコールとを重縮合することにより得られる。
Figure JPOXMLDOC01-appb-C000028
As a preferable specific example of the structural unit represented by said Formula (2)-(4), the structure derived from 4-methyl- 1, 2- cyclohexane dicarboxylic acid and ethylene glycol represented by following formula (5) is mentioned, for example Unit is mentioned. The alicyclic polyester resin (H) having the structural unit can be obtained, for example, by polycondensation of methylhexahydrophthalic anhydride and ethylene glycol.
Figure JPOXMLDOC01-appb-C000028
 また、上記式(2)~(4)で表される構成単位の他の好ましい具体例としては、例えば、下記式(6)で表される1,4-シクロヘキサンジカルボン酸及びネオペンチルグリコール由来の構成単位が挙げられる。当該構成単位を有する脂環式ポリエステル樹脂(H)は、例えば、1,4-シクロヘキサンジカルボン酸とネオペンチルグリコールとを重縮合することにより得られる。
Figure JPOXMLDOC01-appb-C000029
Moreover, as another preferable specific example of the structural unit represented by said Formula (2)-(4), it is derived from the 1, 4- cyclohexane dicarboxylic acid represented by following formula (6), and neopentyl glycol, for example A structural unit is mentioned. The alicyclic polyester resin (H) having the structural unit can be obtained, for example, by polycondensation of 1,4-cyclohexanedicarboxylic acid and neopentyl glycol.
Figure JPOXMLDOC01-appb-C000029
 なお、脂環式ポリエステル樹脂(H)の末端構造は、特に限定されず、水酸基、カルボキシル基であってもよいし、これら水酸基やカルボキシル基が適宜変性された構造(例えば、末端の水酸基がモノカルボン酸や酸無水物によりエステル化された構造や、末端のカルボキシル基がアルコールによりエステル化された構造など)であってもよい。 The terminal structure of the alicyclic polyester resin (H) is not particularly limited, and may be a hydroxyl group or a carboxyl group, or a structure in which these hydroxyl groups or carboxyl groups are appropriately modified (for example, the terminal hydroxyl group is mono It may be a structure esterified with a carboxylic acid or an acid anhydride, a structure in which a terminal carboxyl group is esterified with an alcohol, and the like.
 脂環式ポリエステル樹脂(H)が上記式(2)~(4)で表される構成単位を有する場合、該構成単位の含有量の合計量(合計含有量;該構成単位を構成する全モノマー単位)は、特に限定されないが、脂環式ポリエステル樹脂(H)の全構成単位(100モル%;脂環式ポリエステル樹脂(H)を構成する全モノマー単位)に対し、20モル%以上(例えば、20~100モル%)が好ましく、より好ましくは50~100モル%、さらに好ましくは80~100モル%である。上記式(2)~(4)で表される構成単位の含有量が20モル%未満であると、硬化物の耐熱性、耐光性、耐クラック性が低下する場合がある。 When the alicyclic polyester resin (H) has a constituent unit represented by the above formulas (2) to (4), the total content of the constituent units (total content; all monomers constituting the constituent unit The unit) is not particularly limited, but is 20 mol% or more (eg, 100 mol%; all monomer units constituting the alicyclic polyester resin (H)) of the alicyclic polyester resin (H) 20 to 100 mol%) is preferable, more preferably 50 to 100 mol%, and still more preferably 80 to 100 mol%. When the content of the structural unit represented by the above formulas (2) to (4) is less than 20 mol%, the heat resistance, light resistance and crack resistance of the cured product may be lowered.
 脂環式ポリエステル樹脂(H)の数平均分子量は、特に限定されないが、300~100000が好ましく、より好ましくは300~30000である。脂環式ポリエステル樹脂(H)の数平均分子量が300未満であると、硬化物の強靭性が十分でなく、耐クラック性が低下する場合がある。一方、脂環式ポリエステル樹脂(H)の数平均分子量が100000を超えると、他の成分(例えば、硬化剤(D))との相溶性が低下し、硬化物の機械物性に悪影響が及び、耐クラック性が低下する場合がある。なお、脂環式ポリエステル樹脂(H)の数平均分子量は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)法により、標準ポリスチレン換算の値として測定することができる。 The number average molecular weight of the alicyclic polyester resin (H) is not particularly limited, but is preferably 300 to 100,000, and more preferably 300 to 30,000. If the number average molecular weight of the alicyclic polyester resin (H) is less than 300, the toughness of the cured product may not be sufficient, and the crack resistance may be reduced. On the other hand, when the number average molecular weight of the alicyclic polyester resin (H) exceeds 100,000, the compatibility with other components (for example, the curing agent (D)) decreases, which adversely affects the mechanical properties of the cured product, Crack resistance may be reduced. In addition, the number average molecular weight of alicyclic polyester resin (H) can be measured as a value of standard polystyrene conversion, for example by GPC (gel permeation chromatography) method.
 なお、脂環式ポリエステル樹脂(H)は1種を単独で、又は2種以上を組み合わせて使用することができる。 In addition, an alicyclic polyester resin (H) can be used individually by 1 type or in combination of 2 or more types.
 脂環式ポリエステル樹脂(H)は、特に限定されず、公知乃至慣用の方法により製造することができる。より詳しくは、例えば、脂環式ポリエステル樹脂(H)を、上述のジカルボン酸とジオールとを常法により重縮合させることにより得てもよいし、上述のジカルボン酸の誘導体(酸無水物、エステル、酸ハロゲン化物等)とジオールとを常法により重縮合させることにより得てもよい。 The alicyclic polyester resin (H) is not particularly limited, and can be produced by a known or conventional method. More specifically, for example, the alicyclic polyester resin (H) may be obtained by polycondensation of the above-mentioned dicarboxylic acid and diol according to a conventional method, or a derivative of the above-mentioned dicarboxylic acid (acid anhydride, ester The acid halide may be obtained by polycondensation of an acid halide and the like with a diol according to a conventional method.
 本発明の硬化性エポキシ樹脂組成物において、脂環式ポリエステル樹脂(H)の配合量(含有量)は、特に限定されないが、硬化剤(D)を必須成分とする場合、脂環式ポリエステル樹脂(H)と硬化剤(D)の合計量(100重量%)に対して、1~60重量%が好ましく、より好ましくは5~30重量%である。脂環式ポリエステル樹脂(H)の配合量が1重量%未満であると、硬化物の耐クラック性が低下する場合がある。一方、脂環式ポリエステル樹脂(H)の配合量が60重量%を超えると、硬化物の耐熱性が低下する場合がある。 In the curable epoxy resin composition of the present invention, the compounding amount (content) of the alicyclic polyester resin (H) is not particularly limited, but when the curing agent (D) is an essential component, the alicyclic polyester resin The amount is preferably 1 to 60% by weight, more preferably 5 to 30% by weight, based on the total amount (100% by weight) of (H) and the curing agent (D). The crack resistance of a hardened | cured material may fall that the compounding quantity of alicyclic polyester resin (H) is less than 1 weight%. On the other hand, when the compounding quantity of alicyclic polyester resin (H) exceeds 60 weight%, the heat resistance of hardened | cured material may fall.
 一方、本発明の硬化性エポキシ樹脂組成物が硬化触媒(E)を必須成分とする場合、脂環式ポリエステル樹脂(H)の配合量(含有量)は、特に限定されないが、脂環式ポリエステル樹脂(H)と硬化触媒(E)の合計量(100重量%)に対して、50~99重量%が好ましく、より好ましくは65~99重量%である。脂環式ポリエステル樹脂(H)の配合量が50重量%未満であると、硬化物の耐クラック性が低下する場合がある。一方、脂環式ポリエステル樹脂(H)の配合量が99重量%を超えると、硬化物の耐熱性が低下する場合がある。 On the other hand, when the curable epoxy resin composition of the present invention contains the curing catalyst (E) as an essential component, the compounding amount (content) of the alicyclic polyester resin (H) is not particularly limited, but the alicyclic polyester The amount is preferably 50 to 99% by weight, more preferably 65 to 99% by weight, based on the total amount (100% by weight) of the resin (H) and the curing catalyst (E). The crack resistance of a hardened | cured material may fall that the compounding quantity of alicyclic polyester resin (H) is less than 50 weight%. On the other hand, when the compounding quantity of alicyclic polyester resin (H) exceeds 99 weight%, the heat resistance of hardened | cured material may fall.
[レベリング剤]
 本発明の硬化性エポキシ樹脂組成物は、さらに、シリコーン系レベリング剤(ポリシロキサン系レベリング剤)及びフッ素系レベリング剤からなる群より選ばれた少なくとも1種のレベリング剤を含むことが好ましい。本発明の硬化性エポキシ樹脂組成物は、上記レベリング剤を含むことにより、より高度な耐熱性、耐光性、及び耐クラック性を示す硬化物を形成でき、該硬化物を用いて作製した光半導体装置は、経時での光度低下がいっそう生じにくい。
[Leveling agent]
The curable epoxy resin composition of the present invention preferably further contains at least one leveling agent selected from the group consisting of a silicone-based leveling agent (polysiloxane-based leveling agent) and a fluorine-based leveling agent. The curable epoxy resin composition of the present invention can form a cured product exhibiting higher heat resistance, light resistance, and crack resistance by containing the above-mentioned leveling agent, and an optical semiconductor produced using the cured product The device is even less prone to loss of light intensity over time.
(シリコーン系レベリング剤)
 上記シリコーン系レベリング剤とは、ポリシロキサン骨格を有する化合物を含むレベリング剤である。上記シリコーン系レベリング剤としては、公知乃至慣用のシリコーン系レベリング剤を使用でき、特に限定されないが、例えば、商品名「BYK-300」、「BYK-301/302」、「BYK-306」、「BYK-307」、「BYK-310」、「BYK-315」、「BYK-313」、「BYK-320」、「BYK-322」、「BYK-323」、「BYK-325」、「BYK-330」、「BYK-331」、「BYK-333」、「BYK-337」、「BYK-341」、「BYK-344」、「BYK-345/346」、「BYK-347」、「BYK-348」、「BYK-349」、「BYK-370」、「BYK-375」、「BYK-377」、「BYK-378」、「BYK-UV3500」、「BYK-UV3510」、「BYK-UV3570」、「BYK-3550」、「BYK-SILCLEAN3700」、「BYK-SILCLEAN3720」(以上、ビックケミー・ジャパン(株)製)、商品名「AC FS 180」、「AC FS 360」、「AC S 20」(以上、Algin Chemie製)、商品名「ポリフローKL-400X」、「ポリフローKL-400HF」、「ポリフローKL-401」、「ポリフローKL-402」、「ポリフローKL-403」、「ポリフローKL-404」(以上、共栄社化学(株)製)、商品名「KP-323」、「KP-326」、「KP-341」、「KP-104」、「KP-110」、「KP-112」(以上、信越化学工業(株)製)、商品名「LP-7001」、「LP-7002」、「8032 ADDITIVE」、「57 ADDITIVE」、「L-7604」、「FZ-2110」、「FZ-2105」、「67 ADDITIVE」、「8618 ADDITIVE」、「3 ADDITIVE」、「56 ADDITIVE」(以上、東レ・ダウコーニング(株)製)などの市販品を使用することができる。
(Silicone-based leveling agent)
The silicone-based leveling agent is a leveling agent containing a compound having a polysiloxane skeleton. As the silicone-based leveling agent, known or commonly used silicone-based leveling agents can be used and are not particularly limited. For example, trade names “BYK-300”, “BYK-301 / 302”, “BYK-306”, “ BYK-307 "," BYK-310 "," BYK-315 "," BYK-313 "," BYK-320 "," BYK-322 "," BYK-323 "," BYK-325 "," BYK-325 " 330 "," BYK-331 "," BYK-333 "," BYK-337 "," BYK-341 "," BYK-344 "," BYK-345 / 346 "," BYK-347 "," BYK-345 " 348 "," BYK-349 "," BYK-370 "," BYK-375 "," BYK-377 "," BYK-378 "," BYK-UV3500 "," YK-UV 3510 "," BYK-UV 3570 "," BYK-3550 "," BYK-SILCLEAN 3700 "," BYK-SILCLEAN 3720 "(above, made by Big Chemie Japan KK), trade name" AC FS 180 "," AC FS 360 "," AC S 20 "(all manufactured by Algin Chemie), trade names" Polyflow KL-400X "," Polyflow KL-400HF "," Polyflow KL-401 "," Polyflow KL-402 "," Polyflow KL -403 "," Polyflow KL-404 "(all manufactured by Kyoeisha Chemical Co., Ltd.), trade names" KP-323 "," KP-326 "," KP-341 "," KP-104 "," KP- 110 "," KP-112 "(hereinafter, Shin-Etsu Chemical Co., Ltd. product), trade name" LP-7001 ", LP-7002, "8032 ADDITIVE", "57 ADDITIVE", "L-7604", "FZ-2110", "FZ-2105", "67 ADDITIVE", "8618 ADDITIVE", "3 ADDITIVE", "56 Commercially available products such as "ADDITIVE" (hereinafter, Toray Dow Corning Co., Ltd.) can be used.
 上記ポリシロキサン骨格を有する化合物としては、特に、下記式(7)で表される構造単位(繰り返し構造単位)を少なくとも有するシリコーン系重合体(但し、成分(C)を除く)が好ましい。即ち、上記シリコーン系レベリング剤は、上記シリコーン系重合体を少なくとも含むレベリング剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000030
Especially as a compound which has the said polysiloxane skeleton, the silicone type polymer (However, component (C) is remove | excluded) which has a structural unit (repeating structural unit) represented by following formula (7) at least is preferable. That is, the silicone-based leveling agent is preferably a leveling agent containing at least the silicone-based polymer.
Figure JPOXMLDOC01-appb-C000030
 上記式(7)中のR8は、置換基を有していてもよい直鎖又は分岐鎖状のアルキル基を示す。上記直鎖又は分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基(n-ブチル基)、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基などの炭素数1~30の直鎖又は分岐鎖状のアルキル基が挙げられる。 R 8 in the above formula (7) represents a linear or branched alkyl group which may have a substituent. Examples of the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group (n-butyl group), an isobutyl group, an s-butyl group, a t-butyl group, and pentyl. And C 1 -C 30 linear or branched alkyl groups such as groups.
 上記R8において、直鎖又は分岐鎖状のアルキル基が有していてもよい置換基としては、特に限定されないが、例えば、保護基で保護されていてもよいヒドロキシル基[例えば、ヒドロキシル基、置換オキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等の炭素数1~4のアルコキシ基)等]、保護基で保護されていてもよいカルボキシル基[例えば、-COORa基等:Raは、水素原子又はアルキル基を示し、該アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ヘキシル基等の炭素数1~6の直鎖又は分岐鎖状のアルキル基が挙げられる]、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、エポキシ基、グリシジル基などが挙げられる。 The substituent that the linear or branched alkyl group may have in R 8 is not particularly limited, and examples thereof include a hydroxyl group which may be protected by a protecting group [eg, a hydroxyl group, A substituted oxy group (for example, an alkoxy group having a carbon number of 1 to 4 such as methoxy group, ethoxy group and propoxy group) and the like, a carboxyl group which may be protected by a protecting group [for example, -COOR a group and the like: Ra Represents a hydrogen atom or an alkyl group, and examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, a t-butyl group and a hexyl group C1-C6 linear or branched alkyl group is mentioned], acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, vinyl , Propenyl group, an epoxy group, such as glycidyl groups.
 上記式(7)中のR9は、置換基を有していてもよい直鎖若しくは分岐鎖状のアルキル基、置換基を有していてもよいアラルキル基、ポリエーテル鎖を含む有機基、又はポリエスエル鎖を含む有機基を示す。上記R9における直鎖若しくは分岐鎖状のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基(n-ブチル基)、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基などの炭素数1~30の直鎖又は分岐鎖状のアルキル基が挙げられる。また、上記アラルキル基としては、特に限定されないが、例えば、ベンジル基、メチルベンジル基、フェネチル基、メチルフェネチル基、フェニルプロピル基、ナフチルメチル基などが挙げられる。 R 9 in the above formula (7) is a linear or branched alkyl group which may have a substituent, an aralkyl group which may have a substituent, an organic group containing a polyether chain, Or an organic group containing a polyester chain. The linear or branched alkyl group for R 9 is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group (n-butyl group), an isobutyl group and an s-butyl group. Examples thereof include linear or branched alkyl groups having 1 to 30 carbon atoms such as a group, t-butyl group and pentyl group. The aralkyl group is not particularly limited, and examples thereof include a benzyl group, a methylbenzyl group, a phenethyl group, a methylphenethyl group, a phenylpropyl group and a naphthylmethyl group.
 上記R9において、直鎖又は分岐鎖状のアルキル基が有していてもよい置換基、アラルキル基が有していてもよい置換基としては、特に限定されないが、例えば、上述のR8において例示した置換基などが挙げられる。 The substituent that the linear or branched alkyl group may have in R 9 and the substituent that the aralkyl group may have is not particularly limited, and for example, in R 8 described above The exemplified substituents and the like can be mentioned.
 上記R9におけるポリエーテル鎖を含む有機基とは、ポリエーテル構造を少なくとも含む一価の有機基である。上記ポリエーテル鎖を含む有機基におけるポリエーテル構造としては、エーテル結合を複数有する構造であればよく、特に限定されないが、例えば、ポリエチレングリコール構造(ポリエチレンオキサイド構造)、ポリプロピレングリコール構造(ポリプロピレンオキサイド構造)、ポリブチレングリコール(ポリテトラメチレングリコール)構造、複数種のアルキレングリコール(又はアルキレンオキサイド)に由来するポリエーテル構造(例えば、ポリ(プロピレングリコール/エチレングリコール)構造など)等のポリオキシアルキレン構造が挙げられる。なお、複数種のアルキレングリコールに由来するポリエーテル構造における、それぞれのアルキレングリコールの付加形態は、ブロック型(ブロック共重合型)であってもよいし、ランダム型(ランダム共重合型)であってもよい。 The organic group containing a polyether chain in R 9 is a monovalent organic group containing at least a polyether structure. The polyether structure in the organic group containing a polyether chain is not particularly limited as long as it has a structure having a plurality of ether bonds, and examples thereof include polyethylene glycol structure (polyethylene oxide structure) and polypropylene glycol structure (polypropylene oxide structure) And polyoxyalkylene structures such as a polybutylene glycol (polytetramethylene glycol) structure, a polyether structure derived from a plurality of alkylene glycols (or alkylene oxides) (eg, a poly (propylene glycol / ethylene glycol) structure, etc.) Be The addition form of each alkylene glycol in the polyether structure derived from plural kinds of alkylene glycols may be block type (block copolymer type) or random type (random copolymer type), It is also good.
 上記ポリエーテル鎖を含む有機基は、上記ポリエーテル構造のみからなる有機基であってもよいし、上記ポリエーテル構造の1又は2以上と、1又は2以上の連結基(1以上の原子を有する二価の基)とが連結した構造を有する有機基であってもよい。上記ポリエーテル鎖を含む有機基における連結基としては、例えば、2価の炭化水素基(特に、直鎖又は分岐鎖状のアルキレン基)、チオエーテル基(-S-)、エステル基(-COO-)、アミド基(-CONH-)、カルボニル基(-CO-)、カーボネート基(-OCOO-)、これらが2以上結合した基などが挙げられる。 The organic group containing the above polyether chain may be an organic group consisting only of the above polyether structure, or one or more of the above polyether structure, and one or more of the linking groups (one or more atoms It may be an organic group having a structure in which it is connected to a divalent group having one). The linking group in the organic group containing the polyether chain is, for example, a divalent hydrocarbon group (in particular, a linear or branched alkylene group), a thioether group (-S-), an ester group (-COO- And an amide group (-CONH-), a carbonyl group (-CO-), a carbonate group (-OCOO-), and a group in which two or more of these are bonded.
 なお、上記ポリエーテル鎖を含む有機基は、上述のR8において例示した置換基(例えば、ヒドロキシル基、カルボキシル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基など)を有していてもよく、例えば、このようなポリエーテル構造を含む有機基として、末端(式(7)におけるケイ素原子に対する反対側の端部)に上記置換基を有する有機基などが挙げられる。 Note that the organic group containing a polyether chain, exemplified substituent in R 8 above (e.g., hydroxyl group, carboxyl group, an acryloyl group, a methacryloyl group, acryloyloxy group, methacryloyloxy group, a vinyl group, such as propenyl For example, as the organic group containing such a polyether structure, an organic group having the above-mentioned substituent at the end (end opposite to the silicon atom in the formula (7)) may be mentioned. Be
 上記R9におけるポリエステル鎖を含む有機基とは、ポリエステル構造を少なくとも含む一価の有機基である。上記ポリエステル鎖を含む有機基におけるポリエステル構造としては、エステル結合を複数有する構造であればよく、特に限定されないが、例えば、脂肪族ポリエステル構造、脂環族ポリエステル構造、芳香族ポリエステル構造、脂肪族/芳香族ポリエステル構造、脂肪族/脂環族ポリエステル構造、脂環族/芳香族ポリエステル構造などが挙げられる。 The organic group containing a polyester chain in R 9 is a monovalent organic group containing at least a polyester structure. The polyester structure in the organic group containing the polyester chain may be any structure having a plurality of ester bonds, and is not particularly limited. Aromatic polyester structures, aliphatic / alicyclic polyester structures, alicyclic / aromatic polyester structures and the like can be mentioned.
 上記ポリエステル構造としては、より具体的には、例えば、ポリカルボン酸(特に、ジカルボン酸)とポリオール(特に、ジオール)の重合により形成されるポリエステル構造が挙げられる。上記ポリカルボン酸としては、特に限定されないが、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸(酸無水物やエステル等の誘導体も含む);アジピン酸、セバシン酸、アゼライン酸、コハク酸、フマル酸、マレイン酸等の脂肪族ジカルボン酸(酸無水物やエステル等の誘導体も含む);1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ハイミック酸、1,4-デカヒドロナフタレンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、2,6-デカヒドロナフタレンジカルボン酸、2,7-デカヒドロナフタレンジカルボン酸などの脂環構造を有するジカルボン酸(酸無水物やエステル等の誘導体も含む)等が挙げられる。上記ポリオールとしては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール(テトラメチレングリコール)、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,6-ヘキサンジオール、2-エチル-1,6-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、3-メチルペンタンジオール、ジエチレングリコール、ジプロピレングリコール、ヘキシレングリコール(2-メチルペンタン-2,4-ジオール)、3-メチル-1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、2,3,5-トリメチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,8-オクタンジオール、1,12-ドデカンジオール、キシリレングリコール、1,3-ジヒドロキシアセトン、ポリブタジエンジオール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などのジオール(これらの誘導体も含む);1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロペンタンジメタノール、1,3-シクロペンタンジメタノール、ビス(ヒドロキシメチル)トリシクロ[5.2.1.0]デカン等の5員環ジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール(1,2-ジメチロールシクロヘキサン)、1,3-シクロヘキサンジメタノール(1,3-ジメチロールシクロヘキサン)、1,4-シクロヘキサンジメタノール(1,4-ジメチロールシクロヘキサン)、2,2-ビス-(4-ヒドロキシシクロヘキシル)プロパン等の6員環ジオール、水素添加ビスフェノールAなどの脂環構造を有するジオール(これらの誘導体も含む)、グリセリン、トリメチロールプロパン、1,2,6-ヘキサントリオール、ジトリメチロールプロパン、マンニトール、ソルビトール、ペンタエリスリトール等の3以上の水酸基を有するポリオール(これらの誘導体も含む)等が挙げられる。上記ポリエステル構造は、それぞれ単独のポリオール、ポリカルボン酸より形成されたものであってもよいし、それぞれ2種以上のポリオール、ポリカルボン酸より形成されたものであってもよい。 More specifically, examples of the polyester structure include a polyester structure formed by polymerization of a polycarboxylic acid (in particular, a dicarboxylic acid) and a polyol (in particular, a diol). The above polycarboxylic acid is not particularly limited, and examples thereof include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalene dicarboxylic acid (including derivatives of acid anhydride and ester); adipic acid and sebacic acid Aliphatic dicarboxylic acids such as azelaic acid, succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides and esters); 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4 Cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, hymic acid, 1,4-decahydronaphthalenedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 2,6-decahydronaphthalenedicarboxylic acid, Having an alicyclic structure such as 2,7-decahydronaphthalene dicarboxylic acid A carboxylic acid (including derivatives such as acid anhydrides and esters). The above-mentioned polyol is not particularly limited, but, for example, ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 2,3-butanediol, 1,4- Butanediol (tetramethylene glycol), neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 2,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4- Trimethyl-1,6-hexanediol, 3-methylpentanediol, diethylene glycol, dipropylene glycol, hexylene glycol (2-methylpentane-2,4-diol), 3-methyl-1,5-pentanediol, 2- Methyl-1,5-pentanediol, 2,3,5-trime 1, 5-pentanediol, 2-methyl-1,3-propanediol, 2, 2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1, Diols such as 8-octanediol, 1,12-dodecanediol, xylylene glycol, 1,3-dihydroxyacetone, polybutadienediol, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A (including their derivatives 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclopentadimethanol, 1,3-cyclopentadimethanol, bis (hydroxymethyl) tricyclo [5.2.1.0) 5-membered ring diol such as decane, 1,2-cyclohexanediol 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol (1,2-dimethylolcyclohexane), 1,3-cyclohexanedimethanol (1,3-dimethylolcyclohexane), 1, 6-membered ring diols such as 4-cyclohexanedimethanol (1,4-dimethylol cyclohexane), 2,2-bis- (4-hydroxycyclohexyl) propane, and diols having an alicyclic structure such as hydrogenated bisphenol A (these compounds Derivatives), glycerin, trimethylolpropane, 1,2,6-hexanetriol, ditrimethylolpropane, mannitol, sorbitol, polyols having three or more hydroxyl groups such as pentaerythritol (including derivatives thereof), and the like. . The polyester structure may be formed of a single polyol or polycarboxylic acid, or may be formed of two or more polyols or polycarboxylic acid.
 また、上記ポリエステル構造としては、例えば、ヒドロキシカルボン酸の重合により形成されるポリエステル構造、該ヒドロキシカルボン酸の環状エステルであるラクトンの重合(開環重合)により形成されるポリエステル構造なども挙げられる。上記ヒドロキシカルボン酸としては、特に限定されないが、例えば、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、o-ヒドロキシ安息香酸(サリチル酸)、3-メトキシ-4-ヒドロキシ安息香酸(バニリン酸)、4-メトキシ-3-ヒドロキシ安息香酸(イソバニリン酸)、3、5-ジメトキシ-4-ヒドロキシ安息香酸(シリンガ酸)、2,6-ジメトキシ-4-ヒドロキシ安息香酸、3-メチル-4-ヒドロキシ安息香酸、4-メチル-3-ヒドロキシ安息香酸、3-フェニル-4-ヒドロキシ安息香酸、4-フェニル-3-ヒドロキシ安息香酸、2-フェニル-4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、3,4-ジヒドロキシケイ皮酸(コーヒー酸)、(E)-3-(4-ヒドロキシ-3-メトキシ-フェニル)プロパン-2-エノール酸(フェルラ酸)、3-(4-ヒドロキシフェニル)-2-プロペノン酸(クマル酸)などのヒドロキシ芳香族カルボン酸;グリコール酸、乳酸、酒石酸、クエン酸等のヒドロキシ脂肪族カルボン酸等が挙げられる。上記ラクトンとしては、特に限定されないが、例えば、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、ξ-エナントラクトン、η-カプリロラクトン等が挙げられる。上記ポリエステル構造は、それぞれ単独のヒドロキシカルボン酸、ラクトンより形成されたものであってもよいし、それぞれ2種以上のヒドロキシカルボン酸、ラクトンより形成されたものであってもよい。 Moreover, as said polyester structure, the polyester structure formed by superposition | polymerization of hydroxycarboxylic acid, the polyester structure formed by superposition | polymerization (ring-opening polymerization) of the lactone which is cyclic ester of this hydroxycarboxylic acid, etc. are mentioned, for example. The hydroxycarboxylic acid is not particularly limited, and examples thereof include p-hydroxybenzoic acid, m-hydroxybenzoic acid, o-hydroxybenzoic acid (salicylic acid), 3-methoxy-4-hydroxybenzoic acid (vanillic acid), 4 -Methoxy-3-hydroxybenzoic acid (isovanillic acid), 3,5-dimethoxy-4-hydroxybenzoic acid (silingic acid), 2,6-dimethoxy-4-hydroxybenzoic acid, 3-methyl-4-hydroxybenzoic acid 4-methyl-3-hydroxybenzoic acid, 3-phenyl-4-hydroxybenzoic acid, 4-phenyl-3-hydroxybenzoic acid, 2-phenyl-4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 3,4-Dihydroxycinnamic acid (caffeic acid), (E) -3- (4-hydroxy-3-methoxy-fu) Hydroxy aromatic carboxylic acids such as propane-2-enolic acid (ferulic acid) and 3- (4-hydroxyphenyl) -2-propenonic acid (coumaric acid); hydroxy acids such as glycolic acid, lactic acid, tartaric acid, and citric acid Aliphatic carboxylic acids and the like can be mentioned. The lactone is not particularly limited, and examples thereof include γ-butyrolactone, δ-valerolactone, ε-caprolactone, ξ-enantholactone, η-caprylolactone and the like. The polyester structure may be formed of a single hydroxycarboxylic acid or lactone, or may be formed of two or more hydroxycarboxylic acids or lactones.
 なお、上記ポリエステル構造は、上記例示の構造に限定されず、例えば、上述のポリカルボン酸とポリオールの重合により形成されるポリエステル構造、ヒドロキシカルボン酸の重合により形成されるポリエステル構造、ラクトンの重合により形成されるポリエステル構造の2種以上が組み合わされた構造であってもよい。 The above-mentioned polyester structure is not limited to the above-exemplified structures, and, for example, a polyester structure formed by polymerization of the above-mentioned polycarboxylic acid and polyol, a polyester structure formed by polymerization of hydroxycarboxylic acid, polymerization of lactone It may be a structure in which two or more of the polyester structures to be formed are combined.
 上記ポリエステル鎖を含む有機基は、上記ポリエステル構造のみからなる有機基であってもよいし、上記ポリエステル構造の1又は2以上と、1又は2以上の連結基とが連結した構造を有する有機基であってもよい。上記ポリエステル鎖を含む有機基における連結基としては、例えば、2価の炭化水素基(特に、直鎖又は分岐鎖状のアルキレン基)、チオエーテル基(-S-)、エステル基(-COO-)、アミド基(-CONH-)、カルボニル基(-CO-)、カーボネート基(-OCOO-)、これらが2以上結合した基などが挙げられる。 The organic group containing the above polyester chain may be an organic group consisting only of the above polyester structure, or an organic group having a structure in which one or more of the above polyester structures are linked to one or more of the linking groups. It may be Examples of the linking group in the organic group containing the polyester chain include a divalent hydrocarbon group (in particular, a linear or branched alkylene group), a thioether group (-S-), an ester group (-COO-) And an amide group (-CONH-), a carbonyl group (-CO-), a carbonate group (-OCOO-), and a group in which two or more of these are bonded.
 なお、上記ポリエステル鎖を含む有機基は、上述のR8において例示した置換基(例えば、ヒドロキシル基、カルボキシル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基など)を有していてもよく、例えば、このようなポリエステル構造を含む有機基として、末端(式(7)におけるケイ素原子に対する反対側の端部)に上記置換基を有する有機基などが挙げられる。 In addition, the organic group containing the said polyester chain is a substituent (for example, a hydroxyl group, a carboxyl group, an acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, a vinyl group, propenyl group etc.) illustrated in the above-mentioned R 8 For example, as the organic group containing such a polyester structure, an organic group having the above-described substituent at the end (the end on the side opposite to the silicon atom in Formula (7)) may be mentioned.
 上記シリコーン系重合体は、繰り返し構造単位として、式(7)で表される構造単位のみを有する重合体であってもよいし、式(7)で表される構造単位以外の構造単位を有する重合体であってもよい。上記シリコーン系重合体における、式(7)で表される構造単位以外の構造単位は、特に限定されないが、例えば、ヒドロシリル基(Si-H)を有する構造単位などが挙げられる。また、上記シリコーン系重合体は、式(7)で表される構造単位を1種のみ有する重合体であってもよいし、式(7)で表される構造単位を2種以上有する重合体であってもよい。また、式(7)で表される構造単位以外の構造単位を2種以上有する重合体であってもよい。 The silicone polymer may be a polymer having only the structural unit represented by Formula (7) as the repeating structural unit, or has a structural unit other than the structural unit represented by Formula (7) It may be a polymer. The structural unit other than the structural unit represented by the formula (7) in the silicone polymer is not particularly limited, and examples thereof include a structural unit having a hydrosilyl group (Si-H). The silicone polymer may be a polymer having only one type of structural unit represented by formula (7), or a polymer having two or more types of structural units represented by formula (7) It may be Moreover, the polymer which has 2 or more types of structural units other than the structural unit represented by Formula (7) may be sufficient.
 上記シリコーン系重合体の具体例としては、例えば、下記式(7a)~(7e)で表される重合体(ポリジメチルシロキサン又は変性ポリジメチルシロキサン)などが挙げられる。
Figure JPOXMLDOC01-appb-C000031
Specific examples of the silicone-based polymer include, for example, polymers (polydimethylsiloxane or modified polydimethylsiloxane) represented by the following formulas (7a) to (7e).
Figure JPOXMLDOC01-appb-C000031
 上記式(7a)で表されるシリコーン系重合体は、ポリジメチルシロキサンである。式(7a)におけるx1(ジメチルシリルオキシ構造単位[-Si(CH32-O-]の繰り返し数)は、特に限定されないが、2~3000が好ましく、より好ましくは3~1500である。 The silicone polymer represented by the above formula (7a) is polydimethylsiloxane. The number x1 (the repeating number of the dimethylsilyloxy structural unit [-Si (CH 3 ) 2 -O-]) in the formula (7a) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500.
 上記式(7b)で表されるシリコーン系重合体は、ポリジメチルシロキサンの側鎖にポリエーテル構造を導入した、ポリジメチルシロキサンのポリエーテル変性体である。式(7b)におけるR10は、水素原子又はメチル基を示す。また、R11は、水素原子、又は置換基を有していてもよい直鎖若しくは分岐鎖状のアルキル基を示す。なお、R11における置換基としては、上述のR8において例示した置換基が挙げられる。式(7b)におけるm1(メチレン構造単位の繰り返し数)は、特に限定されないが、例えば、1~30の範囲から適宜選択することができる。また、n1(オキシエチレン構造単位又はオキシプロピレン構造単位の繰り返し数)は、特に限定されないが、例えば、2~3000の範囲から適宜選択することができる。また、式(7b)におけるy1(ポリエーテル構造(ポリエーテル側鎖)を含む構造単位の繰り返し数)は、特に限定されないが、1~3000が好ましく、より好ましくは3~1500である。さらに、x2(ジメチルシリルオキシ構造単位の繰り返し数)は、特に限定されないが、2~3000が好ましく、より好ましくは3~1500である。なお、式(7b)で表されるシリコーン系重合体における、ポリエーテル構造を有する構造単位とジメチルシリルオキシ構造単位の付加形態は、ブロック型であってもよいし、ランダム型であってもよい。また、y1が2以上の整数である場合、y1が付された括弧で囲まれたポリエーテル構造を有する構造単位は、それぞれ同一であってもよく、異なっていてもよい。 The silicone polymer represented by the above formula (7b) is a polyether modified product of polydimethylsiloxane in which a polyether structure is introduced to the side chain of polydimethylsiloxane. R 10 in the formula (7b) represents a hydrogen atom or a methyl group. Further, R 11 represents a hydrogen atom or a linear or branched alkyl group which may have a substituent. As the substituent in R 11, include the substituents exemplified in R 8 above. Although m1 (the number of repeating of the methylene structural unit) in the formula (7b) is not particularly limited, it can be appropriately selected, for example, from the range of 1 to 30. Further, n1 (the number of repeating of the oxyethylene structural unit or the oxypropylene structural unit) is not particularly limited, but can be appropriately selected, for example, from the range of 2 to 3,000. Further, y1 (the repeating number of the structural unit containing a polyether structure (polyether side chain)) in the formula (7b) is not particularly limited, but is preferably 1 to 3000, more preferably 3 to 1,500. Furthermore, x 2 (the number of repeating dimethylsilyloxy structural units) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500. The addition form of the structural unit having a polyether structure and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7b) may be a block type or a random type. . Further, when y1 is an integer of 2 or more, structural units having a polyether structure enclosed by parentheses with y1 may be identical to or different from each other.
 上記式(7c)で表されるシリコーン系重合体は、ポリジメチルシロキサンの側鎖にメチル基よりも長鎖のアルキル基を導入した、ポリジメチルシロキサンの長鎖アルキル変性体(ポリメチルアルキルシロキサン)である。式(7c)におけるR12は、炭素数2以上の直鎖又は分岐鎖状のアルキル基を示す。式(7c)におけるy2(メチルアルキルシリルオキシ構造単位の繰り返し数)は、特に限定されないが、2~3000が好ましく、より好ましくは3~1500である。また、x3(ジメチルシリルオキシ構造単位の繰り返し数)は、特に限定されないが、0~3000が好ましく、より好ましくは2~1500である。なお、式(7c)で表されるシリコーン系重合体における、メチルアルキルシリルオキシ構造単位とジメチルシリルオキシ構造単位の付加形態は、ブロック型であってもよいし、ランダム型であってもよい。また、y2が付された括弧で囲まれたメチルアルキルシリルオキシ構造単位は、それぞれ同一であってもよく、異なっていてもよい。 The silicone polymer represented by the above formula (7c) is a long-chain alkyl-modified polydimethylsiloxane (polymethylalkylsiloxane) in which an alkyl group having a longer chain than a methyl group is introduced into the side chain of polydimethylsiloxane. It is. R 12 in the formula (7c) represents a linear or branched alkyl group having 2 or more carbon atoms. Although y 2 (the number of repeating units of the methylalkylsilyloxy structural unit) in the formula (7c) is not particularly limited, it is preferably 2 to 3,000, and more preferably 3 to 1,500. Further, x3 (the number of repeating of the dimethylsilyloxy structural unit) is not particularly limited, but is preferably 0 to 3,000, and more preferably 2 to 1,500. The addition form of the methylalkylsilyloxy structural unit and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7c) may be a block type or a random type. In addition, the methylalkylsilyloxy structural units enclosed in parentheses with y2 may be identical to or different from each other.
 上記式(7d)で表されるシリコーン系重合体は、ポリジメチルシロキサンの側鎖にアラルキル基を導入した、ポリジメチルシロキサンのアラルキル変性体である。式(7d)におけるm2(メチレン構造単位の繰り返し数)は、特に限定されないが、例えば、1~30の範囲から適宜選択することができる。また、y3(メチルアラルキルシリルオキシ構造単位の繰り返し数)は、特に限定されないが、2~3000が好ましく、より好ましくは3~1500である。また、x4(ジメチルシリルオキシ構造単位の繰り返し数)は、特に限定されないが、0~3000が好ましく、より好ましくは2~1500である。なお、式(7d)で表されるシリコーン系重合体における、メチルアラルキルシリルオキシ構造単位とジメチルシリルオキシ構造単位の付加形態は、ブロック型であってもよいし、ランダム型であってもよい。また、y3が付された括弧で囲まれたメチルアラルキルシリルオキシ構造単位は、それぞれ同一であってもよく、異なっていてもよい。 The silicone polymer represented by the above formula (7d) is an aralkyl modified product of polydimethylsiloxane in which an aralkyl group is introduced into the side chain of polydimethylsiloxane. The m 2 (the number of repeating of the methylene structural unit) in the formula (7d) is not particularly limited, but can be appropriately selected, for example, from the range of 1 to 30. Further, y 3 (the number of repeating units of the methylaralkylsilyloxy structural unit) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500. Further, x 4 (the number of repeating of the dimethylsilyloxy structural unit) is not particularly limited, but is preferably 0 to 3,000, and more preferably 2 to 1,500. The addition form of the methylaralkylsilyloxy structural unit and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7d) may be a block type or a random type. In addition, the methylaralkylsilyloxy structural units enclosed in parentheses with y3 may be identical to or different from each other.
 上記式(7e)で表されるシリコーン系重合体は、ポリジメチルシロキサンの側鎖にポリエステル構造を導入した、ポリジメチルシロキサンのポリエステル変性体である。式(7e)におけるR13及びR14は、同一又は異なって、2価の有機基(例えば、2価の炭化水素基など)を示す。また、R15は、水素原子、又は置換基を有していてもよい直鎖若しくは分岐鎖状のアルキル基を示す。なお、R15における置換基としては、上述のR8において例示した置換基が挙げられる。式(7e)におけるm3(メチレン構造単位の繰り返し数)は、特に限定されないが、例えば、1~30の範囲から適宜選択することができる。また、n2(ポリオールとポリカルボン酸の縮合構造の繰り返し数)は、特に限定されないが、例えば、2~3000の範囲から適宜選択することができる。また、式(7e)におけるy4(ポリエステル構造(ポリエステル側鎖)を含む構造単位の繰り返し数)は、特に限定されないが、1~3000が好ましく、より好ましくは3~1500である。さらに、x5(ジメチルシリルオキシ構造単位の繰り返し数)は、特に限定されないが、2~3000が好ましく、より好ましくは3~1500である。なお、式(7e)で表されるシリコーン系重合体における、ポリエステル構造を有する構造単位とジメチルシリルオキシ構造単位の付加形態は、ブロック型であってもよいし、ランダム型であってもよい。また、y4が2以上の整数の場合、y4が付された括弧で囲まれたポリエステル構造を含む構造単位は、それぞれ同一であってもよく、異なっていてもよい。 The silicone polymer represented by the above formula (7e) is a polyester modified product of polydimethylsiloxane in which a polyester structure is introduced into the side chain of polydimethylsiloxane. R 13 and R 14 in the formula (7e) are the same or different and each represents a divalent organic group (eg, a divalent hydrocarbon group or the like). Further, R 15 represents a hydrogen atom or a linear or branched alkyl group which may have a substituent. As the substituent in R 15, include the substituents exemplified in R 8 above. The m 3 (the number of repeating methylene structural units) in the formula (7e) is not particularly limited, but can be appropriately selected, for example, from the range of 1 to 30. Further, n2 (the number of repeating of the condensation structure of the polyol and the polycarboxylic acid) is not particularly limited, but can be appropriately selected, for example, from the range of 2 to 3,000. Further, y 4 (the number of repeating of the structural unit containing a polyester structure (polyester side chain)) in the formula (7e) is not particularly limited, but is preferably 1 to 3000, more preferably 3 to 1,500. Further, x5 (the number of repeating dimethylsilyloxy structural units) is not particularly limited, but is preferably 2 to 3,000, and more preferably 3 to 1,500. The addition form of the structural unit having a polyester structure and the dimethylsilyloxy structural unit in the silicone polymer represented by the formula (7e) may be a block type or a random type. Moreover, when y4 is an integer greater than or equal to 2, the structural unit containing the polyester structure enclosed by the parenthesis which y4 was attached | subjected may be respectively the same, and may differ.
 上記シリコーン系重合体は、公知乃至慣用の製造方法により得ることができ、その製造方法は特に限定されないが、例えば、式(7)で表される構造単位に対応する構造を有するモノマーを重合させる方法や、側鎖に反応性基を有するシリコーン系重合体(側鎖に反応性基を有するポリジメチルシロキサン等)の該反応性基に対して、所定の構造を有する化合物(例えば、ポリエーテル構造やポリエステル構造を有する化合物)を反応させて結合させる方法などによって、製造することができる。また、上記シリコーン系重合体としては、市販品を使用することもできる。 The silicone polymer can be obtained by a known or commonly used production method, and the production method is not particularly limited. For example, a polymer having a structure corresponding to the structural unit represented by the formula (7) is polymerized A compound having a predetermined structure (eg, polyether structure) with respect to the reactive group of a silicone polymer having a reactive group in the side chain (polydimethylsiloxane having a reactive group in the side chain, etc.) Or a compound having a polyester structure) by reaction and bonding. Moreover, a commercial item can also be used as said silicone type polymer.
(フッ素系レベリング剤)
 上記フッ素系レベリング剤とは、アルキル基の水素原子の一部又は全部がフッ素原子で置換されたフッ素化アルキル基を有する化合物を含むレベリング剤である。上記フッ素系レベリング剤としては、公知乃至慣用のフッ素系レベリング剤を使用でき、特に限定されないが、例えば、商品名「BYK-340」(ビックケミー・ジャパン(株)製)、商品名「AC 110a」、「AC 100a」(以上、Algin Chemie製)、商品名「メガファックF-114」、「メガファックF-410」、「メガファックF-444」、「メガファックEXP TP-2066」、「メガファックF-430」、「メガファックF-472SF」、「メガファックF-477」、「メガファックF-552」、「メガファックF-553」、「メガファックF-554」、「メガファックF-555」、「メガファックR-94」、「メガファックRS-72-K」、「メガファックRS-75」、「メガファックF-556」、「メガファックEXP TF-1367」、「メガファックEXP TF-1437」、「メガファックF-558」、「メガファックEXP TF-1537」(以上、DIC(株)製)、商品名「FC-4430」、「FC-4432」(以上、住友スリーエム(株)製)、商品名「フタージェント 100」、「フタージェント 100C」、「フタージェント 110」、「フタージェント 150」、「フタージェント 150CH」、「フタージェント A-K」、「フタージェント 501」、「フタージェント 250」、「フタージェント 251」、「フタージェント 222F」、「フタージェント 208G」、「フタージェント 300」、「フタージェント 310」、「フタージェント 400SW」(以上、(株)ネオス製)、商品名「PF-136A」、「PF-156A」、「PF-151N」、「PF-636」、「PF-6320」、「PF-656」、「PF-6520」、「PF-651」、「PF-652」(以上、北村化学産業(株)製)などの市販品を使用することもできる。
(Fluorine-based leveling agent)
The fluorine-based leveling agent is a leveling agent including a compound having a fluorinated alkyl group in which part or all of the hydrogen atoms of the alkyl group are substituted with a fluorine atom. As the fluorine-based leveling agent, any known or commonly used fluorine-based leveling agent can be used, and it is not particularly limited. For example, trade name "BYK-340" (manufactured by Bick Chemie Japan Co., Ltd.), trade name "AC 110a" , "AC 100a" (or more, made by Algin Chemie), trade name "Megafuck F-114", "Megafuck F-410", "Megafuck F-444", "Megafuck EXP TP-2066", "Megafuck "Fuck F-430", "Megafuck F-472SF", "Megafuck F-477", "Megafuck F-552", "Megafuck F-553", "Megafuck F-554", "Megafuck F" -555 "," Megafuck R-94 "," Megafuck RS-72-K "," Megafuck RS-75 "," Megafuck Fuck F-556 "," Megafuck EXP TF-1367 "," Megafuck EXP TF-1437 "," Megafuck F-558 "," Megafuck EXP TF-1537 "(all manufactured by DIC Corporation), Brand name "FC-4430", "FC-4432" (above, Sumitomo 3M Co., Ltd. product), brand name "Futagent 100", "Futagent 100C", "Futagent 110", "Futagent 150", "Ftargent 150 CH", "Furgent AG", "Furgent 501", "Furgent 250", "Furgent 251", "Furgent 222F", "Furgent 208G", "Furgent 300", "Ftargent 310", "Faturgent 400SW" (or more Made by Neos Co., Ltd., trade names "PF-136A", "PF-156A", "PF-151N", "PF-636", "PF-6320", "PF-656", "PF-6520" Alternatively, commercially available products such as “PF-651” and “PF-652” (manufactured by Kitamura Chemical Industrial Co., Ltd.) may be used.
 上記フッ素化アルキル基を有する化合物としては、特に、下記式(8)で表される構造単位(繰り返し構造単位)を少なくとも有する含フッ素アクリル系重合体、下記式(9)で表される構造単位(繰り返し構造単位)を少なくとも有する含フッ素ポリエーテル系重合体が好ましい。即ち、上記フッ素系レベリング剤は、上記含フッ素アクリル系重合体を少なくとも含むレベリング剤、又は、上記含フッ素ポリエーテル系重合体を少なくとも含むレベリング剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
As the compound having a fluorinated alkyl group, in particular, a fluorine-containing acrylic polymer having at least a structural unit (repeating structural unit) represented by the following formula (8), a structural unit represented by the following formula (9) The fluorine-containing polyether polymer which has at least (repeating structural unit) is preferable. That is, the fluorine-based leveling agent is preferably a leveling agent containing at least the fluorine-containing acrylic polymer or a leveling agent containing at least the fluorine-containing polyether polymer.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 上記式(8)中のR16は、水素原子、フッ素原子、又は、水素原子の一部若しくは全部がフッ素原子で置換されていてもよい炭素数1~4の直鎖若しくは分岐鎖状のアルキル基を示す。上記炭素数1~4の直鎖又は分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基等が挙げられる。 R 16 in the above formula (8) is a hydrogen atom, a fluorine atom, or a linear or branched alkyl having 1 to 4 carbon atoms in which part or all of the hydrogen atoms may be substituted with a fluorine atom Indicates a group. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an s-butyl group and a t-butyl group.
 上記式(8)中のR17は、フッ素化アルキル基(水素原子の一部又は全部がフッ素原子で置換されたアルキル基)を示す。上記フッ素化アルキル基としては、特に限定されないが、例えば、ジフルオロメチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、パーフルオロエチルメチル基、2,2,3,3,4,4-ヘキサフルオロブチル基、1,1-ジメチル-2,2,3,3-テトラフルオロプロピル基、1,1-ジメチル-2,2,3,3,3-ペンタフルオロプロピル基、2-(パーフルオロプロピル)エチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、1,1-ジメチル-2,2,3,3,4,4-ヘキサフルオロブチル基、1,1-ジメチル-2,2,3,3,4,4,4-ヘプタフルオロブチル基、2-(パーフルオロブチル)エチル基、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル基、パーフルオロペンチルメチル基、1,1-ジメチル-2,2,3,3,4,4,5,5-オクタフルオロペンチル基、1,1-ジメチル-2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、2-(パーフルオロペンチル)エチル基、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル基、パーフルオロヘキシルメチル基、2-(パーフルオロヘキシル)エチル基、2,2,3,3,4,4,5,5,6,6,7,7,8,8-テトラデカフルオロオクチル基、パーフルオロヘプチルメチル基、2-(パーフルオロヘプチル)エチル基、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニル基、パーフルオロオクチルメチル基、2-(パーフルオロオクチル)エチル基、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-オクタデカフルオロデシル基、パーフルオロノニルメチル基、2,2,3,4,4,4-ヘキサフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基、3,3,4,4,5,5,6,6,7,7,8,8,8-トリドデカフルオロオクチル基などの水素原子の一部がフッ素原子で置換された炭素数1~30の直鎖又は分岐鎖状のアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロ-n-プロピル基、ヘプタフルオロイソプロピル基、ノナフルオロ-n-ブチル基、ノナフルオロイソブチル基、ノナフルオロ-s-ブチル基、ノナフルオロ-t-ブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロヘプチル基、パーフルオロオクチル基、パーフルオロノニル基、パーフルオロデシル基などの炭素数1~30の直鎖又は分岐鎖状のパーフルオロアルキル基などが挙げられる。中でも、上記R17としては、パーフルオロアルキル基が好ましい。 R 17 in the above formula (8) represents a fluorinated alkyl group (an alkyl group in which a part or all of hydrogen atoms are substituted with a fluorine atom). The fluorinated alkyl group is not particularly limited. For example, difluoromethyl group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group , Perfluoroethyl methyl group, 2,2,3,3,4,4-hexafluorobutyl group, 1,1-dimethyl-2,2,3,3-tetrafluoropropyl group, 1,1-dimethyl-2 2,2,3,3,3-pentafluoropropyl group, 2- (perfluoropropyl) ethyl group, 2,2,3,3,4,4,5,5-octafluoropentyl group, 1,1-dimethyl -2,2,3,3,4,4-hexafluorobutyl group, 1,1-dimethyl-2,2,3,3,4,4,4-heptafluorobutyl group, 2- (perfluorobutyl) Ethyl group 2,2,3,3 4,4,5,5,6,6-decafluorohexyl group, perfluoropentylmethyl group, 1,1-dimethyl-2,2,3,3,4,4,5,5-octafluoropentyl group, 1,1-dimethyl-2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 2- (perfluoropentyl) ethyl group, 2,2,3,3,4,4 , 5, 5, 6, 6, 7, 7-dodecafluoroheptyl group, perfluorohexylmethyl group, 2- (perfluorohexyl) ethyl group, 2,2,3,3,4,4,5,5, 6,6,7,7,8,8-tetradecafluorooctyl group, perfluoroheptylmethyl group, 2- (perfluoroheptyl) ethyl group, 2,2,3,3,4,4,5,5, 6,6,7,7,8,8,9,9-hexadecafluorononyl group, puff Orooctylmethyl group, 2- (perfluorooctyl) ethyl group, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10 -Octadecafluorodecyl group, perfluorononylmethyl group, 2,2,3,4,4,4-hexafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 3 3,4,4,5,5,6,6,6-nonafluorohexyl group, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridodeca A linear or branched alkyl group having 1 to 30 carbon atoms in which a part of hydrogen atoms such as fluorooctyl group is substituted with a fluorine atom; trifluoromethyl group, pentafluoroethyl group, heptafluoro-n-propyl group , Heptafluoroisopropyl group, nonafluoro-n-butyl group, nonaflu Carbons such as oroisobutyl group, nonafluoro-s-butyl group, nonafluoro-t-butyl group, perfluoropentyl group, perfluorohexyl group, perfluoroheptyl group, perfluorooctyl group, perfluorononyl group, perfluorodecyl group, etc. Examples include linear or branched perfluoroalkyl groups of 1 to 30 and the like. Among them, a perfluoroalkyl group is preferable as R 17 above.
 なお、上記含フッ素アクリル系重合体は、繰り返し構造単位として、式(8)で表される構造単位のみを有する重合体であってもよいし、式(8)で表される構造単位以外の構造単位を有する重合体であってもよい。また、上記含フッ素アクリル系重合体は、式(8)で表される構造単位を1種のみ有する重合体であってもよいし、式(8)で表される構造単位を2種以上有する重合体であってもよい。また、式(8)で表される構造単位以外の構造単位を2種以上有する重合体であってもよい。 The above-mentioned fluorine-containing acrylic polymer may be a polymer having only the structural unit represented by the formula (8) as a repeating structural unit, and it may be other than the structural unit represented by the formula (8) It may be a polymer having a structural unit. The fluorine-containing acrylic polymer may be a polymer having only one type of structural unit represented by formula (8) or may have two or more types of structural units represented by formula (8) It may be a polymer. Moreover, the polymer which has 2 or more types of structural units other than the structural unit represented by Formula (8) may be sufficient.
 上記含フッ素アクリル系重合体が有していてもよい、式(8)で表される構造単位以外の構造単位としては、特に限定されず、アクリル系重合体のモノマー成分(単量体成分)として公知乃至慣用のモノマーに由来する構造単位などが挙げられる。上記モノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル等のアクリル酸エステル類(水酸基やカルボキシル基等の官能基を有するものも含む);メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等のメタクリル酸エステル類(水酸基やカルボキシル基等の官能基を有するものも含む);アクリルアミド、N-メチルアクリルアミド等のアクリルアミド類;メタクリルアミド等のメタクリルアミド類;アリル化合物;芳香族ビニル化合物、ビニルエーテル類、ビニルエステル類などのビニル化合物などが挙げられる。また、ポリアルキレングリコールエーテルとアクリル酸又はメタクリル酸とのエステルなども上記モノマーとして使用できる。 The structural unit other than the structural unit represented by the formula (8), which the above-mentioned fluorine-containing acrylic polymer may have, is not particularly limited, and a monomer component (monomer component) of the acrylic polymer And structural units derived from known or commonly used monomers. Examples of the above monomers include acrylic esters such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate and the like (including those having a functional group such as a hydroxyl group and a carboxyl group); methacrylic acid Methacrylates such as methyl, ethyl methacrylate, propyl methacrylate and butyl methacrylate (including those having functional groups such as hydroxyl and carboxyl); acrylamides such as acrylamide and N-methyl acrylamide; methacrylamide and the like Methacrylamides; allyl compounds; vinyl compounds such as aromatic vinyl compounds, vinyl ethers, vinyl esters and the like. Further, esters of polyalkylene glycol ethers with acrylic acid or methacrylic acid can also be used as the above-mentioned monomer.
 上記含フッ素アクリル系重合体の具体例としては、例えば、下記式(8a)で表される含フッ素アクリル系重合体などが挙げられる。
Figure JPOXMLDOC01-appb-C000034
As a specific example of the said fluorine-containing acrylic polymer, the fluorine-containing acrylic polymer etc. which are represented by following formula (8a) etc. are mentioned, for example.
Figure JPOXMLDOC01-appb-C000034
 式(8a)におけるR18は、水素原子又はメチル基を示す。また、R19は、直鎖又は分岐鎖状のアルキル基を示す。上記直鎖又は分岐鎖状のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基(n-ブチル基)、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基などの炭素数1~30の直鎖又は分岐鎖状のアルキル基が挙げられる。 R 18 in the formula (8a) represents a hydrogen atom or a methyl group. Also, R 19 represents a linear or branched alkyl group. The linear or branched alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group (n-butyl group), an isobutyl group, an s-butyl group, and a t group. And —C1-C30 linear or branched alkyl groups such as butyl group and pentyl group.
 式(8a)におけるR20は、水素原子又はメチル基を示す。また、R21は、パーフルオロアルキル基を示す。上記パーフルオロアルキル基としては、特に限定されないが、例えば、上記式(8)におけるR17として例示したパーフルオロアルキル基等が挙げられる。 R 20 in Formula (8a) represents a hydrogen atom or a methyl group. Also, R 21 represents a perfluoroalkyl group. Examples of the perfluoroalkyl group is not particularly limited, for example, perfluoroalkyl groups such as exemplified as R 17 in the formula (8) below.
 式(8a)におけるR22は、水素原子又はメチル基を示す。また、R23は、ポリエーテル鎖を含む有機基を示す。上記ポリエーテル鎖を含む有機基としては、特に限定されないが、例えば、上記式(7)におけるR9として例示したもの等が挙げられる。 R 22 in the formula (8a) represents a hydrogen atom or a methyl group. Further, R 23 represents an organic group containing a polyether chain. The organic group comprising the polyether chain is not particularly limited, for example, such as those exemplified as R 9 in the formula (7) below.
 式(8a)におけるr、s、及びtは、それぞれ、1~3000の整数を示す。 R, s and t in the formula (8a) each represent an integer of 1 to 3000.
 上記含フッ素アクリル系重合体は、公知乃至慣用の製造方法により得ることができ、その製造方法は特に限定されないが、例えば、重合することにより式(8)で表される構造単位を与えるモノマー(例えば、パーフルオロアルキルアクリレートやパーフルオロアルキルメタクリレートなど)を重合させる方法などによって製造することができる。また、上記含フッ素アクリル系重合体としては、市販品を使用することもできる。 The fluorine-containing acrylic polymer can be obtained by a known or commonly used production method, and the production method is not particularly limited. For example, a monomer giving a structural unit represented by the formula (8) by polymerization For example, it can be produced by a method of polymerizing perfluoroalkyl acrylate, perfluoroalkyl methacrylate or the like. Moreover, a commercial item can also be used as said fluorine-containing acrylic polymer.
 上記式(9)におけるR24は、3価の直鎖又は分岐鎖状の炭化水素基を示す。上記3価の直鎖又は分岐鎖状の炭化水素基としては、例えば、メタン、エタン、プロパン、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、2-メチルペンタン、3-メチルペンタン、ヘプタン、2-メチルヘプタン、3-メチルヘプタン、オクタン、ノナン、デカン等の直鎖又は分岐鎖状のアルカンから3個の水素原子を除いた基(アルカン-トリイル基)などが挙げられる。中でも、炭素数1~10の直鎖又は分岐鎖状のアルカンから3個の水素原子を除いた基が好ましい。 R 24 in the above formula (9) represents a trivalent linear or branched hydrocarbon group. Examples of the trivalent linear or branched hydrocarbon group include methane, ethane, propane, n-butane, isobutane, n-pentane, n-hexane, 2-methylpentane, 3-methylpentane, heptane And groups in which three hydrogen atoms have been removed from linear or branched alkanes such as 2-methylheptane, 3-methylheptane, octane, nonane and decane (alkane-triyl group) and the like. Among them, a group in which 3 hydrogen atoms have been removed from a linear or branched alkane having 1 to 10 carbon atoms is preferable.
 上記式(9)におけるR25は、フッ素化アルキル基を示す。上記フッ素化アルキル基としては、水素原子の一部又は全部がフッ素原子で置換されたアルキル基であればよく、特に限定されないが、例えば、上記式(8)におけるR17として例示したもの等が挙げられる。中でも、上記R25としては、水素原子の一部がフッ素原子で置換されたアルキル基が好ましい。 R 25 in the above formula (9) represents a fluorinated alkyl group. The fluorinated alkyl group is not particularly limited as long as it is an alkyl group in which a part or all of hydrogen atoms are substituted with a fluorine atom, for example, those exemplified as R 17 in the above formula (8) It can be mentioned. Among them, as R 25 above, an alkyl group in which a part of hydrogen atoms are substituted by fluorine atoms is preferable.
 上記式(9)におけるz(メチレン構造単位の繰り返し数)は、1~30の整数を示す。中でも、1~10の整数が好ましい。 Z (the repeating number of methylene structural units) in the above formula (9) represents an integer of 1 to 30. Among them, the integer of 1 to 10 is preferable.
 なお、上記含フッ素ポリエーテル系重合体は、繰り返し構造単位として、式(9)で表される構造単位のみを有する重合体であってもよいし、式(9)で表される構造単位以外の構造単位を有する重合体であってもよい。また、上記含フッ素ポリエーテル系重合体は、式(9)で表される構造単位を1種のみ有する重合体であってもよいし、式(9)で表される構造単位を2種以上有する重合体であってもよい。また、式(9)で表される構造単位以外の構造単位を2種以上有する重合体であってもよい。 The above-mentioned fluorine-containing polyether polymer may be a polymer having only the structural unit represented by the formula (9) as a repeating structural unit, and may be other than the structural unit represented by the formula (9) It may be a polymer having a structural unit of The fluorine-containing polyether polymer may be a polymer having only one structural unit represented by the formula (9), or two or more structural units represented by the formula (9). It may be a polymer having one. Moreover, the polymer which has 2 or more types of structural units other than the structural unit represented by Formula (9) may be sufficient.
 上記含フッ素ポリエーテル系重合体が有していてもよい、式(9)で表される構造単位以外の構造単位としては、特に限定されず、例えば、オキシエチレン単位[-OCH2CH2-]、オキシプロピレン単位[-OCH(CH3)CH2-]などのオキシアルキレン構造単位などが挙げられる。 The structural unit other than the structural unit represented by the formula (9), which may be possessed by the fluorine-containing polyether polymer, is not particularly limited. For example, an oxyethylene unit [-OCH 2 CH 2- And oxyalkylene structural units such as oxypropylene unit [—OCH (CH 3 ) CH 2 —].
 上記式(9)で表される構造単位の具体例としては、例えば、下記式で表される構造単位などが挙げられる。下記式におけるR26は、水素原子、又は炭素数1~4の直鎖又は分岐鎖状のアルキル基(例えば、メチル基、エチル基、プロピル基、n-ブチル基など)を示す。下記式におけるR25、zは、前記に同じである。
Figure JPOXMLDOC01-appb-C000035
As a specific example of the structural unit represented by said Formula (9), the structural unit etc. which are represented by a following formula are mentioned, for example. R 26 in the following formula represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, propyl group, n-butyl group, etc.). R 25 and z in the following formulas are as defined above.
Figure JPOXMLDOC01-appb-C000035
 上記含フッ素ポリエーテル系重合体の具体例としては、例えば、下記式(9a)で表される含フッ素ポリエーテル系重合体などが挙げられる。
Figure JPOXMLDOC01-appb-C000036
As a specific example of the said fluorine-containing polyether polymer, the fluorine-containing polyether polymer etc. which are represented by following formula (9a) etc. are mentioned, for example.
Figure JPOXMLDOC01-appb-C000036
 式(9a)におけるu、v、及びwは、それぞれ、1~50の整数を示す。中でも、uとwの合計は、2~80の整数であることが好ましく、より好ましくは4~30の整数、さらに好ましくは6~14の整数である。また、vは、2~50の整数であることが好ましく、より好ましくは5~20の整数である。 U, v and w in the formula (9a) each represent an integer of 1 to 50. Among them, the sum of u and w is preferably an integer of 2 to 80, more preferably an integer of 4 to 30, and still more preferably an integer of 6 to 14. Further, v is preferably an integer of 2 to 50, more preferably an integer of 5 to 20.
 上記含フッ素ポリエーテル系重合体は、公知乃至慣用の製造方法により得ることができ、その製造方法は特に限定されないが、例えば、重合することにより式(9)で表される構造単位を与えるモノマー(例えば、エポキシ化合物やオキセタン化合物等の環状エーテル化合物など)を重合(例えば、開環重合)させる方法などによって製造することができる。また、上記含フッ素ポリエーテル系重合体としては、市販品を使用することもできる。 The above-mentioned fluorine-containing polyether polymer can be obtained by a known or commonly used production method, and the production method is not particularly limited. For example, a monomer giving a structural unit represented by formula (9) by polymerization (For example, cyclic ether compounds such as epoxy compounds and oxetane compounds, etc.) can be produced by polymerization (for example, ring-opening polymerization). Moreover, a commercial item can also be used as said fluorine-containing polyether type polymer.
 本発明の硬化性エポキシ樹脂組成物におけるレベリング剤の不揮発分の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.1~10重量部が好ましく、より好ましくは0.1~5重量部、さらに好ましくは0.1~4重量部である。レベリング剤の含有量(不揮発分換算)が0.1重量部未満であると、硬化物の耐クラック性が低下する場合がある。一方、レベリング剤の含有量(不揮発分換算)が10重量部を超えると、硬化物の耐熱性が低下する場合がある。 The content (compounding amount) of the nonvolatile component of the leveling agent in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount (100 parts by weight of the compound having an epoxy group) contained in the curable epoxy resin composition Is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and still more preferably 0.1 to 4 parts by weight. The crack resistance of a hardened | cured material may fall that content (Level of non volatile matter conversion) of a leveling agent is less than 0.1 weight part. On the other hand, when the content of the leveling agent (in terms of nonvolatile content) exceeds 10 parts by weight, the heat resistance of the cured product may be lowered.
 特に、本発明の硬化性エポキシ樹脂組成物における、上記シリコーン系重合体、上記含フッ素アクリル系重合体、及び上記含フッ素ポリエーテル系重合体の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.1~10重量部が好ましく、より好ましくは0.1~5重量部、さらに好ましくは0.1~4重量部である。上記シリコーン系重合体、上記含フッ素アクリル系重合体、及び上記含フッ素ポリエーテル系重合体の含有量が0.1重量部未満であると、硬化物の耐クラック性が低下する場合がある。一方、含有量が10重量部を超えると、硬化物の耐熱性が低下する場合がある。なお、「上記シリコーン系重合体、上記含フッ素アクリル系重合体、及び上記含フッ素ポリエーテル系重合体の含有量(配合量)」とは、上記シリコーン系重合体、上記含フッ素アクリル系重合体、及び上記含フッ素ポリエーテル系重合体のうち2種以上を含む場合には、これらの含有量の合計(合計含有量)を意味する。 In particular, the content (blending amount) of the silicone polymer, the fluorine-containing acrylic polymer, and the fluorine-containing polyether polymer in the curable epoxy resin composition of the present invention is not particularly limited. The amount is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, still more preferably 0.1 to 10 parts by weight, based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. 0.1 to 4 parts by weight. When the content of the silicone polymer, the fluorine-containing acrylic polymer, and the fluorine-containing polyether polymer is less than 0.1 parts by weight, the crack resistance of the cured product may be reduced. On the other hand, when the content exceeds 10 parts by weight, the heat resistance of the cured product may be lowered. In addition, "the content (compounding amount) of the above-mentioned silicone polymer, the above-mentioned fluorine-containing acrylic polymer, and the above-mentioned fluorine-containing polyether polymer" means the above-mentioned silicone polymer, the above-mentioned fluorine-containing acrylic polymer And when it contains 2 or more types among the said fluorine-containing polyether type polymers, the sum total (total content) of these content is meant.
 本発明の硬化性エポキシ樹脂組成物が上述の特定のレベリング剤を含有する場合、上記樹脂組成物の硬化物からなるリフレクターは、いっそう高いレベルの耐熱性、耐クラック性を発揮することができるため、該リフレクターを備えた光半導体装置の経時での光度低下(特に、高輝度の光を発する光半導体装置の光度低下)が抑制される。このような効果は、レベリング剤の配合によって、本発明の硬化性エポキシ樹脂組成物(又はその硬化物)の封止材(光半導体素子の封止樹脂)等に対する密着性が向上したことにより得られるものと推測される。 When the curable epoxy resin composition of the present invention contains the above-mentioned specific leveling agent, a reflector made of a cured product of the above resin composition can exhibit even higher levels of heat resistance and crack resistance. A decrease in luminous intensity over time of the optical semiconductor device provided with the reflector (in particular, a decrease in luminous intensity of the optical semiconductor device that emits high-intensity light) is suppressed. Such an effect is obtained by improving the adhesion of the curable epoxy resin composition (or the cured product thereof) of the present invention to the sealing material (the sealing resin for an optical semiconductor element) or the like by the blending of the leveling agent. It is presumed that
[ポリオール化合物]
 本発明の硬化性エポキシ樹脂組成物は、さらに、ポリオール化合物を含むことが好ましい。本発明の硬化性エポキシ樹脂組成物は、上記ポリオール化合物を含むことにより、より高度な耐熱性及び耐クラック性を示す硬化物を形成でき、該硬化物を用いて作製した光半導体装置は、経時での光度低下がいっそう生じにくい。上記ポリオール化合物とは、分子内(一分子中)に2個以上の水酸基を有する数平均分子量が200以上の重合体(オリゴマー又はポリマー)であり、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等が含まれる。なお、上記ポリオール化合物は単独で、又は2種以上を組み合わせて使用することができる。
[Polyol compound]
The curable epoxy resin composition of the present invention preferably further contains a polyol compound. The curable epoxy resin composition of the present invention can form a cured product exhibiting higher heat resistance and crack resistance by containing the above-mentioned polyol compound, and an optical semiconductor device produced using the cured product will be aged over time. Less likely to occur at The above-mentioned polyol compound is a polymer (oligomer or polymer) having a number average molecular weight of 200 or more having two or more hydroxyl groups in one molecule (in one molecule), for example, polyether polyol, polyester polyol, polycarbonate polyol, etc. Is included. In addition, the said polyol compound can be used individually or in combination of 2 or more types.
 上記ポリオール化合物が有する水酸基(2個以上の水酸基)は、アルコール性水酸基であってもよいし、フェノール性水酸基であってもよい。また、上記ポリオール化合物が有する水酸基の数(一分子中の水酸基の数)は、2個以上であればよく、特に限定されない。 The hydroxyl group (two or more hydroxyl groups) of the polyol compound may be an alcoholic hydroxyl group or a phenolic hydroxyl group. The number of hydroxyl groups (the number of hydroxyl groups in one molecule) of the polyol compound is not particularly limited as long as it is two or more.
 上記ポリオール化合物が有する水酸基(2個以上の水酸基)の位置は、特に限定されないが、硬化剤との反応性等の観点で、少なくともポリオールの末端(重合体主鎖の末端)に存在することが好ましく、少なくともポリオールの両末端に存在することが特に好ましい。 The position of the hydroxyl group (two or more hydroxyl groups) possessed by the polyol compound is not particularly limited, but may be present at least at the end of the polyol (end of the polymer main chain) from the viewpoint of reactivity with the curing agent. It is particularly preferable to be present at least at both ends of the polyol.
 上記ポリオール化合物は、その他の成分と配合した後に液状の硬化性エポキシ樹脂組成物を形成できればよく、固体であってもよいし、液体であってもよい。 The polyol compound may be solid or liquid as long as it can form a liquid curable epoxy resin composition after compounding with other components.
 上記ポリオール化合物の数平均分子量は、200以上であればよく、特に限定されないが、200~100000が好ましく、より好ましくは300~50000、さらに好ましくは400~40000である。数平均分子量が200未満では、はんだリフロー工程を経た場合に硬化物の剥離や硬化物中にクラックが発生する場合がある。一方、数平均分子量が100000を超えると、液状の硬化性エポキシ樹脂組成物から析出したり、溶解させることができない場合がある。なお、上記ポリオール化合物の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の数平均分子量を意味する。 The number average molecular weight of the polyol compound may be 200 or more, and is not particularly limited, but is preferably 200 to 100,000, more preferably 300 to 50,000, and still more preferably 400 to 40,000. If the number average molecular weight is less than 200, peeling of the cured product or cracks may occur in the cured product when the solder reflow process is performed. On the other hand, when the number average molecular weight exceeds 100,000, it may be precipitated from the liquid curable epoxy resin composition or may not be dissolved. In addition, the number average molecular weight of the said polyol compound means the number average molecular weight of standard polystyrene conversion measured by gel permeation chromatography (GPC).
 上記ポリオール化合物としては、例えば、分子内にエステル骨格(ポリエステル骨格)を有するポリエステルポリオール(ポリエステルポリオールオリゴマーを含む)、分子内にエーテル骨格(ポリエーテル骨格)を有するポリエーテルポリオール(ポリエーテルポリオールオリゴマーを含む)、分子内にカーボネート骨格(ポリカーボネート骨格)を有するポリカーボネートポリオール(ポリカーボネートポリオールオリゴマーを含む)などが挙げられる。上記ポリオール化合物には、その他、例えば、フェノキシ樹脂、エポキシ当量が1000g/eq.を超えるビスフェノール型高分子エポキシ樹脂、水酸基を有するポリブタジエン類、アクリルポリオールなども含まれる。 Examples of the polyol compound include a polyester polyol (including a polyester polyol oligomer) having an ester skeleton (polyester skeleton) in the molecule, and a polyether polyol (polyether polyol oligomer) having an ether skeleton (polyether skeleton) in the molecule. And polycarbonate polyols (including polycarbonate polyol oligomers) having a carbonate skeleton (polycarbonate skeleton) in the molecule. Other than the above, for example, phenoxy resin, epoxy equivalent is 1000 g / eq. Also included are bisphenol-type high molecular weight epoxy resins, polybutadienes having hydroxyl groups, acrylic polyols and the like.
 上記ポリエステルポリオールとしては、例えば、ポリオール、ポリカルボン酸(多塩基酸)、ヒドロキシカルボン酸の縮合重合(例えば、エステル交換反応)により得られるポリエステルポリオールや、ラクトン類の開環重合により得られるポリエステルポリオールなどが挙げられる。 Examples of the polyester polyol include polyester polyols obtained by condensation polymerization (for example, transesterification reaction) of polyols, polycarboxylic acids (polybasic acids) and hydroxycarboxylic acids, and polyester polyols obtained by ring-opening polymerization of lactones Etc.
 上記ポリエステルポリオールを構成するモノマー成分としてのポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,3,5-トリメチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,6-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、2,6-ヘキサンジオール、1,8-オクタンジオール、1,4-シクロヘキサンジメタノール、1,2-ジメチロールシクロヘキサン、1,3-ジメチロールシクロヘキサン、1,4-ジメチロールシクロヘキサン、1,12-ドデカンジオール、ポリブタジエンジオール、ネオペンチルグリコール、テトラメチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、1,3-ジヒドロキシアセトン、ヘキシレングリコール、1,2,6-ヘキサントリオール、ジトリメチロールプロパン、マンニトール、ソルビトール、ペンタエリスリトールなどが挙げられる。上記ポリエステルポリオールを構成するモノマー成分としてのポリカルボン酸としては、例えば、シュウ酸、アジピン酸、セバシン酸、フマル酸、マロン酸、コハク酸、グルタル酸、アゼライン酸、クエン酸、2,6-ナフタレンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、シトラコン酸、1,10-デカンジカルボン酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロフタル酸無水物、テトラヒドロフタル酸無水物、無水ピロメリット酸、無水トリメリット酸などが挙げられる。上記ヒドロキシカルボン酸としては、例えば、乳酸、りんご酸、グリコール酸、ジメチロールプロピオン酸、ジメチロールブタン酸などが挙げられる。上記ラクトン類としては、例えば、ε-カプロラクトン、δ-バレロラクトン、γ-ブチロラクトンなどが挙げられる。 Examples of the polyol as a monomer component constituting the above polyester polyol include ethylene glycol, diethylene glycol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, 1,4- Butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,3,3, 5-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 2,6-hexanediol 1,8-octanediol, 1,4-cyclohexanedimethanol, 1,2-dimethylol Rohexane, 1,3-dimethylolcyclohexane, 1,4-dimethylolcyclohexane, 1,12-dodecanediol, polybutadienediol, neopentyl glycol, tetramethylene glycol, propylene glycol, dipropylene glycol, glycerin, trimethylolpropane, 1 And 2,3-dihydroxyacetone, hexylene glycol, 1,2,6-hexanetriol, ditrimethylolpropane, mannitol, sorbitol, pentaerythritol and the like. As a polycarboxylic acid as a monomer component which constitutes the above-mentioned polyester polyol, for example, oxalic acid, adipic acid, sebacic acid, fumaric acid, malonic acid, succinic acid, glutaric acid, azelaic acid, citric acid, 2,6-naphthalene Dicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, citraconic acid, 1,10-decanedicarboxylic acid, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, pyroanhydride Merit acid, trimellitic anhydride and the like can be mentioned. Examples of the hydroxycarboxylic acid include lactic acid, malic acid, glycolic acid, dimethylol propionic acid, and dimethylol butanoic acid. Examples of the lactones include ε-caprolactone, δ-valerolactone, γ-butyrolactone and the like.
 上記ポリエステルポリオールは、公知乃至慣用の製造方法により製造することができ、特に限定されないが、例えば、上記ポリオールとポリカルボン酸の縮合重合(重縮合)、上記ヒドロキシカルボン酸の縮合重合、上記ラクトン類の開環重合などにより製造できる。重合の際の条件も特に限定されず、公知乃至慣用の反応条件より適宜選択できる。なお、上記ポリオール、ポリカルボン酸、ヒドロキシカルボン酸としては、公知乃至慣用の誘導体(例えば、ヒドロキシル基がアシル基、アルコキシカルボニル基、有機シリル基、アルコキシアルキル基、オキサシクロアルキル基等で保護された誘導体や、カルボキシル基がアルキルエステル、酸無水物、酸化ハロゲン化物等に誘導された誘導体など)を用いることもできる。 The polyester polyol can be produced by a known or commonly used production method, and is not particularly limited. For example, condensation polymerization (polycondensation) of the above polyol and polycarboxylic acid, condensation polymerization of the above hydroxycarboxylic acid, the above lactones It can be produced by ring-opening polymerization of The conditions for polymerization are also not particularly limited, and can be appropriately selected from known or commonly used reaction conditions. In addition, as the above-mentioned polyol, polycarboxylic acid and hydroxycarboxylic acid, known or commonly used derivatives (for example, a hydroxyl group is protected by an acyl group, an alkoxycarbonyl group, an organic silyl group, an alkoxyalkyl group, an oxacycloalkyl group etc.) It is also possible to use derivatives, derivatives in which a carboxyl group is derived from an alkyl ester, an acid anhydride, an oxidized halide, and the like.
 上記ポリエステルポリオールとしては、例えば、商品名「プラクセル205」、「プラクセル205H」、「プラクセル205U」、「プラクセル205BA」、「プラクセル208」、「プラクセル210」、「プラクセル210CP」、「プラクセル210BA」、「プラクセル212」、「プラクセル212CP」、「プラクセル220」、「プラクセル220CPB」、「プラクセル220NP1」、「プラクセル220BA」、「プラクセル220ED」、「プラクセル220EB」、「プラクセル220EC」、「プラクセル230」、「プラクセル230CP」、「プラクセル240」、「プラクセル240CP」、「プラクセル210N」、「プラクセル220N」、「プラクセルL205AL」、「プラクセルL208AL」、「プラクセルL212AL」、「プラクセルL220AL」、「プラクセルL230AL」、「プラクセル305」、「プラクセル308」、「プラクセル312」、「プラクセルL312AL」、「プラクセル320」、「プラクセルL320AL」、「プラクセルL330AL」、「プラクセル410」、「プラクセル410D」、「プラクセル610」、「プラクセルP3403」、「プラクセルCDE9P」(以上、(株)ダイセル製)等の市販品を使用することができる。 Examples of the polyester polyol include “Placcel 205”, “Placcel 205H”, “Placcel 205U”, “Placcel 205BA”, “Placcel 208”, “Placcel 210”, “Placcel 210CP”, and “Placcel 210BA”, for example. “Placcel 212”, “Placcel 212 CP”, “Placcel 220”, “Placcel 220 CPB”, “Placcel 220 NP1”, “Placcel 220 BA”, “Placcel 220 ED”, “Placcel 220 EB”, “Placcel 220 EC”, “Placcel 230”, “Placcel 230CP”, “Placcel 240”, “Placcel 240CP”, “Placcel 210N”, “Placcel 220N”, “Placcel L205AL”, “Placcel L208 L "," Placcel L212AL "," Placcel L220AL "," Placcel L230AL "," Placcel 305 "," Placcel 308 "," Placcel 312 "," Placcel L312AL "," Placcel 320 "," Placcel L320AL "," Placcel Commercially available products such as L330AL "," Placcel 410 "," Placcel 410D "," Placcel 610 "," Placcel P3403 "," Placcel CDE9P "(all manufactured by Daicel Co., Ltd.) can be used.
 上記ポリエーテルポリオールとしては、例えば、ポリオール類への環状エーテル化合物の付加反応により得られるポリエーテルポリオール、アルキレンオキシドの開環重合により得られるポリエーテルポリオールなどが挙げられる。 As said polyether polyol, the polyether polyol obtained by the addition reaction of the cyclic ether compound to polyols, the polyether polyol obtained by the ring-opening polymerization of an alkylene oxide, etc. are mentioned, for example.
 上記ポリエーテルポリオールとしては、より具体的には、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール(プロピレングリコール)、2-メチル-1,3-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール(テトラメチレングリコール)、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,3,5-トリメチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,6-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、2,6-ヘキサンジオール、1,8-オクタンジオール、1,4-シクロヘキサンジメタノール、1,2-ジメチロールシクロヘキサン、1,3-ジメチロールシクロヘキサン、1,4-ジメチロールシクロヘキサン、1,12-ドデカンジオール、ポリブタジエンジオール、ネオペンチルグリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、1,3-ジヒドロキシアセトン、ヘキシレングリコール、1,2,6-ヘキサントリオール、ジトリメチロールプロパン、マンニトール、ソルビトール、ペンタエリスリトールなどのポリオール類の多量体;上記ポリオール類と、エチレンオキサイド、プロピレンオキサイド、1,2-ブチレンオキサイド、1,3-ブチレンオキサイド、2,3-ブチレンオキサイド、テトラヒドロフラン、エピクロロヒドリン等のアルキレンオキサイドとの付加物;テトラヒドロフラン類などの環状エーテルの開環重合体(例えば、ポリテトラメチレングリコール)等が挙げられる。 More specifically, examples of the polyether polyol include ethylene glycol, diethylene glycol, 1,2-propanediol (propylene glycol), 2-methyl-1,3-propanediol, 1,3-propanediol, and the like. 2,4-butanediol (tetramethylene glycol), 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5 -Pentanediol, 2,3,5-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1,6-hexane Diol, 2,6-hexanediol, 1,8-octanediol, 1,4-cyclohexanedimethano 1,2-dimethylolcyclohexane, 1,3-dimethylolcyclohexane, 1,4-dimethylolcyclohexane, 1,12-dodecanediol, polybutadienediol, neopentyl glycol, dipropylene glycol, glycerin, trimethylolpropane, Polymers of polyols such as 1,3-dihydroxyacetone, hexylene glycol, 1,2,6-hexanetriol, ditrimethylolpropane, mannitol, sorbitol, pentaerythritol; the above polyols, ethylene oxide, propylene oxide, 1 , Adducts with alkylene oxides such as 2-butylene oxide, 1,3-butylene oxide, 2,3-butylene oxide, tetrahydrofuran and epichlorohydrin; Ring-opened polymer of a cyclic ether such as furans (e.g., polytetramethylene glycol) and the like.
 上記ポリエーテルポリオールは、公知乃至慣用の製造方法により製造することができ、特に限定されないが、例えば、ポリオール類への環状エーテル化合物の付加反応(開環付加重合)、アルキレンオキシドの開環重合(単独重合又は共重合)などにより製造できる。重合の際の条件も特に限定されず、公知乃至慣用の反応条件より適宜選択できる。 The polyether polyol can be produced by a known or commonly used production method, and is not particularly limited. For example, addition reaction (ring-opening addition polymerization) of cyclic ether compound to polyols, ring-opening polymerization of alkylene oxide ( It can manufacture by homopolymerization or copolymerization). The conditions for polymerization are also not particularly limited, and can be appropriately selected from known or commonly used reaction conditions.
 上記ポリエーテルポリオールとしては、例えば、商品名「PEP-101」(フロイント産業(株)製)、商品名「アデカプルロニックL」、「アデカプルロニックP」、「アデカプルロニックF」、「アデカプルロニックR」、「アデカプルロニックTR」、「アデカPEG」(以上、アデカ(株)製)、商品名「PEG#1000」、「PEG#1500」、「PEG#11000」(以上、日油(株)製)、商品名「ニューポールPE-34」、「ニューポールPE-61」、「ニューポールPE-78」、「ニューポールPE-108」、「PEG-200」、「PEG-600」、「PEG-2000」、「PEG-6000」、「PEG-10000」、「PEG-20000」(以上、三洋化成工業(株)製)、商品名「PTMG1000」、「PTMG1800」、「PTMG2000」(以上、三菱化学(株)製)、「PTMGプレポリマー」(三菱樹脂(株)製)等の市販品を使用することができる。 As said polyether polyol, for example, trade name "PEP-101" (made by Freund Sangyo Co., Ltd.), trade name "Adecaplulonic L", "Adecaplulonic P", "Adecaplulonic F", "Adecaplulonic R" , “Adecaplulonic TR”, “Adeca PEG” (all, manufactured by Adeka Co., Ltd.), trade names “PEG # 1000”, “PEG # 1500”, “PEG # 1 1000” (all, manufactured by NOF Corporation) , Brand name "New pole PE-34", "New pole PE-61", "New pole PE-78", "New pole PE-108", "PEG-200", "PEG-600", "PEG- 2000, “PEG-6000”, “PEG-10000”, “PEG-20000” (all manufactured by Sanyo Chemical Industries, Ltd.), trade name “P MG1000 "," PTMG1800 "," PTMG2000 "(or, Mitsubishi Chemical Co., Ltd.), can be used" PTMG prepolymer "(manufactured by Mitsubishi Plastics Inc.), and commercial products.
 上記ポリカーボネートポリオールとは、分子内に2個以上の水酸基を有するポリカーボネートである。中でも、上記ポリカーボネートポリオールとしては、分子内に2個の末端水酸基を有するポリカーボネートジオールが好ましい。 The polycarbonate polyol is a polycarbonate having two or more hydroxyl groups in the molecule. Among them, as the polycarbonate polyol, polycarbonate diol having two terminal hydroxyl groups in the molecule is preferable.
 上記ポリカーボネートポリオールは、通常のポリカーボネートポリオールを製造する方法と同じく、ホスゲン法又は、ジメチルカーボネート、ジエチルカーボネートのようなジアルキルカーボネート又はジフェニルカーボネートを用いるカーボネート交換反応(特開昭62-187725号公報、特開平2-175721号公報、特開平2-49025号公報、特開平3-220233号公報、特開平3-252420号公報等)などにより合成される。上記ポリカーボネートポリオールにおけるカーボネート結合は熱分解を受けにくいため、ポリカーボネートポリオールを含む樹脂硬化物は高温高湿下でも優れた安定性を示す。 The polycarbonate polyol is a phosphation method or a carbonate exchange reaction using a dialkyl carbonate such as dimethyl carbonate or diethyl carbonate or diphenyl carbonate as in the method for producing a conventional polycarbonate polyol (JP-A-62-187725, JP-A-62-187725). No. 2-175721, JP-A-2-49025, JP-A-3-220233, JP-A-3-252420, etc.) and the like. Since the carbonate bond in the polycarbonate polyol is not susceptible to thermal decomposition, the resin cured product containing the polycarbonate polyol exhibits excellent stability even under high temperature and high humidity.
 上記ジアルキルカーボネート又はジフェニルカーボネートと共にカーボネート交換反応で用いられるポリオールとしては、例えば、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,8-オクタンジオール、1,9-ノナンジオール、1,12-ドデカンジオール、ブタジエンジオール、ネオペンチルグリコール、テトラメチレングリコール、プロピレングリコール、ジプロピレングリコール等が挙げられる。 Examples of polyols used in a carbonate exchange reaction with the above dialkyl carbonate or diphenyl carbonate include, for example, 1,6-hexanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butane Diol, 2,3-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,8-octanediol, 1,9-nonanediol, 1 , 12-dodecanediol, butadiene diol, neopentyl glycol, tetramethylene glycol, propylene glycol, dipropylene glycol and the like.
 上記ポリカーボネートポリオールとしては、例えば、商品名「プラクセルCD205PL」、「プラクセルCD205HL」、「プラクセルCD210PL」、「プラクセルCD210HL」、「プラクセルCD220PL」、「プラクセルCD220HL」(以上、(株)ダイセル製)、商品名「UH-CARB50」、「UH-CARB100」、「UH-CARB300」、「UH-CARB90(1/3)」、「UH-CARB90(1/1)」、「UC-CARB100」(以上、宇部興産(株)製)、商品名「PCDL T4671」、「PCDL T4672」、「PCDL T5650J」、「PCDL T5651」、「PCDL T5652」(以上、旭化成ケミカルズ(株)製)等の市販品を使用することができる。 As the polycarbonate polyol, for example, trade names “Placcel CD 205 PL”, “Placcel CD 205 HL”, “Placcel CD 210 PL”, “Placcel CD 210 HL”, “Placcel CD 220 PL”, “Placcel CD 220 HL” (manufactured by Daicel Co., Ltd.), products Names "UH-CARB50", "UH-CARB100", "UH-CARB300", "UH-CARB90 (1/3)", "UH-CARB90 (1/1)", "UC-CARB100" (all above, Ube Use commercial products such as Kosan Co., Ltd., trade names “PCDL T4671”, “PCDL T4672”, “PCDL T5650J”, “PCDL T5651”, “PCDL T5652” (all manufactured by Asahi Kasei Chemicals Corporation) be able to
 上記ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール以外のポリオール化合物としては、例えば、商品名「YP-50」、「YP-50S」、「YP-55U」、「YP-70」、「ZX-1356-2」、「YPB-43C」、「YPB-43M」、「FX-316」、「FX-310T40」、「FX-280S」、「FX-293」、「YPS-007A30」、「TX-1016」(以上、新日鐵化学(株)製)、商品名「jER1256」、「jER4250」、「jER4275」(以上、三菱化学(株)製)などのフェノキシ樹脂;商品名「エポトートYD-014」、「エポトートYD-017」、「エポトートYD-019」、「エポトートYD-020G」、「エポトートYD-904」、「エポトートYD-907」、「エポトートYD-6020」(以上、新日鐵化学(株)製)、商品名「jER1007」、「jER1009」、「jER1010」、「jER1005F」、「jER1009F」、「jER1006FS」、「jER1007FS」(以上、三菱化学(株)製)などのエポキシ当量が1000g/eq.を超えるビスフェノール型高分子エポキシ樹脂;商品名「Poly bd R-45HT」、「Poly bd R-15HT」、「Poly ip」、「KRASOL」(以上、出光興産(株)製)、商品名「α-ωポリブタジエングリコール G-1000」、「α-ωポリブタジエングリコール G-2000」、「α-ωポリブタジエングリコール G-3000」(以上、日本曹達(株)製)などの水酸基を有するポリブタジエン類;商品名「ヒタロイド3903」、「ヒタロイド3904」、「ヒタロイド3905」、「ヒタロイド6500」、「ヒタロイド6500B」、「ヒタロイド3018X」(以上、日立化成工業(株)製)、商品名「アクリディックDL-1537」、「アクリディックBL-616」、「アクリディックAL-1157」、「アクリディックA-322」、「アクリディックA-817」、「アクリディックA-870」、「アクリディックA-859-B」、「アクリディックA-829」、「アクリディックA-49-394-IM」(以上、DIC(株)製)、商品名「ダイヤナールSR-1346」、「ダイヤナールSR-1237」、「ダイヤナールAS-1139」(以上、三菱レイヨン(株)製)などのアクリルポリオール等の市販品を使用することができる。 As polyol compounds other than the said polyether polyol, polyester polyol, and polycarbonate polyol, the brand names "YP-50", "YP-50S", "YP-55U", "YP-70", "ZX-1356-" are mentioned, for example. 2 "," YPB-43C "," YPB-43M "," FX-316 "," FX-310T40 "," FX-280S "," FX-293 "," YPS-007A30 "," TX-1016 " Phenoxy resin such as “JER1256”, “jER4250”, “jER4275” (Mitsubishi Chemical Co., Ltd.), trade names “Epototh YD-014”, "Epotote YD-017", "Epotote YD-019", "Epotote YD-020G", "Epotote YD-90 "," Epotote YD-907 "," Epotote YD-6020 "(all, made by Nippon Steel Chemical Co., Ltd.), brand name" jER1007 "," jER1009 "," jER1010 "," jER1005F "," jER1009F ", The epoxy equivalent of “jER1006FS”, “jER1007FS” (all, manufactured by Mitsubishi Chemical Corporation), etc. is 1000 g / eq. Bisphenol type polymer epoxy resin exceeding the brand name; “Poly bd R-45HT”, “Poly bd R-15HT”, “Poly ip”, “KRASOL” (all manufactured by Idemitsu Kosan Co., Ltd.), trade name “α Polybutadienes having a hydroxyl group such as -ω polybutadiene glycol G-1000, "α-ω polybutadiene glycol G-2000", "α-ω polybutadiene glycol G-3000" (all manufactured by Nippon Soda Co., Ltd.); "Hitaloid 3903", "Hitaloid 3904", "Hitaloid 3905", "Hitaloid 6500", "Hitaloid 6500B", "Hitaloid 3018X" (all manufactured by Hitachi Chemical Co., Ltd.), trade name "Acridic DL-1537" , "Acrydic BL-616", "Acrydi "AL-1157", "Acrydic A-322", "Acrydic A-817", "Acrydic A-870", "Acrydic A-859-B", "Acrydic A-829", "Acrydic A-49-394-IM "(all, DIC Corporation), trade names" DIALAN SR-1346 "," DIALAN SR-1237 "," DIALAN AS-1139 " Commercial products, such as acrylic polyols, such as (made) can be used.
 上記ポリオール化合物の使用量(含有量)は、特に限定されないが、上記成分(A)及び成分(B)の合計量(100重量部)に対して、1~50重量部が好ましく、より好ましくは1.5~40重量部、さらに好ましくは5~30重量部である。ポリオール化合物の含有量が50重量部を超えると、硬化物のTgが低下し過ぎて、加熱による体積変化が大きくなり、光半導体装置の不点灯等の不具合が起こる場合がある。ポリオール化合物の含有量が1重量部未満であると、光反射性が経時で低下しやすくなる場合がある。 The use amount (content amount) of the polyol compound is not particularly limited, but it is preferably 1 to 50 parts by weight, and more preferably, the total amount (100 parts by weight) of the component (A) and the component (B). The amount is 1.5 to 40 parts by weight, more preferably 5 to 30 parts by weight. When the content of the polyol compound exceeds 50 parts by weight, the Tg of the cured product is too low, and the volume change due to heating becomes large, which may cause a failure such as failure of the optical semiconductor device. When the content of the polyol compound is less than 1 part by weight, the light reflectivity may easily decrease with time.
 本発明の硬化性エポキシ樹脂組成物が分子内に2以上のエポキシ基を有するシロキサン誘導体(G)を含む場合、上記ポリオール化合物の使用量(含有量)は、特に限定されないが、上記成分(A)、成分(B)、及び成分(G)の合計量(100重量部)に対して、1~50重量部が好ましく、より好ましくは1.5~40重量部、さらに好ましくは5~30重量部である。ポリオール化合物の含有量が50重量部を超えると、硬化物のTgが低下し過ぎて、加熱による体積変化が大きくなり、光半導体装置の不点灯等の不具合が起こる場合がある。ポリオール化合物の含有量が1重量部未満であると、光反射性が経時で低下しやすくなる場合がある。 When the curable epoxy resin composition of the present invention contains a siloxane derivative (G) having two or more epoxy groups in the molecule, the amount (content) of the above-mentioned polyol compound is not particularly limited. 1 to 50 parts by weight is preferable, more preferably 1.5 to 40 parts by weight, still more preferably 5 to 30 parts by weight, based on 100 parts by weight of the total amount of component (B) and component (G). It is a department. When the content of the polyol compound exceeds 50 parts by weight, the Tg of the cured product is too low, and the volume change due to heating becomes large, which may cause a failure such as failure of the optical semiconductor device. When the content of the polyol compound is less than 1 part by weight, the light reflectivity may easily decrease with time.
[アクリルブロック共重合体]
 本発明の硬化性エポキシ樹脂組成物は、さらに、アクリルブロック共重合体を含むことが好ましい。より詳しくは、本発明の硬化性エポキシ樹脂組成物がアクリルブロック共重合体を含む場合、当該硬化性エポキシ樹脂組成物を用いて製造された光半導体装置は、特に高輝度・高出力の場合であっても光度が低下しにくい傾向にある。即ち、アクリルブロック共重合体を用いることにより、本発明の硬化性エポキシ樹脂組成物を硬化して得られる硬化物は、より高いレベルの耐熱性、耐光性、及び耐クラック性を発揮できる。
[Acrylic block copolymer]
The curable epoxy resin composition of the present invention preferably further contains an acrylic block copolymer. More specifically, when the curable epoxy resin composition of the present invention contains an acrylic block copolymer, an optical semiconductor device produced using the curable epoxy resin composition has a particularly high luminance and high output. Even if there is a tendency, the light intensity does not easily decrease. That is, by using the acrylic block copolymer, the cured product obtained by curing the curable epoxy resin composition of the present invention can exhibit higher levels of heat resistance, light resistance and crack resistance.
 上記アクリルブロック共重合体は、アクリル系モノマーを必須のモノマー成分として含有するブロック共重合体である。上記アクリル系モノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル;アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等の脂環構造を有する(メタ)アクリル酸エステル;メタクリル酸ベンジル等の芳香環を有する(メタ)アクリル酸エステル;メタクリル酸2-トリフルオロエチル等の(メタ)アクリル酸の(フルオロ)アルキルエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸等の分子中にカルボキシル基を有するカルボキシル基含有アクリル単量体;アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、グリセリンのモノ(メタ)アクリル酸エステル等の分子中に水酸基を有する水酸基含有アクリル単量体;メタクリル酸グリシジル、メタクリル酸メチルグリシジル、3,4-エポキシシクロヘキシルメチルメタクリレート等の分子中にエポキシ基を有するアクリル単量体;アクリル酸アリル、メタクリル酸アリル等の分子中にアリル基を有するアリル基含有アクリル単量体;γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリエトキシシラン等の分子中に加水分解性シリル基を有するシラン基含有アクリル単量体;2-(2′-ヒドロキシ-5′-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収性基を有する紫外線吸収性アクリル単量体などが挙げられる。 The said acryl block copolymer is a block copolymer which contains an acryl-type monomer as an essential monomer component. Examples of the acrylic monomers include methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methacryl (Meth) acrylic acid alkyl esters such as t-butyl acid, 2-ethylhexyl methacrylate, lauryl methacrylate and stearyl methacrylate; (meth) acrylic acid esters having an alicyclic structure such as cyclohexyl acrylate and cyclohexyl methacrylate; methacryl (Meth) acrylic acid ester having an aromatic ring such as benzyl acid; (fluoro) alkyl ester of (meth) acrylic acid such as 2-trifluoroethyl methacrylate; acrylic acid, methacrylic acid, maleic acid, maleic anhydride etc. Minutes Carboxyl group-containing acrylic monomer having a carboxyl group in the inside; 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, methacrylic Acid containing 4-hydroxybutyl acid, a mono (meth) acrylic acid ester of glycerin and the like; a hydroxyl group-containing acrylic monomer having a hydroxyl group in the molecule; a molecule such as glycidyl methacrylate, methyl glycidyl methacrylate, 3,4-epoxycyclohexyl methyl methacrylate Acrylic monomer having an epoxy group in the inside; allyl group-containing acrylic monomer having an allyl group in the molecule such as allyl acrylate and allyl methacrylate; γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyl Silane group-containing acrylic monomer having hydrolyzable silyl group in the molecule such as oxypropyltriethoxysilane; benzotriazole such as 2- (2'-hydroxy-5'-methacryloxyethylphenyl) -2H-benzotriazole Examples thereof include ultraviolet-absorbing acrylic monomers having a UV-absorbing group.
 なお、上記アクリルブロック共重合体には、上記アクリル系モノマー以外のモノマーがモノマー成分として用いられていてもよい。上記アクリル系モノマー以外のモノマーとしては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル化合物、ブタジエン、イソプレンなどの共役ジエン、エチレン、プロピレン、イソブテンなどのオレフィンなどが挙げられる。 In the acrylic block copolymer, monomers other than the acrylic monomer may be used as a monomer component. Examples of monomers other than the above acrylic monomers include aromatic vinyl compounds such as styrene and α-methylstyrene, conjugated dienes such as butadiene and isoprene, and olefins such as ethylene, propylene and isobutene.
 上記アクリルブロック共重合体としては、特に限定されないが、例えば、2つの重合体ブロックからなるジブロック共重合体や、3つの重合体ブロックからなるトリブロック共重合体、4つ以上の重合体ブロックより構成されるマルチブロック共重合体などが挙げられる。 The above-mentioned acrylic block copolymer is not particularly limited. For example, a diblock copolymer consisting of two polymer blocks, a triblock copolymer consisting of three polymer blocks, and four or more polymer blocks The multiblock copolymer etc. which are comprised are comprised.
 中でも、上記アクリルブロック共重合体としては、耐熱性、耐光性、及び耐クラック性向上の観点で、ガラス転移温度(Tg)が低い重合体ブロック[S](ソフトブロック)と、重合体ブロック[S]よりも高いTgを有する重合体ブロック[H](ハードブロック)が交互に並んだブロック共重合体が好ましく、より好ましくは重合体ブロック[S]を中間に有し、その両端に重合体ブロック[H]を有するH-S-H構造のトリブロック共重合体が好ましい。なお、上記アクリルブロック共重合体の重合体ブロック[S]を構成するポリマーのTgは、特に限定されないが、30℃未満が好ましい。また、重合体ブロック[H]を構成するポリマーのTgは、特に限定されないが、30℃以上が好ましい。上記アクリルブロック共重合体が複数の重合体ブロック[H]を有する場合には、それぞれの重合体ブロック[H]が同じ組成を有していてもよいし、異なっていてもよい。同様に、上記アクリルブロック共重合体が複数の重合体ブロック[S]を有する場合も、それぞれの重合体ブロック[S]が同じ組成を有していてもよいし、異なっていてもよい。 Among them, as the above-mentioned acrylic block copolymer, a polymer block [S] (soft block) having a low glass transition temperature (Tg) and a polymer block [a] from the viewpoint of heat resistance, light resistance and crack resistance improvement. Block copolymer in which polymer blocks [H] (hard blocks) having a higher Tg than S] are alternately arranged, more preferably polymer block [S] in the middle, and polymers at both ends thereof Preferred is a triblock copolymer of HSH structure having a block [H]. In addition, although Tg of the polymer which comprises polymer block [S] of the said acryl block copolymer is not specifically limited, Less than 30 degreeC is preferable. Moreover, Tg of the polymer which comprises polymer block [H] is although it does not specifically limit, 30 degreeC or more is preferable. When the said acryl block copolymer has several polymer block [H], each polymer block [H] may have the same composition, and may differ. Similarly, also when the said acryl block copolymer has several polymer block [S], each polymer block [S] may have the same composition, and may differ.
 上記アクリルブロック共重合体(上記H-S-H構造のトリブロック共重合体等)における、重合体ブロック[H]を構成するモノマー成分としては、特に限定されないが、例えば、ホモポリマーのTgが30℃以上であるモノマーが挙げられ、より詳しくは、メタクリル酸メチル、スチレン、アクリルアミド、アクリロニトリルなどが挙げられる。一方、上記アクリルブロック共重合体における、重合体ブロック[S]を構成するモノマー成分としては、特に限定されないが、例えば、ホモポリマーのTgが30℃未満であるモノマーが挙げられ、より詳しくは、アクリル酸ブチルやアクリル酸2-エチルヘキシル等のアクリル酸C2-10アルキルエステル、ブタジエン(1,4-ブタジエン)などが挙げられる。 The monomer component constituting the polymer block [H] in the above acrylic block copolymer (the triblock copolymer of the above HSH structure and the like) is not particularly limited. The monomer which is 30 degreeC or more is mentioned, More specifically, methyl methacrylate, styrene, acrylamide, an acrylonitrile etc. are mentioned. On the other hand, the monomer component constituting the polymer block [S] in the above acrylic block copolymer is not particularly limited, but for example, a monomer having a homopolymer Tg of less than 30 ° C. can be mentioned, more specifically, Acrylic acid C 2-10 alkyl esters such as butyl acrylate and 2-ethylhexyl acrylate, butadiene (1,4-butadiene) and the like can be mentioned.
 本発明の硬化性エポキシ樹脂組成物におけるアクリルブロック共重合体の好ましい具体例としては、例えば、上記重合体ブロック[S]がブチルアクリレート(BA)を主たるモノマーとして構成された重合体であり、上記重合体ブロック[H]がメチルメタクリレート(MMA)を主たるモノマーとして構成された重合体である、ポリメチルメタクリレート-block-ポリブチルアクリレート-block-ポリメチルメタクリレートターポリマー(PMMA-b-PBA-b-PMMA)等が挙げられる。上記PMMA-b-PBA-b-PMMAは、耐熱性、耐光性、及び耐クラック性向上の点で好ましい。なお、上記PMMA-b-PBA-b-PMMAは、必要に応じて、成分(A)及び成分(B)等に対する相溶性向上を目的として、親水性基(例えば、ヒドロキシル基、カルボキシル基、アミノ基など)を有するモノマー、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸等を、PMMAブロック及び/又はPBAブロックに共重合させたものであってもよい。 As a preferable specific example of the acryl block copolymer in the curable epoxy resin composition of this invention, the said polymer block [S] is a polymer comprised as a main monomer, for example with a butyl acrylate (BA), and said Polymethyl methacrylate-block-polybutyl acrylate-block-polymethyl methacrylate terpolymer (PMMA-b-PBA-b-) which is a polymer in which the polymer block [H] is composed mainly of methyl methacrylate (MMA) PMMA) and the like. The above-mentioned PMMA-b-PBA-b-PMMA is preferable in view of heat resistance, light resistance and improvement of crack resistance. Incidentally, the above-mentioned PMMA-b-PBA-b-PMMA is a hydrophilic group (for example, a hydroxyl group, a carboxyl group, an amino acid, etc.) for the purpose of improving the compatibility with the component (A) and the component (B) etc., if necessary. And / or (meth) acrylic acid such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid and the like are copolymerized with a PMMA block and / or PBA block. Good.
 上記アクリルブロック共重合体の数平均分子量は、特に限定されないが、3000~500000が好ましく、より好ましくは30000~400000である。数平均分子量が3000未満であると、硬化物の強靭性が十分でなく、耐クラック性が低下する場合がある。一方、数平均分子量が500000を超えると、脂環式エポキシ化合物(A)との相溶性が低下し、硬化物の機械物性に悪影響が及び耐クラック性が低下する場合がある。 The number average molecular weight of the acrylic block copolymer is not particularly limited, but is preferably 3,000 to 500,000, and more preferably 30,000 to 400,000. If the number average molecular weight is less than 3000, the toughness of the cured product may not be sufficient, and the crack resistance may be reduced. On the other hand, when the number average molecular weight exceeds 500000, the compatibility with the alicyclic epoxy compound (A) may be reduced, and the mechanical properties of the cured product may be adversely affected and the crack resistance may be reduced.
 上記アクリルブロック共重合体は、公知乃至慣用のブロック共重合体の製造方法により製造することができる。上記アクリルブロック共重合体の製造方法としては、中でも、アクリルブロック共重合体の分子量、分子量分布及び末端構造などを制御のしやすさの観点で、リビング重合(リビングラジカル重合、リビングアニオン重合、リビングカチオン重合など)が好ましい。上記リビング重合は公知乃至慣用の方法により実施可能である。 The above acrylic block copolymer can be produced by a known or commonly used method for producing a block copolymer. Among the methods for producing the above acrylic block copolymer, living polymerization (living radical polymerization, living anionic polymerization, living), among others, from the viewpoint of ease of control of molecular weight, molecular weight distribution and terminal structure of acrylic block copolymer. Cationic polymerization etc.) is preferred. The above living polymerization can be carried out by known or conventional methods.
 また、上記アクリルブロック共重合体としては、例えば、商品名「ナノストレングス M52N」、「ナノストレングス M22N」、「ナノストレングス M51」、「ナノストレングス M52」、「ナノストレングス M53」(アルケマ製、PMMA-b-PBA-b-PMMA)、商品名「ナノストレングス E21」、「ナノストレングス E41」(アルケマ製、PSt(ポリスチレン)-b-PBA-b-PMMA)などの市販品を使用することもできる。 Moreover, as said acrylic block copolymer, the brand name "nano strength M52N", "nano strength M22 N", "nano strength M51", "nano strength M52", "nano strength M53" (made by Arkema, PMMA-) is mentioned, for example. Commercially available products such as b-PBA-b-PMMA), "NanoStrength E21" and "NanoStrength E41" (manufactured by Arkema, PSt (polystyrene) -b-PBA-b-PMMA) can be used.
 上記アクリルブロック共重合体の使用量(含有量)としては、特に限定されないが、上記成分(A)及び成分(B)の合計量(100重量部)に対して、1~30重量部が好ましく、より好ましくは3~15重量部、さらに好ましくは3~10重量部である。アクリルブロック共重合体の使用量が1重量部未満であると、硬化物の強靭性が十分でなく、耐熱性、耐光性が低下する場合がある。一方、アクリルブロック共重合体の使用量が30重量部を超えると、脂環式エポキシ化合物(A)との相溶性が低下し、硬化物の耐クラック性が低下する場合がある。 The amount of use (content) of the acrylic block copolymer is not particularly limited, but preferably 1 to 30 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B). More preferably, it is 3 to 15 parts by weight, still more preferably 3 to 10 parts by weight. If the amount of the acrylic block copolymer used is less than 1 part by weight, the toughness of the cured product may not be sufficient, and heat resistance and light resistance may be reduced. On the other hand, when the use amount of the acrylic block copolymer exceeds 30 parts by weight, the compatibility with the alicyclic epoxy compound (A) may be reduced, and the crack resistance of the cured product may be reduced.
 本発明の硬化性エポキシ樹脂組成物が分子内に2以上のエポキシ基を有するシロキサン誘導体(G)を含む場合、上記アクリルブロック共重合体の使用量(含有量)としては、特に限定されないが、上記成分(A)、成分(B)、及び成分(G)の合計量(100重量部)に対して、1~30重量部が好ましく、より好ましくは3~15重量部、さらに好ましくは3~10重量部である。アクリルブロック共重合体の使用量が1重量部未満であると、硬化物の強靭性が十分でなく、耐熱性、耐光性が低下する場合がある。一方、アクリルブロック共重合体の使用量が30重量部を超えると、脂環式エポキシ化合物(A)との相溶性が低下し、硬化物の耐クラック性が低下する場合がある。 When the curable epoxy resin composition of the present invention contains a siloxane derivative (G) having two or more epoxy groups in the molecule, the amount (content) of the above acrylic block copolymer is not particularly limited, The amount is preferably 1 to 30 parts by weight, more preferably 3 to 15 parts by weight, still more preferably 3 to 15 parts by weight based on the total amount (100 parts by weight) of the components (A), (B) and (G). It is 10 parts by weight. If the amount of the acrylic block copolymer used is less than 1 part by weight, the toughness of the cured product may not be sufficient, and heat resistance and light resistance may be reduced. On the other hand, when the use amount of the acrylic block copolymer exceeds 30 parts by weight, the compatibility with the alicyclic epoxy compound (A) may be reduced, and the crack resistance of the cured product may be reduced.
 [シリコーンゴム粒子以外のゴム粒子]
 本発明の硬化性エポキシ樹脂組成物は、さらに、シリコーンゴム粒子以外のゴム粒子(以下、単に「ゴム粒子」と称する場合がある)を含んでいてもよい。上記ゴム粒子としては、例えば、粒子状NBR(アクリロニトリル-ブタジエンゴム)、反応性末端カルボキシル基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン-ブタジエンゴム)などのゴム粒子が挙げられる。上記ゴム粒子としては、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子が好ましい。上記ゴム粒子は、特に、(メタ)アクリル酸エステルを必須モノマー成分とするポリマー(重合体)で構成されており、表面に脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基(ヒドロキシル基及びカルボキシル基のいずれか一方又は両方)を有するゴム粒子が好ましい。上記ゴム粒子の表面にヒドロキシル基及び/又はカルボキシル基が存在しない場合、硬化物にクラックが生じやすくなる場合がある。
[Rubber particles other than silicone rubber particles]
The curable epoxy resin composition of the present invention may further contain rubber particles other than silicone rubber particles (hereinafter sometimes simply referred to as "rubber particles"). Examples of the rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal free NBR, particulate SBR (styrene-butadiene rubber) and the like. The rubber particle is preferably a rubber particle having a multilayer structure (core-shell structure) comprising a core portion having rubber elasticity and at least one shell layer covering the core portion. The rubber particles are particularly composed of a polymer (polymer) containing (meth) acrylic acid ester as an essential monomer component, and react with a compound having an epoxy group such as an alicyclic epoxy compound (A) on the surface. Rubber particles having a hydroxyl group and / or a carboxyl group (any one or both of a hydroxyl group and a carboxyl group) as a functional group to be obtained are preferable. When hydroxyl groups and / or carboxyl groups are not present on the surface of the rubber particles, the cured product may be susceptible to cracking.
 上記ゴム粒子におけるゴム弾性を有するコア部分を構成するポリマーは、特に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須のモノマー成分とすることが好ましい。上記ゴム弾性を有するコア部分を構成するポリマーは、その他、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル(芳香族ビニル化合物)、アクリロニトリル、メタクリロニトリルなどのニトリル、ブタジエン、イソプレンなどの共役ジエン、エチレン、プロピレン、イソブテンなどをモノマー成分として含んでいてもよい。 The polymer constituting the core portion having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and the like It is preferable to use an essential monomer component. The polymer constituting the core portion having the rubber elasticity is, for example, other, for example, conjugated vinyl such as styrene, aromatic vinyl (aromatic vinyl compound) such as α-methylstyrene, nitrile such as acrylonitrile and methacrylonitrile, butadiene, isoprene and the like Diene, ethylene, propylene, isobutene or the like may be contained as a monomer component.
 中でも、上記ゴム弾性を有するコア部分を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、芳香族ビニル、ニトリル、及び共役ジエンからなる群より選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、上記コア部分を構成するポリマーとしては、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体などが挙げられる。なお、上記コア部分を構成するポリマーには、ポリジメチルシロキサンやポリフェニルメチルシロキサンなどのシリコーンやポリウレタン等が含まれていてもよい。 Among them, the polymer constituting the core portion having rubber elasticity is, as a monomer component, together with a (meth) acrylic acid ester, one or more selected from the group consisting of aromatic vinyl, nitrile, and conjugated diene. It is preferable to include in combination. That is, as a polymer which comprises the said core part, binary copolymers, such as (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene, for example; (meth) acrylic acid ester / aroma And terpolymers such as vinyl group / conjugated diene. The polymer constituting the core portion may contain silicone such as polydimethyl siloxane and polyphenyl methyl siloxane, polyurethane and the like.
 上記コア部分を構成するポリマーは、その他のモノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどの1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 The polymer constituting the above core portion includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. It may contain a reactive crosslinking monomer having two or more reactive functional groups in one monomer (one molecule).
 上記ゴム粒子のコア部分は、中でも、耐熱性の観点で、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)、又は(メタ)アクリル酸エステル/芳香族ビニル/反応性架橋モノマーの三元共重合体(特に、アクリル酸ブチル/スチレン/ジビニルベンゼン)より構成されたコア部分であることが好ましい。 The core portion of the rubber particles is, among others, from the viewpoint of heat resistance, a binary copolymer of (meth) acrylic ester / aromatic vinyl (especially butyl acrylate / styrene) or (meth) acrylic ester / The core portion is preferably composed of a vinyl aromatic / reactive cross-linking monomer terpolymer (in particular, butyl acrylate / styrene / divinyl benzene).
 上記ゴム粒子のコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法などにより製造することができる。乳化重合法においては、上記モノマーの全量を一括して仕込んで重合してもよく、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよく、さらに、シード粒子を使用する重合方法を使用してもよい。 The core portion of the rubber particles can be produced by a commonly used method, and can be produced, for example, by a method of polymerizing the above-mentioned monomers by an emulsion polymerization method. In the emulsion polymerization method, the entire amount of the above monomers may be charged at once and then polymerized, or after polymerization of a part of the above monomers, the remainder may be continuously or intermittently added and polymerized. Furthermore, polymerization methods using seed particles may be used.
 上記ゴム粒子のシェル層を構成するポリマーは、上記コア部分を構成するポリマーとは異種のポリマーであることが好ましい。また、上述のように、上記シェル層は、脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有することが好ましい。これにより、特に、脂環式エポキシ化合物(A)との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む硬化性エポキシ樹脂組成物を硬化させた硬化物に対して、優れた耐クラック性を発揮させることができる。また、硬化物のガラス転移温度の低下を防止することもできる。 It is preferable that the polymer which comprises the shell layer of the said rubber particle is a polymer different from the polymer which comprises the said core part. Further, as described above, the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A). Thereby, in particular, the adhesiveness can be improved at the interface with the alicyclic epoxy compound (A), and a cured product obtained by curing a curable epoxy resin composition containing a rubber particle having the shell layer is obtained. And can exhibit excellent crack resistance. Moreover, the fall of the glass transition temperature of hardened | cured material can also be prevented.
 上記シェル層を構成するポリマーは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須のモノマー成分として含むことが好ましい。例えば、上記コア部分における(メタ)アクリル酸エステルとしてアクリル酸ブチルを用いた場合、シェル層を構成するポリマーのモノマー成分として、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチルなど)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルなどのニトリルなどが挙げられる。上記ゴム粒子においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で、又は2種以上を組み合わせて含むことが好ましく、特に、耐熱性の観点で、少なくとも芳香族ビニルを含むことが好ましい。 It is preferable that the polymer which comprises the said shell layer contains (meth) acrylic acid esters, such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, as an essential monomer component. For example, when butyl acrylate is used as the (meth) acrylic acid ester in the core portion, (meth) acrylic acid esters other than butyl acrylate (eg, (meth) acrylic acid) as monomer components of the polymer constituting the shell layer It is preferred to use methyl acid, ethyl (meth) acrylate, butyl methacrylate etc.). As a monomer component which may be contained other than (meth) acrylic acid ester, for example, aromatic vinyl such as styrene and α-methylstyrene, and nitrile such as acrylonitrile and methacrylonitrile can be mentioned. The rubber particles preferably contain the above monomers alone or in combination of two or more as a monomer component constituting the shell layer, together with the (meth) acrylic acid ester, and in particular, at least from the viewpoint of heat resistance. It is preferable to contain aromatic vinyl.
 さらに、上記シェル層を構成するポリマーは、モノマー成分として、脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてのヒドロキシル基及び/又はカルボキシル基を形成するために、2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートや、(メタ)アクリル酸などのα,β-不飽和酸、マレイン酸無水物などのα,β-不飽和酸無水物などのモノマーを含有することが好ましい。 Furthermore, in order to form a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component, a polymer constituting the above-mentioned shell layer Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, α, β-unsaturated acids such as (meth) acrylic acid, α, β-unsaturated acid anhydrides such as maleic anhydride It is preferable to contain the following monomers.
 上記ゴム粒子におけるシェル層を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、上記シェル層は、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸、(メタ)アクリル酸エステル/α,β-不飽和酸/反応性架橋モノマー(メタアクリル酸メチル/アクリル酸/アリルメタクリレート等)等の三元共重合体などから構成されたシェル層であることが好ましい。 It is preferable that the polymer which comprises the shell layer in the said rubber particle contains the (meth) acrylic acid ester as a monomer component in combination of 1 type, or 2 or more types selected from the said monomer. That is, the shell layer is, for example, (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / α, β-unsaturated acid, (meth) acrylic acid It is preferable that the shell layer is composed of a ternary copolymer such as an acid ester / α, β-unsaturated acid / reactive crosslinking monomer (methyl methacrylate / acrylic acid / allyl methacrylate etc.).
 また、上記シェル層を構成するポリマーは、その他のモノマー成分として、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどの1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 The polymer constituting the shell layer may contain, as the other monomer components, divinyl benzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triaryl in addition to the above-mentioned monomers as the core portion. You may contain the reactive crosslinking monomer which has a 2 or more reactive functional group in 1 monomer (1 molecule), such as allyl cyanurate, a diallyl phthalate, a butylene glycol diacrylate.
 上記ゴム粒子(コアシェル構造を有するゴム粒子)は、上記コア部分をシェル層により被覆することで得られる。上記コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成する共重合体を塗布することにより被覆する方法、上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法などを挙げることができる。 The rubber particles (rubber particles having a core-shell structure) can be obtained by coating the core portion with a shell layer. As a method of coating the core portion with a shell layer, for example, a method of coating the surface of the core portion having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, the above method The core part which has the rubber elasticity obtained by these is used as a trunk component, and the method of graft-polymerizing each component which comprises a shell layer as a branch component etc. can be mentioned.
 上記ゴム粒子の平均粒子径は、特に限定されないが、10~500nmが好ましく、より好ましくは20~400nmである。また、上記ゴム粒子の最大粒子径は、特に限定されないが、50~1000nmが好ましく、より好ましくは100~800nmである。平均粒子径が500nmを上回ると、又は、最大粒子径が1000nmを上回ると、硬化物におけるゴム粒子の分散性が低下し、耐クラック性が低下する場合がある。一方、平均粒子径が10nmを下回ると、又は、最大粒子径が50nmを下回ると、硬化物の耐クラック性向上の効果が得られにくくなる場合がある。 The average particle size of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, and more preferably 20 to 400 nm. The maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, and more preferably 100 to 800 nm. When the average particle size exceeds 500 nm, or when the maximum particle size exceeds 1000 nm, the dispersibility of the rubber particles in the cured product may be reduced, and the crack resistance may be reduced. On the other hand, when the average particle size is less than 10 nm or the maximum particle size is less than 50 nm, it may be difficult to obtain the effect of improving the crack resistance of the cured product.
 本発明の硬化性エポキシ樹脂組成物における上記ゴム粒子の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.5~30重量部が好ましく、より好ましくは1~20重量部である。ゴム粒子の含有量が0.5重量部を下回ると、硬化物の耐クラック性が低下する傾向がある。一方、ゴム粒子の含有量が30重量部を上回ると、硬化物の耐熱性が低下する傾向がある。 The content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition On the other hand, 0.5 to 30 parts by weight is preferable, and more preferably 1 to 20 parts by weight. When the content of the rubber particles is less than 0.5 parts by weight, the crack resistance of the cured product tends to decrease. On the other hand, when the content of the rubber particles exceeds 30 parts by weight, the heat resistance of the cured product tends to decrease.
[応力緩和剤(I)]
 本発明の硬化性エポキシ樹脂組成物は、応力緩和剤(I)を含むことが好ましい。応力緩和剤(I)は、硬化物中の内部応力を緩和させることができる化合物である。本発明の硬化性エポキシ樹脂組成物は、応力緩和剤(I)を脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、及び白色顔料(C)と組み合わせて用いることにより、白色顔料(C)や後述の無機充填剤(J)の充填量を増加させてもコンプレッション成型が可能であり、なおかつ、コンプレッション成型により形成される硬化物の光反射性、耐熱性、及び耐光性に優れる傾向がある。また、応力緩和剤(I)により硬化物の内部の応力を緩和させて、コンプレッション成型による成形物のそりを低減することもできる。
[Stress Reliever (I)]
The curable epoxy resin composition of the present invention preferably contains a stress relaxation agent (I). The stress relaxation agent (I) is a compound capable of relieving internal stress in the cured product. The curable epoxy resin composition of the present invention uses the stress relaxation agent (I) in combination with the alicyclic epoxy compound (A), the monoallyl diglycidyl isocyanurate compound (B), and the white pigment (C). , Compression molding is possible even if the filling amount of the white pigment (C) and the inorganic filler (J) described later is increased, and the light reflectivity, heat resistance, and light resistance of a cured product formed by compression molding It tends to be excellent in The stress relaxation agent (I) can also relieve the internal stress of the cured product, thereby reducing the warpage of the molded product by compression molding.
 上記応力緩和剤(I)としては、特に限定されず、例えば、シリコーンゴム粒子(I1)、シリコーンオイル(I2)、液状ゴム成分(I3)、熱可塑性樹脂(I4)等が挙げられる。 The stress relaxation agent (I) is not particularly limited, and examples thereof include silicone rubber particles (I1), silicone oil (I2), liquid rubber component (I3), thermoplastic resin (I4) and the like.
 上記シリコーンゴム粒子(I1)としては、特に限定されず、例えば、ポリメチルシロキサン、ポリメチルフェニルシロキサン等のポリシロキサンから構成されるものが挙げられる。
 また、シリコーンゴム粒子(I1)を構成するポリシロキサンは、架橋されていることが好ましい。架橋されたポリシロキサンとしては、特に限定されず、例えば、シラノール基などの縮合反応、メルカプトシリル基とビニルシリル基とのラジカル反応、ビニルシリル基とヒドロシリル基(SiH基)との付加反応などにより架橋されたポリシロキサンなどが例示されるが、反応性、反応工程上の点からは、ビニル基含有オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンを白金系触媒の存在下で付加反応させて架橋されたポリシロキサンが好ましい。
The silicone rubber particles (I1) are not particularly limited, and examples thereof include those composed of polysiloxanes such as polymethylsiloxane and polymethylphenylsiloxane.
Moreover, it is preferable that the polysiloxane which comprises silicone rubber particle (I1) is bridge | crosslinked. The crosslinked polysiloxane is not particularly limited, and is crosslinked, for example, by condensation reaction such as silanol group, radical reaction of mercaptosilyl group and vinylsilyl group, addition reaction of vinylsilyl group and hydrosilyl group (SiH group), etc. And the like, but from the viewpoint of reactivity and reaction process, a polysiloxane obtained by addition reaction of a vinyl group-containing organopolysiloxane and an organohydrogenpolysiloxane in the presence of a platinum-based catalyst. Is preferred.
 また、上記シリコーンゴム粒子(I1)は、樹脂組成物とのなじみ、分散性向上、及び分散後の樹脂組成物の粘度調整の観点から、表面処理されていてもよい。表面処理の態様は、特に限定されず、例えば、メチルメタクリレートで被覆されたシリコーンゴム粒子、シリコーンレジンで被覆されたシリコーンゴム粒子などが挙げられる。 The silicone rubber particles (I1) may be surface-treated from the viewpoint of compatibility with the resin composition, improvement of dispersibility, and adjustment of viscosity of the resin composition after dispersion. The aspect of the surface treatment is not particularly limited, and examples thereof include silicone rubber particles coated with methyl methacrylate, silicone rubber particles coated with a silicone resin, and the like.
 上記シリコーンゴム粒子(I1)の平均粒子径(d50)は、特に限定されないが、0.1~100μmが好ましく、より好ましくは0.5~50μmである。また、上記シリコーンゴム粒子(I1)の最大粒子径は、特に限定されないが、0.1~250μmが好ましく、より好ましくは0.1~150μmである。平均粒子径を100μm以下(又は、最大粒子径を250μm以下)とすることにより、硬化物の耐クラック性がより向上する傾向がある。一方、平均粒子径を0.1μm以上(又は、最大粒子径を0.1μm以上)とすることにより、上記シリコーンゴム粒子(I1)の分散性がより向上する傾向がある。
 また、シリコーンゴム粒子(I1)の形状も特に限定されないが、作業性を向上させる観点から、球状が好ましい。
The average particle size (d 50 ) of the silicone rubber particles (I1) is not particularly limited, but is preferably 0.1 to 100 μm, and more preferably 0.5 to 50 μm. The maximum particle diameter of the silicone rubber particles (I1) is not particularly limited, but is preferably 0.1 to 250 μm, and more preferably 0.1 to 150 μm. By setting the average particle size to 100 μm or less (or the maximum particle size to 250 μm or less), the crack resistance of the cured product tends to be further improved. On the other hand, when the average particle size is 0.1 μm or more (or the maximum particle size is 0.1 μm or more), the dispersibility of the silicone rubber particles (I1) tends to be further improved.
Further, the shape of the silicone rubber particles (I1) is also not particularly limited, but is preferably spherical from the viewpoint of improving the workability.
 上記シリコーンゴム粒子(I1)としては、コンプレッション成型により光反射性、耐熱性、及び耐光性に優れる硬化物を形成することができるという観点から、架橋されたポリシロキサンからなるもの、或いは、これの表面をシリコーンレジンで被覆したものが好ましく、なかでも、樹脂成分とシリコーンゴム粒子(I1)の相溶性の点から、架橋されたポリジメチルシロキサンの表面をシリコーンレジンで被覆したものが特に好ましい。 From the viewpoint of being able to form a cured product excellent in light reflectivity, heat resistance and light resistance by compression molding, the silicone rubber particles (I1) are made of crosslinked polysiloxane or The surface is preferably coated with a silicone resin, and from the viewpoint of the compatibility of the resin component and the silicone rubber particles (I1), the surface of the crosslinked polydimethylsiloxane is preferably coated with a silicone resin.
 本発明の硬化性エポキシ樹脂組成物においてシリコーンゴム粒子(I1)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、上記シリコーンゴム粒子(I1)としては、公知乃至慣用の方法により製造することができ、その製造方法は、例えば、特開平7-196815号公報に記載された方法により製造されたシリコーンゴム粒子を使用することができる、或いは、商品名「KMP-600」、「KMP-601」、「KMP-602」、「KMP-605」、「X-52-7030」、「KMP-597」、「KMP-598」、「KMP-594」、「X-52-875」、「KMP-590」、「KMP-701」(以上、信越化学工業(株)製)等の市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the silicone rubber particles (I1) can be used alone or in combination of two or more. Further, the silicone rubber particles (I1) can be produced by a known or commonly used method, and the production method thereof is, for example, silicone rubber particles produced by the method described in JP-A-7-196815. Or the brand names "KMP-600", "KMP-601", "KMP-602", "KMP-605", "X-52-7030", "KMP-597", " It is also possible to use commercially available products such as KMP-598 "," KMP-594 "," X-52-875 "," KMP-590 "," KMP-701 "(all manufactured by Shin-Etsu Chemical Co., Ltd.). it can.
 上記シリコーンオイル(I2)としては、特に限定されず、例えば、非変性シリコーンオイル、変性シリコーンオイル等が挙げられる。 The silicone oil (I2) is not particularly limited, and examples thereof include non-modified silicone oil and modified silicone oil.
 非変性シリコーンオイルとしては、特に限定されず、例えば、ポリジメチルシロキサンタイプ、ポリメチルハイドロジェンシロキサンタイプ、ポリメチルフェニルシロキサンタイプ等が挙げられる。 The non-modified silicone oil is not particularly limited, and examples thereof include polydimethylsiloxane type, polymethyl hydrogen siloxane type, and polymethyl phenyl siloxane type.
 変性シリコーンオイルとしては、特に限定されず、例えば、エポキシ樹脂に対して反応性を有する反応性シリコーンオイル、エポキシ樹脂に対して反応性を有しない非反応性シリコーンオイルのいずれを用いてもよい。反応性シリコーンオイルとしては、例えば、アミノ変性タイプ、エポキシ変性タイプ、カルボキシル変性タイプ、カルビノール変性タイプ、メタクリル変性タイプ、メルカプト変性タイプ、フェノール変性タイプ等が挙げられる。非反応性シリコーンオイルとしては、例えば、ポリアルキレンエーテル変性タイプ、メチルスチリル変性タイプ、アルキル変性タイプ、脂肪酸エステル変性タイプ、アルコキシ変性タイプ、フッ素変性タイプ等が挙げられる。また、反応性シリコーンオイルは、非反応性変性基を有していてもよく、例えば、ポリアルキレンエーテル-アミノ変性シリコーンオイル、ポリアルキレンエーテル-エポキシ変性シリコーンオイル等が挙げられ、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、シロキサン誘導体(G)等のエポキシ基を有する化合物との反応性を有し、流動性や粘度の制御が可能なポリアルキレンエーテル-エポキシ変性シリコーンオイルが好ましい。 The modified silicone oil is not particularly limited. For example, any of reactive silicone oil having reactivity with epoxy resin and non-reactive silicone oil having no reactivity with epoxy resin may be used. Examples of the reactive silicone oil include amino-modified type, epoxy-modified type, carboxyl-modified type, carbinol-modified type, methacryl-modified type, mercapto-modified type, and phenol-modified type. Examples of non-reactive silicone oils include polyalkylene ether modified type, methylstyryl modified type, alkyl modified type, fatty acid ester modified type, alkoxy modified type, fluorine modified type and the like. In addition, the reactive silicone oil may have a non-reactive modifying group, and examples thereof include polyalkylene ether-amino-modified silicone oil, polyalkylene ether-epoxy-modified silicone oil, etc. Alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), a polyalkylene derivative having reactivity with a compound having an epoxy group such as a siloxane derivative (G), and capable of controlling flowability and viscosity, and epoxy modified Silicone oil is preferred.
 上記シリコーンオイル(I2)としては、コンプレッション成型により光反射性、耐熱性、及び耐光性に優れる硬化物を形成することができるという観点から、ポリアルキレンエーテル-エポキシ変性シリコーンオイルが好ましく、特に、エポキシ当量3000~15000の下記式(10)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物(以下、「ポリアルキレンエーテル変性シリコーン化合物(10)」と称する場合がある)が好ましい。
Figure JPOXMLDOC01-appb-C000037
As the silicone oil (I2), a polyalkylene ether-epoxy-modified silicone oil is preferable from the viewpoint of being able to form a cured product excellent in light reflectivity, heat resistance and light resistance by compression molding, and epoxy is particularly preferable. A polyalkylene ether-modified silicone compound having a structure represented by the following formula (10) having an equivalent weight of 3000 to 15,000 (hereinafter, may be referred to as “polyalkylene ether-modified silicone compound (10)”) is preferable.
Figure JPOXMLDOC01-appb-C000037
 上記式(10)中、R26は炭素数2又は3のアルキレン基である。炭素数が2又は3のアルキレン基としては、例えば、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられ、トリメチレン基が好ましい。 In the above formula (10), R 26 is a C 2 or C 3 alkylene group. Examples of the alkylene group having 2 or 3 carbon atoms include a methyl methylene group, a dimethyl methylene group, an ethylene group, a propylene group, a trimethylene group and the like, and a trimethylene group is preferable.
 上記式(10)中、xaは80~140の整数を示す。
 上記式(10)中、yaは1~5の整数を示す。yaが2以上の整数の場合、yaが付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
 上記式(10)中、zaは5~20の整数を示す。なお、zaが付された括弧内の構造はそれぞれ同一であってもよいし、異なっていてもよい。
In the above formula (10), xa represents an integer of 80 to 140.
In the above formula (10), ya represents an integer of 1 to 5. When ya is an integer of 2 or more, the structures in parentheses with ya may be identical to or different from each other.
In the above formula (10), za represents an integer of 5 to 20. The structures in the brackets with za may be identical to or different from each other.
 上記式(10)中、Aは下記式(10a)で表される構造を有するポリアルキレンエーテル基である。
Figure JPOXMLDOC01-appb-C000038
In said formula (10), A is a polyalkylene ether group which has a structure represented by following formula (10a).
Figure JPOXMLDOC01-appb-C000038
 上記式(10a)中、a及びbはそれぞれ独立して、0~40の整数である。aが40以下であることにより、硬化物の耐水性が向上する傾向がある。
 一方、bが40以下であることにより、硬化性エポキシ樹脂組成物の流動性が向上する傾向がある。
In the above formula (10a), a and b are each independently an integer of 0 to 40. When a is 40 or less, the water resistance of the cured product tends to be improved.
On the other hand, when b is 40 or less, the flowability of the curable epoxy resin composition tends to be improved.
 a及びbの合計は、特に限定されないが、好ましくは1~80の整数である。a及びbの合計が当該範囲にあることにより、硬化物の耐水性と、硬化性エポキシ樹脂組成物の流動性を制御しやすくなる。 Although the sum of a and b is not particularly limited, it is preferably an integer of 1 to 80. When the sum of a and b is in the above range, the water resistance of the cured product and the flowability of the curable epoxy resin composition can be easily controlled.
 上記式(10a)中、Bは水素原子、又はメチル基である。硬化物の耐水性の観点からは、Bはメチル基が好ましい。 In the above formula (10a), B is a hydrogen atom or a methyl group. From the viewpoint of water resistance of the cured product, B is preferably a methyl group.
 上記式(10)における各構造単位の付加形態は、式(10)中の2つのトリメチルシリル基が両末端に存在する限り、ランダム型であってもよいし、ブロック型であってもよい。また、上記式(10a)における各構造単位の付加形態も、Bが末端に存在する限り、ランダム型であってもよいし、ブロック型であってもよい。また、上記式(10)、(10a)における各構造単位の配列の順番も特に限定されない。 The addition form of each structural unit in the above formula (10) may be random or block as long as the two trimethylsilyl groups in formula (10) are present at both ends. In addition, the addition form of each structural unit in the above formula (10a) may also be random or block as long as B is present at the end. Moreover, the order of arrangement of each structural unit in the above formulas (10) and (10a) is not particularly limited.
 上記ポリアルキレンエーテル変性シリコーン化合物(10)のエポキシ当量は、上記の通り、3000~15000であり、好ましくは4000~15000、より好ましくは5000~13000である。エポキシ当量が3000以上であることにより、硬化物の内部の応力緩和がより向上する傾向がある。一方、エポキシ当量を15000以下とすることにより、樹脂との相溶性がより向上する傾向がある。
 なお、ポリアルキレンエーテル変性シリコーン化合物(10)のエポキシ当量は、JIS K 7236:2001に準拠して測定することができる。
The epoxy equivalent of the polyalkylene ether-modified silicone compound (10) is, as described above, 3,000 to 15,000, preferably 4,000 to 15,000, and more preferably 5,000 to 13,000. When the epoxy equivalent is 3000 or more, the stress relaxation inside the cured product tends to be further improved. On the other hand, when the epoxy equivalent is 15,000 or less, the compatibility with the resin tends to be further improved.
In addition, the epoxy equivalent of a polyalkylene ether modified silicone compound (10) can be measured based on JISK7236: 2001.
 本発明の硬化性エポキシ樹脂組成物においてシリコーンオイル(I2)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、上記シリコーンオイル(I2)としては、公知乃至慣用の方法により製造することができ、例えば、特開2008-201904号公報に記載された方法により製造されたシリコーンオイル(I2)を使用することができ、或いは、商品名「SF8421」(東レ・ダウコーニング(株)製)、商品名「Y-19268」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製)等の市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, silicone oil (I2) may be used alone or in combination of two or more. Moreover, as said silicone oil (I2), it can manufacture by a well-known thru | or a usual method, For example, using silicone oil (I2) manufactured by the method described in Unexamined-Japanese-Patent No. 2008-201904 Use commercially available products such as “SF8421” (made by Toray Dow Corning Co., Ltd.) and “Y-19268” (made by Momentive Performance Materials Japan (made)). You can also.
 上記液状ゴム成分(I3)としては、特に限定されず、例えば、ポリブタジエン、マレイン化ポリブタジエン、アクリル化ポリブタジエン、メタクリル化ポリブタジエン、エポキシ化ポリブタジエン、アクリロニトリルブタジエンゴム、カルボキシ末端アクリロニトリルブタジエンゴム、アミノ末端アクリロニトリルブタジエンゴム、ビニル末端アクリロニトリルブタジエンゴム、スチレンブタジエンゴム等が挙げられる。
 上記液状ゴム成分(I3)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
The liquid rubber component (I3) is not particularly limited. For example, polybutadiene, maleated polybutadiene, acrylated polybutadiene, methacrylated polybutadiene, epoxidized polybutadiene, acrylonitrile butadiene rubber, carboxy terminal acrylonitrile butadiene rubber, amino terminal acrylonitrile butadiene rubber And vinyl-terminated acrylonitrile butadiene rubber, styrene butadiene rubber and the like.
The liquid rubber component (I3) may be used alone or in combination of two or more.
 上記熱可塑性樹脂(I4)としては、特に限定されず、例えば、ポリイミド樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリエステル樹脂、ポリエステルイミド樹脂、フェノキシ樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂等が挙げられる。これらの中でも、耐熱性の観点から、フェノキシ樹脂、ポリイミド樹脂が好ましい。これらの熱可塑性樹脂は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 The thermoplastic resin (I4) is not particularly limited, and examples thereof include polyimide resin, polyamide resin, polyetherimide resin, polyester resin, polyesterimide resin, phenoxy resin, polysulfone resin, polyethersulfone resin, polyphenylene sulfide resin, Polyether ketone resin etc. are mentioned. Among these, phenoxy resin and polyimide resin are preferable from the viewpoint of heat resistance. These thermoplastic resins can be used alone or in combination of two or more.
 上記熱可塑性樹脂(I4)のガラス転移温度(Tg)は、特に限定されないが、200℃以下であることが好ましい。 Although the glass transition temperature (Tg) of the said thermoplastic resin (I4) is not specifically limited, It is preferable that it is 200 degrees C or less.
 上記応力緩和剤(I)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 上記応力緩和剤(I)としては、コンプレッション成型により光反射性、耐熱性、及び耐光性に優れる硬化物を形成することができるという観点から、シリコーンゴム粒子(I1)及びシリコーンオイル(I2)からなる群より選択される少なくとも1種が好ましく、特に、シリコーンゴム粒子(I1)としては、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンが好ましく、シリコーンオイル(I2)としては、ポリアルキレンエーテル変性シリコーン化合物(10)が好ましい。
The stress relaxation agents (I) may be used alone or in combination of two or more.
From the viewpoint that a cured product excellent in light reflectivity, heat resistance, and light resistance can be formed as the stress relaxation agent (I) by compression molding, silicone rubber particles (I1) and silicone oil (I2) can be used. Preferably, at least one selected from the group consisting of: a crosslinked polydimethylsiloxane having a silicone resin on its surface as the silicone rubber particles (I1); and a polyalkylene ether modified as the silicone oil (I2) The silicone compound (10) is preferred.
 本発明の応力緩和剤(I)の含有量(配合量)は、特に限定されないが、脂環式エポキシ化合物(A)100重量部に対して、1~250重量部が好ましく、より好ましくは5~230重量部、さらに好ましくは10~200重量部である。応力緩和剤(I)の含有量1重量部以上とすることにより、白色顔料(C)や後述の無機充填剤(J)の充填量を増やしてもコンプレッション成型が可能であり、また、成形された硬化物の光反射性、耐熱性、及び耐光性がより向上する傾向がある。また、成形品の反りが緩和されて、寸法安定性が向上する傾向がある。一方、応力緩和剤(I)の含有量を250重量部以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上する傾向がある。 The content (blending amount) of the stress relaxation agent (I) of the present invention is not particularly limited, but it is preferably 1 to 250 parts by weight, more preferably 5 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). The amount is about 230 parts by weight, more preferably 10 to 200 parts by weight. By setting the content of the stress relaxation agent (I) to 1 part by weight or more, compression molding is possible even when the loading amount of the white pigment (C) and the inorganic filler (J) described later is increased, and molding The light reflectivity, heat resistance and light resistance of the cured product tend to be further improved. In addition, the warpage of the molded article is alleviated, and dimensional stability tends to be improved. On the other hand, when the content of the stress relaxation agent (I) is 250 parts by weight or less, the curability of the curable epoxy resin composition tends to be further improved.
 本発明の応力緩和剤(I)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、1~200重量部が好ましく、より好ましくは5~150重量部、さらに好ましくは8~120重量部である。応力緩和剤(I)の含有量を1重量部以上とすることにより、白色顔料(C)や後述の無機充填剤(J)の充填量を増やしてもコンプレッション成型が可能であり、また、成形された硬化物の光反射性、耐熱性、及び耐光性がより向上する傾向がある。また、成形品の反りが緩和されて、寸法安定性が向上する傾向がある。一方、応力緩和剤(I)の含有量を200重量部以下とすることにより、硬化性エポキシ樹脂組成物の硬化性がより向上する傾向がある。 The content (compounding amount) of the stress relaxation agent (I) of the present invention is not particularly limited, but it is 1 to 200 parts by weight with respect to 100 parts by weight of the compound having an epoxy group contained in the curable epoxy resin composition. It is preferably part, more preferably 5 to 150 parts by weight, still more preferably 8 to 120 parts by weight. By setting the content of the stress relaxation agent (I) to 1 part by weight or more, compression molding is possible even if the loading amount of the white pigment (C) and the inorganic filler (J) described later is increased, and molding The light reflectivity, heat resistance, and light resistance of the cured product tend to be further improved. In addition, the warpage of the molded article is alleviated, and dimensional stability tends to be improved. On the other hand, when the content of the stress relaxation agent (I) is 200 parts by weight or less, the curability of the curable epoxy resin composition tends to be further improved.
[無機充填剤(J)]
 本発明の硬化性エポキシ樹脂組成物は、白色顔料(C)とは別に、無機充填剤(J)を含むことが好ましい。無機充填剤(J)は、主に、硬化性エポキシ樹脂組成物をコンプレッション成型により形成する場合において、成形された硬化物に優れた耐熱性及び耐光性(特に、優れた耐熱性)を付与する。また、硬化物(リフレクター)の線膨張率を低減させる働きを有する。また、無機充填剤(J)の種類によっては、硬化物(リフレクター)に対して優れた光反射性を付与できる場合もある。
[Inorganic filler (J)]
The curable epoxy resin composition of the present invention preferably contains an inorganic filler (J) separately from the white pigment (C). The inorganic filler (J) mainly imparts excellent heat resistance and light resistance (particularly, excellent heat resistance) to the cured product formed when the curable epoxy resin composition is formed by compression molding. . It also has the function of reducing the coefficient of linear expansion of the cured product (reflector). Moreover, depending on the type of the inorganic filler (J), it may be possible to impart excellent light reflectivity to the cured product (reflector).
 無機充填剤(J)としては、公知乃至慣用の無機充填剤を使用することができ、特に限定されないが、例えば、シリカ、ジルコン、珪酸カルシウム、リン酸カルシウム、炭化ケイ素、窒化ケイ素、窒化アルミニウム、窒化ホウ素、酸化鉄、酸化アルミニウム、フォステライト、ステアタイト、スピネル、クレー、ドロマイト、ヒドロキシアパタイト、ネフェリンサイナイト、クリストバライト、ウォラストナイト、珪藻土等の粉体、又はこれらの成型体(例えば、球形化したビーズ等)等が挙げられる。また、無機充填剤(J)としては、上述の無機充填剤に公知乃至慣用の表面処理が施されたもの等も挙げられる。中でも、無機充填剤(J)としては、硬化物(リフレクター)の耐熱性(特に、耐黄変性)、耐光性、及び流動性の観点で、シリカ、窒化ケイ素、窒化アルミニウム、窒化ホウ素が好ましく、より好ましくはシリカ(シリカフィラー)である。 As the inorganic filler (J), known or commonly used inorganic fillers can be used, and it is not particularly limited. For example, silica, zircon, calcium silicate, calcium phosphate, silicon carbide, silicon nitride, silicon nitride, aluminum nitride, boron nitride Powders such as iron oxide, aluminum oxide, forsterite, steatite, spinel, clay, dolomite, hydroxyapatite, nepheline sainite, cristobalite, wollastonite, diatomaceous earth, etc., or molded products thereof (eg, spherical beads) Etc.). Further, examples of the inorganic filler (J) include those obtained by subjecting the above-mentioned inorganic filler to known or customary surface treatment. Among them, as the inorganic filler (J), silica, silicon nitride, aluminum nitride and boron nitride are preferable from the viewpoints of heat resistance (especially yellowing resistance), light resistance and fluidity of a cured product (reflector), More preferably, it is silica (silica filler).
 シリカとしては、特に限定されず、例えば、溶融シリカ、結晶シリカ、高純度合成シリカ等の公知乃至慣用のシリカを使用できる。なお、シリカとしては、公知乃至慣用の表面処理[例えば、金属酸化物、シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の表面処理剤による表面処理等]が施されたものを使用することもできる。 The silica is not particularly limited, and for example, known or commonly used silicas such as fused silica, crystalline silica, high purity synthetic silica and the like can be used. In addition, as the silica, those to which a known or commonly used surface treatment [for example, a surface treatment with a surface treatment agent such as a metal oxide, a silane coupling agent, a titanium coupling agent, an organic acid, a polyol, a silicone, etc.] Can also be used.
 シリカの形状は、特に限定されないが、例えば、粉体、球状、破砕状、繊維状、針状、鱗片状等が挙げられる。中でも、分散性の観点で、球状のシリカが好ましく、特に真球状のシリカ(例えば、アスペクト比が1.2以下の球状のシリカ)が好ましい。 The shape of the silica is not particularly limited, and examples thereof include powder, sphere, crushed, fibrous, needle, and scaly. Among them, spherical silica is preferable from the viewpoint of dispersibility, and spherical silica (for example, spherical silica having an aspect ratio of 1.2 or less) is particularly preferable.
 シリカの中心粒径は、特に限定されないが、硬化物(リフレクター)の光反射性向上の観点で、0.1~50μmが好ましく、より好ましくは0.1~30μmである。なお、上記中心粒径は、レーザー回折・散乱法で測定した粒度分布における積算値50%での粒径(メディアン径)を意味する。 The central particle size of the silica is not particularly limited, but is preferably 0.1 to 50 μm, and more preferably 0.1 to 30 μm from the viewpoint of improving the light reflectivity of the cured product (reflector). In addition, the said center particle diameter means the particle size (median diameter) in 50% of the integration value in the particle size distribution measured by the laser diffraction and the scattering method.
 なお、本発明の硬化性エポキシ樹脂組成物において無機充填剤(J)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、無機充填剤(J)は、公知乃至慣用の製造方法により製造することもできるし、例えば、商品名「FB-910」、「FB-940」、「FB-950」、「FB-105」、「FB-105FD」、「FB-5D」、「FB-8S」、「FB-7SDC」、「FB-5SDC」、「FB-3SDC」、「FB-9FDC」、「FB-7FDC」、「FB-5FDC」、「FB-970FD」、「FB-975FD」、「FB-950FD」、「FB-40RFD」等のFBシリーズ、商品名「DAW-03DC」、「DAW-0525」、「DAW-1025」等のDAWシリーズ、商品名「SGP」(以上、デンカ(株)製)、商品名「HF-05」((株)トクヤマ製)、商品名「10μmSE-CC5」((株)アドマテックス製)、商品名「MSR-2212」、「MSR-25」(以上、(株)龍森製)、商品名「HS-105」、「HS-106」、「HS-107」(以上、マイクロン社製)等の市販品を使用することもできる。 In addition, in the curable epoxy resin composition of this invention, an inorganic filler (J) can also be used individually by 1 type, and can also be used in combination of 2 or more types. The inorganic filler (J) can also be produced by a known or commonly used production method, for example, under the trade names "FB-910", "FB-940", "FB-950", "FB-105". , "FB-105FD", "FB-5D", "FB-8S", "FB-7SDC", "FB-5SDC", "FB-3SDC", "FB-9FDC", "FB-7FDC", FB series such as "FB-5FDC", "FB-970FD", "FB-975FD", "FB-950FD", "FB-40RFD", brand name "DAW-03DC", "DAW-0525", "DAW -1025 "and other DAW series, trade name" SGP "(above, made by Denka Co., Ltd.), trade name" HF-05 "(made by Tokuyama), trade name" 10 μm SE-CC5 "(made by Admatech Product names “MSR-2212” and “MSR-25” (all, manufactured by Ryumori Co., Ltd.), and product names “HS-105”, “HS-106” and “HS-107” (all and more, Micron) Commercial products, such as company-made) can also be used.
 本発明の硬化性エポキシ樹脂組成物における無機充填剤(J)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物(100重量%)に対して、10~90重量%が好ましく、より好ましくは13~75重量%、さらに好ましくは15~70重量%、さらに好ましくは20~70重量%である。無機充填剤(J)の含有量を10重量%以上とすることにより、硬化性エポキシ樹脂組成物をコンプレッション成型により形成する場合において、形成された硬化物の耐熱性及び耐光性(特に、優れた耐熱性)がより向上する傾向がある。また、硬化物(リフレクター)の線膨張係数が低くなって、該リフレクターを用いた光半導体素子搭載用基板におけるリードフレームの反り等の不具合が生じにくくなる傾向がある。一方、無機充填剤(J)の含有量を90重量%以下とすることにより、硬化物(リフレクター)の成型性が向上し、量産により適する傾向がある。 The content (blending amount) of the inorganic filler (J) in the curable epoxy resin composition of the present invention is not particularly limited, but it is 10 to 90% by weight with respect to the curable epoxy resin composition (100% by weight) Is more preferably 13 to 75% by weight, still more preferably 15 to 70% by weight, and still more preferably 20 to 70% by weight. When the content of the inorganic filler (J) is 10% by weight or more, the heat resistance and light resistance of the formed cured product (particularly, excellent when forming the curable epoxy resin composition by compression molding) Heat resistance tends to be further improved. In addition, the linear expansion coefficient of the cured product (reflector) tends to be low, and defects such as warpage of a lead frame in a substrate for mounting an optical semiconductor element using the reflector tend not to occur easily. On the other hand, when the content of the inorganic filler (J) is 90% by weight or less, the moldability of the cured product (reflector) is improved, and the mass tends to be more suitable.
 本発明の硬化性エポキシ樹脂組成物における無機充填剤(J)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、10~1500重量部が好ましく、より好ましくは50~1200重量部、さらに好ましくは100~1000重量部である。無機充填剤(J)の含有量が10重量部以上であることにより、硬化性エポキシ樹脂組成物をコンプレッション成型により形成する場合において、形成された硬化物の耐熱性及び耐光性(特に、優れた耐熱性)がより向上する傾向がある。また、硬化物(リフレクター)の線膨張係数が低くなって、該リフレクターを用いた光半導体素子搭載用基板におけるリードフレームの反り等の不具合が生じにくくなる傾向がある。一方、無機充填剤(J)の含有量が1500重量部以下であることにより、硬化物(リフレクター)の成型性が向上し、量産により適する傾向がある。 The content (blending amount) of the inorganic filler (J) in the curable epoxy resin composition of the present invention is not particularly limited, but 100 parts by weight in total of the compound having an epoxy group contained in the curable epoxy resin composition The amount is preferably 10 to 1500 parts by weight, more preferably 50 to 1200 parts by weight, and still more preferably 100 to 1000 parts by weight. When the content of the inorganic filler (J) is 10 parts by weight or more, the heat resistance and light resistance of the formed cured product (particularly, excellent when forming the curable epoxy resin composition by compression molding) Heat resistance tends to be further improved. In addition, the linear expansion coefficient of the cured product (reflector) tends to be low, and defects such as warpage of a lead frame in a substrate for mounting an optical semiconductor element using the reflector tend not to occur easily. On the other hand, when the content of the inorganic filler (J) is 1,500 parts by weight or less, the moldability of the cured product (reflector) is improved, and the mass tends to be more suitable.
 本発明の硬化性エポキシ樹脂組成物における白色顔料(C)及び無機充填剤(J)の最大粒子径は、特に限定されないが、200μm以下が好ましく、より好ましくは185μm以下、さらに好ましくは175μm以下、特に好ましくは150μm以下である。上記最大粒子径が200μm以下であると、最大粒子径が200μmを超える白色顔料又は無機充填剤を用いる場合よりも、硬化性エポキシ樹脂組成物をコンプレッション成型により形成された形成された硬化物の耐熱性、耐光性、及び耐クラック性(特に、優れた耐熱性)がさらに優れる傾向がある。また、最大粒子径が小さい白色顔料(C)及び無機充填剤(J)を用いることにより、これらの含有量を増やすことが可能となり、硬化物の光反射性、耐熱性、及び耐光性がよりいっそう向上する傾向がある。上記最大粒子径の下限は、例えば0.01μm以上である。なお、上記最大粒子径は、本発明の硬化性エポキシ樹脂組成物に含まれる白色顔料(C)及び無機充填剤(J)のトータルの最大粒子径である。上記最大粒子径は、レーザー回折・散乱法で測定した粒度分布における最大の粒径を意味する。 The maximum particle diameter of the white pigment (C) and the inorganic filler (J) in the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 200 μm or less, more preferably 185 μm or less, still more preferably 175 μm or less Particularly preferably, it is 150 μm or less. The heat resistance of the formed cured product formed by compression molding of the curable epoxy resin composition that the maximum particle diameter is 200 μm or less than when the white pigment or the inorganic filler having a maximum particle diameter exceeding 200 μm is used Properties, light resistance, and crack resistance (particularly, excellent heat resistance) tend to be further excellent. Moreover, it becomes possible to increase these content by using the white pigment (C) and the inorganic filler (J) with a small largest particle diameter, and the light reflectivity of a hardened material, heat resistance, and light resistance become more There is a tendency to improve further. The lower limit of the maximum particle diameter is, for example, 0.01 μm or more. The maximum particle size is the total maximum particle size of the white pigment (C) and the inorganic filler (J) contained in the curable epoxy resin composition of the present invention. The said largest particle diameter means the largest particle size in the particle size distribution measured by the laser diffraction and scattering method.
 本発明の硬化性エポキシ樹脂組成物に酸化チタンが含まれる場合、白色顔料(C)と無機充填剤(J)の総量(100重量%)に対する酸化チタンの割合は、特に限定されないが、硬化物(リフレクター)の耐熱性(耐黄変性)と光反射性のバランスの観点で、5~70重量%が好ましく、より好ましくは5~60重量%である。酸化チタンの割合を5重量%以上とすることにより、硬化物(リフレクター)の光反射性がより向上する傾向がある。また、耐熱性(特に、耐黄変性)及び耐光性(特に、耐紫外線性)がより向上する傾向がある。一方、酸化チタンの割合を70重量%以下とすることにより、硬化物(リフレクター)の成型性が向上し、量産により適する傾向がある。 When titanium oxide is contained in the curable epoxy resin composition of the present invention, the ratio of titanium oxide to the total amount (100% by weight) of the white pigment (C) and the inorganic filler (J) is not particularly limited. From the viewpoint of the balance between heat resistance (yellowing resistance) and light reflectivity of the (reflector), it is preferably 5 to 70% by weight, more preferably 5 to 60% by weight. By setting the ratio of titanium oxide to 5% by weight or more, the light reflectivity of the cured product (reflector) tends to be further improved. In addition, heat resistance (in particular, yellowing resistance) and light resistance (in particular, ultraviolet resistance) tend to be further improved. On the other hand, by setting the ratio of titanium oxide to 70% by weight or less, the moldability of the cured product (reflector) is improved, and there is a tendency that mass production is more suitable.
[離型剤]
 本発明の硬化性エポキシ樹脂組成物は、さらに、離型剤を含んでいてもよい。離型剤を含むことにより、トランスファー成型等の金型を使用した成型法による連続成型が容易となり、高い生産性で硬化物(リフレクター)を製造することが可能となる。離型剤としては、公知乃至慣用の離型剤を使用することができ、特に限定されないが、例えば、フッ素系離型剤(フッ素原子含有化合物;例えば、フッ素オイル、ポリテトラフルオロエチレン等)、シリコーン系離型剤(シリコーン化合物;例えば、シリコーンオイル、シリコーンワックス、シリコーン樹脂、ポリオキシアルキレン単位を有するポリオルガノシロキサン等)、ワックス系離型剤(ワックス類;例えば、カルナウバワックス等の植物ロウ、羊毛ワックス等の動物ロウ、パラフィンワックス等のパラフィン類、ポリエチレンワックス、酸化ポリエチレンワックス等)、高級脂肪酸又はその塩(例えば、金属塩等)、高級脂肪酸エステル、高級脂肪酸アミド、鉱油等が挙げられる。
[Release agent]
The curable epoxy resin composition of the present invention may further contain a release agent. By including the release agent, continuous molding by a molding method using a mold such as transfer molding becomes easy, and it becomes possible to manufacture a cured product (reflector) with high productivity. As the releasing agent, known or commonly used releasing agents can be used, and it is not particularly limited. For example, fluorine-based releasing agents (fluorine-containing compounds; for example, fluorine oil, polytetrafluoroethylene etc.), Silicone-based release agent (silicone compound; for example, silicone oil, silicone wax, silicone resin, polyorganosiloxane having a polyoxyalkylene unit, etc.), wax-based release agent (waxes; for example, vegetable wax such as carnauba wax Animal waxes such as wool wax, paraffins such as paraffin wax, polyethylene wax, oxidized polyethylene wax etc., higher fatty acids or their salts (eg, metal salts etc.), higher fatty acid esters, higher fatty acid amides, mineral oil etc. .
 なお、本発明の硬化性エポキシ樹脂組成物において離型剤は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、離型剤は、公知乃至慣用の方法によって製造することもできるし、市販品を使用することもできる。 In addition, in the curable epoxy resin composition of this invention, a mold release agent can also be used individually by 1 type, and can also be used in combination of 2 or more types. Further, the release agent can be produced by a known or conventional method, or a commercially available product can be used.
 本発明の硬化性エポキシ樹脂組成物が離型剤を含有する場合、離型剤の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、1~12重量部が好ましく、より好ましくは2~10重量部である。離型剤の含有量を1重量部以上とすることにより、硬化物(リフレクター)の離型性がより向上し、リフレクターの生産性がより向上する傾向がある。一方、離型剤の含有量を12重量部以下とすることにより、光半導体素子搭載用基板におけるリフレクターのリードフレームに対する良好な密着性を確保できる傾向がある。 When the curable epoxy resin composition of the present invention contains a release agent, the content (blending amount) of the release agent is not particularly limited, but the compound having an epoxy group contained in the curable epoxy resin composition The amount is preferably 1 to 12 parts by weight, more preferably 2 to 10 parts by weight, based on 100 parts by weight of the total amount. By setting the content of the release agent to 1 part by weight or more, the releasability of the cured product (reflector) tends to be further improved, and the productivity of the reflector tends to be further improved. On the other hand, by setting the content of the release agent to 12 parts by weight or less, good adhesion to the lead frame of the reflector in the optical semiconductor element mounting substrate tends to be able to be secured.
[酸化防止剤]
 本発明の硬化性エポキシ樹脂組成物は、酸化防止剤を含んでいてもよい。酸化防止剤を含むことにより、いっそう耐熱性(特に、耐黄変性)に優れた硬化物(リフレクター)を製造することが可能となる。酸化防止剤としては、公知乃至慣用の酸化防止剤を使用することができ、特に限定されないが、例えば、フェノール系酸化防止剤(フェノール系化合物)、ヒンダードアミン系酸化防止剤(ヒンダードアミン系化合物)、リン系酸化防止剤(リン系化合物)、イオウ系酸化防止剤(イオウ系化合物)等が挙げられる。
[Antioxidant]
The curable epoxy resin composition of the present invention may contain an antioxidant. By including the antioxidant, it is possible to produce a cured product (reflector) that is further excellent in heat resistance (particularly, yellowing resistance). As the antioxidant, known or commonly used antioxidants can be used and are not particularly limited. For example, phenolic antioxidants (phenolic compounds), hindered amine antioxidants (hindered amine compounds), phosphorus And antioxidants (phosphorus compounds) and sulfur antioxidants (sulfur compounds).
 フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール類;2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4'-チオビス(3-メチル-6-t-ブチルフェノール)、4,4'-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3'-ビス-(4'-ヒドロキシ-3'-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3',5'-ジ-t-ブチル-4'-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類等が挙げられる。 Examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β- (3 Monophenols such as 2, 5-di-t-butyl-4-hydroxyphenyl) propionate; 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl- 6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 3,9-bis [1 , 1-Dimethyl-2- {β- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} ethyl] 2,4,8,10-tetraoxaspi [5.5] Bisphenols such as undecane; 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, 1,3,5-trimethyl-2,4,6- Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3'-Bis- (4'-hydroxy-3'-t-butylphenyl) butyric acid] glycol ester, 1,3,5-tris (3 ', 5'-di-t-butyl-4 Polymeric phenols such as' -hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, tocophenol and the like can be mentioned.
 ヒンダードアミン系酸化防止剤としては、例えば、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン等が挙げられる。 Examples of hindered amine antioxidants include bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl Butyl malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate, 4-benzoyloxy- 2,2,6,6-tetramethylpiperidine etc. may be mentioned.
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2、4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類等が挙げられる。 Examples of phosphorus-based antioxidants include triphenyl phosphite, diphenyl isodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecyl pentaerythritol phosphite, and tris (2,4-di-t-). Butylphenyl) phosphite, cyclic neopentanetetrayl bis (octadecyl) phosphite, cyclic neopentanetetrayl bis (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetrayl bis (2 Phospha such as 2,4-di-t-butyl-4-methylphenyl) phosphite, bis [2-t-butyl-6-methyl-4- {2- (octadecyloxycarbonyl) ethyl} phenyl] hydrogen phosphite Fights; 9, 10- Hydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene And oxaphosphaphenanthrene oxides such as -10-oxide.
 イオウ系酸化防止剤としては、例えば、ドデカンチオール、ジラウリル-3,3'-チオジプロピオネート、ジミリスチル-3,3'-チオジプロピオネート、ジステアリル-3,3'-チオジプロピオネート等が挙げられる。 Examples of sulfur-based antioxidants include dodecanethiol, dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, etc. Can be mentioned.
 本発明の硬化性エポキシ樹脂組成物において酸化防止剤は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、酸化防止剤は、公知乃至慣用の方法により製造することもできるし、例えば、商品名「Irganox1010」(BASF製、フェノール系酸化防止剤)、商品名「AO-60」、「AO-80」((株)ADEKA製、フェノール系酸化防止剤)、商品名「Irgafos168」(BASF製、リン系酸化防止剤)、商品名「アデカスタブHP-10」、「アデカスタブPEP-36」((株)ADEKA製、リン系酸化防止剤)、商品名「HCA」(三光(株)製、リン系酸化防止剤)等の市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the antioxidant may be used singly or in combination of two or more. The antioxidant can also be produced by a known or conventional method, for example, under the trade name “Irganox 1010” (manufactured by BASF, a phenolic antioxidant), under the trade name “AO-60”, “AO-80 (Made by ADEKA Corporation, phenolic antioxidant), trade name “Irgafos 168” (manufactured by BASF, phosphorus antioxidant), trade name “Adekastab HP-10”, “Adekastab PEP-36” (traded) It is also possible to use commercially available products such as ADEKA, phosphorus-based antioxidants, and trade name "HCA" (manufactured by Sanko Co., Ltd., phosphorus-based antioxidants).
 本発明の硬化性エポキシ樹脂組成物が酸化防止剤を含有する場合、酸化防止剤の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、0.1~5重量部が好ましく、より好ましくは0.5~3重量部である。酸化防止剤の含有量を0.1重量部以上とすることにより、硬化物(リフレクター)の酸化が効率的に防止され、耐熱性、耐黄変性がより向上する傾向がある。一方、酸化防止剤の含有量を5重量部以下とすることにより、着色が抑制され、色相がより良好なリフレクターが得られやすい傾向がある。 When the curable epoxy resin composition of the present invention contains an antioxidant, the content (blending amount) of the antioxidant is not particularly limited, but the compound having an epoxy group contained in the curable epoxy resin composition The amount is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight in total. By setting the content of the antioxidant to 0.1 parts by weight or more, oxidation of the cured product (reflector) is effectively prevented, and heat resistance and yellowing resistance tend to be further improved. On the other hand, when the content of the antioxidant is 5 parts by weight or less, coloring is suppressed and a reflector having a better hue tends to be easily obtained.
[添加剤]
 本発明の硬化性エポキシ樹脂組成物は、上述の成分以外にも、本発明の効果を損なわない範囲で各種添加剤を含有していてもよい。上記添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のヒドロキシ基を有する化合物(特に、脂肪族多価アルコール。但し、上記ポリオール化合物を除く)を含有させると、反応を緩やかに進行させることができる。その他にも、粘度や光反射性を損なわない範囲内で、消泡剤、γ-グリシドキシプロピルトリメトキシシランや3-メルカプトプロピルトリメトキシシラン等のシランカップリング剤、蛍光増白剤、界面活性剤、難燃剤、着色剤、イオン吸着体、紫外線吸収剤、光安定剤、白色顔料(C)以外の顔料等の慣用の添加剤を使用することができる。これら添加剤の含有量は特に限定されず、適宜選択可能である。
[Additive]
The curable epoxy resin composition of the present invention may contain various additives in addition to the components described above as long as the effects of the present invention are not impaired. For example, when a compound having a hydroxy group such as ethylene glycol, diethylene glycol, propylene glycol, glycerin etc. (particularly, aliphatic polyhydric alcohol, but excluding the above-mentioned polyol compound) is contained as the above additive, the reaction proceeds slowly It can be done. In addition, antifoaming agents, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, fluorescent whitening agents, and interfaces within limits that do not impair viscosity and light reflectivity. Conventional additives such as activators, flame retardants, colorants, ion adsorbents, UV absorbers, light stabilizers, and pigments other than white pigment (C) can be used. The content of these additives is not particularly limited, and can be appropriately selected.
 上記蛍光増白剤としては、公知乃至慣用の蛍光増白剤を使用することができる。本発明の硬化性エポキシ樹脂組成物が蛍光増白剤を含む場合、コンプレッション成型により形成される硬化物の光反射性、耐熱性、耐光性、及び耐クラック性により優れる傾向がある。上記蛍光増白剤としては、例えば、ピラゾリン誘導体、スチルベン誘導体、トリアジン誘導体、チアゾール誘導体、ベンゾオキサゾール誘導体、キサントン誘導体、トリアゾール誘導体、オキサゾール誘導体、チオフェン誘導体、クマリン誘導体、ナフタルイミド誘導体等が挙げられる。 As the above-mentioned fluorescent whitening agents, known to conventional fluorescent whitening agents can be used. When the curable epoxy resin composition of the present invention contains a fluorescent whitening agent, it tends to be more excellent in light reflectivity, heat resistance, light resistance and crack resistance of a cured product formed by compression molding. Examples of the fluorescent whitening agent include pyrazoline derivatives, stilbene derivatives, triazine derivatives, thiazole derivatives, benzoxazole derivatives, xanthone derivatives, triazole derivatives, oxazole derivatives, thiophene derivatives, coumarin derivatives, naphthalimide derivatives and the like.
 本発明の硬化性エポキシ樹脂組成物が、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、白色顔料(C)、硬化剤(D)、及び硬化促進剤(F)を含有する場合、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、硬化剤(D)、及び硬化促進剤(F)からなる混合物の25℃における粘度は、特に限定されないが、5000mPa・s以下であることが好ましい。なお、本発明の硬化性エポキシ樹脂組成物は、上述のシロキサン誘導体(G)、脂環式ポリエステル樹脂(H)、シリコーンゴム粒子以外のゴム粒子、シリコーン系レベリング剤及びフッ素系レベリング剤からなる群より選ばれた少なくとも1種のレベリング剤、ポリオール化合物、アクリルブロック共重合体、応力緩和剤(I)、及び/又はエチレングリコール等の上述の脂肪族多価アルコール(以下、「他の任意成分」という)を含んでいてもよく、この場合、上述の混合物は、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、硬化剤(D)、硬化促進剤(F)、及び他の任意成分からなる混合物である。 The curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), a white pigment (C), a curing agent (D), and a curing accelerator (F). The viscosity at 25 ° C. of the mixture comprising the alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), curing agent (D), and curing accelerator (F) is particularly limited. Although not preferred, it is preferably 5000 mPa · s or less. The curable epoxy resin composition of the present invention is a group comprising the above-mentioned siloxane derivative (G), alicyclic polyester resin (H), rubber particles other than silicone rubber particles, a silicone-based leveling agent and a fluorine-based leveling agent. At least one leveling agent selected from the group consisting of a polyol compound, an acrylic block copolymer, a stress relaxation agent (I), and / or the above-mentioned aliphatic polyhydric alcohol such as ethylene glycol (hereinafter referred to as "other optional components" (A), monoallyl diglycidyl isocyanurate compound (B), curing agent (D), curing accelerator (F), and the like. And other optional components.
 一方、本発明の硬化性エポキシ樹脂組成物が、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、白色顔料(C)、及び硬化触媒(E)を含有する場合、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、及び硬化触媒(E)からなる混合物の25℃における粘度は、特に限定されないが、5000mPa・s以下であることが好ましい。本発明の硬化性エポキシ樹脂組成物は、他の任意成分を含んでいてもよく、この場合、上述の混合物は、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、硬化触媒(E)、及び他の任意成分からなる混合物である。なお、本明細書において、上記の二種の混合物の25℃における粘度を、総称して、「樹脂粘度」と称する場合がある。 On the other hand, when the curable epoxy resin composition of the present invention contains an alicyclic epoxy compound (A), a monoallyl diglycidyl isocyanurate compound (B), a white pigment (C), and a curing catalyst (E), The viscosity at 25 ° C. of the mixture comprising the alicyclic epoxy compound (A), the monoallyl diglycidyl isocyanurate compound (B), and the curing catalyst (E) is not particularly limited, but is preferably 5000 mPa · s or less . The curable epoxy resin composition of the present invention may contain other optional components, in which case the above-mentioned mixture is an alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), It is a mixture consisting of a curing catalyst (E) and other optional components. In addition, in this specification, the viscosity in 25 degreeC of said 2 types of mixtures may be generically called "resin viscosity."
 上記樹脂粘度は、常圧において25℃で測定した粘度である。上記樹脂粘度は、5000mPa・s以下であることが好ましく、より好ましくは4000mPa・s以下、さらに好ましくは3500mPa・s以下、特に好ましくは3000mPa・s以下である。上記樹脂粘度が5000mPa・s以下であると、樹脂粘度が5000mPa・sを超える場合よりも、硬化性エポキシ樹脂組成物をコンプレッション成型により形成された形成された硬化物の耐熱性、耐光性、及び耐クラック性(特に、優れた耐熱性)がさらに優れる傾向がある。また、上記樹脂粘度が比較的低いことにより、白色顔料(C)や無機充填剤(J)等の他の成分の含有量を増やすことが可能となり、硬化物の光反射性、耐熱性、及び耐光性がよりいっそう向上する傾向がある。上記樹脂粘度の下限は、例えば100mPa・s以上である。なお、上記樹脂粘度は、例えば、デジタル粘度計(型番「DVU-EII型」、(株)トキメック製)を用いて、ローター:標準1°34'×R24、温度:25℃、回転数:0.5~10rpmの条件で測定することができる。 The resin viscosity is a viscosity measured at 25 ° C. under normal pressure. The viscosity of the resin is preferably 5000 mPa · s or less, more preferably 4000 mPa · s or less, still more preferably 3500 mPa · s or less, and particularly preferably 3000 mPa · s or less. The heat resistance, light resistance, and heat resistance of the formed cured product formed by compression molding of the curable epoxy resin composition that the resin viscosity is 5000 mPa · s or less than when the resin viscosity exceeds 5000 mPa · s. Crack resistance (particularly, excellent heat resistance) tends to be further excellent. In addition, since the resin viscosity is relatively low, the content of other components such as the white pigment (C) and the inorganic filler (J) can be increased, and the light reflectivity of the cured product, heat resistance, and The light resistance tends to be further improved. The lower limit of the resin viscosity is, for example, 100 mPa · s or more. The resin viscosity is measured using, for example, a digital viscometer (model number “DVU-EII type” manufactured by Tokimec Corporation), rotor: standard 1 ° 34 ′ × R24, temperature: 25 ° C., rotation number: 0 It can be measured under the condition of 5 to 10 rpm.
 上記樹脂粘度は、例えば、用いる成分(例えば、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、硬化剤(D)、硬化促進剤(F)、硬化触媒(E)、シロキサン誘導体(G)、及び脂環式ポリエステル樹脂(H)、液状の応力緩和剤(I)等)として、25℃で液体の成分を用いることにより得やすくなる。なお、上記成分として25℃で固体の成分を用いてもよいが、その含有量は、上記樹脂粘度が5000mPa・s以下となるように調整される。また、ゴム粒子、固体の応力緩和剤(I)の含有量を、本発明の効果を損なわない範囲内で調整することによっても得やすくなる。 The resin viscosity is, for example, a component to be used (for example, an alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), a curing agent (D), a curing accelerator (F), a curing catalyst (E) It becomes easy to obtain by using a liquid component at 25 ° C. as a siloxane derivative (G), an alicyclic polyester resin (H), a liquid stress relaxation agent (I) and the like. In addition, although a component solid at 25 ° C. may be used as the above component, the content thereof is adjusted so that the viscosity of the resin becomes 5000 mPa · s or less. Moreover, it becomes easy to obtain also by adjusting content of a rubber particle and solid stress relaxation agent (I) in the range which does not impair the effect of this invention.
 なお、本発明の硬化性エポキシ樹脂組成物は、加熱して該硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)及び硬化剤(D)の一部を反応させることによって得られる、Bステージ化させた硬化性エポキシ樹脂組成物(Bステージ状態の硬化性エポキシ樹脂組成物)であってもよい。 The curable epoxy resin composition of the present invention can be obtained by heating to react a part of the alicyclic epoxy compound (A) and the curing agent (D) in the curable epoxy resin composition, B. It may be a curable epoxy resin composition (curable epoxy resin composition in a B-stage state) which has been staged.
 上述のように、本発明の硬化性エポキシ樹脂組成物は硬化後の光反射性、耐熱性、及び耐光性に優れるため、特に、トランスファー成型用樹脂組成物やコンプレッション成型用樹脂組成物として好ましく使用できる。中でも、本発明の硬化性エポキシ樹脂組成物は、コンプレッション成型によって形成された硬化物(リフレクター)の光反射性、耐熱性、及び耐光性に特に優れるため、コンプレッション成型用の樹脂組成物であることが特に好ましい。 As described above, since the curable epoxy resin composition of the present invention is excellent in light reflectivity, heat resistance and light resistance after curing, it is particularly preferably used as a resin composition for transfer molding or a resin composition for compression molding. it can. Among them, the curable epoxy resin composition of the present invention is a resin composition for compression molding, because it is particularly excellent in light reflectivity, heat resistance and light resistance of a cured product (reflector) formed by compression molding. Is particularly preferred.
<硬化性エポキシ樹脂組成物の調製方法>
 本発明の硬化性エポキシ樹脂組成物の製造方法としては、特に限定されず、公知乃至慣用の方法を適用することができる。具体的には、例えば、所定量の脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、白色顔料(C)、硬化剤(D)、硬化促進剤(F)、及び任意の添加剤を配合して、又は、所定量の脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、白色顔料(C)、硬化触媒(E)、及び任意の添加剤を配合して、ディゾルバー、ホモジナイザーなどの各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置などを用いて撹拌、混合する方法等が挙げられる。また、撹拌、混合後、減圧下や真空下にて脱泡してもよい。
<Method of Preparing Curable Epoxy Resin Composition>
It does not specifically limit as a manufacturing method of the curable epoxy resin composition of this invention, A well-known thru | or a usual method can be applied. Specifically, for example, a predetermined amount of alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing agent (D), curing accelerator (F), and Optional additives are blended, or a predetermined amount of alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing catalyst (E), and optional addition And mixing and mixing using a mixer, such as a dissolver or homogenizer, a kneader, a roll, a bead mill, a self-revolution type stirring apparatus, and the like. Moreover, after stirring and mixing, you may degas under pressure reduction or under a vacuum.
 より具体的には、本発明の硬化性エポキシ樹脂組成物は、例えば、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)等のエポキシ基を有する化合物を必須成分として含むα剤と、硬化剤(D)及び硬化促進剤(F)、又は、硬化触媒(E)を必須成分として含むβ剤とを別々に調製し、当該α剤とβ剤とを所定の割合で攪拌・混合し、必要に応じて真空下で脱泡する方法により調製することができる。なお、脂環式ポリエステル樹脂(H)は、あらかじめα剤及び/又はβ剤の構成成分として混合(配合)しておいてもよいし、α剤とβ剤とを混合する際にα剤、β剤以外の第三成分として配合してもよい。また、白色顔料(C)も同様に、あらかじめα剤及び/又はβ剤の構成成分として混合(配合)しておいてもよいし、α剤とβ剤とを混合する際にα剤、β剤以外の第三成分として配合してもよい。 More specifically, the curable epoxy resin composition of the present invention is, for example, a cycloaliphatic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), a siloxane having two or more epoxy groups in the molecule Separately alpha agent containing a compound having an epoxy group such as derivative (G) as an essential component, and beta agent containing a curing agent (D) and a curing accelerator (F) or a curing catalyst (E) as an essential component It is possible to prepare it by a method in which the .alpha. Agent and the .beta. Agent are stirred and mixed in a predetermined ratio, and defoamed under vacuum if necessary. The alicyclic polyester resin (H) may be mixed (blended) in advance as a component of the α agent and / or the β agent, or when the α agent and the β agent are mixed, the α agent, You may mix | blend as 3rd components other than beta agent. Similarly, the white pigment (C) may be mixed (blended) in advance as a component of the α agent and / or the β agent, or when the α agent and the β agent are mixed, the α agent, β You may mix | blend as 3rd components other than an agent.
 上記α剤を調製する際の攪拌・混合時の温度は、特に限定されないが、30~150℃が好ましく、より好ましくは35~130℃である。また、上記β剤(2以上の成分より構成される場合)を調製する際の攪拌・混合時の温度は、特に限定されないが、30~100℃が好ましく、より好ましくは35~80℃である。攪拌・混合には公知の装置、例えば、ディゾルバー、ホモジナイザーなどの各種ミキサー、ニーダー、ロール、ビーズミル、自公転式攪拌装置などを使用できる。また、攪拌、混合後、減圧下や真空下にて脱泡してもよい。 The temperature at the time of stirring and mixing when preparing the above-mentioned α-agent is not particularly limited, but it is preferably 30 to 150 ° C., more preferably 35 to 130 ° C. Further, the temperature at the time of stirring and mixing when preparing the above-mentioned β-agent (when it is composed of two or more components) is not particularly limited, but it is preferably 30 to 100 ° C, more preferably 35 to 80 ° C . For stirring and mixing, known devices, for example, various mixers such as a dissolver and a homogenizer, a kneader, a roll, a beads mill, a self-revolution type stirring device and the like can be used. Moreover, after stirring and mixing, you may degas under pressure reduction or under a vacuum.
 特に、本発明の硬化性エポキシ樹脂組成物が硬化剤(D)を必須成分として含む場合には、均一な組成物を得る観点で、脂環式ポリエステル樹脂(H)と硬化剤(D)とをあらかじめ混合してこれらの混合物(脂環式ポリエステル樹脂(H)と硬化剤(D)の混合物)を得た後、該混合物に硬化促進剤(F)やその他の添加剤を配合してβ剤を調製し、引き続き、該β剤とα剤を混合することにより調製することが好ましい。脂環式ポリエステル樹脂(H)と硬化剤(D)を混合する際の温度は、特に限定されないが、60~130℃が好ましく、より好ましくは90~120℃である。混合時間は、特に限定されないが、30~100分間が好ましく、より好ましくは45~80分間である。混合は、特に限定されないが、窒素雰囲気下で行うことが好ましい。また、混合には、上述の公知の装置を使用できる。 In particular, when the curable epoxy resin composition of the present invention contains a curing agent (D) as an essential component, from the viewpoint of obtaining a uniform composition, the alicyclic polyester resin (H) and the curing agent (D) Are mixed beforehand to obtain a mixture thereof (a mixture of an alicyclic polyester resin (H) and a curing agent (D)), and then the mixture is blended with a curing accelerator (F) and other additives to obtain β Preferably, the agent is prepared and subsequently mixed by mixing the beta agent and the alpha agent. The temperature at which the alicyclic polyester resin (H) and the curing agent (D) are mixed is not particularly limited, but it is preferably 60 to 130 ° C., more preferably 90 to 120 ° C. The mixing time is not particularly limited, but is preferably 30 to 100 minutes, more preferably 45 to 80 minutes. The mixing is not particularly limited, but is preferably performed under a nitrogen atmosphere. Also, for mixing, the above-mentioned known apparatus can be used.
 脂環式ポリエステル樹脂(H)と硬化剤(D)を混合した後には、特に限定されないが、さらに適宜な化学処理(例えば、水素添加や脂環式ポリエステルの末端変性など)等を施してもよい。なお、上記脂環式ポリエステル樹脂(H)と硬化剤(D)の混合物においては、硬化剤(D)の一部が脂環式ポリエステル樹脂(H)(例えば、脂環式ポリエステル樹脂(H)の水酸基など)と反応していてもよい。 After mixing the alicyclic polyester resin (H) and the curing agent (D), there is no particular limitation, but even if appropriate chemical treatment (for example, hydrogenation or terminal modification of alicyclic polyester, etc.) is performed, etc. Good. In the mixture of the alicyclic polyester resin (H) and the curing agent (D), a part of the curing agent (D) is an alicyclic polyester resin (H) (for example, an alicyclic polyester resin (H) Or the like) and may react with
 上述の脂環式ポリエステル樹脂(H)と硬化剤(D)の混合物として、例えば、「HN-7200」(日立化成工業(株)製)、「HN-5700」(日立化成工業(株)製)などの市販品を用いることもできる。 As a mixture of the above-mentioned alicyclic polyester resin (H) and a curing agent (D), for example, “HN-7200” (manufactured by Hitachi Chemical Co., Ltd.), “HN-5700” (manufactured by Hitachi Chemical Co., Ltd.) Commercial products such as) can also be used.
 特に限定されないが、ゴム粒子は、あらかじめ脂環式エポキシ化合物(A)中に分散させた組成物(当該組成物を「ゴム粒子分散エポキシ化合物」と称する場合がある)の状態で配合することが好ましい。即ち、本発明の硬化性エポキシ樹脂組成物は、上記ゴム粒子分散エポキシ化合物と、白色顔料(C)と、硬化剤(D)及び硬化促進剤(F)、又は、硬化触媒(E)と、必要に応じてその他の成分とを混合することにより調製することが好ましい。このような調製方法により、特に、硬化性エポキシ樹脂組成物におけるゴム粒子の分散性を向上させることができる。ただし、ゴム粒子の配合方法は、上記方法に限定されず、それ単独で配合する方法であってもよい。 Although not particularly limited, the rubber particles may be compounded in the state of a composition dispersed in advance in the alicyclic epoxy compound (A) (the composition may be referred to as “rubber particle dispersed epoxy compound”). preferable. That is, the curable epoxy resin composition of the present invention comprises the rubber particle dispersed epoxy compound, a white pigment (C), a curing agent (D) and a curing accelerator (F), or a curing catalyst (E), It is preferable to prepare by mixing with other components as needed. By such a preparation method, in particular, the dispersibility of rubber particles in the curable epoxy resin composition can be improved. However, the blending method of the rubber particles is not limited to the above method, and it may be a blending method by itself.
(ゴム粒子分散エポキシ化合物)
 上記ゴム粒子分散エポキシ化合物は、ゴム粒子を脂環式エポキシ化合物(A)に分散させることによって得られる。なお、上記ゴム粒子分散エポキシ化合物における脂環式エポキシ化合物(A)は、硬化性エポキシ樹脂組成物を構成する脂環式エポキシ化合物(A)の全量であってもよいし、一部の量であってもよい。同様に、上記ゴム粒子分散エポキシ化合物におけるゴム粒子は、硬化性エポキシ樹脂組成物を構成するゴム粒子の全量であってもよいし、一部の量であってもよい。
(Rubber particle dispersed epoxy compound)
The rubber particle-dispersed epoxy compound is obtained by dispersing rubber particles in an alicyclic epoxy compound (A). The total amount of the alicyclic epoxy compound (A) in the rubber particle-dispersed epoxy compound may be the total amount of the alicyclic epoxy compound (A) constituting the curable epoxy resin composition, or a partial amount thereof. It may be. Similarly, the rubber particles in the rubber particle-dispersed epoxy compound may be all or part of the rubber particles constituting the curable epoxy resin composition.
 上記ゴム粒子分散エポキシ化合物の粘度は、例えば、反応性希釈剤を併用することにより調整することができる(即ち、ゴム粒子分散エポキシ化合物は、さらに反応性希釈剤を含んでいてもよい)。上記反応性希釈剤としては、例えば、常温(25℃)における粘度が200mPa・s以下の脂肪族ポリグリシジルエーテルを好ましく使用できる。粘度(25℃)が200mPa・s以下の脂肪族ポリグリシジルエーテルとしては、例えば、シクロヘキサンジメタノールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。 The viscosity of the rubber particle-dispersed epoxy compound can be adjusted, for example, by using a reactive diluent (that is, the rubber particle-dispersed epoxy compound may further contain a reactive diluent). As the above-mentioned reactive diluent, for example, aliphatic polyglycidyl ether having a viscosity of 200 mPa · s or less at normal temperature (25 ° C.) can be preferably used. As aliphatic polyglycidyl ethers having a viscosity (25 ° C.) of 200 mPa · s or less, for example, cyclohexane dimethanol diglycidyl ether, cyclohexane diol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether And trimethylolpropane triglycidyl ether, polypropylene glycol diglycidyl ether and the like.
 上記反応性希釈剤の使用量は、適宜調整することができ、特に限定されないが、上記ゴム粒子分散エポキシ化合物全量100重量部に対して、30重量部以下が好ましく、より好ましくは25重量部以下(例えば、5~25重量部)である。使用量が30重量部以下であると、強靭性(耐クラック性向上)等の所望の性能を得やすくなる傾向がある。 The use amount of the reactive diluent can be appropriately adjusted and is not particularly limited, but preferably 30 parts by weight or less, more preferably 25 parts by weight or less based on 100 parts by weight of the total of the rubber particle dispersed epoxy compound. (For example, 5 to 25 parts by weight). If the amount used is 30 parts by weight or less, desired properties such as toughness (improvement in crack resistance) tend to be obtained easily.
 上記ゴム粒子分散エポキシ化合物の製造方法は、特に限定されず、周知慣用の方法を使用することができる。例えば、ゴム粒子を脱水乾燥して粉体とした後に、脂環式エポキシ化合物(A)に混合し、分散させる方法や、ゴム粒子のエマルジョンと脂環式エポキシ化合物(A)とを直接混合し、続いて脱水する方法等が挙げられる。 The manufacturing method of the said rubber particle dispersion epoxy compound is not specifically limited, A well-known and usual method can be used. For example, after the rubber particles are dehydrated and dried to form a powder, they are mixed with the alicyclic epoxy compound (A) and dispersed, or the emulsion of the rubber particles and the alicyclic epoxy compound (A) are directly mixed. Then, the method of dehydrating etc. is mentioned.
 本発明の硬化性エポキシ樹脂組成物の25℃における粘度は、特に限定されないが、100~1000000mPa・sが好ましく、より好ましくは200~800000mPa・s、さらに好ましくは300~800000mPa・sである。25℃における粘度を100mPa・s以上とすることにより、注型時の作業性が向上したり、硬化物の耐熱性及び耐光性がより向上する傾向がある。一方、25℃における粘度を1000000mPa・s以下とすることにより、注型時の作業性が向上したり、硬化物に注型不良に由来する不具合が生じにくくなる傾向がある。 The viscosity at 25 ° C. of the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 100 to 1,000,000 mPa · s, more preferably 200 to 800,000 mPa · s, and still more preferably 300 to 800,000 mPa · s. By setting the viscosity at 25 ° C. to 100 mPa · s or more, the workability at the time of casting tends to be improved, and the heat resistance and light resistance of the cured product tend to be further improved. On the other hand, by setting the viscosity at 25 ° C. to 1,000,000 mPa · s or less, the workability at the time of casting tends to be improved, and problems caused by casting defects in the cured product tend not to occur easily.
<硬化物>
 本発明の硬化性エポキシ樹脂組成物を加熱によって硬化させることにより、光反射性に優れ、耐熱性、耐光性、及び耐クラック性に優れる硬化物を得ることができる。なお、本発明の硬化性エポキシ樹脂組成物を硬化させた硬化物、即ち本発明の硬化性エポキシ樹脂組成物の硬化物を「本発明の硬化物」と称する場合がある。硬化の際の加熱温度(硬化温度)は、特に限定されないが、50~200℃が好ましく、より好ましくは80~180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、60~1800秒が好ましく、より好ましくは90~900秒である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は熱分解による黄変が発生するので好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。また、硬化処理は一段階(例えば、コンプレッション成型のみ)で行ってもよいし、例えば、多段階(例えば、コンプレッション成型後にポストキュアー(二次硬化)としてオーブン等でさらに加熱する等)で行ってもよい。また、ポストキュアーを行う場合、この際の加熱温度は、50~200℃が好ましく、より好ましくは60~180℃、より好ましくは硬化温度と同程度の温度である。また、ポストキュアーを行う時間は、0.5~10時間が好ましく、より好ましくは1~8時間である。
<Cured product>
By curing the curable epoxy resin composition of the present invention by heating, it is possible to obtain a cured product which is excellent in light reflectivity, and excellent in heat resistance, light resistance, and crack resistance. In addition, the hardened | cured material which hardened the curable epoxy resin composition of this invention, ie, the hardened | cured material of the curable epoxy resin composition of this invention, may be called "the hardened | cured material of this invention." The heating temperature (curing temperature) during curing is not particularly limited, but it is preferably 50 to 200 ° C., more preferably 80 to 180 ° C. Further, the heating time (curing time) at the time of curing is not particularly limited, but it is preferably 60 to 1800 seconds, more preferably 90 to 900 seconds. If the curing temperature and the curing time are lower than the lower limit of the above range, curing will be insufficient, and if the upper limit is above the above range, yellowing due to thermal decomposition will occur, which is not preferable. Although the curing conditions depend on various conditions, for example, when the curing temperature is raised, the curing time can be appropriately adjusted by shortening the curing time, and when the curing temperature is lowered, prolonging the curing time or the like. In addition, the curing process may be performed in one step (for example, only compression molding) or, for example, may be performed in multiple steps (for example, further heating in an oven as post curing (second curing) after compression molding). It is also good. When post curing is performed, the heating temperature at this time is preferably 50 to 200 ° C., more preferably 60 to 180 ° C., and more preferably about the same as the curing temperature. The post curing time is preferably 0.5 to 10 hours, more preferably 1 to 8 hours.
 本発明の硬化物は、高い光反射性を有し、耐熱性、耐光性及び耐クラックに優れる。このため、上記硬化物は劣化しにくく、経時で反射率が低下しにくい。従って、本発明の硬化性エポキシ樹脂組成物は、LEDパッケージ用途(LEDパッケージの構成材、例えば、光半導体装置におけるリフレクター材、ハウジング材等)、電子部品の接着用途、液晶ディスプレイ用途(例えば、反射板など)、白色基板用インク、シーラー等として好ましく使用することができる。中でも、LEDパッケージ用の硬化性樹脂組成物(特に、光半導体装置におけるリフレクター用の硬化性樹脂組成物(即ち、リフレクター形成用の硬化性樹脂組成物))として特に好ましく使用することができる。 The cured product of the present invention has high light reflectivity and is excellent in heat resistance, light resistance and cracking resistance. For this reason, the said hardened | cured material does not deteriorate easily and a reflectance does not fall easily with time. Therefore, the curable epoxy resin composition of the present invention is used for LED package applications (components of LED packages, for example, reflector materials in optical semiconductor devices, housing materials, etc.), applications for bonding electronic components, applications for liquid crystal displays (for example, reflection) Plates, etc., inks for white substrates, sealers, etc. can be preferably used. Among them, a curable resin composition for an LED package (in particular, a curable resin composition for a reflector in an optical semiconductor device (that is, a curable resin composition for forming a reflector)) can be particularly preferably used.
 本発明の硬化物の反射率は、特に限定されないが、例えば、波長450nmの光の反射率が、90%以上であることが好ましく、より好ましくは90.5%以上である。特に、450~800nmの光の反射率が90%以上であることが好ましく、より好ましくは90.5%以上である。なお、上記反射率は、例えば、本発明の硬化物(厚み:3mm)を試験片とし、分光光度計(商品名「分光光度計 UV-2450」、(株)島津製作所製)を用いて測定することができる。 The reflectance of the cured product of the present invention is not particularly limited, but for example, the reflectance of light with a wavelength of 450 nm is preferably 90% or more, more preferably 90.5% or more. In particular, the reflectance of light of 450 to 800 nm is preferably 90% or more, more preferably 90.5% or more. The reflectance is measured, for example, using the cured product of the present invention (thickness: 3 mm) as a test piece and using a spectrophotometer (trade name "Spectrophotometer UV-2450" manufactured by Shimadzu Corporation). can do.
 本発明の硬化物の、120℃で250時間加熱した後の波長450nmの光の反射率(「250時間加熱エージング後の反射率」と称する場合がある)の、初期反射率に対する保持率([250時間加熱エージング後の反射率]/[初期反射率]×100)は、特に限定されないが、85%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。特に、450~800nmの光の場合の保持率が85%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。本発明の硬化性エポキシ樹脂組成物によれば、コンプレッション成型により形成された硬化物は上記保持率を98%以上とすることが可能である。 The retention of the reflectance of light with a wavelength of 450 nm after heating at 120 ° C. for 250 hours (sometimes referred to as “reflectance after heat aging for 250 hours”) relative to the initial reflectance ([[ The reflectance after heat aging for 250 hours] / [initial reflectance] × 100) is not particularly limited, but is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably Is 98% or more. In particular, the retention for light of 450 to 800 nm is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 98% or more. According to the curable epoxy resin composition of the present invention, the cured product formed by compression molding can have the retention of 98% or more.
 本発明の硬化物の、120℃で500時間加熱した後の波長450nmの光の反射率(「500時間加熱エージング後の反射率」と称する場合がある)の、初期反射率に対する保持率([500時間加熱エージング後の反射率]/[初期反射率]×100)は、特に限定されないが、85%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。特に、450~800nmの光の場合の保持率が85%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上である。本発明の硬化性エポキシ樹脂組成物によれば、コンプレッション成型により形成された硬化物は上記保持率を90%以上とすることが可能である。 The reflectance of the reflectance of light with a wavelength of 450 nm after heating at 120 ° C. for 500 hours (sometimes referred to as “the reflectance after heat aging for 500 hours”) to the initial reflectance ([ The reflectance after heat aging for 500 hours] / [initial reflectance] × 100) is not particularly limited, but is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably Is 98% or more. In particular, the retention for light of 450 to 800 nm is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 98% or more. According to the curable epoxy resin composition of the present invention, it is possible for the cured product formed by compression molding to have the retention of 90% or more.
 本発明の硬化物の、強度10mW/cm2の紫外線を250時間照射した後の波長450nmの光に対する反射率(「紫外線エージング後の反射率」と称する場合がある)の、初期反射率に対する保持率([紫外線エージング後の反射率]/[初期反射率]×100)は、特に限定されないが、90%以上であることが好ましく、より好ましくは95%以上、さらに好ましくは98%以上である。特に、450~800nmの光の場合の保持率が90%以上であることが好ましく、より好ましくは95%以上、さらに好ましくは98%以上である。 Retention of the reflectance of the cured product of the present invention to light having a wavelength of 450 nm after irradiation with ultraviolet light having an intensity of 10 mW / cm 2 for 250 hours (sometimes referred to as “reflectance after ultraviolet aging”) relative to the initial reflectance The rate ([reflectance after ultraviolet light aging] / [initial reflectance] × 100) is not particularly limited, but is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more . In particular, the retention for light of 450 to 800 nm is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.
 なお、上記反射率は、例えば、本発明の硬化物(厚み:3mm)を試験片とし、分光光度計(商品名「分光光度計 UV-2450」、(株)島津製作所製)を用いて測定することができる。 The reflectance is measured, for example, using the cured product of the present invention (thickness: 3 mm) as a test piece and using a spectrophotometer (trade name "Spectrophotometer UV-2450" manufactured by Shimadzu Corporation). can do.
 本発明の硬化物は、高い光反射性を有し、耐熱性及び耐光性に優れ、さらには強靭である。このため、上記硬化物は劣化しにくく、なおかつクラックが生じにくいため、経時で反射率が低下しにくい。従って、本発明の硬化性エポキシ樹脂組成物は、LEDパッケージ用途(LEDパッケージの構成材、例えば、光半導体装置におけるリフレクター材、ハウジング材等)、電子部品の接着用途、液晶ディスプレイ用途(例えば、反射板など)、白色基板用インク、シーラー等として好ましく使用することができる。中でも、LEDパッケージ用の硬化性樹脂組成物(特に、光半導体装置におけるリフレクター(反射材)用の硬化性樹脂組成物)として特に好ましく使用することができる。 The cured product of the present invention has high light reflectivity, is excellent in heat resistance and light resistance, and is tough. For this reason, since the said hardened | cured material does not deteriorate easily, and also it is hard to produce a crack, it is hard to fall in a reflectance over time. Therefore, the curable epoxy resin composition of the present invention is used for LED package applications (components of LED packages, for example, reflector materials in optical semiconductor devices, housing materials, etc.), applications for bonding electronic components, applications for liquid crystal displays (for example, reflection) Plates, etc., inks for white substrates, sealers, etc. can be preferably used. Among them, it can be particularly preferably used as a curable resin composition for an LED package (in particular, a curable resin composition for a reflector (reflecting material) in an optical semiconductor device).
 <光反射用硬化性樹脂組成物>
 本発明の光反射用硬化性樹脂組成物は、本発明の硬化性エポキシ樹脂組成物からなる。なお、本明細書において「光反射用硬化性樹脂組成物」とは、硬化させることにより、高い光反射性を有する硬化物を形成可能な硬化性樹脂組成物を意味し、具体的には、例えば、波長450nmの光に対する反射率が90%以上である硬化物を形成可能な硬化性樹脂組成物を意味する。本発明の光反射用硬化性樹脂組成物を用いることにより、例えば、光反射性、耐熱性、耐光性、及び耐クラック性などの諸物性に優れた硬化物により形成されたリフレクターを備えた光半導体装置を得ることができる。上記リフレクターは、経時での反射率低下が生じにくいため、該リフレクターを備えた光半導体装置は、特に、高出力、高輝度の光半導体素子を備える場合であっても、光度が経時で低下しにくく、高い信頼性を発揮できる。特に、本発明の硬化物は、耐クラック性、特に、冷温サイクルに対する耐クラック性に優れ、高い信頼性を有する。
<Curable resin composition for light reflection>
The curable resin composition for light reflection of the present invention comprises the curable epoxy resin composition of the present invention. In the present specification, “curable resin composition for light reflection” means a curable resin composition capable of forming a cured product having high light reflectivity by curing, specifically, For example, it means a curable resin composition capable of forming a cured product having a reflectance of 90% or more for light with a wavelength of 450 nm. By using the curable resin composition for light reflection of the present invention, for example, a light comprising a reflector formed of a cured product excellent in various physical properties such as light reflectivity, heat resistance, light resistance, and crack resistance. A semiconductor device can be obtained. Since the reflector is unlikely to cause a decrease in reflectance over time, the light semiconductor device including the reflector has a decrease in light intensity over time, particularly even when including a high-power, high-brightness optical semiconductor device. It is difficult and can exhibit high reliability. In particular, the cured product of the present invention is excellent in crack resistance, in particular, resistance to cracking under cold temperature cycles, and has high reliability.
 本発明の硬化性エポキシ樹脂組成物が光半導体装置におけるリフレクター用の硬化性樹脂組成物である場合、本発明の硬化性エポキシ樹脂組成物は、光半導体装置における光半導体素子の基板(光半導体素子搭載用基板)が有するリフレクター(光反射部材)を形成する用途に用いられる成型材料(金型等で成型するのに使用する材料)である。従って、本発明の硬化性エポキシ樹脂組成物を成型する(かつ硬化させる)ことによって、高い光反射性を有し、耐熱性及び耐光性に優れ、さらに耐クラック性に優れる高品質な(例えば、高耐久性の)光半導体素子搭載用基板を製造することができる。なお、リフレクターとは、光半導体装置において光半導体素子から発せられた光を反射させて、光の指向性及び輝度を高め、光の取り出し効率を向上させるための部材である。本発明の硬化物により形成されたリフレクターを少なくとも有する、光半導体素子搭載用に用いられる基板を、「本発明の光半導体素子搭載用基板」と称する場合がある。 When the curable epoxy resin composition of the present invention is a curable resin composition for a reflector in an optical semiconductor device, the curable epoxy resin composition of the present invention is a substrate for an optical semiconductor element in an optical semiconductor device (optical semiconductor element It is a molding material (material used for molding with a metal mold etc.) used for the use which forms the reflector (light reflection member) which a mounting substrate has. Therefore, by molding (and curing) the curable epoxy resin composition of the present invention, it has high light reflectivity, is excellent in heat resistance and light resistance, and is further excellent in crack resistance (for example, high quality) A highly durable) optical semiconductor element mounting substrate can be manufactured. The reflector is a member for reflecting the light emitted from the optical semiconductor element in the optical semiconductor device to enhance the directivity and brightness of the light and to improve the light extraction efficiency. A substrate used for mounting an optical semiconductor device having at least a reflector formed of the cured product of the present invention may be referred to as "substrate for mounting an optical semiconductor device according to the present invention".
<光半導体素子搭載用基板>
 本発明の光半導体素子搭載用基板は、本発明の硬化物により形成されたリフレクター(白色リフレクター)を少なくとも有する基板である。図1は、本発明の光半導体素子搭載用基板の一例を示す概略図であり、(a)は斜視図、(b)は断面図を示す。図1における100は白色リフレクター、101は金属配線(リードフレーム)、102は光半導体素子の搭載領域、103はパッケージ基板を示す。なお、パッケージ基板103には、金属配線101、さらに白色リフレクター100が取り付けられており、その中央(光半導体素子の搭載領域102)に光半導体素子107が置かれてダイボンディングされ、光半導体素子107とパッケージ基板103上の金属配線101の間はワイヤボンディングで接続される。パッケージ基板103の材質としては、樹脂、セラミックなどが使用されるが、白色リフレクターと同じものであってもよい。本発明の光半導体素子搭載用基板における上側の白色リフレクター100は、光半導体素子の搭載領域102の周囲を環状に取り囲み、上方に向かってその環の径が拡大するように傾斜した凹状の形状を有している。本発明の光半導体素子搭載用基板は、上記凹状の形状の内側の表面が少なくとも本発明の硬化物により形成されていればよい。また、図1に示すように、金属配線101に囲まれた部分(102の下部)は、パッケージ基板103の場合もあるし、白色リフレクター100の場合もある(即ち、図1における「100/103」は、白色リフレクター100であってもよいし、パッケージ基板103であってもよいことを意味する)。但し、本発明の光半導体素子搭載用基板は、図1に示す態様には限定されない。
<Substrate for mounting optical semiconductor device>
The optical semiconductor element mounting substrate of the present invention is a substrate having at least a reflector (white reflector) formed of the cured product of the present invention. FIG. 1 is a schematic view showing an example of the optical semiconductor element mounting substrate of the present invention, wherein (a) is a perspective view and (b) is a cross-sectional view. In FIG. 1, 100 is a white reflector, 101 is a metal wiring (lead frame), 102 is a mounting area of the optical semiconductor device, and 103 is a package substrate. A metal wiring 101 and a white reflector 100 are attached to the package substrate 103, and the optical semiconductor element 107 is placed at the center (mounting area 102 of the optical semiconductor element) and die-bonded. And the metal wiring 101 on the package substrate 103 are connected by wire bonding. Resin, ceramic or the like is used as the material of the package substrate 103, but it may be the same as the white reflector. The upper white reflector 100 in the optical semiconductor element mounting substrate of the present invention annularly surrounds the periphery of the mounting area 102 of the optical semiconductor element, and has a concave shape inclined such that the diameter of the ring expands upward. Have. In the substrate for mounting an optical semiconductor element of the present invention, the inner surface of the above-mentioned concave shape may be formed at least by the cured product of the present invention. Further, as shown in FIG. 1, the portion surrounded by the metal wiring 101 (lower portion of 102) may be the package substrate 103 or the white reflector 100 (ie, “100/103 in FIG. 1”. “Means may be a white reflector 100 or a package substrate 103). However, the optical semiconductor element mounting substrate of the present invention is not limited to the mode shown in FIG.
 本発明の光半導体素子搭載用基板における白色リフレクターを形成する方法としては、公知乃至慣用の成型方法(例えば、コンプレッション成型等)を使用することができ、特に限定されないが、例えば、本発明の硬化性エポキシ樹脂組成物を、トランスファー成型、コンプレッション成型、インジェクション成型、LIM成型(インジェクション成型)、ディスペンスによるダム成型等の各種成型方法に付す方法等(好ましくは、コンプレッション成型)が挙げられる。リフレクターを形成する際の硬化の条件としては、例えば、上述の硬化物を形成する際の条件等から適宜選択することができる。本発明においては、中でも、急激な硬化反応による発泡を防ぎ、硬化による応力ひずみを緩和して靭性(耐クラック性)を向上させることができる点で、多段階に分けて加熱処理を施し、段階的に硬化させることが好ましい。 As a method of forming a white reflector in the substrate for mounting an optical semiconductor element of the present invention, a known or commonly used molding method (for example, compression molding etc.) can be used, and it is not particularly limited. Such as transfer molding, compression molding, injection molding, LIM molding (injection molding), and dam molding by dispensing, etc. (preferably compression molding). As conditions of hardening at the time of forming a reflector, it can choose suitably from conditions etc. at the time of forming the above-mentioned hardened material, for example. In the present invention, among them, heat treatment is performed in multiple stages in that it can prevent foaming due to a rapid hardening reaction and relieve stress strain due to hardening to improve toughness (crack resistance). Curing is preferred.
 本発明の光半導体素子搭載用基板を光半導体装置における基板として使用し、該基板に対して光半導体素子を搭載することによって、本発明の光半導体装置が得られる。 The optical semiconductor device mounting substrate of the present invention is used as a substrate in an optical semiconductor device, and the optical semiconductor device is mounted on the substrate to obtain the optical semiconductor device of the present invention.
<光半導体装置>
 本発明の光半導体装置は、光源としての光半導体素子と、本発明の硬化物からなるリフレクター(反射材)とを少なくとも備える光半導体装置である。より具体的には、本発明の光半導体装置は、本発明の光半導体素子搭載用基板と、該基板に搭載された光半導体素子とを少なくとも有する光半導体装置である。本発明の光半導体装置は、リフレクターとして本発明の硬化物により形成されたリフレクターを有するため、経時で光の輝度が低下しにくく、信頼性が高い。図2は、本発明の光半導体装置の一例を示す概略図(断面図)である。図2における100は白色リフレクター、101は金属配線(リードフレーム)、103はパッケージ基板、104はボンディングワイヤ、105は封止材、106はダイボンディング、107は光半導体素子(LED素子)を示す。図2に示す光半導体装置においては、光半導体素子107から発せられた光が白色リフレクター100の表面(反射面)で反射するため、高い効率で光半導体素子107からの光が取り出される。なお、図2に示すように、本発明の光半導体装置における光半導体素子は、通常、透明な封止材(図2における105)によって封止されている。
<Optical semiconductor device>
The optical semiconductor device of the present invention is an optical semiconductor device provided with at least an optical semiconductor element as a light source and a reflector (reflecting material) made of the cured product of the present invention. More specifically, the optical semiconductor device of the present invention is an optical semiconductor device having at least the optical semiconductor element mounting substrate of the present invention and the optical semiconductor element mounted on the substrate. The optical semiconductor device of the present invention has a reflector formed of the cured product of the present invention as a reflector, so that the luminance of light does not easily decrease with time, and the reliability is high. FIG. 2 is a schematic view (cross-sectional view) showing an example of the optical semiconductor device of the present invention. In FIG. 2, 100 is a white reflector, 101 is a metal wiring (lead frame), 103 is a package substrate, 104 is a bonding wire, 105 is a sealing material, 106 is a die bonding, and 107 is an optical semiconductor element (LED element). In the optical semiconductor device shown in FIG. 2, the light emitted from the optical semiconductor element 107 is reflected by the surface (reflecting surface) of the white reflector 100, so the light from the optical semiconductor element 107 is extracted with high efficiency. In addition, as shown in FIG. 2, the optical-semiconductor element in the optical semiconductor device of this invention is normally sealed by the transparent sealing material (105 in FIG. 2).
 図3、4は、本発明の光半導体装置の他の一例を示す図である。図3、4における108は、ヒートシンク(ケースヒートシンク)を示し、このようなヒートシンク108を有することにより、光半導体装置における放熱効率が向上する。図3は、ヒートシンクの放熱経路が光半導体素子の直下に位置する例であり、図4は、ヒートシンクの放熱経路が光半導体装置の横方向に位置する例である[(a)は上面図、(b)は(a)におけるA-A'断面図を示す]。図4における光半導体装置の側面に突出したヒートシンク108は、放熱フィンと称される場合がある。また、図4における109は、カソードマークを示す。但し、本発明の光半導体装置は、図2~4に示される態様に限定されない。 3 and 4 show another example of the optical semiconductor device of the present invention. Reference numeral 108 in FIGS. 3 and 4 denotes a heat sink (case heat sink), and by having such a heat sink 108, the heat dissipation efficiency in the optical semiconductor device is improved. FIG. 3 is an example in which the heat dissipation path of the heat sink is located immediately below the optical semiconductor device, and FIG. 4 is an example in which the heat dissipation path of the heat sink is located in the lateral direction of the optical semiconductor device [(a) is a top view, (B) shows the AA 'cross section in (a)]. The heat sink 108 protruding to the side surface of the optical semiconductor device in FIG. 4 may be referred to as a radiation fin. Also, 109 in FIG. 4 indicates a cathode mark. However, the optical semiconductor device of the present invention is not limited to the embodiments shown in FIGS.
 本発明の光半導体装置は、本発明の硬化物からなるリフレクターを少なくとも有するため、高輝度の光を出力する場合であっても、長期間、安定的に光を発することができる。さらに、本発明の硬化物からなるリフレクターは、耐クラック性(特に、冷温サイクルに対する耐クラック性)に優れるため、より経時での光度低下などの問題が生じにくい。このため、本発明の光半導体装置は、長寿命の光半導体装置として高い信頼性を発揮できる。 Since the optical semiconductor device of the present invention has at least a reflector made of the cured product of the present invention, light can be emitted stably for a long period of time even when outputting high-intensity light. Furthermore, since the reflector made of the cured product of the present invention is excellent in crack resistance (in particular, crack resistance with respect to a cold cycle), problems such as a decrease in light intensity over time are less likely to occur. Therefore, the optical semiconductor device of the present invention can exhibit high reliability as an optical semiconductor device having a long life.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。表1~7における硬化性エポキシ樹脂組成物の各成分の配合量の単位は重量部である。なお、表4~7におけるシリコーン系レベリング剤(「BYK-300」、「AC FS 180」)、フッ素系レベリング剤(「BYK-340」、「AC 110a」)、応力緩和剤(「KMP-600」、「KMP-602、」、「SF8421」、「Y-19268」)の配合量は、商品としての量(商品そのものの量)を示す。また、表1~7における「-」は、該当成分の配合を行わなかったことを示す。 EXAMPLES The present invention will be described in more detail based on examples given below, but the present invention is not limited by these examples. The unit of the compounding amount of each component of the curable epoxy resin composition in Tables 1 to 7 is part by weight. In addition, silicone type leveling agents ("BYK-300", "AC FS 180"), fluorine type leveling agents ("BYK-340", "AC 110a") and stress relaxation agents ("KMP-600" in Tables 4 to 7). The blending amounts of “KMP-602”, “SF8421”, and “Y-19268” indicate the amount as a product (the amount of the product itself). In addition, “-” in Tables 1 to 7 indicates that the corresponding component was not blended.
 製造例1
(白色顔料含有エポキシ樹脂の製造:実施例1~5)
 モノアリルジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物((3,4,3',4'-ジエポキシ)ビシクロヘキシル、(株)ダイセル製;商品名「セロキサイド2021P」、(株)ダイセル製)を、表1に示す配合処方(配合割合)(単位:重量部)に従って混合し、80℃で1時間攪拌することで、モノアリルジグリシジルイソシアヌレートを溶解させ、エポキシ樹脂(混合物)を得た。次いで、上記エポキシ樹脂と白色顔料(酸化チタン;商品名「DCF-T-17050」、レジノカラー工業(株)製)とを、表1に示す配合処方(配合割合)(単位:重量部)に従って、ディゾルバーを使用して均一に混合し、ロールミルによって所定条件下(ロールピッチ:0.2mm、回転数:25ヘルツ、3パス)で混練して、白色顔料含有エポキシ樹脂(エポキシ樹脂組成物)を得た。
Production Example 1
(Production of White Pigment-Containing Epoxy Resin: Examples 1 to 5)
Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd. Manufactured by Daicel Co., Ltd., according to the formulation (blending ratio) (unit: parts by weight) shown in Table 1 and stirring at 80 ° C. for 1 hour The glycidyl isocyanurate was dissolved to obtain an epoxy resin (mixture). Next, the above epoxy resin and white pigment (titanium oxide; trade name "DCF-T- 17050", manufactured by Resino Color Industrial Co., Ltd.) according to the blending formulation (blending ratio) (unit: parts by weight) shown in Table 1 Using a dissolver, they are uniformly mixed, and are kneaded using a roll mill under predetermined conditions (roll pitch: 0.2 mm, rotational speed: 25 Hz, 3 passes) to obtain a white pigment-containing epoxy resin (epoxy resin composition) The
 製造例2
(白色顔料含有エポキシ樹脂の製造:比較例1~10)
 モノアリルジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物(商品名「セロキサイド2021P」、(株)ダイセル製;商品名「EHPE3150」、(株)ダイセル製)、トリスグリシジルイソシアヌレート(商品名「TEPIC-PAS B26」、日産化学工業(株)製)を、表1に示す配合処方(配合割合)(単位:重量部)に従って混合し、エポキシ樹脂(混合物)を得た(比較例1、2、4~6、8の場合には、エポキシ樹脂の成分が一種であるため当該混合を行わず、そのままエポキシ樹脂とした)。次いで、上記エポキシ樹脂と白色顔料(酸化チタン;商品名「DCF-T-17050」、レジノカラー工業(株)製)とを、表1に示す配合処方(配合割合)(単位:重量部)に従って、ディゾルバーを使用して均一に混合し、ロールミルによって所定条件下(ロールピッチ:0.2mm、回転数:25ヘルツ、3パス)で混練して、白色顔料含有エポキシ樹脂(エポキシ樹脂組成物)を得た。
Production Example 2
(Production of White Pigment-Containing Epoxy Resin: Comparative Examples 1 to 10)
Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound (trade name “Ceroxide 2021 P”, manufactured by Daicel Co., Ltd .; trade name “EHPE3150”, Daicel Co., Ltd.), Tris glycidyl isocyanurate (trade name “TEPIC-PAS B26”, Nissan Chemical Industries, Ltd.) are mixed according to the formulation (blending ratio) (unit: parts by weight) shown in Table 1; An epoxy resin (mixture) was obtained (in the case of Comparative Examples 1, 2, 4 to 6 and 8, since the component of the epoxy resin is one kind, the mixing is not performed and it is used as the epoxy resin as it is). Next, the above epoxy resin and white pigment (titanium oxide; trade name "DCF-T- 17050", manufactured by Resino Color Industrial Co., Ltd.) according to the blending formulation (blending ratio) (unit: parts by weight) shown in Table 1 Using a dissolver, they are uniformly mixed, and are kneaded using a roll mill under predetermined conditions (roll pitch: 0.2 mm, rotational speed: 25 Hz, 3 passes) to obtain a white pigment-containing epoxy resin (epoxy resin composition) The
 製造例3
(硬化剤を少なくとも含む硬化剤組成物(以下、「K剤」と称する)の製造:実施例1~4、比較例1~4、9)
 硬化剤(酸無水物)(新日本理化(株)製、商品名「リカシッド MH-700」)、硬化促進剤(サンアプロ(株)製、商品名「U-CAT 18X」)、添加剤(和光純薬工業(株)製、商品名「エチレングリコール」)を、表1に示す配合処方(配合割合)に従って、自公転式攪拌装置((株)シンキー製、商品名「あわとり練太郎AR-250」)を使用して均一に混合し、脱泡してK剤を得た。
Production Example 3
(Production of a curing agent composition containing at least a curing agent (hereinafter referred to as “agent K”): Examples 1 to 4, Comparative Examples 1 to 4, 9)
Curing agent (acid anhydride) (Shin Nippon Rika Co., Ltd., trade name "Rikasid MH-700"), Hardening accelerator (San Apro Co., Ltd. trade name "U-CAT 18X"), additive (Japanese According to the compounding prescription (blending ratio) shown in Table 1 under the trade name "Ethylene glycol" manufactured by Kojun Chemical Industries, Ltd., a self-revolution stirring device (made by Shinky Co., Ltd., trade name "Awatori Neritaro AR-" The mixture was uniformly mixed using 250 ") and degassed to obtain a K agent.
 実施例1~5、比較例1~10
(硬化性エポキシ樹脂組成物の製造)
 表1に示す配合処方(単位:重量部)となるように、製造例1で得られた白色顔料含有エポキシ樹脂、製造例2で得られた白色顔料含有エポキシ樹脂、製造例3で得られたK剤、硬化触媒(三新化学工業(株)製、商品名「サンエイド SI-100L」)を、自公転式攪拌装置((株)シンキー製、商品名「あわとり練太郎AR-250」)を使用して均一に混合し(2000rpm、5分間)、脱泡して、硬化性エポキシ樹脂組成物を得た。
Examples 1 to 5 and Comparative Examples 1 to 10
(Production of a curable epoxy resin composition)
The white pigment-containing epoxy resin obtained in Production Example 1, the white pigment-containing epoxy resin obtained in Production Example 2 and the product obtained in Production Example 3 so as to obtain the compounding formulation (unit: parts by weight) shown in Table 1 K agent, curing catalyst (manufactured by Sanshin Chemical Industry Co., Ltd., trade name "SunAid SI-100L"), self-revolution stirring device (made by Shinky Co., trade name "Awatori Neritaro AR-250") The mixture was uniformly mixed (2000 rpm, 5 minutes) and degassed to obtain a curable epoxy resin composition.
(硬化物の製造)
 上記硬化性エポキシ樹脂組成物をポリエステルからなる離型フィルムで挟み込み、150℃のコンプレッション成型用の金型内に置き、3.0MPaの圧力で600秒間加熱及び加圧して硬化させ、その後、ポストキュアー(150℃で5時間)を行うことによって、硬化物を得た。
(Manufacturing of cured products)
The curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
 製造例4
(白色顔料含有エポキシ樹脂の製造:実施例6~14、比較例11~21)
 モノアリルジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物((3,4,3',4'-ジエポキシ)ビシクロヘキシル、(株)ダイセル製;商品名「セロキサイド2021P」、(株)ダイセル製;商品名「EHPE3150」、(株)ダイセル製)、トリスグリシジルイソシアヌレート(商品名「TEPIC-PAS B26」、日産化学工業(株)製)、分子内に2個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2678」、信越化学工業(株)製)、分子内に3個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2720」、信越化学工業(株)製)、分子内に4個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2670」、信越化学工業(株)製)を、表2、3に示す配合処方(配合割合)(単位:重量部)に従って混合し、さらに80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレートを溶解させ、エポキシ樹脂(混合物)を得た(比較例11~15の場合には、エポキシ樹脂の成分が一種であるため当該混合を行わず、そのままエポキシ樹脂とした)。次いで、上記エポキシ樹脂と白色顔料(酸化チタン;商品名「DCF-T-17050」、レジノカラー工業(株)製)とを、表2、3に示す配合処方(配合割合)(単位:重量部)に従って、ディゾルバーを使用して均一に混合し、ロールミルによって所定条件下(ロールピッチ:0.2mm、回転数:25ヘルツ、3パス)で混練して、白色顔料含有エポキシ樹脂(エポキシ樹脂組成物)を得た。
Production Example 4
(Production of White Pigment-Containing Epoxy Resin: Examples 6 to 14, Comparative Examples 11 to 21)
Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd. Manufactured by Daicel Co., Ltd .; trade name "EHPE 3150"; trade name "Dacel Co., Ltd."; Tris Glycidyl isocyanurate (trade name "TEPIC-PAS B26"; Nissan Chemical Industries Co., Ltd.) A siloxane derivative having two epoxy groups in the molecule (trade name “X-40-2678”, manufactured by Shin-Etsu Chemical Co., Ltd.), a siloxane derivative having three epoxy groups in the molecule (trade name “X -40-2720, Shin-Etsu Chemical Co., Ltd., a siloxane derivative having four epoxy groups in the molecule (trade name "X-40-2670", Shin-Etsu The monoallyl diglycidyl isocyanurate is dissolved by mixing Gakuin Industrial Co., Ltd. product according to the formulation (blending ratio) (unit: weight part) shown in Tables 2 and 3 and further stirring at 80 ° C. for 1 hour. An epoxy resin (mixture) was obtained (in the case of Comparative Examples 11 to 15, since the component of the epoxy resin was one kind, the mixing was not performed and it was used as the epoxy resin as it is). Next, the above-described epoxy resin and white pigment (titanium oxide; trade name "DCF-T- 17050", manufactured by Resino Color Industrial Co., Ltd.) are shown in Tables 2 and 3 as the blending formulation (blending ratio) (unit: parts by weight) According to the above, uniformly mixed using a dissolver, and kneaded with a roll mill under predetermined conditions (roll pitch: 0.2 mm, rotational speed: 25 Hz, 3 passes) to obtain a white pigment-containing epoxy resin (epoxy resin composition) I got
 製造例5
(硬化剤を少なくとも含む硬化剤組成物(K剤)の製造:実施例6~14、比較例11~21)
 硬化剤(酸無水物)(商品名「リカシッド MH-700」、日立化成工業(株)製)、硬化剤(酸無水物)と脂環式ポリエステル樹脂の混合物(商品名「HN-7200」、日立化成工業(株)製)、硬化剤(酸無水物)と脂環式ポリエステル樹脂の混合物(商品名「HN-5700」、日立化成工業(株)製)、硬化促進剤(商品名「U-CAT 18X」、サンアプロ(株)製)、添加剤(商品名「エチレングリコール」、和光純薬工業(株)製)を、表2、3に示す配合処方(配合割合)(単位:重量部)に従って、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡してK剤を得た。
Production Example 5
(Production of Curing Agent Composition Containing Curing Agent (K Agent): Examples 6 to 14 and Comparative Examples 11 to 21)
Curing agent (acid anhydride) (trade name "Rikasid MH-700", manufactured by Hitachi Chemical Co., Ltd.), mixture of curing agent (acid anhydride) and alicyclic polyester resin (trade name "HN-7200", Hitachi Chemical Co., Ltd. product, mixture of curing agent (acid anhydride) and alicyclic polyester resin (trade name “HN-5700”, Hitachi Chemical Co., Ltd.), cure accelerator (trade name “U” -CAT 18X ", San-Apro Co., Ltd. product, additives (trade name" ethylene glycol ", Wako Pure Chemical Industries, Ltd.), the formulation shown in Tables 2 and 3 (blending ratio) (unit: parts by weight) The mixture was uniformly mixed and defoamed using a self-revolution stirring apparatus (trade name "Awatori Neritaro AR-250" manufactured by Shinky Co., Ltd.) to obtain a K agent.
 実施例6~14、比較例11~21
(硬化性エポキシ樹脂組成物の製造)
 表2、3に示す配合処方(単位:重量部)となるように、製造例4で得られた白色顔料含有エポキシ樹脂、製造例5で得られたK剤を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し(2000rpm、5分間)、脱泡して、硬化性エポキシ樹脂組成物を得た。
Examples 6 to 14 and Comparative Examples 11 to 21
(Production of a curable epoxy resin composition)
The white pigment-containing epoxy resin obtained in Production Example 4 and the K agent obtained in Production Example 5 were mixed in a self-revolution stirring apparatus (product: The mixture was uniformly mixed (2000 rpm, 5 minutes) using the name "Awatori Neritaro AR-250" (manufactured by Shinky Co., Ltd.), and defoamed to obtain a curable epoxy resin composition.
(硬化物の製造)
 上記硬化性エポキシ樹脂組成物をポリエステルからなる離型フィルムで挟み込み、150℃のコンプレッション成型用の金型内に置き、3.0MPaの圧力で600秒間加熱及び加圧して硬化させ、その後、ポストキュアー(150℃で5時間)を行うことによって、硬化物を得た。 
(Manufacturing of cured products)
The curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
 製造例6
(ゴム粒子の製造)
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルスルホコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を一括添加し、20分間撹拌して乳化させた後、ペルオキソ二硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行い、続いて、ペルオキソ二硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルスルホコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ二硫酸カリウム60mgを添加して5分間撹拌し、ここに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルスルホコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行った。その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有するゴム粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子を得た。得られたゴム粒子の平均粒子径は254nm、最大粒子径は486nmであった。
Production Example 6
(Manufacture of rubber particles)
In a 1 L polymerization vessel equipped with a reflux condenser, 500 g of ion exchanged water and 0.68 g of sodium dioctyl sulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream. A monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion was added here. The mixture is stirred and emulsified for 20 minutes, and then 9.5 mg of potassium peroxodisulfate is added and stirred for 1 hour to perform the first seed polymerization, followed by addition of 180.5 mg of potassium peroxodisulfate, 5 Stir for a minute. Here, the remaining amount (about 95% by weight) of 180.5 g of butyl acrylate, 48.89 g of styrene, 7.33 g of divinylbenzene and 0.95 g of sodium dioctyl sulfosuccinate in the amount necessary to form the core portion The dissolved monomer mixture was continuously added over 2 hours, and a second seed polymerization was performed, followed by aging for 1 hour to obtain a core portion.
Next, 60 mg of potassium peroxodisulfate is added and stirred for 5 minutes, and 0.3 g of sodium dioctyl sulfosuccinate is dissolved in 60 g of methyl methacrylate, 1.5 g of acrylic acid and 0.3 g of allyl methacrylate. The mixture of monomers was added continuously over 30 minutes to perform seed polymerization. Thereafter, it was aged for 1 hour to form a shell layer covering the core portion.
Then, it was cooled to room temperature (25 ° C.) and filtered through a plastic mesh with a mesh size of 120 μm to obtain a latex containing rubber particles having a core-shell structure. The obtained latex was frozen at -30.degree. C., dehydrated and washed by a suction filter, and then blow-dried at 60.degree. C. overnight to obtain rubber particles. The average particle size of the obtained rubber particles was 254 nm, and the maximum particle size was 486 nm.
 なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA-EX150」、日機装(株)製)を使用して下記試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。なお、製造例7で得られたゴム粒子分散エポキシ化合物1重量部をテトラヒドロフラン20重量部に分散させたものを試料として用いた。 The average particle size of the rubber particles, maximum particle size is dynamic light scattering method was as a measurement principle "Nanotrac TM" format Nanotrac particle size distribution measuring apparatus (trade name "UPA-EX150", manufactured by Nikkiso Co., Ltd. In the obtained particle size distribution curve, the cumulative average diameter at which the cumulative curve becomes 50% is the average particle diameter, and the frequency (%) of the particle size distribution measurement result is The largest particle diameter at the time of exceeding 0.00% was made into the largest particle diameter. A sample obtained by dispersing 1 part by weight of the rubber particle-dispersed epoxy compound obtained in Production Example 7 in 20 parts by weight of tetrahydrofuran was used as a sample.
 製造例7
(ゴム粒子分散エポキシ化合物の製造)
 製造例6で得られたゴム粒子10重量部を、窒素気流下、60℃に加温した状態でディゾルバー(1000rpm、60分間)を使用して(3,4,3',4'-ジエポキシ)ビシクロヘキシル((株)ダイセル製)48重量部に分散させ、真空脱泡して、ゴム粒子分散エポキシ化合物(25℃での粘度:3023mPa・s)を得た。
 なお、製造例7で得られたゴム粒子分散エポキシ化合物(ゴム粒子10重量部を(3,4,3',4'-ジエポキシ)ビシクロヘキシル48重量部に分散させたもの)の粘度(25℃における粘度)は、デジタル粘度計(商品名「DVU-EII型」、(株)トキメック製)を使用して測定した。
Production Example 7
(Production of rubber particle dispersed epoxy compound)
Using 10 parts by weight of the rubber particles obtained in Production Example 6 in a state of being heated to 60 ° C. in a nitrogen stream, using a dissolver (1000 rpm, 60 minutes) (3,4,3 ′, 4′-diepoxy) It was dispersed in 48 parts by weight of bicyclohexyl (manufactured by Daicel Co., Ltd.) and degassed under vacuum to obtain a rubber particle-dispersed epoxy compound (viscosity at 25 ° C .: 3023 mPa · s).
The viscosity (25 ° C.) of the rubber particle-dispersed epoxy compound (10 parts by weight of rubber particles dispersed in 48 parts by weight of (3,4,3 ′, 4′-diepoxy) bicyclohexyl) obtained in Production Example 7 The viscosity in the above was measured using a digital viscometer (trade name “DVU-EII type”, manufactured by Tokimec Co., Ltd.).
 製造例8
(白色顔料含有エポキシ樹脂の製造:実施例15~46)
 モノアリルジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物((3,4,3',4'-ジエポキシ)ビシクロヘキシル、(株)ダイセル製)、分子内に2個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2678」、信越化学工業(株)製)、分子内に3個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2720」、信越化学工業(株)製)、分子内に4個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2670」、信越化学工業(株)製)、シリコーン系レベリング剤(商品名「BYK-300」、ビックケミー・ジャパン(株)製;商品名「AC FS 180」、Algin Chemie製)、フッ素系レベリング剤(商品名「BYK-340」、ビックケミー・ジャパン(株)製;商品名「AC 110a」、Algin Chemie製)、ポリカーボネートジオール(商品名「プラクセル CD220PL」、(株)ダイセル製)、ポリテトラメチレンエーテルグリコール(商品名「PTMG2000」、三菱化学(株)製)、ポリカプロラクトンポリオール(商品名「プラクセル 308」、(株)ダイセル製)、フェノキシ樹脂(商品名「YP-70」、新日鐵化学(株)製)、水酸基含有長鎖エポキシ樹脂(商品名「エポトートYD-6020」、新日鐵化学(株)製)、アクリルブロック共重合体(商品名「ナノストレングス M52N」、アルケマ製)、製造例7で得られたゴム粒子分散エポキシ化合物、応力緩和剤(商品名「KMP-600」、シリコーンゴム粒子、信越化学工業(株)製;商品名「KMP-602」、シリコーンゴム粒子、信越化学工業(株)製;商品名「SF8421」、式(10)で表されるポリアルキレンエーテル変性シリコーン化合物、東レ・ダウコーニング(株)製;商品名「Y-19268」、式(10)で表されるポリアルキレンエーテル変性シリコーン化合物、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製)を、表4、5に示す配合処方(配合割合)(単位:重量部)に従って混合し、80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレートを溶解させ、エポキシ樹脂(混合物)を得た。次いで、上記エポキシ樹脂と白色顔料(酸化チタン;商品名「DCF-T-17050」、レジノカラー工業(株)製)と無機充填剤(商品名「FB-970FD」、シリカ(表面処理なし)、平均粒子径16.7μm、最大粒子径70μm)、デンカ(株)製)とを、表4、5に示す配合処方(配合割合)(単位:重量部)に従って、ディゾルバーを使用して均一に混合し、ロールミルによって所定条件下(ロールピッチ:0.2mm、回転数:25ヘルツ、3パス)で混練して、白色顔料含有エポキシ樹脂(エポキシ樹脂組成物)を得た。
Production Example 8
(Production of White Pigment-Containing Epoxy Resin: Examples 15 to 46)
Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd. ), A siloxane derivative having two epoxy groups in the molecule (trade name "X-40-2678", manufactured by Shin-Etsu Chemical Co., Ltd.), a siloxane derivative having three epoxy groups in the molecule (trade name) "X-40-2720", Shin-Etsu Chemical Co., Ltd.), Siloxane derivative having 4 epoxy groups in the molecule (trade name "X-40-2670", Shin-Etsu Chemical Co., Ltd.), silicone Leveling agent (trade name "BYK-300", manufactured by BIC Chemie Japan Ltd .; trade name "AC FS 180", manufactured by Algin Chemie), fluorine-based leveling agent (trade name "B "K-340", made by BIC Chemie Japan Ltd .; trade name "AC 110a", made by Algin Chemie, polycarbonate diol (trade name "PLACSEL CD220PL", made by Daicel Co., Ltd.), polytetramethylene ether glycol (trade name) "PTMG 2000", manufactured by Mitsubishi Chemical Corporation, polycaprolactone polyol (trade name "Placcel 308", manufactured by Daicel Corporation), phenoxy resin (trade name "YP-70", manufactured by Nippon Steel Chemical Co., Ltd.) , A hydroxyl group-containing long chain epoxy resin (trade name "Epototh YD-6020", manufactured by Nippon Steel Chemical Co., Ltd.), an acrylic block copolymer (trade name "nano strength M52N", manufactured by Arkema), obtained in Production Example 7 Rubber particle dispersed epoxy compound, stress relaxation agent (trade name “KMP-600”, silicone rubber Particle, Shin-Etsu Chemical Co., Ltd. product; trade name "KMP-602", silicone rubber particle, Shin-Etsu Chemical Co., Ltd. product; trade name "SF 8421", polyalkylene ether modified silicone compound represented by Formula (10) Toray Dow Corning Co., Ltd .; trade name “Y-19268”, polyalkylene ether modified silicone compound represented by the formula (10), manufactured by Momentive Performance Materials Japan (the same), Table 4 The monoallyl diglycidyl isocyanurate was dissolved by mixing according to the formulation (blending ratio) (unit: weight part) shown in 5, and stirring at 80 ° C. for 1 hour to obtain an epoxy resin (mixture). Then, the above-mentioned epoxy resin and white pigment (Titanium oxide; trade name "DCF-T-17050", manufactured by Resino Color Industrial Co., Ltd.) and inorganic filler (trade name "FB-970FD", silica (without surface treatment), average A particle size of 16.7 μm, maximum particle size of 70 μm) and Denka Co., Ltd.) are uniformly mixed using a dissolver according to the formulation (blending ratio) (unit: weight part) shown in Tables 4 and 5. The mixture was kneaded by a roll mill under predetermined conditions (roll pitch: 0.2 mm, rotational speed: 25 Hz, 3 passes) to obtain a white pigment-containing epoxy resin (epoxy resin composition).
 製造例9
(K剤の製造:実施例15~46)
 硬化剤(酸無水物)(新日本理化(株)製、商品名「リカシッド MH-700」)、硬化剤(酸無水物)と脂環式ポリエステル樹脂の混合物(商品名「HN-7200」、日立化成工業(株)製)、硬化促進剤(商品名「U-CAT 18X」、サンアプロ(株)製)、添加剤(商品名「エチレングリコール」、和光純薬工業(株)製)を、表4、5に示す配合処方(配合割合)(単位:重量部)に従って、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡してK剤を得た。
Production Example 9
(Production of Agent K: Examples 15 to 46)
Curing agent (acid anhydride) (manufactured by Shin Nippon Rika Co., Ltd., trade name "Rikasid MH-700"), mixture of curing agent (acid anhydride) and alicyclic polyester resin (trade name "HN-7200", Hitachi Chemical Co., Ltd. product, curing accelerator (trade name "U-CAT 18X", San-Apro Ltd.), additive (trade name "ethylene glycol", Wako Pure Chemical Industries, Ltd.), According to the combination formulation (blending ratio) (unit: parts by weight) shown in Tables 4 and 5, uniform rotation using a revolution-revolution type stirring device (trade name "Awatori Neritaro AR-250, manufactured by Shinky Co., Ltd.) The mixture was mixed and degassed to obtain a K agent.
 実施例15~46
(硬化性エポキシ樹脂組成物の製造)
 表4、5に示す配合処方(単位:重量部)となるように、製造例8で得られた白色顔料含有エポキシ樹脂、製造例9で得られたK剤を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し(2000rpm、5分間)、脱泡して、硬化性エポキシ樹脂組成物を得た。
Examples 15 to 46
(Production of a curable epoxy resin composition)
The white pigment-containing epoxy resin obtained in Production Example 8 and the K agent obtained in Production Example 9 were mixed in a self-revolution stirring apparatus (product: The mixture was uniformly mixed (2000 rpm, 5 minutes) using the name "Awatori Neritaro AR-250" (manufactured by Shinky Co., Ltd.), and defoamed to obtain a curable epoxy resin composition.
(硬化物の製造)
 上記硬化性エポキシ樹脂組成物をポリエステルからなる離型フィルムで挟み込み、150℃のコンプレッション成型用の金型内に置き、3.0MPaの圧力で600秒間加熱及び加圧して硬化させ、その後、ポストキュアー(150℃で5時間)を行うことによって、硬化物を得た。 
(Manufacturing of cured products)
The curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
 製造例10
(白色顔料含有エポキシ樹脂の製造:実施例47~74、比較例22~25)
 モノアリルジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物((3,4,3',4'-ジエポキシ)ビシクロヘキシル、(株)ダイセル製;商品名「EHPE3150」、(株)ダイセル製)、トリスグリシジルイソシアヌレート(商品名「TEPIC-PAS B26」、日産化学工業(株)製)、分子内に2個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2678」、信越化学工業(株)製)、分子内に3個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2720」、信越化学工業(株)製)、分子内に4個のエポキシ基を有するシロキサン誘導体(商品名「X-40-2670」、信越化学工業(株)製)、シリコーン系レベリング剤(商品名「BYK-300」、ビックケミー・ジャパン(株)製;商品名「AC FS 180」、Algin Chemie製)、フッ素系レベリング剤(商品名「BYK-340」、ビックケミー・ジャパン(株)製;商品名「AC 110a」、Algin Chemie製)、ポリカーボネートジオール(商品名「プラクセル CD220PL」、(株)ダイセル製)、ポリテトラメチレンエーテルグリコール(商品名「PTMG2000」、三菱化学(株)製)、ポリカプロラクトンポリオール(商品名「プラクセル308」、(株)ダイセル製)、フェノキシ樹脂(商品名「YP-70」、新日鐵化学(株)製)、水酸基含有長鎖エポキシ樹脂(商品名「エポトートYD-6020」、新日鐵化学(株)製)、アクリルブロック共重合体(商品名「ナノストレングス M52N」、アルケマ製)、製造例7で得られたゴム粒子分散エポキシ化合物、応力緩和剤(商品名「KMP-600」、シリコーンゴム粒子、信越化学工業(株)製;商品名「KMP-602」、シリコーンゴム粒子、信越化学工業(株)製;商品名「SF8421」、式(10)で表されるポリアルキレンエーテル変性シリコーン化合物、東レ・ダウコーニング(株)製;商品名「Y-19268」、式(10)で表されるポリアルキレンエーテル変性シリコーン化合物、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製)を、表6、7に示す配合処方(配合割合)(単位:重量部)に従って混合し、さらに80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレートを溶解させ、エポキシ樹脂(混合物)を得た(比較例22~25の場合には、エポキシ樹脂の成分が一種であるため当該混合を行わず、そのままエポキシ樹脂とした)。次いで、上記エポキシ樹脂と白色顔料(酸化チタン;商品名「DCF-T-17050」、レジノカラー工業(株)製)と無機充填剤(商品名「FB-970FD」、シリカ(表面処理なし)、平均粒子径16.7μm、最大粒子径70μm)、デンカ(株)製)を、表6、7に示す配合処方(配合割合)(単位:重量部)に従って、ディゾルバーを使用して均一に混合し、ロールミルによって所定条件下(ロールピッチ:0.2mm、回転数:25ヘルツ、3パス)で混練して、白色顔料含有エポキシ樹脂(エポキシ樹脂組成物)を得た。
Production Example 10
(Production of White Pigment-Containing Epoxy Resin: Examples 47 to 74, Comparative Examples 22 to 25)
Monoallyl diglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound ((3,4,3 ′, 4′-diepoxy) bicyclohexyl, Daicel Co., Ltd. Product name: “EHPE 3150” manufactured by Daicel Co., Ltd., tris glycidyl isocyanurate (trade name “TEPIC-PAS B26” manufactured by Nissan Chemical Industries, Ltd.), a siloxane derivative having two epoxy groups in the molecule (Trade name "X-40-2678", manufactured by Shin-Etsu Chemical Co., Ltd.), siloxane derivative having three epoxy groups in the molecule (trade name "X-40-2720", manufactured by Shin-Etsu Chemical Co., Ltd.) ), A siloxane derivative having four epoxy groups in the molecule (trade name “X-40-2670”, manufactured by Shin-Etsu Chemical Co., Ltd.), a silicone-based leveling agent (trade name) BYK-300, made by Big Chemie Japan Ltd .; trade name "AC FS 180", made by Algin Chemie, fluorine-based leveling agent (trade name "BYK-340", made by Big Chemie Japan Ltd .; trade name " AC 110a ′ ′, Algin Chemie product, polycarbonate diol (trade name “Placcel CD 220 PL”, made by Daicel Co., Ltd.), polytetramethylene ether glycol (trade name “PTMG 2000”, Mitsubishi Chemical Corp. product), polycaprolactone polyol (product name) Trade name "Placcel 308", manufactured by Daicel Co., Ltd., phenoxy resin (trade name "YP-70", manufactured by Nippon Steel Chemical Co., Ltd.), hydroxyl group-containing long chain epoxy resin (trade name "Epotote YD-6020" , Nippon Steel Chemical Co., Ltd., acrylic block copolymer (trade name) Nano strength M52N ", manufactured by Arkema), rubber particle dispersed epoxy compound obtained in Production Example 7, stress relaxation agent (trade name" KMP-600 ", silicone rubber particles, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name" KMP -602 ", silicone rubber particles, manufactured by Shin-Etsu Chemical Co., Ltd .; trade name" SF8421 ", polyalkylene ether modified silicone compound represented by the formula (10), Toray Dow Corning Co., Ltd .; trade name" Y " -19268 ", the polyalkylene ether-modified silicone compound represented by the formula (10), manufactured by Momentive Performance Materials Japan (the same product), as shown in Tables 6 and 7 (blending ratio) (unit: weight) The monoallyl diglycidyl isocyanurate is dissolved by further mixing according to a part of (1) and stirring for 1 hour at 80.degree. C. Shi resin (mixture) was obtained (in Comparative Examples 22 to 25, without the mixing for components of the epoxy resin is a kind, was directly and epoxy resin). Then, the above-mentioned epoxy resin and white pigment (Titanium oxide; trade name "DCF-T-17050", manufactured by Resino Color Industrial Co., Ltd.) and inorganic filler (trade name "FB-970FD", silica (without surface treatment), average A particle diameter of 16.7 μm, maximum particle diameter of 70 μm, Denka Co., Ltd.) is uniformly mixed using a dissolver according to a blending formulation (blending ratio) (unit: weight part) shown in Tables 6 and 7, The mixture was kneaded by a roll mill under predetermined conditions (roll pitch: 0.2 mm, rotational speed: 25 Hz, 3 passes) to obtain a white pigment-containing epoxy resin (epoxy resin composition).
 製造例11
(脂環式ポリエステル樹脂の製造:実施例48、73、比較例22~25)
 攪拌機、温度計及び還流冷却器を備えた反応容器に、1,4-シクロヘキサンジカルボン酸(東京化成工業(株)製)172重量部、ネオペンチルグリコール(東京化成工業(株)製)208重量部、テトラブチルチタネート(和光純薬工業(株)製)0.1重量部を仕込んで、160℃になるまで加熱し、さらに160℃から250℃まで4時間かけて昇温した。次いで、1時間かけて5mmHgまで減圧し、さらに0.3mmHg以下まで減圧してから250℃で1時間反応させ、脂環式ポリエステル樹脂を得た。
Production Example 11
(Production of Alicyclic Polyester Resin: Examples 48 and 73, Comparative Examples 22 to 25)
172 parts by weight of 1,4-cyclohexanedicarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 208 parts by weight of neopentyl glycol (manufactured by Tokyo Chemical Industry Co., Ltd.) in a reaction vessel equipped with a stirrer, thermometer and reflux condenser 0.1 parts by weight of tetrabutyl titanate (manufactured by Wako Pure Chemical Industries, Ltd.) was charged and heated to 160 ° C., and the temperature was further raised from 160 ° C. to 250 ° C. over 4 hours. Next, the pressure was reduced to 5 mmHg over 1 hour, and the pressure was further reduced to 0.3 mmHg or less, followed by reaction at 250 ° C. for 1 hour to obtain an alicyclic polyester resin.
 実施例47~74、比較例22~25
(硬化性エポキシ樹脂組成物の製造)
 表6、7に示す配合処方(単位:重量部)となるように、製造例10で得られた白色顔料含有エポキシ樹脂、製造例11で得られた脂環式ポリエステル樹脂、硬化触媒(商品名「サンエイド SI-100L」、三新化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し(2000rpm、5分間)、脱泡して、硬化性エポキシ樹脂組成物を得た。
Examples 47-74, Comparative Examples 22-25
(Production of a curable epoxy resin composition)
White pigment-containing epoxy resin obtained in Production Example 10, alicyclic polyester resin obtained in Production Example 11, curing catalyst (trade name) so as to obtain compounding formulations (unit: parts by weight) shown in Tables 6 and 7 Mix “San Aid SI-100L” (manufactured by Sanshin Chemical Industry Co., Ltd.) uniformly using a self-revolution stirring device (trade name “Awatori Neritaro AR-250, manufactured by Shinky Co., Ltd.) Defoaming (2000 rpm, 5 minutes) gave a curable epoxy resin composition.
(硬化物の製造)
 上記硬化性エポキシ樹脂組成物をポリエステルからなる離型フィルムで挟み込み、150℃のコンプレッション成型用の金型内に置き、3.0MPaの圧力で600秒間加熱及び加圧して硬化させ、その後、ポストキュアー(150℃で5時間)を行うことによって、硬化物を得た。 
(Manufacturing of cured products)
The curable epoxy resin composition is sandwiched between release films made of polyester, placed in a 150 ° C. compression molding die, cured by heating and pressing at a pressure of 3.0 MPa for 600 seconds, and then post cured A cured product was obtained by carrying out (at 150 ° C. for 5 hours).
 <評価>
 実施例及び比較例で得られた硬化物について、下記の手順に従って、450nmの光に対する反射率を測定し、さらに成形(切削加工)時、リフロー時、熱衝撃試験(TST)時にクラックが生じるか否かの評価を行った。評価結果を表1~7に示す。
<Evaluation>
With respect to the cured products obtained in Examples and Comparative Examples, the reflectance to light of 450 nm is measured according to the following procedure, and are cracks formed during thermal shock test (TST) during molding (cutting), reflow? It evaluated whether it was negative. The evaluation results are shown in Tables 1 to 7.
[反射率評価]
 実施例及び比較例で得られた硬化物を切削加工して、厚み3mmの試験片を作製した。次いで、分光光度計(商品名「分光光度計 UV-2450」、(株)島津製作所製)を用いて、波長450nmの光に対する各試験片の反射率(「初期反射率」とする)を測定した。結果を表1~7の「初期反射率」の欄に示した。
[Reflectance evaluation]
The hardened | cured material obtained by the Example and the comparative example was cut, and the test piece of thickness 3 mm was produced. Then, using a spectrophotometer (trade name "Spectrophotometer UV-2450", manufactured by Shimadzu Corporation), measure the reflectance (referred to as "initial reflectance") of each test piece for light with a wavelength of 450 nm. did. The results are shown in the "Initial reflectance" column of Tables 1-7.
[耐熱性試験(加熱エージング250時間)]
 初期反射率を測定した試験片(厚み3mm)を、120℃で250時間加熱した後、波長450nmの光に対する反射率(「加熱エージング(250時間)後の反射率」とする)を測定した。そして、下記式により、反射率保持率(加熱エージング前後;250時間)を算出した。結果を表1~7の「反射率保持率 加熱エージング前後(250時間)」の欄に示した。
 [反射率保持率(加熱エージング前後;250時間)]=[加熱エージング(250時間)後の反射率]/[初期反射率]×100
[Heat resistance test (heat aging 250 hours)]
The test piece (thickness 3 mm) whose initial reflectance was measured was heated at 120 ° C. for 250 hours, and then the reflectance for light with a wavelength of 450 nm (referred to as “reflectance after heat aging (250 hours)”) was measured. Then, the reflectance retention rate (before and after heat aging; 250 hours) was calculated by the following equation. The results are shown in the column of “Reflectance retention rate before and after heating aging (250 hours)” in Tables 1 to 7.
[Reflectance retention (before and after heat aging; 250 hours)] = [reflectance after heat aging (250 hours)] / [initial reflectance] × 100
[耐熱性試験(加熱エージング500時間)]
 初期反射率を測定した試験片(厚み3mm)を、120℃で500時間加熱した後、波長450nmの光に対する反射率(「加熱エージング(500時間)後の反射率」とする)を測定した。そして、下記式により、反射率保持率(加熱エージング前後;500時間)を算出した。結果を表1~7の「反射率保持率 加熱エージング前後(500時間)」の欄に示した。
 [反射率保持率(加熱エージング前後;500時間)]=[加熱エージング(500時間)後の反射率]/[初期反射率]×100
[Heat resistance test (heating aging 500 hours)]
The test piece (thickness 3 mm) whose initial reflectance was measured was heated at 120 ° C. for 500 hours, and then the reflectance for light with a wavelength of 450 nm (referred to as “reflectance after heat aging (500 hours)”) was measured. Then, the reflectance retention rate (before and after heating aging; 500 hours) was calculated by the following equation. The results are shown in the column of “Reflectance retention rate before and after heating aging (500 hours)” in Tables 1 to 7.
[Reflectance retention (before and after heat aging; 500 hours)] = [reflectance after heat aging (500 hours)] / [initial reflectance] × 100
[耐光性試験]
 初期反射率を測定した試験片(厚み3mm)に対し、強度10mW/cm2の紫外線を250時間照射した後、波長450nmの光に対する反射率(「紫外線エージング後の反射率」とする)を測定した。そして、下記式により、反射率保持率(紫外線エージング前後)を算出した。結果を表1~7の「反射率保持率 紫外線エージング前後」の欄に示した。
 [反射率保持率(紫外線エージング前後)]=[紫外線エージング後の反射率]/[初期反射率]×100
[Light fastness test]
After irradiating an ultraviolet ray with an intensity of 10 mW / cm 2 for 250 hours to a test piece (thickness 3 mm) whose initial reflectance was measured, measure the reflectance for light of 450 nm wavelength did. Then, the reflectance retention rate (before and after ultraviolet ray aging) was calculated by the following equation. The results are shown in the column of “Reflectance holding ratio before and after UV aging” in Tables 1 to 7.
[Reflectance holding ratio (before and after UV aging)] = [Reflectance after UV aging] / [Initial reflectance] × 100
[切削加工時のクラック発生有無の評価(強靭性評価)]
 実施例及び比較例で得られた硬化物を切削加工することによって、幅5mm×長さ5mm×厚さ3mmの試験片を作製した。上記硬化物の切削加工には、マイクロ・カッティング・マシン(商品名「BS-300CL」、メイワフォーシス(株)製)を使用し、切削加工の際に硬化物にクラックが生じたか否かを、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を用いて観察し、確認した。表1~7の「切削加工時のクラック数」の欄には、1サンプルにつき10個の試験片を作製し、そのうちクラックの発生が確認された試験片の個数[個](「クラック数」と称する)を評価結果として示す。なお、表1~7においては、クラックの発生が確認された試験片の個数(クラック数)がn個である場合を、「n/10」のように示した。
[Evaluation of the occurrence of cracks during cutting (toughness evaluation)]
The hardened | cured material obtained by the Example and the comparative example was cut, and the test piece of width 5 mm * length 5 mm * thickness 3 mm was produced. A micro cutting machine (trade name "BS-300CL", manufactured by Meiwa Forcis Co., Ltd.) is used to cut the hardened material, and whether or not a crack is generated in the hardened material during cutting, It observed and confirmed using the digital microscope (brand name "VHX-900", product made from Keyence Co., Ltd.). In the column of “Number of cracks during cutting process” in Tables 1 to 7, 10 test pieces are prepared for one sample, and among them, the number of the test pieces in which the occurrence of cracks is confirmed [piece] (“number of cracks” ) Is shown as the evaluation result. In Tables 1 to 7, the case where the number of test pieces (the number of cracks) in which the occurrence of the crack was confirmed is n is shown as “n / 10”.
[リフロー時のクラック発生有無の評価(強靭性評価)]
 上記切削加工により得られた試験片(幅5mm×長さ5mm×厚さ3mm)に対し、リフロー炉(商品名「UNI-5016F」、日本アントム(株)製)を用いて、260℃を最高温度として5秒間、全リフロー時間を90秒としてリフロー処理を施した。その後、当該リフロー処理により試験片にクラックが生じたか否かを、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を用いて観察し、確認した。表1~7には、1サンプルにつき10個の試験片のリフロー処理を行い、そのうちクラックの発生が確認された試験片の個数[個](クラック数)を評価結果として示す。なお、表1~7の「リフロー時のクラック数」の欄には、クラックの発生が確認された試験片の個数(クラック数)がn個である場合を、「n/10」のように示した。なお、切削加工時にクラックが発生したものについては、評価を実施しなかった。
[Evaluation of presence or absence of cracks during reflow (tenacity evaluation)]
Using a reflow furnace (trade name “UNI-5016F”, manufactured by Nippon Antom Co., Ltd.), the test piece (5 mm wide × 5 mm long × 3 mm thick) obtained by the above-mentioned cutting processing is used. The reflow process was performed with a temperature of 5 seconds and a total reflow time of 90 seconds. After that, it was observed and confirmed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation) whether or not a crack was generated in the test piece due to the reflow process. Tables 1 to 7 show the reflow treatment of 10 test pieces per sample, and the number of pieces of test pieces (number of cracks) of which the occurrence of cracks was confirmed is shown as the evaluation results. In the column of “Number of cracks at reflow” in Tables 1 to 7, as in the case of “n / 10”, the number of test pieces (number of cracks) in which occurrence of cracks is confirmed is n. Indicated. In addition, evaluation was not implemented about what the crack generate | occur | produced at the time of cutting.
[熱衝撃試験(TST)]
 上記切削加工により得られた試験片(幅5mm×長さ5mm×厚さ3mm)に対し、-60℃の雰囲気下に30分曝露し、続いて、150℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機(エスペック(株)製 小型冷熱衝撃装置 TSE-11-A)を用いて200サイクル分与えた。その後、当該熱衝撃試験により試験片にクラックが生じたか否かを、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を用いて観察し、確認した。表1~7には、1サンプルにつき10個の試験片の熱衝撃試験を行い、そのうちクラックの発生が確認された試験片の個数[個](クラック数)を評価結果として示す。なお、表1~7の「TST時のクラック数」の欄には、クラックの発生が確認された試験片の個数(クラック数)がn個である場合を、「n/10」のように示した。なお、切削加工時にクラックが発生したものについては、評価を実施しなかった。
[Thermal shock test (TST)]
The test piece (width 5 mm × length 5 mm × thickness 3 mm) obtained by the above-mentioned cutting is exposed for 30 minutes in an atmosphere at −60 ° C., and then exposed for 30 minutes in an atmosphere at 150 ° C. The thermal shock with 1 cycle as the cycle was given for 200 cycles using a thermal shock tester (small thermal shock device TSE-11-A, manufactured by ESPEC Corp.). Thereafter, whether or not a crack was generated in the test piece by the thermal shock test was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation) and confirmed. In Tables 1 to 7, thermal impact tests of 10 test pieces were performed per sample, and among them, the number [pieces] (number of cracks) of the test pieces in which occurrence of a crack was confirmed is shown as an evaluation result. In the column of “Number of cracks at TST” in Tables 1 to 7, as in the case of “n / 10”, the number of test pieces (number of cracks) in which the occurrence of cracks is confirmed is n. Indicated. In addition, evaluation was not implemented about what the crack generate | occur | produced at the time of cutting.
[総合評価]
 初期反射率が90%以上のもので、耐熱性試験(加熱エージング500時間)において反射率保持率が90%以上、耐光性試験において反射率保持率が90%以上、ならびに、切削加工時のクラック有無評価(強靭性評価)、リフロー時のクラック有無評価(強靭性評価)、及び熱衝撃試験(TST)のクラック有無評価(強靭性評価)においてクラック数が0個となったものを、総合判定○(良好)とした。一方、これ以外のものを総合判定×(不良)とした。結果を表1~4の「総合判定」の欄に示す。
[Comprehensive evaluation]
With an initial reflectance of 90% or more, a reflectance retention of 90% or more in a heat resistance test (heating aging for 500 hours), a reflectance retention of 90% or more in a light resistance test, and cracks during cutting Evaluation of the presence or absence (toughness evaluation), crack presence / absence evaluation (toughness evaluation) during reflow, and crack presence / absence evaluation (toughness evaluation) in the thermal shock test (TST) ○ (Good). On the other hand, the thing other than this was made into comprehensive judgment x (defect). The results are shown in the "overall judgment" column of Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 なお、実施例及び比較例で使用した成分は、以下の通りである。
 [エポキシ樹脂]
  (3,4,3',4'-ジエポキシ)ビシクロヘキシル、(株)ダイセル製
  CEL2021P(セロキサイド 2021P):3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
  MA-DGIC:モノアリルジグリシジルイソシアヌレート、四国化成工業(株)製
  EHPE3150:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、(株)ダイセル製
  TEPIC-PAS B26:トリスグリシジルイソシアヌレート、日産化学工業(株)製
  X-40-2678:分子内に2個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
  X-40-2720:分子内に3個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
  X-40-2670:分子内に4個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
  BYK-300:シリコーン系レベリング剤(シリコーン系重合体を含むレベリング剤)、ビックケミー・ジャパン(株)製
  AC FS 180:シリコーン系レベリング剤(シリコーン系重合体を含むレベリング剤)、Algin Chemie製
  BYK-340:フッ素系レベリング剤(含フッ素アクリル系重合体を含むレベリング剤)、ビックケミー・ジャパン(株)製
  AC 110a:フッ素系レベリング剤(含フッ素ポリエーテル系重合体を含むレベリング剤)、Algin Chemie製
  CD220PL(プラクセル CD220PL):ポリカーボネートジオール、(株)ダイセル製
  PTMG2000:ポリテトラメチレンエーテルグリコール、三菱化学(株)製
  プラクセル308:ポリカプロラクトンポリオール、(株)ダイセル製
  YP-70:フェノキシ樹脂、新日鐵化学(株)製
  エポトートYD-6020:水酸基含有長鎖エポキシ樹脂、新日鐵化学(株)製
  M52N(ナノストレングス M52N):アクリルブロック共重合体、アルケマ製
 KMP-600:シリコーンレジンを表面に備える架橋されたポリジメチルシロキサン、信越化学工業(株)製
 KMP-602:シリコーンレジンを表面に備える架橋されたポリジメチルシロキサン、信越化学工業(株)製
 SF8421:式(10)で表されるポリアルキレンエーテル変性シリコーン化合物)、東レ・ダウコーニング(株)製
 Y-19268:式(10)で表されるポリアルキレンエーテル変性シリコーン化合物)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製
 [無機充填剤]
  シリカ:商品名「FB-970FD」(シリカ、表面処理なし、平均粒子径16.7μm、最大粒子径70μm)、デンカ(株)製
 [白色顔料]
  酸化チタン、商品名「DCF-T-17050」、レジノカラー工業(株)製
 [K剤]
  MH-700(リカシッド MH-700):4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30、新日本理化(株)製
  HN-7200:4-メチルヘキサヒドロ無水フタル酸と脂環式ポリエステル樹脂の混合物、日立化成工業(株)製
  HN-5700:4-メチルヘキサヒドロ無水フタル酸/3-メチルヘキサヒドロ無水フタル酸=70/30と脂環式ポリエステル樹脂の混合物、日立化成工業(株)製
  18X(U-CAT 18X):硬化促進剤、サンアプロ(株)製
  エチレングリコール:和光純薬工業(株)製
 [硬化触媒]
  サンエイド SI-100L:アリールスルホニウム塩、三新化学工業(株)製
The components used in Examples and Comparative Examples are as follows.
[Epoxy resin]
(3,4,3 ′, 4′-diepoxy) bicyclohexyl, manufactured by Daicel Co., Ltd. CEL 2021 P (Ceroxide 2021 P): 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexane carboxylate, manufactured by Daicel Co., Ltd. MA-DGIC: monoallyl diglycidyl isocyanurate, manufactured by Shikoku Chemical Industries, Ltd. EHPE 3150: 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol , Daicel Co., Ltd. TEPIC-PAS B26: Trisglycidyl isocyanurate, Nissan Chemical Industries Co., Ltd. X-40-2678: Siloxane derivative having two epoxy groups in the molecule, Shin-Etsu Chemical Co., Ltd. X -40-2720: having 3 epoxy groups in the molecule Siloxane derivative, Shin-Etsu Chemical Co., Ltd. X-40-2670: Siloxane derivative having four epoxy groups in the molecule, Shin-Etsu Chemical Co., Ltd. BYK-300: silicone leveling agent (silicone polymer) Containing leveling agent), Bic Chemie Japan KK AC FS 180: silicone leveling agent (leveling agent including silicone type polymer), Algin Chemie made BYK-340: fluorine type leveling agent (fluorinated acrylic polymer) Containing leveling agent), BIC Chemie Japan KK AC 110a: fluorine-based leveling agent (leveling agent including fluorine-containing polyether-based polymer), Algin Chemie CD 220 PL (Placcel CD 220 PL): polycarbonate diol, DAICE CO., LTD. PTMG 2000: polytetramethylene ether glycol, Mitsubishi Chemical Corp. Plaxel 308: polycaprolactone polyol, Daicel Co., Ltd. YP-70: phenoxy resin, Nippon Steel Chemical Co., Ltd. epototo YD-6020: hydroxyl group-containing length Chain epoxy resin, manufactured by Nippon Steel Chemical Co., Ltd. M52N (nano strength M52N): acrylic block copolymer, manufactured by Arkema KMP-600: crosslinked polydimethylsiloxane having silicone resin on the surface, Shin-Etsu Chemical Co., Ltd. KMP-602: Cross-linked polydimethylsiloxane having silicone resin on the surface, Shin-Etsu Chemical Co., Ltd. SF8421: Polyalkylene ether-modified silicone compound represented by formula (10), Toray Dow Corning Co., Ltd. Made by Y-19268: Polyalkylene ether-modified silicone compound represented by (10)), Momentive Performance Materials Japan (same) manufactured by Inorganic Filler]
Silica: trade name "FB-970FD" (silica, no surface treatment, average particle diameter 16.7 μm, maximum particle diameter 70 μm), manufactured by Denka Co., Ltd. [White pigment]
Titanium oxide, trade name "DCF-T-17050", manufactured by Resino Color Industrial Co., Ltd. [K agent]
MH-700 (Rikasid MH-700): 4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride = 70/30, Shin Nippon Chemical Co., Ltd. HN-7200: 4-methylhexahydrophthalic anhydride and alicyclic Mixture of polyester resins, Hitachi Chemical Co., Ltd. HN-5700: Mixture of 4-methylhexahydrophthalic anhydride / 3-methylhexahydrophthalic anhydride = 70/30 and alicyclic polyester resin, Hitachi Chemical 18X (U-CAT 18X) manufactured by Co., Ltd .: curing accelerator, ethylene glycol manufactured by San-Apro Co., Ltd .: manufactured by Wako Pure Chemical Industries, Ltd. [curing catalyst]
San Aid SI-100L: Arylsulfonium salt, manufactured by Sanshin Chemical Industry Co., Ltd.
 表1~7に示すように、本発明の硬化性エポキシ樹脂組成物の硬化物(実施例)は、優れた光反射性を有し、また、切削加工時、リフロー時、及び熱衝撃試験時にクラックが生じることなく、特に、熱衝撃試験に対する耐クラック性に優れ、強靭であった。さらに、加熱エージング及び紫外線エージング後にも、高い光反射性を維持しており、耐熱性及び耐光性に優れていた。特に、脂環式エポキシ化合物及びモノアリルジグリシジルイソシアヌレートに加え、さらに脂環式ポリエステル樹脂(又は、さらに脂環式ポリエステル樹脂及び分子内に2以上のエポキシ基を有するシロキサン誘導体)を含む場合(実施例8、9、12、14、17、45、48、73)には、より長時間(500時間)の加熱によっても光反射性がほとんど低下せず、非常に優れた耐熱性を発揮した。
 一方、本発明の規定を満たさない硬化性エポキシ樹脂組成物より形成した硬化物(比較例)は、加熱エージング及び紫外線エージング後に光反射性が低下し、耐熱性及び耐光性に劣っていた。さらに、熱衝撃試験時にクラックが生じやすく、靭性にも劣っていた。
As shown in Tables 1 to 7, the cured product (example) of the curable epoxy resin composition of the present invention has excellent light reflectivity, and also in cutting, reflow, and thermal shock test. It was excellent in the crack resistance especially to a thermal shock test, and was strong, without producing a crack. Furthermore, even after heat aging and ultraviolet light aging, high light reflectivity was maintained, and heat resistance and light resistance were excellent. In particular, in addition to the alicyclic epoxy compound and monoallyl diglycidyl isocyanurate, an alicyclic polyester resin (or, furthermore, an alicyclic polyester resin and a siloxane derivative having two or more epoxy groups in the molecule) ( In Examples 8, 9, 12, 14, 17, 45, 48, 73), the light reflectivity was hardly lowered even by heating for a longer time (500 hours), and exhibited extremely excellent heat resistance. .
On the other hand, the cured product (comparative example) formed from the curable epoxy resin composition not satisfying the definition of the present invention was deteriorated in light reflectivity after heat aging and ultraviolet aging, and was inferior in heat resistance and light resistance. Furthermore, it was easy to produce a crack at the time of a thermal shock test, and was inferior also in toughness.
 上記で説明した本発明のバリエーションを以下に付記する。
[1]下記式(I)
Figure JPOXMLDOC01-appb-C000046
[式中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基(好ましくは水素原子)を示す。]
で表される脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000047
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基(好ましくは水素原子)を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化剤(D)と、硬化促進剤(F)とを含有することを特徴とする硬化性エポキシ樹脂組成物。
[2]脂環式エポキシ化合物(A)の使用量(含有量)が、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対して、5~90重量%(好ましくは5~80重量%、より好ましくは5~70重量%)である、上記[1]に記載の硬化性エポキシ樹脂組成物。
The variations of the present invention described above are additionally described below.
[1] The following formula (I)
Figure JPOXMLDOC01-appb-C000046
[Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each is a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent (preferably Represents a hydrogen atom). ]
And a cycloaliphatic epoxy compound (A) represented by the following formula (1)
Figure JPOXMLDOC01-appb-C000047
[Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms (preferably a hydrogen atom)]
Curable epoxy resin composition comprising: monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing agent (D), and curing accelerator (F) object.
[2] The amount (content) of the alicyclic epoxy compound (A) used is the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J), The curable epoxy resin composition according to the above [1], which is 5 to 90% by weight (preferably 5 to 80% by weight, more preferably 5 to 70% by weight).
[3]上記式(I)で表される脂環式エポキシ化合物(A)と、上記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化触媒(E)とを含有することを特徴とする硬化性エポキシ樹脂組成物。
[4]脂環式エポキシ化合物(A)の使用量(含有量)が、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対して、25~95重量%(好ましくは30~92重量%、より好ましくは30~90重量%)である、上記[3]に記載の硬化性エポキシ樹脂組成物。
[3] Alicyclic epoxy compound (A) represented by the above formula (I), monoallyl diglycidyl isocyanurate compound (B) represented by the above formula (1), white pigment (C), A curable epoxy resin composition comprising: a curing catalyst (E).
[4] The amount (content) of the alicyclic epoxy compound (A) used is the total amount (100% by weight) of the curable epoxy resin composition excluding the white pigment (C) and the inorganic filler (J), The curable epoxy resin composition according to the above [3], which is 25 to 95% by weight (preferably 30 to 92% by weight, more preferably 30 to 90% by weight).
[5]前記脂環式エポキシ化合物(A)が、下記式(I-1)
Figure JPOXMLDOC01-appb-C000048
で表される化合物である、上記[1]~[4]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[6]脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)との総量(100重量%)に対する、脂環式エポキシ化合物(A)の使用量(含有量)が、30~95重量%(好ましくは35~95重量%、より好ましくは40~95重量%)である、上記[1]~[5]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[5] The alicyclic epoxy compound (A) is represented by the following formula (I-1)
Figure JPOXMLDOC01-appb-C000048
The curable epoxy resin composition according to any one of the above [1] to [4], which is a compound represented by
[6] The amount (content) of the alicyclic epoxy compound (A) to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is 30 The curable epoxy resin composition according to any one of the above [1] to [5], which is ~ 95 wt% (preferably 35-95 wt%, more preferably 40-95 wt%).
[7]さらに、脂環式エポキシ化合物(A)以外の脂環式エポキシ化合物(以下、「他の脂環式エポキシ化合物」と称する場合がある)を含む、上記[1]~[6]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[8]他の脂環式エポキシ化合物が、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する場合がある)を有する化合物(脂環式エポキシ化合物(A)を除く)、及び(ii)脂環にエポキシ基が直接単結合で結合している化合物からなる群から選ばれる少なくとも1種である、上記[7]に記載の硬化性エポキシ樹脂組成物。
[9](i)脂環エポキシ基を有する化合物が、下記式(II)で表される脂環式エポキシ化合物である、上記[8]に記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000049
[式(II)中、Xは連結基(1以上の原子を有する2価の基)を示す。]
[10]他の脂環式エポキシ化合物が、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートである、上記[9]に記載の硬化性エポキシ樹脂組成物。
[11]他の脂環式エポキシ化合物と脂環式エポキシ化合物(A)との総量(100重量%)に対する、他の脂環式エポキシ化合物の使用量(含有量)が、1~50重量%(好ましくは5~40重量%、より好ましくは5~30重量%、特に好ましくは5~20重量%)である、上記[7]~[10]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[7] Further, an alicyclic epoxy compound other than the alicyclic epoxy compound (A) (hereinafter, may be referred to as “other alicyclic epoxy compound”), of the above-mentioned [1] to [6] The curable epoxy resin composition as described in any one.
[8] Another alicyclic epoxy compound is (i) an epoxy group (sometimes referred to as “alicyclic epoxy group”) composed of two adjacent carbon atoms constituting an alicyclic ring and an oxygen atom [7] which is at least one member selected from the group consisting of compounds having (excluding alicyclic epoxy compound (A)), and (ii) compounds in which an epoxy group is directly bonded to an alicyclic group by a single bond Curable epoxy resin composition as described in 4.
[9] The curable epoxy resin composition according to the above [8], wherein the compound having an alicyclic epoxy group is an alicyclic epoxy compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000049
[In Formula (II), X represents a linking group (a divalent group having one or more atoms). ]
[10] The curable epoxy resin composition as described in [9] above, wherein the other alicyclic epoxy compound is 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate.
[11] The amount (content) of the other alicyclic epoxy compound used is 1 to 50% by weight based on the total amount (100% by weight) of the other alicyclic epoxy compound and the alicyclic epoxy compound (A) The curable epoxy resin according to any one of the above [7] to [10], which is (preferably 5 to 40% by weight, more preferably 5 to 30% by weight, particularly preferably 5 to 20% by weight). Composition.
[12]脂環式エポキシ化合物(A):モノアリルジグリシジルイソシアヌレート化合物(B)が、50:50~95:5(重量比)(好ましくは50:50~90:10(重量比))である、上記[1]~[11]のいずれか1つに記載の硬化性エポキシ樹脂組成物。 [12] Alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is 50: 50 to 95: 5 (weight ratio) (preferably 50: 50 to 90: 10 (weight ratio)) The curable epoxy resin composition according to any one of the above [1] to [11].
[13]25℃において液状である、上記[1]~[12]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[14]常圧における25℃で測定した粘度が1000000mPa・s以下(好ましくは、800000mPa・s以下)である、上記[13]に記載の硬化性エポキシ樹脂組成物。
[13] The curable epoxy resin composition according to any one of the above [1] to [12], which is liquid at 25 ° C.
[14] The curable epoxy resin composition as described in [13] above, which has a viscosity of 1,000,000 mPa · s or less (preferably, 800,000 mPa · s or less) measured at 25 ° C. under normal pressure.
[15]白色顔料(C)が、酸化アルミニウム、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化ケイ素、及び無機中空粒子からなる群より選ばれた1種以上(好ましくは酸化チタン)である、上記[1]~[14]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[16]白色顔料(C)の中心粒径が、0.1~50μm(好ましくは0.1~30μm、より好ましくは0.1~20μm、特に好ましくは0.1~10μm、最も好ましくは0.1~5μm)である、上記[1]~[15]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[17]白色顔料(C)の使用量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を含有する化合物の全量(全エポキシ基含有化合物)100重量部に対し、80~500重量部(好ましくは90~400重量部、より好ましくは100~380重量部)である、上記[1]~[16]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[15] The white pigment (C) is at least one selected from the group consisting of aluminum oxide, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, silicon oxide, and inorganic hollow particles (preferably titanium oxide) The curable epoxy resin composition according to any one of the above [1] to [14].
[16] The center particle diameter of the white pigment (C) is 0.1 to 50 μm (preferably 0.1 to 30 μm, more preferably 0.1 to 20 μm, particularly preferably 0.1 to 10 μm, most preferably 0) The curable epoxy resin composition according to any one of the above [1] to [15], which is 1 to 5 μm).
[17] The use amount (blending amount) of the white pigment (C) is 80 to 500 based on 100 parts by weight of the total amount of epoxy group-containing compounds contained in the curable epoxy resin composition (total epoxy group-containing compound) The curable epoxy resin composition according to any one of the above [1] to [16], which is part by weight (preferably 90 to 400 parts by weight, more preferably 100 to 380 parts by weight).
[18]硬化剤(D)が、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)である、上記[1]、[2]、[5]~[17]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[19]硬化剤(D)の使用量(含有量)が、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、50~200重量部(好ましくは80~145重量部)である、上記[1]、[2]、[5]~[18]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[20]硬化促進剤(F)の使用量(含有量)が、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.05~5重量部(好ましくは0.1~3重量部、より好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部)である、上記[1]、[2]、[5]~[19]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[18] The curing agent according to the above [1], [2] or [5], wherein the curing agent (D) is an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (including those in which a substituent such as an alkyl group is bonded to the ring). ] The curable epoxy resin composition according to any one of [17].
[19] The amount (content) of the curing agent (D) used is preferably 50 to 200 parts by weight (preferably 100 parts by weight) based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition Is 80 to 145 parts by weight). The curable epoxy resin composition according to any one of the above [1], [2] and [5] to [18].
[20] The amount (content) of the curing accelerator (F) is 0.05 to 5 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition Parts (preferably 0.1 to 3 parts by weight, more preferably 0.2 to 3 parts by weight, particularly preferably 0.25 to 2.5 parts by weight), the above [1], [2], [5] ] The curable epoxy resin composition as described in any one of--[19].
[21]硬化触媒(E)の使用量(含有量)が、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.01~15重量部(好ましくは0.01~12重量部、より好ましくは0.05~10重量部、特に好ましくは0.1~10重量部)である、上記[3]~[20]のいずれか1つに記載の硬化性エポキシ樹脂組成物。 [21] The amount (content) of the curing catalyst (E) used is 0.01 to 15 parts by weight based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition In any one of the above [3] to [20], which is (preferably 0.01 to 12 parts by weight, more preferably 0.05 to 10 parts by weight, particularly preferably 0.1 to 10 parts by weight). Curable epoxy resin composition as described.
[22]さらに、分子内に2以上(好ましくは2~4個)のエポキシ基を有するシロキサン誘導体(G)を含む、上記[1]~[21]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[23]分子内に2以上のエポキシ基を有するシロキサン誘導体(G)が、分子内に2以上のエポキシ基を有する環状シロキサン、及び分子内に2以上のエポキシ基を有する直鎖状シリコーンからなる群から選ばれる少なくとも1種(好ましくは分子内に2以上のエポキシ基を有する環状シロキサン)である、上記[22]に記載の硬化性エポキシ樹脂組成物。
[24]環状シロキサンを形成するSi-O単位の数が、2~12(好ましくは4~8)である、上記[23]に記載の硬化性エポキシ樹脂組成物。
[25]分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の重量平均分子量が、100~3000(好ましくは180~2000)である、上記[22]~[24]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[26]分子内に2以上のエポキシ基を有するシロキサン誘導体(G)のエポキシ当量(JIS K7236に準拠)が、180~400(好ましくは240~400、より好ましくは240~350)である、上記[22]~[25]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[27]分子内に2以上のエポキシ基を有するシロキサン誘導体(G)におけるエポキシ基が、脂環エポキシ基(好ましくはシクロヘキセンオキシド基)である、上記[22]~[26]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[28]分子内に2以上のエポキシ基を有するシロキサン誘導体(G)が、下記式(S-1)~(S-7)で表される一分子中に2以上のエポキシ基を有する環状シロキサンからなる群から選ばれる少なくとも1種である、上記[22]~[27]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000050
[29]分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の使用量(含有量)が、成分(A)、成分(B)、及び成分(G)の合計量(100重量%)に対して、5~90重量%(好ましくは5~85重量%、より好ましくは5~80重量%、特に好ましくは8~75重量%)である、上記[22]~[28]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[30]エポキシ基を有する化合物(エポキシ樹脂)の総量(100重量%)に対する、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)、及び分子内に2以上のエポキシ基を有するシロキサン誘導体(G)の総量が、30~100重量%(好ましくは40~100重量%)である、上記[22]~[29]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[22] The curable epoxy according to any one of the above [1] to [21], further comprising a siloxane derivative (G) having two or more (preferably 2 to 4) epoxy groups in the molecule. Resin composition.
[23] A siloxane derivative (G) having two or more epoxy groups in the molecule comprises a cyclic siloxane having two or more epoxy groups in the molecule, and a linear silicone having two or more epoxy groups in the molecule The curable epoxy resin composition as described in the above-mentioned [22], which is at least one selected from the group (preferably a cyclic siloxane having two or more epoxy groups in the molecule).
[24] The curable epoxy resin composition as described in [23] above, wherein the number of Si—O units forming the cyclic siloxane is 2 to 12 (preferably 4 to 8).
[25] Any one of the above [22] to [24], wherein the weight average molecular weight of the siloxane derivative (G) having two or more epoxy groups in the molecule is 100 to 3000 (preferably 180 to 2000) Curable epoxy resin composition as described in 4.
[26] The epoxy equivalent (based on JIS K 7236) of the siloxane derivative (G) having two or more epoxy groups in the molecule is 180 to 400 (preferably 240 to 400, more preferably 240 to 350), The curable epoxy resin composition according to any one of [22] to [25].
[27] Any one of the above [22] to [26], wherein the epoxy group in the siloxane derivative (G) having two or more epoxy groups in the molecule is an alicyclic epoxy group (preferably a cyclohexene oxide group) Curable epoxy resin composition as described in 4.
[28] A cyclic siloxane having two or more epoxy groups in one molecule, wherein the siloxane derivative (G) having two or more epoxy groups in the molecule is represented by the following formulas (S-1) to (S-7) The curable epoxy resin composition according to any one of the above [22] to [27], which is at least one selected from the group consisting of
Figure JPOXMLDOC01-appb-C000050
[29] The used amount (content) of the siloxane derivative (G) having two or more epoxy groups in the molecule is the total amount (100% by weight) of the component (A), the component (B), and the component (G) Any of [22] to [28] above, which is 5 to 90% by weight (preferably 5 to 85% by weight, more preferably 5 to 80% by weight, and particularly preferably 8 to 75% by weight). Curable epoxy resin composition as described in one.
[30] Alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), and 2 or more epoxy groups in the molecule with respect to the total amount (100% by weight) of compounds having epoxy group (epoxy resin) The curable epoxy resin composition according to any one of the above [22] to [29], wherein the total amount of the siloxane derivative (G) having 30% by weight is 30 to 100% by weight (preferably 40 to 100% by weight). .
[31]さらに、脂環式ポリエステル樹脂(H)を含む、上記[1]~[30]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[32]脂環式ポリエステル樹脂(H)が、主鎖に脂環を有する脂環式ポリエステル樹脂である、上記[31]に記載の硬化性エポキシ樹脂組成物。
[33]脂環式ポリエステル樹脂(H)が、下記式(2)~(4)で表される構成単位を少なくとも一種含む脂環式ポリエステル樹脂である、上記[31]又は[32]に記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000051
(式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合して環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000052
(式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合した環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000053
(式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖状若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合した環を形成していてもよい。)
[34]脂環式ポリエステル樹脂(H)が、下記式(5)及び(6)で表される構成単位を少なくとも一種含む脂環式ポリエステル樹脂である、上記[31]~[33]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
[35]脂環式ポリエステル樹脂(H)の数平均分子量が、300~100000(好ましくは300~30000)である、上記[31]~[34]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[36]脂環式ポリエステル樹脂(H)の配合量(含有量)が、硬化剤(D)を必須成分とする場合、脂環式ポリエステル樹脂(H)と硬化剤(D)の合計量(100重量%)に対して、1~60重量%(好ましくは5~30重量%)である、上記[31]~[35]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[37]脂環式ポリエステル樹脂(H)の配合量(含有量)が、硬化触媒(E)を必須成分とする場合、脂環式ポリエステル樹脂(H)と硬化触媒(E)の合計量(100重量%)に対して、50~99重量%(好ましくは65~99重量%)である、上記[31]~[35]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[31] The curable epoxy resin composition according to any one of the above [1] to [30], further comprising an alicyclic polyester resin (H).
[32] The curable epoxy resin composition as described in [31] above, wherein the alicyclic polyester resin (H) is an alicyclic polyester resin having an alicyclic ring in its main chain.
[33] The alicyclic polyester resin (H) described in the above [31] or [32], which is an alicyclic polyester resin containing at least one structural unit represented by the following formulas (2) to (4) Curable epoxy resin composition.
Figure JPOXMLDOC01-appb-C000051
(Wherein, R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms. R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain And the two selected from R 4 to R 7 may combine to form a ring).
Figure JPOXMLDOC01-appb-C000052
(Wherein, R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms. R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
Figure JPOXMLDOC01-appb-C000053
(Wherein, R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms. R 4 to R 7 each independently represent a hydrogen atom or a linear or branched chain Or an alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 may form a combined ring).
[34] Any of the above-mentioned [31] to [33], wherein the alicyclic polyester resin (H) is an alicyclic polyester resin containing at least one structural unit represented by the following formulas (5) and (6) The curable epoxy resin composition according to any one of the items.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
[35] The curable epoxy resin according to any one of the above [31] to [34], wherein the number average molecular weight of the alicyclic polyester resin (H) is 300 to 100000 (preferably 300 to 30000) Composition.
[36] When the amount (content) of the alicyclic polyester resin (H) contains the curing agent (D) as an essential component, the total amount of the alicyclic polyester resin (H) and the curing agent (D) ( The curable epoxy resin composition according to any one of the above [31] to [35], which is 1 to 60% by weight (preferably 5 to 30% by weight) with respect to 100% by weight).
[37] When the amount (content) of the alicyclic polyester resin (H) contains the curing catalyst (E) as an essential component, the total amount of the alicyclic polyester resin (H) and the curing catalyst (E) ( The curable epoxy resin composition according to any one of the above [31] to [35], which is 50 to 99% by weight (preferably 65 to 99% by weight) with respect to 100% by weight).
[38]脂環式エポキシ化合物(A)の使用量(含有量)が、硬化剤(D)を必須成分として含む場合、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対して、5~90重量%(好ましくは8~80重量%、より好ましくは8~75重量%)である、上記[22]~[37]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[39]脂環式エポキシ化合物(A)の使用量(含有量)が、硬化触媒(E)を必須成分として含む場合、白色顔料(C)及び無機充填剤(J)を除く硬化性エポキシ樹脂組成物全量(100重量%)に対して、10~95重量%(好ましくは15~85重量%、より好ましくは20~75重量%)である、上記[22]~[37]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[38] A curable epoxy resin other than the white pigment (C) and the inorganic filler (J) when the amount (content) of the alicyclic epoxy compound (A) contains the curing agent (D) as an essential component Any one of the above [22] to [37], which is 5 to 90% by weight (preferably 8 to 80% by weight, more preferably 8 to 75% by weight) based on the total amount (100% by weight) of the composition. The curable epoxy resin composition as described in 1).
[39] A curable epoxy resin other than the white pigment (C) and the inorganic filler (J) when the amount (content) of the alicyclic epoxy compound (A) contains the curing catalyst (E) as an essential component Any one of the above [22] to [37], which is 10 to 95% by weight (preferably 15 to 85% by weight, more preferably 20 to 75% by weight) based on the total amount (100% by weight) of the composition. The curable epoxy resin composition as described in 1).
[40]さらに、シリコーンゴム粒子以外のゴム粒子を含む、上記[1]~[39]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[41]シリコーンゴム粒子以外のゴム粒子が、(メタ)アクリル酸エステルを必須のモノマー成分とするポリマーで構成され、表面にヒドロキシ基及び/又はカルボキシ基を有し、平均粒子径が10~500nm(好ましくは20~400nm)であり、最大粒子径が50~1000nm(好ましくは100~800nm)である、上記[40]に記載の硬化性エポキシ樹脂組成物。
[42]シリコーンゴム粒子以外のゴム粒子が、コアシェル構造を有するゴム粒子である、上記[40]又は[41]に記載の硬化性エポキシ樹脂組成物。
[43]シリコーンゴム粒子以外のゴム粒子の含有量(配合量)が、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.5~30重量部(好ましくは1~20重量部)である、上記[40]~[42]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[40] The curable epoxy resin composition according to any one of the above [1] to [39], further comprising rubber particles other than silicone rubber particles.
[41] Rubber particles other than silicone rubber particles are composed of a polymer containing (meth) acrylic acid ester as an essential monomer component, and have hydroxy and / or carboxy groups on the surface and have an average particle diameter of 10 to 500 nm The curable epoxy resin composition according to the above [40], which has a (preferably 20 to 400 nm) and a maximum particle diameter of 50 to 1000 nm (preferably 100 to 800 nm).
[42] The curable epoxy resin composition according to the above [40] or [41], wherein the rubber particles other than silicone rubber particles are rubber particles having a core-shell structure.
[43] The content (blending amount) of rubber particles other than silicone rubber particles is 0.5 to 30 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. The curable epoxy resin composition according to any one of the above [40] to [42], which is a part by weight (preferably 1 to 20 parts by weight).
[44]さらに、シリコーン系レベリング剤及びフッ素系レベリング剤からなる群より選ばれた少なくとも1種のレベリング剤を含む、上記[1]~[43]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[45]前記レベリング剤の不揮発分の含有量(配合量)が、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.1~10重量部(好ましくは0.1~5重量部、より好ましくは0.1~4重量部)である、上記[44]に記載の硬化性エポキシ樹脂組成物。
[44] The curable epoxy resin according to any one of the above [1] to [43], further comprising at least one leveling agent selected from the group consisting of a silicone-based leveling agent and a fluorine-based leveling agent. Composition.
[45] The content (blending amount) of the non-volatile component of the leveling agent is 0.1 to 10 parts by weight with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition The curable epoxy resin composition according to the above [44], which is a part (preferably 0.1 to 5 parts by weight, more preferably 0.1 to 4 parts by weight).
[46]さらに、ポリオール化合物を含む、上記[1]~[45]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[47]ポリオール化合物が、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、フェノキシ樹脂、ビスフェノール型高分子エポキシ樹脂、水酸基を有するポリブタジエン類、及びアクリルポリオールからなる群から選ばれる少なくとも1種である、上記[46]に記載の硬化性エポキシ樹脂組成物。
[48]ポリオール化合物の数平均分子量が、200~100000(好ましくは300~50000、より好ましくは400~40000)である、上記[46]又は[47]に記載の硬化性エポキシ樹脂組成物。
[49]ポリオール化合物の使用量(含有量)が、成分(A)及び成分(B)の合計量(100重量部)に対して、1~50重量部(好ましくは1.5~40重量部、より好ましくは5~30重量部である)、上記[46]~[48]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[50]硬化性エポキシ樹脂組成物が分子内に2以上のエポキシ基を有するシロキサン誘導体(G)を含む場合、ポリオール化合物の使用量(含有量)が、上記成分(A)、成分(B)、及び成分(G)の合計量(100重量部)に対して、1~50重量部(好ましくは1.5~40重量部、より好ましくは5~30重量部)である、上記[46]~[49]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[46] The curable epoxy resin composition according to any one of the above [1] to [45], further comprising a polyol compound.
[47] The above polyol compound is at least one selected from the group consisting of polyester polyol, polyether polyol, polycarbonate polyol, phenoxy resin, bisphenol type polymer epoxy resin, polybutadiene having hydroxyl group, and acrylic polyol 46. The curable epoxy resin composition as described in 46.
[48] The curable epoxy resin composition as described in [46] or [47] above, wherein the number average molecular weight of the polyol compound is 200 to 100000 (preferably 300 to 50000, more preferably 400 to 40000).
[49] The use amount (content amount) of the polyol compound is 1 to 50 parts by weight (preferably 1.5 to 40 parts by weight) with respect to the total amount (100 parts by weight) of the component (A) and the component (B) (More preferably 5 to 30 parts by weight), the curable epoxy resin composition according to any one of the above [46] to [48].
[50] When the curable epoxy resin composition contains a siloxane derivative (G) having two or more epoxy groups in the molecule, the amount (content) of the polyol compound used is the above component (A), component (B) And 1 to 50 parts by weight (preferably 1.5 to 40 parts by weight, more preferably 5 to 30 parts by weight) based on the total amount (100 parts by weight) of the component (G) [46] The curable epoxy resin composition according to any one of [49].
[51]さらに、アクリルブロック共重合体を含む、上記[1]~[50]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[52]アクリルブロック共重合体が、ガラス転移温度(Tg)が低い重合体ブロック[S](ソフトブロック)と、重合体ブロック[S]よりも高いTgを有する重合体ブロック[H](ハードブロック)が交互に並んだブロック共重合体である、上記[51]に記載の硬化性エポキシ樹脂組成物。
[53]アクリルブロック共重合体が、重合体ブロック[S]を中間に有し、その両端に重合体ブロック[H]を有するH-S-H構造のトリブロック共重合体である、上記[52]に記載の硬化性エポキシ樹脂組成物。
[54]アクリルブロック共重合体の数平均分子量が、3000~500000(好ましくは30000~400000)である、上記[51]~[53]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[55]アクリルブロック共重合体の使用量(含有量)が、成分(A)及び成分(B)の合計量(100重量部)に対して、1~30重量部(好ましくは3~15重量部、より好ましくは3~10重量部)である、上記[51]~[54]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[56]硬化性エポキシ樹脂組成物が分子内に2以上のエポキシ基を有するシロキサン誘導体(G)を含む場合、アクリルブロック共重合体の使用量(含有量)が、成分(A)、成分(B)、及び成分(G)の合計量(100重量部)に対して、1~30重量部(好ましくは3~15重量部、より好ましくは3~10重量部)である、上記[51]~[55]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[51] The curable epoxy resin composition according to any one of the above [1] to [50], further comprising an acrylic block copolymer.
[52] A polymer block [H] (hard) having a polymer block [S] (soft block) having a low glass transition temperature (Tg) and a Tg higher than the polymer block [S] The curable epoxy resin composition according to the above [51], which is a block copolymer in which blocks) are alternately arranged.
[53] The acrylic block copolymer is a triblock copolymer of the HSH structure having a polymer block [S] in the middle and having polymer blocks [H] at both ends thereof, 52. The curable epoxy resin composition as described in 52.
[54] The curable epoxy resin composition according to any one of the above [51] to [53], wherein the number average molecular weight of the acrylic block copolymer is 3000 to 500000 (preferably 30000 to 400000).
[55] The amount (content) of the acrylic block copolymer is 1 to 30 parts by weight (preferably 3 to 15 parts by weight) with respect to the total amount (100 parts by weight) of the component (A) and the component (B) The curable epoxy resin composition according to any one of the above [51] to [54], which is a part, more preferably 3 to 10 parts by weight.
[56] When the curable epoxy resin composition contains a siloxane derivative (G) having two or more epoxy groups in the molecule, the amount (content) of the acrylic block copolymer used is component (A), component (A) B) and 1 to 30 parts by weight (preferably 3 to 15 parts by weight, more preferably 3 to 10 parts by weight) based on the total amount (100 parts by weight) of the component (G) [51] The curable epoxy resin composition according to any one of [55].
[57]さらに、応力緩和剤(I)を含む、上記[1]~[56]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[58]応力緩和剤(I)が、シリコーンゴム粒子(I1)、シリコーンオイル(I2)、液状ゴム成分(I3)、及び熱可塑性樹脂(I4)からなる群から選ばれる少なくとも1種(好ましくはシリコーンゴム粒子(I1)及びシリコーンオイル(I2)からなる群より選択される少なくとも1種)である、上記[57]に記載の硬化性エポキシ樹脂組成物。
[59]前記シリコーンゴム粒子(I1)が、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンである、上記[58]に記載の硬化性エポキシ樹脂組成物。
[60]シリコーンゴム粒子(I1)の平均粒子径(d50)が、0.1~100μm(好ましくは0.5~50μm)であり、最大粒子径が、0.1~250μm(好ましくは0.1~150μm)である、上記[58]又は[59]に記載の硬化性エポキシ樹脂組成物。
[61]前記シリコーンオイル(I2)が、エポキシ当量3000~15000(好ましくは4000~15000、より好ましくは5000~13000)の下記式(10)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物である、上記[58]~[60]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000056
[式中、xaは80~140の整数、yaは1~5の整数、zaは5~20の整数である。R26は炭素数2又は3のアルキレン基(好ましくはメチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、より好ましくはトリメチレン基)である。Aは、下記式(10a)で表される構造を有するポリアルキレンエーテル基である。
Figure JPOXMLDOC01-appb-C000057
(式中、a及びbはそれぞれ独立して、0~40の整数である。Bは水素原子またはメチル基(好ましくはメチル基)である。)]
[62]a及びbの合計が、1~80の整数である、上記[61]に記載の硬化性エポキシ樹脂組成物。
[63]応力緩和剤(I)の含有量(配合量)が、脂環式エポキシ化合物(A)100重量部に対して、1~250重量部(好ましくは5~230重量部、より好ましくは10~200重量部)である、上記[57]~[62]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[64]応力緩和剤(I)の含有量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、1~200重量部(好ましくは5~150重量部、より好ましくは8~120重量部)である、上記[57]~[63]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[57] The curable epoxy resin composition according to any one of the above [1] to [56], further comprising a stress relaxation agent (I).
[58] At least one stress-relaxing agent (I) is preferably selected from the group consisting of silicone rubber particles (I1), silicone oil (I2), liquid rubber component (I3), and thermoplastic resin (I4) (preferably The curable epoxy resin composition as described in the above [57], which is at least one selected from the group consisting of silicone rubber particles (I1) and silicone oil (I2).
[59] The curable epoxy resin composition as described in the above [58], wherein the silicone rubber particle (I1) is a crosslinked polydimethylsiloxane having a silicone resin on its surface.
[60] The average particle size (d 50 ) of the silicone rubber particles (I1) is 0.1 to 100 μm (preferably 0.5 to 50 μm), and the maximum particle size is 0.1 to 250 μm (preferably 0) The curable epoxy resin composition according to the above [58] or [59], which is 1 to 150 μm).
[61] A polyalkylene ether-modified silicone compound having a structure represented by the following formula (10), wherein the silicone oil (I2) has an epoxy equivalent of 3,000 to 15,000 (preferably 4,000 to 15,000, more preferably 5,000 to 13,000). The curable epoxy resin composition according to any one of the above [58] to [60].
Figure JPOXMLDOC01-appb-C000056
[Wherein, xa is an integer of 80 to 140, ya is an integer of 1 to 5 and za is an integer of 5 to 20] R 26 is an alkylene group having 2 or 3 carbon atoms (preferably a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, more preferably a trimethylene group). A is a polyalkylene ether group having a structure represented by the following formula (10a).
Figure JPOXMLDOC01-appb-C000057
(Wherein, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group (preferably a methyl group).)
[62] The curable epoxy resin composition as described in [61] above, wherein the sum of a and b is an integer of 1 to 80.
[63] The content (blending amount) of the stress relaxation agent (I) is preferably 1 to 250 parts by weight (preferably 5 to 230 parts by weight, more preferably 100 parts by weight of the alicyclic epoxy compound (A). The curable epoxy resin composition according to any one of the above [57] to [62], which is 10 to 200 parts by weight).
[64] The content (blending amount) of the stress relaxation agent (I) is preferably 1 to 200 parts by weight (preferably 5 parts) per 100 parts by weight of the total amount of the compound having an epoxy group contained in the curable epoxy resin composition. The curable epoxy resin composition according to any one of the above [57] to [63], which is -150 parts by weight, more preferably 8-120 parts by weight.
[65]さらに、無機充填剤(J)を含む、上記[1]~[64]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[66]無機充填剤(J)が、シリカ(シリカフィラー)である、上記[65]に記載の硬化性エポキシ樹脂組成物。
[67]シリカの中心粒径が、0.1~50μm(好ましくは0.1~30μm)である、上記[66]に記載の硬化性エポキシ樹脂組成物。
[68]無機充填剤(J)の含有量(配合量)が、硬化性エポキシ樹脂組成物(100重量%)に対して、10~90重量%(好ましくは13~75重量%、より好ましくは15~70重量%、さらに好ましくは20~70重量%)である、上記[65]~[67]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[69]無機充填剤(J)の含有量(配合量)が、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量部に対して、10~1500重量部(好ましくは50~1200重量部、より好ましくは100~1000重量部)である、上記[65]~[68]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[70]白色顔料(C)及び無機充填剤(J)の最大粒子径が、200μm以下(好ましくは185μm以下、より好ましくは175μm以下、特に好ましくは150μm以下)であり、0.01μm以上である、上記[65]~[69]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[65] The curable epoxy resin composition according to any one of the above [1] to [64], further comprising an inorganic filler (J).
[66] The curable epoxy resin composition as described in the above [65], wherein the inorganic filler (J) is silica (silica filler).
[67] The curable epoxy resin composition as described in [66] above, wherein the central particle size of the silica is 0.1 to 50 μm (preferably 0.1 to 30 μm).
[68] The content (blending amount) of the inorganic filler (J) is 10 to 90% by weight (preferably 13 to 75% by weight, more preferably 10 to 90% by weight) based on the curable epoxy resin composition (100% by weight) The curable epoxy resin composition according to any one of the above [65] to [67], which is 15 to 70% by weight, more preferably 20 to 70% by weight.
[69] The content (blending amount) of the inorganic filler (J) is 10 to 1500 parts by weight (preferably 50 parts by weight) based on 100 parts by weight of the total amount of the compound having an epoxy group contained in the curable epoxy resin composition. The curable epoxy resin composition according to any one of the above [65] to [68], which is -1200 parts by weight, more preferably 100 to 1000 parts by weight.
[70] The maximum particle diameter of the white pigment (C) and the inorganic filler (J) is 200 μm or less (preferably 185 μm or less, more preferably 175 μm or less, particularly preferably 150 μm or less), and is 0.01 μm or more The curable epoxy resin composition according to any one of the above [65] to [69].
[71]コンプレッション成型用の樹脂組成物である、上記[1]~[70]のいずれか1つに記載の硬化性エポキシ樹脂組成物。
[72]上記[1]~[71]のいずれか1つに記載の硬化性エポキシ樹脂組成物の硬化物。
[73]硬化物の波長450nmの光の反射率が、90%以上(好ましくは90.5%以上)である、上記[72]に記載の硬化物。
[74]120℃で250時間加熱した後の波長450nmの光の反射率(「250時間加熱エージング後の反射率」と称する場合がある)の、初期反射率に対する保持率([250時間加熱エージング後の反射率]/[初期反射率]×100)が、85%以上(好ましくは90%以上、より好ましくは95%以上、特に好ましくは98%以上)である、上記[72]又は[73]に記載の硬化物。
[75]120℃で500時間加熱した後の波長450nmの光の反射率(「500時間加熱エージング後の反射率」と称する場合がある)の、初期反射率に対する保持率([500時間加熱エージング後の反射率]/[初期反射率]×100)が、85%以上(好ましくは90%以上、より好ましくは95%以上、特に好ましくは98%以上)である、上記[72]~[74]のいずれか1つに記載の硬化物。
[76]強度10mW/cm2の紫外線を250時間照射した後の波長450nmの光に対する反射率(「紫外線エージング後の反射率」と称する場合がある)の、初期反射率に対する保持率([紫外線エージング後の反射率]/[初期反射率]×100)が、90%以上(好ましくは95%以上、より好ましくは98%以上)である、上記[72]~[75]のいずれか1つに記載の硬化物。
[71] The curable epoxy resin composition as described in any one of the above [1] to [70], which is a resin composition for compression molding.
[72] A cured product of the curable epoxy resin composition as described in any one of the above [1] to [71].
[73] The cured product according to the above [72], wherein the reflectance of light with a wavelength of 450 nm of the cured product is 90% or more (preferably 90.5% or more).
[74] Retainance of light with a wavelength of 450 nm after heating at 120 ° C. for 250 hours (sometimes referred to as “reflectance after heat aging for 250 hours”) relative to initial reflectivity ([250 hours heat aging] [72] or [73], wherein the later reflectance] / [initial reflectance] × 100) is 85% or more (preferably 90% or more, more preferably 95% or more, particularly preferably 98% or more). ] The hardened | cured material as described in.
[75] Retainance of light with a wavelength of 450 nm after heating at 120 ° C. for 500 hours (sometimes referred to as “reflectance after heat aging for 500 hours”) relative to initial reflectance ([500 hours heat aging] [72] to [74], wherein the later reflectance] / [initial reflectance] × 100) is 85% or more (preferably 90% or more, more preferably 95% or more, particularly preferably 98% or more). ] The hardened | cured material as described in any one.
[76] Retention of initial reflectance ([UV light] for the light with a wavelength of 450 nm after irradiation with UV light of intensity 10 mW / cm 2 for 250 hours (sometimes referred to as “reflectance after ultraviolet aging”) The reflectance after aging] / [initial reflectance] × 100) is 90% or more (preferably 95% or more, more preferably 98% or more) any one of the above [72] to [75] Cured product as described in.
[77]上記[1]~[71]のいずれか1つに記載の硬化性エポキシ樹脂組成物からなる光反射用硬化性樹脂組成物。
[78]光半導体素子と、上記[72]~[76]のいずれか1つに記載の硬化物からなるリフレクターとを少なくとも備えることを特徴とする光半導体装置。
[77] A curable resin composition for light reflection, which comprises the curable epoxy resin composition according to any one of the above [1] to [71].
[78] An optical semiconductor device comprising at least an optical semiconductor element and a reflector comprising the cured product according to any one of the above [72] to [76].
 100:白色リフレクター
 101:金属配線(電極)
 102:光半導体素子の搭載領域
 103:パッケージ基板
 104:ボンディングワイヤ
 105:光半導体素子の封止材
 106:ダイボンディング
 107:光半導体素子
 108:ヒートシンク
 109:カソードマーク
100: White reflector 101: Metal wiring (electrode)
102: Mounting area of optical semiconductor element 103: Package substrate 104: Bonding wire 105: Sealing material of optical semiconductor element 106: Die bonding 107: Optical semiconductor element 108: Heat sink 109: Cathode mark
 本発明の硬化性エポキシ樹脂組成物は、LEDパッケージ用途(LEDパッケージの構成材、例えば、光半導体装置におけるリフレクター材、ハウジング材等)、電子部品の接着用途、液晶ディスプレイ用途(例えば、反射板など)、白色基板用インク、シーラー等として好ましく使用することができる。 The curable epoxy resin composition of the present invention is used for LED package applications (components of LED packages, for example, reflector materials for optical semiconductor devices, housing materials, etc.), applications for bonding electronic components, applications for liquid crystal displays (for example, reflectors, etc.) ), Ink for white substrate, sealer, etc. can be preferably used.

Claims (19)

  1.  下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
    で表される脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化剤(D)と、硬化促進剤(F)とを含有することを特徴とする硬化性エポキシ樹脂組成物。
    Following formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent . ]
    And a cycloaliphatic epoxy compound (A) represented by the following formula (1)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
    Curable epoxy resin composition comprising: monoallyl diglycidyl isocyanurate compound (B), white pigment (C), curing agent (D), and curing accelerator (F) object.
  2.  下記式(I)
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1a、R2a、R3a、R4a、R5a、R6a、R7a、R8a、R9a、R10a、R11a、R12a、R13a、R14a、R15a、R16a、R17a及びR18aは、同一又は異なって、水素原子、ハロゲン原子、酸素原子若しくはハロゲン原子を有していてもよい炭化水素基、又は置換基を有していてもよいアルコキシ基を示す。]
    で表される脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000004
    [式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、白色顔料(C)と、硬化触媒(E)とを含有することを特徴とする硬化性エポキシ樹脂組成物。
    Following formula (I)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R 1a , R 2a , R 3a , R 4a , R 5a , R 6a , R 7a , R 8a , R 9a , R 10a , R 11a , R 12a , R 13a , R 14a , R 15a , R 16a , R 17a and R 18a are the same or different and each represents a hydrogen atom, a halogen atom, a hydrocarbon group which may have an oxygen atom or a halogen atom, or an alkoxy group which may have a substituent . ]
    And a cycloaliphatic epoxy compound (A) represented by the following formula (1)
    Figure JPOXMLDOC01-appb-C000004
    [Wherein, R 1 and R 2 each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
    A curable epoxy resin composition comprising the monoallyl diglycidyl isocyanurate compound (B), a white pigment (C) and a curing catalyst (E).
  3.  前記脂環式エポキシ化合物(A)が、下記式(I-1)
    Figure JPOXMLDOC01-appb-C000005
    で表される化合物である請求項1又は2に記載の硬化性エポキシ樹脂組成物。
    The alicyclic epoxy compound (A) is represented by the following formula (I-1)
    Figure JPOXMLDOC01-appb-C000005
    The curable epoxy resin composition according to claim 1 or 2, which is a compound represented by
  4.  25℃において液状である、請求項1~3のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 3, which is liquid at 25 ° C.
  5.  さらに、分子内に2以上のエポキシ基を有するシロキサン誘導体(G)を含む請求項1~4のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 4, further comprising a siloxane derivative (G) having two or more epoxy groups in the molecule.
  6.  さらに、脂環式ポリエステル樹脂(H)を含む請求項1~5のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 5, further comprising an alicyclic polyester resin (H).
  7.  前記脂環式ポリエステル樹脂(H)が、主鎖に脂環を有する脂環式ポリエステル樹脂である請求項6に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 6, wherein the alicyclic polyester resin (H) is an alicyclic polyester resin having an alicyclic ring in its main chain.
  8.  さらに、シリコーンゴム粒子以外のゴム粒子を含む請求項1~7のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 7, further comprising rubber particles other than silicone rubber particles.
  9.  さらに、シリコーン系レベリング剤及びフッ素系レベリング剤からなる群より選ばれた少なくとも1種のレベリング剤を含む請求項1~8のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 8, further comprising at least one leveling agent selected from the group consisting of a silicone-based leveling agent and a fluorine-based leveling agent.
  10.  さらに、ポリオール化合物を含む請求項1~9のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 9, further comprising a polyol compound.
  11.  さらに、アクリルブロック共重合体を含む請求項1~10のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 10, further comprising an acrylic block copolymer.
  12.  さらに、応力緩和剤(I)を含む請求項1~11のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 11, further comprising a stress relaxation agent (I).
  13.  前記応力緩和剤(I)が、シリコーンゴム粒子(I1)及びシリコーンオイル(I2)からなる群より選択される少なくとも1種である請求項12に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 12, wherein the stress relaxation agent (I) is at least one selected from the group consisting of silicone rubber particles (I1) and silicone oil (I2).
  14.  前記シリコーンゴム粒子(I1)が、シリコーンレジンを表面に備える架橋されたポリジメチルシロキサンである請求項13に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 13, wherein the silicone rubber particles (I1) are crosslinked polydimethylsiloxane having a silicone resin on the surface.
  15.  前記シリコーンオイル(I2)が、エポキシ当量3000~15000の下記式(10)で表される構造を有するポリアルキレンエーテル変性シリコーン化合物である請求項13又は14に記載の硬化性エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式中、xaは80~140の整数、yaは1~5の整数、zaは5~20の整数である。R26は炭素数2又は3のアルキレン基である。Aは、下記式(10a)で表される構造を有するポリアルキレンエーテル基である。
    Figure JPOXMLDOC01-appb-C000007
    (式中、a及びbはそれぞれ独立して、0~40の整数である。Bは水素原子またはメチル基である。)]
    The curable epoxy resin composition according to claim 13 or 14, wherein the silicone oil (I2) is a polyalkylene ether modified silicone compound having a structure represented by the following formula (10) having an epoxy equivalent of 3000 to 15000.
    Figure JPOXMLDOC01-appb-C000006
    [Wherein, xa is an integer of 80 to 140, ya is an integer of 1 to 5 and za is an integer of 5 to 20] R 26 is a C 2 or C 3 alkylene group. A is a polyalkylene ether group having a structure represented by the following formula (10a).
    Figure JPOXMLDOC01-appb-C000007
    (Wherein, a and b are each independently an integer of 0 to 40. B is a hydrogen atom or a methyl group.)
  16.  さらに、無機充填剤(J)を含む請求項1~15のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 15, further comprising an inorganic filler (J).
  17.  請求項1~16のいずれか1項に記載の硬化性エポキシ樹脂組成物の硬化物。 A cured product of the curable epoxy resin composition according to any one of claims 1 to 16.
  18.  請求項1~16のいずれか1項に記載の硬化性エポキシ樹脂組成物からなる光反射用硬化性樹脂組成物。 A curable resin composition for light reflection, comprising the curable epoxy resin composition according to any one of claims 1 to 16.
  19.  光半導体素子と、請求項18に記載の光反射用硬化性樹脂組成物の硬化物からなるリフレクターとを少なくとも備えることを特徴とする光半導体装置。 An optical semiconductor device comprising at least an optical semiconductor element and a reflector comprising the cured product of the curable resin composition for light reflection according to claim 18.
PCT/JP2018/046899 2017-12-21 2018-12-20 Curable epoxy resin composition, cured product thereof, and optical semiconductor device WO2019124476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-245102 2017-12-21
JP2017245102 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019124476A1 true WO2019124476A1 (en) 2019-06-27

Family

ID=66994725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046899 WO2019124476A1 (en) 2017-12-21 2018-12-20 Curable epoxy resin composition, cured product thereof, and optical semiconductor device

Country Status (2)

Country Link
TW (1) TW201930390A (en)
WO (1) WO2019124476A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029089A (en) * 2022-06-06 2022-09-09 韦尔通(厦门)科技股份有限公司 high-Tg, high-adhesion and aging-resistant epoxy adhesive composition as well as preparation method and application thereof
CN115279830A (en) * 2020-03-10 2022-11-01 米其林集团总公司 Rubber composition based on epoxy resin and hardener having high retardation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001350A (en) * 2008-06-19 2010-01-07 Kyocera Chemical Corp Epoxy resin molding material and molded product
WO2011013326A1 (en) * 2009-07-31 2011-02-03 住友ベークライト株式会社 Liquid resin composition and semiconductor device formed using same
WO2013008680A1 (en) * 2011-07-13 2013-01-17 株式会社ダイセル Curable epoxy resin composition
JP2013018924A (en) * 2011-07-13 2013-01-31 Daicel Corp Curable epoxy resin composition
WO2013099693A1 (en) * 2011-12-27 2013-07-04 株式会社ダイセル Curable epoxy resin composition
WO2014129342A1 (en) * 2013-02-19 2014-08-28 株式会社ダイセル Curable composition for wafer level lens, manufacturing method for wafer level lens, wafer level lens, and optical device
JP2016172854A (en) * 2015-03-17 2016-09-29 株式会社ダイセル Curable composition and cured product thereof
WO2017138491A1 (en) * 2016-02-12 2017-08-17 株式会社ダイセル Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001350A (en) * 2008-06-19 2010-01-07 Kyocera Chemical Corp Epoxy resin molding material and molded product
WO2011013326A1 (en) * 2009-07-31 2011-02-03 住友ベークライト株式会社 Liquid resin composition and semiconductor device formed using same
WO2013008680A1 (en) * 2011-07-13 2013-01-17 株式会社ダイセル Curable epoxy resin composition
JP2013018924A (en) * 2011-07-13 2013-01-31 Daicel Corp Curable epoxy resin composition
WO2013099693A1 (en) * 2011-12-27 2013-07-04 株式会社ダイセル Curable epoxy resin composition
WO2014129342A1 (en) * 2013-02-19 2014-08-28 株式会社ダイセル Curable composition for wafer level lens, manufacturing method for wafer level lens, wafer level lens, and optical device
JP2016172854A (en) * 2015-03-17 2016-09-29 株式会社ダイセル Curable composition and cured product thereof
WO2017138491A1 (en) * 2016-02-12 2017-08-17 株式会社ダイセル Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279830A (en) * 2020-03-10 2022-11-01 米其林集团总公司 Rubber composition based on epoxy resin and hardener having high retardation
CN115279830B (en) * 2020-03-10 2024-04-19 米其林集团总公司 Rubber composition based on epoxy resin and hardener with high delay
CN115029089A (en) * 2022-06-06 2022-09-09 韦尔通(厦门)科技股份有限公司 high-Tg, high-adhesion and aging-resistant epoxy adhesive composition as well as preparation method and application thereof

Also Published As

Publication number Publication date
TW201930390A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP5938040B2 (en) Curable epoxy resin composition
JP5938041B2 (en) Curable epoxy resin composition
TWI575015B (en) Curable resin composition for light reflection and optical semiconductor device
JP5829893B2 (en) Curable epoxy resin composition
JP5695269B2 (en) Curable epoxy resin composition
JP5764419B2 (en) Curable epoxy resin composition
JP2014133807A (en) Curable epoxy resin composition
WO2019124476A1 (en) Curable epoxy resin composition, cured product thereof, and optical semiconductor device
JPWO2012093591A1 (en) Curable epoxy resin composition
JP2018119032A (en) Curable resin composition for light reflection and cured product thereof, and optical semiconductor device
WO2014109317A1 (en) Curable epoxy resin composition
WO2018135558A1 (en) Curable resin composition for optical reflection, cured product thereof, and optical semiconductor device
WO2017138491A1 (en) Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device
WO2017138490A1 (en) Curable resin composition for reflecting light, cured product thereof, and optical semiconductor device
JP6929069B2 (en) Curable resin composition for light reflection, its cured product, and optical semiconductor device
JP6899198B2 (en) Curable resin composition for light reflection, its cured product, and optical semiconductor device
JP2017141413A (en) Curable resin composition for light reflection and cured product thereof, and optical semiconductor device
JP2017141414A (en) Curable resin composition for light reflection and cured product thereof, and optical semiconductor device
JP6899199B2 (en) Curable resin composition for light reflection, its cured product, and optical semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP