WO2017168982A1 - Secondary battery negative electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device - Google Patents

Secondary battery negative electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device Download PDF

Info

Publication number
WO2017168982A1
WO2017168982A1 PCT/JP2017/001838 JP2017001838W WO2017168982A1 WO 2017168982 A1 WO2017168982 A1 WO 2017168982A1 JP 2017001838 W JP2017001838 W JP 2017001838W WO 2017168982 A1 WO2017168982 A1 WO 2017168982A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
active material
coating layer
carbonate
Prior art date
Application number
PCT/JP2017/001838
Other languages
French (fr)
Japanese (ja)
Inventor
中村 利一
松本 健
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017168982A1 publication Critical patent/WO2017168982A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to a negative electrode for a secondary battery and a secondary battery. More specifically, the present technology relates to a negative electrode for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
  • lithium ion secondary batteries that use the insertion and release of lithium ions as charge / discharge reactions and lithium metal secondary batteries that use lithium metal precipitation and dissolution are highly expected. This is because an energy density higher than that of the lead battery and the nickel cadmium battery can be obtained.
  • a carbon material (D) for a non-aqueous electrolyte secondary battery in which layers made of a composition containing a conductive polymer (C) are sequentially laminated has been proposed (see Patent Document 1). According to the technique proposed in Patent Document 1, it is possible to provide a non-aqueous electrolyte secondary battery with a high capacity and a small amount of gas generation.
  • a battery pack an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
  • the present inventors have surprisingly succeeded in dramatically improving battery characteristics by providing a coating layer on the secondary battery negative electrode. And this technology was completed.
  • the present technology includes a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binder, and the coating layer includes an ether bond, a carbonyl group, a carboxylic acid,
  • a negative electrode for a secondary battery comprising a hydrocarbon polymer containing at least one selected from the group consisting of carboxylate, carbonate and carbonate.
  • the coating layer is a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer
  • the coating layer may include at least one selected from the group consisting of a carboxymethylcellulose-based water-soluble polymer, a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer.
  • the coating layer may include at least one selected from the group consisting of fibrous carbon, vapor grown carbon fiber, carbon nanotube, graphene, and powdered carbon.
  • the coating layer may include a carboxylic acid and / or a carboxylate.
  • the carboxylate may be sodium oxalate or lithium oxalate.
  • the binder may be included in the coating layer.
  • the binder may be a polyvinylidene fluoride polymer.
  • the negative electrode active material powder may contain a carbon-based material and / or a silicon-based material.
  • the negative electrode for a secondary battery may contain N-methylpyrrolidone.
  • the present technology includes at least a negative electrode for a secondary battery, a positive electrode for a secondary battery, and an electrolytic solution
  • the negative electrode for a secondary battery includes a negative electrode active material powder and a negative electrode active material powder on the negative electrode active material powder.
  • a coating layer and a binder, and the coating layer contains at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
  • a secondary battery including a hydrocarbon polymer is provided.
  • a secondary battery according to the present technology a control unit that controls a usage state of the secondary battery, and a switch unit that switches a usage state of the multivalent ion secondary battery according to an instruction of the control unit, A battery pack is provided.
  • the secondary battery according to the present technology a conversion unit that converts electric power supplied from the secondary battery into a driving force, a driving unit that is driven according to the driving force, and the secondary battery
  • An electric vehicle comprising: a control unit that controls a use state of the vehicle.
  • the secondary battery according to the present technology one or more electric devices to which electric power is supplied from the secondary battery, and control for controlling power supply from the secondary battery to the electric device
  • a power storage system comprising: a unit.
  • the present technology provides an electric tool including a secondary battery according to the present technology and a movable part to which electric power is supplied from the secondary battery.
  • the present technology provides an electronic device including the secondary battery according to the present technology as a power supply source.
  • the battery characteristics can be improved.
  • the effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of the spirally wound electrode body illustrated in FIG. 3.
  • FIG. 4 is a block diagram showing the structure of the application example (battery pack) of the secondary battery which concerns on this technique.
  • pitch coating reduces the ionic conductivity on the surface of the active material, it is considered that there is a trade-off relationship between the load characteristics and the low-temperature characteristics.
  • the charge / discharge efficiency is improved as compared with a pitch coat not containing boron, but the improvement effect is particularly effective when the cell voltage at which lithium is liable to precipitate is 4.35V. Seems to be quite limited.
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride polymer
  • the formation of SEI film by ethylene carbonate (EC) reduction reaction that occurs well when the negative electrode potential is in the vicinity of 0.9 V to 0.6 V vs. Li depends on the impregnation state of the electrolyte in the active material mixture layer.
  • the surface layer of active material agglomerates in the surface layer has a high density and a low density in the back layer. Problems such as swelling of the electrode mixture layer due to co-insertion of the solvent into the active material layer under low-temperature discharge and Li precipitation due to film destruction Cause.
  • the silicate (Li—O—Li) itself of the SiO surface layer decomposes and dissolves, so that as the SiO active material
  • the surface of the SEI that has already been formed and the exposed surface of the SEI that has already been formed are re-formed and increased by a reductive reaction in the subsequent charging, thereby promoting the expansion of the active material itself. This leads to a problem that the current cannot be collected, that is, rapid deterioration of cycle characteristics.
  • the present technology is based on the above situation, and the present technology includes a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binder, Excellent battery characteristics by using a negative electrode for a secondary battery comprising a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonic acid and a carbonate In particular, it can contribute to excellent cycle characteristics.
  • the present technology also includes at least a negative electrode for a secondary battery, a positive electrode for a secondary battery, and an electrolyte, and the negative electrode for a secondary battery is formed on the negative electrode active material powder and the negative electrode active material powder.
  • the negative electrode for a secondary battery according to the first embodiment of the present technology includes a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binder,
  • a negative electrode for a secondary battery comprising a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonic acid and a carbonate.
  • the secondary battery negative electrode of the first embodiment according to the present technology contributes to excellent battery characteristics, and in particular, can contribute to improvement of cycle characteristics. That is, according to the negative electrode for secondary battery of the first embodiment according to the present technology, hydrogen gas generation at the initial charge due to residual water or residual OH group decomposition, which is a problem because it is a water-based paint negative electrode, Thus, it is possible to greatly improve the point of concern about rapid deterioration of the cycle due to a decrease in the performance of collecting and separating the current accompanying charge / discharge expansion and contraction.
  • the negative electrode for a secondary battery By using the negative electrode for a secondary battery according to the first embodiment of the present technology, side reaction such as gas generation due to side reaction with a reaction active site on the carbon surface by the coating layer, ion conductivity improvement, mechanical In addition, the improvement in electrochemical stability and the like can contribute to a favorable improvement effect in the charge / discharge cycle characteristics of the secondary battery.
  • the negative electrode active material powder included in the secondary battery negative electrode of the first embodiment according to the present technology is not particularly limited and may be any negative electrode active material powder, but may be a carbon material, a silicon-based material, or a carbon material. A mixture of a silicon-based material is preferred. This preferred embodiment can contribute to improvement of battery characteristics, particularly cycle characteristics.
  • the carbon material undergoes very little change in the crystal structure during insertion and extraction of Li, a high energy density and excellent cycle characteristics can be obtained.
  • the carbon material can also function as a negative electrode conductive agent.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite.
  • the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less. More specifically, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon and carbon blacks.
  • the cokes include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
  • the silicon-based material may be any of a simple substance of Si (silicon), an alloy and a compound (silicon oxide, silicon fluoride, etc.), two or more of them, and one or two or more phases thereof. May be at least partially included.
  • the simple substance is a simple substance in a general sense (may contain a small amount of impurities), and does not necessarily mean 100% purity.
  • the alloy of Si is, for example, any one or two of Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb and Cr as constituent elements other than Si. It contains the above elements.
  • the Si compound includes, for example, one or more of C, O, F and the like as a constituent element other than Si. Note that the Si compound may include, for example, any one or more of the elements described with respect to the Si alloy as a constituent element other than Si.
  • Si alloys and compounds include, for example, SiB 4 , SiB 6 , Li 2 SiF 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2, MnSi 2, NbSi 2 , TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiOv (0 ⁇ v ⁇ 2), and LiSiO the like.
  • v in SiOv may be 0.2 ⁇ v ⁇ 1.4.
  • the mixed material of the carbon material and the silicon-based material is more preferably a mixture of graphite and SiO.
  • the mass ratio of the mixture of the carbon material and the silicon-based material may be any ratio, but is preferably a ratio of 100: 0 to 85:15, and a ratio of 95: 5 to 90:10 More preferred.
  • the negative electrode active material powder other than the carbon material, the silicon-based material, and the mixture of the carbon material and the silicon-based material is a material including any one or two of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be any of a simple substance, an alloy, and a compound, or two or more kinds thereof, or one having at least a part of one or two or more phases thereof.
  • the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements.
  • the alloy may contain a nonmetallic element.
  • the structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting substances.
  • the metal element and metalloid element described above are, for example, one or more metal elements and metalloid elements capable of forming an alloy with Li. Specifically, for example, Mg, B, Al, Ga, In, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd, and Pt.
  • the coating layer included in the secondary battery negative electrode according to the first embodiment of the present technology is formed on the negative electrode active material powder.
  • the coating layer is formed on the negative electrode active material powder.
  • the coating layer may be formed on the entire surface of the negative electrode active material powder, or may be formed on at least a part of the surface of the negative electrode active material powder. Means good.
  • the coating layer may penetrate into the negative electrode active material powder.
  • the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
  • the hydrocarbon polymer may be any hydrocarbon polymer as long as it contains at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate and a carbonate.
  • the coating layer heat-treats a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer. It is preferable to include at least one selected from the group consisting of components formed by the above.
  • Components formed by heat-treating carboxymethylcellulose-based water-soluble polymer components formed by heat-treating polyacrylic acid-based water-soluble polymer, and formed by heat-treating methacrylic acid-based water-soluble polymer
  • Each of the components includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, and a carboxylate.
  • the coating layer preferably contains at least one selected from the group consisting of carboxymethylcellulose-based water-soluble polymers, polyacrylic acid-based water-soluble polymers, and methacrylic acid-based water-soluble polymers.
  • carboxymethylcellulose-based water-soluble polymer examples include carboxymethylcellulose acid, carboxymethylcellulose sodium salt, carboxymethylcellulose lithium salt, carboxymethylcellulose ammonium salt, and the like. It is a modified water-soluble polymer. Carboxymethylcellulose-based water-soluble polymer is subjected to a heat treatment to oxalic acid or oxalate (sodium salt, lithium salt), carbonate (sodium salt, lithium salt), hydrocarbon polymer containing carbonyl group, etc. Become.
  • polyacrylic acid-based water-soluble polymer examples include polyacrylic acid, sodium polyacrylate, lithium polyacrylate, ammonium polyacrylate, and the like.
  • the polyacrylic acid-based water-soluble polymer is subjected to a heat treatment to become a hydrocarbon polymer containing a carbonate (sodium salt, lithium salt), a carbonyl group, an acrylic group, or the like.
  • methacrylic acid-based water-soluble polymer examples include methacrylic acid, methyl methacrylate, ethyl methacrylate and the like, and are water-soluble polymers in which methacrylic acid itself or a part of methacrylic acid is modified with sodium or lithium. .
  • the methacrylic acid-based water-soluble polymer is subjected to a heat treatment to become a hydrocarbon polymer containing carbonate (sodium salt, lithium salt), carbonyl group or the like.
  • the coating layer preferably contains at least one selected from the group consisting of fibrous carbon, vapor grown carbon fiber, carbon nanotube, graphene, and powdered carbon. Fibrous carbon and powdered carbon are preferably conductive.
  • the coating layer preferably contains carboxylic acid, carboxylate, a mixture of carboxylic acid and carboxylate, carbonic acid, carbonate or a mixture of carbonic acid and carbonate. According to this preferred embodiment, ion conductivity can be improved, and an improvement effect in further charge / discharge cycle characteristics can be obtained.
  • the carboxylic acid is not particularly limited, but is preferably oxalic acid.
  • the carboxylate is not particularly limited, and examples thereof include sodium oxalate, lithium oxalate, and ammonium oxalate, and sodium oxalate or lithium oxalate is preferable.
  • the carbonate is not particularly limited but is preferably sodium carbonate or lithium carbonate.
  • the coating layer is obtained by mixing a hydrocarbon polymer containing at least one selected from the group consisting of ether bonds, carbonyl groups, carboxylic acids, carboxylates, carbonates and carbonates, negative electrode active material powders, etc. It can be obtained by drying and heat-treating in a paint state, pulverizing, sizing and forming.
  • the heat treatment is preferably performed in a high temperature atmosphere of 180 ° C. or higher and 350 ° C. or lower.
  • the coating layer is obtained by heat treatment, it has ionic conductivity, so it has a function as a pseudo solid-liquid interface (SEI) coating, is electrochemically stable, and has a physical mechanical strength, for example, Since it is stable against heat (heating) of about 40 ° C. to 90 ° C., it is less likely to break down or flow out, and exhibits good characteristics even under test conditions such as high temperature storage and high temperature cycling of the cell.
  • SEI pseudo solid-liquid interface
  • the negative electrode for secondary batteries of the first embodiment according to the present technology includes a binder.
  • a binder is not specifically limited, For example, any 1 type or 2 types or more, such as a synthetic rubber and a polymeric material, are included.
  • the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • the polymer material include polyvinylidene fluoride and polyimide.
  • PVDF polyvinylidene fluoride polymer
  • the binder is preferably contained inside the coating layer.
  • the coating layer containing the binder in the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate and a carbonate, a binder. It can be obtained by forming a powder, a negative electrode active material powder, etc., by drying and heat-treating them in a powder mixed or paint state, pulverizing and sizing.
  • the secondary battery negative electrode according to the first embodiment of the present technology preferably includes N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • a binder particularly N-methylpyrrolidone (NMP) having solubility of a polyvinylidene fluoride polymer can be used.
  • NMP N-methylpyrrolidone
  • PVDF polyvinylidene fluoride polymer
  • a secondary battery according to a second embodiment of the present technology includes at least a negative electrode for a secondary battery, a positive electrode for a secondary battery, and an electrolytic solution, and the negative electrode for a secondary battery includes a negative electrode active material powder and A coating layer formed on the negative electrode active material powder, and a binder, the coating layer comprising an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate. It is a secondary battery including a hydrocarbon polymer containing at least one selected.
  • the secondary battery of the second embodiment according to the present technology excellent battery characteristics can be obtained, and in particular, excellent cycle characteristics can be obtained. That is, according to the secondary battery of the first embodiment of the present technology, the problem is that the negative electrode is a water-based paint-formed negative electrode. Significant improvements can be made with respect to concerns about rapid cycle deterioration due to a decrease in the performance of collecting and releasing current accompanying discharge expansion and contraction.
  • side reaction such as gas generation due to side reaction with the reactive surface of the carbon surface by the coating layer is suppressed, ion conductivity is improved, mechanical and electrical
  • the negative electrode for secondary battery provided in the secondary battery according to the second embodiment of the present technology is as described above.
  • the secondary battery according to the second embodiment of the present technology includes a positive electrode for a secondary battery.
  • a positive electrode for a secondary battery For detailed examples of the positive electrode for secondary battery, the following ⁇ 4. An explanation will be given in the column “Example of Secondary Battery>.
  • the secondary battery according to the second embodiment of the present technology includes an electrolytic solution.
  • the electrolytic solution for detailed examples of the electrolytic solution, the following ⁇ 4. An explanation will be given in the column “Example of Secondary Battery>.
  • Example of secondary battery> an example of the secondary battery according to the second embodiment of the present technology will be described using the secondary battery described in FIGS. 1 to 4 as an example.
  • Example of secondary battery (cylindrical lithium ion secondary battery)> 1 and 2 show a cross-sectional configuration of the secondary battery. In FIG. 2, a part of the wound electrode body 20 shown in FIG. 1 is enlarged. Here, the negative electrode for secondary battery of the first embodiment described above is applied to the negative electrode 22.
  • the secondary battery described here is a lithium secondary battery (lithium ion secondary battery) in which the capacity of the negative electrode 22 is obtained by occlusion and release of Li (lithium ion), which is an electrode reactant, and is a so-called cylindrical type.
  • a pair of insulating plates 12 and 13 and a wound electrode body 20 are housed inside a hollow cylindrical battery can 11.
  • the wound electrode body 20 is wound, for example, after a positive electrode 21 and a negative electrode 22 are laminated via a separator 23.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened.
  • the battery can 11 is formed of one or more of iron, aluminum, and alloys thereof. Has been. Nickel or the like may be plated on the surface of the battery can 11.
  • the pair of insulating plates 12 and 13 are disposed so as to sandwich the wound electrode body 20, and extend perpendicular to the winding peripheral surface of the wound electrode body 20.
  • the battery lid 14 is formed of the same material as the battery can 11, for example.
  • the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16.
  • the disk plate 15 ⁇ / b> A is reversed to disconnect the electrical connection between the battery lid 14 and the wound electrode body 20. It is like that.
  • the thermal resistance element 16 prevents abnormal heat generation due to a large current, and the resistance of the thermal resistance element 16 increases as the temperature rises.
  • the gasket 17 is formed of, for example, an insulating material, and asphalt may be applied to the surface of the gasket 17.
  • a center pin 24 is inserted into the winding center of the wound electrode body 20.
  • a positive electrode lead 25 formed of a conductive material such as aluminum is connected to the positive electrode 21, and a negative electrode lead 26 formed of a conductive material such as nickel is connected to the negative electrode 22.
  • the positive electrode lead 25 is welded to the safety valve mechanism 15 and is electrically connected to the battery lid 14.
  • the negative electrode lead 26 is welded to the battery can 11 and is electrically connected to the battery can 11.
  • the positive electrode 21 has a positive electrode active material layer 21B on one surface or both surfaces of a positive electrode current collector 21A.
  • the positive electrode current collector 21A is formed of any one or more of conductive materials such as aluminum, nickel, and stainless steel, for example.
  • the positive electrode active material layer 21 ⁇ / b> B includes any one or more of lithium ion occluding and releasing materials as the positive electrode active material.
  • the positive electrode active material layer 21B may further include any one kind or two or more kinds of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode active material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
  • Lithium-containing composite oxide is an oxide containing lithium and one or more elements (hereinafter referred to as “other elements”, excluding lithium (Li)) as constituent elements, and is a layered rock salt A crystal structure of a type or a spinel type.
  • the “lithium-containing phosphate compound” is a phosphate compound containing lithium and one or more other elements as constituent elements and has an olivine type crystal structure.
  • the type of other element is not particularly limited as long as it is any one or more of arbitrary elements.
  • the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, the other element is more preferably any one or two or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). . This is because a high voltage can be obtained.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is preferably one or more of the compounds represented by formulas (21) to (23).
  • M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1 are satisfied.
  • the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.
  • M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8.
  • composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.
  • M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8.
  • lithium-containing composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • the lithium-containing composite oxide having a spinel crystal structure is preferably one or more of the compounds represented by formula (24).
  • M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9.
  • composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.
  • lithium-containing composite oxide having a spinel crystal structure examples include LiMn 2 O 4 .
  • the lithium-containing phosphate compound having an olivine-type crystal structure is preferably one or more of the compounds represented by formula (25).
  • Li a M15PO 4 (25) (M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ⁇ a ⁇ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
  • lithium-containing phosphate compound having an olivine type crystal structure examples include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • lithium-containing composite oxide may be one kind or two or more kinds of compounds represented by the formula (26).
  • the positive electrode binder contains, for example, any one kind or two kinds or more of synthetic rubber and polymer material. Fluorine rubber, ethylene propylene diene, etc.
  • the polymer material include polyvinylidene fluoride and polytetrafluoroethylene, a copolymer of vinylidene fluoride and hexafluoropyrene, polyacrylonitrile, polyacrylic acid polymer polyimide, and the like.
  • the positive electrode conductive agent includes, for example, one or more of carbon materials.
  • the carbon material include graphite, carbon black, acetylene black, and ketjen black.
  • the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as the material has conductivity.
  • the cathode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like.
  • oxide include titanium oxide, vanadium oxide, and manganese dioxide.
  • disulfide include titanium disulfide and molybdenum sulfide.
  • chalcogenide is niobium selenide.
  • conductive polymer include sulfur, polyaniline, and polythiophene.
  • the positive electrode material is not limited to the series of materials described above, and may be other materials.
  • the negative electrode 22 has a negative electrode active material layer 22B on one surface or both surfaces of a negative electrode current collector 22A.
  • the negative electrode current collector 22A is formed of, for example, one or more of conductive materials such as copper, nickel, and stainless steel.
  • the surface of the negative electrode current collector 22A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 22B to the negative electrode current collector 22A. In this case, the surface of the negative electrode current collector 22A only needs to be roughened at least in a region facing the negative electrode active material layer 22B.
  • the roughening method is, for example, a method of forming fine particles using electrolytic treatment. This electrolytic treatment is a method of forming irregularities on the surface of the negative electrode current collector 22A by forming fine particles on the surface of the negative electrode current collector 22A using an electrolysis method in an electrolytic cell.
  • a copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 22B In order to prevent lithium metal from unintentionally depositing on the negative electrode 22 during charging, the negative electrode active material layer 22B generally has a larger chargeable capacity of the negative electrode material than the discharge capacity of the positive electrode 21. It is preferable. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing Li is preferably larger than the electrochemical equivalent of the positive electrode 21.
  • the negative electrode active material layer 22 may include any one kind or two or more kinds of metal oxides and polymer compounds, for example.
  • the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • the negative electrode material is not limited to the series of materials described above, and may be other materials.
  • the negative electrode active material layer 22B is formed by any one method or two or more methods such as a coating method, a gas phase method, a liquid phase method, a thermal spraying method, and a firing method (sintering method).
  • the application method is, for example, a method in which a negative electrode active material in the form of particles (powder) is mixed with a negative electrode binder and then dispersed in a solvent such as an organic solvent and then applied to the negative electrode current collector 22A.
  • the vapor phase method include a physical deposition method and a chemical deposition method.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
  • the liquid phase method include an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 22A.
  • the firing method is, for example, a method of applying a heat treatment at a temperature higher than the melting point of the negative electrode binder or the like after being applied to the negative electrode current collector 22A using a coating method.
  • this firing method for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be used.
  • the electrochemical equivalent of the negative electrode material capable of occluding and releasing Li is the electric charge of the positive electrode. It is preferably larger than the chemical equivalent.
  • the open circuit voltage that is, the battery voltage
  • lithium ions are released per unit mass even when the same positive electrode active material is used as compared with the case of 4.2 V. Since the amount increases, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density can be obtained.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22, thereby allowing lithium ions to pass through while preventing a short circuit of current caused by contact between the two electrodes.
  • the separator 23 is, for example, a porous film such as a synthetic resin and ceramic, and may be a laminated film in which two or more kinds of porous films are laminated.
  • the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
  • the separator 23 may have, for example, a polymer compound layer on one side or both sides of the above-described porous film (base material layer). This is because the adhesion of the separator 23 to the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the wound electrode body 20 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is not easily increased even if charging and discharging are repeated, and the battery swelling is also suppressed. Is done.
  • the polymer compound layer includes, for example, a polymer material such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
  • the polymer material may be a polymer material other than polyvinylidene fluoride.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.
  • This electrolytic solution contains a solvent and an electrolyte salt, and may further contain other materials such as additives.
  • the solvent includes one or more of non-aqueous solvents such as organic solvents.
  • non-aqueous solvent include a cyclic carbonate ester, a chain carbonate ester, a lactone, a chain carboxylate ester, and a nitrile. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate
  • examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • lactone include ⁇ -butyrolactone and ⁇ -valerolactone.
  • carboxylic acid ester examples include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate.
  • Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • non-aqueous solvents include, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide. This is because similar advantages can be obtained.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are preferred. This is because better battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ⁇ 1 mPas).
  • -A combination with s is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the solvent may contain one kind or two or more kinds of unsaturated cyclic carbonate, halogenated carbonate, sultone (cyclic sulfonate) and acid anhydride.
  • unsaturated cyclic carbonate is a cyclic carbonate having one or more unsaturated bonds (carbon-carbon double bonds), and examples thereof include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate.
  • halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element.
  • Examples of cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • Examples of the chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
  • Examples of sultone include propane sultone and propene sultone.
  • Examples of the acid anhydride include succinic anhydride, ethanedisulfonic anhydride, and anhydrous sulfobenzoic acid.
  • the solvent is not limited to the series of materials described above, and other materials may be used.
  • the electrolyte salt includes, for example, one or more of salts such as lithium salt.
  • the electrolyte salt may contain a salt other than the lithium salt, for example.
  • This other salt is, for example, a light metal salt other than a lithium salt.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetraphenyl.
  • Lithium borate LiB (C 6 H 5 ) 4
  • lithium methanesulfonate LiCH 3 SO 3
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium tetrachloroaluminate LiAlCl 4
  • hexafluoride examples include dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • LiPF 6 LiBF 4 , LiClO 4 and LiAsF 6 is preferable, and LiPF 6 is more preferable. This is because a higher effect can be obtained because the internal resistance is lowered.
  • the electrolyte salt is not limited to the series of materials described above, and may be other materials.
  • the content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
  • This secondary battery operates as follows, for example. At the time of charging, lithium ions released from the positive electrode 21 are occluded in the negative electrode 22 through the electrolytic solution. On the other hand, at the time of discharge, lithium ions released from the negative electrode 22 are occluded in the positive electrode 21 through the electrolytic solution.
  • the secondary battery it is desirable to increase the charging voltage in order to release more lithium. More specifically, it is preferable to charge the secondary battery to a voltage (for example, 4.6 V) equal to or higher than 4.4 V (standard potential for lithium metal).
  • This secondary battery is manufactured by the following procedure, for example.
  • the positive electrode 21 is manufactured.
  • the above-described active material for a secondary battery which is a positive electrode active material, and a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture.
  • the positive electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry.
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A and then dried to form the positive electrode active material layer 21B.
  • the positive electrode active material layer 21B is compression molded using a roll press machine or the like. In this case, compression molding may be performed while heating, or compression molding may be repeated a plurality of times.
  • the negative electrode 22 is produced by the same procedure as that of the positive electrode 21 described above.
  • a negative electrode mixture in which a negative electrode active material, a negative electrode binder, a negative electrode conductive agent, and the like are mixed is dispersed in an organic solvent or the like to obtain a paste-like negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A and then dried to form the negative electrode active material layer 22B, and then the negative electrode active material layer 22B is compression molded.
  • a secondary battery is assembled using the positive electrode 21 and the negative electrode 22.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A using a welding method or the like
  • the negative electrode lead 26 is attached to the negative electrode current collector 22A using a welding method or the like.
  • the center pin 24 is inserted into the winding center.
  • the wound electrode body 20 is accommodated in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13.
  • the tip of the positive electrode lead 25 is attached to the safety valve mechanism 15 using a welding method or the like, and the tip of the negative electrode lead 26 is attached to the battery can 11 using a welding method or the like.
  • an electrolytic solution in which an electrolyte salt is dispersed in a solvent is injected into the battery can 11 and impregnated in the separator 23.
  • the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are caulked to the opening end portion of the battery can 11 through the gasket 17.
  • the positive electrode active material layer 21B of the positive electrode 21 includes the above-described secondary battery active material as the positive electrode active material. Therefore, it is possible to more smoothly occlude and release Li while improving the energy density. Therefore, a higher battery capacity can be obtained.
  • FIG. 3 shows an exploded perspective configuration of another secondary battery
  • FIG. 4 is an enlarged cross-sectional view taken along line IV-IV of the spirally wound electrode body 30 shown in FIG.
  • FIG. 3 shows a state in which the spirally wound electrode body 30 and the two exterior members 40 are separated from each other.
  • the components of the cylindrical secondary battery already described will be referred to as needed.
  • the negative electrode for secondary battery of the first embodiment described above is applied to the negative electrode 34.
  • the secondary battery described here is a so-called laminate film type lithium ion secondary battery.
  • the wound electrode body 30 is housed in a film-shaped exterior member 40. Yes.
  • the wound electrode body 30 is wound after the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and the electrolyte layer 36.
  • a positive electrode lead 31 is attached to the positive electrode 33, and a negative electrode lead 32 is attached to the negative electrode 34.
  • the outermost peripheral part of the wound electrode body 30 is protected by a protective tape 37.
  • the positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example.
  • the positive electrode lead 31 is formed of a conductive material such as aluminum
  • the negative electrode lead 32 is formed of a conductive material such as copper, nickel, or stainless steel. These conductive materials have, for example, a thin plate shape or a mesh shape.
  • the exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
  • the exterior member 40 is obtained by, for example, laminating two laminated films so that the fusion layer faces the spirally wound electrode body 30 and then fusing the outer peripheral edges of the fusion layers. .
  • the two laminated films may be bonded together with an adhesive or the like.
  • the fusion layer is, for example, a film made of polyethylene or polypropylene.
  • the metal layer is, for example, an aluminum foil.
  • the surface protective layer is, for example, a film such as nylon and polyethylene terephthalate.
  • the exterior member 40 is an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • an adhesion film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32, for example, an adhesion film 41 is inserted to prevent intrusion of outside air.
  • the adhesion film 41 is formed of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32.
  • the adhesive material is, for example, a polyolefin resin, and more specifically, polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
  • the positive electrode 33 has, for example, a positive electrode active material layer 33B on both surfaces of the positive electrode current collector 33A
  • the negative electrode 34 has, for example, a negative electrode active material layer 34B on both surfaces of the negative electrode current collector 34A.
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode active material layer.
  • the configuration is the same as 22B. That is, the positive electrode active material layer 33 ⁇ / b> B of the positive electrode 33 that is a secondary battery electrode contains the above-described secondary battery active material as the positive electrode active material.
  • the configuration of the separator 35 is the same as the configuration of the separator 23.
  • the electrolyte layer 36 is a so-called gel electrolyte in which an electrolytic solution is held by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented.
  • the electrolyte layer 36 may further contain other materials such as additives.
  • the polymer compound includes one kind or two or more kinds of polymer materials.
  • This polymeric material is, for example, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, poly Examples thereof include methyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate.
  • the polymer material may be a copolymer.
  • This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
  • polyvinylidene fluoride and a copolymer of vinylidene fluoride and hexafluoropyrene are preferable, and polyvinylidene fluoride is more preferable. This is because it is electrochemically stable.
  • the composition of the electrolytic solution is the same as that of the cylindrical type, for example.
  • the solvent of the electrolytic solution is a wide concept including not only a liquid solvent but also a material having ion conductivity capable of dissociating the electrolyte salt. Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the solvent.
  • the separator 35 is impregnated with the electrolytic solution.
  • This secondary battery operates as follows, for example. During charging, lithium ions released from the positive electrode 33 are occluded in the negative electrode 34 through the electrolyte layer 36. On the other hand, at the time of discharging, lithium ions released from the negative electrode 34 are occluded in the positive electrode 33 through the electrolyte layer 36. Even in this case, it is desirable to increase the charging voltage in order to release more lithium. More specifically, it is preferable to set the charging voltage to a voltage (for example, 4.6 V) equal to or higher than 4.4 V (vs. lithium metal standard potential).
  • a voltage for example, 4.6 V
  • the secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
  • the positive electrode 33 and the negative electrode 34 are manufactured by the same manufacturing procedure as that of the positive electrode 21 and the negative electrode 22.
  • the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A to produce the positive electrode 33
  • the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
  • the precursor solution is applied to the positive electrode 33 and the negative electrode 34 to form a gel electrolyte layer 36.
  • the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like
  • the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like.
  • a protective tape 37 is attached to the outermost periphery.
  • the outer peripheral edge portions of the exterior members 40 are bonded to each other using a heat fusion method or the like.
  • the spirally wound electrode body 30 is sealed inside. In this case, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40.
  • the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 52 is attached to the negative electrode 34.
  • the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to produce a wound body that is a precursor of the wound electrode body 30, and then a protective tape 37 is provided on the outermost peripheral portion thereof.
  • a protective tape 37 is provided on the outermost peripheral portion thereof.
  • the wound body is arranged between the two film-like exterior members 40, the remaining outer peripheral edge portion excluding the outer peripheral edge portion on one side is bonded by using a heat sealing method or the like, and the bag The wound body is housed inside the shaped exterior member 40.
  • an electrolytic solution is prepared by mixing an electrolyte, a monomer that is a raw material of the polymer compound, a polymerization initiator, and another material such as a polymerization inhibitor.
  • the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • the monomer is thermally polymerized to form a polymer compound.
  • the polymer compound is impregnated with the electrolytic solution, and the polymer compound gels, so that the electrolyte layer 36 is formed.
  • a wound body is produced and stored in the bag-shaped exterior member 40 in the same manner as in the second procedure described above, except that the separator 35 coated with the polymer compound on both sides is used.
  • the polymer compound applied to the separator 35 is, for example, a polymer (a homopolymer, a copolymer, and a multi-component copolymer) containing vinylidene fluoride as a component.
  • the homopolymer is, for example, polyvinylidene fluoride.
  • the copolymer is, for example, a binary copolymer containing vinylidene fluoride and hexafluoropropylene as components.
  • the multi-component copolymer is, for example, a ternary copolymer containing vinylidene fluoride, hexafluoropropylene, and chlorotrifluoroethylene as components.
  • one or more other polymer compounds may be used.
  • the electrolytic solution is prepared and injected into the exterior member 40
  • the opening of the exterior member 40 is sealed using a thermal fusion method or the like.
  • the exterior member 40 is heated while applying a load, and the separator 35 is brought into close contact with the positive electrode 33 and the negative electrode 34 through the polymer compound.
  • the polymer compound is impregnated with the electrolytic solution, and the polymer compound gels, so that the electrolyte layer 36 is formed.
  • the positive electrode active material layer 33B of the positive electrode 33 contains the above-described secondary battery active material as the positive electrode active material, and therefore, excellent for the same reason as in the case of the cylindrical type. Battery characteristics can be obtained. Other operations and effects are the same as in the case of the cylindrical type.
  • the secondary battery can be used for machines, devices, instruments, devices, and systems (a collection of multiple devices) that can use the secondary battery as a power source for driving or a power storage source for storing power.
  • the ion secondary battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of or switched from the main power source).
  • a main power source a power source used preferentially
  • auxiliary power source a power source used in place of or switched from the main power source.
  • the type of main power source is not limited to the secondary battery.
  • the usage of the secondary battery is, for example, as follows.
  • Electronic devices including portable electronic devices
  • portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
  • It is a portable living device such as an electric shaver.
  • Storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack used for a notebook computer or the like as a detachable power source.
  • Medical electronic devices such as pacemakers and hearing aids.
  • An electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, applications other than those described above may be used.
  • the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like.
  • the battery pack is a power source using a secondary battery, and is a so-called assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above.
  • the power storage system is a system that uses a secondary battery as a power storage source.
  • a secondary battery which is a power storage source
  • An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source.
  • An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
  • the battery pack according to the third embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology, a control unit that controls a usage state of the secondary battery, and an instruction from the control unit. And a switch unit that switches a usage state of the secondary battery.
  • the battery pack according to the third embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, which leads to an improvement in the performance of the battery pack.
  • FIG. 5 shows a block configuration of the battery pack.
  • This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, and a voltage detection unit inside a housing 60 formed of a plastic material or the like. 66, a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, a positive terminal 71 and a negative terminal 72.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62), and includes, for example, a central processing unit (CPU).
  • the power source 62 includes one or more secondary batteries (not shown).
  • the power source 62 is, for example, an assembled battery including two or more secondary batteries, and the connection form of these secondary batteries may be in series, in parallel, or a mixture of both.
  • the power source 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) according to an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode (all not shown), and the like.
  • the charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.
  • the current measurement unit 64 measures current using the current detection resistor 70 and outputs the measurement result to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
  • the switch control unit 67 controls the operation of the switch unit 63 in accordance with signals input from the current measurement unit 64 and the voltage detection unit 66.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) and controls the charging current not to flow through the current path of the power source 62. .
  • the power source 62 can only discharge through the discharging diode.
  • the switch control unit 67 is configured to cut off the charging current when a large current flows during charging, for example.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. .
  • the power source 62 can only be charged via the charging diode.
  • the switch control unit 67 is configured to cut off the discharge current when a large current flows during discharging.
  • the overcharge detection voltage is 4.2V ⁇ 0.05V, and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the memory 68 is, for example, an EEPROM which is a nonvolatile memory.
  • the memory 68 stores, for example, numerical values calculated by the control unit 61 and information (for example, internal resistance in the initial state) of the secondary battery measured in the manufacturing process stage. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
  • the temperature detection element 69 measures the temperature of the power supply 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.
  • the positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack, an external device (for example, a charger) used to charge the battery pack, or the like. Terminal. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.
  • an external device for example, a notebook personal computer
  • an external device for example, a charger
  • the electric vehicle according to the fourth embodiment of the present technology includes a secondary battery according to the second embodiment of the present technology, a conversion unit that converts electric power supplied from the secondary battery into driving power, and driving power. It is an electric vehicle provided with the drive part driven according to this and the control part which controls the use condition of a multivalent ion secondary battery. Since the electric vehicle according to the fourth embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, the performance of the electric vehicle is improved.
  • FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • This electric vehicle can run using, for example, either the engine 75 or the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81 which are driving units.
  • the rotational force of the engine 75 is also transmitted to the generator 79, and the generator 79 generates AC power using the rotational force.
  • the AC power is converted into DC power via the inverter 83, and the power source 76.
  • the motor 77 which is the conversion unit when used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and the motor 77 is driven using the AC power. .
  • the driving force (rotational force) converted from electric power by the motor 77 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81, which are driving units.
  • the resistance force at the time of deceleration is transmitted as a rotational force to the motor 77, and the motor 77 generates AC power using the rotational force. Good.
  • This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the power source 76.
  • the control unit 74 controls the operation of the entire electric vehicle and includes, for example, a CPU.
  • the power source 76 includes one or more secondary batteries (not shown).
  • the power source 76 may be connected to an external power source and can store power by receiving power supply from the external power source.
  • the various sensors 84 are used to control the opening of a throttle valve (not shown) (throttle opening) by controlling the rotational speed of the engine 75, for example.
  • the various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
  • the power storage system according to the fifth embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology, one or more electric devices to which power is supplied from the secondary battery, and a secondary battery. And a control unit that controls power supply from the battery to the electric device. Since the power storage system of the fifth embodiment according to the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, the power storage performance is improved.
  • FIG. 7 shows a block configuration of the power storage system.
  • This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house and a commercial building.
  • the power source 91 is connected to, for example, an electric device 94 installed inside the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89.
  • the power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and can be connected to an external centralized power system 97 via the smart meter 92 and the power hub 93. It has become.
  • the electric device 94 includes, for example, one or more home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater.
  • the private power generator 95 is, for example, any one type or two or more types such as a solar power generator and a wind power generator.
  • the electric vehicle 96 is, for example, one type or two or more types such as an electric vehicle, an electric motorcycle, and a hybrid vehicle.
  • the centralized electric power system 97 is, for example, one type or two or more types such as a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91), and includes, for example, a CPU.
  • the power source 91 includes one or more secondary batteries (not shown).
  • the smart meter 92 is, for example, a network-compatible power meter installed in a power consumer's house 89 and can communicate with the power supplier. Accordingly, for example, the smart meter 92 enables efficient and stable energy supply by controlling the balance between supply and demand in the house 89 while communicating with the outside.
  • the power storage system for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and the power hub 93 is connected from the solar power generator 95 that is an independent power source. Power is accumulated in the power source 91 through the power source 91. Since the electric power stored in the power source 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, the electric device 94 can be operated and the electric vehicle 96 can be charged. . In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
  • the power stored in the power supply 91 can be used arbitrarily. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the amount of electricity used is low, and the power stored in the power source 91 is used during the day when the amount of electricity used is high. it can.
  • the power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
  • the electric tool of 6th Embodiment which concerns on this technique is an electric tool provided with the secondary battery of 2nd Embodiment which concerns on this technique, and the movable part to which electric power is supplied from a secondary battery. Since the electric tool of the sixth embodiment according to the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, the performance of the electric tool is improved.
  • FIG. 8 shows a block configuration of the electric tool.
  • This electric tool is, for example, an electric drill, and includes a control unit 99 and a power supply 100 inside a tool main body 98 formed of a plastic material or the like.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100), and includes, for example, a CPU.
  • the power supply 100 includes one or more secondary batteries (not shown).
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to an operation switch (not shown).
  • the electronic device of 7th Embodiment which concerns on this technique is an electronic device provided with the secondary battery of 2nd Embodiment which concerns on this technique as an electric power supply source.
  • the electronic device according to the tenth embodiment of the present technology is a device that exhibits various functions using the secondary battery as a driving power source (power supply source).
  • the electronic device according to the seventh embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, which leads to an improvement in performance of the electronic device.
  • the effect of the present technology should be obtained without depending on the type of electrode reactant if it is an electrode reactant used in a secondary battery. An effect can be obtained.
  • the present technology may have the following configurations.
  • Negative electrode active material powder A coating layer formed on the negative electrode active material powder; A binder, and A negative electrode for a secondary battery, wherein the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
  • the coating layer is a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer
  • the negative electrode for secondary batteries as described.
  • the covering layer includes at least one selected from the group consisting of fibrous carbon, vapor grown carbon fiber, carbon nanotube, graphene, and powdered carbon, according to any one of [1] to [3].
  • Negative electrode for secondary battery [5] The negative electrode for a secondary battery according to any one of [1] to [4], wherein the coating layer contains a carboxylic acid and / or a carboxylate. [6] The negative electrode for a secondary battery according to [5], wherein the carboxylate is sodium oxalate or lithium oxalate. [7] The negative electrode for a secondary battery according to any one of [1] to [6], wherein the binder is contained in the coating layer.
  • a negative electrode for a secondary battery; A positive electrode for a secondary battery; An electrolyte solution, The negative electrode for a secondary battery comprises a negative electrode active material powder, A coating layer formed on the negative electrode active material powder; A binder, and The secondary battery, wherein the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
  • the secondary battery negative electrode according to any one of A positive electrode for a secondary battery; A secondary battery comprising at least an electrolytic solution.
  • a conversion unit that converts electric power supplied from the secondary battery into a driving force, and a driving unit that is driven according to the driving force; And a control unit that controls a usage state of the secondary battery.
  • [16] [11] or the secondary battery according to [12] And a movable part to which electric power is supplied from the secondary battery.
  • An electronic device comprising the secondary battery according to [12] as a power supply source.
  • the secondary battery negative electrode is formed by forming a coating layer on the surface of the negative electrode active material powder, and after coating, drying and rolling on a copper foil current collector foil with a roll press to a predetermined width A slit was made to obtain a negative electrode for a secondary battery for winding an electrode element.
  • a positive electrode for a secondary battery uses a polyvinylidene fluoride polymer (hereinafter sometimes referred to as PVDF), a positive electrode active material, and a conductive material in an N-methylpyrrolidone (hereinafter sometimes referred to as NMP) solvent. After forming a paint, an aluminum current collector foil was used to obtain a positive electrode by an electrode preparation method similar to that of the negative electrode.
  • PVDF polyvinylidene fluoride polymer
  • NMP N-methylpyrrolidone
  • ⁇ Cycle evaluation method> The test conditions were the following severe low-temperature (0 ° C.) cycle evaluation, which was the most severe cycle evaluation due to Li precipitation.
  • the test conditions were as follows: the following charge / discharge cycle was performed, and the following second step low-temperature cycle capacity was derived as a maintenance factor when the capacity at the initial 10 cycles was set to 100, and summarized in Table 1 below.
  • Graphite powder is used as the main active material, and as a method for forming the coating layer, a carboxymethyl cellulose-based water-soluble polymer (hereinafter sometimes referred to as CMC) 1% aqueous solution (Serogen 4H, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Kneaded, transferred to a predetermined metal container, roughly dried at 100 ° C, then heat treated (vacuum heat treatment device) at 300 ° C for 24 hours to thermally denature CMC, and at the same time completely remove the adsorbed water A first coating layer was formed.
  • CMC carboxymethyl cellulose-based water-soluble polymer
  • Serogen 4H manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Example 2 A secondary battery-2 was produced in the same manner as in Example 1 except that the PVDF powder was mixed in the CMC aqueous solution as the method for forming the coating layer described in Example 1.
  • Example 3 A secondary battery-3 was produced in the same manner as in Example 1 except that the coating layer formation method described in Example 1 was mixed with CMC aqueous solution and Li oxalate powder.
  • Example 1 A secondary battery A was fabricated in the same manner as in Example 1 except that the coating layer described in Example 1 was not formed.
  • Example 2 The film layer described in Example 1 was not formed, and a copper foil current collector was prepared by using a water-soluble dispersion of CMC aqueous solution and styrene-butadiene rubber (hereinafter sometimes referred to as SBR) as an electrode paint.
  • SBR styrene-butadiene rubber
  • a secondary battery B was prepared in the same manner as in Example 1 except for the case after coating and drying on the foil.
  • Example 4 A secondary battery 4 was produced in the same manner as in Example 1 except that a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder was used as the main active material.
  • Example 5 A secondary battery-5 was produced in the same manner as in Example 2 except that the main active material was a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder.
  • Example 6 A secondary battery-6 was produced in the same manner as in Example 3 except that a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder was used as the main active material.
  • a secondary battery C was produced in the same manner as in Comparative Example 1 except that the main active material was a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder.
  • a secondary battery D was produced in the same manner as in Comparative Example 2 except that the main active material was a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder.
  • FIG. 1 shows the capacity for the 0 ° C. cycle and the 23 ° C. cycle for Example 1 (secondary battery-1), Example 3 (secondary battery-3), and Comparative Example 1 (secondary battery-A). The relationship between a maintenance rate (%) and the number of cycles (times) is shown.
  • Examples 1 to 3 (secondary battery-1 to secondary battery-3) having a coating layer formed thereon were compared with Comparative Examples 1 to 2 (secondary battery-A) having no coating layer. As a result, the cycle capacity retention rate (%) at 50 ° C. for 50 cycles was higher than that of the secondary battery-B).
  • Examples 1 to 3 (secondary battery-1 to secondary battery-3) are compared to Comparative Example 1 (secondary battery-A).
  • the cycle capacity retention rate at 50 ° C. at 50 ° C. was high, and the low-temperature cycle characteristics were good.
  • the cycle capacity retention rate (%) at 0 ° C. and 50 cycles was compared, the difference in the presence or absence of the coating layer became more remarkable. That is, Examples 4 to 6 (secondary battery-4 to secondary battery-6) having a coating layer are Comparative Examples 3 to 4 (secondary battery-C to secondary battery-D) having no coating layer.
  • the cycle capacity retention rate (%) at 50 ° C. and 50 cycles was high.
  • Examples 4 to 6 (secondary battery-4 to secondary battery-6) having a coating layer were used in Comparative Example 4 (secondary battery-D) in which the paint system forming the negative electrode mixture was water CMC. However, the difference was more dominant.
  • the present invention is not limited thereto.
  • the secondary battery of the present technology can be applied to cases having other battery structures such as a square type, a coin type, and a button type, and also applicable to cases where the battery element has another structure such as a laminated structure. It is.
  • the electrode reactant may be other group 1 elements such as sodium (Na) and potassium (K) in addition to lithium (Li), or group 2 elements such as magnesium (Mg) and calcium (Ca).
  • group 1 elements such as sodium (Na) and potassium (K) in addition to lithium (Li)
  • group 2 elements such as magnesium (Mg) and calcium (Ca).
  • other light metals such as aluminum (Al) and sulfur (S) may be used. Since the effect of the present technology should be obtained without depending on the type of the electrode reactant, the same effect can be obtained even if the type of the electrode reactant is changed.
  • SYMBOLS 11 Battery can, 20, 30 ... Winding electrode body, 21, 33 ... Positive electrode, 21A, 33A ... Positive electrode collector, 21B, 33B ... Positive electrode active material layer, 22, 34 ... Negative electrode, 22A, 34A ... Negative electrode collection Electrical body, 22B, 34B ... negative electrode active material layer, 23, 35 ... separator, 36 ... electrolyte layer, 40 ... exterior member.

Abstract

A secondary battery negative electrode is provided which can achieve excellent battery characteristics. This secondary battery negative electrode contains a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binding agent, wherein the coating layer contains a hydrocarbon polymer which contains at least one item selected from the group consisting of ether bonds, carbonyl groups, carboxylic acid, carboxylic acid salts, carbonic acid and carbonic acid salts.

Description

二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
 本技術は二次電池用負極及び二次電池に関する。より詳しくは、本技術は、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器に関する。 This technology relates to a negative electrode for a secondary battery and a secondary battery. More specifically, the present technology relates to a negative electrode for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
 近年、ビデオカメラ、デジタルスチルカメラ、携帯電話あるいはノートパソコンなどのポータブル電子機器が広く普及しており、その小型化、軽量化および長寿命化が強く求められている。これに伴い、電源として電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。 In recent years, portable electronic devices such as video cameras, digital still cameras, mobile phones, and notebook computers have become widespread, and their miniaturization, weight reduction, and long life have been strongly demanded. Along with this, development of batteries as power sources, particularly secondary batteries that are small and lightweight and capable of obtaining a high energy density, is underway.
 中でも、充放電反応としてリチウムイオンの吸蔵放出を利用するリチウムイオン二次電池や、リチウム金属の析出溶解を利用するリチウム金属二次電池などは、大いに期待されている。鉛電池およびニッケルカドミウム電池よりも高いエネルギー密度が得られるからである。 In particular, lithium ion secondary batteries that use the insertion and release of lithium ions as charge / discharge reactions and lithium metal secondary batteries that use lithium metal precipitation and dissolution are highly expected. This is because an energy density higher than that of the lead battery and the nickel cadmium battery can be obtained.
 最近では、軽量かつ高エネルギー密度であるという利点が電気自動車およびハイブリッド電気自動車などの自動車用途に適していることから、二次電池の大型化および高出力化を目指した研究も盛んに行われている。 Recently, since the advantages of light weight and high energy density are suitable for automobile applications such as electric vehicles and hybrid electric vehicles, research aimed at increasing the size and output of secondary batteries has been actively conducted. Yes.
 例えば、炭素材料(A)に2層以上の高分子層を積層した非水電解液二次電池用炭素材料であって、少なくとも水溶性高分子(B)を含む組成物からなる層及び非水溶性高分子(C)を含む組成物からなる層を順に積層してなる非水電解液二次電池用炭素材料(D)が提案されている(特許文献1を参照)。特許文献1で提案された技術によれば、高容量、かつ、ガス発生量を少ない、非水電解質二次電池を提供することができる。 For example, a carbon material for a non-aqueous electrolyte secondary battery in which two or more polymer layers are laminated on a carbon material (A), and a layer made of a composition containing at least a water-soluble polymer (B) and a water-insoluble solution A carbon material (D) for a non-aqueous electrolyte secondary battery in which layers made of a composition containing a conductive polymer (C) are sequentially laminated has been proposed (see Patent Document 1). According to the technique proposed in Patent Document 1, it is possible to provide a non-aqueous electrolyte secondary battery with a high capacity and a small amount of gas generation.
特許5540826号Japanese Patent No. 5540826
 しかしながら、当該技術分野では、特許文献1で提案された技術による二次電池よりも、更に、電池特性を向上させた二次電池が望まれているのが現状である。 However, in the present technical field, a secondary battery with improved battery characteristics is desired more than the secondary battery based on the technique proposed in Patent Document 1.
 そこで、本技術は、このような状況に鑑みてなされたものであり、優れた電池特性に寄与することができる二次電池用負極及び優れた電池特性を有する二次電池、並びにその二次電池を備える電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器を提供することを主目的とする。 Therefore, the present technology has been made in view of such a situation, and a negative electrode for a secondary battery that can contribute to excellent battery characteristics, a secondary battery having excellent battery characteristics, and the secondary battery. A battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device.
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、二次電池用負極に被膜層を設けることによって、驚くべきことに、電池特性を飛躍的に向上させることに成功し、本技術を完成するに至った。 As a result of intensive studies to solve the above-mentioned object, the present inventors have surprisingly succeeded in dramatically improving battery characteristics by providing a coating layer on the secondary battery negative electrode. And this technology was completed.
 すなわち、本技術では、負極活物質粉体と、該負極活物質粉体上に形成される被膜層と、結着剤と、を含み、該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池用負極を提供する。 That is, the present technology includes a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binder, and the coating layer includes an ether bond, a carbonyl group, a carboxylic acid, Provided is a negative electrode for a secondary battery comprising a hydrocarbon polymer containing at least one selected from the group consisting of carboxylate, carbonate and carbonate.
 前記被膜層が、カルボキシメチルセルロース系水溶性高分子を熱処理することよって形成される成分、ポリアクリル酸系水溶性高分子を熱処理することよって形成される成分、及びメタクリル酸系水溶性高分子を熱処理することよって形成される成分から成る群から選ばれる少なくとも1種を含んでもよい。
 前記被膜層が、カルボキシメチルセルロース系水溶性高分子、ポリアクリル酸系水溶性高分子、及びメタクリル酸系水溶性高分子から成る群から選ばれる少なくとも1種を含んでもよい。
 前記被覆層が、繊維状炭素、気相成長炭素繊維、カーボンナノチューブ、グラフェン、及び粉末状炭素から成る群から選ばれる少なくとも1種を含んでもよい。
 前記被覆層がカルボン酸及び/又はカルボン酸塩を含んでもよい。
 前記カルボン酸塩がシュウ酸ナトリウム又はシュウ酸リチウムでもよい。
The coating layer is a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer Thus, at least one selected from the group consisting of components formed may be included.
The coating layer may include at least one selected from the group consisting of a carboxymethylcellulose-based water-soluble polymer, a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer.
The coating layer may include at least one selected from the group consisting of fibrous carbon, vapor grown carbon fiber, carbon nanotube, graphene, and powdered carbon.
The coating layer may include a carboxylic acid and / or a carboxylate.
The carboxylate may be sodium oxalate or lithium oxalate.
 前記結着剤が前記被膜層の内部に含まれていてもよい。また、前記結着剤がポリフッ化ビニリデン重合体でもよい。 The binder may be included in the coating layer. The binder may be a polyvinylidene fluoride polymer.
 負極活物質粉体が炭素系材料及び/又はケイ素系材料を含んでもよい。 The negative electrode active material powder may contain a carbon-based material and / or a silicon-based material.
 前記二次電池用負極がN-メチルピロリドンを含んでもよい。 The negative electrode for a secondary battery may contain N-methylpyrrolidone.
 また、本技術では、二次電池用負極と、二次電池用正極と、電解液と、を少なくとも備え、該二次電池用負極が、負極活物質粉体と、該負極活物質粉体上に形成される被膜層と、結着剤と、を含み、該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池を提供する。 Further, the present technology includes at least a negative electrode for a secondary battery, a positive electrode for a secondary battery, and an electrolytic solution, and the negative electrode for a secondary battery includes a negative electrode active material powder and a negative electrode active material powder on the negative electrode active material powder. A coating layer and a binder, and the coating layer contains at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate. A secondary battery including a hydrocarbon polymer is provided.
 本技術では、本技術に係る二次電池と、該二次電池の使用状態を制御する制御部と、該制御部の指示に応じて該多価イオン二次電池の使用状態を切り換えるスイッチ部と、を備える、電池パックを提供する。
 また、本技術では、本技術に係る二次電池と、該二次電池から供給された電力を駆動力に変換する変換部と、該駆動力に応じて駆動する駆動部と、該二次電池の使用状態を制御する制御部と、を備える、電動車両を提供する。
 さらに、本技術では、本技術に係る二次電池と、該二次電池から電力が供給される1または2以上の電気機器と、該二次電池からの該電気機器に対する電力供給を制御する制御部と、を備える、電力貯蔵システムを提供する。
In the present technology, a secondary battery according to the present technology, a control unit that controls a usage state of the secondary battery, and a switch unit that switches a usage state of the multivalent ion secondary battery according to an instruction of the control unit, A battery pack is provided.
Further, in the present technology, the secondary battery according to the present technology, a conversion unit that converts electric power supplied from the secondary battery into a driving force, a driving unit that is driven according to the driving force, and the secondary battery An electric vehicle comprising: a control unit that controls a use state of the vehicle.
Furthermore, in the present technology, the secondary battery according to the present technology, one or more electric devices to which electric power is supplied from the secondary battery, and control for controlling power supply from the secondary battery to the electric device And a power storage system comprising: a unit.
 本技術では、本技術に係る二次電池と、該二次電池から電力が供給される可動部と、を備える、電動工具を提供する。
 また、本技術では、本技術に係る二次電池を電力供給源として備える、電子機器を提供する。
The present technology provides an electric tool including a secondary battery according to the present technology and a movable part to which electric power is supplied from the secondary battery.
In addition, the present technology provides an electronic device including the secondary battery according to the present technology as a power supply source.
 本技術によれば、電池特性を向上することができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本技術中に記載されたいずれかの効果であってもよい。 According to the present technology, the battery characteristics can be improved. In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.
本技術に係る二次電池の例(円筒型)の構成を表す断面図である。It is sectional drawing showing the structure of the example (cylindrical type) of the secondary battery which concerns on this technique. 図1に示した巻回電極体の一部を拡大して表す図である。It is a figure which expands and represents a part of winding electrode body shown in FIG. 本技術に係る二次電池の例(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view showing the composition of the example (lamination film type) of the secondary battery concerning this art. 図3に示した巻回電極体のIV-IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV of the spirally wound electrode body illustrated in FIG. 3. 本技術に係る二次電池の適用例(電池パック)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (battery pack) of the secondary battery which concerns on this technique. 本技術に係る二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric vehicle) of the secondary battery which concerns on this technique. 本技術に係る二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric power storage system) of the secondary battery which concerns on this technique. 本技術に係る二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric tool) of the secondary battery which concerns on this technique. 実施例1及び3、並びに比較例1に関する、容量維持率(%)とサイクル数(回)との関係を示す図である。It is a figure which shows the relationship between the capacity | capacitance maintenance factor (%) and the number of cycles (times) regarding Examples 1 and 3 and Comparative Example 1.
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 Hereinafter, preferred embodiments for implementing the present technology will be described. The embodiment described below shows an example of a typical embodiment of the present technology, and the scope of the present technology is not interpreted narrowly.
 なお、説明は以下の順序で行う。
 1.本技術の概要
 2.第1の実施形態(二次電池用負極)
 3.第2の実施形態(二次電池)
 4.二次電池の例
 4-1.二次電池の例(円筒型のリチウムイオン二次電池)
 4-2.二次電池の例(ラミネートフィルム型のリチウムイオン二次電池)
 5.二次電池の用途
 5-1.二次電池の用途の概要
 5-2.第3の実施形態(電池パック)
 5-3.第4の実施形態(電動車両)
 5-4.第5の実施形態(電力貯蔵システム)
 5-5.第6の実施形態(電動工具)
 5-6.第7の実施形態(電子機器)
The description will be given in the following order.
1. Overview of this technology First embodiment (negative electrode for secondary battery)
3. Second embodiment (secondary battery)
4). Example of secondary battery 4-1. Secondary battery example (cylindrical lithium ion secondary battery)
4-2. Secondary battery example (laminate film type lithium ion secondary battery)
5. Applications of secondary batteries 5-1. Overview of secondary battery applications 5-2. Third embodiment (battery pack)
5-3. Fourth embodiment (electric vehicle)
5-4. Fifth embodiment (power storage system)
5-5. Sixth embodiment (power tool)
5-6. Seventh embodiment (electronic device)
 <1.本技術の概要>
 まず、本技術の概要について説明をする。
 二次電池の一つである、リチウムイオンを吸蔵または放出可能な活物質を有するリチウムイオン二次電池において用いられる炭素材料について、結晶化度または黒鉛化度の高い黒鉛では、初回充電時及び高温保存時のガス発生量が大きくなる傾向にある。理由の一つには、充電時に形成される固液界面(SEI)被膜(以下、被膜と記す。)が、電解液溶媒、特にプロピレンカーボネート(以下PCと記す)に対する共挿入耐性が低く、被膜破壊もしくは流出してしまうため、充放電サイクル中や高温保存期間中に、被膜再形成の度合いが増え、還元分解される溶媒量が増大し、その結果、発生ガス量増大、またはリチウム析出増大し、充放電効率低下や低温特性の低下が見られる。ラミネート型の二次電池セルであればセル膨れといった外観上の懸念点も発生する。
<1. Overview of this technology>
First, an outline of the present technology will be described.
Regarding carbon materials used in lithium ion secondary batteries having an active material capable of occluding or releasing lithium ions, which is one of the secondary batteries, in the case of graphite having a high degree of crystallinity or high degree of graphitization, at the first charge and at a high temperature The amount of gas generated during storage tends to increase. One reason is that the solid-liquid interface (SEI) coating (hereinafter referred to as coating) formed during charging has low co-insertion resistance to an electrolyte solvent, particularly propylene carbonate (hereinafter referred to as PC). Because it breaks or flows out, the degree of film re-formation increases during charge / discharge cycles and during high-temperature storage, and the amount of solvent that undergoes reductive decomposition increases, resulting in an increase in the amount of generated gas or lithium precipitation. In addition, the charge / discharge efficiency is lowered and the low temperature characteristics are lowered. In the case of a laminate type secondary battery cell, there are also concerns about appearance such as cell swelling.
 そこで、対策の一指針として、負極炭素の周りを非晶質な炭素で覆って(ピッチコート)、ガス発生などの副反応を制御する手法が確立されている。 Therefore, as a guideline for countermeasures, a method has been established in which the negative electrode carbon is covered with amorphous carbon (pitch coating) to control side reactions such as gas generation.
 しかしながら、ピッチコートは、活物質表面のイオン伝導性が低下するため、負荷特性や、低温特性の低下を生じることがトレードオフ関係となると考えられる。また、ピッチコートにホウ素塩を含有させると、ホウ素を含まないピッチコートに比べると充放電効率改善するも、特にリチウムが析出し易いセル電圧が4.35Vとした場合の仕様においては、改善効果がかなり限定的となると見られる。 However, since pitch coating reduces the ionic conductivity on the surface of the active material, it is considered that there is a trade-off relationship between the load characteristics and the low-temperature characteristics. In addition, when a boron salt is contained in the pitch coat, the charge / discharge efficiency is improved as compared with a pitch coat not containing boron, but the improvement effect is particularly effective when the cell voltage at which lithium is liable to precipitate is 4.35V. Seems to be quite limited.
 また、電解液に対し一定基準にて良溶解、貧溶解の2種類の高分子を添着し含有するといった、水系塗料化電極(水/CMC/SBR負極)に関する負極活物質や集電体に関する技術がある。 In addition, a technology related to negative electrode active materials and current collectors related to water-based paint electrodes (water / CMC / SBR negative electrode), including two types of polymers that are well-soluble and poorly-soluble in electrolytes. There is.
 この技術では、電解液膨潤良貧なる二種水溶性高分子(例CMC+非水溶性高分子(SBR)込み)を活物質紛体に乾燥固着または粉体混合することで、その後の水CMC系塗料化電極作製後で、一定の合剤-集電箔間の接着強度(剥離強度)向上による集電性向上、または電解液濡れ性改善効果による電解液浸透性の向上により、充放電効率を改善させる可能性がある。 In this technique, two kinds of water-soluble polymers with good and poor electrolyte swell (for example, CMC + water-insoluble polymer (SBR) included) are dry-adhered or powder-mixed to the active material powder, and the subsequent water CMC paint Improvement of charge / discharge efficiency by improving current collecting performance by improving adhesion strength (peeling strength) between a certain mixture and current collector foil or improving electrolyte penetration by improving electrolyte wettability There is a possibility to make it.
 しかしながら、水系負極であるが故に起こり得る、残水または残OH基分解による初充電時水素ガス発生や、充放電膨張収縮に伴う合剤剥離集電性能低下によるサイクル急劣化懸念があり、これらのことに関しては、N-メチルピロリドン(NMP)-ポリフッ化ビニリデン重合体(PVDF)系の方が良好であると考えられる。 However, there are concerns about rapid deterioration due to the generation of hydrogen gas during the initial charge due to decomposition of residual water or residual OH groups, and deterioration of the mixture separation current collection due to charge / discharge expansion / contraction, which may occur because of the water-based negative electrode. In this regard, the N-methylpyrrolidone (NMP) -polyvinylidene fluoride polymer (PVDF) system is considered to be better.
 また、例えば、負極電位が0.9V~0.6V対Li付近で良好に生じるエチレンカーボネート(EC)還元反応によるSEI被膜形成が、活物質合剤層への電解液の含浸状態によって、合剤中の活物質凝集体の表層に多く奥層に少なくといった粗密を生じ、低温放電下での活物質層への溶媒の共挿入による電極合剤層の膨れや、被膜破壊起因のLi析出といった不具合の原因となる。 Also, for example, the formation of SEI film by ethylene carbonate (EC) reduction reaction that occurs well when the negative electrode potential is in the vicinity of 0.9 V to 0.6 V vs. Li depends on the impregnation state of the electrolyte in the active material mixture layer. The surface layer of active material agglomerates in the surface layer has a high density and a low density in the back layer. Problems such as swelling of the electrode mixture layer due to co-insertion of the solvent into the active material layer under low-temperature discharge and Li precipitation due to film destruction Cause.
 さらに、負極にSiOが含まれる場合、放電時負極電位の上昇が、0.7V対Li以上に達するとSiO表層のシリケート(Li-O-Li)自体が分解して溶解するためSiO活物質としての機能低下や、既に形成されているSEIの流出露出した面に対し、その後の充電での還元反応によって還元被膜を再形成増大することによって、活物質自体の膨張が促進され、集電体との集電がとれなくなるといった不具合、すなわちサイクル特性の急劣化を生じることに繋がることとなる。 Furthermore, when SiO is contained in the negative electrode, when the rise in negative electrode potential during discharge reaches 0.7 V vs. Li or more, the silicate (Li—O—Li) itself of the SiO surface layer decomposes and dissolves, so that as the SiO active material The surface of the SEI that has already been formed and the exposed surface of the SEI that has already been formed are re-formed and increased by a reductive reaction in the subsequent charging, thereby promoting the expansion of the active material itself. This leads to a problem that the current cannot be collected, that is, rapid deterioration of cycle characteristics.
 本技術は、以上の状況に基づくものであり、本技術では、負極活物質粉体と、負極活物質粉体上に形成される被膜層と、結着剤と、を含み、被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池用負極を用いることによって、優れた電池特性、特には、優れたサイクル特性に寄与することができる。 The present technology is based on the above situation, and the present technology includes a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binder, Excellent battery characteristics by using a negative electrode for a secondary battery comprising a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonic acid and a carbonate In particular, it can contribute to excellent cycle characteristics.
 また、本技術では、二次電池用負極と、二次電池用正極と、電解液と、を少なくとも備え、二次電池用負極が、負極活物質粉体と、負極活物質粉体上に形成される被膜層と、結着剤と、を含み、被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池を用いることによって、優れた電池特性、特には、優れたサイクル特性が得られる。 The present technology also includes at least a negative electrode for a secondary battery, a positive electrode for a secondary battery, and an electrolyte, and the negative electrode for a secondary battery is formed on the negative electrode active material powder and the negative electrode active material powder. A hydrocarbon layer containing a coating layer and a binder, wherein the coating layer contains at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate. By using a secondary battery including a product, excellent battery characteristics, in particular, excellent cycle characteristics can be obtained.
 <2.第1の実施形態(二次電池用負極)>
 [二次電池用負極]
 本技術に係る第1の実施形態の二次電池用負極は、負極活物質粉体と、負極活物質粉体上に形成される被膜層と、結着剤と、を含み、被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池用負極である。
<2. First Embodiment (Anode for Secondary Battery)>
[Anode for secondary battery]
The negative electrode for a secondary battery according to the first embodiment of the present technology includes a negative electrode active material powder, a coating layer formed on the negative electrode active material powder, and a binder, A negative electrode for a secondary battery, comprising a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonic acid and a carbonate.
 本技術に係る第1の実施形態の二次電池用負極によれば、優れた電池特性に寄与し、特には、サイクル特性の向上に寄与することができる。すなわち、本技術に係る第1の実施形態の二次電池用負極によれば、水系塗料化負極であるが故の問題点である、残水または残OH基分解による初充電時水素ガス発生や、充放電膨張収縮に伴う合剤剥離集電性能低下によるサイクル急劣化懸念などの点に関して、大幅に改善を図ることができる。本技術に係る第1の実施形態の二次電池用負極を用いることで、被膜層による炭素表面の反応活性点との副反応によるガス発生等の副反応抑制や、イオン伝導性向上や機械的及び電気化学的安定性等の向上により、二次電池の充放電サイクル特性において良好な改善効果に寄与することができる。 The secondary battery negative electrode of the first embodiment according to the present technology contributes to excellent battery characteristics, and in particular, can contribute to improvement of cycle characteristics. That is, according to the negative electrode for secondary battery of the first embodiment according to the present technology, hydrogen gas generation at the initial charge due to residual water or residual OH group decomposition, which is a problem because it is a water-based paint negative electrode, Thus, it is possible to greatly improve the point of concern about rapid deterioration of the cycle due to a decrease in the performance of collecting and separating the current accompanying charge / discharge expansion and contraction. By using the negative electrode for a secondary battery according to the first embodiment of the present technology, side reaction such as gas generation due to side reaction with a reaction active site on the carbon surface by the coating layer, ion conductivity improvement, mechanical In addition, the improvement in electrochemical stability and the like can contribute to a favorable improvement effect in the charge / discharge cycle characteristics of the secondary battery.
 [負極活物質粉体]
 本技術に係る第1の実施形態の二次電池用負極に含まれる負極活物質粉体は、特に限定されず、任意の負極活物質粉体でよいが、炭素材料、ケイ素系材料又は炭素材料とケイ素系材料との混合物が好ましい。この好ましい態様により、電池特性、特にはサイクル特性の向上に寄与することができる。
[Negative electrode active material powder]
The negative electrode active material powder included in the secondary battery negative electrode of the first embodiment according to the present technology is not particularly limited and may be any negative electrode active material powder, but may be a carbon material, a silicon-based material, or a carbon material. A mixture of a silicon-based material is preferred. This preferred embodiment can contribute to improvement of battery characteristics, particularly cycle characteristics.
 [炭素系材料]
 炭素材料は、Liの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度および優れたサイクル特性を得ることができる。また、炭素材料は負極導電剤としても機能することができる。この炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素における(002)面の面間隔は0.37nm以上であると共に、黒鉛における(002)面の面間隔は0.34nm以下であることが好ましい。より具体的には、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類は、ピッチコークス、ニードルコークスおよび石油コークスなどを含む。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のいずれでもよい。
[Carbon-based materials]
Since the carbon material undergoes very little change in the crystal structure during insertion and extraction of Li, a high energy density and excellent cycle characteristics can be obtained. The carbon material can also function as a negative electrode conductive agent. Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite. However, the interplanar spacing of the (002) plane in non-graphitizable carbon is preferably 0.37 nm or more, and the interplanar spacing of the (002) plane in graphite is preferably 0.34 nm or less. More specifically, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon and carbon blacks. The cokes include pitch coke, needle coke and petroleum coke. The organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon. The shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
 [ケイ素系材料]
 ケイ素系材料は、Si(ケイ素)の単体、合金および化合物(ケイ素酸化物、ケイ素フッ化物等)のいずれでもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有するものでもよい。なお、単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)であり、必ずしも純度100%を意味しているわけではない。
[Silicon material]
The silicon-based material may be any of a simple substance of Si (silicon), an alloy and a compound (silicon oxide, silicon fluoride, etc.), two or more of them, and one or two or more phases thereof. May be at least partially included. The simple substance is a simple substance in a general sense (may contain a small amount of impurities), and does not necessarily mean 100% purity.
 Siの合金は、例えば、Si以外の構成元素として、Sn、Ni、Cu、Fe、Co、Mn、Zn、In、Ag、Ti、Ge、Bi、SbおよびCrなどのいずれか1種類または2種類以上の元素を含んでいる。Siの化合物は、例えば、Si以外の構成元素として、C、O、Fなどのいずれか1種類または2種類以上を含んでいる。なお、Siの化合物は、例えば、Si以外の構成元素として、Siの合金に関して説明した元素のいずれか1種類または2種類以上を含んでいてもよい。 The alloy of Si is, for example, any one or two of Sn, Ni, Cu, Fe, Co, Mn, Zn, In, Ag, Ti, Ge, Bi, Sb and Cr as constituent elements other than Si. It contains the above elements. The Si compound includes, for example, one or more of C, O, F and the like as a constituent element other than Si. Note that the Si compound may include, for example, any one or more of the elements described with respect to the Si alloy as a constituent element other than Si.
 Siの合金および化合物は、例えば、SiB、SiB、LiSiF、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiOv(0<v≦2)、およびLiSiOなどである。なお、SiOvにおけるvは、0.2<v<1.4でもよい。 Si alloys and compounds include, for example, SiB 4 , SiB 6 , Li 2 SiF 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2, MnSi 2, NbSi 2 , TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiOv (0 <v ≦ 2), and LiSiO the like. Note that v in SiOv may be 0.2 <v <1.4.
 [炭素材料とケイ素系材料との混合材料]
 上記の炭素材料と上記のケイ素系材料との混合材料は、黒鉛とSiOとの混合物がより好ましい。上記の炭素材料と上記のケイ素系材料との混合物の質量比は、任意の比率でよいが、100:0~85:15の比率であることが好ましく、95:5~90:10の比率がより好ましい。
[Mixed material of carbon material and silicon material]
The mixed material of the carbon material and the silicon-based material is more preferably a mixture of graphite and SiO. The mass ratio of the mixture of the carbon material and the silicon-based material may be any ratio, but is preferably a ratio of 100: 0 to 85:15, and a ratio of 95: 5 to 90:10 More preferred.
 炭素材料、ケイ素系材料及び炭素材料とケイ素系材料との混合物以外の負極活物質粉体としては、金属元素および半金属元素のいずれか1種類または2種類を構成元素として含む材料である。高いエネルギー密度が得られるからである。この金属系材料は、単体、合金および化合物のいずれでもよいし、それらの2種類以上でもよいし、それらの1種類または2種類以上の相を少なくとも一部に有するものでもよい。なお、合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。その組織には、固溶体、共晶(共融混合物)、金属間化合物、およびそれらの2種類以上の共存物などがある。 The negative electrode active material powder other than the carbon material, the silicon-based material, and the mixture of the carbon material and the silicon-based material is a material including any one or two of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained. The metal-based material may be any of a simple substance, an alloy, and a compound, or two or more kinds thereof, or one having at least a part of one or two or more phases thereof. The alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements. The alloy may contain a nonmetallic element. The structure includes a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting substances.
 上記した金属元素および半金属元素は、例えば、Liと合金を形成可能である金属元素および半金属元素のいずれか1種類または2種類以上である。具体的には、例えば、Mg、B、Al、Ga、In、Ge、Sn、Pb、Bi、Cd、Ag、Zn、Hf、Zr、Y、PdおよびPtなどである。 The metal element and metalloid element described above are, for example, one or more metal elements and metalloid elements capable of forming an alloy with Li. Specifically, for example, Mg, B, Al, Ga, In, Ge, Sn, Pb, Bi, Cd, Ag, Zn, Hf, Zr, Y, Pd, and Pt.
 [被覆層]
 本技術に係る第1の実施形態の二次電池用負極に含まれる被覆層は、負極活物質粉体上に形成される。被覆層が負極活物質粉体上に形成されるとは、被覆層が負極活物質粉体の表面全体に形成されてよいし、負極活物質粉体の表面の少なくとも1部に形成されてもよいことを意味する。なお、被覆層が負極活物質粉体の表面全体又は表面の少なくとも1部に形成されていれば、負極活物質粉体の内部に浸透されていてもよい。
[Coating layer]
The coating layer included in the secondary battery negative electrode according to the first embodiment of the present technology is formed on the negative electrode active material powder. The coating layer is formed on the negative electrode active material powder. The coating layer may be formed on the entire surface of the negative electrode active material powder, or may be formed on at least a part of the surface of the negative electrode active material powder. Means good. In addition, as long as the coating layer is formed on the entire surface of the negative electrode active material powder or at least a part of the surface, the coating layer may penetrate into the negative electrode active material powder.
 被膜層は、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む。 The coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
 炭化水素重合物は、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有すれば、任意の炭化水素重合物でよい。 The hydrocarbon polymer may be any hydrocarbon polymer as long as it contains at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate and a carbonate.
 被覆層は、カルボキシメチルセルロース系水溶性高分子を熱処理することよって形成される成分、ポリアクリル酸系水溶性高分子を熱処理することよって形成される成分、及びメタクリル酸系水溶性高分子を熱処理することよって形成される成分から成る群から選ばれる少なくとも1種を含むことが好ましい。カルボキシメチルセルロース系水溶性高分子を熱処理することよって形成される成分、ポリアクリル酸系水溶性高分子を熱処理することよって形成される成分、及びメタクリル酸系水溶性高分子を熱処理することよって形成される成分のそれぞれは、エーテル結合、カルボニル基、カルボン酸及びカルボン酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む。 The coating layer heat-treats a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer. It is preferable to include at least one selected from the group consisting of components formed by the above. Components formed by heat-treating carboxymethylcellulose-based water-soluble polymer, components formed by heat-treating polyacrylic acid-based water-soluble polymer, and formed by heat-treating methacrylic acid-based water-soluble polymer Each of the components includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, and a carboxylate.
 また、被覆層は、カルボキシメチルセルロース系水溶性高分子、ポリアクリル酸系水溶性高分子、及びメタクリル酸系水溶性高分子から成る群から選ばれる少なくとも1種を含むことが好ましい。 The coating layer preferably contains at least one selected from the group consisting of carboxymethylcellulose-based water-soluble polymers, polyacrylic acid-based water-soluble polymers, and methacrylic acid-based water-soluble polymers.
 カルボキシメチルセルロース系水溶性高分子は、例えば、カルボキシメチルセルロース酸、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースリチウム塩、カルボキシメチルセルロースアンモニウム塩等が挙げられ、カルボキシメチルセルロースそのものか又はカルボキシメチルセルロースを*ナトリウムやリチウム、アンモニウム等で修飾した水溶性高分子である。カルボキシメチルセルロース系水溶性高分子は、熱処理が施されて、シュウ酸またはシュウ酸塩(ナトリウム塩、リチウム塩)、炭酸塩(ナトリウム塩、リチウム塩)、カルボニル基等を含む炭化水素重合物等となる。 Examples of the carboxymethylcellulose-based water-soluble polymer include carboxymethylcellulose acid, carboxymethylcellulose sodium salt, carboxymethylcellulose lithium salt, carboxymethylcellulose ammonium salt, and the like. It is a modified water-soluble polymer. Carboxymethylcellulose-based water-soluble polymer is subjected to a heat treatment to oxalic acid or oxalate (sodium salt, lithium salt), carbonate (sodium salt, lithium salt), hydrocarbon polymer containing carbonyl group, etc. Become.
 ポリアクリル酸系水溶性高分子は、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム塩、ポリアクリル酸リチウム塩、ポリアクリル酸アンモニウム塩等が挙げられ、ポリアクリル酸そのものか又はポリアクリル酸をナトリウムやリチウム、アンモニウム等で修飾した水溶性高分子である。ポリアクリル酸系水溶性高分子は、熱処理が施されて、炭酸塩(ナトリウム塩、リチウム塩)、カルボニル基、アクリル基等を含む炭化水素重合物等となる。 Examples of the polyacrylic acid-based water-soluble polymer include polyacrylic acid, sodium polyacrylate, lithium polyacrylate, ammonium polyacrylate, and the like. A water-soluble polymer modified with lithium, ammonium or the like. The polyacrylic acid-based water-soluble polymer is subjected to a heat treatment to become a hydrocarbon polymer containing a carbonate (sodium salt, lithium salt), a carbonyl group, an acrylic group, or the like.
 メタクリル酸系水溶性高分子は、例えば、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル等が挙げられ、メタクリル酸そのものか又はメタクリル酸の一部をナトリウム、またはリチウムで修飾した水溶性高分子である。メタクリル酸系水溶性高分子は、熱処理が施されて、炭酸塩(ナトリウム塩、リチウム塩)、カルボニル基等を含む炭化水素重合物等となる。 Examples of the methacrylic acid-based water-soluble polymer include methacrylic acid, methyl methacrylate, ethyl methacrylate and the like, and are water-soluble polymers in which methacrylic acid itself or a part of methacrylic acid is modified with sodium or lithium. . The methacrylic acid-based water-soluble polymer is subjected to a heat treatment to become a hydrocarbon polymer containing carbonate (sodium salt, lithium salt), carbonyl group or the like.
 また、被膜層が、繊維状炭素、気相成長炭素繊維、カーボンナノチューブ、グラフェン、及び粉末状炭素から成る群から選ばれる少なくとも1種を含むことが好ましい。繊維状炭素及び粉末状炭素は導電性を有することが好ましい。 In addition, the coating layer preferably contains at least one selected from the group consisting of fibrous carbon, vapor grown carbon fiber, carbon nanotube, graphene, and powdered carbon. Fibrous carbon and powdered carbon are preferably conductive.
 さらに、被覆層が、カルボン酸、カルボン酸塩、カルボン酸とカルボン酸塩との混合物、炭酸、炭酸塩又は炭酸と炭酸塩との混合物を含むことが好ましい。この好ましい態様により、イオン伝導性を向上させることができ、更なる充放電サイクル特性における改善効果を得ることができる。 Furthermore, the coating layer preferably contains carboxylic acid, carboxylate, a mixture of carboxylic acid and carboxylate, carbonic acid, carbonate or a mixture of carbonic acid and carbonate. According to this preferred embodiment, ion conductivity can be improved, and an improvement effect in further charge / discharge cycle characteristics can be obtained.
 カルボン酸は、特に限定されないが、シュウ酸であることが好ましい。カルボン酸塩は、特に限定されないが、例えば、シュウ酸ナトリウム、シュウ酸リチウム、シュウ酸アンモニウム等が挙げられ、シュウ酸ナトリウム又はシュウ酸リチウムであることが好ましい。炭酸塩は、特に限定されないが、炭酸ナトリウム又は炭酸リチウムであることが好ましい。 The carboxylic acid is not particularly limited, but is preferably oxalic acid. The carboxylate is not particularly limited, and examples thereof include sodium oxalate, lithium oxalate, and ammonium oxalate, and sodium oxalate or lithium oxalate is preferable. The carbonate is not particularly limited but is preferably sodium carbonate or lithium carbonate.
 被覆層は、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物、負極活物質粉体等を、粉体混合又は塗料化した状態で乾燥、熱処理を行い、粉砕、整粒し形成することで得ることができる。熱処理は、180℃以上350℃以下の高温雰囲気にて行うことが好ましい。 The coating layer is obtained by mixing a hydrocarbon polymer containing at least one selected from the group consisting of ether bonds, carbonyl groups, carboxylic acids, carboxylates, carbonates and carbonates, negative electrode active material powders, etc. It can be obtained by drying and heat-treating in a paint state, pulverizing, sizing and forming. The heat treatment is preferably performed in a high temperature atmosphere of 180 ° C. or higher and 350 ° C. or lower.
 被膜層が、負極表面の反応活性点(例えば、炭素表面の水酸基や炭素のCδ-(デルタマイナス)点等)と反応または被覆することによって、副反応に関わる官能基や反応点を低減するため、初充電時の水素ガス発生などの副反応抑制、プロピレンカーボネート(PC)共挿入といったプロピレンカーボネート(PC)による不具合に対する耐性の向上効果が見られる。 To reduce functional groups and reaction points related to side reactions by reacting or coating the coating layer with reactive active sites on the negative electrode surface (for example, hydroxyl groups on the carbon surface or Cδ- (delta minus) points on the carbon). Moreover, the side effect of hydrogen gas generation | occurrence | production at the time of first charge, the improvement effect of the tolerance with respect to the malfunction by propylene carbonate (PC), such as propylene carbonate (PC) co-insertion, is seen.
 被膜層は熱処理によって得られるので、イオン伝導性を有するため、疑似的な固液界面(SEI)被膜としての機能を持ち、電気化学的にも安定で、物理的機械強度に対しても、例えば40℃から90℃程度の熱(加温)にも安定なため、破壊、流出といったことが少なく、セルの高温保存、高温サイクルといった試験条件に対しても良好な特性を示す。 Since the coating layer is obtained by heat treatment, it has ionic conductivity, so it has a function as a pseudo solid-liquid interface (SEI) coating, is electrochemically stable, and has a physical mechanical strength, for example, Since it is stable against heat (heating) of about 40 ° C. to 90 ° C., it is less likely to break down or flow out, and exhibits good characteristics even under test conditions such as high temperature storage and high temperature cycling of the cell.
 [結着剤]
 本技術に係る第1の実施形態の二次電池用負極は結着剤を含む。結着剤は特に限定されないが、例えば、合成ゴムおよび高分子材料などのいずれか1種類または2種類以上を含んでいる。合成ゴムとしては、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどが挙げられ、高分子材料としては、例えば、ポリフッ化ビニリデン、ポリイミドなどが挙げられるが、ポリフッ化ビニリデン重合体(PVDF)が好ましい。
[Binder]
The negative electrode for secondary batteries of the first embodiment according to the present technology includes a binder. Although a binder is not specifically limited, For example, any 1 type or 2 types or more, such as a synthetic rubber and a polymeric material, are included. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. Examples of the polymer material include polyvinylidene fluoride and polyimide. A polyvinylidene fluoride polymer (PVDF) ) Is preferred.
 結着剤は被膜層の内部に含まれていることが好ましい。結着剤を被覆層の内部に含んだ被膜層は、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物、結着剤、負極活物質粉体等を、粉体混合又は塗料化した状態で乾燥、熱処理を行い、粉砕、整粒し形成することで得ることができる。 The binder is preferably contained inside the coating layer. The coating layer containing the binder in the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate and a carbonate, a binder. It can be obtained by forming a powder, a negative electrode active material powder, etc., by drying and heat-treating them in a powder mixed or paint state, pulverizing and sizing.
 本技術に係る第1の実施形態の二次電池用負極はN-メチルピロリドン(NMP)を含むことが好ましい。負極活物質粉体上に被膜層を形成して塗料化する際に、結着剤、特にはポリフッ化ビニリデン重合体の溶解性を有するN-メチルピロリドン(NMP)を用いることができる。非水溶媒の塗料化の場合、残水による影響がないことと、結着剤、特にはポリフッ化ビニリデン重合体(PVDF)の高い結着性とバインダーとしての特性により充放電膨張収縮に伴う合剤剥離集電性能低下が急激に生じることはなく、サイクル急劣化などの問題を生じない。この効果は、とりわけケイ素系材料を炭素系材料の他に含有した活物質組成において顕著である。 The secondary battery negative electrode according to the first embodiment of the present technology preferably includes N-methylpyrrolidone (NMP). When forming a coating layer on the negative electrode active material powder to form a coating material, a binder, particularly N-methylpyrrolidone (NMP) having solubility of a polyvinylidene fluoride polymer can be used. In the case of coating with a non-aqueous solvent, there is no influence of residual water, and the high binding property of the binder, especially polyvinylidene fluoride polymer (PVDF), and the characteristics as a binder, the combination with charge / discharge expansion / contraction The agent peeling current collection performance does not drop rapidly, and problems such as rapid cycle deterioration do not occur. This effect is particularly remarkable in an active material composition containing a silicon-based material in addition to a carbon-based material.
 <3.第2の実施形態(二次電池)>
 [二次電池]
 本技術に係る第2の実施形態の二次電池は、二次電池用負極と、二次電池用正極と、電解液と、を少なくとも備え、二次電池用負極が、負極活物質粉体と、該負極活物質粉体上に形成される被膜層と、結着剤と、を含み、該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池である。
<3. Second Embodiment (Secondary Battery)>
[Secondary battery]
A secondary battery according to a second embodiment of the present technology includes at least a negative electrode for a secondary battery, a positive electrode for a secondary battery, and an electrolytic solution, and the negative electrode for a secondary battery includes a negative electrode active material powder and A coating layer formed on the negative electrode active material powder, and a binder, the coating layer comprising an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate. It is a secondary battery including a hydrocarbon polymer containing at least one selected.
 本技術に係る第2の実施形態の二次電池によれば、優れた電池特性を得ることができ、特には、優れたサイクル特性を得ることができる。すなわち、本技術に係る第1の実施形態の二次電池によれば、水系塗料化負極であるが故の問題点である、残水または残OH基分解による初充電時水素ガス発生や、充放電膨張収縮に伴う合剤剥離集電性能低下によるサイクル急劣化懸念などの点に関して、大幅に改善を図ることができる。本技術に係る第2の実施形態の二次電池を用いることで、被膜層による炭素表面の反応活性点との副反応によるガス発生等の副反応抑制や、イオン伝導性向上や機械的及び電気化学的安定性等の向上により、二次電池の充放電サイクル特性において良好な改善効果を得ることができる。 According to the secondary battery of the second embodiment according to the present technology, excellent battery characteristics can be obtained, and in particular, excellent cycle characteristics can be obtained. That is, according to the secondary battery of the first embodiment of the present technology, the problem is that the negative electrode is a water-based paint-formed negative electrode. Significant improvements can be made with respect to concerns about rapid cycle deterioration due to a decrease in the performance of collecting and releasing current accompanying discharge expansion and contraction. By using the secondary battery of the second embodiment according to the present technology, side reaction such as gas generation due to side reaction with the reactive surface of the carbon surface by the coating layer is suppressed, ion conductivity is improved, mechanical and electrical By improving the chemical stability and the like, it is possible to obtain a favorable improvement effect in the charge / discharge cycle characteristics of the secondary battery.
 [二次電池用負極]
 本技術に係る第2の実施形態の二次電池に備えられる二次電池用負極は上記のとおりである。
[Anode for secondary battery]
The negative electrode for secondary battery provided in the secondary battery according to the second embodiment of the present technology is as described above.
 [二次電池用正極]
 本技術に係る第2の実施形態の二次電池は二次電池用正極を備える。二次電池用正極の詳細例については、下記の<4.二次電池の例>の欄にて説明をする。
[Positive electrode for secondary battery]
The secondary battery according to the second embodiment of the present technology includes a positive electrode for a secondary battery. For detailed examples of the positive electrode for secondary battery, the following <4. An explanation will be given in the column “Example of Secondary Battery>.
 [電解液]
 本技術に係る第2の実施形態の二次電池は電解液を備える。電解液の詳細例については、下記の<4.二次電池の例>の欄にて説明をする。
[Electrolyte]
The secondary battery according to the second embodiment of the present technology includes an electrolytic solution. For detailed examples of the electrolytic solution, the following <4. An explanation will be given in the column “Example of Secondary Battery>.
<4.二次電池の例>
 次に、本技術に係る第2の実施形態の二次電池の例について、図1~図4に記載されている二次電池を例にして説明する。
<4. Example of secondary battery>
Next, an example of the secondary battery according to the second embodiment of the present technology will be described using the secondary battery described in FIGS. 1 to 4 as an example.
<4-1.二次電池の例(円筒型のリチウムイオン二次電池)>
 図1および図2は、二次電池の断面構成を表しており、図2では、図1に示した巻回電極体20の一部を拡大している。ここでは、上記で述べた第1の実施形態の二次電池用負極を負極22に適用している。
<4-1. Example of secondary battery (cylindrical lithium ion secondary battery)>
1 and 2 show a cross-sectional configuration of the secondary battery. In FIG. 2, a part of the wound electrode body 20 shown in FIG. 1 is enlarged. Here, the negative electrode for secondary battery of the first embodiment described above is applied to the negative electrode 22.
[二次電池の全体構成]
 ここで説明する二次電池は、電極反応物質であるLi(リチウムイオン)の吸蔵放出により負極22の容量が得られるリチウム二次電池(リチウムイオン二次電池)であり、いわゆる円筒型である。
[Overall structure of secondary battery]
The secondary battery described here is a lithium secondary battery (lithium ion secondary battery) in which the capacity of the negative electrode 22 is obtained by occlusion and release of Li (lithium ion), which is an electrode reactant, and is a so-called cylindrical type.
 この二次電池では、例えば、図1に示したように、中空円柱状の電池缶11の内部に、一対の絶縁板12,13と、巻回電極体20とが収納されている。この巻回電極体20は、例えば、セパレータ23を介して正極21と負極22とが積層されてから巻回されたものである。 In this secondary battery, for example, as shown in FIG. 1, a pair of insulating plates 12 and 13 and a wound electrode body 20 are housed inside a hollow cylindrical battery can 11. The wound electrode body 20 is wound, for example, after a positive electrode 21 and a negative electrode 22 are laminated via a separator 23.
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、鉄、アルミニウムおよびそれらの合金などのいずれか1種類または2種類以上により形成されている。この電池缶11の表面には、ニッケルなどが鍍金されていてもよい。一対の絶縁板12,13は、巻回電極体20を挟むように配置されていると共に、その巻回電極体20の巻回周面に対して垂直に延在している。 The battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened. For example, the battery can 11 is formed of one or more of iron, aluminum, and alloys thereof. Has been. Nickel or the like may be plated on the surface of the battery can 11. The pair of insulating plates 12 and 13 are disposed so as to sandwich the wound electrode body 20, and extend perpendicular to the winding peripheral surface of the wound electrode body 20.
 電池缶11の開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介してかしめられているため、その電池缶11は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により形成されている。安全弁機構15および熱感抵抗素子16は、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。この安全弁機構15では、内部短絡、または外部からの加熱などに起因して内圧が一定以上になると、ディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、大電流に起因する異常な発熱を防止するものであり、その熱感抵抗素子16の抵抗は、温度の上昇に応じて増加するようになっている。ガスケット17は、例えば、絶縁材料により形成されており、そのガスケット17の表面には、アスファルトが塗布されていてもよい。 Since the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element (PTC element) 16 are caulked through the gasket 17 at the open end of the battery can 11, the battery can 11 is sealed. The battery lid 14 is formed of the same material as the battery can 11, for example. The safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16. In this safety valve mechanism 15, when the internal pressure becomes a certain level or more due to an internal short circuit or external heating, the disk plate 15 </ b> A is reversed to disconnect the electrical connection between the battery lid 14 and the wound electrode body 20. It is like that. The thermal resistance element 16 prevents abnormal heat generation due to a large current, and the resistance of the thermal resistance element 16 increases as the temperature rises. The gasket 17 is formed of, for example, an insulating material, and asphalt may be applied to the surface of the gasket 17.
 巻回電極体20の巻回中心には、例えば、センターピン24が挿入されている。正極21には、例えば、アルミニウムなどの導電性材料により形成された正極リード25が接続されていると共に、負極22には、例えば、ニッケルなどの導電性材料により形成された負極リード26が接続されている。正極リード25は、例えば、安全弁機構15に溶接されていると共に、電池蓋14と電気的に接続されている。負極リード26は、例えば、電池缶11に溶接されており、その電池缶11と電気的に接続されている。 For example, a center pin 24 is inserted into the winding center of the wound electrode body 20. For example, a positive electrode lead 25 formed of a conductive material such as aluminum is connected to the positive electrode 21, and a negative electrode lead 26 formed of a conductive material such as nickel is connected to the negative electrode 22. ing. For example, the positive electrode lead 25 is welded to the safety valve mechanism 15 and is electrically connected to the battery lid 14. For example, the negative electrode lead 26 is welded to the battery can 11 and is electrically connected to the battery can 11.
[正極]
 正極21は、正極集電体21Aの片面または両面に正極活物質層21Bを有している。正極集電体21Aは、例えば、アルミニウム、ニッケルおよびステンレスなどの導電性材料のいずれか1種類または2種類以上により形成されている。
[Positive electrode]
The positive electrode 21 has a positive electrode active material layer 21B on one surface or both surfaces of a positive electrode current collector 21A. The positive electrode current collector 21A is formed of any one or more of conductive materials such as aluminum, nickel, and stainless steel, for example.
 正極活物質層21Bは、正極活物質として、リチウムを吸蔵放出可能であるもののうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material layer 21 </ b> B includes any one or more of lithium ion occluding and releasing materials as the positive electrode active material. However, the positive electrode active material layer 21B may further include any one kind or two or more kinds of other materials such as a positive electrode binder and a positive electrode conductive agent.
 正極活物質は、リチウム含有化合物であることが好ましく、より具体的には、リチウム含有複合酸化物およびリチウム含有リン酸化合物のうちのいずれか一方または双方であることが好ましい。高いエネルギー密度が得られるからである。 The positive electrode active material is preferably a lithium-containing compound, and more specifically, preferably one or both of a lithium-containing composite oxide and a lithium-containing phosphate compound. This is because a high energy density can be obtained.
 「リチウム含有複合酸化物」とは、リチウムと1または2以上の元素(以下、「他元素」という。ただし、リチウム(Li)を除く)と、を構成元素として含む酸化物であり、層状岩塩型の結晶構造またはスピネル型の結晶構造を有している。「リチウム含有リン酸化合物」とは、リチウムと1または2以上の他元素とを構成元素として含むリン酸化合物であり、オリビン型の結晶構造を有している。 “Lithium-containing composite oxide” is an oxide containing lithium and one or more elements (hereinafter referred to as “other elements”, excluding lithium (Li)) as constituent elements, and is a layered rock salt A crystal structure of a type or a spinel type. The “lithium-containing phosphate compound” is a phosphate compound containing lithium and one or more other elements as constituent elements and has an olivine type crystal structure.
 他元素の種類は、任意の元素のうちのいずれか1種類または2種類以上であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素のうちのいずれか1種類または2種類以上であることが好ましい。より具体的には、他元素としては、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)のうちのいずれか1種類または2種類以上の金属元素であることがより好ましい。高い電圧が得られるからである。 The type of other element is not particularly limited as long as it is any one or more of arbitrary elements. Among them, the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, the other element is more preferably any one or two or more metal elements of nickel (Ni), cobalt (Co), manganese (Mn), and iron (Fe). . This is because a high voltage can be obtained.
 中でも、層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、式(21)~式(23)のそれぞれで表される化合物のうちのいずれか1種類または2種類以上であることが好ましい。 Among them, the lithium-containing composite oxide having a layered rock salt type crystal structure is preferably one or more of the compounds represented by formulas (21) to (23).
 LiMn(1-b-c) NiM11(2-d) ・・・(21)
(M11は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (1-bc) Ni b M11 c O (2-d) F e ··· (21)
(M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), zirconium (Zr), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), a to e being 0.8 ≦ a ≦ 1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5, (b + c) <1, −0.1 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.1 are satisfied. However, the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.)
 LiNi(1-b) M12(2-c) ・・・(22)
(M12は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Ni (1-b) M12 b O (2-c) F d (22)
(M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0.005 ≦ b ≦ 0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.)
 LiCo(1-b) M13(2-c) ・・・(23)
(M13は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Co (1-b) M13 b O (2-c) F d (23)
(M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), and a to d are 0.8. ≦ a ≦ 1.2, 0 ≦ b <0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a is the value of the fully discharged state.)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。 Specific examples of the lithium-containing composite oxide having a layered rock salt type crystal structure are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2. LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、式(24)で表される化合物のうちのいずれか1種類または2種類以上であることが好ましい。 The lithium-containing composite oxide having a spinel crystal structure is preferably one or more of the compounds represented by formula (24).
LiMn(2-b) M14・・・(24)
(M14は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (2-b) M14 b O c F d (24)
(M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper At least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W), wherein a to d are 0.9. ≦ a ≦ 1.1, 0 ≦ b ≦ 0.6, 3.7 ≦ c ≦ 4.1 and 0 ≦ d ≦ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, and a Is the value of the fully discharged state.)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。 Specific examples of the lithium-containing composite oxide having a spinel crystal structure include LiMn 2 O 4 .
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、式(25)で表される化合物のうちのいずれか1種類または2種類以上であることが好ましい。 The lithium-containing phosphate compound having an olivine-type crystal structure is preferably one or more of the compounds represented by formula (25).
LiM15PO・・・(25)
(M15は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a M15PO 4 (25)
(M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium It is at least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W), and zirconium (Zr). 0.9 ≦ a ≦ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
 なお、リチウム含有複合酸化物は、式(26)で表される化合物のうちのいずれか1種類または2種類以上でもよい。 Note that the lithium-containing composite oxide may be one kind or two or more kinds of compounds represented by the formula (26).
 (LiMnO(LiMnO1-x ・・・(26)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
(Li 2 MnO 3 ) x (LiMnO 2 ) 1-x (26)
(X satisfies 0 ≦ x ≦ 1, where the composition of lithium varies depending on the charge / discharge state, and x is the value of the complete discharge state.)
 正極結着剤は、例えば、合成ゴムおよび高分子材料などのいずれか1種類または2種類以上を含んでいる。フッ素系ゴム、エチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデンおよびポリテトラフルオロエチレン、フッ化ビニリデンとヘキサフルオロピレンとの共重合体、ポリアクリロニトリル、ポリアクリル酸重合体ポリイミドなどである。 The positive electrode binder contains, for example, any one kind or two kinds or more of synthetic rubber and polymer material. Fluorine rubber, ethylene propylene diene, etc. Examples of the polymer material include polyvinylidene fluoride and polytetrafluoroethylene, a copolymer of vinylidene fluoride and hexafluoropyrene, polyacrylonitrile, polyacrylic acid polymer polyimide, and the like.
 正極導電剤は、例えば、炭素材料などのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケチェンブラックなどである。なお、正極導電剤は、導電性を有する材料であれば、金属材料および導電性高分子などでもよい。 The positive electrode conductive agent includes, for example, one or more of carbon materials. Examples of the carbon material include graphite, carbon black, acetylene black, and ketjen black. Note that the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as the material has conductivity.
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などのいずれか1種類または2種類以上でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。ただし、正極材料は、上記した一連の材料に限られず、他の材料でもよい。 In addition, the cathode material may be any one kind or two or more kinds of oxides, disulfides, chalcogenides, conductive polymers, and the like. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene. However, the positive electrode material is not limited to the series of materials described above, and may be other materials.
[負極]
 負極22は、負極集電体22Aの片面または両面に負極活物質層22Bを有している。
[Negative electrode]
The negative electrode 22 has a negative electrode active material layer 22B on one surface or both surfaces of a negative electrode current collector 22A.
 負極集電体22Aは、例えば、銅、ニッケルおよびステンレスなどの導電性材料のいずれか1種類または2種類以上により形成されている。この負極集電体22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域において、負極集電体22Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。この電解処理とは、電解槽中において電解法を用いて負極集電体22Aの表面に微粒子を形成することで、その負極集電体22Aの表面に凹凸を設ける方法である。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。 The negative electrode current collector 22A is formed of, for example, one or more of conductive materials such as copper, nickel, and stainless steel. The surface of the negative electrode current collector 22A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 22B to the negative electrode current collector 22A. In this case, the surface of the negative electrode current collector 22A only needs to be roughened at least in a region facing the negative electrode active material layer 22B. The roughening method is, for example, a method of forming fine particles using electrolytic treatment. This electrolytic treatment is a method of forming irregularities on the surface of the negative electrode current collector 22A by forming fine particles on the surface of the negative electrode current collector 22A using an electrolysis method in an electrolytic cell. A copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
 負極活物質層22Bは、充電途中において負極22にリチウム金属が意図せずに析出することを防止するために、負極材料の充電可能な容量は、一般的には正極21の放電容量よりも大きいことが好ましい。すなわち、Liを吸蔵放出可能である負極材料の電気化学当量は、正極21の電気化学当量よりも大きいことが好ましい。 In order to prevent lithium metal from unintentionally depositing on the negative electrode 22 during charging, the negative electrode active material layer 22B generally has a larger chargeable capacity of the negative electrode material than the discharge capacity of the positive electrode 21. It is preferable. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing Li is preferably larger than the electrochemical equivalent of the positive electrode 21.
 この他、負極活物質層22には、例えば、金属酸化物および高分子化合物などのいずれか1種類または2種類以上が含まれてもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。ただし、負極材料は、上記した一連の材料に限られず、他の材料でもよい。 In addition, the negative electrode active material layer 22 may include any one kind or two or more kinds of metal oxides and polymer compounds, for example. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole. However, the negative electrode material is not limited to the series of materials described above, and may be other materials.
 負極活物質層22Bは、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのいずれか1種類または2種類以上の方法により形成されている。塗布法とは、例えば、粒子(粉末)状の負極活物質を負極結着剤などと混合したのち、有機溶剤などの溶媒に分散させてから負極集電体22Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などである。より具体的には、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法とは、溶融状態または半溶融状態の負極活物質を負極集電体22Aに噴き付ける方法である。焼成法とは、例えば、塗布法を用いて負極集電体22Aに塗布したのち、負極結着剤などの融点よりも高い温度で熱処理する方法である。この焼成法としては、例えば、雰囲気焼成法、反応焼成法またはホットプレス焼成法などを用いることができる。 The negative electrode active material layer 22B is formed by any one method or two or more methods such as a coating method, a gas phase method, a liquid phase method, a thermal spraying method, and a firing method (sintering method). The application method is, for example, a method in which a negative electrode active material in the form of particles (powder) is mixed with a negative electrode binder and then dispersed in a solvent such as an organic solvent and then applied to the negative electrode current collector 22A. Examples of the vapor phase method include a physical deposition method and a chemical deposition method. More specifically, for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method. Examples of the liquid phase method include an electrolytic plating method and an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 22A. The firing method is, for example, a method of applying a heat treatment at a temperature higher than the melting point of the negative electrode binder or the like after being applied to the negative electrode current collector 22A using a coating method. As this firing method, for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like can be used.
 この二次電池では、上記したように、充電途中において負極22にリチウム金属が意図せずに析出することを防止するために、Liを吸蔵放出可能である負極材料の電気化学当量は正極の電気化学当量よりも大きいことが好ましい。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.2Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムイオンの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られるようになっている。 In this secondary battery, as described above, in order to prevent unintentional precipitation of lithium metal on the negative electrode 22 during charging, the electrochemical equivalent of the negative electrode material capable of occluding and releasing Li is the electric charge of the positive electrode. It is preferably larger than the chemical equivalent. In addition, when the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25 V or more, lithium ions are released per unit mass even when the same positive electrode active material is used as compared with the case of 4.2 V. Since the amount increases, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density can be obtained.
[セパレータ]
 セパレータ23は、正極21と負極22とを隔離することで、両極の接触に起因する電流の短絡を防止しながらリチウムイオンを通過させるものである。このセパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜であり、2種類以上の多孔質膜が積層された積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。
[Separator]
The separator 23 separates the positive electrode 21 and the negative electrode 22, thereby allowing lithium ions to pass through while preventing a short circuit of current caused by contact between the two electrodes. The separator 23 is, for example, a porous film such as a synthetic resin and ceramic, and may be a laminated film in which two or more kinds of porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
 特に、セパレータ23は、例えば、上記した多孔質膜(基材層)の片面または両面に高分子化合物層を有していてもよい。正極21および負極22に対するセパレータ23の密着性が向上するため、巻回電極体20の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても抵抗が上昇しにくくなると共に、電池膨れが抑制される。 Particularly, the separator 23 may have, for example, a polymer compound layer on one side or both sides of the above-described porous film (base material layer). This is because the adhesion of the separator 23 to the positive electrode 21 and the negative electrode 22 is improved, so that the distortion of the wound electrode body 20 is suppressed. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, the resistance is not easily increased even if charging and discharging are repeated, and the battery swelling is also suppressed. Is done.
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子材料を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。ただし、高分子材料は、ポリフッ化ビニリデン以外の他の高分子材料でもよい。この高分子化合物層を形成する場合には、例えば、高分子材料が溶解された溶液を準備したのち、その溶液を基材層に塗布してから乾燥させる。なお、溶液中に基材層を浸漬させてから乾燥させてもよい。 The polymer compound layer includes, for example, a polymer material such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable. However, the polymer material may be a polymer material other than polyvinylidene fluoride. When forming this polymer compound layer, for example, after preparing a solution in which the polymer material is dissolved, the solution is applied to the base material layer and then dried. The substrate layer may be dipped in the solution and then dried.
[電解液]
 セパレータ23には、液状の電解質である電解液が含浸されている。この電解液は、溶媒および電解質塩を含んでおり、さらに添加剤などの他の材料を含んでいてもよい。
[Electrolyte]
The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. This electrolytic solution contains a solvent and an electrolyte salt, and may further contain other materials such as additives.
 溶媒は、有機溶媒などの非水溶媒のいずれか1種類または2種類以上を含んでいる。この非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリルなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどであり、鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。 The solvent includes one or more of non-aqueous solvents such as organic solvents. Examples of the non-aqueous solvent include a cyclic carbonate ester, a chain carbonate ester, a lactone, a chain carboxylate ester, and a nitrile. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate, and examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate. Examples of the lactone include γ-butyrolactone and γ-valerolactone. Examples of the carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate. Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。 Other non-aqueous solvents include, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide. This is because similar advantages can be obtained.
 中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのいずれか1種類または2種類以上が好ましい。より優れた電池容量、サイクル特性および保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。 Of these, one or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are preferred. This is because better battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. In this case, high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ε ≧ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ≦ 1 mPas). -A combination with s) is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
 特に、溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルトン(環状スルホン酸エステル)および酸無水物のいずれか1種類または2種類以上を含んでいてもよい。電解液の化学的安定性が向上するからである。不飽和環状炭酸エステルとは、1または2以上の不飽和結合(炭素間二重結合)を有する環状炭酸エステルであり、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルとは、1または2以上のハロゲンを構成元素として含む環状または鎖状の炭酸エステルである。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。スルトンは、例えば、プロパンスルトンおよびプロペンスルトンなどである。酸無水物は、例えば、無水コハク酸、無水エタンジスルホン酸および無水スルホ安息香酸などである。ただし、溶媒は、上記した一連の材料に限られず、他の材料でもよい。 In particular, the solvent may contain one kind or two or more kinds of unsaturated cyclic carbonate, halogenated carbonate, sultone (cyclic sulfonate) and acid anhydride. This is because the chemical stability of the electrolytic solution is improved. The unsaturated cyclic carbonate is a cyclic carbonate having one or more unsaturated bonds (carbon-carbon double bonds), and examples thereof include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate. The halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element. Examples of cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one. Examples of the chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate. Examples of sultone include propane sultone and propene sultone. Examples of the acid anhydride include succinic anhydride, ethanedisulfonic anhydride, and anhydrous sulfobenzoic acid. However, the solvent is not limited to the series of materials described above, and other materials may be used.
 電解質塩は、例えば、リチウム塩などの塩のいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の他の塩を含んでいてもよい。この他の塩とは、例えば、リチウム塩以外の軽金属塩などである。 The electrolyte salt includes, for example, one or more of salts such as lithium salt. However, the electrolyte salt may contain a salt other than the lithium salt, for example. This other salt is, for example, a light metal salt other than a lithium salt.
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。 Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetraphenyl. Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride Examples include dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
 中でも、LiPF、LiBF、LiClOおよびLiAsFのうちの少なくとも1種類が好ましく、LiPFがより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。ただし、電解質塩は、上記した一連の材料に限られず、他の材料でもよい。 Among these, at least one of LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 is preferable, and LiPF 6 is more preferable. This is because a higher effect can be obtained because the internal resistance is lowered. However, the electrolyte salt is not limited to the series of materials described above, and may be other materials.
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
[二次電池の動作]
 この二次電池は、例えば、以下のように動作する。充電時には、正極21から放出されたリチウムイオンが電解液を介して負極22に吸蔵される。一方、放電時には、負極22から放出されたリチウムイオンが電解液を介して正極21に吸蔵される。
[Operation of secondary battery]
This secondary battery operates as follows, for example. At the time of charging, lithium ions released from the positive electrode 21 are occluded in the negative electrode 22 through the electrolytic solution. On the other hand, at the time of discharge, lithium ions released from the negative electrode 22 are occluded in the positive electrode 21 through the electrolytic solution.
 この場合には、上記したように、充電電圧は、より多くのリチウムを放出させるために高くすることが望ましい。より具体的には、4.4V(対リチウム金属標準電位)以上の電圧(例えば4.6V)まで二次電池を充電することが好ましい。 In this case, as described above, it is desirable to increase the charging voltage in order to release more lithium. More specifically, it is preferable to charge the secondary battery to a voltage (for example, 4.6 V) equal to or higher than 4.4 V (standard potential for lithium metal).
[二次電池の製造方法]
 この二次電池は、例えば、以下の手順により製造される。
[Method for producing secondary battery]
This secondary battery is manufactured by the following procedure, for example.
 最初に、正極21を作製する。正極活物質である上記した二次電池用活物質と、正極結着剤および正極導電剤などとを混合して、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させて、ペースト状の正極合剤スラリーとする。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布してから乾燥させて、正極活物質層21Bを形成する。続いて、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、加熱しながら圧縮成型してもよいし、圧縮成型を複数回繰り返してもよい。 First, the positive electrode 21 is manufactured. The above-described active material for a secondary battery, which is a positive electrode active material, and a positive electrode binder and a positive electrode conductive agent are mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A and then dried to form the positive electrode active material layer 21B. Subsequently, the positive electrode active material layer 21B is compression molded using a roll press machine or the like. In this case, compression molding may be performed while heating, or compression molding may be repeated a plurality of times.
 また、上記した正極21と同様の手順により、負極22を作製する。負極活物質と、負極結着剤および負極導電剤などとが混合された負極合剤を有機溶剤などに分散させて、ペースト状の負極合剤スラリーとする。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布してから乾燥させて負極活物質層22Bを形成したのち、その負極活物質層22Bを圧縮成型する。 Further, the negative electrode 22 is produced by the same procedure as that of the positive electrode 21 described above. A negative electrode mixture in which a negative electrode active material, a negative electrode binder, a negative electrode conductive agent, and the like are mixed is dispersed in an organic solvent or the like to obtain a paste-like negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A and then dried to form the negative electrode active material layer 22B, and then the negative electrode active material layer 22B is compression molded.
 最後に、正極21および負極22を用いて二次電池を組み立てる。溶接法などを用いて正極集電体21Aに正極リード25を取り付けると共に、溶接法などを用いて負極集電体22Aに負極リード26を取り付ける。続いて、セパレータ23を介して正極21と負極22とを積層してから巻回させて巻回電極体20を作製したのち、その巻回中心にセンターピン24を挿入する。続いて、一対の絶縁板12,13で挟みながら巻回電極体20を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25の先端部を安全弁機構15に取り付けると共に、溶接法などを用いて負極リード26の先端部を電池缶11に取り付ける。続いて、溶媒に電解質塩が分散された電解液を電池缶11の内部に注入してセパレータ23に含浸させる。続いて、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。 Finally, a secondary battery is assembled using the positive electrode 21 and the negative electrode 22. The positive electrode lead 25 is attached to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A using a welding method or the like. Subsequently, after the positive electrode 21 and the negative electrode 22 are laminated via the separator 23 and wound to produce the wound electrode body 20, the center pin 24 is inserted into the winding center. Subsequently, the wound electrode body 20 is accommodated in the battery can 11 while being sandwiched between the pair of insulating plates 12 and 13. In this case, the tip of the positive electrode lead 25 is attached to the safety valve mechanism 15 using a welding method or the like, and the tip of the negative electrode lead 26 is attached to the battery can 11 using a welding method or the like. Subsequently, an electrolytic solution in which an electrolyte salt is dispersed in a solvent is injected into the battery can 11 and impregnated in the separator 23. Subsequently, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are caulked to the opening end portion of the battery can 11 through the gasket 17.
[二次電池の作用および効果]
 この円筒型の二次電池によれば、正極21の正極活物質層21Bが正極活物質として上記した二次電池用活物質を含んでいる。したがって、エネルギー密度を向上させつつ、Liの吸蔵放出をよりスムーズに行うことができる。よって、より高い電池容量を得ることができる。
[Operation and effect of secondary battery]
According to this cylindrical secondary battery, the positive electrode active material layer 21B of the positive electrode 21 includes the above-described secondary battery active material as the positive electrode active material. Therefore, it is possible to more smoothly occlude and release Li while improving the energy density. Therefore, a higher battery capacity can be obtained.
<4-2.二次電池の例(ラミネートフィルム型のリチウムイオン二次電池)>
 図3は、他の二次電池の分解斜視構成を表しており、図4は、図3に示した巻回電極体30のIV-IV線に沿った断面を拡大している。ただし、図3では、巻回電極体30と2枚の外装部材40とを離間させた状態を示している。以下では、既に説明した円筒型の二次電池の構成要素を随時引用する。また、ここでは、上記で述べた第1の実施形態の二次電池用負極を負極34に適用している。
<4-2. Example of secondary battery (laminated film type lithium ion secondary battery)>
FIG. 3 shows an exploded perspective configuration of another secondary battery, and FIG. 4 is an enlarged cross-sectional view taken along line IV-IV of the spirally wound electrode body 30 shown in FIG. However, FIG. 3 shows a state in which the spirally wound electrode body 30 and the two exterior members 40 are separated from each other. In the following, the components of the cylindrical secondary battery already described will be referred to as needed. Here, the negative electrode for secondary battery of the first embodiment described above is applied to the negative electrode 34.
[二次電池の全体構成]
 ここで説明する二次電池は、いわゆるラミネートフィルム型のリチウムイオン二次電池であり、例えば、図3に示したように、フィルム状の外装部材40の内部に巻回電極体30が収納されている。この巻回電極体30は、例えば、セパレータ35および電解質層36を介して正極33と負極34とが積層されてから巻回されたものである。正極33には正極リード31が取り付けられていると共に、負極34には負極リード32が取り付けられている。巻回電極体30の最外周部は、保護テープ37により保護されている。
[Overall structure of secondary battery]
The secondary battery described here is a so-called laminate film type lithium ion secondary battery. For example, as shown in FIG. 3, the wound electrode body 30 is housed in a film-shaped exterior member 40. Yes. For example, the wound electrode body 30 is wound after the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and the electrolyte layer 36. A positive electrode lead 31 is attached to the positive electrode 33, and a negative electrode lead 32 is attached to the negative electrode 34. The outermost peripheral part of the wound electrode body 30 is protected by a protective tape 37.
 正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウムなどの導電性材料により形成されていると共に、負極リード32は、例えば、銅、ニッケルまたはステンレスなどの導電性材料により形成されている。これらの導電性材料は、例えば、薄板状または網目状になっている。 The positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 to the outside, for example. The positive electrode lead 31 is formed of a conductive material such as aluminum, and the negative electrode lead 32 is formed of a conductive material such as copper, nickel, or stainless steel. These conductive materials have, for example, a thin plate shape or a mesh shape.
 外装部材40は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。この外装部材40は、例えば、融着層が巻回電極体30と対向するように2枚のラミネートフィルムが重ねられたのち、各融着層の外周縁部同士が融着されたものである。ただし、2枚のラミネートフィルムは、接着剤などを介して貼り合わされていてもよい。融着層は、例えば、ポリエチレンおよびポリプロピレンなどのフィルムである。金属層は、例えば、アルミニウム箔などである。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのフィルムである。 The exterior member 40 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. The exterior member 40 is obtained by, for example, laminating two laminated films so that the fusion layer faces the spirally wound electrode body 30 and then fusing the outer peripheral edges of the fusion layers. . However, the two laminated films may be bonded together with an adhesive or the like. The fusion layer is, for example, a film made of polyethylene or polypropylene. The metal layer is, for example, an aluminum foil. The surface protective layer is, for example, a film such as nylon and polyethylene terephthalate.
 中でも、外装部材40は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。ただし、外装部材40は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムでもよいし、金属フィルムでもよい。 Especially, it is preferable that the exterior member 40 is an aluminum laminate film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order. However, the exterior member 40 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
 外装部材40と正極リード31および負極リード32との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料により形成されている。この密着性の材料は、例えば、ポリオレフィン樹脂などであり、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどである。 Between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32, for example, an adhesion film 41 is inserted to prevent intrusion of outside air. The adhesion film 41 is formed of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. The adhesive material is, for example, a polyolefin resin, and more specifically, polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
 正極33は、例えば、正極集電体33Aの両面に正極活物質層33Bを有していると共に、負極34は、例えば、負極集電体34Aの両面に負極活物質層34Bを有している。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bの構成は、それぞれ正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bの構成と同様である。すなわち、二次電池用電極である正極33の正極活物質層33Bは、正極活物質として上記した二次電池用活物質を含んでいる。セパレータ35の構成は、セパレータ23の構成と同様である。 The positive electrode 33 has, for example, a positive electrode active material layer 33B on both surfaces of the positive electrode current collector 33A, and the negative electrode 34 has, for example, a negative electrode active material layer 34B on both surfaces of the negative electrode current collector 34A. . The configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode active material layer. The configuration is the same as 22B. That is, the positive electrode active material layer 33 </ b> B of the positive electrode 33 that is a secondary battery electrode contains the above-described secondary battery active material as the positive electrode active material. The configuration of the separator 35 is the same as the configuration of the separator 23.
[電解質層]
 電解質層36は、高分子化合物により電解液が保持されたものであり、いわゆるゲル状の電解質である。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。この電解質層36は、さらに添加剤などの他の材料を含んでいてもよい。
[Electrolyte layer]
The electrolyte layer 36 is a so-called gel electrolyte in which an electrolytic solution is held by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) is obtained and leakage of the electrolytic solution is prevented. The electrolyte layer 36 may further contain other materials such as additives.
 高分子化合物は、高分子材料のいずれか1種類または2種類以上を含んでいる。この高分子材料は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどである。この他、高分子材料は、共重合体でもよい。この共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。中でも、ポリフッ化ビニリデンや、フッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましく、ポリフッ化ビニリデンがより好ましい。電気化学的に安定だからである。 The polymer compound includes one kind or two or more kinds of polymer materials. This polymeric material is, for example, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, poly Examples thereof include methyl methacrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate. In addition, the polymer material may be a copolymer. This copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene. Among these, polyvinylidene fluoride and a copolymer of vinylidene fluoride and hexafluoropyrene are preferable, and polyvinylidene fluoride is more preferable. This is because it is electrochemically stable.
 電解液の組成は、例えば、円筒型の場合と同様である。ただし、ゲル状の電解質である電解質層36において電解液の溶媒とは、液状の溶媒だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。 The composition of the electrolytic solution is the same as that of the cylindrical type, for example. However, in the electrolyte layer 36 which is a gel electrolyte, the solvent of the electrolytic solution is a wide concept including not only a liquid solvent but also a material having ion conductivity capable of dissociating the electrolyte salt. Therefore, when using a polymer compound having ion conductivity, the polymer compound is also included in the solvent.
 なお、ゲル状の電解質層36に代えて、電解液をそのまま用いてもよい。この場合には、電解液がセパレータ35に含浸される。 In addition, it may replace with the gel-like electrolyte layer 36 and may use electrolyte solution as it is. In this case, the separator 35 is impregnated with the electrolytic solution.
[二次電池の動作]
 この二次電池は、例えば、以下のように動作する。充電時には、正極33から放出されたリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34から放出されたリチウムイオンが電解質層36を介して正極33に吸蔵される。この場合においても、より多くのリチウムを放出させるために充電電圧を高くすることが望ましい。より具体的には、充電電圧を4.4V(対リチウム金属標準電位)以上の電圧(例えば4.6V)とすることが好ましい。
[Operation of secondary battery]
This secondary battery operates as follows, for example. During charging, lithium ions released from the positive electrode 33 are occluded in the negative electrode 34 through the electrolyte layer 36. On the other hand, at the time of discharging, lithium ions released from the negative electrode 34 are occluded in the positive electrode 33 through the electrolyte layer 36. Even in this case, it is desirable to increase the charging voltage in order to release more lithium. More specifically, it is preferable to set the charging voltage to a voltage (for example, 4.6 V) equal to or higher than 4.4 V (vs. lithium metal standard potential).
[二次電池の製造方法]
 ゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。 
[Method for producing secondary battery]
The secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
 第1手順では、正極21および負極22と同様の作製手順により、正極33および負極34を作製する。この場合には、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製すると共に、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。続いて、電解液と、高分子化合物と、有機溶剤などの溶媒とを含む前駆溶液を調製したのち、その前駆溶液を正極33および負極34に塗布して、ゲル状の電解質層36を形成する。続いて、溶接法などを用いて正極集電体33Aに正極リード31を取り付けると共に、溶接法などを用いて負極集電体34Aに負極リード32を取り付ける。続いて、正極33と負極34とをセパレータ35を介して積層してから巻回させて巻回電極体30を作製したのち、その最外周部に保護テープ37を貼り付ける。続いて、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、熱融着法などを用いて外装部材40の外周縁部同士を接着させて、その外装部材40の内部に巻回電極体30を封入する。この場合には、正極リード31および負極リード32と外装部材40との間に密着フィルム41を挿入する。 In the first procedure, the positive electrode 33 and the negative electrode 34 are manufactured by the same manufacturing procedure as that of the positive electrode 21 and the negative electrode 22. In this case, the positive electrode active material layer 33B is formed on both surfaces of the positive electrode current collector 33A to produce the positive electrode 33, and the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34. To do. Subsequently, after preparing a precursor solution containing an electrolytic solution, a polymer compound, and a solvent such as an organic solvent, the precursor solution is applied to the positive electrode 33 and the negative electrode 34 to form a gel electrolyte layer 36. . Subsequently, the positive electrode lead 31 is attached to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is attached to the negative electrode current collector 34A using a welding method or the like. Subsequently, after the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to produce the wound electrode body 30, a protective tape 37 is attached to the outermost periphery. Subsequently, after sandwiching the wound electrode body 30 between the two film-shaped exterior members 40, the outer peripheral edge portions of the exterior members 40 are bonded to each other using a heat fusion method or the like. The spirally wound electrode body 30 is sealed inside. In this case, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40.
 第2手順では、正極33に正極リード31を取り付けると共に、負極34に負極リード52を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層してから巻回させて、巻回電極体30の前駆体である巻回体を作製したのち、その最外周部に保護テープ37を貼り付ける。続いて、2枚のフィルム状の外装部材40の間に巻回体を配置したのち、熱融着法などを用いて一辺の外周縁部を除いた残りの外周縁部を接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、さらに重合禁止剤などの他の材料とを混合して、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。続いて、モノマーを熱重合させて、高分子化合物を形成する。これにより、高分子化合物に電解液が含浸され、その高分子化合物がゲル化するため、電解質層36が形成される。 In the second procedure, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 52 is attached to the negative electrode 34. Subsequently, the positive electrode 33 and the negative electrode 34 are stacked via the separator 35 and wound to produce a wound body that is a precursor of the wound electrode body 30, and then a protective tape 37 is provided on the outermost peripheral portion thereof. Paste. Subsequently, after the wound body is arranged between the two film-like exterior members 40, the remaining outer peripheral edge portion excluding the outer peripheral edge portion on one side is bonded by using a heat sealing method or the like, and the bag The wound body is housed inside the shaped exterior member 40. Subsequently, an electrolytic solution is prepared by mixing an electrolyte, a monomer that is a raw material of the polymer compound, a polymerization initiator, and another material such as a polymerization inhibitor. Subsequently, after the electrolyte composition is injected into the bag-shaped exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like. Subsequently, the monomer is thermally polymerized to form a polymer compound. As a result, the polymer compound is impregnated with the electrolytic solution, and the polymer compound gels, so that the electrolyte layer 36 is formed.
 第3手順では、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2手順と同様に、巻回体を作製して袋状の外装部材40の内部に収納する。このセパレータ35に塗布する高分子化合物は、例えば、フッ化ビニリデンを成分とする重合体(単独重合体、共重合体および多元共重合体)などである。具体的には、単独重合体は、例えば、ポリフッ化ビニリデンである。共重合体は、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとを成分とする二元系の共重合体などである。多元共重合体は、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとクロロトリフルオロエチレンとを成分とする三元系の共重合体などである。なお、フッ化ビニリデンを成分とする重合体と一緒に、他の1種類または2種類以上の高分子化合物を用いてもよい。続いて、電解液を調製して外装部材40の内部に注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。続いて、外装部材40に加重をかけながら加熱して、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、高分子化合物に電解液が含浸され、その高分子化合物がゲル化するため、電解質層36が形成される。 In the third procedure, a wound body is produced and stored in the bag-shaped exterior member 40 in the same manner as in the second procedure described above, except that the separator 35 coated with the polymer compound on both sides is used. The polymer compound applied to the separator 35 is, for example, a polymer (a homopolymer, a copolymer, and a multi-component copolymer) containing vinylidene fluoride as a component. Specifically, the homopolymer is, for example, polyvinylidene fluoride. The copolymer is, for example, a binary copolymer containing vinylidene fluoride and hexafluoropropylene as components. The multi-component copolymer is, for example, a ternary copolymer containing vinylidene fluoride, hexafluoropropylene, and chlorotrifluoroethylene as components. In addition to the polymer containing vinylidene fluoride as a component, one or more other polymer compounds may be used. Subsequently, after the electrolytic solution is prepared and injected into the exterior member 40, the opening of the exterior member 40 is sealed using a thermal fusion method or the like. Subsequently, the exterior member 40 is heated while applying a load, and the separator 35 is brought into close contact with the positive electrode 33 and the negative electrode 34 through the polymer compound. As a result, the polymer compound is impregnated with the electrolytic solution, and the polymer compound gels, so that the electrolyte layer 36 is formed.
 この第3手順では、第1手順よりも二次電池の膨れが抑制される。また、第3手順では、第2手順よりも高分子化合物の原料であるモノマーまたは溶媒などが電解質層36中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。このため、正極33、負極34およびセパレータ35と電解質層36との間で十分な密着性が得られる。 In this third procedure, swelling of the secondary battery is suppressed more than in the first procedure. In the third procedure, since the monomer or solvent that is a raw material of the polymer compound hardly remains in the electrolyte layer 36 than in the second procedure, the formation process of the polymer compound is controlled well. For this reason, sufficient adhesion is obtained between the positive electrode 33, the negative electrode 34 and the separator 35 and the electrolyte layer 36.
[二次電池の作用および効果]
 このラミネートフィルム型の二次電池によれば、正極33の正極活物質層33Bが正極活物質として上記した二次電池用活物質を含んでいるので、円筒型の場合と同様の理由により、優れた電池特性を得ることができる。これ以外の作用および効果は、円筒型の場合と同様である。  
[Operation and effect of secondary battery]
According to this laminated film type secondary battery, the positive electrode active material layer 33B of the positive electrode 33 contains the above-described secondary battery active material as the positive electrode active material, and therefore, excellent for the same reason as in the case of the cylindrical type. Battery characteristics can be obtained. Other operations and effects are the same as in the case of the cylindrical type.
 <5.二次電池の用途>
 二次電池の用途について詳細に説明する。
<5. Applications of secondary batteries>
The use of the secondary battery will be described in detail.
 <5-1.二次電池の用途の概要> <5-1. Overview of secondary battery applications>
 二次電池の用途は、その二次電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能な機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として使用されるイオン二次電池は、主電源(優先的に使用される電源)でもよいし、補助電源(主電源に代えて、または主電源から切り換えて使用される電源)でもよい。イオン二次電池を補助電源として利用する場合には、主電源の種類は二次電池に限られない。 The secondary battery can be used for machines, devices, instruments, devices, and systems (a collection of multiple devices) that can use the secondary battery as a power source for driving or a power storage source for storing power. There is no particular limitation. The ion secondary battery used as a power source may be a main power source (a power source used preferentially) or an auxiliary power source (a power source used in place of or switched from the main power source). When an ion secondary battery is used as an auxiliary power source, the type of main power source is not limited to the secondary battery.
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに用いられる電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、上記以外の用途でもよい。 The usage of the secondary battery is, for example, as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable living device such as an electric shaver. Storage devices such as backup power supplies and memory cards. Electric tools such as electric drills and electric saws. It is a battery pack used for a notebook computer or the like as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, applications other than those described above may be used.
 なかでも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。優れた電池特性が要求されるため、本技術の二次電池を用いることで、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源であり、いわゆる組電池などである。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などが使用可能になる。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。 Especially, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. This is because, since excellent battery characteristics are required, the performance can be effectively improved by using the secondary battery of the present technology. The battery pack is a power source using a secondary battery, and is a so-called assembled battery. An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above. The power storage system is a system that uses a secondary battery as a power storage source. For example, in a household power storage system, power is stored in a secondary battery, which is a power storage source, so that household electrical products can be used using the power. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source. An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
 ここで、二次電池のいくつかの適用例について具体的に説明する。なお、以下で説明する各適用例の構成はあくまで一例であるため、適宜変更可能である。 Here, some application examples of the secondary battery will be specifically described. In addition, since the structure of each application example demonstrated below is an example to the last, it can change suitably.
 <5-2.第3の実施形態(電池パック)>
 本技術に係る第3の実施形態の電池パックは、本技術に係る第2の実施形態の二次電池と、二次電池の使用状態を制御する制御部と、制御部の指示に応じて、二次電池の使用状態を切り換えるスイッチ部と、を備える、電池パックである。本技術に係る第3の実施形態の電池パックは、優れた電池特性を有する本技術に係る第2の実施形態の二次電池を備えているので、電池パックの性能向上につながる。
<5-2. Third Embodiment (Battery Pack)>
The battery pack according to the third embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology, a control unit that controls a usage state of the secondary battery, and an instruction from the control unit. And a switch unit that switches a usage state of the secondary battery. The battery pack according to the third embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, which leads to an improvement in the performance of the battery pack.
 以下に、本技術に係る第3の実施形態の電池パックについて、図面を参照しながら説明する。 Hereinafter, a battery pack according to a third embodiment of the present technology will be described with reference to the drawings.
 図5は、電池パックのブロック構成を表している。この電池パックは、例えば、プラスチック材料などにより形成された筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。 FIG. 5 shows a block configuration of the battery pack. This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, and a voltage detection unit inside a housing 60 formed of a plastic material or the like. 66, a switch control unit 67, a memory 68, a temperature detection element 69, a current detection resistor 70, a positive terminal 71 and a negative terminal 72.
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御するものであり、例えば、中央演算処理装置(CPU)などを含んでいる。電源62は、1または2以上の二次電池(図示せず)を含んでいる。この電源62は、例えば、2以上の二次電池を含む組電池であり、それらの二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。 The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62), and includes, for example, a central processing unit (CPU). The power source 62 includes one or more secondary batteries (not shown). The power source 62 is, for example, an assembled battery including two or more secondary batteries, and the connection form of these secondary batteries may be in series, in parallel, or a mixture of both. For example, the power source 62 includes six secondary batteries connected in two parallel three series.
 スイッチ部63は、制御部61の指示に応じて電源62の使用状態(電源62と外部機器との接続の可否)を切り換えるものである。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオード(いずれも図示せず)などを含んでいる。充電制御スイッチおよび放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。 The switch unit 63 switches the usage state of the power source 62 (whether or not the power source 62 can be connected to an external device) according to an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode (all not shown), and the like. The charge control switch and the discharge control switch are semiconductor switches such as a field effect transistor (MOSFET) using a metal oxide semiconductor, for example.
 電流測定部64は、電流検出抵抗70を用いて電流を測定して、その測定結果を制御部61に出力するものである。温度検出部65は、温度検出素子69を用いて温度を測定して、その測定結果を制御部61に出力するようになっている。この温度測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合や、制御部61が残容量の算出時において補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定して、その測定電圧をアナログ-デジタル変換して制御部61に供給するものである。 The current measurement unit 64 measures current using the current detection resistor 70 and outputs the measurement result to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, converts the measured voltage from analog to digital, and supplies the converted voltage to the control unit 61.
 スイッチ制御部67は、電流測定部64および電圧検出部66から入力される信号に応じて、スイッチ部63の動作を制御するものである。 The switch control unit 67 controls the operation of the switch unit 63 in accordance with signals input from the current measurement unit 64 and the voltage detection unit 66.
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部63(充電制御スイッチ)を切断して、電源62の電流経路に充電電流が流れないように制御する。これにより、電源62では、放電用ダイオードを介して放電のみが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れた場合に、充電電流を遮断するようになっている。 For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) and controls the charging current not to flow through the current path of the power source 62. . As a result, the power source 62 can only discharge through the discharging diode. The switch control unit 67 is configured to cut off the charging current when a large current flows during charging, for example.
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部63(放電制御スイッチ)を切断して、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電のみが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れた場合に、放電電流を遮断するようになっている。 Further, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62 when the battery voltage reaches the overdischarge detection voltage, for example. . As a result, the power source 62 can only be charged via the charging diode. For example, the switch control unit 67 is configured to cut off the discharge current when a large current flows during discharging.
 なお、二次電池では、例えば、過充電検出電圧は4.2V±0.05Vであり、過放電検出電圧は2.4V±0.1Vである。 In the secondary battery, for example, the overcharge detection voltage is 4.2V ± 0.05V, and the overdischarge detection voltage is 2.4V ± 0.1V.
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどである。このメモリ68には、例えば、制御部61により演算された数値や、製造工程段階において測定された二次電池の情報(例えば初期状態の内部抵抗)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握可能になる。 The memory 68 is, for example, an EEPROM which is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61 and information (for example, internal resistance in the initial state) of the secondary battery measured in the manufacturing process stage. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
 温度検出素子69は、電源62の温度を測定すると共にその測定結果を制御部61に出力するものであり、例えば、サーミスタなどである。 The temperature detection element 69 measures the temperature of the power supply 62 and outputs the measurement result to the control unit 61, and is, for example, a thermistor.
 正極端子71および負極端子72は、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)や、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62の充放電は、正極端子71および負極端子72を介して行われる。 The positive electrode terminal 71 and the negative electrode terminal 72 are connected to an external device (for example, a notebook personal computer) operated using a battery pack, an external device (for example, a charger) used to charge the battery pack, or the like. Terminal. Charging / discharging of the power source 62 is performed via the positive terminal 71 and the negative terminal 72.
 <5-3.第4の実施形態(電動車両)>
 本技術に係る第4の実施形態の電動車両は、本技術に係る第2の実施形態の二次電池と、二次電池から供給された電力を駆動力に変換する変換部と、駆動力に応じて駆動する駆動部と、多価イオン二次電池の使用状態を制御する制御部と、を備える、電動車両である。本技術に係る第4の実施形態の電動車両は、優れた電池特性を有する本技術に係る第2の実施形態の二次電池を備えているので、電動車両の性能向上につながる。
<5-3. Fourth Embodiment (Electric Vehicle)>
The electric vehicle according to the fourth embodiment of the present technology includes a secondary battery according to the second embodiment of the present technology, a conversion unit that converts electric power supplied from the secondary battery into driving power, and driving power. It is an electric vehicle provided with the drive part driven according to this and the control part which controls the use condition of a multivalent ion secondary battery. Since the electric vehicle according to the fourth embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, the performance of the electric vehicle is improved.
 以下に、本技術に係る第4の実施形態の電動車両について、図面を参照しながら説明する。 Hereinafter, an electric vehicle according to a fourth embodiment of the present technology will be described with reference to the drawings.
 図6は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。 FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle. This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン75またはモータ77のいずれか一方を駆動源として走行可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合、そのエンジン75の駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。なお、エンジン75の回転力は発電機79にも伝達され、その回転力を利用して発電機79が交流電力を発生させると共に、その交流電力はインバータ83を介して直流電力に変換され、電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換され、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86または後輪88に伝達される。 This electric vehicle can run using, for example, either the engine 75 or the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81 which are driving units. . The rotational force of the engine 75 is also transmitted to the generator 79, and the generator 79 generates AC power using the rotational force. The AC power is converted into DC power via the inverter 83, and the power source 76. On the other hand, when the motor 77 which is the conversion unit is used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and the motor 77 is driven using the AC power. . The driving force (rotational force) converted from electric power by the motor 77 is transmitted to the front wheels 86 or the rear wheels 88 via, for example, a differential device 78, a transmission 80, and a clutch 81, which are driving units.
 なお、図示しない制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達され、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換され、その直流回生電力は電源76に蓄積されることが好ましい。 When the electric vehicle decelerates via a braking mechanism (not shown), the resistance force at the time of deceleration is transmitted as a rotational force to the motor 77, and the motor 77 generates AC power using the rotational force. Good. This AC power is preferably converted into DC power via the inverter 82, and the DC regenerative power is preferably stored in the power source 76.
 制御部74は、電動車両全体の動作を制御するものであり、例えば、CPUなどを含んでいる。電源76は、1または2以上の二次電池(図示せず)を含んでいる。この電源76は、外部電源と接続され、その外部電源から電力供給を受けることで電力を蓄積可能になっていてもよい。各種センサ84は、例えば、エンジン75の回転数を制御したりして、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサ、エンジン回転数センサなどを含んでいる。 The control unit 74 controls the operation of the entire electric vehicle and includes, for example, a CPU. The power source 76 includes one or more secondary batteries (not shown). The power source 76 may be connected to an external power source and can store power by receiving power supply from the external power source. The various sensors 84 are used to control the opening of a throttle valve (not shown) (throttle opening) by controlling the rotational speed of the engine 75, for example. The various sensors 84 include, for example, a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 なお、電動車両がハイブリッド自動車である場合について説明したが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle has been described, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
 <5-4.第5の実施形態(電力貯蔵システム)>
 本技術に係る第5の実施形態の電力貯蔵システムは、本技術に係る第2の実施形態の二次電池と、二次電池から電力が供給される1または2以上の電気機器と、二次電池からの該電気機器に対する電力供給を制御する制御部と、を備える、電力貯蔵システムである。本技術に係る第5の実施形態の電力貯蔵システムは、優れた電池特性を有する本技術に係る第2の実施形態の二次電池を備えているので、電力貯蔵の性能向上につながる。
<5-4. Fifth Embodiment (Power Storage System)>
The power storage system according to the fifth embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology, one or more electric devices to which power is supplied from the secondary battery, and a secondary battery. And a control unit that controls power supply from the battery to the electric device. Since the power storage system of the fifth embodiment according to the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, the power storage performance is improved.
 以下に、本技術に係る第5の実施形態の電力貯蔵システムについて、図面を参照しながら説明する。 Hereinafter, a power storage system according to a fifth embodiment of the present technology will be described with reference to the drawings.
 図7は、電力貯蔵システムのブロック構成を表している。この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。 FIG. 7 shows a block configuration of the power storage system. This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house and a commercial building.
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続可能になっている。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続可能になっている。 Here, the power source 91 is connected to, for example, an electric device 94 installed inside the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89. The power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and can be connected to an external centralized power system 97 via the smart meter 92 and the power hub 93. It has become.
 なお、電気機器94は、例えば、1または2以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのいずれか1種類または2種類以上である。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などの1種類または2種類以上である。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などの1種類または2種類以上である。 Note that the electric device 94 includes, for example, one or more home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater. The private power generator 95 is, for example, any one type or two or more types such as a solar power generator and a wind power generator. The electric vehicle 96 is, for example, one type or two or more types such as an electric vehicle, an electric motorcycle, and a hybrid vehicle. The centralized electric power system 97 is, for example, one type or two or more types such as a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源91は、1または2以上の二次電池(図示せず)を含んでいる。スマートメータ92は、例えば、電力需要者の家屋89に設置されるネットワーク対応型の電力計であり、電力供給者と通信可能になっている。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給を可能とする。 The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91), and includes, for example, a CPU. The power source 91 includes one or more secondary batteries (not shown). The smart meter 92 is, for example, a network-compatible power meter installed in a power consumer's house 89 and can communicate with the power supplier. Accordingly, for example, the smart meter 92 enables efficient and stable energy supply by controlling the balance between supply and demand in the house 89 while communicating with the outside.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である太陽光発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and the power hub 93 is connected from the solar power generator 95 that is an independent power source. Power is accumulated in the power source 91 through the power source 91. Since the electric power stored in the power source 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, the electric device 94 can be operated and the electric vehicle 96 can be charged. . In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
 電源91に蓄積された電力は、任意に利用可能である。このため、例えば、電気使用量が安い深夜において集中型電力系統97から電源91に電力を蓄積しておき、その電源91に蓄積しておいた電力を電気使用量が高い日中に用いることができる。 The power stored in the power supply 91 can be used arbitrarily. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the amount of electricity used is low, and the power stored in the power source 91 is used during the day when the amount of electricity used is high. it can.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
 <5-5.第6の実施形態(電動工具)>
 本技術に係る第6の実施形態の電動工具は、本技術に係る第2の実施形態の二次電池と、二次電池から電力が供給される可動部とを備える、電動工具である。本技術に係る第6の実施形態の電動工具は、優れた電池特性を有する本技術に係る第2の実施形態の二次電池を備えているので、電動工具の性能向上につながる。
<5-5. Sixth Embodiment (Electric Tool)>
The electric tool of 6th Embodiment which concerns on this technique is an electric tool provided with the secondary battery of 2nd Embodiment which concerns on this technique, and the movable part to which electric power is supplied from a secondary battery. Since the electric tool of the sixth embodiment according to the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, the performance of the electric tool is improved.
 以下に、本技術に係る第6の実施形態の電動工具について、図面を参照しながら説明する。 Hereinafter, a power tool according to a sixth embodiment of the present technology will be described with reference to the drawings.
 図8は、電動工具のブロック構成を表している。この電動工具は、例えば、電動ドリルであり、プラスチック材料などにより形成された工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。 FIG. 8 shows a block configuration of the electric tool. This electric tool is, for example, an electric drill, and includes a control unit 99 and a power supply 100 inside a tool main body 98 formed of a plastic material or the like. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
 制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御するものであり、例えば、CPUなどを含んでいる。電源100は、1または2以上の二次電池(図示せず)を含んでいる。この制御部99は、図示しない動作スイッチの操作に応じて、電源100からドリル部101に電力を供給するようになっている。 The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100), and includes, for example, a CPU. The power supply 100 includes one or more secondary batteries (not shown). The control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to an operation switch (not shown).
 <5-6.第7の実施形態(電子機器)>
 本技術に係る第7の実施形態の電子機器は、本技術に係る第2の実施形態の二次電池を電力供給源として備える、電子機器である。上述したように、本技術に係る第10の実施形態の電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。本技術に係る第7の実施形態の電子機器は、優れた電池特性を有する本技術に係る第2の実施形態の二次電池を備えているので、電子機器の性能向上につながる。
<5-6. Seventh Embodiment (Electronic Device)>
The electronic device of 7th Embodiment which concerns on this technique is an electronic device provided with the secondary battery of 2nd Embodiment which concerns on this technique as an electric power supply source. As described above, the electronic device according to the tenth embodiment of the present technology is a device that exhibits various functions using the secondary battery as a driving power source (power supply source). The electronic device according to the seventh embodiment of the present technology includes the secondary battery according to the second embodiment of the present technology having excellent battery characteristics, which leads to an improvement in performance of the electronic device.
 なお、本技術の効果は、二次電池に用いられる電極反応物質であれば電極反応物質の種類に依存せずに得られるはずであるため、その電極反応物質の種類を変更しても同様の効果を得ることができる。 The effect of the present technology should be obtained without depending on the type of electrode reactant if it is an electrode reactant used in a secondary battery. An effect can be obtained.
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 また、本技術は、以下のような構成も取ることができる。
[1]
 負極活物質粉体と、
 該負極活物質粉体上に形成される被膜層と、
 結着剤と、を含み、
 該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池用負極。
[2]
 前記被膜層が、カルボキシメチルセルロース系水溶性高分子を熱処理することよって形成される成分、ポリアクリル酸系水溶性高分子を熱処理することよって形成される成分、及びメタクリル酸系水溶性高分子を熱処理することよって形成される成分から成る群から選ばれる少なくとも1種を含む、[1]に記載の二次電池用負極。
[3]
 前記被膜層が、カルボキシメチルセルロース系水溶性高分子、ポリアクリル酸系水溶性高分子、及びメタクリル酸系水溶性高分子から成る群から選ばれる少なくとも1種を含む、[1]又は[2]に記載の二次電池用負極。
[4]
 前記被覆層が、繊維状炭素、気相成長炭素繊維、カーボンナノチューブ、グラフェン、及び粉末状炭素から成る群から選ばれる少なくとも1種を含む、[1]から[3]のいずれか1つに記載の二次電池用負極。
[5]
 前記被覆層がカルボン酸及び/又はカルボン酸塩を含む、[1]から[4]のいずれか1つに記載の二次電池用負極。
[6]
 前記カルボン酸塩がシュウ酸ナトリウム又はシュウ酸リチウムである、[5]に記載の二次電池用負極。
[7]
 前記結着剤が前記被膜層の内部に含まれている、[1]から[6]のいずれか1つに記載の二次電池用負極。
[8]
 前記結着剤がポリフッ化ビニリデン重合体である、[1]から[7]のいずれか1つに記載の二次電池用負極。
[9]
 負極活物質粉体が炭素系材料及び/又はケイ素系材料を含む、[1]から[8]のいずれか1つに記載の二次電池用負極。
[10]
 N-メチルピロリドンを含む、[1]から[9]のいずれか1つに記載の二次電池用負極。
[11]
 二次電池用負極と、
 二次電池用正極と、
 電解液と、を少なくとも備え、
 該二次電池用負極が、負極活物質粉体と、
 該負極活物質粉体上に形成される被膜層と、
 結着剤と、を含み、
 該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池。
[12]
 [2]~[10]のいずれか1つに記載の二次電池用負極と、
 二次電池用正極と、
 電解液と、を少なくとも備える、二次電池。
[13]
 [11]又[12]に記載の二次電池と、
 前記二次電池の使用状態を制御する制御部と、
 該制御部の指示に応じて前記イオン二次電池の使用状態を切り換えるスイッチ部と、を備える、電池パック。
[14]
 [11]又は[12]に記載の二次電池と、
 該二次電池から供給された電力を駆動力に変換する変換部と、該駆動力に応じて駆動する駆動部と、
 該二次電池の使用状態を制御する制御部と、を備える、電動車両。
[15]
 [11]又は[12]に記載の二次電池と、
 該二次電池から電力が供給される1または2以上の電気機器と、
 該二次電池からの該電気機器に対する電力供給を制御する制御部と、を備える、電力貯蔵システム。
[16]
 [11]又は[12]に記載の二次電池と、
 該二次電池から電力が供給される可動部と、を備える、電動工具。
[17]
 [11]又は[12]に記載の二次電池を電力供給源として備える、電子機器。
In addition, the present technology may have the following configurations.
[1]
Negative electrode active material powder;
A coating layer formed on the negative electrode active material powder;
A binder, and
A negative electrode for a secondary battery, wherein the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
[2]
The coating layer is a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer The negative electrode for a secondary battery according to [1], comprising at least one selected from the group consisting of components formed thereby.
[3]
[1] or [2], wherein the coating layer includes at least one selected from the group consisting of a carboxymethylcellulose-based water-soluble polymer, a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer. The negative electrode for secondary batteries as described.
[4]
The covering layer includes at least one selected from the group consisting of fibrous carbon, vapor grown carbon fiber, carbon nanotube, graphene, and powdered carbon, according to any one of [1] to [3]. Negative electrode for secondary battery.
[5]
The negative electrode for a secondary battery according to any one of [1] to [4], wherein the coating layer contains a carboxylic acid and / or a carboxylate.
[6]
The negative electrode for a secondary battery according to [5], wherein the carboxylate is sodium oxalate or lithium oxalate.
[7]
The negative electrode for a secondary battery according to any one of [1] to [6], wherein the binder is contained in the coating layer.
[8]
The negative electrode for a secondary battery according to any one of [1] to [7], wherein the binder is a polyvinylidene fluoride polymer.
[9]
The negative electrode for a secondary battery according to any one of [1] to [8], wherein the negative electrode active material powder includes a carbon-based material and / or a silicon-based material.
[10]
The negative electrode for a secondary battery according to any one of [1] to [9], comprising N-methylpyrrolidone.
[11]
A negative electrode for a secondary battery;
A positive electrode for a secondary battery;
An electrolyte solution,
The negative electrode for a secondary battery comprises a negative electrode active material powder,
A coating layer formed on the negative electrode active material powder;
A binder, and
The secondary battery, wherein the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
[12]
[2] to [10] the secondary battery negative electrode according to any one of
A positive electrode for a secondary battery;
A secondary battery comprising at least an electrolytic solution.
[13]
[11] The secondary battery according to [12],
A control unit for controlling a usage state of the secondary battery;
A battery pack comprising: a switch unit that switches a use state of the ion secondary battery in accordance with an instruction from the control unit.
[14]
[11] or the secondary battery according to [12],
A conversion unit that converts electric power supplied from the secondary battery into a driving force, and a driving unit that is driven according to the driving force;
And a control unit that controls a usage state of the secondary battery.
[15]
[11] or the secondary battery according to [12],
One or more electrical devices to which power is supplied from the secondary battery;
And a control unit that controls power supply from the secondary battery to the electrical device.
[16]
[11] or the secondary battery according to [12],
And a movable part to which electric power is supplied from the secondary battery.
[17]
[11] An electronic device comprising the secondary battery according to [12] as a power supply source.
 以下に、実施例を挙げて、本技術の効果について具体的に説明をする。なお、本技術の範囲は実施例に限定されるものではない。 Hereinafter, the effects of the present technology will be described in detail with examples. Note that the scope of the present technology is not limited to the examples.
 <二次電池用負極の作製方法>
 二次電池用負極は、負極活物質粉体の表面に被膜層の形成を行い、その後、塗料化、銅箔集電体箔上に塗布・乾燥後、ロールプレスにて圧延成型し、所定幅にスリットを行い、電極素子巻回用の二次電池用の負極電極を得た。
<Method for producing secondary battery negative electrode>
The secondary battery negative electrode is formed by forming a coating layer on the surface of the negative electrode active material powder, and after coating, drying and rolling on a copper foil current collector foil with a roll press to a predetermined width A slit was made to obtain a negative electrode for a secondary battery for winding an electrode element.
 <二次電池用正極の作製方法>
 二次電池用正極は、N-メチルピロリドン(以下、NMPと称する場合がある。)溶媒に、ポリフッ化ビニリデン重合体(以下、PVDFと称する場合がある。)、正極活物質、導電材を用いて塗料化の後、アルミ集電箔を用い、前記負極同様の電極作成手法にて正極電極を得た。
<Method for producing positive electrode for secondary battery>
A positive electrode for a secondary battery uses a polyvinylidene fluoride polymer (hereinafter sometimes referred to as PVDF), a positive electrode active material, and a conductive material in an N-methylpyrrolidone (hereinafter sometimes referred to as NMP) solvent. After forming a paint, an aluminum current collector foil was used to obtain a positive electrode by an electrode preparation method similar to that of the negative electrode.
 <二次電池の作製方法>
 二次電池セルの形態は、ICR18650サイズの円筒型で、所定の巻回型電極素子を構成する機械にて電極素子を作成し、所定の缶に挿入し、集電リード溶接を行った後、EC/EMC=1/3、LiPFの1モル/kg(≒1.25モル/L)にて予め作製した電解液を注液し、所定の安全弁を具備した封口体を介在させ封口し、二次電池セルの組立を完了した。次に、作製された二次電池を用いて初回充電を行った。初回充電は、0.2ItA充電レートにて行い、SEI被膜形成促進のための高温エージング処理を行い、満充電を経過後、開回路電圧不良選別検査を行い、得られた良品の二次電池に対して、以下のセル評価を行った。
<Method for manufacturing secondary battery>
The form of the secondary battery cell is a cylindrical shape of ICR18650 size, and after creating an electrode element with a machine constituting a predetermined wound electrode element, inserting it into a predetermined can, and performing current collecting lead welding, An electrolyte prepared in advance with EC / EMC = 1/3 and 1 mol / kg of LiPF 6 (≈1.25 mol / L) was injected, and sealed with a sealing body equipped with a predetermined safety valve interposed therebetween, The assembly of the secondary battery cell was completed. Next, initial charge was performed using the produced secondary battery. The initial charge is performed at a 0.2 ItA charge rate, a high temperature aging process is performed to promote SEI film formation, and after full charge, an open circuit voltage defect screening inspection is performed. On the other hand, the following cell evaluation was performed.
 <サイクル評価方法>
 試験条件は、Li析出起因によるサイクル評価で最も過酷な、以下の低温(0℃)サイクル評価を行った。試験条件は、以下の充放電サイクルを行い、初期の10サイクル時点の容量を100とした場合の、以下の第2ステップ低温サイクル容量を維持率として導出し、以下の表1にまとめた。
 ・充電:0.5C4.2V5%電流Cut
 ・放電:0.5C3VCut
 ・第1ステップ:(1~10サイクル):充電・放電 23℃
 ・第2ステップ:(11~60サイクル):充電・放電 0℃(0℃50サイクル)
 ・第3ステップ:(61~70サイクル):充電・放電 23℃
<Cycle evaluation method>
The test conditions were the following severe low-temperature (0 ° C.) cycle evaluation, which was the most severe cycle evaluation due to Li precipitation. The test conditions were as follows: the following charge / discharge cycle was performed, and the following second step low-temperature cycle capacity was derived as a maintenance factor when the capacity at the initial 10 cycles was set to 100, and summarized in Table 1 below.
-Charging: 0.5C4.2V5% current Cut
・ Discharge: 0.5C3VCut
-First step: (1-10 cycles): Charging / discharging 23 ° C
Second step: (11 to 60 cycles): Charging / discharging 0 ° C (0 ° C 50 cycles)
-Third step: (61-70 cycles): Charging / discharging 23 ° C
 <実施例1>
 主活物質として黒鉛粉末を用い、被膜層の形成方法として、カルボシキメチルセルロース系水溶性高分子(以下、CMCと称する場合がある。)1%水溶液(セロゲン4H、第一工業製薬株式会社製)にて混練し、所定の金属容器に移し替えて、100℃で粗乾燥後、300℃24時間の熱処理(真空熱処理装置)を行って、CMCを熱変性させ、同時に、吸着水を完全除去し第一被膜層を形成した。その後、電極合剤形成方法としては、NMP-PVDF系の溶解バインダー液にて混練し、銅箔集電箔上に塗布・乾燥し、ロールプレスにて圧延成型し、所定幅にスリットを行い、電極素子巻回用の負極電極を得た。その他の正極、セルの構成、サイクル評価の試験条件等の全ては上記に従い、二次電池-1を作製した。
<Example 1>
Graphite powder is used as the main active material, and as a method for forming the coating layer, a carboxymethyl cellulose-based water-soluble polymer (hereinafter sometimes referred to as CMC) 1% aqueous solution (Serogen 4H, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Kneaded, transferred to a predetermined metal container, roughly dried at 100 ° C, then heat treated (vacuum heat treatment device) at 300 ° C for 24 hours to thermally denature CMC, and at the same time completely remove the adsorbed water A first coating layer was formed. After that, as an electrode mixture forming method, knead with an NMP-PVDF-based dissolved binder solution, apply and dry on a copper foil current collector foil, roll-mold with a roll press, slit to a predetermined width, A negative electrode for winding an electrode element was obtained. In accordance with all the other positive electrode, cell configuration, cycle evaluation test conditions, etc., a secondary battery-1 was produced.
 <実施例2>
 実施例1の記載の被膜層の形成方法として、CMC水溶液にPVDF粉末を混在させること以外の全ては実施例1と同様にして、二次電池-2を作製した。
<Example 2>
A secondary battery-2 was produced in the same manner as in Example 1 except that the PVDF powder was mixed in the CMC aqueous solution as the method for forming the coating layer described in Example 1.
 <実施例3>
 実施例1に記載の被膜層の形成方法として、CMC水溶液にシュウ酸Li粉末を混在させること以外の全ては実施例1と同様にして、二次電池-3を作製した。
<Example 3>
A secondary battery-3 was produced in the same manner as in Example 1 except that the coating layer formation method described in Example 1 was mixed with CMC aqueous solution and Li oxalate powder.
 <比較例1>
 実施例1に記載の被膜層の形成を行わず、それ以外の全ては実施例1と同様にして、二次電池-Aを作製した。
<Comparative Example 1>
A secondary battery A was fabricated in the same manner as in Example 1 except that the coating layer described in Example 1 was not formed.
 <比較例2>
 実施例1に記載の被膜層の形成は行わず、電極塗料化として、CMC水溶液とスチレン・ブタジエンゴム(以下、SBRと称する場合がある。)の水溶性デイスパージョンを用い、銅箔集電箔上に塗布・乾燥した後以外の全ては実施例1と同様にして、二次電池-Bを作製した。
<Comparative example 2>
The film layer described in Example 1 was not formed, and a copper foil current collector was prepared by using a water-soluble dispersion of CMC aqueous solution and styrene-butadiene rubber (hereinafter sometimes referred to as SBR) as an electrode paint. A secondary battery B was prepared in the same manner as in Example 1 except for the case after coating and drying on the foil.
 <実施例4>
 主活物質として、黒鉛粉末90質量%とSiO粉末10質量%との混合粉末としたこと以外の全ては実施例1と同様にして、二次電池-4を作製した。
<Example 4>
A secondary battery 4 was produced in the same manner as in Example 1 except that a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder was used as the main active material.
 <実施例5>
 主活物質として、黒鉛粉末90質量%とSiO粉末10質量%との混合粉末としたこと以外の全ては実施例2と同様にして、二次電池-5を作製した。
<Example 5>
A secondary battery-5 was produced in the same manner as in Example 2 except that the main active material was a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder.
 <実施例6>
 主活物質として、黒鉛粉末90質量%とSiO粉末10質量%との混合粉末としたこと以外の全ては実施例3と同様にして、二次電池-6を作製した。
<Example 6>
A secondary battery-6 was produced in the same manner as in Example 3 except that a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder was used as the main active material.
 <比較例3>
 主活物質として、黒鉛粉末90質量%とSiO粉末10質量%との混合粉末としたこと以外の全ては比較例1と同様にして、二次電池-Cを作製した。
<Comparative Example 3>
A secondary battery C was produced in the same manner as in Comparative Example 1 except that the main active material was a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder.
 <比較例4>
 主活物質として、黒鉛粉末90質量%とSiO粉末10質量%との混合粉末としたこと以外の全ては比較例2と同様にして、二次電池-Dを作製した。
<Comparative example 4>
A secondary battery D was produced in the same manner as in Comparative Example 2 except that the main active material was a mixed powder of 90% by mass of graphite powder and 10% by mass of SiO powder.
 <評価結果及び考察>
 実施例1~6(二次電池-1~二次電池-6)、及び比較例1~4(二次電池-A~二次電池-D)の評価結果を下記の表1に示す。
<Evaluation results and discussion>
The evaluation results of Examples 1 to 6 (secondary battery-1 to secondary battery-6) and Comparative Examples 1 to 4 (secondary battery-A to secondary battery-D) are shown in Table 1 below.
 図1には、実施例1(二次電池-1)及び実施例3(二次電池-3)、並びに比較例1(二次電池-A)に関する、0℃サイクル及び23℃サイクルについての容量維持率(%)とサイクル数(回)との関係を示す。 FIG. 1 shows the capacity for the 0 ° C. cycle and the 23 ° C. cycle for Example 1 (secondary battery-1), Example 3 (secondary battery-3), and Comparative Example 1 (secondary battery-A). The relationship between a maintenance rate (%) and the number of cycles (times) is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、被膜層を形成した実施例1~3(二次電池-1~二次電池-3)が、被膜層を有さない比較例1~2(二次電池-A~二次電池-B)より、0℃50サイクル時のサイクル容量維持率(%)が高い結果となった。 As shown in Table 1, Examples 1 to 3 (secondary battery-1 to secondary battery-3) having a coating layer formed thereon were compared with Comparative Examples 1 to 2 (secondary battery-A) having no coating layer. As a result, the cycle capacity retention rate (%) at 50 ° C. for 50 cycles was higher than that of the secondary battery-B).
 また、図1(縦軸:容量維持率(%)vs横軸:サイクル数(回))に示されるように、第2ステップである0℃サイクル(サイクル数:11回~60回)及び第3ステップである23℃サイクル(サイクル数:61回~70回)において、実施例1~3(二次電池-1~二次電池-3)は、比較例1(二次電池-A)に対して0℃50サイクル時のサイクル容量維持率が高く、低温サイクル特性が良好であった。 Further, as shown in FIG. 1 (vertical axis: capacity retention rate (%) vs horizontal axis: cycle number (times)), the second step of 0 ° C. cycle (cycle number: 11 to 60 times) and In a three-step 23 ° C. cycle (number of cycles: 61 to 70 times), Examples 1 to 3 (secondary battery-1 to secondary battery-3) are compared to Comparative Example 1 (secondary battery-A). In contrast, the cycle capacity retention rate at 50 ° C. at 50 ° C. was high, and the low-temperature cycle characteristics were good.
 負極活物質粉体として黒鉛とSiOとからなる実施例4~6(二次電池-4~二次電池-6)と比較例3~4(二次電池-C~二次電池-D)とを比較すると、0℃50サイクル時のサイクル容量維持率(%)において、被膜層有無の差がより顕著なものとなった。すなわち、被膜層を有する実施例4~6(二次電池-4~二次電池-6)は、被膜層を有さない比較例3~4(二次電池-C~二次電池-D)に対して、0℃50サイクル時のサイクル容量維持率(%)が高い結果となった。その際、被膜層を有する実施例4~6(二次電池-4~二次電池-6)は、負極合剤を形成する塗料系が水CMCである比較例4(二次電池-D)に対して、より優位な差となってあらわれた。 Examples 4 to 6 (secondary battery-4 to secondary battery-6) and Comparative Examples 3 to 4 (secondary battery-C to secondary battery-D) composed of graphite and SiO as negative electrode active material powders When the cycle capacity retention rate (%) at 0 ° C. and 50 cycles was compared, the difference in the presence or absence of the coating layer became more remarkable. That is, Examples 4 to 6 (secondary battery-4 to secondary battery-6) having a coating layer are Comparative Examples 3 to 4 (secondary battery-C to secondary battery-D) having no coating layer. On the other hand, the cycle capacity retention rate (%) at 50 ° C. and 50 cycles was high. At that time, Examples 4 to 6 (secondary battery-4 to secondary battery-6) having a coating layer were used in Comparative Example 4 (secondary battery-D) in which the paint system forming the negative electrode mixture was water CMC. However, the difference was more dominant.
 実施例1~6の二次電池-1~二次電池-6によれば、被膜層による炭素表面の反応活性点との副反応によるガス発生等の副反応抑制や、イオン伝導性向上や、機械的及び電気化学的安定性等の向上によって、二次電池セルの低温時の充放電サイクル特性において良好な改善効果を得ることができることが確認された。 According to the secondary batteries-1 to secondary battery-6 of Examples 1 to 6, side reaction such as gas generation due to side reaction with the reactive sites on the carbon surface by the coating layer, improvement of ion conductivity, It has been confirmed that a good improvement effect can be obtained in the charge / discharge cycle characteristics of the secondary battery cell at a low temperature by improving the mechanical and electrochemical stability.
 以上、実施形態および実施例を挙げながら本技術を説明したが、本技術は実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。 As mentioned above, although this technique was demonstrated, giving an embodiment and an Example, this technique is not limited to the aspect demonstrated in embodiment and an Example, A various deformation | transformation is possible.
 例えば、電池構造が円筒型およびラミネートフィルム型である場合を例に挙げると共に、電池素子が巻回構造を有する場合を例に挙げて説明したが、これらに限られない。本技術の二次電池は、角型、コイン型およびボタン型などの他の電池構造を有する場合に関しても適用可能であると共に、電池素子が積層構造などの他の構造を有する場合に関しても適用可能である。 For example, the case where the battery structure is a cylindrical type and a laminate film type is described as an example, and the case where the battery element has a winding structure is described as an example, but the present invention is not limited thereto. The secondary battery of the present technology can be applied to cases having other battery structures such as a square type, a coin type, and a button type, and also applicable to cases where the battery element has another structure such as a laminated structure. It is.
 また、例えば、電極反応物質は、リチウム(Li)以外に、ナトリウム(Na)およびカリウム(K)などの他の1族元素でもよいし、マグネシウム(Mg)およびカルシウム(Ca)などの2族元素でもよいし、アルミニウム(Al)などの他の軽金属、硫黄(S)でもよい。本技術の効果は、電極反応物質の種類に依存せずに得られるはずであるため、その電極反応物質の種類を変更しても同様の効果を得ることができる。 Further, for example, the electrode reactant may be other group 1 elements such as sodium (Na) and potassium (K) in addition to lithium (Li), or group 2 elements such as magnesium (Mg) and calcium (Ca). Alternatively, other light metals such as aluminum (Al) and sulfur (S) may be used. Since the effect of the present technology should be obtained without depending on the type of the electrode reactant, the same effect can be obtained even if the type of the electrode reactant is changed.
 11…電池缶、20,30…巻回電極体、21,33…正極、21A,33A…正極集電体、21B,33B…正極活物質層、22,34…負極、22A,34A…負極集電体、22B,34B…負極活物質層、23,35…セパレータ、36…電解質層、40…外装部材。 DESCRIPTION OF SYMBOLS 11 ... Battery can, 20, 30 ... Winding electrode body, 21, 33 ... Positive electrode, 21A, 33A ... Positive electrode collector, 21B, 33B ... Positive electrode active material layer, 22, 34 ... Negative electrode, 22A, 34A ... Negative electrode collection Electrical body, 22B, 34B ... negative electrode active material layer, 23, 35 ... separator, 36 ... electrolyte layer, 40 ... exterior member.

Claims (16)

  1.  負極活物質粉体と、
     該負極活物質粉体上に形成される被膜層と、
     結着剤と、を含み、
     該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池用負極。
    Negative electrode active material powder;
    A coating layer formed on the negative electrode active material powder;
    A binder, and
    A negative electrode for a secondary battery, wherein the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
  2.  前記被膜層が、カルボキシメチルセルロース系水溶性高分子を熱処理することよって形成される成分、ポリアクリル酸系水溶性高分子を熱処理することよって形成される成分、及びメタクリル酸系水溶性高分子を熱処理することよって形成される成分から成る群から選ばれる少なくとも1種を含む、請求項1に記載の二次電池用負極。 The coating layer is a component formed by heat-treating a carboxymethylcellulose-based water-soluble polymer, a component formed by heat-treating a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer The negative electrode for secondary batteries according to claim 1, comprising at least one selected from the group consisting of components formed thereby.
  3.  前記被膜層が、カルボキシメチルセルロース系水溶性高分子、ポリアクリル酸系水溶性高分子、及びメタクリル酸系水溶性高分子から成る群から選ばれる少なくとも1種を含む、請求項1に記載の二次電池用負極。 The secondary layer according to claim 1, wherein the coating layer includes at least one selected from the group consisting of a carboxymethylcellulose-based water-soluble polymer, a polyacrylic acid-based water-soluble polymer, and a methacrylic acid-based water-soluble polymer. Battery negative electrode.
  4.  前記被覆層が、繊維状炭素、気相成長炭素繊維、カーボンナノチューブ、グラフェン、及び粉末状炭素から成る群から選ばれる少なくとも1種を含む、請求項1に記載の二次電池用負極。 The secondary battery negative electrode according to claim 1, wherein the coating layer includes at least one selected from the group consisting of fibrous carbon, vapor-grown carbon fiber, carbon nanotube, graphene, and powdered carbon.
  5.  前記被覆層がカルボン酸及び/又はカルボン酸塩を含む、請求項1に記載の二次電池用負極。 The secondary battery negative electrode according to claim 1, wherein the coating layer contains a carboxylic acid and / or a carboxylate.
  6.  前記カルボン酸塩がシュウ酸ナトリウム又はシュウ酸リチウムである、請求項5に記載の二次電池用負極。 The secondary battery negative electrode according to claim 5, wherein the carboxylate is sodium oxalate or lithium oxalate.
  7.  前記結着剤が前記被膜層の内部に含まれている、請求項1に記載の二次電池用負極。 The secondary battery negative electrode according to claim 1, wherein the binder is contained in the coating layer.
  8.  前記結着剤がポリフッ化ビニリデン重合体である、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the binder is a polyvinylidene fluoride polymer.
  9.  負極活物質粉体が炭素系材料及び/又はケイ素系材料を含む、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, wherein the negative electrode active material powder contains a carbon-based material and / or a silicon-based material.
  10.  N-メチルピロリドンを含む、請求項1に記載の二次電池用負極。 The negative electrode for a secondary battery according to claim 1, comprising N-methylpyrrolidone.
  11.  二次電池用負極と、
     二次電池用正極と、
     電解液と、を少なくとも備え、
     該二次電池用負極が、負極活物質粉体と、
     該負極活物質粉体上に形成される被膜層と、
     結着剤と、を含み、
     該被膜層が、エーテル結合、カルボニル基、カルボン酸、カルボン酸塩、炭酸及び炭酸塩から成る群から選ばれる少なくとも1種を含有する炭化水素重合物を含む、二次電池。
    A negative electrode for a secondary battery;
    A positive electrode for a secondary battery;
    An electrolyte solution,
    The negative electrode for a secondary battery comprises a negative electrode active material powder,
    A coating layer formed on the negative electrode active material powder;
    A binder, and
    The secondary battery, wherein the coating layer includes a hydrocarbon polymer containing at least one selected from the group consisting of an ether bond, a carbonyl group, a carboxylic acid, a carboxylate, a carbonate, and a carbonate.
  12.  請求項11に記載の二次電池と、
     前記二次電池の使用状態を制御する制御部と、
     該制御部の指示に応じて前記イオン二次電池の使用状態を切り換えるスイッチ部と、を備える、電池パック。
    A secondary battery according to claim 11;
    A control unit for controlling a usage state of the secondary battery;
    A battery pack comprising: a switch unit that switches a use state of the ion secondary battery in accordance with an instruction from the control unit.
  13.  請求項11に記載の二次電池と、
     該二次電池から供給された電力を駆動力に変換する変換部と、該駆動力に応じて駆動する駆動部と、
     該二次電池の使用状態を制御する制御部と、を備える、電動車両。
    A secondary battery according to claim 11;
    A conversion unit that converts electric power supplied from the secondary battery into a driving force, and a driving unit that is driven according to the driving force;
    And a control unit that controls a usage state of the secondary battery.
  14.  請求項11に記載の二次電池と、
     該二次電池から電力が供給される1または2以上の電気機器と、
     該二次電池からの該電気機器に対する電力供給を制御する制御部と、を備える、電力貯蔵システム。
    A secondary battery according to claim 11;
    One or more electrical devices to which power is supplied from the secondary battery;
    And a control unit that controls power supply from the secondary battery to the electrical device.
  15.  請求項11に記載の二次電池と、
     該二次電池から電力が供給される可動部と、を備える、電動工具。
    A secondary battery according to claim 11;
    And a movable part to which electric power is supplied from the secondary battery.
  16.  請求項11に記載の二次電池を電力供給源として備える、電子機器。  An electronic device comprising the secondary battery according to claim 11 as a power supply source.
PCT/JP2017/001838 2016-03-31 2017-01-20 Secondary battery negative electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device WO2017168982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-072094 2016-03-31
JP2016072094 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017168982A1 true WO2017168982A1 (en) 2017-10-05

Family

ID=59964197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001838 WO2017168982A1 (en) 2016-03-31 2017-01-20 Secondary battery negative electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Country Status (1)

Country Link
WO (1) WO2017168982A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540826B2 (en) * 1975-06-24 1980-10-20
JP2004335379A (en) * 2003-05-09 2004-11-25 Sony Corp Negative electrode for battery and nonaqueous electrolyte battery
JP2005285706A (en) * 2004-03-31 2005-10-13 Hitachi Maxell Ltd Organic electrolyte battery
JP2009029677A (en) * 2007-07-27 2009-02-12 Sumitomo Metal Ind Ltd Graphite powder and manufacturing method
WO2015098023A1 (en) * 2013-12-26 2015-07-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary cell
JP2015156293A (en) * 2014-02-20 2015-08-27 三菱マテリアル株式会社 Negative electrode for lithium ion secondary battery and for lithium ion capacitor
JP2015525437A (en) * 2012-05-25 2015-09-03 ネグゼオン・リミテッドNexeon Ltd Composite particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540826B2 (en) * 1975-06-24 1980-10-20
JP2004335379A (en) * 2003-05-09 2004-11-25 Sony Corp Negative electrode for battery and nonaqueous electrolyte battery
JP2005285706A (en) * 2004-03-31 2005-10-13 Hitachi Maxell Ltd Organic electrolyte battery
JP2009029677A (en) * 2007-07-27 2009-02-12 Sumitomo Metal Ind Ltd Graphite powder and manufacturing method
JP2015525437A (en) * 2012-05-25 2015-09-03 ネグゼオン・リミテッドNexeon Ltd Composite particles
WO2015098023A1 (en) * 2013-12-26 2015-07-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary cell
JP2015156293A (en) * 2014-02-20 2015-08-27 三菱マテリアル株式会社 Negative electrode for lithium ion secondary battery and for lithium ion capacitor

Similar Documents

Publication Publication Date Title
JP6706461B2 (en) Negative electrode active material for secondary battery, negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool and electronic device
JP6809487B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
WO2013145913A1 (en) Positive electrode active substance, positive electrode, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic equipment
JP5924237B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2013218875A (en) Positive-electrode active material, positive electrode, secondary battery, battery pack, electrically-powered vehicle, electric power storage system, electric motor-driven tool and electronic device
CN110832678B (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic device
JP2014112476A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
WO2014112420A1 (en) Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
WO2015045707A1 (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP7056638B2 (en) Negative electrodes for secondary batteries, secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
JP6763410B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
JPWO2017094396A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
CN110249459B (en) Negative electrode for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6597793B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6686650B2 (en) Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
JP2015156280A (en) Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
JP6257087B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6849066B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
WO2017085994A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, electronic device
WO2017168982A1 (en) Secondary battery negative electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2017168983A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2015194314A1 (en) Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773532

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP