WO2019124187A1 - Control apparatus, control method, battery pack, power supply system, electronic device, electric tool, and electric vehicle - Google Patents

Control apparatus, control method, battery pack, power supply system, electronic device, electric tool, and electric vehicle Download PDF

Info

Publication number
WO2019124187A1
WO2019124187A1 PCT/JP2018/045671 JP2018045671W WO2019124187A1 WO 2019124187 A1 WO2019124187 A1 WO 2019124187A1 JP 2018045671 W JP2018045671 W JP 2018045671W WO 2019124187 A1 WO2019124187 A1 WO 2019124187A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
battery unit
control unit
unit
Prior art date
Application number
PCT/JP2018/045671
Other languages
French (fr)
Japanese (ja)
Inventor
靖 森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019561005A priority Critical patent/JP6933266B2/en
Publication of WO2019124187A1 publication Critical patent/WO2019124187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a control device, a control method, a battery pack, a power supply system, an electronic device, an electric tool, and an electric vehicle.
  • Patent Document 1 describes a battery pack that performs control to increase the discharge end voltage of the secondary battery when the secondary battery is deteriorated.
  • the present invention provides a control device, a control method, a battery pack, a power supply system, an electronic device, an electric tool, and an electric vehicle, which prevents the discharge end voltage from being detected early when the battery unit is at low temperature. Make one of the goals.
  • the present invention is, for example, When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value, If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage, It is a control device which has a control part which sets the 2nd voltage smaller than a reference voltage or a reference voltage as discharge final voltage, when the temperature of a battery part is below a threshold. According to this configuration, when the temperature of the battery unit is higher than the threshold value, the first voltage larger than the reference voltage is set to the discharge termination voltage, so that the progress of the deterioration of the battery unit can be suppressed. In addition, when the temperature of the battery unit is equal to or less than the threshold, the reference voltage or the second voltage smaller than the reference voltage is set to the discharge termination voltage, so that the discharge termination voltage is detected earlier when the battery unit is at a low temperature. Can be prevented.
  • the second voltage may be a preset voltage.
  • the second voltage may be a voltage smaller than the minimum voltage among the voltages after the voltage drop that occurs when the rated maximum load is connected. According to this configuration, since the second voltage is set in advance, the processing load on the control unit can be reduced. Also, by setting a voltage smaller than the minimum voltage among the voltages after the voltage drop that occurs when the rated maximum load is connected as the second voltage, the voltage lowered by the voltage drop is detected as the discharge termination voltage It can be reliably prevented that it does.
  • the control unit may set the second voltage in accordance with the temperature of the battery unit. According to this configuration, the second voltage can be appropriately set in accordance with the temperature of the battery unit.
  • the control unit may set the second voltage with reference to a voltage drop defined for each temperature of the battery unit when the maximum load is connected. According to this configuration, the second voltage can be appropriately set in accordance with the temperature of the battery unit, and even when the voltage of the battery unit instantaneously decreases due to the voltage drop at the temperature, the voltage after the decrease Can be prevented from being detected as the discharge termination voltage.
  • the control unit may output a discharge termination signal. According to this configuration, it is possible to prevent the battery unit from being in a discharged state at a voltage lower than the discharge inhibition voltage when a voltage drop occurs at the end of discharge.
  • the control unit may output a discharge termination signal when the voltage of the battery unit reaches the discharge termination voltage. According to this configuration, since the control for reliably stopping the discharge is performed, the device to which the battery unit is applied can be reliably stopped.
  • the control unit may set the reference voltage to the discharge termination voltage when it is determined that the degree of deterioration of the battery unit is smaller than a predetermined level. According to this configuration, since the reference voltage is set as the discharge termination voltage when the deterioration of the battery unit is not progressing, the discharge capacity can be secured.
  • the control unit may determine the degree of deterioration of the battery unit by referring to the use history information of the battery unit stored in the storage unit.
  • the control unit may determine the degree of deterioration of the battery unit based on at least one of the number of cycles, the use time, and the leaving time. According to this configuration, it is possible to accurately determine the degree of deterioration of the battery unit.
  • the threshold may be 0 ° C. This makes it possible to perform appropriate control with respect to voltage drops that become noticeable particularly at low temperatures.
  • the present invention The control unit When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value, If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage, If the temperature of the battery unit is lower than the threshold value, the control method may be such that the second voltage lower than the reference voltage or the reference voltage is set as the discharge termination voltage.
  • the present invention is Has a battery unit and a control unit
  • the control unit is When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value, If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage, If the temperature of the battery unit is equal to or less than the threshold, a battery pack may be used in which the second voltage smaller than the reference voltage or the reference voltage is set as the discharge termination voltage.
  • the present invention is A battery unit, a first device having a first control unit, and a second device having a second control unit,
  • the control unit of at least one of the first control unit and the second control unit is When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value, If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage, If the temperature of the battery unit is below the threshold, a reference voltage or a power supply system may be used in which a second voltage smaller than the reference voltage is set as the discharge termination voltage.
  • the present invention is It may be an electronic device having the control device described above. Also, the present invention is It may be a power tool having the control device described above. Also, the present invention is It may be an electric vehicle having the control device described above. Also in these inventions, the same action and effect as the action and effect in the control device described above can be obtained.
  • the present invention it is possible to prevent early detection of the discharge end voltage when the battery unit is at a low temperature. It should be noted that the contents of the present invention are not interpreted as being limited by the effects exemplified in the present specification.
  • FIG. 1 is a diagram for describing one method for suppressing the progress of the deterioration of the battery unit.
  • FIG. 2 is a diagram for explaining a voltage drop that occurs during discharge.
  • FIG. 3 is a diagram showing an example of a circuit configuration of the battery pack according to the first embodiment.
  • FIG. 4 is a view showing a configuration example of a battery cell according to the embodiment.
  • FIG. 5 is the figure which expanded a part of winding electrode body which the battery cell concerning embodiment has.
  • FIG. 6 is a diagram for explaining a connection configuration example of the battery unit according to the embodiment.
  • FIG. 7 is a flowchart showing the flow of processing performed by the control unit in the first embodiment.
  • FIG. 8 is a flowchart showing the flow of processing performed by the control unit in the second embodiment.
  • FIG. 7 is a flowchart showing the flow of processing performed by the control unit in the first embodiment.
  • FIG. 8 is a flowchart showing the flow of processing performed by the control unit in the second embodiment.
  • FIG. 9 is a view showing a configuration example of the electronic device according to the third embodiment.
  • FIG. 10 is a view showing a configuration example of the power tool according to the fourth embodiment.
  • FIG. 11 is a view showing a configuration example of the electric bicycle according to the fifth embodiment.
  • FIG. 12 is a flowchart showing the flow of processing performed in the fifth embodiment.
  • FIG. 13 is a diagram showing a configuration example of a power supply system according to the sixth embodiment.
  • FIG. 14 is a diagram showing an example of a configuration of an electrically powered vehicle according to the seventh embodiment.
  • FIG. 15 is a diagram showing an example of configuration of a power storage system according to the eighth embodiment.
  • FIG. 1 is a diagram for explaining the correlation.
  • the horizontal axis in FIG. 1 indicates the number of cycles, and the vertical axis indicates the internal impedance of the lithium ion secondary battery. Note that one cycle of charging and discharging was performed.
  • the battery part was comprised by what connected the lithium ion secondary battery which uses a nickel type positive electrode material (NCA positive electrode agent) for a positive electrode, and silicon for 10 cells in series.
  • NCA positive electrode agent nickel type positive electrode material
  • the discharge termination voltage is set to a value higher than 28 V (2.8 V per single cell), for example, 30 V (3.0 V per single cell)
  • the internal impedance increases with the increase in the number of cycles. Is suppressed. That is, it is understood that deterioration of the battery unit can be suppressed by increasing the discharge end voltage.
  • Lines L1 to L7 in the graph indicate the discharge temperature characteristics of the lithium ion secondary battery for each temperature.
  • Line L1 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 60.degree.
  • Line L2 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 45 ° C.
  • Line L3 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 23 ° C.
  • Line L4 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 0 ° C.
  • Line L5 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is -10 ° C.
  • Line L6 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is -15.degree.
  • Line L7 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is -20.degree.
  • the lithium ion secondary battery is discharged at a low temperature at a high rate (high current), for example, when the rated maximum load is connected, an initial voltage (eg, 4.2 V full charge voltage) There is a characteristic that the voltage drop becomes large. Thereafter, with the heat generation of the lithium ion secondary battery, the temperature of the battery cell rises, and the voltage recovers.
  • high current for example, when the rated maximum load is connected
  • an initial voltage eg, 4.2 V full charge voltage
  • FIG. 3 shows an example of a circuit configuration of the battery pack (battery pack 1) according to the first embodiment.
  • the battery pack 1 includes, for example, a battery unit 101, an MPU (Micro Processing Unit) 102, a charge control FET (Field Effect Transistor) 103a, a discharge control FET 103b, a protection circuit 104, and a temperature element 105 such as a thermistor. And a non-volatile memory 106.
  • a terminal t1 is derived from the positive electrode side of the battery unit 101 via the power line PL1.
  • a terminal t2 is derived from the negative electrode side of the battery unit 101 via the power line PL2.
  • the battery unit 101 is configured of, for example, a lithium ion secondary battery having a full charge voltage of 4.2 V per unit cell.
  • battery unit 101 has a configuration in which ten battery cells (battery cells 101a) are connected in series, and the full charge voltage is about 42V.
  • FIG. 2 illustration of the battery cell 101a is simplified and only the two battery cells 101a are shown.
  • the configuration of the battery unit 101 is merely an example, and a configuration in which a plurality of battery cells are connected in parallel may be used, or a configuration of series-parallel connection in which units in which battery cells are connected in parallel are further connected in series Also good.
  • the MPU 102 includes, for example, a multiplexer 102a, an FET control unit 102b, a current measurement unit 102c, a voltage measurement unit 102d, a temperature measurement unit 102e, a control unit 102f, and a timer 102g.
  • the multiplexer 102a selects the battery cell 101a whose voltage is to be measured.
  • the voltage of the entire battery unit 101 may be selected as a measurement target.
  • the voltage of the selected battery cell 101a is supplied to the voltage measuring unit 102d, and the voltage is detected by the voltage measuring unit 102d.
  • the FET control unit 102b controls on / off of the charge control FET 103a and the discharge control FET 103b.
  • the current measuring unit 102c measures the current flowing in the battery unit 101 using, for example, the current detection resistor 107 provided on the power line PL2.
  • the temperature measuring unit 102 e detects the temperature of the entire battery unit 101 or each battery cell based on the result detected by the temperature element 105 disposed in the vicinity of the battery unit 101.
  • the temperature measurement unit 102e is configured to be able to detect the temperature of each battery cell.
  • the control unit 102 f includes, for example, a CPU (Central Processing Unit), and controls the operation of the battery pack 1. The specific operation of the control unit 102 f will be described later.
  • the MPU 102 has a ROM (Read Only Memory) in which a program executed by the control unit 102 f is stored, and a RAM (Random Access Memory) used as a work memory when the control unit 102 f executes a program. There is. In FIG. 1, the illustration of these memories is omitted.
  • the timer 102g is configured of a clock circuit and the like, and provides a clock for the control unit 102f to operate.
  • the timer 102g also has a clocking function and a counting function.
  • the number of cycles of the battery pack 1, usage time (for example, an elapsed period from the date of manufacture), standing time (time when the unused state continues), etc. are measured by the clock function etc. possessed by the timer 102g.
  • the clock terminal t3 and the data terminal t4 are connected to the MPU 102, and communication is performed between the MPU 102 and an external device connected to the battery pack 1 through these terminals.
  • a parasitic diode 103c and a parasitic diode 103d are connected between the drain and the source of the charge control FET 103a and the discharge control FET 103b, respectively.
  • the parasitic diode 103c has a forward polarity with respect to the discharge current in the reverse direction with respect to the charge current.
  • the parasitic diode 103d has a forward direction with respect to the charge current and a reverse direction with respect to the discharge current.
  • Control signals from the FET control unit 102b are respectively supplied to the gates of the charge control FET 103a and the discharge control FET 103b. Since the charge control FET 103 a and the discharge control FET 103 b are, for example, P-channel type, they are turned on by the gate potential which is lower by a predetermined value or more than the source potential.
  • the charge control FET 103 a and the discharge control FET 103 b are turned on.
  • An N-channel FET may be used as the charge control FET 103a and the discharge control FET 103b.
  • the charge control FET 103a and the discharge control FET 103b are turned on by the gate potential which is higher than the source potential by a predetermined value or more.
  • the protection circuit 104 measures the voltage of the battery unit 101 or individual battery cells, and blows the fuse 104a if the measured voltage exceeds a predetermined voltage.
  • the protective circuit 104 melts the fuse 104a by applying a voltage to the heater resistor 104b to raise the temperature when the overvoltage occurs.
  • the protection circuit 104 blows the fuse 104 a without the control of the MPU 102. Therefore, even if the control of the charge control FET 103 a is not performed even if the MPU 102 has some problem and the voltage exceeds the predetermined voltage, the current can be cut off.
  • the protection operation by the MPU 102 is performed.
  • the MPU 102 supplies a control signal to each gate of the charge control FET 103 a and the discharge control FET 103 b to control the on / off of the charge control FET 103 a and the discharge control FET 103 b to perform a protection operation.
  • These protective actions are known and will only be outlined.
  • the MPU 102 cuts off the circuit by appropriately turning on / off the charge control FET 103 a and the discharge control FET 103 b when the battery unit 101 is overcharged or overdischarged based on the measurement result by the voltage measuring unit 102 d. .
  • These protection operations are performed, for example, when an overcurrent is measured by the current measurement unit 102c or when the temperature measured by the temperature measurement unit 102e is higher than a threshold.
  • an EEPROM Electrical Erasable and Programmable Read Only Memory
  • the nonvolatile memory 106 stores usage history information on the usage history of the battery unit 101, discharge temperature characteristics for each temperature of the battery unit 101 as shown in FIG. 2, various setting values of the battery pack 1, etc. .
  • FIG. 4 is a cross-sectional view showing an example of the cross-sectional structure of the battery cell 101a.
  • the battery cell 101 a is a so-called cylindrical type, and a strip-like positive electrode 141 and a strip-like negative electrode 142 are wound inside a substantially hollow cylindrical battery can 131 via a separator 143. It has a wound electrode assembly 140.
  • the battery can 131 is made of, for example, iron (Fe) plated with nickel (Ni), and one end is closed and the other end is opened.
  • a pair of insulating plates 132 and 133 are respectively disposed perpendicularly to the winding circumferential surface so as to sandwich the winding electrode body 140.
  • a battery cover 134 At the open end of the battery can 131, a battery cover 134, a safety valve mechanism 135 and a positive temperature coefficient element (PTC element) 136 provided on the inner side of the battery cover 134, through a gasket 137. It is attached by being crimped. The inside of the battery can 131 is sealed by this structure.
  • the battery cover 134 is made of, for example, the same material as the battery can 131.
  • the safety valve mechanism 135 is electrically connected to the battery cover 134 via the thermal resistance element 136, and the disc plate 135A is reversed when the internal pressure of the battery becomes a certain level or more due to internal short circuit or external heating. Then, the electric connection between the battery cover 134 and the winding electrode body 140 is cut off. When the temperature rises, the heat sensitive resistance element 136 limits the current by the increase of the resistance value, and prevents abnormal heat generation due to a large current.
  • the gasket 137 is made of, for example, an insulating material, and asphalt is applied to the surface.
  • the wound electrode body 140 is, for example, wound around a center pin 144.
  • a positive electrode lead 145 made of aluminum (Al) or the like is connected to the positive electrode 141 of the wound electrode body 140, and a negative electrode lead 146 made of nickel (Ni) or the like is connected to the negative electrode 142.
  • the positive electrode lead 145 is electrically connected to the battery cover 134 by being welded to the safety valve mechanism 135.
  • the negative electrode lead 146 is welded to the battery can 131 and electrically connected.
  • FIG. 5 is an enlarged view of a part of the spirally wound electrode body 140 shown in FIG.
  • the positive electrode 141 includes, for example, a positive electrode current collector 141a and a positive electrode active material layer 141b provided on both sides of the positive electrode current collector 141a. Note that a region in which the positive electrode active material layer 141 b is present may be provided only on one side of the positive electrode current collector 141 a.
  • the positive electrode current collector 141a is made of, for example, a metal foil such as an aluminum (Al) foil.
  • the positive electrode active material layer 141 b contains, for example, a positive electrode active material, a conductive agent such as fibrous carbon and carbon black, and a binder such as polyvinylidene fluoride (PVdF).
  • a positive electrode active material the positive electrode active material can occlude and release lithium which is an electrode reactant, and any one of positive electrode materials whose reaction potential is, for example, 3 to 4.5 V versus lithium Or contains two or more. Examples of such positive electrode materials include composite oxides containing lithium.
  • a composite oxide of lithium and transition metal Lithium cobaltate (LiCoO 2) having a layered structure, lithium nickelate (LiNiO 2), or a solid solution containing them (LiNi x Co y Mn z O 2;
  • LiNi x Co y Mn z O 2 Lithium cobaltate
  • a positive electrode material for example, a phosphoric acid compound such as lithium iron phosphate (LiFePO 4 ) having an olivine structure can also be used.
  • the positive electrode material may be, for example, an oxide such as titanium oxide, vanadium oxide or manganese dioxide, a disulfide such as iron disulfide, titanium disulfide or molybdenum sulfide, sulfur, polyaniline It may be a conductive polymer such as polythiophene.
  • the conductive agent is not particularly limited as long as it can be mixed with a positive electrode active material in an appropriate amount to impart conductivity.
  • a carbon material such as carbon black or graphite is used.
  • known binders generally used for positive electrode mixture of this type of battery can be used, and preferably polyvinyl fluoride (PVF), polyvinylidene fluoride (PVdF) and polytetratetra A fluorine-based resin such as fluoroethylene (PTFE) is used.
  • the negative electrode 142 includes, for example, a negative electrode current collector 142 a and a negative electrode active material layer 142 b provided on both sides of the negative electrode current collector 142 a. Note that a region in which the negative electrode active material layer 142 b is present may be provided only on one side of the negative electrode current collector 142 a.
  • the negative electrode current collector 142a is made of, for example, a metal foil such as copper (Cu) foil.
  • the negative electrode active material layer 142 b contains, for example, a negative electrode active material, and may contain other materials that do not contribute to charging, such as a conductive agent, a binder, or a viscosity modifier, as necessary.
  • the conductive agent may, for example, be a graphite fiber, a metal fiber or a metal powder.
  • the binder include fluorine-based polymer compounds such as polyvinylidene fluoride (PVdF), and synthetic rubbers such as styrene butadiene rubber (SBR) and ethylene propylene diene rubber (EPDR).
  • the negative electrode active material includes any one or two or more negative electrode materials capable of electrochemically absorbing and desorbing lithium (Li) electrochemically at a potential of 2.0 V or less of lithium metal. There is.
  • lithium for example, carbon materials, metal compounds, oxides, sulfides, lithium nitride such as LiN 3 , lithium metal, metals forming an alloy with lithium And polymeric materials.
  • Examples of the carbon material include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, an organic polymer compound fired body, carbon fiber or activated carbon.
  • cokes include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body is a material obtained by firing and carbonizing a polymer material such as a phenol resin or furan resin at an appropriate temperature, and in part, non-graphitizable carbon or graphitizable carbon Some are classified as In addition, examples of the polymer material include polyacetylene and polypyrrole.
  • Such negative electrode materials capable of inserting and extracting lithium (Li) those having a charge and discharge potential relatively close to lithium metal are preferable. This is because the lower the charge / discharge potential of the negative electrode 142, the easier it is to increase the energy density of the battery.
  • a carbon material is preferable because the change in the crystal structure occurring during charge and discharge is very small, high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a large electrochemical equivalent and high energy density can be obtained.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • Examples of negative electrode materials capable of inserting and extracting lithium (Li) also include simple lithium metals, simple substances, alloys or compounds of metal elements or metalloid elements capable of forming an alloy with lithium (Li). These are preferable because high energy density can be obtained, and in particular, when used together with a carbon material, high energy density can be obtained, and excellent cycle characteristics can be obtained, and thus they are more preferable.
  • alloys in addition to alloys composed of two or more metal elements, alloys include alloys composed of one or more metal elements and one or more metalloid elements.
  • the structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or a mixture of two or more of them.
  • a metal element or semimetal element for example, tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y) or hafnium (Hf) is mentioned.
  • these alloys or compounds include those represented by the chemical formula Ma f M b g Li h or the chemical formula Ma s Mc t M d u .
  • Ma represents at least one of metal elements and metalloid elements capable of forming an alloy with lithium
  • Mb represents at least one of metal elements and metalloid elements other than lithium
  • Ma Mc represents at least one nonmetal element
  • Md represents at least one metal element other than Ma and a metalloid element.
  • the values of f, g, h, s, t and u are f> 0, g ⁇ 0, h ⁇ 0, s> 0, t> 0 and u ⁇ 0, respectively.
  • Examples of the negative electrode material capable of storing and releasing lithium further include oxides, sulfides, and other metal compounds such as lithium nitride such as LiN 3 .
  • Examples of the oxide include MnO 2 , V 2 O 5 and V 6 O 13 .
  • an oxide capable of absorbing and releasing lithium with a relatively low potential for example, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide and the like can be mentioned.
  • Examples of sulfides include NiS and MoS.
  • separator 143 for example, a polyethylene porous film, a polypropylene porous film, a synthetic resin non-woven fabric, or the like can be used.
  • the separator 143 is impregnated with a non-aqueous electrolytic solution which is a liquid electrolyte.
  • Non-aqueous electrolyte contains a liquid solvent, for example, a non-aqueous solvent such as an organic solvent, and an electrolyte salt dissolved in the non-aqueous solvent.
  • a liquid solvent for example, a non-aqueous solvent such as an organic solvent, and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent preferably contains, for example, at least one of cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). It is because cycle characteristics can be improved. In particular, a mixture of ethylene carbonate (EC) and propylene carbonate (PC) is preferable because cycle characteristics can be further improved.
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC).
  • the non-aqueous solvent may also contain at least one of linear carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) or methyl propyl carbonate (MPC). preferable. It is because cycle characteristics can be further improved.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • Non-aqueous solvents further include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, those in which some or all of the hydrogen groups of these compounds are substituted with fluorine, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran 1,3-dioxolane, 4-methyl-1,3-dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide
  • One or more of N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, trimethyl phosphate and the like may be contained.
  • the reversibility of the electrode reaction may be improved by using a substance contained in the non-aqueous solvent group in which a part or all of the hydrogen atoms are replaced with a fluorine atom. Therefore, these substances can also be used appropriately.
  • a lithium salt can be used as the electrolyte salt.
  • a lithium salt for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), antimony hexafluoride Inorganic lithium salts such as lithium phosphate (LiSbF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethanesulfonyl) ) Imide (LiN (CF 3 SO 2 ) 2 ), lithium bis (pentafluoroethane sulfonyl) imide (LiN (C 2 F 5 SO 2 ) 2 ), and lithium tris (trifluoromethane
  • LiPF 6 lithium he
  • a solid electrolyte may be used instead of the non-aqueous electrolyte.
  • the solid electrolyte any of inorganic solid electrolyte and polymer solid electrolyte can be used as long as it is a material having lithium ion conductivity.
  • the inorganic solid electrolyte include lithium nitride (Li 3 N) and lithium iodide (LiI).
  • the solid polymer electrolyte is composed of an electrolyte salt and a polymer compound which dissolves the electrolyte salt, and the polymer compound is an ether polymer such as poly (ethylene oxide) or the crosslinked product, poly (methacrylate) ester type, acrylate
  • the system and the like can be used alone or in combination in the molecule or mixed.
  • a gel electrolyte may be used.
  • various polymers can be used as long as they absorb and gel the above-mentioned non-aqueous electrolyte.
  • fluorine-based polymers such as polyvinylidene fluoride, copolymers of vinylidene fluoride and hexafluoropropylene, ether-based polymers such as polyethylene oxide and cross-linked polymers, and polyacrylonitrile can be used.
  • fluorinated polymer Ion conductivity is imparted by containing an electrolyte salt.
  • This battery cell can be manufactured, for example, as described below.
  • a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to form a positive electrode mixture slurry.
  • the positive electrode mixture slurry is applied to the positive electrode current collector 141a and dried, and then compression molding is performed using a roll press machine or the like to form the positive electrode active material layer 141b, whereby the positive electrode 141 is produced.
  • a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to the negative electrode current collector 142a and dried, and then compression molded using a roll press machine or the like to form the negative electrode active material layer 142b, whereby the negative electrode 142 is fabricated.
  • the positive electrode lead 145 is attached to the positive electrode current collector 141a by welding or the like, and the negative electrode lead 146 is attached to the negative electrode current collector 142a by welding or the like.
  • the positive electrode 141 and the negative electrode 142 are wound via the separator 143, and the tip of the positive electrode lead 145 is welded to the safety valve mechanism 45.
  • the tip of the negative electrode lead 146 is welded to the battery can 131, and the wound positive electrode 141 and negative electrode 142 are sandwiched by the pair of insulating plates 132 and 133 and then housed inside the battery can 131.
  • the battery cell 101a can be manufactured.
  • FIG. 6 is an exploded perspective view for explaining the overall configuration of the battery unit 101. As shown in FIG. As described above, a cylindrical lithium ion secondary battery is used as the battery cell. The plurality of battery cells 101a are held by the cell holders 151L and 151R.
  • the cell holders 151L and 151R are formed such that cylindrical cell storage portions 152L and 152R each having a number equal to or more than the number of battery cells to be stored respectively protrude from the base portions 153L and 153R as base portions.
  • the cell holders 151L and 151R are resin molded products, and the cell storage portions 152L and 152R and the base portions 153L and 153R are integrally configured.
  • the material of the cell holders 151L and 151R may be a thermally conductive material containing metal powder or carbon and having high thermal conductivity. By using such a material, the heat generation from the battery cell 101a can be efficiently dissipated to the outside.
  • the material of the cell holders 151L and 151R may be a reinforced plastic containing glass fiber or carbon fiber and having excellent mechanical strength. By using such a material, the mechanical strength of the cell holders 151L and 151R can be enhanced against external impact.
  • the cell storage portions 152L and 152R have the same shape, and when the cell holders 151L and 151R face each other, the openings of the corresponding ones of the cell storage portions 152L and 152R coincide with each other.
  • the cell storage portions 152L, 152R have a diameter and a depth necessary to store the battery cell 101a. That is, the total length of the internal spaces of the cell storage portions 152L, 152R is substantially equal to the height of the battery cell 101a. In a state in which the battery cells 101a are stored in the cell storage portions 152L and 152R, the opposing cell holders 151L and 151R are held by the screws 155.
  • the battery cells can be reliably insulated. For this reason, high safety can be obtained as compared with the conventional structure using an insulating tape or the like in which the displacement of the affixing position is likely to occur. Furthermore, since the battery cell 101a is stably fixed to the cell storage portions 152L and 152R of the cell holders 151L and 151R, it is possible to prevent the position of the battery cell 101a from being shifted due to an external impact.
  • connection plates 156L and 156R are welded to the terminals of the battery cell 101a, and the connection relationship of the plurality of battery cells 101a is defined.
  • the cell holders 151L, 151R have ribs that define the installation positions of the divided connection plates 156L, 156R.
  • the connection plates 156L and 156R are made of a material having excellent conductivity and good weldability with the terminal portion of the battery cell 101a.
  • connection plates 156L and 156R are used in the present embodiment, the invention is not limited to plate-like ones, and a plurality of strip-like metal plates may be used.
  • insulating cushions 157L, 157R are used.
  • insulating cushions 157L and 157R rubber-based materials such as silicone rubber, isoprene rubber, butadiene rubber, styrene rubber, butyl rubber and ethylene / prolene rubber are used. As long as it has elasticity and is deformed by pressure, it is not limited to rubber-based materials.
  • the insulating cushions 157L and 157R have openings formed corresponding to the positive terminals of the battery cells 101a aligned in the vertical direction.
  • the positive electrode terminal is welded to the terminal contact portion of the connection plate 156L, 156R through the opening.
  • the insulating cushions 157L and 157R are narrowly fitted (supported so as to be sandwiched) in a crushed state by the end face in the vicinity of the positive electrode terminal portion of the battery cell 101a and the inner surface of the connection plates 156L and 156R.
  • a metal cylindrical battery container is used in which one end surface (negative electrode) side is closed and the other end surface (positive electrode) side is open. Therefore, there is a possibility that moisture may infiltrate from the positive electrode side more than the negative electrode side of the battery cell 101a. Therefore, the insulating cushions 157L and 157R are disposed only on the positive electrode side. Furthermore, since the insulating cushions 157L and 157R have elasticity, they have not only waterproofness but also an effect of absorbing external impact.
  • the printed circuit board 158 is attached to, for example, the upper portion of the cell holder 151L by screws.
  • the length of the cell storage portion 152R of the cell holder 151R is shorter than the length of the cell storage portion 152L of the cell holder 151L. If the printed circuit board 158 is fixed across the two cell holders 151L and 151R, the attachment may be unstable, so the printed circuit board 158 is attached to the upper surface of the longer cell storage portion 152L.
  • the MPU 102, the protection circuit 104, and the like described above are mounted on the printed circuit board 158. Furthermore, the battery cell 101a and the printed circuit board 158 are connected via the connection plates 156L and 156R. Furthermore, although not shown, lead wires are led out from the printed circuit board 158, and the lead wires are connected to an output connector (not shown).
  • control unit 102 f sets the first voltage larger than the reference voltage as the discharge termination voltage when the temperature of battery unit 101 is larger than the threshold.
  • control unit 102 f sets the first voltage larger than the reference voltage as the discharge termination voltage when the temperature of battery unit 101 is larger than the threshold.
  • a second voltage smaller than the reference voltage is set as the discharge termination voltage.
  • control unit 102 f determines the degree of deterioration of the battery unit 101 .
  • the control unit 102 f refers to use history information of the battery pack 1 stored in the non-volatile memory 106 to determine whether the degree of deterioration of the battery unit 101 is larger than a predetermined value.
  • control unit 102 f determines the degree of deterioration of battery unit 101 based on at least one of the number of cycles, use time, leaving time, and internal resistance stored in nonvolatile memory 106. By performing the determination based on the use history such as the number of cycles, it is possible to accurately determine the degree of deterioration of the battery unit 101.
  • control unit 102f determines the degree of deterioration of battery unit 101 based on the number of cycles. Specifically, control unit 102 f determines that the degree of deterioration of battery unit 101 is small when the number of cycles is smaller than a threshold (for example, 50 cycles), and when the number of cycles is equal to or higher than the threshold, battery unit 101. It is judged that the degree of deterioration of When the degree of deterioration of the battery unit 101 is determined based on the internal resistance, the control unit 102 f may, for example, determine the internal resistance when the SOC (eg, 50%) and the temperature (eg, 25 ° C.) are reached. Is measured, and it is determined that the degree of deterioration is large when the amount of increase in internal resistance exceeds a threshold.
  • SOC eg, 50%
  • the temperature eg, 25 ° C.
  • the use history information of the battery unit 101 may be stored in a storage unit different from the non-volatile memory 106. For example, it may be stored in a storage unit of an external device different from the battery pack 1. Then, when the MPU 102 communicates with the external device, the battery pack 1 may acquire the usage history information of the battery unit 101 from the external device.
  • the apparatus by the side of the main body with which the battery pack 1 is mounted
  • step ST101 the voltage of the battery cell is measured.
  • the MPU 102 switches the battery cell 101a to be measured by the multiplexer 102a, and the voltage measuring unit 102d measures the voltage of each battery cell.
  • the measurement result is notified from the voltage measurement unit 102 d to the control unit 102 f.
  • Control unit 102 f temporarily stores the voltage measurement result of each battery cell in the RAM or the like. Then, the process proceeds to step ST102.
  • control unit 102f compares the current cycle number of battery unit 101 with a threshold (for example, 50 cycles) with reference to the use history information of battery unit 101 stored in nonvolatile memory 106. . If the comparison shows that the current number of cycles of the battery unit 101 is less than 50 cycles, the process proceeds to step ST103.
  • a threshold for example, 50 cycles
  • control unit 102f determines that the deterioration of the battery unit 101 has not progressed because the degree of deterioration is less than the predetermined level. Then, control unit 102 f sets the discharge end voltage to the rated discharge end voltage (for example, 2.8 V).
  • the rated discharge end voltage is an example of a reference voltage.
  • the rated discharge termination voltage may be a discharge inhibition voltage, but when the discharge inhibition voltage is set, there is a possibility that the continuous use of the battery cell 101a may become difficult. Therefore, it is preferable that the rated discharge end voltage be a voltage with a margin enough to prevent overdischarge from occurring than the discharge inhibition voltage.
  • control unit 102f refers to the measurement result of voltage measurement unit 102d, and the lowest voltage of the plurality of battery cells (hereinafter appropriately referred to as the minimum voltage) is the discharge termination voltage 2.8 V It is judged whether it becomes below. If the lowest voltage is 2.8 V or less, the process proceeds to step ST104.
  • the control unit 102f outputs a discharge stop signal.
  • the discharge stop signal is, for example, a signal indicating that SoC (State of Charge) is 0%. Note that the SoC is set to 0% in order to perform the process of stopping the discharge, and the actual SoC of the battery cell 101a, which is the lowest voltage, is not necessarily 0%. Further, the discharge stop signal may be a signal for stopping the discharge, and may be a signal specified by DoD (depth of discharge) or the like. Then, the process proceeds to step ST105.
  • step ST103 when the lowest voltage is 2.8 V or more, the control unit 102f obtains the SoC of the battery cell 101a that is the lowest voltage, and then outputs a signal indicating the SoC. Then, the process proceeds to step ST105.
  • step ST105 it is determined whether the SoC based on the signal indicating the SoC is 0%. This determination is performed by the FET control unit 102b in the present embodiment. If the SoC is 0%, the process proceeds to step ST106. In step ST106, the FET control unit 102b performs control to turn off at least the discharge control FET 103b to stop the discharge. In the determination process of step ST105, when SoC is not 0%, the process proceeds to step ST107, and the discharge is continued (may be the start of the discharge).
  • step ST102 If it is determined in step ST102 that the number of cycles of the current battery unit 101 is 50 cycles or more, the process proceeds to step ST108.
  • the control unit 102f determines that the deterioration of the battery unit 101 is in progress because the degree of deterioration is equal to or higher than a predetermined level.
  • step ST108 it is determined whether the temperature of the battery unit 101 is less than a threshold (for example, 0 ° C.).
  • the temperature of the battery unit 101 in the present embodiment means, for example, the lowest temperature (hereinafter, appropriately referred to as the minimum temperature) among the temperatures for each battery cell.
  • the temperature of the battery unit 101 may be the entire temperature of the battery unit 101 or an average value of the temperatures of the battery cells.
  • the process proceeds to step ST109. Since the degree of deterioration of the battery unit 101 is large, the control unit 102 f controls the discharge termination voltage to be 3.0 V (first voltage) larger than the rated discharge termination voltage (for example, 2.8 V) in order to suppress the progress of the degradation. Example)). By such control, although the discharge capacity temporarily decreases, deterioration (for example, increase in internal impedance) can be suppressed, and therefore, the battery pack 1 can be used for a long time.
  • the control unit 102 f controls the discharge termination voltage to be 3.0 V (first voltage) larger than the rated discharge termination voltage (for example, 2.8 V) in order to suppress the progress of the degradation. Example)).
  • control unit 102f refers to the measurement result of voltage measurement unit 102d to determine whether the minimum voltage has become 3.0 V or less, which is the discharge termination voltage. If the lowest voltage is 3.0 V or less, the process proceeds to step ST110.
  • step ST110 the control unit 102f outputs a discharge stop signal. Then, the process proceeds to step ST105.
  • step ST109 when the lowest voltage is greater than 3.0 V, the control unit 102f obtains the SoC of the battery cell 101a that is the lowest voltage, and then outputs a signal indicating the SoC. Then, the process proceeds to step ST105.
  • step ST105 it is determined whether SoC is 0%. If the SoC is 0%, the process proceeds to step ST106. In step ST106, the FET control unit 102b performs control to turn off at least the discharge control FET 103b to stop the discharge. In the determination process of step ST105, when SoC is not 0%, the process proceeds to step ST107, and the discharge is continued.
  • step ST108 when the lowest temperature is less than the threshold (for example, 0 ° C.), the process proceeds to step ST111.
  • the threshold for example, 0 ° C.
  • the discharge termination voltage is set to 2.6 V (an example of a second voltage) smaller than the rated discharge termination voltage (for example, 2.8 V).
  • 2.6 V which is an example of the second voltage in the present embodiment, is a preset value, and is stored, for example, in the non-volatile memory 106.
  • 2.6 V is a voltage smaller than the minimum voltage that can be generated by the voltage drop (in the example shown in FIG. 2, around 2.9 V that can be generated by the voltage drop at -20.degree. C.), and at a voltage that can ensure a certain discharge capacity. is there.
  • the lower limit of the low temperature environment in which the battery unit 101 is used is about -20.degree.
  • step ST111 the control unit 102f refers to the measurement result of the voltage measurement unit 102d to determine whether the minimum voltage has become 2.6 V or less, which is the discharge termination voltage. If the lowest voltage becomes 2.6 V or less, the process proceeds to step ST112.
  • step ST112 the control unit 102f outputs a discharge stop signal. Then, the process proceeds to step ST105.
  • step ST111 when the lowest voltage is greater than 2.6 V, the control unit 102f obtains the SoC of the battery cell 101a that is the lowest voltage, and then outputs a signal indicating the SoC. Then, the process proceeds to step ST105.
  • step ST105 it is determined whether SoC is 0%. If the SoC is 0%, the process proceeds to step ST106. In step ST106, the FET control unit 102b performs control to turn off at least the discharge control FET 103b to stop the discharge. In the determination process of step ST105, when SoC is not 0%, the process proceeds to step ST107, and the discharge is continued.
  • the discharge inhibition voltage when the temperature of the battery unit 101 is equal to or higher than the threshold, the discharge inhibition voltage is set smaller than the reference voltage, so that the progress of deterioration of the battery unit 101 is suppressed Can. Further, when the temperature of the battery unit 101 is less than the threshold value, the discharge inhibition voltage is set larger than the reference voltage, so the discharge from the battery pack 1 is stopped by the voltage drop that occurs at the time of discharge It can prevent that it does.
  • Second embodiment> Next, a second embodiment will be described.
  • the second embodiment is partially different from the first embodiment in the process of setting the discharge end voltage.
  • differences from the process of setting the discharge end voltage in the first embodiment will be mainly described.
  • each embodiment is an example, and it is needless to say that partial replacement or combination of the configurations shown in different embodiments is possible.
  • descriptions of matters in common with the first embodiment will be omitted, and only different points will be described. In particular, the same operation and effect by the same configuration will not be sequentially referred to in each embodiment.
  • FIG. 8 is a flowchart showing a flow of processing for setting the discharge end voltage according to the second embodiment.
  • the process of step ST121 is added to the process of setting the discharge end voltage according to the second embodiment. That is, in the determination process of step ST108, when the minimum temperature is less than 0 ° C., the process proceeds to step ST121.
  • step ST121 it is determined whether the remaining capacity of battery cell 101a which is the minimum temperature is smaller than a threshold.
  • SoC is used as the remaining capacity. That is, in step ST121, it is determined whether SoC is smaller than a threshold (for example, 50%). If the SoC of the battery cell 101a is 50% or more, the process proceeds to step ST111. If the SoC of the battery cell 101a is less than 50%, the process proceeds to step ST109.
  • the voltage of the battery cell 101a corresponding to 50% of SoC is about 3.1 V at low temperature (for example, -15.degree. C.).
  • the voltage drop of about 1 V which may occur at low temperature causes the voltage of the battery cell 101a to fall below 2.6 V which is an example of the second voltage. In some cases, it falls below the discharge inhibition voltage. Therefore, when the SoC of the battery cell 101a having the minimum voltage is less than 50%, the process proceeds to step ST109.
  • the control unit 102f outputs a discharge stop signal to stop or not perform the discharge.
  • the process according to the second embodiment described above is preferably performed when the battery unit 101 starts discharging when the battery unit 101 is at the end of discharging.
  • the voltage drop at the start of the discharge can prevent the voltage of the battery unit 101 from falling below the discharge inhibition voltage, thereby protecting the battery unit 101.
  • the SoC of the battery cell 101a which is the minimum temperature, is less than 50% at low temperatures, notification may be made to prompt charging.
  • the third embodiment is an example of an electronic device having the function of the control unit 102f described above.
  • Examples of the electronic device include a smartphone, a personal computer, a wearable device, and a robot device.
  • FIG. 9 is a block diagram showing a configuration example of the electronic device (electronic device 3) according to the third embodiment.
  • the electronic device 3 includes a battery unit 301, a control unit 302, a charge / discharge control circuit 303, and an electronic circuit 304 of the main body of the electronic device 3.
  • the battery unit 301 and the control unit 302 are connected via the connector 311 a and the connector 311 b for connection.
  • the connector 311 a is connected to the positive electrode of the battery unit 301.
  • the connector 311 b is connected to the negative electrode of the battery unit 301.
  • the control unit 302 and the charge and discharge control circuit 303 are connected. Power is supplied between the control unit 302 and the charge / discharge control circuit 303, and communication is enabled.
  • the charge and discharge control circuit 303 and the electronic circuit 304 are connected.
  • the charge / discharge control circuit 303 is configured to be able to supply power from the battery unit 301 to the electronic circuit 304.
  • the battery unit 301 includes, for example, a battery unit 301a and a temperature element 301b.
  • the above-described battery unit 101 can be applied as the battery unit 301a.
  • the above-described temperature element 105 can be applied as the temperature element 301b.
  • the control unit 302 includes, for example, a control unit 305 and a current detection resistor 306.
  • the control unit 305 includes, for example, an analog front end (AFE) 305 a, a CPU 305 b, a RAM 305 c, a ROM 305 d, and an I / O 305 e which is an input / output port.
  • AFE analog front end
  • the current detection resistor 107 described above can be applied as the current detection resistor 306.
  • the analog front end 305a converts analog data relating to the voltage, current, temperature, and the like of the battery unit 301a into digital data.
  • the CPU 305 b has the functions of the current measurement unit 102 c, the voltage measurement unit 102 d, the temperature measurement unit 102 e, the control unit 102 f, and the timer 102 g described above.
  • the RAM 305 c is used as a work memory of the CPU 305 b and stores history information and the like stored in the non-volatile memory 106 described above.
  • the ROM 305 d stores a program to be executed by the CPU 305 b.
  • the I / O 305 e provides an interface between the control unit 302 and the charge / discharge control circuit 303.
  • the charge / discharge control circuit 303 includes the above-described FET control unit 102b, charge control FET 103a, and discharge control FET 103b.
  • the electronic circuit 304 has a configuration corresponding to the electronic device 3.
  • the electronic circuit 304 includes a video processing circuit, an audio processing circuit, a communication circuit, and the like.
  • the operation of the electronic device 3 is substantially the same as that of the above-described battery pack 1 and thus will be described only schematically.
  • the control unit 305 performs the process described in the first embodiment or the second embodiment, and outputs a signal indicating the SoC to the charge / discharge control circuit 303 as a result of the process. If the charge / discharge control circuit 303 indicates that the signal indicating SoC is 0%, that is, if it is a discharge stop signal, control is performed to stop the discharge.
  • the present invention can also be configured as an electronic device having the function of the control unit 102 f.
  • the fourth embodiment is an example in which the above-described battery pack 1 is applied to an electric driver (electric driver 4) which is an example of an electric tool.
  • FIG. 10 is a view showing a configuration example of the electric driver 4.
  • a motor 401 such as a DC motor is accommodated in the main body. The rotation of the motor 401 is transmitted to the shaft 402, and a screw is driven into the object by the shaft 402.
  • the electric driver 4 is provided with a trigger switch 403 operated by the user.
  • the battery pack 1 and the motor control unit 404 described above are housed in the lower case of the handle of the electric driver 4.
  • the motor control unit 404 controls the motor 401.
  • Each part of the motor-driven driver 4 other than the motor 401 may be controlled by the motor control unit 404.
  • the battery pack 1 and the electric driver 4 are engaged by engaging members provided in each of them.
  • the battery pack 1 may be detachable from the electric driver 4.
  • Power is supplied from the battery pack 1 to the motor control unit 404, and communication between the two is enabled.
  • the trigger switch 403 is inserted, for example, between the motor 401 and the motor control unit 404, and when the user presses the trigger switch 403, the electric power from the battery pack 1 is supplied to the motor 401, and the motor 401 rotates. When the user returns the trigger switch 403, the rotation of the motor 401 is stopped.
  • the motor control unit 404 controls, for example, the rotation / stop of the motor 401 and the direction of rotation.
  • the battery pack 1 performs the process described above.
  • the discharge stop signal may be supplied from the battery pack 1 to the motor control unit 404.
  • the motor control unit 404 that has received the discharge stop signal may perform control to invalidate the operation of the trigger switch 403.
  • the present invention can also be configured as an electric power tool having the battery pack 1, more specifically, an electric power tool having the function of the control unit 102f.
  • having the battery pack 1 includes the case where the battery pack 1 is detachable, and it is not necessarily limited to the case where the battery pack 1 is physically fixed (not detachable). The same applies to the other embodiments.
  • the fifth embodiment is an example in which the above-described battery pack 1 is applied to an electric bicycle (electric bicycle 5) which is an example of an electric vehicle.
  • FIG. 11 schematically shows an example of the configuration of the electric bicycle 5.
  • the electric bicycle 5 has an auxiliary drive device 501 that supplies an auxiliary driving force fa.
  • the auxiliary drive device 501 includes a motor 502 that generates an auxiliary driving force fa, a reduction gear 503, a driving unit 504 that outputs the auxiliary driving force fa to the chain 510, and a torque sensor 506 that detects a stepping force fh acting on the pedal 512. And a main body control unit 507.
  • the torque sensor 506 detects the stepping force fh from the torque applied to the crankshaft 505, and for example, a magnetostrictive sensor or the like is used.
  • crankshaft 505 At both ends of the crankshaft 505, left and right pedals 512 to which a pedal effort fh is applied are attached. Further, the rear wheel 511 is interlocked with the crankshaft 505 via a chain 510, and the stepping force fh and the auxiliary driving force fa are transmitted to the rear wheel 511 via the chain 510.
  • the main body control unit 507 is configured by an electric circuit and the like including a microcomputer, and includes a storage unit and the like including a non-volatile memory.
  • the main body control unit 507 controls the motor 502 based on a detection signal that is input from the torque sensor 506 as needed.
  • the battery pack 1 described above is detachably attached to the vehicle body of the electric bicycle 5.
  • the battery pack 1 supplies power to the auxiliary drive device 501 in a state of being attached to the electric bicycle 5. That is, the battery pack 1 supplies power to the motor 502.
  • the power from the battery pack 1 may be used as the light for the electric bicycle 5 and the power for display.
  • Communication is performed between the main body control unit 507 of the auxiliary drive device 501 and the MPU 102 of the battery pack 1.
  • the battery pack 1 performs the same process as the process described above.
  • a signal indicating the SoC output by the control unit 102f of the battery pack 1 may be supplied to the main control unit 507. Then, the discharge of the battery pack 1 may be controlled by the control of the main control unit 507.
  • step ST511 and step ST512 may be added.
  • the control unit 102f of the battery pack 1 transmits a signal indicating SoC to the main control unit 507. Then, in step ST512, a signal indicating the SoC is received by the main control unit 507.
  • step ST105 is performed by the main control unit 507.
  • the main control unit 507 continues the discharge. Also, when the received signal is a discharge stop signal, the main control unit 507 stops the discharge. For example, the main control unit 507 transmits a signal to stop the discharge to the battery pack 1. Control is performed to stop the battery pack 1 receiving the signal.
  • a switch may be provided between the battery pack 1 and the auxiliary drive device 501. Then, the main control unit 507 that has received the discharge stop signal from the battery pack 1 may shut off the power supply path by turning off the switch.
  • the present invention can also be configured as an electric powered vehicle having the battery pack 1, more specifically, an electric powered vehicle having the function of the control unit 102f.
  • the sixth embodiment is an example in which the present invention is applied to a power supply system.
  • FIG. 13 shows a configuration example of a power supply system (power supply system 6) according to the sixth embodiment.
  • the power supply system 6 is, for example, a stationary storage module.
  • the power supply system 6 includes a battery unit 601, a module controller CNT which is an example of a first device, and a main controller ICNT which is an example of a second device.
  • the module controller CNT has a positive electrode terminal 602a and a negative electrode terminal 602b.
  • the positive electrode terminal 602 a is connected to the positive electrode side of the battery unit 601, and the negative electrode terminal 602 b is connected to the negative electrode side of the battery unit 601.
  • the main controller ICNT has a terminal 603a and a terminal 603b.
  • the terminal 603a is connected to the positive electrode terminal 602a of the module controller CNT
  • the terminal 603b is connected to the negative electrode terminal 602b of the module controller CNT.
  • the main controller ICNT has a terminal 604a on the positive electrode side and a terminal 604b on the negative electrode side.
  • one module controller CNT is connected to one main controller ICNT, but a plurality of module controllers are connected to one main controller ICNT. CNTs may be connected.
  • the module controller CNT and the main controller ICNT are connected via a data transmission path (bus), and communication is established between the two.
  • the main controller ICNT carries out management for charge management, discharge management, deterioration control and the like.
  • a serial interface is used as the bus. Specifically, as the serial interface, I 2 C (Inter-Integrated Circuit) method, SM bus (System Management Bus), CAN (Controller Area Network), SPI (Serial Peripheral Interface) Etc. are used.
  • I 2 C Inter-Integrated Circuit
  • SM bus System Management Bus
  • CAN Controller Area Network
  • SPI Serial Peripheral Interface
  • I 2 C communication is used.
  • serial communication is performed with devices connected directly at relatively short distances.
  • Two wires connect one master and one or more slaves.
  • a data signal is transferred on the other line on the basis of the crosstalk transmitted through one line.
  • Each slave has an address, the address is included in the data, and an acknowledge is returned from the receiving side for each byte to transfer data while confirming each other.
  • the main microcontroller unit is the master and the sub microcontroller unit is the slave.
  • Data is transmitted from the module controller CNT to the main controller ICNT.
  • information on the internal state of the battery unit 601 is transmitted from the module controller CNT to the main controller ICNT.
  • the main controller ICNT manages charge processing and discharge processing of the battery unit 601 based on the information.
  • the main controller ICNT may communicate with a higher controller.
  • the battery unit 601 As the battery unit 601, the above-described battery unit 101 can be applied. Of course, the battery unit 601 may be configured to cope with a larger output. In the present embodiment, the battery unit 601 has a configuration in which sixteen battery blocks (B1, B2,... B16) are connected in series. One battery block is configured by connecting, for example, eight cylindrical lithium ion secondary batteries in parallel.
  • the module controller CNT includes, for example, a balance control circuit 610, a multiplexer (MUX) 611, an A / D 612, a monitoring circuit 613, a temperature measurement unit 614, a temperature measurement unit 615, a temperature multiplexer 616, and a current detection resistor.
  • a communication control unit 621 includes a current detection amplifier 618, an A / D 619, a sub micro control unit (SUBMCU) 620 which is an example of a first control unit, and a communication unit 621.
  • SUBMCU sub micro control unit
  • the balance control circuit 610 performs control to equalize the voltage between the battery blocks, so-called balance control.
  • the balance control method is not limited to the passive method, and an active method and various other known methods can be applied.
  • the multiplexer 611 switches channels, for example, in response to a control signal from the sub-micro control unit 620, and selects one analog voltage data out of 16 analog voltage data.
  • One analog voltage data selected by the multiplexer 611 is supplied to the A / D 612.
  • the A / D 612 converts analog voltage data supplied from the multiplexer 611 into digital voltage data and supplies the digital voltage data to the monitoring circuit 613.
  • the monitoring circuit 613 is connected to the A / D 612 and the A / D 619, and supplies digital data supplied from each A / D to the sub micro control unit 620.
  • the temperature measurement unit 614 measures the temperature in units of battery blocks.
  • the temperature measurement unit 615 measures the temperature of the entire battery unit 601.
  • the temperature measurement results by the temperature measurement unit 614 and the temperature measurement unit 615 are appropriately selected by the temperature multiplexer 616, and then supplied to the A / D 612.
  • Analog temperature data is converted to analog digital data by the A / D 612, and the converted analog digital data is supplied to the monitoring circuit 613.
  • the current detection resistor 617 detects the current flowing to the battery unit 601.
  • the current detection amplifier 618 amplifies the analog current data detected by the current detection resistor 617 at a predetermined amplification factor.
  • the amplified analog current data is provided to A / D 619.
  • the A / D 619 converts analog current data into digital current data, and supplies the converted digital current data to the monitoring circuit 613.
  • the sub micro control unit 620 diagnoses the module controller CNT based on the data supplied from the monitoring circuit 613. Further, the sub-micro control unit 620 generates the signal indicating the SoC by performing the same process as the process performed by the control unit 102f described above, and supplies the generated signal to the communication unit 621. In the present embodiment, sub micro control unit 620 performs the same processing as the processing performed by control unit 102 f described above in units of battery blocks.
  • the communication unit 621 has a configuration for performing communication, for example, a configuration including a modulation / demodulation circuit corresponding to a communication method, an error correction circuit, and the like.
  • the communication unit 621 communicates with the main controller ICNT according to the control of the sub-micro control unit 620.
  • the main controller ICNT has a main micro control unit (MAIN MCU) 630 which is an example of a second control unit, a communication unit 631, a regulator 632, a charge control FET 633, and a discharge control FET 634.
  • MAIN MCU main micro control unit
  • the main micro control unit 630 controls each part of the main controller ICNT.
  • the main micro control unit 630 controls on / off of the charge control FET 633 and the discharge control FET 634.
  • the communication unit 631 has a configuration for performing communication, such as a configuration including a modulation / demodulation circuit corresponding to a communication method, an error correction circuit, and the like.
  • the communication unit 631 communicates with the module controller CNT according to the control of the main micro control unit 630.
  • the regulator 632 uses the power supplied from the battery unit 601 to generate an operating voltage for operating the main micro control unit 630.
  • the operating voltage generated by the regulator 632 is supplied to the main micro control unit 630.
  • the main micro control unit 630 receives a discharge stop signal from the module controller CNT via the communication unit 631, the main micro control unit 630 performs control to stop the discharge. Specifically, the main micro control unit 630 turns off the discharge control FET 634.
  • the data of the voltage and temperature of each battery block may be supplied from the module controller CNT to the main controller ICNT. Then, processing similar to the processing performed by the control unit 102f described above may be performed by the main micro control unit 630 that has acquired the voltage and temperature data of each battery block. Then, when it is necessary to stop the discharge, the main micro control unit 630 may turn off the discharge control FET 634. Furthermore, the sub micro control unit 620 and the main micro control unit 630 may perform the same processing as the processing performed by the control unit 102 f. Thus, processing can be continued even if one of the sub micro control unit 620 and the main micro control unit 630 has a problem.
  • the present invention can also be configured as a power supply system having the function of the control unit 102 f.
  • FIG. 14 schematically shows an example of the configuration of a hybrid vehicle adopting a series hybrid system to which the present invention is applied.
  • the series hybrid system is a car that travels by a power drive conversion device using power generated by a generator driven by an engine or power stored in a battery.
  • the hybrid vehicle 7200 includes an engine 7201, a generator 7202, an electric power driving force converter 7203, driving wheels 7204 a, driving wheels 7204 b, wheels 7205 a, wheels 7205 b, batteries 7208, vehicle control devices 7209, various sensors 7210, charging ports 7211. Is mounted.
  • Hybrid vehicle 7200 travels using electric power / driving force conversion device 7203 as a power source.
  • An example of the power driving force converter 7203 is a motor.
  • the electric power driving force converter 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power driving force converter 7203 is transmitted to the driving wheels 7204a and 7204b.
  • DC-AC direct current to alternating current
  • AC to DC conversion AC to DC conversion
  • the power drive conversion device 7203 can be applied to either an alternating current motor or a direct current motor.
  • the various sensors 7210 control the engine speed via the vehicle control device 7209 and control the opening degree (throttle opening degree) of a throttle valve (not shown).
  • the various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational power of the engine 7201 is transmitted to the generator 7202, which can store the power generated by the generator 7202 in the battery 7208.
  • the battery 7208 can be connected to a power supply external to the hybrid vehicle to receive power from the external power supply using the charging port 7211 as an input port, and store the received power.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus there is, for example, an information processing apparatus that displays a battery remaining amount based on information on a battery remaining amount.
  • the present invention is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both drive sources, and the engine alone is used, the motor alone is used, and the engine and motor travel are appropriately switched and used. It is applicable. Furthermore, the present invention can be effectively applied to a so-called electric vehicle which travels by driving only by a drive motor without using an engine.
  • FIG. 15 shows a configuration example of a storage system.
  • electric power is stored via centralized power grid 9002 such as thermal power generation 9002 a, nuclear power generation 9002 b, hydroelectric power generation 9002 c, etc. to power network 9009, information network 9012, smart meter 9007, power hub 9008 etc.
  • the device 9003 is supplied.
  • power is supplied to the power storage device 9003 from an independent power source such as a home power generation device 9004.
  • Power supplied to power storage device 9003 is stored.
  • Power storage device 9003 is used to supply power used in house 9001.
  • the same storage system can be used not only for the house 9001 but also for the building.
  • the house 9001 is provided with a home power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 for controlling each device, a smart meter 9007, and a sensor 9011 for acquiring various information.
  • the respective devices are connected by a power network 9009 and an information network 9012.
  • a solar cell, a fuel cell, or the like is used as the home power generation device 9004, and the generated electric power is supplied to the power consumption device 9005 and / or the power storage device 9003.
  • the power consumption device 9005 is, for example, a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, and a bath 9005d.
  • the power consumption device 9005 includes an electric vehicle 9006.
  • An electric vehicle 9006 is an electric car 9006 a, a hybrid car 9006 b, and an electric bike 9006 c.
  • the smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to the power company.
  • the power grid 9009 may combine one or more of direct current feed, alternating current feed, and non-contact feed.
  • the various sensors 9011 are, for example, a human sensor, an illuminance sensor, an object detection sensor, a power consumption sensor, a vibration sensor, a contact sensor, a temperature sensor, an infrared sensor, and the like.
  • the information acquired by the various sensors 9011 is transmitted to the control device 9010.
  • the control device 9010 can transmit information on the home 9001 to an external power company or the like via the Internet.
  • the power hub 9008 performs processing such as branching of power lines and DC / AC conversion.
  • a communication method of the information network 9012 connected to the control device 9010 a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter: transmission / reception circuit for asynchronous serial communication), Bluetooth (registered trademark), ZigBee (registered trademark)
  • a wireless communication standard such as Wi-Fi (registered trademark).
  • Wi-Fi registered trademark
  • the Bluetooth (registered trademark) system is applied to multimedia communication, and can perform one-to-many connection communication.
  • ZigBee (registered trademark) uses the physical layer of IEEE (Institute of Electrical and Electronics Engineers) 802.15.4.
  • IEEE 802.15.4 is a name of a short distance wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 9010 is connected to an external server 9013.
  • the server 9013 may be managed by any one of a house 9001, a power company, and a service provider.
  • the information transmitted and received by the server 9013 is, for example, power consumption information, life pattern information, power rates, weather information, natural disaster information, and information on power transactions.
  • These pieces of information may be transmitted and received from a home power consumption device (for example, a television receiver), but may be transmitted and received from a device outside the home (for example, a cellular phone or the like).
  • These pieces of information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistants), or the like.
  • a control device 9010 that controls each unit is configured by a CPU, a RAM, a ROM, and the like, and is stored in the power storage device 9003 in this example.
  • Control device 9010 is connected to power storage device 9003, home power generation device 9004, power consumption device 9005, various sensors 9011, server 9013, and information network 9012, and has a function to adjust, for example, the usage amount of commercial power and the power generation amount. have. In addition, it may be provided with the function etc. which trade in the electric power market.
  • the power storage device 9003 generates the power generated by the household power generation device 9004 (solar power generation, wind power generation) as well as the centralized power system 9002 such as the thermal power generation 9002a, the nuclear power generation 9002b, and the hydroelectric power 9002c. It can be stored. Therefore, even if the power generated by the home power generation device 9004 fluctuates, control can be performed such that the amount of power to be transmitted to the outside can be made constant, or the necessary amount of discharge can be performed.
  • the power obtained by solar power generation is stored in power storage device 9003, and late-night power with low charge is stored in power storage device 9003 at night, and the power stored by power storage device 9003 is discharged in the time zone where the charge in the daytime is high. Can also be used.
  • control device 9010 is stored in power storage device 9003
  • it may be stored in smart meter 9007 or may be configured alone.
  • power storage system 9100 may be used for a plurality of households in an apartment house, or may be used for a plurality of detached houses.
  • control unit 102f described above can be applied to, for example, the control device 9010.
  • the second voltage may not be a constant value, but may be variable.
  • the control unit may set the second voltage according to the temperature of the battery unit, and more specifically, occurs when the rated maximum load specified for each temperature of the battery unit is connected.
  • the second voltage may be set with reference to the voltage drop.
  • the second voltage can be set to decrease stepwise as the temperature T of the battery unit decreases. [Table 1] By setting in this manner, it is possible to prevent the voltage from reaching the discharge termination voltage due to the voltage drop at the start of discharge at a low temperature. This control is more effective when the discharge end voltage is set high to suppress deterioration.
  • the second voltage variable it is not necessary to lower the discharge termination voltage more than necessary, so degradation can be more effectively suppressed.
  • the temperature measurement unit 102e measures -15 ° C. as the temperature.
  • the control unit 102 f may set 2.7 V instead of 2.6 V as an example of the second voltage.
  • 2.6 V may be set as the second voltage.
  • the temperature of the battery unit 101 may be periodically measured, and the second voltage may be changed according to the measurement result.
  • the second voltage is set to 3.0 V to deteriorate the battery unit 101. May be suppressed.
  • the second voltage may be set with reference to the voltage drop corresponding to the temperature close to the temperature.
  • information on voltage drops may be stored for each representative temperature, and the voltage drops corresponding to the measured temperature may be determined by interpolating them.
  • the second voltage may be the same voltage as the reference voltage. For example, when the temperature of the battery unit 101 is ⁇ 10 ° C., the voltage after the voltage drop is about 3.4 V (see FIG. 2). Therefore, even if the second voltage is set to the same value as the reference voltage (for example, 2.8 V), the stop of the discharge due to the voltage drop can be prevented and the discharge capacity can be secured.
  • the table corresponding to the graph shown in FIG. 2 may be supplied from the external device different from the battery pack 1 to the battery pack 1 via the network.
  • the second voltage may have the same value as the reference voltage.
  • the charge control FET and the discharge control FET may be connected between the negative electrode side of the battery unit and the negative electrode terminal.
  • the threshold values regarding the temperature, the number of cycles, and the like in the embodiment can be changed as appropriate.
  • the threshold value of the temperature is not limited to 0 ° C., and can be changed as appropriate according to the characteristics of the secondary battery.
  • the degree of deterioration of the battery unit may be determined in multiple stages.
  • Different values may be set as the first voltage in accordance with the degree of progress of the deterioration.
  • the first voltage may be set to increase stepwise as the number of cycles increases. [Table 2]
  • the present invention can also be configured as a control device such as an IC (Integrated Circuit) having only a function executed by the control unit 102 f or an arithmetic device on a cloud server.
  • a control device such as an IC (Integrated Circuit) having only a function executed by the control unit 102 f or an arithmetic device on a cloud server.
  • the functions described in the above-described embodiment can be realized in any form such as a method, a program, a recording medium recording the program, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a control apparatus having a control unit which, when it is determined that the level of deterioration of a battery unit exceeds a predetermined level, sets a first voltage higher than a reference voltage as an end-of-discharge voltage if the temperature of the battery unit is higher than a threshold, and sets the reference voltage or a second voltage lower than the reference voltage as the end-of-discharge voltage if the temperature of the battery unit is lower than or equal to the threshold.

Description

制御装置、制御方法、電池パック、電源システム、電子機器、電動工具及び電動車両CONTROL DEVICE, CONTROL METHOD, BATTERY PACK, POWER SUPPLY SYSTEM, ELECTRONIC DEVICE, ELECTRIC POWER TOOL AND ELECTRIC VEHICLE
 本発明は、制御装置、制御方法、電池パック、電源システム、電子機器、電動工具及び電動車両に関する。 The present invention relates to a control device, a control method, a battery pack, a power supply system, an electronic device, an electric tool, and an electric vehicle.
 リチウムイオン二次電池を始めとする二次電池の分野では、二次電池の劣化が進行した場合に当該劣化の進行を抑制する制御が行われている。例えば、下記特許文献1には、二次電池が劣化した場合に、当該二次電池の放電終止電圧を高くする制御を行う電池パックが記載されている。 In the field of secondary batteries including lithium ion secondary batteries, control is performed to suppress the progress of the deterioration when the deterioration of the secondary battery progresses. For example, Patent Document 1 below describes a battery pack that performs control to increase the discharge end voltage of the secondary battery when the secondary battery is deteriorated.
特開2008-277136号公報JP 2008-277136 A
 しかしながら、特許文献1に記載の制御では、電池部が低温の際に、閉路電圧の低下(以下、電圧ドロップと適宜称する。)により放電終止電圧を早く検出してしまい、その結果、放電容量を確保できなくなるという問題があった。 However, in the control described in Patent Document 1, when the battery unit is at a low temperature, the discharge termination voltage is quickly detected due to the decrease in the closed circuit voltage (hereinafter referred to as voltage drop as appropriate). There was a problem that it could not be secured.
 従って、本発明は、電池部が低温である場合に放電終止電圧を早く検出してしまうことを防止する制御装置、制御方法、電池パック、電源システム、電子機器、電動工具及び電動車両を提供することを目的の一つとする。 Therefore, the present invention provides a control device, a control method, a battery pack, a power supply system, an electronic device, an electric tool, and an electric vehicle, which prevents the discharge end voltage from being detected early when the battery unit is at low temperature. Make one of the goals.
 本発明は、例えば、
 電池部の劣化度合いが所定より大きいと判断される場合に、
 電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
 電池部の温度が閾値以下の場合には、基準電圧又は基準電圧より小さい第2の電圧を放電終止電圧に設定する
 制御部を有する
 制御装置である。
 かかる構成によれば、電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定するので、電池部の劣化の進行を抑制することができる。また、電池部の温度が閾値以下の場合には、基準電圧又は基準電圧より小さい第2の電圧を放電終止電圧に設定するので、電池部が低温である場合に放電終止電圧を早く検出してしまうことを防止することができる。
The present invention is, for example,
When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
It is a control device which has a control part which sets the 2nd voltage smaller than a reference voltage or a reference voltage as discharge final voltage, when the temperature of a battery part is below a threshold.
According to this configuration, when the temperature of the battery unit is higher than the threshold value, the first voltage larger than the reference voltage is set to the discharge termination voltage, so that the progress of the deterioration of the battery unit can be suppressed. In addition, when the temperature of the battery unit is equal to or less than the threshold, the reference voltage or the second voltage smaller than the reference voltage is set to the discharge termination voltage, so that the discharge termination voltage is detected earlier when the battery unit is at a low temperature. Can be prevented.
 第2の電圧が予め設定された電圧でもよい。
 また、第2の電圧は、定格最大負荷が接続された場合に生じる電圧ドロップ後の電圧のうち、最小の電圧よりも小さい電圧でも良い。
 かかる構成によれば、第2の電圧が予め設定されているので、制御部における処理負荷を低減することができる。また、定格最大負荷が接続された場合に生じる電圧ドロップ後の電圧のうち、最小の電圧よりも小さい電圧を第2の電圧として設定することにより、電圧ドロップにより低下した電圧を放電終止電圧として検出してしまうことを確実に防止することができる。
The second voltage may be a preset voltage.
The second voltage may be a voltage smaller than the minimum voltage among the voltages after the voltage drop that occurs when the rated maximum load is connected.
According to this configuration, since the second voltage is set in advance, the processing load on the control unit can be reduced. Also, by setting a voltage smaller than the minimum voltage among the voltages after the voltage drop that occurs when the rated maximum load is connected as the second voltage, the voltage lowered by the voltage drop is detected as the discharge termination voltage It can be reliably prevented that it does.
 制御部は、電池部の温度に応じて第2の電圧を設定しても良い。
 かかる構成によれば、電池部の温度に応じて第2の電圧を適切に設定することができる。
The control unit may set the second voltage in accordance with the temperature of the battery unit.
According to this configuration, the second voltage can be appropriately set in accordance with the temperature of the battery unit.
 制御部は、電池部の温度毎に規定された、最大負荷が接続された場合の電圧ドロップを参照して、第2の電圧を設定しても良い。
 かかる構成によれば、電池部の温度に応じて第2の電圧を適切に設定することができると共に、当該温度において電圧ドロップにより電池部の電圧が瞬間的に低下した場合でも、低下後の電圧を放電終止電圧として検出してしまうことを防止することができる。
The control unit may set the second voltage with reference to a voltage drop defined for each temperature of the battery unit when the maximum load is connected.
According to this configuration, the second voltage can be appropriately set in accordance with the temperature of the battery unit, and even when the voltage of the battery unit instantaneously decreases due to the voltage drop at the temperature, the voltage after the decrease Can be prevented from being detected as the discharge termination voltage.
 電池部の温度が閾値より小さい場合であり、且つ、電池部の残容量が閾値以下の場合には、制御部は、放電終止信号を出力しても良い。
 かかる構成によれば、放電末期において、電圧ドロップが生じた場合に電池部が放電禁止電圧を下回る電圧で放電状態となってしまうことを防止することができる。
If the temperature of the battery unit is smaller than the threshold and the remaining capacity of the battery unit is equal to or less than the threshold, the control unit may output a discharge termination signal.
According to this configuration, it is possible to prevent the battery unit from being in a discharged state at a voltage lower than the discharge inhibition voltage when a voltage drop occurs at the end of discharge.
 制御部は、電池部の電圧が放電終止電圧に達した場合に、放電終止信号を出力しても良い。
 かかる構成によれば、放電を確実に停止させる制御が行われるので、電池部が適用される機器を確実に停止させることができる。
The control unit may output a discharge termination signal when the voltage of the battery unit reaches the discharge termination voltage.
According to this configuration, since the control for reliably stopping the discharge is performed, the device to which the battery unit is applied can be reliably stopped.
 制御部は、電池部の劣化度合いが所定より小さいと判断される場合に、基準電圧を放電終止電圧に設定しても良い。
 かかる構成によれば、電池部の劣化が進行していない場合に基準電圧が放電終止電圧として設定されるので、放電容量を確保することができる。
The control unit may set the reference voltage to the discharge termination voltage when it is determined that the degree of deterioration of the battery unit is smaller than a predetermined level.
According to this configuration, since the reference voltage is set as the discharge termination voltage when the deterioration of the battery unit is not progressing, the discharge capacity can be secured.
 制御部は、記憶部に記憶された電池部の使用履歴情報を参照して電池部の劣化度合いを判断しても良い。
 また、制御部は、電池部の劣化度合いを、サイクル数、使用時間及び放置時間の少なくとも一つに基づいて判断しても良い。
 かかる構成によれば、電池部の劣化度合いを正確に判断することが可能となる。
The control unit may determine the degree of deterioration of the battery unit by referring to the use history information of the battery unit stored in the storage unit.
The control unit may determine the degree of deterioration of the battery unit based on at least one of the number of cycles, the use time, and the leaving time.
According to this configuration, it is possible to accurately determine the degree of deterioration of the battery unit.
 閾値は0℃であっても良い。
 これにより、特に低温時に顕著となる電圧ドロップに対して適切な制御を行うことが可能となる。
The threshold may be 0 ° C.
This makes it possible to perform appropriate control with respect to voltage drops that become noticeable particularly at low temperatures.
 本発明は、
 制御部が、
 電池部の劣化度合いが所定より大きいと判断される場合に、
 電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
 電池部の温度が閾値より小さい場合には、基準電圧又は基準電圧より小さい第2の電圧を放電終止電圧に設定する
 制御方法でも良い。
 また、本発明は、
 電池部と制御部とを有し、
 制御部は、
 電池部の劣化度合いが所定より大きいと判断される場合に、
 電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
 電池部の温度が閾値以下の場合には、基準電圧又は基準電圧より小さい第2の電圧を放電終止電圧に設定する
 電池パックでも良い。
 また、本発明は、
 電池部と、第1の制御部を有する第1の装置と、第2の制御部とを有する第2の装置とを含み、
 第1の制御部及び第2の制御部の少なくとも一方の制御部は、
 電池部の劣化度合いが所定より大きいと判断される場合に、
 電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
 電池部の温度が閾値以下の場合には、基準電圧又は基準電圧より小さい第2の電圧を放電終止電圧に設定する
 電源システムでも良い。
 また、本発明は、
 上述した制御装置を有する電子機器でも良い。
 また、本発明は、
 上述した制御装置を有する電動工具でも良い。
 また、本発明は、
 上述した記載の制御装置を有する電動車両でも良い。
 これらの発明においても、上述した制御装置における作用効果と同様の作用効果が得られる。
The present invention
The control unit
When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
If the temperature of the battery unit is lower than the threshold value, the control method may be such that the second voltage lower than the reference voltage or the reference voltage is set as the discharge termination voltage.
Also, the present invention is
Has a battery unit and a control unit,
The control unit is
When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
If the temperature of the battery unit is equal to or less than the threshold, a battery pack may be used in which the second voltage smaller than the reference voltage or the reference voltage is set as the discharge termination voltage.
Also, the present invention is
A battery unit, a first device having a first control unit, and a second device having a second control unit,
The control unit of at least one of the first control unit and the second control unit is
When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
If the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
If the temperature of the battery unit is below the threshold, a reference voltage or a power supply system may be used in which a second voltage smaller than the reference voltage is set as the discharge termination voltage.
Also, the present invention is
It may be an electronic device having the control device described above.
Also, the present invention is
It may be a power tool having the control device described above.
Also, the present invention is
It may be an electric vehicle having the control device described above.
Also in these inventions, the same action and effect as the action and effect in the control device described above can be obtained.
 本発明の少なくとも一つの実施の形態によれば、電池部が低温である場合に放電終止電圧を早く検出してしまうことを防止することができる。なお、本明細書で例示された効果により本発明の内容が限定して解釈されるものではない。 According to at least one embodiment of the present invention, it is possible to prevent early detection of the discharge end voltage when the battery unit is at a low temperature. It should be noted that the contents of the present invention are not interpreted as being limited by the effects exemplified in the present specification.
図1は、電池部の劣化の進行を抑制するための一手法を説明するための図である。FIG. 1 is a diagram for describing one method for suppressing the progress of the deterioration of the battery unit. 図2は、放電時に生じる電圧ドロップを説明するための図である。FIG. 2 is a diagram for explaining a voltage drop that occurs during discharge. 図3は、第1の実施の形態にかかる電池パックの回路構成例を示す図である。FIG. 3 is a diagram showing an example of a circuit configuration of the battery pack according to the first embodiment. 図4は、実施の形態にかかる電池セルの構成例を示す図である。FIG. 4 is a view showing a configuration example of a battery cell according to the embodiment. 図5は、実施の形態にかかる電池セルが有する巻回電極体の一部を拡大した図である。FIG. 5: is the figure which expanded a part of winding electrode body which the battery cell concerning embodiment has. 図6は、実施の形態にかかる電池部の接続構成例を説明するための図である。FIG. 6 is a diagram for explaining a connection configuration example of the battery unit according to the embodiment. 図7は、第1の実施の形態において、制御部により行われる処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of processing performed by the control unit in the first embodiment. 図8は、第2の実施の形態において、制御部により行われる処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of processing performed by the control unit in the second embodiment. 図9は、第3の実施の形態にかかる電子機器の構成例を示す図である。FIG. 9 is a view showing a configuration example of the electronic device according to the third embodiment. 図10は、第4の実施の形態にかかる電動工具の構成例を示す図である。FIG. 10 is a view showing a configuration example of the power tool according to the fourth embodiment. 図11は、第5の実施の形態にかかる電動自転車の構成例を示す図である。FIG. 11 is a view showing a configuration example of the electric bicycle according to the fifth embodiment. 図12は、第5の実施の形態において行われる処理の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of processing performed in the fifth embodiment. 図13は、第6の実施の形態にかかる電源システムの構成例を示す図である。FIG. 13 is a diagram showing a configuration example of a power supply system according to the sixth embodiment. 図14は、第7の実施の形態にかかる電動車両の構成例を示す図である。FIG. 14 is a diagram showing an example of a configuration of an electrically powered vehicle according to the seventh embodiment. 図15は、第8の実施の形態にかかる蓄電システムの構成例を示す図である。FIG. 15 is a diagram showing an example of configuration of a power storage system according to the eighth embodiment.
 以下、本発明の実施の形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<一般的な技術に関する説明>
<1.第1の実施の形態>
<2.第2の実施の形態>
<3.第3の実施の形態>
<4.第4の実施の形態>
<5.第5の実施の形態>
<6.第6の実施の形態>
<7.第7の実施の形態>
<8.第8の実施の形態>
<9.変形例>
 以下に説明する実施の形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施の形態等に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The description will be made in the following order.
<Description of general technology>
<1. First embodiment>
<2. Second embodiment>
<3. Third embodiment>
<4. Fourth embodiment>
<5. Fifth embodiment>
<6. Sixth embodiment>
<7. Seventh embodiment>
<8. Eighth embodiment>
<9. Modified example>
The embodiments and the like described below are preferable specific examples of the present invention, and the contents of the present invention are not limited to these embodiments and the like.
<一般的な技術に関する説明>
 始めに、本発明の理解を容易とするために、一般的な技術について説明する。二次電池、例えば、リチウムイオン二次電池の放電終止電圧と劣化の進行との間には相関関係があることが知られている。図1は、その相関関係を説明するための図である。図1における横軸はサイクル数を示し、縦軸はリチウムイオン二次電池の内部インピーダンスを示している。なお、充電及び放電を1回ずつ行うことを1サイクルとした。また、図1に示す例では、正極にニッケル系正極材(NCA正極剤)を、負極にシリコンを使用したリチウムイオン二次電池を10セル直列に接続したものにより電池部を構成した。
<Description of general technology>
First, in order to facilitate the understanding of the present invention, general techniques will be described. It is known that there is a correlation between the discharge termination voltage of a secondary battery, for example, a lithium ion secondary battery, and the progress of deterioration. FIG. 1 is a diagram for explaining the correlation. The horizontal axis in FIG. 1 indicates the number of cycles, and the vertical axis indicates the internal impedance of the lithium ion secondary battery. Note that one cycle of charging and discharging was performed. Moreover, in the example shown in FIG. 1, the battery part was comprised by what connected the lithium ion secondary battery which uses a nickel type positive electrode material (NCA positive electrode agent) for a positive electrode, and silicon for 10 cells in series.
 図1に示すように、放電終止電圧を28V(単セル当たり2.8V)より高い値、例えば30V(単セル当たり3.0V)に設定した場合には、サイクル数の増加に対する内部インピーダンスの増加が抑制されている。即ち、放電終止電圧を高くすることにより、電池部の劣化を抑制できることがわかる。 As shown in FIG. 1, when the discharge termination voltage is set to a value higher than 28 V (2.8 V per single cell), for example, 30 V (3.0 V per single cell), the internal impedance increases with the increase in the number of cycles. Is suppressed. That is, it is understood that deterioration of the battery unit can be suppressed by increasing the discharge end voltage.
 一方で、上述したように、電池部が低温の際に、電圧ドロップにより放電終止電圧を早く検出してしまい、その結果、放電容量を確保できなくなるという問題があった。かかる問題について、図2を参照して説明する。 On the other hand, as described above, when the battery unit is at a low temperature, the discharge termination voltage is quickly detected by the voltage drop, and as a result, there is a problem that the discharge capacity can not be secured. Such a problem will be described with reference to FIG.
 図2に示すグラフの横軸は放電容量を示し、縦軸は電圧を示す。グラフにおけるラインL1~L7は、温度毎のリチウムイオン二次電池の放電温度特性を示している。ラインL1は、温度が60℃の場合のリチウムイオン二次電池の放電温度特性を示している。ラインL2は、温度が45℃の場合のリチウムイオン二次電池の放電温度特性を示している。ラインL3は、温度が23℃の場合のリチウムイオン二次電池の放電温度特性を示している。ラインL4は、温度が0℃の場合のリチウムイオン二次電池の放電温度特性を示している。ラインL5は、温度が-10℃の場合のリチウムイオン二次電池の放電温度特性を示している。ラインL6は、温度が-15℃の場合のリチウムイオン二次電池の放電温度特性を示している。ラインL7は、温度が-20℃の場合のリチウムイオン二次電池の放電温度特性を示している。 The horizontal axis of the graph shown in FIG. 2 indicates the discharge capacity, and the vertical axis indicates the voltage. Lines L1 to L7 in the graph indicate the discharge temperature characteristics of the lithium ion secondary battery for each temperature. Line L1 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 60.degree. Line L2 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 45 ° C. Line L3 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 23 ° C. Line L4 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is 0 ° C. Line L5 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is -10 ° C. Line L6 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is -15.degree. Line L7 shows the discharge temperature characteristics of the lithium ion secondary battery when the temperature is -20.degree.
 図2に示すグラフからもわかるように、リチウムイオン二次電池は、低温でハイレート(大電流)放電、例えば定格最大負荷が接続された場合に初期の電圧(例えば、満充電電圧4.2V)から電圧ドロップが大きくなる特性がある。その後、リチウムイオン二次電池の発熱に伴って電池セルの温度が上昇し、電圧が回復する。 As can be seen from the graph shown in FIG. 2, the lithium ion secondary battery is discharged at a low temperature at a high rate (high current), for example, when the rated maximum load is connected, an initial voltage (eg, 4.2 V full charge voltage) There is a characteristic that the voltage drop becomes large. Thereafter, with the heat generation of the lithium ion secondary battery, the temperature of the battery cell rises, and the voltage recovers.
 かかるリチウムイオン二次電池の特性を考慮した場合に、例えば電池部の温度が-20℃のときに電池部の劣化を抑制するために放電終止電圧を3.0Vに設定してしまうと、電圧ドロップによって電池セルの電圧が放電終止電圧3.0Vを下回ってしまう。このため、電池部の容量に余裕がある場合でも放電が行われないという問題が生じる。以上を踏まえ、本発明の実施の形態について詳細に説明する。 In consideration of the characteristics of the lithium ion secondary battery, for example, when the discharge end voltage is set to 3.0 V in order to suppress the deterioration of the battery unit when the temperature of the battery unit is -20.degree. The drop causes the voltage of the battery cell to fall below the discharge termination voltage 3.0 V. For this reason, there arises a problem that discharge is not performed even if there is a margin in the capacity of the battery unit. Based on the above, embodiments of the present invention will be described in detail.
<1.第1の実施の形態>
[電池パックの回路構成例]
 第1の実施の形態は、本発明を電池パックに適用した例である。図3は、第1の実施の形態にかかる電池パック(電池パック1)の回路構成例を示す。電池パック1は、例えば、電池部101と、MPU(Micro Processing Unit)102と、充電制御FET(Field Effect Transistor)103aと、放電制御FET103bと、保護回路104と、サーミスタ等の温度素子105と、不揮発性メモリ106とを有している。電池部101の正極側からは、電力ラインPL1を介して端子t1が導出されている。また、電池部101の負極側からは、電力ラインPL2を介して端子t2が導出されている。
<1. First embodiment>
[Example of circuit configuration of battery pack]
The first embodiment is an example in which the present invention is applied to a battery pack. FIG. 3 shows an example of a circuit configuration of the battery pack (battery pack 1) according to the first embodiment. The battery pack 1 includes, for example, a battery unit 101, an MPU (Micro Processing Unit) 102, a charge control FET (Field Effect Transistor) 103a, a discharge control FET 103b, a protection circuit 104, and a temperature element 105 such as a thermistor. And a non-volatile memory 106. A terminal t1 is derived from the positive electrode side of the battery unit 101 via the power line PL1. Further, a terminal t2 is derived from the negative electrode side of the battery unit 101 via the power line PL2.
 電池部101は、例えば単セル当たりの満充電電圧が4.2Vのリチウムイオン二次電池により構成されている。本実施の形態では、電池部101は、10個の電池セル(電池セル101a)が直列に接続された構成を有しており、満充電電圧は42V程度となる。なお、図2では電池セル101aの図示を簡略化して2個の電池セル101aのみを示している。なお、電池部101の構成は一例に過ぎず、複数の電池セルを並列に接続した構成でも良いし、電池セルが並列に接続されたユニットをさらに直列に接続した直並列接続の構成であっても良い。 The battery unit 101 is configured of, for example, a lithium ion secondary battery having a full charge voltage of 4.2 V per unit cell. In the present embodiment, battery unit 101 has a configuration in which ten battery cells (battery cells 101a) are connected in series, and the full charge voltage is about 42V. In addition, in FIG. 2, illustration of the battery cell 101a is simplified and only the two battery cells 101a are shown. The configuration of the battery unit 101 is merely an example, and a configuration in which a plurality of battery cells are connected in parallel may be used, or a configuration of series-parallel connection in which units in which battery cells are connected in parallel are further connected in series Also good.
 MPU102は、例えば、マルチプレクサ102aと、FET制御部102bと、電流測定部102cと、電圧測定部102dと、温度測定部102eと、制御部102fと、タイマ102gとを有している。 The MPU 102 includes, for example, a multiplexer 102a, an FET control unit 102b, a current measurement unit 102c, a voltage measurement unit 102d, a temperature measurement unit 102e, a control unit 102f, and a timer 102g.
 マルチプレクサ102aは、電圧を測定する対象の電池セル101aを選択する。電池部101全体の電圧が測定対象として選択されても良い。選択した電池セル101aの電圧が電圧測定部102dに供給され、電圧測定部102dによって電圧が検出される。 The multiplexer 102a selects the battery cell 101a whose voltage is to be measured. The voltage of the entire battery unit 101 may be selected as a measurement target. The voltage of the selected battery cell 101a is supplied to the voltage measuring unit 102d, and the voltage is detected by the voltage measuring unit 102d.
 FET制御部102bは、充電制御FET103a及び放電制御FET103bのオン/オフを制御する。 The FET control unit 102b controls on / off of the charge control FET 103a and the discharge control FET 103b.
 電流測定部102cは、例えば電力ラインPL2に設けられた電流検出抵抗107を用いて電池部101に流れる電流を測定する。 The current measuring unit 102c measures the current flowing in the battery unit 101 using, for example, the current detection resistor 107 provided on the power line PL2.
 温度測定部102eは、電池部101の近傍に配置された温度素子105により検出される結果に基づいて、電池部101全体若しくは電池セル毎の温度を検出する。本実施の形態では、温度測定部102eは、電池セル毎の温度を検出可能に構成されている。 The temperature measuring unit 102 e detects the temperature of the entire battery unit 101 or each battery cell based on the result detected by the temperature element 105 disposed in the vicinity of the battery unit 101. In the present embodiment, the temperature measurement unit 102e is configured to be able to detect the temperature of each battery cell.
 制御部102fは、例えばCPU(Central Processing Unit)から構成されており、電池パック1の動作を制御する。制御部102fの具体的な動作については後述する。なお、MPU102は、制御部102fが実行するプログラムが格納されるROM(Read Only Memory)や、制御部102fがプログラムを実行する際のワークメモリとして使用されるRAM(Random Access Memory)を有している。図1では、これらのメモリの図示を省略している。 The control unit 102 f includes, for example, a CPU (Central Processing Unit), and controls the operation of the battery pack 1. The specific operation of the control unit 102 f will be described later. The MPU 102 has a ROM (Read Only Memory) in which a program executed by the control unit 102 f is stored, and a RAM (Random Access Memory) used as a work memory when the control unit 102 f executes a program. There is. In FIG. 1, the illustration of these memories is omitted.
 タイマ102gは、クロック回路等から構成されており、制御部102fが動作するためのクロックを提供する。また、タイマ102gは、計時機能やカウント機能を有する。タイマ102gが有する計時機能等により、電池パック1のサイクル数、使用時間(例えば製造された日からの経過期間)、放置時間(未使用状態が継続した時間)等が計測され、その結果が不揮発性メモリ106に記憶される。 The timer 102g is configured of a clock circuit and the like, and provides a clock for the control unit 102f to operate. The timer 102g also has a clocking function and a counting function. The number of cycles of the battery pack 1, usage time (for example, an elapsed period from the date of manufacture), standing time (time when the unused state continues), etc. are measured by the clock function etc. possessed by the timer 102g. Are stored in the sex memory 106.
 MPU102には、クロック端子t3及びデータ端子t4が接続され、これらの端子を介して、MPU102と電池パック1に接続される外部機器との間で通信が行われる。 The clock terminal t3 and the data terminal t4 are connected to the MPU 102, and communication is performed between the MPU 102 and an external device connected to the battery pack 1 through these terminals.
 充電制御FET103a及び放電制御FET103bのドレイン及びソース間には、それぞれ寄生ダイオード103c及び寄生ダイオード103dが接続されている。寄生ダイオード103cは、充電電流に対して逆方向で、放電電流に対して順方向極性を有する。寄生ダイオード103dは、充電電流に対して順方向で、放電電流に対して逆方向の極性を有する。 A parasitic diode 103c and a parasitic diode 103d are connected between the drain and the source of the charge control FET 103a and the discharge control FET 103b, respectively. The parasitic diode 103c has a forward polarity with respect to the discharge current in the reverse direction with respect to the charge current. The parasitic diode 103d has a forward direction with respect to the charge current and a reverse direction with respect to the discharge current.
 充電制御FET103a及び放電制御FET103bのゲートには、FET制御部102bからの制御信号がそれぞれ供給される。充電制御FET103a及び放電制御FET103bは、例えばPチャンネル型であるので、ソース電位よりも所定値以上低いゲート電位によってオン状態となる。 Control signals from the FET control unit 102b are respectively supplied to the gates of the charge control FET 103a and the discharge control FET 103b. Since the charge control FET 103 a and the discharge control FET 103 b are, for example, P-channel type, they are turned on by the gate potential which is lower by a predetermined value or more than the source potential.
 充放電時には、充電制御FET103a及び放電制御FET103bがオン状態とされる。 At the time of charge and discharge, the charge control FET 103 a and the discharge control FET 103 b are turned on.
 なお、充電制御FET103a及び放電制御FET103bとしてNチャンネル型のFETが用いられてもよい。Nチャンネル型のFETを用いる場合には、充電制御FET103a及び放電制御FET103bがソース電位よりも所定値以上高いゲート電位によってオン状態となる。 An N-channel FET may be used as the charge control FET 103a and the discharge control FET 103b. When an N-channel FET is used, the charge control FET 103a and the discharge control FET 103b are turned on by the gate potential which is higher than the source potential by a predetermined value or more.
 保護回路104は、電池部101若しくは個々の電池セルの電圧を測定し、その測定電圧が所定電圧を越える場合には、ヒューズ104aを溶断する。図1に示す構成では、保護回路104は過電圧時にヒータ抵抗104bに電圧をかけて温度を上昇させることにより、ヒューズ104aを溶断させるものである。保護回路104は、MPU102の制御を受けずにヒューズ104aの溶断を行う。このため、MPU102で何らかの問題が生じ、所定電圧以上となっても充電制御FET103aの制御が行われない場合であっても、電流を遮断することができる。 The protection circuit 104 measures the voltage of the battery unit 101 or individual battery cells, and blows the fuse 104a if the measured voltage exceeds a predetermined voltage. In the configuration shown in FIG. 1, the protective circuit 104 melts the fuse 104a by applying a voltage to the heater resistor 104b to raise the temperature when the overvoltage occurs. The protection circuit 104 blows the fuse 104 a without the control of the MPU 102. Therefore, even if the control of the charge control FET 103 a is not performed even if the MPU 102 has some problem and the voltage exceeds the predetermined voltage, the current can be cut off.
 なお、保護回路104による保護動作とは別に、電池パック1ではMPU102による保護動作が行われる。MPU102は、充電制御FET103a及び放電制御FET103bのそれぞれのゲートに対して制御信号を供給して、充電制御FET103a及び放電制御FET103bのオン/オフを制御することにより、保護動作を行う。これらの保護動作は公知であるので概略的な説明に留める。MPU102は、電圧測定部102dによる測定結果に基づいて、電池部101に過充電や過放電が生じた場合には、充電制御FET103a及び放電制御FET103bを適宜、オン/オフすることにより回路を遮断する。これらの保護動作は、電流測定部102cにより過電流が測定された場合や、温度測定部102eによる測定された温度が閾値より大きい場合等にも行われる。 In addition to the protection operation by the protection circuit 104, in the battery pack 1, the protection operation by the MPU 102 is performed. The MPU 102 supplies a control signal to each gate of the charge control FET 103 a and the discharge control FET 103 b to control the on / off of the charge control FET 103 a and the discharge control FET 103 b to perform a protection operation. These protective actions are known and will only be outlined. The MPU 102 cuts off the circuit by appropriately turning on / off the charge control FET 103 a and the discharge control FET 103 b when the battery unit 101 is overcharged or overdischarged based on the measurement result by the voltage measuring unit 102 d. . These protection operations are performed, for example, when an overcurrent is measured by the current measurement unit 102c or when the temperature measured by the temperature measurement unit 102e is higher than a threshold.
 記憶部の一例である不揮発性メモリ106としては、例えばEEPROM(Electrically Erasable and Programmable Read Only Memory)が用いられる。不揮発性メモリ106には、電池部101の使用履歴に関する使用履歴情報や、図2に示したような電池部101の温度毎の放電温度特性、電池パック1の各種設定値等が記憶されている。 For example, an EEPROM (Electrically Erasable and Programmable Read Only Memory) is used as the non-volatile memory 106 which is an example of the storage unit. The nonvolatile memory 106 stores usage history information on the usage history of the battery unit 101, discharge temperature characteristics for each temperature of the battery unit 101 as shown in FIG. 2, various setting values of the battery pack 1, etc. .
[電池セルについて]
 次に、電池部101を構成する電池セルについて説明する。図4は、電池セル101aの断面構造の一例を示す断面図である。図4に示すように、電池セル101aは、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶131の内部に、帯状の正極141と帯状の負極142とがセパレータ143を介して巻回された巻回電極体140を有している。電池缶131は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶131の内部には、巻回電極体140を挟むように巻回周面に対して垂直に一対の絶縁板132、133がそれぞれ配置されている。
[About battery cell]
Next, a battery cell constituting the battery unit 101 will be described. FIG. 4 is a cross-sectional view showing an example of the cross-sectional structure of the battery cell 101a. As shown in FIG. 4, the battery cell 101 a is a so-called cylindrical type, and a strip-like positive electrode 141 and a strip-like negative electrode 142 are wound inside a substantially hollow cylindrical battery can 131 via a separator 143. It has a wound electrode assembly 140. The battery can 131 is made of, for example, iron (Fe) plated with nickel (Ni), and one end is closed and the other end is opened. Inside the battery can 131, a pair of insulating plates 132 and 133 are respectively disposed perpendicularly to the winding circumferential surface so as to sandwich the winding electrode body 140.
 電池缶131の開放端部には、電池蓋134と、この電池蓋134の内側に設けられた安全弁機構135及び熱感抵抗素子(Positive Temperature Coefficient:PTC素子)136とが、ガスケット137を介してかしめられることにより取り付けられている。かかる構造により電池缶131の内部が密閉されている。電池蓋134は、例えば、電池缶131と同様の材料により構成されている。 At the open end of the battery can 131, a battery cover 134, a safety valve mechanism 135 and a positive temperature coefficient element (PTC element) 136 provided on the inner side of the battery cover 134, through a gasket 137. It is attached by being crimped. The inside of the battery can 131 is sealed by this structure. The battery cover 134 is made of, for example, the same material as the battery can 131.
 安全弁機構135は、熱感抵抗素子136を介して電池蓋134と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板135Aが反転して電池蓋134と巻回電極体140との電気的接続を切断するようになっている。熱感抵抗素子136は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット137は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。 The safety valve mechanism 135 is electrically connected to the battery cover 134 via the thermal resistance element 136, and the disc plate 135A is reversed when the internal pressure of the battery becomes a certain level or more due to internal short circuit or external heating. Then, the electric connection between the battery cover 134 and the winding electrode body 140 is cut off. When the temperature rises, the heat sensitive resistance element 136 limits the current by the increase of the resistance value, and prevents abnormal heat generation due to a large current. The gasket 137 is made of, for example, an insulating material, and asphalt is applied to the surface.
 巻回電極体140は、例えば、センターピン144を中心に巻回されている。巻回電極体140の正極141にはアルミニウム(Al)などよりなる正極リード145が接続されており、負極142にはニッケル(Ni)などよりなる負極リード146が接続されている。正極リード145は、安全弁機構135に溶接されることにより電池蓋134と電気的に接続されている。負極リード146は、電池缶131に溶接され電気的に接続されている。 The wound electrode body 140 is, for example, wound around a center pin 144. A positive electrode lead 145 made of aluminum (Al) or the like is connected to the positive electrode 141 of the wound electrode body 140, and a negative electrode lead 146 made of nickel (Ni) or the like is connected to the negative electrode 142. The positive electrode lead 145 is electrically connected to the battery cover 134 by being welded to the safety valve mechanism 135. The negative electrode lead 146 is welded to the battery can 131 and electrically connected.
 図5は、図4に示した巻回電極体140の一部を拡大して表すものである。 FIG. 5 is an enlarged view of a part of the spirally wound electrode body 140 shown in FIG.
(正極)
 正極141は、例えば、正極集電体141aと、正極集電体141aの両面に設けられた正極活物質層141bとを有している。なお、正極集電体141aの片面のみに正極活物質層141bが存在する領域を有するようにしてもよい。正極集電体141aは、例えば、アルミニウム(Al)箔などの金属箔により構成されている。
(Positive electrode)
The positive electrode 141 includes, for example, a positive electrode current collector 141a and a positive electrode active material layer 141b provided on both sides of the positive electrode current collector 141a. Note that a region in which the positive electrode active material layer 141 b is present may be provided only on one side of the positive electrode current collector 141 a. The positive electrode current collector 141a is made of, for example, a metal foil such as an aluminum (Al) foil.
 正極活物質層141bは、例えば、正極活物質と、繊維状炭素やカーボンブラック等の導電剤と、ポリフッ化ビニリデン(PVdF)等の結着剤とを含む。正極活物質としては、正極活物質は、電極反応物質であるリチウムを吸蔵及び放出することが可能であり、その反応電位が対リチウムで例えば3~4.5Vにある正極材料の何れか1種又は2種以上を含んでいる。このような正極材料としては、例えば、リチウムを含む複合酸化物が挙げられる。具体的には、リチウムと遷移金属との複合酸化物として、層状構造を有するコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)あるいはこれらを含む固溶体(LiNixCoyMnz2;式中、x、y及びzの値はそれぞれ0<x<1,0<y<1,0<z<1,x+y+z=1である。)を用いることができる。 The positive electrode active material layer 141 b contains, for example, a positive electrode active material, a conductive agent such as fibrous carbon and carbon black, and a binder such as polyvinylidene fluoride (PVdF). As the positive electrode active material, the positive electrode active material can occlude and release lithium which is an electrode reactant, and any one of positive electrode materials whose reaction potential is, for example, 3 to 4.5 V versus lithium Or contains two or more. Examples of such positive electrode materials include composite oxides containing lithium. Specifically, a composite oxide of lithium and transition metal, Lithium cobaltate (LiCoO 2) having a layered structure, lithium nickelate (LiNiO 2), or a solid solution containing them (LiNi x Co y Mn z O 2; In the formula, the values of x, y and z can be 0 <x <1, 0 <y <1, 0 <z <1, x + y + z = 1), respectively.
 そして、正極材料として、スピネル構造を有するマンガン酸リチウム(LiMn24)あるいはその固溶体(Li(Mn2-vNiv)O4;式中、vの値はv<2である。)などを用いることもできる。さらに、正極材料として、例えば、オリビン構造を有するリン酸鉄リチウム(LiFePO4)などのリン酸化合物を用いることもできる。なお、正極材料は、上述の材料の他、例えば、酸化チタン、酸化バナジウムあるいは二酸化マンガンなどの酸化物や、二硫化鉄、二硫化チタンあるいは硫化モリブデンなどの二硫化物や、硫黄や、ポリアニリンあるいはポリチオフェンなどの導電性高分子であってもよい。 Then, as a positive electrode material, lithium manganate (LiMn 2 O 4 ) having a spinel structure or a solid solution thereof (Li (Mn 2-v Ni v ) O 4 ; wherein the value of v is v <2) and the like. Can also be used. Furthermore, as the positive electrode material, for example, a phosphoric acid compound such as lithium iron phosphate (LiFePO 4 ) having an olivine structure can also be used. The positive electrode material may be, for example, an oxide such as titanium oxide, vanadium oxide or manganese dioxide, a disulfide such as iron disulfide, titanium disulfide or molybdenum sulfide, sulfur, polyaniline It may be a conductive polymer such as polythiophene.
 導電剤としては、正極活物質に適量混合して導電性を付与できるものであれば特に制限はないが、例えばカーボンブラックあるいはグラファイトなどの炭素材料等が用いられる。結着剤としては、通常この種の電池の正極合剤に用いられている公知の結着剤を用いることができるが、好ましくはポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂が用いられる。 The conductive agent is not particularly limited as long as it can be mixed with a positive electrode active material in an appropriate amount to impart conductivity. For example, a carbon material such as carbon black or graphite is used. As the binder, known binders generally used for positive electrode mixture of this type of battery can be used, and preferably polyvinyl fluoride (PVF), polyvinylidene fluoride (PVdF) and polytetratetra A fluorine-based resin such as fluoroethylene (PTFE) is used.
(負極)
 負極142は、例えば、負極集電体142aと、負極集電体142aの両面に設けられた負極活物質層142bとを有している。なお、負極集電体142aの片面のみに負極活物質層142bが存在する領域を有するようにしてもよい。負極集電体142aは、例えば銅(Cu)箔などの金属箔により構成されている。
(Negative electrode)
The negative electrode 142 includes, for example, a negative electrode current collector 142 a and a negative electrode active material layer 142 b provided on both sides of the negative electrode current collector 142 a. Note that a region in which the negative electrode active material layer 142 b is present may be provided only on one side of the negative electrode current collector 142 a. The negative electrode current collector 142a is made of, for example, a metal foil such as copper (Cu) foil.
 負極活物質層142bは、例えば、負極活物質を含んでおり、必要に応じて導電剤、結着剤あるいは粘度調整剤などの充電に寄与しない他の材料を含んでいてもよい。導電剤としては、黒鉛繊維、金属繊維あるいは金属粉末などが挙げられる。結着剤としては、ポリフッ化ビニリデン(PVdF)などのフッ素系高分子化合物、又はスチレンブタジエンゴム(SBR)あるいはエチレンプロピレンジエンゴム(EPDR)などの合成ゴムなどが挙げられる。 The negative electrode active material layer 142 b contains, for example, a negative electrode active material, and may contain other materials that do not contribute to charging, such as a conductive agent, a binder, or a viscosity modifier, as necessary. The conductive agent may, for example, be a graphite fiber, a metal fiber or a metal powder. Examples of the binder include fluorine-based polymer compounds such as polyvinylidene fluoride (PVdF), and synthetic rubbers such as styrene butadiene rubber (SBR) and ethylene propylene diene rubber (EPDR).
 負極活物質としては、対リチウム金属2.0V以下の電位で電気化学的にリチウム(Li)を吸蔵及び放出することが可能な負極材料の何れか1種又は2種以上を含んで構成されている。 The negative electrode active material includes any one or two or more negative electrode materials capable of electrochemically absorbing and desorbing lithium (Li) electrochemically at a potential of 2.0 V or less of lithium metal. There is.
 リチウム(Li)を吸蔵及び放出することが可能な負極材料としては、例えば、炭素材料、金属化合物、酸化物、硫化物、LiN3などのリチウム窒化物、リチウム金属、リチウムと合金を形成する金属、あるいは高分子材料などが挙げられる。 As a negative electrode material capable of inserting and extracting lithium (Li), for example, carbon materials, metal compounds, oxides, sulfides, lithium nitride such as LiN 3 , lithium metal, metals forming an alloy with lithium And polymeric materials.
 炭素材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素又は易黒鉛化性炭素に分類されるものもある。また、高分子材料としてはポリアセチレンあるいはポリピロールなどが挙げられる。 Examples of the carbon material include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, an organic polymer compound fired body, carbon fiber or activated carbon. Among these, cokes include pitch coke, needle coke, and petroleum coke. An organic polymer compound fired body is a material obtained by firing and carbonizing a polymer material such as a phenol resin or furan resin at an appropriate temperature, and in part, non-graphitizable carbon or graphitizable carbon Some are classified as In addition, examples of the polymer material include polyacetylene and polypyrrole.
 このようなリチウム(Li)を吸蔵及び離脱可能な負極材料のなかでも、充放電電位が比較的リチウム金属に近いものが好ましい。負極142の充放電電位が低いほど電池の高エネルギー密度化が容易となるからである。なかでも炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができるので好ましい。また、難黒鉛化性炭素は、優れたサイクル特性を得ることができるので好ましい。 Among such negative electrode materials capable of inserting and extracting lithium (Li), those having a charge and discharge potential relatively close to lithium metal are preferable. This is because the lower the charge / discharge potential of the negative electrode 142, the easier it is to increase the energy density of the battery. Among them, a carbon material is preferable because the change in the crystal structure occurring during charge and discharge is very small, high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained. In particular, graphite is preferable because it has a large electrochemical equivalent and high energy density can be obtained. In addition, non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
 リチウム(Li)を吸蔵及び離脱可能な負極材料としては、また、リチウム金属単体、リチウム(Li)と合金を形成可能な金属元素あるいは半金属元素の単体、合金又は化合物が挙げられる。これらは高いエネルギー密度を得ることができるので好ましく、特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本明細書において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とからなるものも含める。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうち2種以上が共存するものがある。 Examples of negative electrode materials capable of inserting and extracting lithium (Li) also include simple lithium metals, simple substances, alloys or compounds of metal elements or metalloid elements capable of forming an alloy with lithium (Li). These are preferable because high energy density can be obtained, and in particular, when used together with a carbon material, high energy density can be obtained, and excellent cycle characteristics can be obtained, and thus they are more preferable. In the present specification, in addition to alloys composed of two or more metal elements, alloys include alloys composed of one or more metal elements and one or more metalloid elements. The structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or a mixture of two or more of them.
 このような金属元素あるいは半金属元素としては、例えば、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、カドミウム(Cd)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ジルコニウム(Zr)、イットリウム(Y)又はハフニウム(Hf)が挙げられる。これらの合金あるいは化合物としては、例えば、化学式MafMbgLih、あるいは化学式MasMctMduで表されるものが挙げられる。これら化学式において、Maはリチウムと合金を形成可能な金属元素及び半金属元素のうちの少なくとも1種を表し、Mbはリチウム及びMa以外の金属元素及び半金属元素のうちの少なくとも1種を表し、Mcは非金属元素の少なくとも1種を表し、MdはMa以外の金属元素及び半金属元素のうちの少なくとも1種を表す。また、f、g、h、s、t及びuの値はそれぞれf>0、g≧0、h≧0、s>0、t>0、u≧0である。 As such a metal element or semimetal element, for example, tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y) or hafnium (Hf) is mentioned. Examples of these alloys or compounds include those represented by the chemical formula Ma f M b g Li h or the chemical formula Ma s Mc t M d u . In these chemical formulas, Ma represents at least one of metal elements and metalloid elements capable of forming an alloy with lithium, and Mb represents at least one of metal elements and metalloid elements other than lithium and Ma, Mc represents at least one nonmetal element, and Md represents at least one metal element other than Ma and a metalloid element. The values of f, g, h, s, t and u are f> 0, g ≧ 0, h ≧ 0, s> 0, t> 0 and u 、 0, respectively.
 なかでも、短周期型周期表における4B族の金属元素あるいは半金属元素の単体、合金又は化合物が好ましく、特に好ましいのはケイ素(Si)あるいはスズ(Sn)、又はこれらの合金あるいは化合物である。これらは結晶質のものでもアモルファスのものでもよい。 Among them, simple substances, alloys or compounds of Group 4B metal elements or metalloid elements in the short period periodic table are preferable, and silicon (Si) or tin (Sn), or alloys or compounds thereof are particularly preferable. These may be crystalline or amorphous.
 リチウムを吸蔵・放出可能な負極材料としては、さらに、酸化物、硫化物、あるいはLiN3などのリチウム窒化物などの他の金属化合物が挙げられる。酸化物としては、MnO2、V25及びV613などが挙げられる。その他、比較的電位が卑でリチウムを吸蔵及び放出することが可能な酸化物として、例えば酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズなどが挙げられる。硫化物としてはNiS、MoSなどが挙げられる。 Examples of the negative electrode material capable of storing and releasing lithium further include oxides, sulfides, and other metal compounds such as lithium nitride such as LiN 3 . Examples of the oxide include MnO 2 , V 2 O 5 and V 6 O 13 . In addition, as an oxide capable of absorbing and releasing lithium with a relatively low potential, for example, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide and the like can be mentioned. Examples of sulfides include NiS and MoS.
(セパレータ)
 セパレータ143としては、例えば、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム、合成樹脂製不織布などを用いることができる。セパレータ143には、液状の電解質である非水電解液が含浸されている。
(Separator)
As the separator 143, for example, a polyethylene porous film, a polypropylene porous film, a synthetic resin non-woven fabric, or the like can be used. The separator 143 is impregnated with a non-aqueous electrolytic solution which is a liquid electrolyte.
(非水電解液)
 非水電解液は、液状の溶媒、例えば有機溶媒などの非水溶媒と、この非水溶媒に溶解された電解質塩とを含むものである。
(Non-aqueous electrolyte)
The non-aqueous electrolyte contains a liquid solvent, for example, a non-aqueous solvent such as an organic solvent, and an electrolyte salt dissolved in the non-aqueous solvent.
 非水溶媒は、例えば、エチレンカーボネート(EC)及びプロピレンカーボネート(PC)などの環状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。サイクル特性を向上させることができるからである。特に、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)とを混合して含むようにすれば、よりサイクル特性を向上させることができるので好ましい。 The non-aqueous solvent preferably contains, for example, at least one of cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). It is because cycle characteristics can be improved. In particular, a mixture of ethylene carbonate (EC) and propylene carbonate (PC) is preferable because cycle characteristics can be further improved.
 非水溶媒は、また、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)あるいはメチルプロピルカーボネート(MPC)などの鎖状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。サイクル特性をより向上させることができるからである。 The non-aqueous solvent may also contain at least one of linear carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) or methyl propyl carbonate (MPC). preferable. It is because cycle characteristics can be further improved.
 非水溶媒は、さらに、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、これら化合物の水素基の一部又は全部をフッ素基で置換したもの、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどの何れか1種又は2種以上を含んでいてもよい。 Non-aqueous solvents further include butylene carbonate, γ-butyrolactone, γ-valerolactone, those in which some or all of the hydrogen groups of these compounds are substituted with fluorine, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran 1,3-dioxolane, 4-methyl-1,3-dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide One or more of N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, trimethyl phosphate and the like may be contained.
 組み合わせる電極によっては、上記非水溶媒群に含まれる物質の水素原子の一部又は全部をフッ素原子で置換したものを用いることにより、電極反応の可逆性が向上する場合がある。従って、これらの物質を適宜用いることも可能である。 Depending on the electrode to be combined, the reversibility of the electrode reaction may be improved by using a substance contained in the non-aqueous solvent group in which a part or all of the hydrogen atoms are replaced with a fluorine atom. Therefore, these substances can also be used appropriately.
 電解質塩としては、リチウム塩を用いることができる。リチウム塩としては、例えば、リチウム塩としては、例えば六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化アンチモン酸リチウム(LiSbF6)、過塩素酸リチウム(LiClO4)、四塩化アルミニウム酸リチウム(LiAlCl4)などの無機リチウム塩や、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(CF3SO22)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiN(C25SO22)、及びリチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3SO23)などのパーフルオロアルカンスルホン酸誘導体などが挙げられ、これらを1種単独で又は2種以上を組み合わせて使用することも可能である。中でも、六フッ化リン酸リチウム(LiPF6)は、高いイオン伝導性を得ることができると共に、サイクル特性を向上させることができるので好ましい。 A lithium salt can be used as the electrolyte salt. As a lithium salt, for example, as a lithium salt, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), antimony hexafluoride Inorganic lithium salts such as lithium phosphate (LiSbF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethanesulfonyl) ) Imide (LiN (CF 3 SO 2 ) 2 ), lithium bis (pentafluoroethane sulfonyl) imide (LiN (C 2 F 5 SO 2 ) 2 ), and lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 2) 3) perfluoroalkane sulfonic acid derivatives, such as Etc. can be mentioned, it is also possible to use a combination of these singly or two or more. Among them, lithium hexafluorophosphate (LiPF 6 ) is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
 一方、非水電解液の変わりに固体電解質を用いるようにしてもよい。固体電解質としては、リチウムイオン導電性を有する材料であれば無機固体電解質及び高分子固体電解質のいずれも用いることができる。無機固体電解質としては、窒化リチウム(Li3N)、よう化リチウム(LiI)等が挙げられる。高分子固体電解質は電解質塩と、電解質塩を溶解する高分子化合物とからなり、その高分子化合物はポリ(エチレンオキサイド)や同架橋体などのエーテル系高分子、ポリ(メタクリレート)エステル系、アクリレート系などを単独あるいは分子中に共重合、又は混合して用いることができる。 On the other hand, a solid electrolyte may be used instead of the non-aqueous electrolyte. As the solid electrolyte, any of inorganic solid electrolyte and polymer solid electrolyte can be used as long as it is a material having lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride (Li 3 N) and lithium iodide (LiI). The solid polymer electrolyte is composed of an electrolyte salt and a polymer compound which dissolves the electrolyte salt, and the polymer compound is an ether polymer such as poly (ethylene oxide) or the crosslinked product, poly (methacrylate) ester type, acrylate The system and the like can be used alone or in combination in the molecule or mixed.
 さらに、ゲル状電解質を用いてもよい。ゲル状電解質のマトリクスポリマとしては、上述の非水電解液を吸収してゲル化するものであれば種々の高分子が利用できる。例えば、ポリビニリデンフルオロライドや、ビニリデンフルオロライドとヘキサフルオロプロピレンとの共重合体などのフッ素系高分子、ポリエチレンオキサイドや同架橋体などのエーテル系高分子、またポリアクリロニトリルなどを使用できる。特に酸化還元安定性から、フッ素系高分子を用いることが望ましい。電解質塩を含有させることによりイオン導電性を付与する。 Furthermore, a gel electrolyte may be used. As the matrix polymer of the gel electrolyte, various polymers can be used as long as they absorb and gel the above-mentioned non-aqueous electrolyte. For example, fluorine-based polymers such as polyvinylidene fluoride, copolymers of vinylidene fluoride and hexafluoropropylene, ether-based polymers such as polyethylene oxide and cross-linked polymers, and polyacrylonitrile can be used. In particular, from the viewpoint of redox stability, it is desirable to use a fluorinated polymer. Ion conductivity is imparted by containing an electrolyte salt.
(電池セルの作製方法)
 この電池セルは、例えば以下に説明するようにして製造することができる。
(Method of making battery cell)
This battery cell can be manufactured, for example, as described below.
(正極の製造方法)
 例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチルピロリドンなどの溶剤に分散させて正極合剤スラリーとする。続いて、この正極合剤スラリーを正極集電体141aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して正極活物質層141bを形成し、正極141を作製する。
(Method of manufacturing positive electrode)
For example, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to form a positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is applied to the positive electrode current collector 141a and dried, and then compression molding is performed using a roll press machine or the like to form the positive electrode active material layer 141b, whereby the positive electrode 141 is produced.
(負極の製造方法)
 また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチルピロリドンなどの溶剤に分散させて負極合剤スラリーとする。続いて、この負極合剤スラリーを負極集電体142aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して負極活物質層142bを形成し、負極142を作製する。
(Method of manufacturing negative electrode)
Also, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to the negative electrode current collector 142a and dried, and then compression molded using a roll press machine or the like to form the negative electrode active material layer 142b, whereby the negative electrode 142 is fabricated.
(電池セルの組み立て)
 次いで、正極集電体141aに正極リード145を溶接などにより取り付けると共に、負極集電体142aに負極リード146を溶接などにより取り付ける。その後、正極141と負極142とをセパレータ143を介して巻回し、正極リード145の先端部を安全弁機構45に溶接する。そして、負極リード146の先端部を電池缶131に溶接して、巻回した正極141及び負極142を一対の絶縁板132、133で挟んだ後に電池缶131の内部に収納する。
(Assembly of battery cell)
Next, the positive electrode lead 145 is attached to the positive electrode current collector 141a by welding or the like, and the negative electrode lead 146 is attached to the negative electrode current collector 142a by welding or the like. Thereafter, the positive electrode 141 and the negative electrode 142 are wound via the separator 143, and the tip of the positive electrode lead 145 is welded to the safety valve mechanism 45. Then, the tip of the negative electrode lead 146 is welded to the battery can 131, and the wound positive electrode 141 and negative electrode 142 are sandwiched by the pair of insulating plates 132 and 133 and then housed inside the battery can 131.
 正極141及び負極142を電池缶131の内部に収納したのち、上述した電解液を電池缶131の内部に注入し、セパレータ143に含浸させる。そののち、電池缶131の開口端部に電池蓋134、安全弁機構135及び熱感抵抗素子136を、ガスケット137を介してかしめることにより固定する。以上により、電池セル101aを製造できる。 After the positive electrode 141 and the negative electrode 142 are accommodated in the battery can 131, the above-described electrolytic solution is injected into the battery can 131 and impregnated in the separator 143. After that, the battery cover 134, the safety valve mechanism 135 and the heat sensitive resistance element 136 are fixed to the open end of the battery can 131 by caulking through the gasket 137. Thus, the battery cell 101a can be manufactured.
[電池パックの全体構成例]
 図6は、電池部101の全体的構成を説明するための分解斜視図である。上述したように、電池セルとして、円筒形状のリチウムイオン二次電池が使用される。複数の電池セル101aがセルホルダ151L及び151Rによって保持される。
[Example of Overall Configuration of Battery Pack]
FIG. 6 is an exploded perspective view for explaining the overall configuration of the battery unit 101. As shown in FIG. As described above, a cylindrical lithium ion secondary battery is used as the battery cell. The plurality of battery cells 101a are held by the cell holders 151L and 151R.
 セルホルダ151L、151Rは、それぞれ収納する電池セルの個数以上の円筒状のセル収納部152L、152Rがベース部としてのベース部153L、153Rから突出するように形成されている。セルホルダ151L、151Rは、樹脂成型品であり、セル収納部152L、152R及びベース部153L、153Rが一体に構成されている。 The cell holders 151L and 151R are formed such that cylindrical cell storage portions 152L and 152R each having a number equal to or more than the number of battery cells to be stored respectively protrude from the base portions 153L and 153R as base portions. The cell holders 151L and 151R are resin molded products, and the cell storage portions 152L and 152R and the base portions 153L and 153R are integrally configured.
 セルホルダ151L、151Rの材料としては、例えば、プラスチックなどの絶縁材料が挙げられる。セルホルダ151L、151Rの材料は、金属粉又は炭素を含有し、熱伝導性が高い熱伝導性材料でもよい。このような材料を使用することにより、電池セル101aからの発熱を効率よく外部に放熱できる。セルホルダ151L、151Rの材料は、ガラス繊維又は炭素繊維を含有し、機械的強度に優れる強化プラスチックでもよい。このような材料を使用することにより、外部からの衝撃に対するセルホルダ151L、151Rの機械的な強度を高めることができる。 As a material of cell holder 151L, 151R, insulating materials, such as a plastic, are mentioned, for example. The material of the cell holders 151L and 151R may be a thermally conductive material containing metal powder or carbon and having high thermal conductivity. By using such a material, the heat generation from the battery cell 101a can be efficiently dissipated to the outside. The material of the cell holders 151L and 151R may be a reinforced plastic containing glass fiber or carbon fiber and having excellent mechanical strength. By using such a material, the mechanical strength of the cell holders 151L and 151R can be enhanced against external impact.
 セル収納部152L、152Rは、同様な形状とされており、セルホルダ151L、151Rを対向させたときに、セル収納部152L、152Rの対応するものの開口が一致するようになされる。セル収納部152L、152Rは、電池セル101aを収納するのに必要な径と深さとを有している。即ち、セル収納部152L、152Rの内部空間の合計の長さは、電池セル101aの高さとほぼ等しいものとされる。セル収納部152L、152Rに電池セル101aを収納した状態で、対向するセルホルダ151L、151Rがネジ155によって保持される。 The cell storage portions 152L and 152R have the same shape, and when the cell holders 151L and 151R face each other, the openings of the corresponding ones of the cell storage portions 152L and 152R coincide with each other. The cell storage portions 152L, 152R have a diameter and a depth necessary to store the battery cell 101a. That is, the total length of the internal spaces of the cell storage portions 152L, 152R is substantially equal to the height of the battery cell 101a. In a state in which the battery cells 101a are stored in the cell storage portions 152L and 152R, the opposing cell holders 151L and 151R are held by the screws 155.
 セルホルダ151L、151Rを使用することで電池セル間を確実に絶縁できる。このため、貼り付け位置のずれが生じやすい絶縁テープ等を使用する従来の構造に比べて、高い安全性を得ることができる。さらに、セルホルダ151L、151Rのセル収納部152L、152Rに電池セル101aが安定して固定されるため、外部からの衝撃によって電池セル101aの位置がずれてしまうことを防止できる。 By using the cell holders 151L, 151R, the battery cells can be reliably insulated. For this reason, high safety can be obtained as compared with the conventional structure using an insulating tape or the like in which the displacement of the affixing position is likely to occur. Furthermore, since the battery cell 101a is stably fixed to the cell storage portions 152L and 152R of the cell holders 151L and 151R, it is possible to prevent the position of the battery cell 101a from being shifted due to an external impact.
 セルホルダ151L、151Rのベース部153L、153Rには、セル収納部152L、152Rと連通する円形の開口が形成されている。開口を通じて電池セル101aの正極端子又は負極端子が露出している。電池セル101aの端子に対して接続板156L、156Rが溶着されて、複数の電池セル101aの接続関係が規定される。セルホルダ151L、151Rは、分割された接続板156L、156Rのそれぞれの設置位置を規定するリブを有する。接続板156L、156Rは、導電性が優れ、電池セル101aの端子部との溶接性が良好な材料からなる。 In the base portions 153L and 153R of the cell holders 151L and 151R, circular openings communicating with the cell storage portions 152L and 152R are formed. The positive electrode terminal or the negative electrode terminal of the battery cell 101a is exposed through the opening. The connection plates 156L and 156R are welded to the terminals of the battery cell 101a, and the connection relationship of the plurality of battery cells 101a is defined. The cell holders 151L, 151R have ribs that define the installation positions of the divided connection plates 156L, 156R. The connection plates 156L and 156R are made of a material having excellent conductivity and good weldability with the terminal portion of the battery cell 101a.
 電池セル101aの電極と接続板156L、156Rの接続のために、例えば、抵抗溶接、レーザ溶接等が使用される。本実施の形態では、板状の接続板156L、156Rを使用しているが、板状のものに限らず、帯状の金属板を複数使用しても良い。 For example, resistance welding, laser welding, or the like is used to connect the electrodes of the battery cell 101a and the connection plates 156L and 156R. Although plate- like connection plates 156L and 156R are used in the present embodiment, the invention is not limited to plate-like ones, and a plurality of strip-like metal plates may be used.
 セルホルダ151L、151Rに収納された電池セル101aを接続板156L、156Rと溶着する場合、複数の絶縁クッション157L、157Rが使用される。絶縁クッション157L、157Rは、シリコーンゴム、イソプレンゴム、ブタジエンゴム、スチレンゴム、ブチルゴム、エチレン・プロレンゴムなどのゴム系材料が使用される。弾性を有し、圧力によって変形するものであれば、ゴム系材料に限られることはない。 When the battery cells 101a housed in the cell holders 151L, 151R are welded to the connection plates 156L, 156R, a plurality of insulating cushions 157L, 157R are used. As the insulating cushions 157L and 157R, rubber-based materials such as silicone rubber, isoprene rubber, butadiene rubber, styrene rubber, butyl rubber and ethylene / prolene rubber are used. As long as it has elasticity and is deformed by pressure, it is not limited to rubber-based materials.
 絶縁クッション157L、157Rは、電池セル101aの集合体において、縦方向に並ぶ電池セル101aの正極端子と対応して開口が形成されたものである。開口を通じて正極端子が接続板156L、156Rの端子接触部と溶着される。絶縁クッション157L、157Rは、電池セル101aの正極端子部付近の端面と接続板156L、156Rの内面とによって、押し潰された状態で狭着(挟みこまれるようにして支持される)される。 In the assembly of the battery cells 101a, the insulating cushions 157L and 157R have openings formed corresponding to the positive terminals of the battery cells 101a aligned in the vertical direction. The positive electrode terminal is welded to the terminal contact portion of the connection plate 156L, 156R through the opening. The insulating cushions 157L and 157R are narrowly fitted (supported so as to be sandwiched) in a crushed state by the end face in the vicinity of the positive electrode terminal portion of the battery cell 101a and the inner surface of the connection plates 156L and 156R.
 上述した電池セル101aの構造では、一端面(負極)側が閉塞され、他端面(正極)側が開放されている金属の円筒状の電池容器が使用される。従って、電池セル101aの負極側よりも正極側から水分が浸入する虞がある。このため、絶縁クッション157L、157Rは、正極側にのみ配されている。さらに、絶縁クッション157L、157Rは弾性を有するので、防水性だけでなく、外部からの衝撃を吸収する効果も有する。 In the structure of the battery cell 101a described above, a metal cylindrical battery container is used in which one end surface (negative electrode) side is closed and the other end surface (positive electrode) side is open. Therefore, there is a possibility that moisture may infiltrate from the positive electrode side more than the negative electrode side of the battery cell 101a. Therefore, the insulating cushions 157L and 157R are disposed only on the positive electrode side. Furthermore, since the insulating cushions 157L and 157R have elasticity, they have not only waterproofness but also an effect of absorbing external impact.
 電池セル101a、セルホルダ151L、151R、接続板156L、156R及び絶縁クッション157L、157Rを組み立てた状態で、プリント基板158がセルホルダ151Lの例えば上部にネジによって取り付けられる。本実施の形態では、セルホルダ151Lのセル収納部152Lの長さに比してセルホルダ151Rのセル収納部152Rの長さが短いものとされている。プリント基板158を二つのセルホルダ151L、151Rに跨がって固定すると、取り付けが不安定となるおそれがあるので、より長いセル収納部152Lの上面に対してプリント基板158が取り付けられる。 With the battery cells 101a, the cell holders 151L and 151R, the connection plates 156L and 156R, and the insulating cushions 157L and 157R assembled, the printed circuit board 158 is attached to, for example, the upper portion of the cell holder 151L by screws. In the present embodiment, the length of the cell storage portion 152R of the cell holder 151R is shorter than the length of the cell storage portion 152L of the cell holder 151L. If the printed circuit board 158 is fixed across the two cell holders 151L and 151R, the attachment may be unstable, so the printed circuit board 158 is attached to the upper surface of the longer cell storage portion 152L.
 プリント基板158には、上述したMPU102、保護回路104等が実装されている。さらに、電池セル101aとプリント基板158とは、接続板156L、156Rを介して接続される。さらに、図示しないがプリント基板158からリード線が導出され、リード線が出力コネクタ(図示しない)に接続されている。 The MPU 102, the protection circuit 104, and the like described above are mounted on the printed circuit board 158. Furthermore, the battery cell 101a and the printed circuit board 158 are connected via the connection plates 156L and 156R. Furthermore, although not shown, lead wires are led out from the printed circuit board 158, and the lead wires are connected to an output connector (not shown).
[制御部が実行する処理]
 次に、電池パック1の制御部102fが実行する処理について説明する。制御部102fは、概略、電池部101の劣化度合いが所定より大きいと判断される場合に、電池部101の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、電池部101の温度が閾値より小さい場合には、基準電圧より小さい第2の電圧を放電終止電圧に設定する。
[Process executed by control unit]
Next, a process performed by the control unit 102 f of the battery pack 1 will be described. In general, when it is determined that the degree of deterioration of battery unit 101 is larger than the predetermined value, control unit 102 f sets the first voltage larger than the reference voltage as the discharge termination voltage when the temperature of battery unit 101 is larger than the threshold. When the temperature of the battery unit 101 is smaller than the threshold, a second voltage smaller than the reference voltage is set as the discharge termination voltage.
(電池部の劣化度合いを判断する処理)
 始めに、制御部102fが電池部101の劣化度合いを判断する処理について説明する。制御部102fは、例えば、不揮発性メモリ106に格納される電池パック1の使用履歴情報を参照して電池部101の劣化度合いが所定より大きいか否かを判断する。具体的には、制御部102fは、不揮発性メモリ106に記憶されるサイクル数、使用時間、放置時間及び内部抵抗の少なくとも一つに基づいて、電池部101の劣化度合いを判断する。サイクル数等の使用履歴に基づく判断を行うことにより、電池部101の劣化度合いを正確に判断することが可能となる。
(Process to determine the degree of deterioration of the battery unit)
First, processing in which the control unit 102 f determines the degree of deterioration of the battery unit 101 will be described. For example, the control unit 102 f refers to use history information of the battery pack 1 stored in the non-volatile memory 106 to determine whether the degree of deterioration of the battery unit 101 is larger than a predetermined value. Specifically, control unit 102 f determines the degree of deterioration of battery unit 101 based on at least one of the number of cycles, use time, leaving time, and internal resistance stored in nonvolatile memory 106. By performing the determination based on the use history such as the number of cycles, it is possible to accurately determine the degree of deterioration of the battery unit 101.
 本実施の形態では、制御部102fは、サイクル数に基づいて電池部101の劣化度合いを判断する。具体的には、制御部102fは、サイクル数が閾値(例えば50サイクル)より小さい場合には電池部101の劣化度合いが小さいと判断し、サイクル数が閾値以上である場合には、電池部101の劣化度合いが大きいと判断する。なお、内部抵抗に基づいて電池部101の劣化度合いを判断する場合は、制御部102fは、例えば、一定のSOC(例えば50%)と一定の温度(例えば25℃)になったときに内部抵抗を測定し、内部抵抗の増加量が閾値を超えた場合に劣化度合いが大きいと判断する。 In the present embodiment, control unit 102f determines the degree of deterioration of battery unit 101 based on the number of cycles. Specifically, control unit 102 f determines that the degree of deterioration of battery unit 101 is small when the number of cycles is smaller than a threshold (for example, 50 cycles), and when the number of cycles is equal to or higher than the threshold, battery unit 101. It is judged that the degree of deterioration of When the degree of deterioration of the battery unit 101 is determined based on the internal resistance, the control unit 102 f may, for example, determine the internal resistance when the SOC (eg, 50%) and the temperature (eg, 25 ° C.) are reached. Is measured, and it is determined that the degree of deterioration is large when the amount of increase in internal resistance exceeds a threshold.
 なお、電池部101の使用履歴情報は、不揮発性メモリ106とは異なる記憶部に記憶されていても良い。例えば、電池パック1とは異なる外部装置が有する記憶部に記憶されていても良い。そして、MPU102が当該外部装置と通信を行うことにより、電池部101の使用履歴情報を電池パック1が外部機器から取得するようにしても良い。外部装置としては、電池パック1が装着される本体側の機器やクラウドサーバを例示することができる。 The use history information of the battery unit 101 may be stored in a storage unit different from the non-volatile memory 106. For example, it may be stored in a storage unit of an external device different from the battery pack 1. Then, when the MPU 102 communicates with the external device, the battery pack 1 may acquire the usage history information of the battery unit 101 from the external device. As an external device, the apparatus by the side of the main body with which the battery pack 1 is mounted | worn, and a cloud server can be illustrated.
(放電終止電圧を設定する処理)
 次に、制御部102fが行う放電終止電圧を設定する処理の一例について、図7のフローチャートを参照して説明する。放電禁止電圧を設定する処理は、例えば、タイマ102gの計測時間に基づいて周期的に行われる。
(Process to set the discharge end voltage)
Next, an example of processing for setting the discharge termination voltage performed by the control unit 102 f will be described with reference to the flowchart in FIG. 7. The process of setting the discharge inhibition voltage is periodically performed based on, for example, the measurement time of the timer 102g.
 ステップST101では、電池セルの電圧が測定される。例えば、MPU102がマルチプレクサ102aによって測定対象の電池セル101aを切り替え、各電池セルの電圧を電圧測定部102dが測定する。電圧測定部102dから制御部102fに対して測定結果が通知される。制御部102fは、各電池セルの電圧測定結果をRAM等に一時的に記憶する。そして、処理がステップST102に進む。 In step ST101, the voltage of the battery cell is measured. For example, the MPU 102 switches the battery cell 101a to be measured by the multiplexer 102a, and the voltage measuring unit 102d measures the voltage of each battery cell. The measurement result is notified from the voltage measurement unit 102 d to the control unit 102 f. Control unit 102 f temporarily stores the voltage measurement result of each battery cell in the RAM or the like. Then, the process proceeds to step ST102.
 ステップST102では、制御部102fが、不揮発性メモリ106に記憶されている電池部101の使用履歴情報を参照して、現在の電池部101のサイクル数と閾値(例えば、50サイクル)とを比較する。比較の結果、現在の電池部101のサイクル数が50サイクル未満であれば、処理がステップST103に進む。 In step ST102, control unit 102f compares the current cycle number of battery unit 101 with a threshold (for example, 50 cycles) with reference to the use history information of battery unit 101 stored in nonvolatile memory 106. . If the comparison shows that the current number of cycles of the battery unit 101 is less than 50 cycles, the process proceeds to step ST103.
 ステップST102の判断処理の結果、制御部102fは、劣化度合いが所定未満であるので電池部101の劣化が進行していないと判断する。そして、制御部102fは、放電終止電圧を定格放電終止電圧(例えば、2.8V)に設定する。なお、定格放電終止電圧は、基準電圧の一例である。定格放電終止電圧は、放電禁止電圧であっても良いが、放電禁止電圧とした場合には電池セル101aの継続した使用が困難となる虞がある。従って、定格放電終止電圧は、放電禁止電圧よりも過放電が起きない程度に余裕を持たせた電圧であることが好ましい。 As a result of the determination process of step ST102, the control unit 102f determines that the deterioration of the battery unit 101 has not progressed because the degree of deterioration is less than the predetermined level. Then, control unit 102 f sets the discharge end voltage to the rated discharge end voltage (for example, 2.8 V). The rated discharge end voltage is an example of a reference voltage. The rated discharge termination voltage may be a discharge inhibition voltage, but when the discharge inhibition voltage is set, there is a possibility that the continuous use of the battery cell 101a may become difficult. Therefore, it is preferable that the rated discharge end voltage be a voltage with a margin enough to prevent overdischarge from occurring than the discharge inhibition voltage.
 ステップST103では、制御部102fが、電圧測定部102dの測定結果を参照して、複数の電池セルの電圧うち最も低い電圧(以下、最低電圧と適宜称する。)が放電終止電圧である2.8V以下になったか否かを判断する。最低電圧が2.8V以下になった場合は、処理がステップST104に進む。 In step ST103, control unit 102f refers to the measurement result of voltage measurement unit 102d, and the lowest voltage of the plurality of battery cells (hereinafter appropriately referred to as the minimum voltage) is the discharge termination voltage 2.8 V It is judged whether it becomes below. If the lowest voltage is 2.8 V or less, the process proceeds to step ST104.
 ステップST104では、制御部102fが、放電停止信号を出力する。放電停止信号は、例えば、SoC(State of Charge)が0%であることを示す信号である。なお、放電を停止させる処理を行うためにSoCを0%にしたものであって、最低電圧である電池セル101aの実際のSoCが0%であるとは限らない。また、放電停止信号は、放電を停止させる信号であれば良く、DoD(Depth of Discharge)等で規定された信号でも良い。そして、処理がステップST105に進む。 At step ST104, the control unit 102f outputs a discharge stop signal. The discharge stop signal is, for example, a signal indicating that SoC (State of Charge) is 0%. Note that the SoC is set to 0% in order to perform the process of stopping the discharge, and the actual SoC of the battery cell 101a, which is the lowest voltage, is not necessarily 0%. Further, the discharge stop signal may be a signal for stopping the discharge, and may be a signal specified by DoD (depth of discharge) or the like. Then, the process proceeds to step ST105.
 ステップST103において、最低電圧が2.8V以上である場合には、制御部102fは、当該最低電圧である電池セル101aのSoCを求めた上で、当該SoCを示す信号を出力する。そして、処理がステップST105に進む。 In step ST103, when the lowest voltage is 2.8 V or more, the control unit 102f obtains the SoC of the battery cell 101a that is the lowest voltage, and then outputs a signal indicating the SoC. Then, the process proceeds to step ST105.
 ステップST105では、SoCを示す信号に基づくSoCが0%であるか否かが判断される。この判断は、本実施の形態ではFET制御部102bにより行われる。SoCが0%である場合は、処理がステップST106に進む。ステップST106では、FET制御部102bが少なくとも放電制御FET103bをオフさせる制御を行うことにより放電を停止する。ステップST105の判断処理において、SoCが0%でない場合は、処理がステップST107に進み、放電が継続(放電の開始の場合もある。)される。 In step ST105, it is determined whether the SoC based on the signal indicating the SoC is 0%. This determination is performed by the FET control unit 102b in the present embodiment. If the SoC is 0%, the process proceeds to step ST106. In step ST106, the FET control unit 102b performs control to turn off at least the discharge control FET 103b to stop the discharge. In the determination process of step ST105, when SoC is not 0%, the process proceeds to step ST107, and the discharge is continued (may be the start of the discharge).
 上述したステップST102の判断処理の結果、現在の電池部101のサイクル数が50サイクル以上の場合は、処理がステップST108に進む。ステップST102の判断処理の結果、制御部102fは、劣化度合いが所定以上であるので電池部101の劣化が進行していると判断する。 If it is determined in step ST102 that the number of cycles of the current battery unit 101 is 50 cycles or more, the process proceeds to step ST108. As a result of the determination process of step ST102, the control unit 102f determines that the deterioration of the battery unit 101 is in progress because the degree of deterioration is equal to or higher than a predetermined level.
 ステップST108では、電池部101の温度が閾値(例えば、0℃)未満であるか否かが判断される。本実施の形態における電池部101の温度とは、例えば、電池セル毎の温度のうち最も低い温度(以下、最低温度と適宜称する。)を意味する。なお、電池部101の温度は、電池部101の全体の温度でも良いし、電池セル毎の温度の平均値等であっても良い。 In step ST108, it is determined whether the temperature of the battery unit 101 is less than a threshold (for example, 0 ° C.). The temperature of the battery unit 101 in the present embodiment means, for example, the lowest temperature (hereinafter, appropriately referred to as the minimum temperature) among the temperatures for each battery cell. The temperature of the battery unit 101 may be the entire temperature of the battery unit 101 or an average value of the temperatures of the battery cells.
 最低温度が0℃以上の場合には、処理がステップST109に進む。電池部101の劣化度合いが大きいことから、制御部102fは、劣化の進行を抑制するために、放電終止電圧を定格放電終止電圧(例えば、2.8V)より大きい3.0V(第1の電圧の一例)に設定する。かかる制御により、一時的に放電容量は低下するが、劣化(例えば、内部インピーダンスの増加)を抑制できるので長期にわたる電池パック1の使用が可能となる。 If the lowest temperature is 0 ° C. or more, the process proceeds to step ST109. Since the degree of deterioration of the battery unit 101 is large, the control unit 102 f controls the discharge termination voltage to be 3.0 V (first voltage) larger than the rated discharge termination voltage (for example, 2.8 V) in order to suppress the progress of the degradation. Example)). By such control, although the discharge capacity temporarily decreases, deterioration (for example, increase in internal impedance) can be suppressed, and therefore, the battery pack 1 can be used for a long time.
 そして、ステップST109では、制御部102fが、電圧測定部102dの測定結果を参照して、最低電圧が放電終止電圧である3.0V以下になったか否かを判断する。最低電圧が3.0V以下になった場合は、処理がステップST110に進む。 Then, in step ST109, control unit 102f refers to the measurement result of voltage measurement unit 102d to determine whether the minimum voltage has become 3.0 V or less, which is the discharge termination voltage. If the lowest voltage is 3.0 V or less, the process proceeds to step ST110.
 ステップST110では、制御部102fが、放電停止信号を出力する。そして、処理がステップST105に進む。 At step ST110, the control unit 102f outputs a discharge stop signal. Then, the process proceeds to step ST105.
 ステップST109において、最低電圧が3.0Vより大きい場合には、制御部102fは、当該最低電圧である電池セル101aのSoCを求めた上で、当該SoCを示す信号を出力する。そして、処理がステップST105に進む。 In step ST109, when the lowest voltage is greater than 3.0 V, the control unit 102f obtains the SoC of the battery cell 101a that is the lowest voltage, and then outputs a signal indicating the SoC. Then, the process proceeds to step ST105.
 ステップST105では、SoCが0%であるか否かが判断される。SoCが0%である場合は、処理がステップST106に進む。ステップST106では、FET制御部102bが少なくとも放電制御FET103bをオフさせる制御を行うことにより放電を停止する。ステップST105の判断処理において、SoCが0%でない場合は、処理がステップST107に進み、放電が継続される。 In step ST105, it is determined whether SoC is 0%. If the SoC is 0%, the process proceeds to step ST106. In step ST106, the FET control unit 102b performs control to turn off at least the discharge control FET 103b to stop the discharge. In the determination process of step ST105, when SoC is not 0%, the process proceeds to step ST107, and the discharge is continued.
 ステップST108の判断処理において、最低温度が閾値(例えば、0℃)未満である場合には、処理がステップST111に進む。 In the determination process of step ST108, when the lowest temperature is less than the threshold (for example, 0 ° C.), the process proceeds to step ST111.
 ステップST111では、放電終止電圧を定格放電終止電圧(例えば、2.8V)より小さい2.6V(第2の電圧の一例)に設定する。本実施の形態における第2の電圧の一例である2.6Vは、予め設定された値であり、例えば、不揮発性メモリ106に記憶されている。2.6Vは、電圧ドロップにより生じ得る最小電圧(図2に示した例では、-20℃における電圧ドロップで生じ得る2.9V付近)より小さい電圧であり、且つ放電容量をある程度確保できる電圧である。一般に、電池部101が使用される低温環境の下限は-20℃程度である。従って、-20℃における電圧ドロップで生じ得る2.9V付近よりも低い電圧を放電終止電圧として設定すれば、電圧ドロップにより低下した際の電圧を放電終止電圧として検出してしまうことを確実に防止することができる。 In step ST111, the discharge termination voltage is set to 2.6 V (an example of a second voltage) smaller than the rated discharge termination voltage (for example, 2.8 V). 2.6 V, which is an example of the second voltage in the present embodiment, is a preset value, and is stored, for example, in the non-volatile memory 106. 2.6 V is a voltage smaller than the minimum voltage that can be generated by the voltage drop (in the example shown in FIG. 2, around 2.9 V that can be generated by the voltage drop at -20.degree. C.), and at a voltage that can ensure a certain discharge capacity. is there. Generally, the lower limit of the low temperature environment in which the battery unit 101 is used is about -20.degree. Therefore, if a voltage lower than 2.9 V that can occur in the voltage drop at −20 ° C. is set as the discharge termination voltage, it is possible to reliably prevent detection of the voltage when the voltage drops due to the voltage drop as the discharge termination voltage. can do.
 そして、ステップST111では、制御部102fが、電圧測定部102dの測定結果を参照して、最低電圧が放電終止電圧である2.6V以下になったか否かを判断する。最低電圧が2.6V以下になった場合は、処理がステップST112に進む。 Then, in step ST111, the control unit 102f refers to the measurement result of the voltage measurement unit 102d to determine whether the minimum voltage has become 2.6 V or less, which is the discharge termination voltage. If the lowest voltage becomes 2.6 V or less, the process proceeds to step ST112.
 ステップST112では、制御部102fが、放電停止信号を出力する。そして、処理がステップST105に進む。 At step ST112, the control unit 102f outputs a discharge stop signal. Then, the process proceeds to step ST105.
 ステップST111において、最低電圧が2.6Vより大きい場合には、制御部102fは、当該最低電圧である電池セル101aのSoCを求めた上で、当該SoCを示す信号を出力する。そして、処理がステップST105に進む。 In step ST111, when the lowest voltage is greater than 2.6 V, the control unit 102f obtains the SoC of the battery cell 101a that is the lowest voltage, and then outputs a signal indicating the SoC. Then, the process proceeds to step ST105.
 ステップST105では、SoCが0%であるか否かが判断される。SoCが0%である場合は、処理がステップST106に進む。ステップST106では、FET制御部102bが少なくとも放電制御FET103bをオフさせる制御を行うことにより放電を停止する。ステップST105の判断処理において、SoCが0%でない場合は、処理がステップST107に進み、放電が継続される。 In step ST105, it is determined whether SoC is 0%. If the SoC is 0%, the process proceeds to step ST106. In step ST106, the FET control unit 102b performs control to turn off at least the discharge control FET 103b to stop the discharge. In the determination process of step ST105, when SoC is not 0%, the process proceeds to step ST107, and the discharge is continued.
 以上の第1の実施の形態によれば、電池部101の温度が閾値以上の場合には、放電禁止電圧を基準電圧より小さく設定しているので、電池部101の劣化の進行を抑制することができる。また、電池部101の温度が閾値未満の場合には、放電禁止電圧を基準電圧より大きく設定しているので、放電(特に、放電開始直後)時に生じる電圧ドロップにより電池パック1からの放電が停止してしまうことを防止することができる。 According to the first embodiment described above, when the temperature of the battery unit 101 is equal to or higher than the threshold, the discharge inhibition voltage is set smaller than the reference voltage, so that the progress of deterioration of the battery unit 101 is suppressed Can. Further, when the temperature of the battery unit 101 is less than the threshold value, the discharge inhibition voltage is set larger than the reference voltage, so the discharge from the battery pack 1 is stopped by the voltage drop that occurs at the time of discharge It can prevent that it does.
<2.第2の実施の形態>
 次に、第2の実施の形態について説明する。第2の実施の形態は、第1の実施の形態における放電終止電圧を設定する処理の内容が一部異なる。以下、第1の実施の形態における放電終止電圧を設定する処理と異なる点を中心に説明する。なお、各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2の実施の形態以降では第1の実施の形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施の形態毎には逐次言及しない。
<2. Second embodiment>
Next, a second embodiment will be described. The second embodiment is partially different from the first embodiment in the process of setting the discharge end voltage. Hereinafter, differences from the process of setting the discharge end voltage in the first embodiment will be mainly described. Note that each embodiment is an example, and it is needless to say that partial replacement or combination of the configurations shown in different embodiments is possible. In the second and subsequent embodiments, descriptions of matters in common with the first embodiment will be omitted, and only different points will be described. In particular, the same operation and effect by the same configuration will not be sequentially referred to in each embodiment.
 図8は、第2の実施の形態にかかる放電終止電圧を設定する処理の流れを示すフローチャートである。第2の実施の形態にかかる放電終止電圧を設定する処理では、ステップST121の処理が追加されている。即ち、ステップST108の判断処理において、最低温度が0℃未満である場合には、処理がステップST121に進む。 FIG. 8 is a flowchart showing a flow of processing for setting the discharge end voltage according to the second embodiment. The process of step ST121 is added to the process of setting the discharge end voltage according to the second embodiment. That is, in the determination process of step ST108, when the minimum temperature is less than 0 ° C., the process proceeds to step ST121.
 ステップST121では、最小温度である電池セル101aの残容量が閾値より小さいか否かが判断される。本実施の形態では残容量としてSoCを使用する。即ち、ステップST121では、SoCが閾値(例えば、50%)より小さいか否かが判断される。当該電池セル101aのSoCが50%以上であれば、処理がステップST111に進む。当該電池セル101aのSoCが50%未満であれば、処理がステップST109に進む。 In step ST121, it is determined whether the remaining capacity of battery cell 101a which is the minimum temperature is smaller than a threshold. In this embodiment, SoC is used as the remaining capacity. That is, in step ST121, it is determined whether SoC is smaller than a threshold (for example, 50%). If the SoC of the battery cell 101a is 50% or more, the process proceeds to step ST111. If the SoC of the battery cell 101a is less than 50%, the process proceeds to step ST109.
 図2に示した放電温度特性を参照すると、低温時(例えば、-15℃)の場合、SoC50%に対応する電池セル101aの電圧は、3.1V程度である。この場合には、低温時に起こり得る1V程度の電圧ドロップにより電池セル101aの電圧が第2の電圧の一例である2.6Vを下回ってしまう。場合によっては、放電禁止電圧を下回る。そこで、最小電圧を有する電池セル101aのSoCが50%未満である場合は、処理がステップST109に進む。ステップST109の判断処理では、電圧ドロップにより電池セル101aの電圧が3.0V以下と判断されることになるので、処理がステップST110に進む。ステップST110では、制御部102fは、放電停止信号を出力し、放電を停止する若しくは行わないようにする。 Referring to the discharge temperature characteristic shown in FIG. 2, the voltage of the battery cell 101a corresponding to 50% of SoC is about 3.1 V at low temperature (for example, -15.degree. C.). In this case, the voltage drop of about 1 V which may occur at low temperature causes the voltage of the battery cell 101a to fall below 2.6 V which is an example of the second voltage. In some cases, it falls below the discharge inhibition voltage. Therefore, when the SoC of the battery cell 101a having the minimum voltage is less than 50%, the process proceeds to step ST109. In the determination process of step ST109, since the voltage of the battery cell 101a is determined to be 3.0 V or less by the voltage drop, the process proceeds to step ST110. In step ST110, the control unit 102f outputs a discharge stop signal to stop or not perform the discharge.
 以上の第2の実施の形態にかかる処理は、電池部101が放電末期である場合において電池部101が放電を開始する際に行われることが好ましい。放電開始に処理を行うことにより、放電開始時の電圧ドロップにより電池部101の電圧が放電禁止電圧を下回ることを防止することができ、電池部101を保護することができる。なお、低温時において、最小温度である電池セル101aのSoCが50%未満である場合には、充電を促す報知がなされるようにしても良い。 The process according to the second embodiment described above is preferably performed when the battery unit 101 starts discharging when the battery unit 101 is at the end of discharging. By performing the process to start the discharge, the voltage drop at the start of the discharge can prevent the voltage of the battery unit 101 from falling below the discharge inhibition voltage, thereby protecting the battery unit 101. When the SoC of the battery cell 101a, which is the minimum temperature, is less than 50% at low temperatures, notification may be made to prompt charging.
<3.第3の実施の形態>
 次に、第3の実施の形態について説明する。第3の実施の形態は、上述した制御部102fの機能を有する電子機器の例である。電子機器としては、スマートフォン、パーソナルコンピュータ、ウェアラブル機器、ロボット機器等を挙げることができる。
<3. Third embodiment>
Next, a third embodiment will be described. The third embodiment is an example of an electronic device having the function of the control unit 102f described above. Examples of the electronic device include a smartphone, a personal computer, a wearable device, and a robot device.
 図9は、第3の実施の形態にかかる電子機器(電子機器3)の構成例を示すブロック図である。電子機器3は、電池ユニット301と、制御ユニット302と、充放電制御回路303と、電子機器3の本体の電子回路304とを有している。 FIG. 9 is a block diagram showing a configuration example of the electronic device (electronic device 3) according to the third embodiment. The electronic device 3 includes a battery unit 301, a control unit 302, a charge / discharge control circuit 303, and an electronic circuit 304 of the main body of the electronic device 3.
 電池ユニット301と制御ユニット302とが、接続用のコネクタ311a及びコネクタ311bを介して接続されている。コネクタ311aは電池ユニット301の正極に接続されている。コネクタ311bは電池ユニット301の負極に接続されている。 The battery unit 301 and the control unit 302 are connected via the connector 311 a and the connector 311 b for connection. The connector 311 a is connected to the positive electrode of the battery unit 301. The connector 311 b is connected to the negative electrode of the battery unit 301.
 制御ユニット302と充放電制御回路303とが接続されている。制御ユニット302と充放電制御回路303との間では電力の供給が可能なように構成されていると共に、通信が可能とされている。 The control unit 302 and the charge and discharge control circuit 303 are connected. Power is supplied between the control unit 302 and the charge / discharge control circuit 303, and communication is enabled.
 充放電制御回路303と電子回路304とが接続されている。充放電制御回路303から電子回路304に対しては、電池ユニット301からの電力の供給が可能なように構成されている。 The charge and discharge control circuit 303 and the electronic circuit 304 are connected. The charge / discharge control circuit 303 is configured to be able to supply power from the battery unit 301 to the electronic circuit 304.
 電池ユニット301は、例えば、電池部301aと温度素子301bとを有している。電池部301aとして上述した電池部101を適用することができる。また、温度素子301bとして上述した温度素子105を適用することができる。 The battery unit 301 includes, for example, a battery unit 301a and a temperature element 301b. The above-described battery unit 101 can be applied as the battery unit 301a. Further, the above-described temperature element 105 can be applied as the temperature element 301b.
 制御ユニット302は、例えば、制御部305と電流検出抵抗306とを有している。制御部305は、例えば、アナログフロントエンド(AFE)305aと、CPU305bと、RAM305cと、ROM305dと、入出力ポートであるI/O305eとを有している。電流検出抵抗306として、上述した電流検出抵抗107を適用することができる。 The control unit 302 includes, for example, a control unit 305 and a current detection resistor 306. The control unit 305 includes, for example, an analog front end (AFE) 305 a, a CPU 305 b, a RAM 305 c, a ROM 305 d, and an I / O 305 e which is an input / output port. The current detection resistor 107 described above can be applied as the current detection resistor 306.
 アナログフロントエンド305aは、電池部301aの電圧、電流、温度等に関するアナログデータをデジタルデータに変換する。CPU305bは、上述した電流測定部102c、電圧測定部102d、温度測定部102e、制御部102f及びタイマ102gの機能を有している。RAM305cは、CPU305bのワークメモリとして使用されると共に、上述した不揮発性メモリ106に記憶されている履歴情報等を記憶する。ROM305dは、CPU305bが実行するプログラムを格納する。I/O305eは、制御ユニット302と充放電制御回路303との間のインターフェースをとる。 The analog front end 305a converts analog data relating to the voltage, current, temperature, and the like of the battery unit 301a into digital data. The CPU 305 b has the functions of the current measurement unit 102 c, the voltage measurement unit 102 d, the temperature measurement unit 102 e, the control unit 102 f, and the timer 102 g described above. The RAM 305 c is used as a work memory of the CPU 305 b and stores history information and the like stored in the non-volatile memory 106 described above. The ROM 305 d stores a program to be executed by the CPU 305 b. The I / O 305 e provides an interface between the control unit 302 and the charge / discharge control circuit 303.
 充放電制御回路303は、上述したFET制御部102b、充電制御FET103a及び放電制御FET103bを有する。 The charge / discharge control circuit 303 includes the above-described FET control unit 102b, charge control FET 103a, and discharge control FET 103b.
 電子回路304は、電子機器3に応じた構成を有する。電子機器3が例えばスマートフォンである場合には、電子回路304は、映像処理回路や音声処理回路、通信回路等を有する。 The electronic circuit 304 has a configuration corresponding to the electronic device 3. When the electronic device 3 is, for example, a smartphone, the electronic circuit 304 includes a video processing circuit, an audio processing circuit, a communication circuit, and the like.
 電子機器3の動作は、上述した電池パック1と略同様であるので、概略的な説明に留める。制御部305は、第1の実施の形態又は第2の実施の形態において説明した処理を行い、処理の結果、SoCを示す信号を充放電制御回路303に出力する。充放電制御回路303がSoCを示す信号が0%である場合、即ち、放電停止信号である場合には、放電を停止する制御を行う。 The operation of the electronic device 3 is substantially the same as that of the above-described battery pack 1 and thus will be described only schematically. The control unit 305 performs the process described in the first embodiment or the second embodiment, and outputs a signal indicating the SoC to the charge / discharge control circuit 303 as a result of the process. If the charge / discharge control circuit 303 indicates that the signal indicating SoC is 0%, that is, if it is a discharge stop signal, control is performed to stop the discharge.
 以上説明したように、本発明は、制御部102fの機能を有する電子機器として構成することも可能である。 As described above, the present invention can also be configured as an electronic device having the function of the control unit 102 f.
<4.第4の実施の形態>
 次に、第4の実施の形態について説明する。第4の実施の形態は、上述した電池パック1を電動工具の一例である電動ドライバ(電動ドライバ4)に適用した例である。
<4. Fourth embodiment>
Next, a fourth embodiment will be described. The fourth embodiment is an example in which the above-described battery pack 1 is applied to an electric driver (electric driver 4) which is an example of an electric tool.
 図10は、電動ドライバ4の構成例を示す図である。電動ドライバ4は、本体内にDCモータ等のモータ401が収納されている。モータ401の回転がシャフト402に伝達され、シャフト402によって被対象物にネジが打ち込まれる。電動ドライバ4には、ユーザが操作するトリガースイッチ403が設けられている。 FIG. 10 is a view showing a configuration example of the electric driver 4. In the electric driver 4, a motor 401 such as a DC motor is accommodated in the main body. The rotation of the motor 401 is transmitted to the shaft 402, and a screw is driven into the object by the shaft 402. The electric driver 4 is provided with a trigger switch 403 operated by the user.
 電動ドライバ4の把手の下部筐体内に、上述した電池パック1及びモータ制御部404が収納されている。モータ制御部404は、モータ401を制御する。モータ401以外の電動ドライバ4の各部が、モータ制御部404によって制御されてもよい。電池パック1と電動ドライバ4とはそれぞれに設けられた係合部材によって係合されている。電池パック1が電動ドライバ4に着脱自在とされていても良い。 The battery pack 1 and the motor control unit 404 described above are housed in the lower case of the handle of the electric driver 4. The motor control unit 404 controls the motor 401. Each part of the motor-driven driver 4 other than the motor 401 may be controlled by the motor control unit 404. The battery pack 1 and the electric driver 4 are engaged by engaging members provided in each of them. The battery pack 1 may be detachable from the electric driver 4.
 電池パック1からモータ制御部404に対して電力が供給されると共に、両者の間で通信可能とされている。 Power is supplied from the battery pack 1 to the motor control unit 404, and communication between the two is enabled.
 トリガースイッチ403は、例えば、モータ401とモータ制御部404との間に挿入され、ユーザがトリガースイッチ403を押し込むと、モータ401に電池パック1からの電力が供給され、モータ401が回転する。ユーザがトリガースイッチ403を戻すと、モータ401の回転が停止する。モータ制御部404は、例えば、モータ401の回転/停止、並びに回転方向を制御する。 The trigger switch 403 is inserted, for example, between the motor 401 and the motor control unit 404, and when the user presses the trigger switch 403, the electric power from the battery pack 1 is supplied to the motor 401, and the motor 401 rotates. When the user returns the trigger switch 403, the rotation of the motor 401 is stopped. The motor control unit 404 controls, for example, the rotation / stop of the motor 401 and the direction of rotation.
 電池パック1は、上述した処理を行う。なお、電池パック1からモータ制御部404に対して放電停止信号が供給されるようにしても良い。放電停止信号を受信したモータ制御部404は、トリガースイッチ403の操作を無効にする制御を行うようにしても良い。 The battery pack 1 performs the process described above. Note that the discharge stop signal may be supplied from the battery pack 1 to the motor control unit 404. The motor control unit 404 that has received the discharge stop signal may perform control to invalidate the operation of the trigger switch 403.
 以上説明したように、本発明は、電池パック1を有する電動工具、より具体的には制御部102fの機能を有する電動工具として構成することも可能である。なお、電池パック1を有するとは電池パック1が着脱自在である場合を含み、必ずしも電池パック1が物理的に固定されている(着脱自在でない)場合に限定されるものではない。他の実施の形態についても同様である。 As described above, the present invention can also be configured as an electric power tool having the battery pack 1, more specifically, an electric power tool having the function of the control unit 102f. In addition, having the battery pack 1 includes the case where the battery pack 1 is detachable, and it is not necessarily limited to the case where the battery pack 1 is physically fixed (not detachable). The same applies to the other embodiments.
<5.第5の実施の形態>
 次に、第5の実施の形態について説明する。第5の実施の形態は、上述した電池パック1を電動車両の一例である電動自転車(電動自転車5)に適用した例である。図11は、電動自転車5の構成の一例を概略的に示したものである。
<5. Fifth embodiment>
The fifth embodiment will now be described. The fifth embodiment is an example in which the above-described battery pack 1 is applied to an electric bicycle (electric bicycle 5) which is an example of an electric vehicle. FIG. 11 schematically shows an example of the configuration of the electric bicycle 5.
 電動自転車5は、補助駆動力faを供給する補助駆動装置501を有する。補助駆動装置501は、補助駆動力faを発生させるモータ502と、減速機503と、補助駆動力faをチェーン510に出力する駆動部504と、ペダル512に作用する踏力fhを検出するトルクセンサ506と、本体制御部507とを有している。トルクセンサ506はクランク軸505にかかるトルクから踏力fhを検出するものであり、例えば磁歪センサ等が用いられる。 The electric bicycle 5 has an auxiliary drive device 501 that supplies an auxiliary driving force fa. The auxiliary drive device 501 includes a motor 502 that generates an auxiliary driving force fa, a reduction gear 503, a driving unit 504 that outputs the auxiliary driving force fa to the chain 510, and a torque sensor 506 that detects a stepping force fh acting on the pedal 512. And a main body control unit 507. The torque sensor 506 detects the stepping force fh from the torque applied to the crankshaft 505, and for example, a magnetostrictive sensor or the like is used.
 クランク軸505の両端には、踏力fhが加えられる左右のペダル512が取付けられている。また、後輪511はチェーン510を介してクランク軸505に連動連結されており、踏力fh及び補助駆動力faはチェーン510を介して後輪511に伝達される。 At both ends of the crankshaft 505, left and right pedals 512 to which a pedal effort fh is applied are attached. Further, the rear wheel 511 is interlocked with the crankshaft 505 via a chain 510, and the stepping force fh and the auxiliary driving force fa are transmitted to the rear wheel 511 via the chain 510.
 本体制御部507は、マイクロコンピュータを含む電気回路等により構成されており、不揮発性メモリからなる記憶部等を備える。本体制御部507は、トルクセンサ506から随時入力される検出信号に基づいてモータ502を制御している。 The main body control unit 507 is configured by an electric circuit and the like including a microcomputer, and includes a storage unit and the like including a non-volatile memory. The main body control unit 507 controls the motor 502 based on a detection signal that is input from the torque sensor 506 as needed.
 電動自転車5の車体に対して、上述した電池パック1が着脱自在とされる。電池パック1は、電動自転車5に装着された状態で補助駆動装置501に給電する。即ち、電池パック1は、モータ502に電力を供給する。電池パック1からの電力が、電動自転車5のライトや表示のための電力として使用されても良い。 The battery pack 1 described above is detachably attached to the vehicle body of the electric bicycle 5. The battery pack 1 supplies power to the auxiliary drive device 501 in a state of being attached to the electric bicycle 5. That is, the battery pack 1 supplies power to the motor 502. The power from the battery pack 1 may be used as the light for the electric bicycle 5 and the power for display.
 補助駆動装置501の本体制御部507と電池パック1におけるMPU102との間で通信が行われる。 Communication is performed between the main body control unit 507 of the auxiliary drive device 501 and the MPU 102 of the battery pack 1.
 電池パック1は、上述した処理と同様の処理を行う。なお、電池パック1の制御部102fが出力するSoCを示す信号が本体制御部507に供給されても良い。そして、本体制御部507の制御により電池パック1の放電が制御されても良い。 The battery pack 1 performs the same process as the process described above. A signal indicating the SoC output by the control unit 102f of the battery pack 1 may be supplied to the main control unit 507. Then, the discharge of the battery pack 1 may be controlled by the control of the main control unit 507.
 例えば、図12に示すフローチャートにおいて、上述した処理に加えて、ステップST511及びステップST512の処理が追加されても良い。ステップST511では、電池パック1の制御部102fから本体制御部507に対してSoCを示す信号が送信される。そして、ステップST512で、SoCを示す信号が本体制御部507により受信される。 For example, in the flowchart shown in FIG. 12, in addition to the above-described processing, the processing of step ST511 and step ST512 may be added. In step ST511, the control unit 102f of the battery pack 1 transmits a signal indicating SoC to the main control unit 507. Then, in step ST512, a signal indicating the SoC is received by the main control unit 507.
 ステップST105の処理は本体制御部507により行われる。本体制御部507は、受信した信号が放電停止信号でない(SoC≠0%)の場合は、放電を継続させる。また、本体制御部507は、受信した信号が放電停止信号である場合は、放電を停止させる。例えば、本体制御部507は、放電を停止させる信号を電池パック1に送信する。当該信号を受信した電池パック1が放電を停止させる制御を行う。 The process of step ST105 is performed by the main control unit 507. When the received signal is not the discharge stop signal (SoC ≠ 0%), the main control unit 507 continues the discharge. Also, when the received signal is a discharge stop signal, the main control unit 507 stops the discharge. For example, the main control unit 507 transmits a signal to stop the discharge to the battery pack 1. Control is performed to stop the battery pack 1 receiving the signal.
 また、例えば、電池パック1と補助駆動装置501との間にスイッチを設けても良い。そして、電池パック1から放電停止信号を受信した本体制御部507が、スイッチをオフすることにより電力供給経路を遮断するようにしても良い。 Also, for example, a switch may be provided between the battery pack 1 and the auxiliary drive device 501. Then, the main control unit 507 that has received the discharge stop signal from the battery pack 1 may shut off the power supply path by turning off the switch.
 以上説明したように、本発明は、電池パック1を有する電動車両、より具体的には制御部102fの機能を有する電動車両として構成することも可能である。 As described above, the present invention can also be configured as an electric powered vehicle having the battery pack 1, more specifically, an electric powered vehicle having the function of the control unit 102f.
<6.第6の実施の形態>
 次に、第6の実施の形態について説明する。第6の実施の形態は、本発明を電源システムに適用した例である。
<6. Sixth embodiment>
Next, a sixth embodiment will be described. The sixth embodiment is an example in which the present invention is applied to a power supply system.
 図13は、第6の実施の形態にかかる電源システム(電源システム6)の構成例を示す。始めに、電源システム6について概略的に説明する。電源システム6は、例えば、定置型の蓄電モジュールである。電源システム6は、電池部601と、第1の装置の一例であるモジュールコントローラCNTと、第2の装置の一例であるメインコントローラICNTとを有している。 FIG. 13 shows a configuration example of a power supply system (power supply system 6) according to the sixth embodiment. First, the power supply system 6 will be schematically described. The power supply system 6 is, for example, a stationary storage module. The power supply system 6 includes a battery unit 601, a module controller CNT which is an example of a first device, and a main controller ICNT which is an example of a second device.
 モジュールコントローラCNTは、正極端子602aと負極端子602bとを有している。正極端子602aは電池部601の正極側に接続されており、負極端子602bは電池部601の負極側に接続されている。 The module controller CNT has a positive electrode terminal 602a and a negative electrode terminal 602b. The positive electrode terminal 602 a is connected to the positive electrode side of the battery unit 601, and the negative electrode terminal 602 b is connected to the negative electrode side of the battery unit 601.
 メインコントローラICNTは、端子603aと端子603bとを有している。端子603aがモジュールコントローラCNTの正極端子602aと接続され、端子603bがモジュールコントローラCNTの負極端子602bと接続されている。また、メインコントローラICNTは、正極側の端子604aと負極側の端子604bとを有している。端子604a及び端子604bが負荷に接続されることにより、負荷に対して電池部601の電力が供給される。 The main controller ICNT has a terminal 603a and a terminal 603b. The terminal 603a is connected to the positive electrode terminal 602a of the module controller CNT, and the terminal 603b is connected to the negative electrode terminal 602b of the module controller CNT. Further, the main controller ICNT has a terminal 604a on the positive electrode side and a terminal 604b on the negative electrode side. By connecting the terminal 604 a and the terminal 604 b to the load, the power of the battery unit 601 is supplied to the load.
 なお、図13に示す例では、1個のメインコントローラICNTに対して1個のモジュールコントローラCNTが接続されている例が示されているが、1個のメインコントローラICNTに対して複数のモジュールコントローラCNTが接続されていても構わない。 In the example shown in FIG. 13, one module controller CNT is connected to one main controller ICNT, but a plurality of module controllers are connected to one main controller ICNT. CNTs may be connected.
 モジュールコントローラCNTとメインコントローラICNTとがデータ伝送路(バス)を介して接続され、両者の間で通信がなされる。メインコントローラICNTが充電管理、放電管理、劣化抑制等のための管理を行う。 The module controller CNT and the main controller ICNT are connected via a data transmission path (bus), and communication is established between the two. The main controller ICNT carries out management for charge management, discharge management, deterioration control and the like.
 バスとしては、シリアルインターフェースが使用される。シリアルインターフェースとしては、具体的には、I2C(Inter-Integrated Circuit)方式、SMバス(System Management Bus)、CAN(Controller Area Network)、SPI(Serial Peripheral Interface)
等が使用される。
A serial interface is used as the bus. Specifically, as the serial interface, I 2 C (Inter-Integrated Circuit) method, SM bus (System Management Bus), CAN (Controller Area Network), SPI (Serial Peripheral Interface)
Etc. are used.
 一例として、I2C方式の通信が使用される。この方式は、比較的近距離で直結したデバイスとの間で、シリアル通信を行うものである。1台のマスタと1台又は複数台のスレーブとの間が2本の線で接続される。一方の線を通じて伝送されるクロストークを基準としてデータ信号が他方の線上で転送される。個々のスレーブがアドレスを持っていてデータの中にアドレスが含まれ、1バイト毎に受信側からアクノリッジを返送して互いに確認をとりながらデータの転送がなされる。電源システム6の場合には、メインマイクロコントローラユニットがマスタとなり、サブマイクロコントローラユニットがスレーブとなる。 As an example, I 2 C communication is used. In this method, serial communication is performed with devices connected directly at relatively short distances. Two wires connect one master and one or more slaves. A data signal is transferred on the other line on the basis of the crosstalk transmitted through one line. Each slave has an address, the address is included in the data, and an acknowledge is returned from the receiving side for each byte to transfer data while confirming each other. In the case of the power supply system 6, the main microcontroller unit is the master and the sub microcontroller unit is the slave.
 モジュールコントローラCNTからメインコントローラICNTに対してデータが送信される。例えば、電池部601の内部状態の情報がモジュールコントローラCNTからメインコントローラICNTに伝送される。メインコントローラICNTは、当該情報に基づいて、電池部601の充電処理及び放電処理を管理する。なお、メインコントローラICNTがより上位のコントローラと通信を行うようにしても良い。 Data is transmitted from the module controller CNT to the main controller ICNT. For example, information on the internal state of the battery unit 601 is transmitted from the module controller CNT to the main controller ICNT. The main controller ICNT manages charge processing and discharge processing of the battery unit 601 based on the information. The main controller ICNT may communicate with a higher controller.
 電源システム6の構成例について具体的に説明する。電池部601としては、上述した電池部101を適用することができる。勿論、電池部601は、より大出力に対応した構成であっても良い。本実施の形態では、電池部601は、16個の電池ブロック(B1、B2・・・B16)が直列に接続された構成を有する。1個の電池ブロックは、例えば、8本の円筒状のリチウムイオン二次電池を並列接続することにより構成されたものである。 A configuration example of the power supply system 6 will be specifically described. As the battery unit 601, the above-described battery unit 101 can be applied. Of course, the battery unit 601 may be configured to cope with a larger output. In the present embodiment, the battery unit 601 has a configuration in which sixteen battery blocks (B1, B2,... B16) are connected in series. One battery block is configured by connecting, for example, eight cylindrical lithium ion secondary batteries in parallel.
 モジュールコントローラCNTは、例えば、バランス制御回路610と、マルチプレクサ(MUX)611と、A/D612と、監視回路613と、温度測定部614と、温度測定部615と、温度マルチプレクサ616と、電流検出抵抗617と、電流検出アンプ618と、A/D619と、第1の制御部の一例であるサブマイクロコントロールユニット(SUBMCU)620と、通信部621とを有している。 The module controller CNT includes, for example, a balance control circuit 610, a multiplexer (MUX) 611, an A / D 612, a monitoring circuit 613, a temperature measurement unit 614, a temperature measurement unit 615, a temperature multiplexer 616, and a current detection resistor. A communication control unit 621 includes a current detection amplifier 618, an A / D 619, a sub micro control unit (SUBMCU) 620 which is an example of a first control unit, and a communication unit 621.
 バランス制御回路610は、各電池ブロック間の電圧を均一化する制御、所謂、バランス制御を行う。バランス制御の方式としては、パッシブ方式に限らず、アクティブ方式や他の様々な公知の方式を適用することができる。 The balance control circuit 610 performs control to equalize the voltage between the battery blocks, so-called balance control. The balance control method is not limited to the passive method, and an active method and various other known methods can be applied.
 マルチプレクサ611は、例えば、サブマイクロコントロールユニット620からの制御信号に応じてチャネルを切り替え、16個のアナログ電圧データの中から一のアナログ電圧データを選択する。マルチプレクサ611によって選択された一のアナログ電圧データがA/D612に供給される。 The multiplexer 611 switches channels, for example, in response to a control signal from the sub-micro control unit 620, and selects one analog voltage data out of 16 analog voltage data. One analog voltage data selected by the multiplexer 611 is supplied to the A / D 612.
 A/D612は、マルチプレクサ611から供給されるアナログ電圧データをデジタル電圧データに変換して監視回路613に供給する。 The A / D 612 converts analog voltage data supplied from the multiplexer 611 into digital voltage data and supplies the digital voltage data to the monitoring circuit 613.
 監視回路613は、A/D612及びA/D619と接続されており、各A/Dから供給されたデジタルデータをサブマイクロコントロールユニット620に供給する。 The monitoring circuit 613 is connected to the A / D 612 and the A / D 619, and supplies digital data supplied from each A / D to the sub micro control unit 620.
 温度測定部614は、電池ブロック単位の温度を測定する。温度測定部615は、電池部601全体の温度を測定する。温度測定部614及び温度測定部615による温度測定結果は温度マルチプレクサ616により適宜、選択された後、A/D612に供給される。A/D612によりアナログ温度データがアナログデジタルデータに変換され、変換後のアナログデジタルデータが監視回路613に供給される。 The temperature measurement unit 614 measures the temperature in units of battery blocks. The temperature measurement unit 615 measures the temperature of the entire battery unit 601. The temperature measurement results by the temperature measurement unit 614 and the temperature measurement unit 615 are appropriately selected by the temperature multiplexer 616, and then supplied to the A / D 612. Analog temperature data is converted to analog digital data by the A / D 612, and the converted analog digital data is supplied to the monitoring circuit 613.
 電流検出抵抗617は、電池部601に流れる電流を検出する。電流検出アンプ618は、電流検出抵抗617により検出されたアナログ電流データを所定の増幅率でもって増幅する。増幅されたアナログ電流データがA/D619に供給される。 The current detection resistor 617 detects the current flowing to the battery unit 601. The current detection amplifier 618 amplifies the analog current data detected by the current detection resistor 617 at a predetermined amplification factor. The amplified analog current data is provided to A / D 619.
 A/D619は、アナログ電流データをデジタル電流データに変換し、変換したデジタル電流データを監視回路613に供給する。 The A / D 619 converts analog current data into digital current data, and supplies the converted digital current data to the monitoring circuit 613.
 サブマイクロコントロールユニット620は、監視回路613から供給されるデータに基づいてモジュールコントローラCNTの診断を行う。また、サブマイクロコントロールユニット620は、上述した制御部102fが行う処理と同様の処理を行うことにより、SoCを示す信号を生成し、生成した信号を通信部621に供給する。なお、本実施の形態では、サブマイクロコントロールユニット620は、上述した制御部102fが行う処理と同様の処理を電池ブロック単位で行う。 The sub micro control unit 620 diagnoses the module controller CNT based on the data supplied from the monitoring circuit 613. Further, the sub-micro control unit 620 generates the signal indicating the SoC by performing the same process as the process performed by the control unit 102f described above, and supplies the generated signal to the communication unit 621. In the present embodiment, sub micro control unit 620 performs the same processing as the processing performed by control unit 102 f described above in units of battery blocks.
 通信部621は、通信を行うための構成、例えば、通信方式に対応した変復調回路、エラー訂正回路等を含む構成を有している。通信部621は、サブマイクロコントロールユニット620の制御に従って、メインコントローラICNTと通信を行う。 The communication unit 621 has a configuration for performing communication, for example, a configuration including a modulation / demodulation circuit corresponding to a communication method, an error correction circuit, and the like. The communication unit 621 communicates with the main controller ICNT according to the control of the sub-micro control unit 620.
 メインコントローラICNTは、第2の制御部の一例であるメインマイクロコントロールユニット(MAINMCU)630と、通信部631と、レギュレータ632と、充電制御FET633と、放電制御FET634とを有している。 The main controller ICNT has a main micro control unit (MAIN MCU) 630 which is an example of a second control unit, a communication unit 631, a regulator 632, a charge control FET 633, and a discharge control FET 634.
 メインマイクロコントロールユニット630は、メインコントローラICNTの各部を制御する。例えば、メインマイクロコントロールユニット630は、充電制御FET633及び放電制御FET634のオン/オフを制御する。 The main micro control unit 630 controls each part of the main controller ICNT. For example, the main micro control unit 630 controls on / off of the charge control FET 633 and the discharge control FET 634.
 通信部631は、通信を行うための構成、例えば、通信方式に対応した変復調回路、エラー訂正回路等を含む構成を有している。通信部631は、メインマイクロコントロールユニット630の制御に従って、モジュールコントローラCNTと通信を行う。 The communication unit 631 has a configuration for performing communication, such as a configuration including a modulation / demodulation circuit corresponding to a communication method, an error correction circuit, and the like. The communication unit 631 communicates with the module controller CNT according to the control of the main micro control unit 630.
 レギュレータ632は、電池部601から供給される電力を使用して、メインマイクロコントロールユニット630が動作するための動作電圧を生成する。レギュレータ632により生成された動作電圧がメインマイクロコントロールユニット630に供給される。 The regulator 632 uses the power supplied from the battery unit 601 to generate an operating voltage for operating the main micro control unit 630. The operating voltage generated by the regulator 632 is supplied to the main micro control unit 630.
 電源システム6の動作例について説明する。メインマイクロコントロールユニット630は、モジュールコントローラCNTから放電停止信号を、通信部631を介して受信した場合は、放電を停止する制御を行う。具体的には、メインマイクロコントロールユニット630は放電制御FET634をオフする。 An operation example of the power supply system 6 will be described. When the main micro control unit 630 receives a discharge stop signal from the module controller CNT via the communication unit 631, the main micro control unit 630 performs control to stop the discharge. Specifically, the main micro control unit 630 turns off the discharge control FET 634.
 なお、モジュールコントローラCNTから各電池ブロックの電圧や温度のデータがメインコントローラICNTに供給されるようにしても良い。そして、各電池ブロックの電圧や温度のデータを取得したメインマイクロコントロールユニット630が上述した制御部102fが行う処理と同様の処理を行うようにしても良い。そして、放電を停止させる必要がある場合には、メインマイクロコントロールユニット630が放電制御FET634をオフするようにしても良い。さらに、サブマイクロコントロールユニット620及びメインマイクロコントロールユニット630が、制御部102fが行う処理と同様の処理を行うようにしても良い。これにより、サブマイクロコントロールユニット620及びメインマイクロコントロールユニット630の一方に不具合が生じた場合でも処理を継続することができる。 The data of the voltage and temperature of each battery block may be supplied from the module controller CNT to the main controller ICNT. Then, processing similar to the processing performed by the control unit 102f described above may be performed by the main micro control unit 630 that has acquired the voltage and temperature data of each battery block. Then, when it is necessary to stop the discharge, the main micro control unit 630 may turn off the discharge control FET 634. Furthermore, the sub micro control unit 620 and the main micro control unit 630 may perform the same processing as the processing performed by the control unit 102 f. Thus, processing can be continued even if one of the sub micro control unit 620 and the main micro control unit 630 has a problem.
 以上説明したように、本発明は、制御部102fの機能を有する電源システムとして構成することも可能である。 As described above, the present invention can also be configured as a power supply system having the function of the control unit 102 f.
<7.第7の実施の形態>
 次に、第7の実施の形態について説明する。第7の実施の形態は、本発明を車両用の蓄電システムに適用した例である。図14に、本発明が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
<7. Seventh embodiment>
Next, a seventh embodiment will be described. The seventh embodiment is an example in which the present invention is applied to a storage system for a vehicle. FIG. 14 schematically shows an example of the configuration of a hybrid vehicle adopting a series hybrid system to which the present invention is applied. The series hybrid system is a car that travels by a power drive conversion device using power generated by a generator driven by an engine or power stored in a battery.
 このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサ7210、充電口7211が搭載されている。 The hybrid vehicle 7200 includes an engine 7201, a generator 7202, an electric power driving force converter 7203, driving wheels 7204 a, driving wheels 7204 b, wheels 7205 a, wheels 7205 b, batteries 7208, vehicle control devices 7209, various sensors 7210, charging ports 7211. Is mounted.
 ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モータである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置7203が交流モータでも直流モータでも適用可能である。各種センサ7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ7210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。 Hybrid vehicle 7200 travels using electric power / driving force conversion device 7203 as a power source. An example of the power driving force converter 7203 is a motor. The electric power driving force converter 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power driving force converter 7203 is transmitted to the driving wheels 7204a and 7204b. It should be noted that, by using direct current to alternating current (DC-AC) or reverse conversion (AC to DC conversion) at necessary places, the power drive conversion device 7203 can be applied to either an alternating current motor or a direct current motor. The various sensors 7210 control the engine speed via the vehicle control device 7209 and control the opening degree (throttle opening degree) of a throttle valve (not shown). The various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。 The rotational power of the engine 7201 is transmitted to the generator 7202, which can store the power generated by the generator 7202 in the battery 7208.
 図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。 When the hybrid vehicle is decelerated by a braking mechanism (not shown), a resistance at the time of deceleration is applied as a rotational force to electric power driving force converter 7203, and the regenerative electric power generated by electric power driving force converter 7203 by this rotational force is transmitted to battery 7208. It is accumulated.
 バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口7211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。 The battery 7208 can be connected to a power supply external to the hybrid vehicle to receive power from the external power supply using the charging port 7211 as an input port, and store the received power.
 図示しないが、二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。 Although not shown, an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided. As such an information processing apparatus, there is, for example, an information processing apparatus that displays a battery remaining amount based on information on a battery remaining amount.
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力がいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本発明は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本発明は有効に適用可能である。 In the above, the series hybrid vehicle traveling by the motor using the power generated by the generator driven by the engine or the power temporarily stored in the battery has been described as an example. However, the present invention is also effective for a parallel hybrid vehicle in which the engine and motor outputs are both drive sources, and the engine alone is used, the motor alone is used, and the engine and motor travel are appropriately switched and used. It is applicable. Furthermore, the present invention can be effectively applied to a so-called electric vehicle which travels by driving only by a drive motor without using an engine.
 以上、本発明に係る技術が適用され得るハイブリッド車両7200の一例について説明した。本発明の制御部102fが実行する機能は、例えば、車両制御装置7209に適用することができる。 Heretofore, an example of a hybrid vehicle 7200 to which the technology according to the present invention can be applied has been described. The function executed by the control unit 102f of the present invention can be applied to, for example, the vehicle control device 7209.
<8.第8の実施の形態>
 次に、第8の実施の形態について説明する。第8の実施の形態は、本発明を住宅用の蓄電システムに適用した例である。図15は、蓄電システムの構成例を示す。例えば住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
<8. Eighth embodiment>
An eighth embodiment will now be described. The eighth embodiment is an example in which the present invention is applied to a residential power storage system. FIG. 15 shows a configuration example of a storage system. For example, in a storage system 9100 for a house 9001, electric power is stored via centralized power grid 9002 such as thermal power generation 9002 a, nuclear power generation 9002 b, hydroelectric power generation 9002 c, etc. to power network 9009, information network 9012, smart meter 9007, power hub 9008 etc. The device 9003 is supplied. At the same time, power is supplied to the power storage device 9003 from an independent power source such as a home power generation device 9004. Power supplied to power storage device 9003 is stored. Power storage device 9003 is used to supply power used in house 9001. The same storage system can be used not only for the house 9001 but also for the building.
 住宅9001には、家庭内発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサ9011が設けられている。各装置は、電力網9009及び情報網9012によって接続されている。家庭内発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005及び/又は蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。 The house 9001 is provided with a home power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 for controlling each device, a smart meter 9007, and a sensor 9011 for acquiring various information. The respective devices are connected by a power network 9009 and an information network 9012. A solar cell, a fuel cell, or the like is used as the home power generation device 9004, and the generated electric power is supplied to the power consumption device 9005 and / or the power storage device 9003. The power consumption device 9005 is, for example, a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, and a bath 9005d. Furthermore, the power consumption device 9005 includes an electric vehicle 9006. An electric vehicle 9006 is an electric car 9006 a, a hybrid car 9006 b, and an electric bike 9006 c.
 スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つ又は複数を組み合わせても良い。 The smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to the power company. The power grid 9009 may combine one or more of direct current feed, alternating current feed, and non-contact feed.
 各種のセンサ9011は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサ等である。各種センサ9011により取得された情報は、制御装置9010に送信される。センサ9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報をインターネットを介して外部の電力会社等に送信することができる。 The various sensors 9011 are, for example, a human sensor, an illuminance sensor, an object detection sensor, a power consumption sensor, a vibration sensor, a contact sensor, a temperature sensor, an infrared sensor, and the like. The information acquired by the various sensors 9011 is transmitted to the control device 9010. With the information from the sensor 9011, the state of the weather, the state of a person, etc. can be grasped, and the power consumption device 9005 can be automatically controlled to minimize energy consumption. Furthermore, the control device 9010 can transmit information on the home 9001 to an external power company or the like via the Internet.
 パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee(登録商標)、Wi-Fi(登録商標)等の無線通信規格によるセンサネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBee(登録商標)は、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) 又はW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。 The power hub 9008 performs processing such as branching of power lines and DC / AC conversion. As a communication method of the information network 9012 connected to the control device 9010, a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter: transmission / reception circuit for asynchronous serial communication), Bluetooth (registered trademark), ZigBee (registered trademark) There is a method of using a sensor network according to a wireless communication standard such as Wi-Fi (registered trademark). The Bluetooth (registered trademark) system is applied to multimedia communication, and can perform one-to-many connection communication. ZigBee (registered trademark) uses the physical layer of IEEE (Institute of Electrical and Electronics Engineers) 802.15.4. IEEE 802.15.4 is a name of a short distance wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
 制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。 The control device 9010 is connected to an external server 9013. The server 9013 may be managed by any one of a house 9001, a power company, and a service provider. The information transmitted and received by the server 9013 is, for example, power consumption information, life pattern information, power rates, weather information, natural disaster information, and information on power transactions. These pieces of information may be transmitted and received from a home power consumption device (for example, a television receiver), but may be transmitted and received from a device outside the home (for example, a cellular phone or the like). These pieces of information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistants), or the like.
 各部を制御する制御装置9010は、CPU、RAM、ROM等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサ9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。 A control device 9010 that controls each unit is configured by a CPU, a RAM, a ROM, and the like, and is stored in the power storage device 9003 in this example. Control device 9010 is connected to power storage device 9003, home power generation device 9004, power consumption device 9005, various sensors 9011, server 9013, and information network 9012, and has a function to adjust, for example, the usage amount of commercial power and the power generation amount. have. In addition, it may be provided with the function etc. which trade in the electric power market.
 以上のように、電力が火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。従って、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、又は、必要なだけ放電したりするといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。 As described above, the power storage device 9003 generates the power generated by the household power generation device 9004 (solar power generation, wind power generation) as well as the centralized power system 9002 such as the thermal power generation 9002a, the nuclear power generation 9002b, and the hydroelectric power 9002c. It can be stored. Therefore, even if the power generated by the home power generation device 9004 fluctuates, control can be performed such that the amount of power to be transmitted to the outside can be made constant, or the necessary amount of discharge can be performed. For example, the power obtained by solar power generation is stored in power storage device 9003, and late-night power with low charge is stored in power storage device 9003 at night, and the power stored by power storage device 9003 is discharged in the time zone where the charge in the daytime is high. Can also be used.
 なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。 Although the example in which control device 9010 is stored in power storage device 9003 has been described in this example, it may be stored in smart meter 9007 or may be configured alone. Furthermore, power storage system 9100 may be used for a plurality of households in an apartment house, or may be used for a plurality of detached houses.
 以上、本発明に係る技術が適用され得る蓄電システム9100の一例について説明した。上述した制御部102fが有する機能は、例えば、制御装置9010に適用することができる。 In the above, an example of the electrical storage system 9100 to which the technique according to the present invention can be applied has been described. The functions of the control unit 102f described above can be applied to, for example, the control device 9010.
<9.変形例>
 以上、本発明の複数の実施の形態について具体的に説明したが、本発明の内容は上述した一実施の形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
<9. Modified example>
As mentioned above, although a plurality of embodiments of the present invention were concretely explained, the contents of the present invention are not limited to one embodiment mentioned above, and various modification based on the technical idea of the present invention is possible. It is.
 上述した実施の形態において、第2の電圧が一定の値ではなく、可変とされても良い。例えば、制御部は、電池部の温度に応じて第2の電圧を設定しても良く、より具体的には、電池部の温度毎に規定された、定格最大負荷が接続された場合に生じる電圧ドロップを参照して、第2の電圧を設定しても良い。
 例えば、表1に示すように、電池部の温度Tが低下するにつれて第2の電圧が段階的に低下するように設定することができる。
[表1]
Figure JPOXMLDOC01-appb-I000001
 このように設定することにより、低温での放電開始時に電圧ドロップによって放電終止電圧に電圧が達してしまうことを防ぐことができる。劣化抑制のため放電終止電圧を高く設定した場合に、この制御はより効果的である。第2の電圧を可変とすることにより、必要以上に放電終止電圧を下げることがなくなるため、劣化をより効果的に抑制することができる。
In the embodiment described above, the second voltage may not be a constant value, but may be variable. For example, the control unit may set the second voltage according to the temperature of the battery unit, and more specifically, occurs when the rated maximum load specified for each temperature of the battery unit is connected. The second voltage may be set with reference to the voltage drop.
For example, as shown in Table 1, the second voltage can be set to decrease stepwise as the temperature T of the battery unit decreases.
[Table 1]
Figure JPOXMLDOC01-appb-I000001
By setting in this manner, it is possible to prevent the voltage from reaching the discharge termination voltage due to the voltage drop at the start of discharge at a low temperature. This control is more effective when the discharge end voltage is set high to suppress deterioration. By making the second voltage variable, it is not necessary to lower the discharge termination voltage more than necessary, so degradation can be more effectively suppressed.
 例えば、温度測定部102eにより温度として-15℃と測定されたとする。この場合、図2に示したグラフにおけるラインL6を参照すると、電圧ドロップが生じたときの電圧の最小値は約3.1Vである。このような場合には、制御部102fは、第2の電圧の一例として2.6Vではなく2.7Vを設定しても良い。そして、温度が-20℃の場合には、第2の電圧として2.6Vが設定されても良い。これにより、放電終止電圧を低くし過ぎることによる電池部101の劣化の進行を防止することができると共に、電圧ドロップに起因する電池パック1の放電停止を防止することができる。 For example, it is assumed that the temperature measurement unit 102e measures -15 ° C. as the temperature. In this case, referring to line L6 in the graph shown in FIG. 2, the minimum value of voltage when a voltage drop occurs is about 3.1V. In such a case, the control unit 102 f may set 2.7 V instead of 2.6 V as an example of the second voltage. When the temperature is −20 ° C., 2.6 V may be set as the second voltage. As a result, it is possible to prevent the progress of the deterioration of the battery unit 101 due to the discharge end voltage being too low, and to prevent the discharge stop of the battery pack 1 due to the voltage drop.
 また、電池部101の温度を周期的に測定し、測定結果に応じて第2の電圧を変更するようにしても良い。また、電池部101の使用時間をタイマ102gにより計測し、電池部101が発熱して温まる程度の時間が経過した場合には、第2の電圧を3.0Vに設定して電池部101の劣化を抑制するようにしても良い。 Further, the temperature of the battery unit 101 may be periodically measured, and the second voltage may be changed according to the measurement result. In addition, when the usage time of the battery unit 101 is measured by the timer 102g, and the battery unit 101 generates heat and warms up, the second voltage is set to 3.0 V to deteriorate the battery unit 101. May be suppressed.
 温度計測結果に対応する温度がない場合は、当該温度に近い温度に対応する電圧ドロップを参照して、第2の電圧を設定しても良い。また、代表的な温度毎に電圧ドロップに関する情報を記憶しておき、それらを補間することにより、計測された温度に対応する電圧ドロップを求めても良い。また、第2の電圧は、基準電圧と同じ電圧でも良い。例えば、電池部101の温度が-10℃の場合には、電圧ドロップ後の電圧が3.4V程度である(図2参照)。従って、第2の電圧を基準電圧(例えば、2.8V)と同じ値に設定しても、電圧ドロップによる放電の停止を防止することができると共に、放電容量を確保することができる。 If there is no temperature corresponding to the temperature measurement result, the second voltage may be set with reference to the voltage drop corresponding to the temperature close to the temperature. Alternatively, information on voltage drops may be stored for each representative temperature, and the voltage drops corresponding to the measured temperature may be determined by interpolating them. The second voltage may be the same voltage as the reference voltage. For example, when the temperature of the battery unit 101 is −10 ° C., the voltage after the voltage drop is about 3.4 V (see FIG. 2). Therefore, even if the second voltage is set to the same value as the reference voltage (for example, 2.8 V), the stop of the discharge due to the voltage drop can be prevented and the discharge capacity can be secured.
 図2に示したグラフに対応するテーブルは、電池パック1とは異なる外部機器から電池パック1に対してネットワークを介して供給されるものであっても良い。また、上述した実施の形態において、第2の電圧は、基準電圧と同じ値であっても良い。また、上述した実施の形態において、充電制御FET及び放電制御FETは、電池部の負極側と負極端子との間に接続される構成でも良い。実施の形態における温度やサイクル数等に関する閾値は適宜、変更することができる。例えば、温度の閾値は0℃に限定されることはなく、二次電池の特性に応じて適宜、変更することができる。電池部の劣化度合いは、多段階でもって判断されても良い。劣化の進行度に応じて、第1の電圧として異なる値を設定するようにしても良い。
 例えば、表2に示すようにサイクル数が増加するにつれて第1の電圧を段階的に高くするように設定しても良い。
[表2]
Figure JPOXMLDOC01-appb-I000002
 このように劣化状態に応じて段階的に放電終止電圧を変化させることで、放電終止電圧の上昇による急激な放電容量の低下を防ぐことができる。より細かく段階的に終止電圧を変化させると、使用者に制御を意識させることなく劣化を抑制することができる。
The table corresponding to the graph shown in FIG. 2 may be supplied from the external device different from the battery pack 1 to the battery pack 1 via the network. In the above-described embodiment, the second voltage may have the same value as the reference voltage. In the above-described embodiment, the charge control FET and the discharge control FET may be connected between the negative electrode side of the battery unit and the negative electrode terminal. The threshold values regarding the temperature, the number of cycles, and the like in the embodiment can be changed as appropriate. For example, the threshold value of the temperature is not limited to 0 ° C., and can be changed as appropriate according to the characteristics of the secondary battery. The degree of deterioration of the battery unit may be determined in multiple stages. Different values may be set as the first voltage in accordance with the degree of progress of the deterioration.
For example, as shown in Table 2, the first voltage may be set to increase stepwise as the number of cycles increases.
[Table 2]
Figure JPOXMLDOC01-appb-I000002
By thus changing the discharge termination voltage stepwise in accordance with the deterioration state, it is possible to prevent a sharp decrease in the discharge capacity due to the increase in the discharge termination voltage. When the end voltage is changed more finely and stepwise, the deterioration can be suppressed without the user being aware of the control.
 本発明は、制御部102fが実行する機能のみを有するIC(Integrated Circuit)やクラウドサーバ上の演算装置等の制御装置として構成することも可能である。また、上述した実施の形態で説明した機能は、方法、プログラム、プログラムを記録した記録媒体等、任意の形態で実現することが可能である。 The present invention can also be configured as a control device such as an IC (Integrated Circuit) having only a function executed by the control unit 102 f or an arithmetic device on a cloud server. Further, the functions described in the above-described embodiment can be realized in any form such as a method, a program, a recording medium recording the program, or the like.
 上述の実施の形態において挙げた構成、方法、工程、形状、材料及び数値などはあくまでも例に過ぎず、必要に応じて実施の形態と異なる構成、方法、工程、形状、材料及び数値などが含まれてもよい。 The configurations, methods, processes, shapes, materials, numerical values, and the like described in the above-described embodiments are merely examples, and configurations, methods, processes, shapes, materials, numerical values, and the like different from the embodiments are included as necessary. It may be
1・・・電池パック、3・・・電子機器、4・・・電動工具、5・・・電動自転車、6・・・電源システム、101・・・電池部、102f・・・制御部、106・・・メモリ、305b・・・CPU、507・・・本体制御部、620・・・サブマイクロコントロールユニット、630・・・メインマイクロコントロールユニット DESCRIPTION OF SYMBOLS 1 ... battery pack, 3 ... electronic device, 4 ... electric tool, 5 ... electric bicycle, 6 ... power supply system, 101 ... battery part, 102 f ... control part, 106 ... Memory, 305 b ... CPU, 507 ... Body control unit, 620 ... Sub micro control unit, 630 ... Main micro control unit

Claims (17)

  1.  電池部の劣化度合いが所定より大きいと判断される場合に、
     前記電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
     前記電池部の温度が前記閾値以下の場合には、前記基準電圧又は前記基準電圧より小さい第2の電圧を放電終止電圧に設定する
     制御部を有する
     制御装置。
    When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
    When the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
    A control unit configured to set a second voltage lower than the reference voltage or the reference voltage as a discharge termination voltage when the temperature of the battery unit is equal to or less than the threshold;
  2.  前記第2の電圧が予め設定された電圧である
     請求項1に記載の制御装置。
    The control device according to claim 1, wherein the second voltage is a preset voltage.
  3.  前記第2の電圧は、定格最大負荷が接続された場合に生じる電圧ドロップ後の電圧のうち、最小の電圧よりも小さい電圧である
     請求項2に記載の制御装置。
    The control device according to claim 2, wherein the second voltage is a voltage smaller than a minimum voltage among voltages after a voltage drop that occurs when a rated maximum load is connected.
  4.  前記制御部は、前記電池部の温度に応じて前記第2の電圧を設定する
     請求項1に記載の制御装置。
    The control device according to claim 1, wherein the control unit sets the second voltage in accordance with a temperature of the battery unit.
  5.  前記制御部は、前記電池部の温度毎に規定された、定格最大負荷が接続された場合に生じる電圧ドロップを参照して、前記第2の電圧を設定する
     請求項4に記載の制御装置。
    The control device according to claim 4, wherein the control unit sets the second voltage with reference to a voltage drop that occurs when a rated maximum load is connected, which is defined for each temperature of the battery unit.
  6.  前記電池部の温度が前記閾値より小さい場合であり、且つ、前記電池部の残容量が閾値以下の場合には、前記制御部は、放電終止信号を出力する
     請求項1から5までの何れかに記載の制御装置。
    The control unit outputs a discharge termination signal when the temperature of the battery unit is smaller than the threshold and the remaining capacity of the battery unit is equal to or less than the threshold. Control device described in.
  7.  前記制御部は、前記電池部の電圧が前記放電終止電圧に達した場合に、放電終止信号を出力する
     請求項1から6までの何れかに記載の制御装置。
    The control device according to any one of claims 1 to 6, wherein the control unit outputs a discharge termination signal when the voltage of the battery unit reaches the discharge termination voltage.
  8.  前記制御部は、前記電池部の劣化度合いが所定より小さいと判断される場合に、前記基準電圧を前記放電終止電圧に設定する
     請求項1から7までの何れかに記載の制御装置。
    The control device according to any one of claims 1 to 7, wherein the control unit sets the reference voltage to the discharge termination voltage when it is determined that the deterioration degree of the battery unit is smaller than a predetermined level.
  9.  前記制御部は、記憶部に記憶された前記電池部の使用履歴情報を参照して前記電池部の劣化度合いを判断する
     請求項1から8までの何れかに記載の制御装置。
    The control device according to any one of claims 1 to 8, wherein the control unit refers to use history information of the battery unit stored in the storage unit and determines the degree of deterioration of the battery unit.
  10.  前記制御部は、前記電池部の劣化度合いを、サイクル数、使用時間、放置時間及び内部抵抗の少なくとも一つに基づいて判断する
     請求項9に記載の制御装置。
    The control device according to claim 9, wherein the control unit determines the degree of deterioration of the battery unit based on at least one of the number of cycles, use time, leaving time, and internal resistance.
  11.  前記閾値は0℃である
     請求項1から10までの何れかに記載の制御装置。
    The control device according to any one of claims 1 to 10, wherein the threshold is 0 ° C.
  12.  制御部が、
     電池部の劣化度合いが所定より大きいと判断される場合に、
     前記電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
     前記電池部の温度が前記閾値より小さい場合には、前記基準電圧又は前記基準電圧より小さい第2の電圧を放電終止電圧に設定する
     制御方法。
    The control unit
    When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
    When the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
    When the temperature of the battery unit is lower than the threshold value, a second voltage lower than the reference voltage or the reference voltage is set as a discharge termination voltage.
  13.  電池部と制御部とを有し、
     前記制御部は、
     前記電池部の劣化度合いが所定より大きいと判断される場合に、
     前記電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
     前記電池部の温度が前記閾値以下の場合には、前記基準電圧又は前記基準電圧より小さい第2の電圧を放電終止電圧に設定する
     電池パック。
    Has a battery unit and a control unit,
    The control unit
    When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
    When the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
    When the temperature of the battery unit is equal to or less than the threshold value, a second voltage lower than the reference voltage or the reference voltage is set as a discharge termination voltage.
  14.  電池部と、第1の制御部を有する第1の装置と、第2の制御部とを有する第2の装置とを含み、
     前記第1の制御部及び前記第2の制御部の少なくとも一方の制御部は、
     前記電池部の劣化度合いが所定より大きいと判断される場合に、
     前記電池部の温度が閾値より大きい場合には、基準電圧より大きい第1の電圧を放電終止電圧に設定し、
     前記電池部の温度が前記閾値以下の場合には、前記基準電圧又は前記基準電圧より小さい第2の電圧を放電終止電圧に設定する
     電源システム。
    A battery unit, a first device having a first control unit, and a second device having a second control unit,
    At least one control unit of the first control unit and the second control unit is
    When it is determined that the degree of deterioration of the battery unit is greater than a predetermined value,
    When the temperature of the battery unit is higher than the threshold, a first voltage higher than the reference voltage is set as the discharge termination voltage,
    The power supply system, wherein a second voltage lower than the reference voltage or the reference voltage is set as a discharge termination voltage when the temperature of the battery unit is equal to or less than the threshold.
  15.  請求項1から11までの何れかに記載の制御装置を有する電子機器。 An electronic device comprising the control device according to any one of claims 1 to 11.
  16.  請求項1から11までの何れかに記載の制御装置を有する電動工具。 An electric tool comprising the control device according to any one of claims 1 to 11.
  17.  請求項1から11までの何れかに記載の制御装置を有する電動車両。 An electric vehicle comprising the control device according to any one of claims 1 to 11.
PCT/JP2018/045671 2017-12-18 2018-12-12 Control apparatus, control method, battery pack, power supply system, electronic device, electric tool, and electric vehicle WO2019124187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019561005A JP6933266B2 (en) 2017-12-18 2018-12-12 Control devices, control methods, battery packs, power systems, electronic devices, power tools and electric vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017241574 2017-12-18
JP2017-241574 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019124187A1 true WO2019124187A1 (en) 2019-06-27

Family

ID=66994624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045671 WO2019124187A1 (en) 2017-12-18 2018-12-12 Control apparatus, control method, battery pack, power supply system, electronic device, electric tool, and electric vehicle

Country Status (2)

Country Link
JP (1) JP6933266B2 (en)
WO (1) WO2019124187A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193614A (en) * 2021-03-08 2021-07-30 苏州泰鼎智能科技有限公司 Low-power-consumption voltage detection system and method for sweeping robot and sweeping robot
JP2023515658A (en) * 2020-10-05 2023-04-13 エルジー エナジー ソリューション リミテッド BATTERY DEVICE AND BATTERY OUTPUT PREDICTION METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053097A (en) * 2009-09-02 2011-03-17 Panasonic Corp Discharge management circuit and battery pack
JP5010051B2 (en) * 2009-09-18 2012-08-29 パナソニック株式会社 Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053097A (en) * 2009-09-02 2011-03-17 Panasonic Corp Discharge management circuit and battery pack
JP5010051B2 (en) * 2009-09-18 2012-08-29 パナソニック株式会社 Charge / discharge method of positive electrode active material in lithium secondary battery, and charge / discharge system including lithium secondary battery, battery pack, battery module, electronic device, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023515658A (en) * 2020-10-05 2023-04-13 エルジー エナジー ソリューション リミテッド BATTERY DEVICE AND BATTERY OUTPUT PREDICTION METHOD
JP7436078B2 (en) 2020-10-05 2024-02-21 エルジー エナジー ソリューション リミテッド Battery device and battery output prediction method
CN113193614A (en) * 2021-03-08 2021-07-30 苏州泰鼎智能科技有限公司 Low-power-consumption voltage detection system and method for sweeping robot and sweeping robot

Also Published As

Publication number Publication date
JPWO2019124187A1 (en) 2020-12-10
JP6933266B2 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
US10847988B2 (en) Secondary battery charging apparatus, temperature information acquisition device, secondary battery charging method, in-situ measurement method of electrochemical impedance spectrum
US10147973B2 (en) Battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
US20120091966A1 (en) Charging control method and battery pack for secondary battery
JP5633227B2 (en) Battery pack and battery pack deterioration detection method
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
JP6747523B2 (en) Secondary battery charge/discharge method, secondary battery deterioration detection method, secondary battery charge abnormality detection method, and charge/discharge control device
CN106471652A (en) Negative-electrode active material for secondary battery, secondary battery cathode, secondary cell, set of cells, electric vehicle, accumulating system, electric tool and electronic installation
US9742029B2 (en) Secondary battery including a gel electrolyte, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus including the same
JP2013157088A (en) Battery and battery pack, electronic apparatus, electric vehicle, power storage device and power system
US11545847B2 (en) Charging device and charging method
US20190054837A1 (en) Charge and discharge control device, charge and discharge control method, battery pack, electronic equipment, electric vehicle, power tool and power storage system
WO2015045707A1 (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
CN103682248A (en) Secondary battery, method of manufacturing the same, battery pack, and electric vehicle
US20190190099A1 (en) Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
JP6500779B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
US9912007B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP6933266B2 (en) Control devices, control methods, battery packs, power systems, electronic devices, power tools and electric vehicles
CN110870121B (en) Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
US20190348670A1 (en) Anode for secondary battery, secondary battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
JP6257087B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2015166622A1 (en) Battery, negative electrode, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
WO2019009432A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2017168983A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2017168982A1 (en) Secondary battery negative electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892109

Country of ref document: EP

Kind code of ref document: A1