WO2019124089A1 - Coating agent for vapor deposition films, gas barrier film and packaging material - Google Patents

Coating agent for vapor deposition films, gas barrier film and packaging material Download PDF

Info

Publication number
WO2019124089A1
WO2019124089A1 PCT/JP2018/044880 JP2018044880W WO2019124089A1 WO 2019124089 A1 WO2019124089 A1 WO 2019124089A1 JP 2018044880 W JP2018044880 W JP 2018044880W WO 2019124089 A1 WO2019124089 A1 WO 2019124089A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating agent
acid
vapor deposition
polyester
Prior art date
Application number
PCT/JP2018/044880
Other languages
French (fr)
Japanese (ja)
Inventor
知樹 土肥
加賀谷 浩之
常行 手島
明宏 近藤
武田 博之
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019519343A priority Critical patent/JP6551769B1/en
Priority to CN201880079820.0A priority patent/CN111465664B/en
Publication of WO2019124089A1 publication Critical patent/WO2019124089A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters

Definitions

  • the present invention relates to a coating for a vapor deposition film, and a gas barrier film using the same.
  • Packaging materials such as food and beverages are often required to have gas barrier properties such as water vapor and oxygen barrier for the protection of the contents.
  • gas barrier properties such as water vapor and oxygen barrier for the protection of the contents.
  • a method of applying a gas barrier to a packaging material a method of applying a gas barrier coating to a stretched film or a method of providing a gas barrier resin on a layer in a multilayer film by coextrusion is widely used.
  • the vapor deposition method to apply is an excellent method that can easily impart a barrier function regardless of the type of gas.
  • the base film used in the vapor deposition method includes a stretched film and an unstretched film.
  • a stretched film and an unstretched film are used for a vapor deposited film provided with a metal deposited layer of aluminum or the like as a gas barrier layer.
  • the thickness of the vapor deposition layer is generally as thin as 10 to 50 nm, pinholes are likely to occur, and the gas barrier function may not be stable.
  • the base film is an unstretched film, the gas barrier function tends to be particularly unstable due to the fact that the film is easily stretched as compared with the stretched film and the gas barrier property of the film itself is poor.
  • overcoat techniques for transparent deposited layers for example, in Patent Document 1 and Patent Document 2, an inorganic oxide layer, a so-called transparent deposited layer, a water-soluble polymer and (a) one or more metal alkoxides, (b A gas barrier coating layer formed by applying a gas barrier coating solution containing as a main component an aqueous solution containing at least one or more of hydrolysates of one or more metal alkoxides or (c) tin chloride, or a water / alcohol mixed solution A transparent gas barrier laminate is described.
  • the water-soluble polymer has poor coating drying properties and contains a sol-gel process in which it is difficult to control the reaction, the reaction management and reuse of the overcoat liquid are difficult, and the coating method has a complicated problem.
  • a resin composition A comprising at least two base layers and comprising polypropylene, and a mixture of a cyclic polyolefin polymer and a polyolefin comprising a copolymer of norbornene and ethylene
  • the non-stretched aluminum vapor deposition film which provided the aluminum vapor deposition layer on this base material layer which consists of a structure which laminated
  • this method stability such as barrier property is imparted by vapor deposition on a film substrate containing a cyclic polyolefin-based polymer having heat resistance and dimensional stability higher than that of polypropylene alone.
  • this method uses a film having a two-layer structure as a base film, and has a problem that the manufacturing method is complicated and the cost is increased.
  • the applicants of the present invention have, as a multilayer film excellent in gas barrier properties, a polyester polyol having two or more hydroxyl groups, for example, a polyvalent carboxylic acid component containing at least one ortho-oriented aromatic dicarboxylic acid or its anhydride. It has been found that a gas barrier adhesive layer comprising a polyisocyanate having two or more isocyanate groups, and a gas barrier multilayer film having an aluminum deposited layer or a layer containing an aluminum foil is excellent in gas barrier properties. (See, for example, Patent Document 4).
  • the adhesive used for the gas barrier film is a reactive two-component adhesive, it has been necessary to immediately coat the deposited film and laminate it with the second base after mixing as the adhesive. That is, for the purpose of protecting the deposited layer of the deposited film itself, for example, a second substrate is required to protect the deposited layer of the deposited film, and a laminating apparatus is required to apply the adhesive. Again, the process is complicated.
  • JP 2012-101505 A JP 2012-250470 A JP 2011-224921 A JP, 2013-147014, A
  • the problem to be solved by the present invention is that the coating on the surface of the deposited film is easy, and the obtained coating film is excellent in adhesion to the deposited film, and the deposited film after coating has excellent blocking resistance and gas barrier properties.
  • An object of the present invention is to provide an excellent coating agent for deposited film.
  • the present inventors have an ester skeleton derived from polyester (A3) which is a polycondensate of polyvalent carboxylic acid component (A1) and polyvalent alcohol component (A2), and the polyvalent carboxylic acid component (A1)
  • the present inventors are polyhydric alcohol components containing 50 to 100 mol% of a polyvalent carboxylic acid component (B1) containing at least one of ortho-oriented aromatic dicarboxylic acids or their anhydrides as a polyester component It finds that it is excellent in blocking resistance by using polyester (B) obtained by polycondensing (B2), and also when it is a case where it laminates using a general-purpose adhesive, It has been found that a coating agent having excellent adhesion without peeling between vapor deposited films can be obtained.
  • the present invention is a coating agent for deposited film, comprising a polyisocyanate compound (A) and a polyester (B),
  • the polyisocyanate compound (A) has an ester skeleton derived from polyester (A3) which is a polycondensate of polyvalent carboxylic acid component (A1) and polyvalent alcohol component (A2), and the polyvalent carboxylic acid A polyisocyanate compound (A) containing 10 to 70 mol% of at least one ortho-oriented aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the component (A1)
  • the polyester (B) is a polycondensate of a polyvalent carboxylic acid component (B1) containing at least one of an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof and a polyvalent alcohol component (B2), and the polyvalent alcohol component (B2)
  • a coating agent for deposited film is provided, which contains 50 to 100 mol% of glycerol based on the total amount.
  • the present invention also provides a gas barrier film obtained by coating a vapor deposition film with the coating agent described above.
  • the present invention also provides a packaging material using the gas barrier film described above.
  • the coating agent for a vapor deposition film of the present invention can be diluted with a solvent and can be easily applied to the surface of the vapor deposition film. Moreover, since a coating film is excellent in the adhesiveness to a vapor deposition film, the film which coated the coating agent for vapor deposition films of this invention on the vapor deposition film is excellent not only in gas barrier property but in lamination strength. Moreover, since the film which coated the coating agent for vapor deposition films of this invention to the vapor deposition film uses a specific polyester, it is excellent also in blocking resistance.
  • the gas barrier film obtained by coating the metallized film with the coating agent for a vapor deposition film of the present invention has excellent gas barrier properties without using a multi-layered laminate with an adhesive or the like, so a barrier film useful particularly for food packaging. Can be provided at low cost.
  • the present invention is a coating agent for a deposited film comprising a polyisocyanate compound (A) and a polyester (B).
  • the polyester (B) has a carboxyl group or a hydroxyl group at the end, and reacts with the isocyanate group of the polyisocyanate compound (A).
  • the polyisocyanate compound (A) used in the present invention has an ester skeleton derived from a polyester (A3) which is a polycondensate obtained by polycondensing a polyvalent carboxylic acid component (A1) and a polyhydric alcohol component (A2). And has an isocyanate group at the end. Since the polyester (A3) has a hydroxyl group or a carboxyl group at the end, introduction of the terminal isocyanate group is carried out by reacting the terminal hydroxy group or carboxyl group of the polyester (A3) with a polyisocyanate compound.
  • polyisocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate and hexamethylene diisocyanate.
  • a polyisocyanate compound containing an aromatic ring in part of the skeleton is preferable because the gas barrier function can be further improved.
  • the number average molecular weight of the polyester (A3) is preferably 300 to 2,000.
  • the number average molecular weight or weight average molecular weight is detected by gel permeation chromatography using a GPC column LF-804 (manufactured by Showa Denko) by a differential refractive index detector (Waters 2414 manufactured by Waters). It measured from the retention time.
  • the polyester (A3) is used by polycondensing a polyhydric carboxylic acid component (A1) and a polyhydric alcohol component (A2).
  • the polyvalent carboxylic acid component (A1) contains 10 to 70 mol% of at least one ortho-orientation aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the polyvalent carboxylic acid component (A1) It is a feature.
  • An aromatic polyvalent carboxylic acid or an acid anhydride thereof in which the carboxylic acid is substituted at the ortho position (hereinafter referred to as “an aromatic polyvalent carboxylic acid or an acid anhydride thereof in which the carboxylic acid is substituted at an ortho position”
  • Component (C1) may be referred to as “orthophthalic acid or an anhydride thereof, naphthalene 2,3-dicarboxylic acid or an anhydride thereof, naphthalene 1,2-dicarboxylic acid or an anhydride thereof, anthraquinone 2,3- Examples thereof include dicarboxylic acids or their anhydrides, and 2,3-anthracene carboxylic acids or their anhydrides.
  • These compounds may have a substituent at any carbon atom of the aromatic ring.
  • substituents include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group and naphthyl group.
  • polyvalent carboxylic acid components may be copolymerized as long as the effects of the present invention are not impaired.
  • aliphatic polyvalent carboxylic acids succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc.
  • unsaturated bond-containing polyvalent carboxylic acids maleic anhydride, maleic acid, Fumaric acid etc., 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid etc.
  • p- Dorokishi benzoic acid can be used in p-(2-hydroxyethoxy) benzoic acid and alone or in mixture of two or more polybasic acids such as ester-forming derivatives of these dihydroxy carboxylic acids.
  • succinic acid, adipic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid and diphenic acid are preferable from the viewpoint of organic solvent solubility and gas barrier property.
  • acid component (C2) other carboxylic acid or acid anhydride
  • the polyhydric alcohol component (A2) contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol and neopentyl glycol. Among them, it is most preferable to use ethylene glycol as the main component, since it is presumed that the oxygen permeation is difficult as the molecular chain is not excessively flexible as the number of carbon atoms between oxygen atoms decreases.
  • polyhydric-alcohol component (A2) in this invention, you may copolymerize another polyhydric-alcohol component in the range which does not impair the effect of this invention besides this.
  • the polycondensation reaction of the polyvalent carboxylic acid component (A1) with the polyvalent alcohol component (A2) can be carried out by a known and commonly used method.
  • the polyester polyol of the central skeleton of the polyisocyanate compound (A3) preferably has a hydroxyl value of 50 to 400 mg KOH / g and an acid value of 2 mg KOH / g or less.
  • the hydroxyl value can be measured by the hydroxyl value measurement method described in JIS-K 0070, and the acid value can be measured by the acid value measurement method described in JIS-K 0070.
  • the hydroxyl value is less than 50 mg KOH / g, the molecular weight is too large, so the viscosity may be high, and good coating suitability may not be obtained. Conversely, if the hydroxyl value exceeds 400 mg KOH / g, the molecular weight is small. Since it is too large, the crosslink density of the cured coating film may be too high, and good adhesive strength may not be obtained.
  • the isocyanate used in the present invention may be either a low molecular weight compound or a high molecular weight compound, but a diisocyanate is preferred from the viewpoint of reaction control. Moreover, when an aromatic ring or an aliphatic ring is contained in part of the skeleton, it is more preferable from the viewpoint of the gas barrier improving function.
  • isocyanate having an aromatic ring metaxylylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate
  • isocyanate having an aliphatic ring hydrogenated xylylene diisocyanate, hydrogenated toluene diisocyanate, isophorone diisocyanate, norbornene diisocyanate
  • examples of other isocyanates include tetramethylene diisocyanate, hexamethylene diisocyanate, allophanate bodies of hexamethylene diisocyanate, biuret bodies and nurate bodies.
  • blocked isocyanate Moreover, as long as it is a polyisocyanate compound containing an aromatic ring and an aliphatic ring, it may be blocked isocyanate.
  • an isocyanate blocking agent for example, as long as it contains an aromatic group, phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, phenols such as chlorophenol, etc.
  • aromatic amines, imides, active methylene compounds such as acetylacetone, acetoacetate ester, malonic acid ethyl ester, mercaptans, imines, ureas, diaryl compounds, sodium bisulfite, etc. may be mentioned.
  • the blocked isocyanate is obtained by the addition reaction of the above-mentioned isocyanate compound and an isocyanate blocking agent by a conventionally known appropriate method.
  • the polyester (B) used in the present invention is produced by polycondensation of a polyvalent carboxylic acid component (B1) containing at least one of an ortho-oriented aromatic dicarboxylic acid or its anhydride with a polyhydric alcohol component (B2). Be done.
  • the molecular weight of the polyester (B) is not particularly limited as long as it can impart sufficient film toughness, coating suitability, and solvent solubility as a coating agent, but a number average molecular weight of 1,000 to 50,000 is preferable. More preferably, it is 1000 to 30000.
  • the functional group at the polyester end may have both an alcohol end and a carboxylic acid end, but in order to use an isocyanate-based curing agent in combination, it is preferable that the polyester polyol is mainly composed of an alcohol end.
  • Tg Glass transition temperature (Tg) of polyester (B)
  • the glass transition temperature (hereinafter sometimes referred to as Tg) of the polyester (B) used in the present invention is not particularly limited, but is preferably 15 ° C. or more.
  • Tg is 18 degreeC or more especially, More preferably, it is 25 degreeC or more.
  • Tg was measured by detecting the heat flow rate in a temperature range of ⁇ 50 ° C. to 100 ° C. using a differential scanning calorimeter (DSC 822e manufactured by METTLER TOLEDO).
  • the polyester (B) used in the present invention is used by polycondensing a polyvalent carboxylic acid component (B1) and a polyhydric alcohol component (B2).
  • the polyvalent carboxylic acid component (B1) is characterized in that it contains at least one of an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof.
  • an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof it is preferable to use an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof, but in addition, the above-mentioned acid component (C2) can be used as long as the effects of the present invention are not impaired.
  • succinic acid 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid and diphenic acid are preferable from the viewpoint of organic solvent solubility and gas barrier property.
  • the polyhydric alcohol component (B2) in the polyester (B) used in the present invention is characterized by containing glycerol and having a glycerol content of 50 to 100 mol% with respect to all the polyhydric alcohol components.
  • the glycerol content is 50 mol% or more, the molecular movement of the polyester resin is suppressed by the increase in the crosslinking point on the molecular structure, and the blocking function and the barrier function of the resin are improved.
  • the polyhydric alcohol component (B2) used in combination with glycerol is not particularly limited as long as it is possible to synthesize a polyester exhibiting the performance of gas barrier compensation, but ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexane dimethanol, and 1 It is preferable to contain a polyhydric alcohol component containing at least one selected from the group consisting of 3, 3-bishydroxyethylbenzene. Among them, it is most preferable to use ethylene glycol as the main component, since it is presumed that the oxygen permeation is difficult as the molecular chain is not excessively flexible as the number of carbon atoms between oxygen atoms decreases.
  • polyhydric alcohol component (B2) in addition to this, other polyhydric alcohol components may be copolymerized within the range not impairing the effects of the present invention.
  • diols 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene Glycol, tetraethylene glycol, dipropylene glycol and tripropylene glycol are tri- or higher alcohols, and trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, Pentaerythritol, dipentaerythritol and the like can be mentioned.
  • polyesters which use tris (2-hydroxyethyl) isocyanurate in combination have good organic solvent solubility due to their branched structure and moderately high crosslink density, as well as barrier function. It is excellent and particularly preferably used.
  • the catalyst used for the reaction to obtain the polyester of the present invention includes tin-based catalysts such as monobutyl tin oxide, dibutyl tin oxide and the like, titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate, tetra-butyl-zirconate and the like.
  • An acid catalyst such as a zirconia-based catalyst can be mentioned. It is preferable to use the titanium-based catalyst such as tetra-isopropyl-titanate or tetra-butyl-titanate having high activity to the ester reaction in combination with the above-mentioned zirconia catalyst.
  • the amount of the catalyst is 1 to 1000 ppm, preferably 10 to 100 ppm, based on the total mass of the reaction raw material used. If it is less than 1 ppm, it is difficult to obtain the effect as a catalyst, and if it exceeds 1000 ppm, there may occur a problem of inhibiting the urethanation reaction when using an isocyanate curing agent.
  • the coating agent for deposited film of the present invention contains the polyisocyanate compound (A) and the polyester (B), but the reaction of the polyisocyanate compound (A) It is preferable to blend so that the component and the hydroxyl group of polyester (B) are 0.5 / 1 to 5/1 (equivalent ratio), and from the viewpoint of the barrier function and blocking resistance, more preferably 1/1 to 5 It is 1.5 / 1. If the amount of the polyisocyanate component exceeds this range, excess blocking of the polyisocyanate component tends to result in poor blocking resistance. On the other hand, if the amount of polyester (B) is too large, the cured coating becomes hard and adhesion is good. There is a possibility that strength can not be obtained.
  • the coating agent of the present invention may appropriately use a solvent.
  • the solvent to be used is preferably a non-aqueous system from the viewpoint of compensating for the rapid drying property and the water vapor barrier function, and it is preferable that the organic solvent is the main component.
  • the solubility is high in the polyester which is the main component, and the residual solvent and the immediate drying property. From this viewpoint, an organic solvent having a boiling point of 100 ° C. or less is preferable.
  • Preferred organic solvents include ethyl acetate, propyl acetate and butyl acetate as ester solvents, acetone and 2-butanone as ketone solvents, tetrahydrofuran as ether solvents, and hexane as aliphatic solvents.
  • Examples of cyclohexane and aromatic solvents include toluene and the like.
  • the coating agent of the present invention may contain a plate-like inorganic compound.
  • a plate-like inorganic compound When a plate-like inorganic compound is used in the present invention, it has an effect of improving the winding suitability after coating and gas barrier properties by reducing the adhesiveness.
  • the barrier property is improved by the plate-like shape.
  • the charge between the layers of the plate-like inorganic compound does not directly affect the barrier property greatly, but the dispersibility with respect to the coating agent of the present invention is significantly inferior to the ionic inorganic compound or the swellable inorganic compound, and the addition amount
  • the coating suitability of the coating agent of the present invention becomes an issue due to the thickening and the thixotropy.
  • non-charging (non-ionic) or non-swelling property with respect to water even if the addition amount is increased, it becomes difficult to become thickened or thixotropic, and coating suitability can be secured.
  • Examples of the plate-like inorganic compound used in the present invention include, for example, water-containing silicates (phylosilicate minerals etc.), kaolinite-serpentine group clay minerals (halloysite, kaolinite, ende), for example.
  • the plate-like inorganic compounds are used singly or in combination of two or more.
  • the aspect ratio of the plate-like inorganic compound, the content in the coating agent, the particle diameter, and the particle size distribution are not particularly limited as long as the barrier improving function and the blocking resistance can be imparted.
  • a known dispersion method can be used.
  • ultrasonic homogenizers, high pressure homogenizers, paint conditioners, ball mills, roll mills, sand mills, sand grinders, dyno mills, disper mats, nano mills, SC mills, nanomizers, etc. can be mentioned, and still more preferably high shear force is generated
  • equipment that can be used include a Henschel mixer, a pressure kneader, a Banbury mixer, a planetary mixer, a double roll, a triple roll, and the like. One of these may be used alone, or two or more types of devices may be used in combination.
  • acid anhydride for the purpose of improving the acid resistance of the coating agent layer, known acid anhydrides may be used in combination as additives.
  • the acid anhydride for example, phthalic anhydride, succinic anhydride, hetic anhydride, hymic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydraphthalic anhydride, tetrabromophthalic acid Anhydride, tetrachlorophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic acid anhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 5- (2 And 5, 5-oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, styrene-maleic anhydride copolymer and the like. It is preferable
  • the material which has a gas trapping function may be added further as needed.
  • the material having an oxygen scavenging function include hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, low molecular weight organic compounds that react with oxygen such as gallic acid, pyrogallol, cobalt, manganese, nickel, iron, Transition metal compounds, such as copper, etc. are mentioned.
  • the material having a water vapor capture function include materials such as silica gel, zeolite, activated carbon, calcium carbonate and the like. In addition to these, it is possible to add the capture component of the target gas to be blocked.
  • additives may be blended as long as the gas barrier auxiliary function is not impaired.
  • examples of the additive include inorganic fillers such as silica, alumina, aluminum flakes and glass flakes, and dispersants and stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.) when using inorganic materials, and plastic Agents, antistatic agents, lubricants, antiblocking agents, colorants, leveling agents, slip improvers and the like.
  • the coating agent of the present invention is used to significantly improve the gas barrier properties of a vapor-deposited film. Therefore, various vapor deposition films are used as an object to which a coating agent is applied.
  • a film coated with the present material can be used as a high gas barrier film because it is more excellent in gas barrier properties than a general vapor deposition film.
  • Type of vapor deposition layer As a kind of vapor deposition layer of the vapor deposition film by which the coating agent used by this invention is apply
  • coated if gas-barrier property can be provided, it will not be specifically limited.
  • Metal deposition or metal oxide deposition widely used at present for packaging is suitably exemplified. Although various metals can be illustrated as metal vapor deposition, especially cheap and widely used aluminum is preferable.
  • the metal oxide aluminum oxide (AlOx) and silicon oxide (SiOx) are preferably exemplified as highly versatile materials. Other than this, a film in which various organic compounds and inorganic compounds are vapor-deposited, or a film in which plural kinds of materials are vapor-deposited may be used.
  • the vapor deposition method is not particularly limited, and examples thereof include a vacuum vapor deposition method which is a physical vapor deposition method and a CVD method which is a chemical vapor deposition method.
  • the thickness of the vapor deposition layer is not particularly limited as long as the vapor deposition layer can exhibit a certain gas barrier function even if it is a single vapor deposition layer, and if it can be made a high barrier film by providing a coating layer thereon. However, if the vapor deposition layer is too thin, the contribution of the vapor deposition layer to the gas barrier decreases, and even if the coating agent of the present invention is used, a sufficient gas barrier function can not be expressed. It is preferably 3 to 70 nm, more preferably 5 to 60 nm.
  • these vapor deposition films can be used as protection of vapor deposition, with or without overcoating or undercoating previously applied.
  • a vapor-deposited film having no coating layer is preferably used because the barrier enhancing function of the coating agent of the present invention can be sufficiently exhibited.
  • thermoplastic resin film can be appropriately selected according to the desired application.
  • PET polyethylene terephthalate
  • polystyrene film polyamide film
  • polyacrylonitrile film polyethylene film
  • LLDPE linear low density polyethylene film
  • HDPE high density polyethylene film
  • CPP unstretched
  • Polyolefin films such as polypropylene film, OPP: biaxially oriented polypropylene film
  • polyvinyl alcohol film ethylene-vinyl alcohol copolymer film
  • cycloolefin copolymer film and the like.
  • films can be preferably used with or without a stretching treatment. Films subjected to a stretching process have the advantages of dimensional stability, rigidity and easy coating operation and ease of use. In addition, the unstretched film conversely has poor dimensional stability, rigidity, and heat resistance of the substrate, and the vapor deposition layer has many defects, and in many cases the gas barrier is not stable. Therefore, using the coating agent of the present invention There is an advantage of strengthening the coating agent of the present invention.
  • a barrier film containing a gas barrier layer such as polyvinyl alcohol, ethylene / vinyl alcohol copolymer, vinylidene chloride or the like is used in combination to impart a higher barrier function. Also good.
  • the coating method of the coating agent of the present invention is not particularly limited as long as the deposition surface of the deposited film can be coated.
  • various coating methods such as call coat and gravure coat can be exemplified.
  • the film thickness to which the coating agent of the present invention is applied is not particularly limited.
  • the coating agent of the present invention enhances the reinforcing effect of the gas barrier by closing the deposition defects. Therefore, the coating film thickness does not need to be thick as long as the deposition defects can be closed, and if it is 0.1 ⁇ m or more, the barrier improvement effect can be obtained.
  • the preferable thickness range is a range of 0.2 ⁇ m to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m, in view of the balance between the fact that coating defects are less likely to occur and the drying property.
  • composition using metal vapor deposition stretched film such as aluminum In the case of using a transparent vapor-deposited stretched film such as a coating agent / ink / vapor-deposited stretched film / laminated adhesive / sealant film 2) aluminum oxide of the present invention, Transparent vapor-deposited stretched film / coating agent of the present invention / ink / laminated adhesive / sealant film 3) Metallized non-stretched film such as aluminum, etc.
  • composition of stretched film / ink / laminated adhesive / coating of the present invention Agent / metal deposition unstretched film / coating / ink / metal deposition unstretched film 4) transparent vapor deposited unstretched film such as aluminum oxide etc. stretched film / ink / laminate adhesive / coating agent of the present invention / transparent deposition Unstretched film ⁇ Coating agent of the present invention / ink / transparent vapor deposited unstretched film
  • a high gas barrier film having two or less film layers and printed with an ink layer.
  • a metal or a transparent vapor deposited unstretched film is used, a single layer high barrier film can be provided.
  • Gases that can be blocked by the film for gas barrier using the coating agent of the present invention include oxygen, water vapor, carbon dioxide, inert gases such as nitrogen and argon, alcohol components such as methanol, ethanol and propanol, phenol, cresol, etc.
  • inert gases such as nitrogen and argon
  • alcohol components such as methanol, ethanol and propanol
  • phenol, cresol etc.
  • aroma components consisting of low molecular weight compounds such as soy sauce, sauce, miso, lemonon, menthol, methyl salicylate, coffee, cocoa shampoo, rinse, etc. can be exemplified.
  • the coating material of the present invention improves the barrier property of water vapor and oxygen of a vapor deposited film, and also has high laminating strength, and therefore, in addition to various packaging materials requiring laminating work, an adhesive for protective films for solar cells, for example.
  • coating agents for electronic materials such as coatings for water vapor barrier substrates for display devices, coatings for building materials, coatings for industrial materials, etc., suitably used for reinforcement of the gas barrier properties of water vapor and oxygen it can.
  • polyester polyol containing glycerol has a theoretical number average molecular weight calculated from the hydroxyl value and a number average molecular weight by the above measuring method greatly different from each other, so the actual number average molecular weight is described.
  • the number average molecular weight or weight average molecular weight is detected by gel permeation chromatography using a GPC column LF-804 (manufactured by Showa Denko) by a differential refractive index detector (Waters 2414 manufactured by Waters). It measured from the retention time.
  • Raw material monomer composition of polyester polyol (B) for Examples and Comparative Examples obtained in Production Examples 1 to 4 number average molecular weight of resin, glycerol content (mol%) with respect to all polyhydric alcohol components, polyvalent carboxylic acid
  • the content (mol%) of the ortho-oriented aromatic dicarboxylic acid or its anhydride with respect to all the components and the glass transition temperature (° C.) measured by the above-mentioned method are shown in Table 1.
  • the content (mol%) of the aromatic dicarboxylic acid or its anhydride is shown in Table 2, and the raw material monomer composition of the polyisocyanate compound for the examples and comparative examples obtained in Production Examples 11 to 16, NCO% (in the molecule)
  • the content (mol%) of the ortho-oriented aromatic dicarboxylic acid or the anhydride thereof with respect to the weight fraction of the isocyanate group) and the total component of the polyvalent carboxylic acid is shown in Tables 2 and 3.
  • XDI metaxylylene diisocyanate
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • the isocyanate used is as follows. ⁇ XDI: Mitsui Chemicals Co., Ltd. “Takenate 500” (nonvolatile component 100%) ⁇ TDI: Toron Co., Ltd. product "Corronate T-100” (non volatile matter 100%) -MDI: "Millionate MT" manufactured by Tosoh Corp. (nonvolatile component 100%) NCO%: It is an isocyanate group content with respect to a polyisocyanate compound (A), and is a measured value.
  • Example and Comparative Example The compounding ratio of the coating agent of the example and the comparative example and the film to be used are shown in Table 4.
  • the polyester (B) synthesized in the preparation example was added to 2-butanone and stirred with a stirrer at normal temperature. It was possible to prepare a solution in which all the polyesters were completely dissolved in the solvent. To the resulting solution was added the polyisocyanate compound (A) synthesized in the production example or a commercially available isocyanate compound, and the mixture was stirred with a stirrer at room temperature to prepare a uniform coating agent.
  • isocyanate compounds are as follows.
  • ⁇ D-110N Mitsui Chemicals Co., Ltd. “Takenate D-110N” (Meta-xylylene diisocyanate adduct, 75.0% of nonvolatile components, solvent ethyl acetate)
  • ⁇ KW-75 "DIC Dry KW-75” (manufactured by DIC Corporation) (Tolylene diisocyanate adduct, 75.0% nonvolatile component, solvent ethyl acetate)
  • T-1890 "VESTANATT-1890 / 100" (isophorone diisocyanate isocyanurate, 100% nonvolatile component) manufactured by EVONIC, diluted with ethyl acetate to prepare 70% nonvolatile component
  • Takenate 500 Mitsui Chemicals Co., Ltd. Made “Takenate 500” (Meta-xylylene diisocyanate, 100% non-volatile components)
  • the resulting coating agent is coated on the deposition side of the deposited film to a coating amount of 0.5 g / m 2 (solid content) using a bar coater # 2, and the solvent is applied by hot air at 80 ° C. with a dryer. After volatilization, the film was placed in a dryer set at 150 ° C. for 30 seconds to obtain a gas barrier film having a uniform coating layer. The following was used as a vapor deposition film which is a base material.
  • the gas barrier film was evaluated by measuring oxygen permeability, measuring water vapor permeability, measuring laminate strength, and blocking resistance (coating drying characteristics).
  • the gas barrier film used the film of (X) or (Y).
  • (Y) Laminated film using a gas barrier film The first substrate is compounded with Dick Dry LX-500 and KW-75 (both manufactured by DIC) at a compounding ratio of 10/1, and the nonvolatile content is 20%.
  • the adhesive obtained by blending ethyl acetate so as to become is coated to a coating amount of 2.0 g / m 2 (solid content) using a bar coater # 9, and the solvent is heated by a hot air at 80 ° C. with a dryer. Was allowed to evaporate.
  • dry lamination was performed with the second base material at a temperature of 40 ° C., a pressure of 0.4 MPa, and a laminating speed of 40 m / min to obtain a laminated film.
  • the laminated film was cured at 40 ° C./3 days to form a “laminated film”.
  • the gas barrier film obtained by the above-mentioned "method for producing a gas barrier film” was used as the first substrate or the second substrate.
  • the film abbreviations used are as follows.
  • Oxygen Permeability Measurement Method Using the gas barrier film of (X), the laminated film of (Y), and an untreated vapor-deposited film as a reference example, using an oxygen permeability measurement device OX-TRAN 2/21 MH manufactured by Mocon Corporation. It was measured in an atmosphere of 23 ° C. and 90% RH according to JIS-K7126 (isostatic pressure method). Here, RH indicates humidity.
  • the gas barrier film of (X), the laminated film of (Y), and an untreated vapor-deposited film as a reference example are cut in parallel with the coating direction to a width of 15 mm.
  • the tensile strength at the time of peeling between laminated films by the 180 degree peeling method is set as the lamination strength, using an STD-1225L table-top material tester made by And Day, setting the atmosphere temperature to 25 ° C. and the peeling speed to 300 mm / min. did.
  • the unit of laminate strength was N / 15 mm.
  • the coating agent contains 10 to 70 mol% of at least one ortho-orientation aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the polyvalent carboxylic acid component (A1) shown in Examples 1 to 15.
  • the coating agent containing 50 to 100 mol% of glycerol relative to the total amount of the polyhydric alcohol component (B2) has low permeation of both oxygen and water vapor as compared to the vapor-deposited film to which the coating agent of the reference example is not applied. It exhibits excellent properties as a coating agent that shows the rate and improves the barrier function. Also, in any of the examples, the laminate film showed high laminate strength and showed excellent blocking resistance (coating film drying characteristic).
  • Comparative Examples 1 to 4 although a certain improvement in the barrier function was observed, the laminate film showed almost no laminate strength because it became a hard coating film derived from the chemical structure of the curing agent.
  • Comparative Examples 5 to 7 similarly having no essential structure of the present invention, strong adhesiveness remained after gas drying, which strongly suggested the possibility of problems such as blocking.

Abstract

Provided is a coating agent for vapor deposition films, which contains: a polyisocyanate compound (A) which has an ester skeleton derived from a polyester (A3) that is a polycondensation product of a polyvalent carboxylic acid component (A1) and a polyhydric alcohol component (A2), and which contains at least one of an ortho-directing aromatic dicarboxylic acid and an acid anhydride thereof in an amount of 10-70% by mole relative to the total amount of the polyvalent carboxylic acid component (A1); and a polyester (B) which is a polycondensation product of a polyvalent carboxylic acid component (B1) and a polyhydric alcohol component (B2), said polyvalent carboxylic acid component (B1) containing at least one of an ortho-directing aromatic dicarboxylic acid and an acid anhydride thereof, and which contains glycerol in an amount of 50-100% by mole relative to the total amount of the polyhydric alcohol component (B2). Also provided is a gas barrier film.

Description

蒸着フィルム用コーティング剤、ガスバリア性フィルム、及び包装材Coating agent for vapor deposition film, gas barrier film, and packaging material
 本発明は、蒸着フィルム用コーティング剤、及びそれを用いたガスバリア性フィルムに関する。 The present invention relates to a coating for a vapor deposition film, and a gas barrier film using the same.
 食品や飲料等の包装材料は、内容物の保護のため水蒸気、酸素バリア等のガスバリア性が求められることが多い。包装材料にガスバリアを付与する方法はガスバリアコーティングを延伸フィルムに施す方法や、ガスバリア性の樹脂を共押し出しにより多層フィルム中の層に設けるなどの方法が広く用いられているが、中でもフィルムに蒸着層を付与する蒸着法は、ガスの種類によらずに容易にバリア機能を付与できる優れた方法である。 Packaging materials such as food and beverages are often required to have gas barrier properties such as water vapor and oxygen barrier for the protection of the contents. As a method of applying a gas barrier to a packaging material, a method of applying a gas barrier coating to a stretched film or a method of providing a gas barrier resin on a layer in a multilayer film by coextrusion is widely used. The vapor deposition method to apply is an excellent method that can easily impart a barrier function regardless of the type of gas.
 蒸着法で使用する基材フィルムには延伸フィルムと未延伸フィルムとがあり、例えばアルミニウム等の金属蒸着層をガスバリア層として設けた蒸着フィルムには、延伸フィルムや未延伸フィルム共に使用されている。しかしながら、蒸着層の厚みは一般に10~50nmと薄いためピンホールが生じやすく、ガスバリア機能が安定しないことがあった。特に基材フィルムが未延伸フィルムの場合では、延伸フィルムに比べてフィルムが伸びやすいことや、フィルム自体のガスバリア性が乏しい事により、特にガスバリア機能が不安定になりがちである。
 また、シリカやアルミナ等の金属酸化物の蒸着層をガスバリア層として設けた透明蒸着フィルムには、蒸着層が金属に比べて脆いために、未延伸フィルムは殆ど使用されておらず、より寸法安定性が高い延伸フィルムを使用することが殆どである。それでもやはり、クラック、ピンホールによりバリア性能がばらつく問題はなかなか解消できない。
The base film used in the vapor deposition method includes a stretched film and an unstretched film. For example, both a stretched film and an unstretched film are used for a vapor deposited film provided with a metal deposited layer of aluminum or the like as a gas barrier layer. However, since the thickness of the vapor deposition layer is generally as thin as 10 to 50 nm, pinholes are likely to occur, and the gas barrier function may not be stable. In particular, when the base film is an unstretched film, the gas barrier function tends to be particularly unstable due to the fact that the film is easily stretched as compared with the stretched film and the gas barrier property of the film itself is poor.
In addition, in the case of a transparent vapor deposition film provided with a vapor deposition layer of a metal oxide such as silica or alumina as a gas barrier layer, an unstretched film is hardly used because the vapor deposition layer is more brittle than metal, and the dimension is more stable. In most cases, a highly oriented film is used. Even so, the problem that the barrier performance varies due to cracks and pinholes can not be solved easily.
 このようなガスバリア性を付与する蒸着層の問題を解消するために、蒸着層をオーバーコート層により保護することが、特に透明蒸着フィルムに対して広く行われている。
透明蒸着層へのオーバーコート技術として、例えば、特許文献1や特許文献2には、無機酸化物層いわゆる透明蒸着層上に、水溶性高分子並びに(a)1種以上の金属アルコキシド、(b)1種以上の金属アルコキシドの加水分解物、または(c)塩化錫の少なくとも1つ以上を含む水溶液、あるいは、水/アルコール混合溶液を主成分とするガスバリア被覆液を塗布してなるガスバリア被覆層を有する、透明ガスバリア積層体が記載されている。しかしながら水溶性高分子は塗工乾燥性が悪い上、反応制御が困難なゾルゲルプロセスを含むため、オーバーコート液の反応管理や再利用が困難であり、塗工方法が煩雑な問題がある。
In order to solve the problem of the vapor deposition layer which provides such a gas barrier property, to protect a vapor deposition layer by overcoat layer is performed widely especially with respect to a transparent vapor deposition film.
As overcoat techniques for transparent deposited layers, for example, in Patent Document 1 and Patent Document 2, an inorganic oxide layer, a so-called transparent deposited layer, a water-soluble polymer and (a) one or more metal alkoxides, (b A gas barrier coating layer formed by applying a gas barrier coating solution containing as a main component an aqueous solution containing at least one or more of hydrolysates of one or more metal alkoxides or (c) tin chloride, or a water / alcohol mixed solution A transparent gas barrier laminate is described. However, since the water-soluble polymer has poor coating drying properties and contains a sol-gel process in which it is difficult to control the reaction, the reaction management and reuse of the overcoat liquid are difficult, and the coating method has a complicated problem.
 また、アルミニウム等の金属蒸着層は、透明蒸着層に比べると曲げへの追随性が良好なことからオーバーコート層を設ける例は少ないが、例えば特許文献3では、ピンホール等が一定割合で存在する金属蒸着層のバリア性能を高める目的で、基材層が少なくとも2層からなり、ポリプロピレンからなる樹脂組成物Aと、ノルボルネンとエチレンの共重合体からなる環状ポリオレフィン系高分子とポリオレフィンの混合物である樹脂組成物Bとを積層した構成からなる該基材層の上に、アルミ蒸着層を設けた無延伸アルミ蒸着フィルムが記載されている。本方法は耐熱性、寸法安定性がポリプロピレン単独よりも高い、環状ポリオレフィン系高分子を含むフィルム基材上に蒸着することでバリア性等の安定性を付与している。しかし本方法は、基材フィルムとして2層構成のフィルムを用いており製法が煩雑で高コスト化する問題がある。 In addition, although metal deposition layers such as aluminum have better conformability to bending compared to transparent deposition layers, there are few examples in which an overcoat layer is provided, but in Patent Document 3, for example, pinholes etc. are present at a constant rate In order to enhance the barrier performance of the deposited metal layer, a resin composition A comprising at least two base layers and comprising polypropylene, and a mixture of a cyclic polyolefin polymer and a polyolefin comprising a copolymer of norbornene and ethylene The non-stretched aluminum vapor deposition film which provided the aluminum vapor deposition layer on this base material layer which consists of a structure which laminated | stacked a certain resin composition B is described. In this method, stability such as barrier property is imparted by vapor deposition on a film substrate containing a cyclic polyolefin-based polymer having heat resistance and dimensional stability higher than that of polypropylene alone. However, this method uses a film having a two-layer structure as a base film, and has a problem that the manufacturing method is complicated and the cost is increased.
 一方、出願人らは、ガスバリア性に優れた多層フィルムとして、2個以上の水酸基を有するポリエステルポリオール、例えばオルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分と、2個以上のイソシアネート基を有するポリイソシアネートとを含有してなるガスバリア性接着剤層、及びアルミ蒸着層若しくはアルミ箔を含む層を有するガスバリア性多層フィルムが、ガスバリア性に優れることを見出している。(例えば特許文献4参照)。しかしながら該ガスバリア性フィルムに使用する接着剤は反応性の2液型接着剤であるため、接着剤として混合後は早急に蒸着フィルムに塗工し第二の基材とラミネートする必要があった。即ち蒸着フィルムの蒸着層を保護するためには第二の基材が必要であることや、接着剤を適用するためにラミネート装置が必要となるなど、蒸着フィルムの蒸着層そのものを保護する目的としてはやはり工程が煩雑である。 On the other hand, the applicants of the present invention have, as a multilayer film excellent in gas barrier properties, a polyester polyol having two or more hydroxyl groups, for example, a polyvalent carboxylic acid component containing at least one ortho-oriented aromatic dicarboxylic acid or its anhydride. It has been found that a gas barrier adhesive layer comprising a polyisocyanate having two or more isocyanate groups, and a gas barrier multilayer film having an aluminum deposited layer or a layer containing an aluminum foil is excellent in gas barrier properties. (See, for example, Patent Document 4). However, since the adhesive used for the gas barrier film is a reactive two-component adhesive, it has been necessary to immediately coat the deposited film and laminate it with the second base after mixing as the adhesive. That is, for the purpose of protecting the deposited layer of the deposited film itself, for example, a second substrate is required to protect the deposited layer of the deposited film, and a laminating apparatus is required to apply the adhesive. Again, the process is complicated.
特開2012-101505号公報JP 2012-101505 A 特開2012-250470号公報JP 2012-250470 A 特開2011-224921号公報JP 2011-224921 A 特開2013-147014号公報JP, 2013-147014, A
 本発明が解決しようとする課題は、蒸着フィルム面への塗工が容易であり、且つ得られる塗膜は蒸着フィルムへの密着性に優れ、コーティング後の蒸着フィルムが耐ブロッキング性及びガスバリア性に優れる、蒸着フィルム用コーティング剤を提供することにある。 The problem to be solved by the present invention is that the coating on the surface of the deposited film is easy, and the obtained coating film is excellent in adhesion to the deposited film, and the deposited film after coating has excellent blocking resistance and gas barrier properties. An object of the present invention is to provide an excellent coating agent for deposited film.
 本発明者らは、多価カルボン酸成分(A1)と多価アルコール成分(A2)との重縮合体であるポリエステル(A3)由来のエステル骨格を有し、且つ前記多価カルボン酸成分(A1)全量に対してオルト配向性芳香族ジカルボン酸又はその酸無水物の少なくとも1種を10~70モル%含有するポリイソシアネート化合物(A)と、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分(B1)と多価アルコール成分(B2)との重縮合体であり前記多価アルコール成分(B2)全量に対してグリセロールを50~100モル%含有するポリエステル(B)とを含有する蒸着フィルム用コーティング剤が前記課題を解決することを見出した。 The present inventors have an ester skeleton derived from polyester (A3) which is a polycondensate of polyvalent carboxylic acid component (A1) and polyvalent alcohol component (A2), and the polyvalent carboxylic acid component (A1) A) a polyisocyanate compound (A) containing 10 to 70 mol% of at least one ortho-oriented aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount, and at least one of an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof A polycondensate of a polyvalent carboxylic acid component (B1) containing a species and a polyhydric alcohol component (B2), and containing 50 to 100 mol% of glycerol based on the total amount of the polyhydric alcohol component (B2) (B) It has been found that a coating agent for a deposited film, which contains
 特許文献4に記載の接着剤は、そのままコーティング剤として適用させた場合、強い粘着性が残存し、特にブロッキング性に問題が生じる。本発明者らは、ポリエステル成分として、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分(B1)と、グリセロールとを50~100モル%含有する多価アルコール成分(B2)を重縮合して得られるポリエステル(B)を使用することで、耐ブロッキング性に優れることを見出し、さらに汎用の接着剤を使用してラミネートした場合であっても、コーティング塗膜と蒸着フィルム間でのはがれ等もなく密着性に優れるコーティング剤が得られることを見出した。 When the adhesive described in Patent Document 4 is applied as a coating agent as it is, strong adhesiveness remains, and in particular, problems occur in blocking property. The present inventors are polyhydric alcohol components containing 50 to 100 mol% of a polyvalent carboxylic acid component (B1) containing at least one of ortho-oriented aromatic dicarboxylic acids or their anhydrides as a polyester component It finds that it is excellent in blocking resistance by using polyester (B) obtained by polycondensing (B2), and also when it is a case where it laminates using a general-purpose adhesive, It has been found that a coating agent having excellent adhesion without peeling between vapor deposited films can be obtained.
 即ち本発明は、ポリイソシアネート化合物(A)と、ポリエステル(B)とを含有してなる蒸着フィルム用コーティング剤であって、
前記ポリイソシアネート化合物(A)が、多価カルボン酸成分(A1)と多価アルコール成分(A2)との重縮合体であるポリエステル(A3)由来のエステル骨格を有し、且つ前記多価カルボン酸成分(A1)全量に対してオルト配向性芳香族ジカルボン酸又はその酸無水物の少なくとも1種を10~70モル%含有するポリイソシアネート化合物(A)であり、
ポリエステル(B)が、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分(B1)と多価アルコール成分(B2)との重縮合体であり前記多価アルコール成分(B2)全量に対してグリセロールを50~100モル%含有する蒸着フィルム用コーティング剤を提供する。
That is, the present invention is a coating agent for deposited film, comprising a polyisocyanate compound (A) and a polyester (B),
The polyisocyanate compound (A) has an ester skeleton derived from polyester (A3) which is a polycondensate of polyvalent carboxylic acid component (A1) and polyvalent alcohol component (A2), and the polyvalent carboxylic acid A polyisocyanate compound (A) containing 10 to 70 mol% of at least one ortho-oriented aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the component (A1),
The polyester (B) is a polycondensate of a polyvalent carboxylic acid component (B1) containing at least one of an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof and a polyvalent alcohol component (B2), and the polyvalent alcohol component (B2) A coating agent for deposited film is provided, which contains 50 to 100 mol% of glycerol based on the total amount.
 また本発明は前記記載のコーティング剤を蒸着フィルムにコーティングした、ガスバリア性フィルムを提供する。 The present invention also provides a gas barrier film obtained by coating a vapor deposition film with the coating agent described above.
 また本発明は、前記記載のガスバリア性フィルムを用いた包装材を提供する。 The present invention also provides a packaging material using the gas barrier film described above.
 本発明の蒸着フィルム用コーティング剤は、溶剤で希釈可能であり蒸着フィルム面への塗工が容易である。またコーティング塗膜は蒸着フィルムへの密着性に優れるので、本発明の蒸着フィルム用コーティング剤を蒸着フィルムにコーティングしたフィルムは、ガスバリア性に優れる他、ラミネート強度にも優れる。また本発明の蒸着フィルム用コーティング剤を蒸着フィルムにコーティングしたフィルムは、特定のポリエステルを使用するので耐ブロッキング性にも優れる。
本発明の蒸着フィルム用コーティング剤を金属蒸着フィルムにコーティングしたガスバリア性フィルムは、接着剤等により多層の積層体としなくても優れたガスバリア性を有するので、特に食品包装用として有用なバリア性フィルムを低コストで提供することができる。
The coating agent for a vapor deposition film of the present invention can be diluted with a solvent and can be easily applied to the surface of the vapor deposition film. Moreover, since a coating film is excellent in the adhesiveness to a vapor deposition film, the film which coated the coating agent for vapor deposition films of this invention on the vapor deposition film is excellent not only in gas barrier property but in lamination strength. Moreover, since the film which coated the coating agent for vapor deposition films of this invention to the vapor deposition film uses a specific polyester, it is excellent also in blocking resistance.
The gas barrier film obtained by coating the metallized film with the coating agent for a vapor deposition film of the present invention has excellent gas barrier properties without using a multi-layered laminate with an adhesive or the like, so a barrier film useful particularly for food packaging. Can be provided at low cost.
 本発明は、ポリイソシアネート化合物(A)と、ポリエステル(B)とを含有してなる蒸着フィルム用コーティング剤である。ポリエステル(B)は末端にカルボキシル基またはヒドロキシ基を有し、ポリイソシアネート化合物(A)が有するイソシアネート基と反応する。 The present invention is a coating agent for a deposited film comprising a polyisocyanate compound (A) and a polyester (B). The polyester (B) has a carboxyl group or a hydroxyl group at the end, and reacts with the isocyanate group of the polyisocyanate compound (A).
(ポリイソシアネート化合物)
 本発明で使用するポリイソシアネート化合物(A)は、多価カルボン酸成分(A1)と多価アルコール成分(A2)とを重縮合させた重縮合体であるポリエステル(A3)由来のエステル骨格を有し、末端にイソシアネート基を有する。ポリエステル(A3)は末端にヒドロキシ基またはカルボキシル基を有することから、末端のイソシアネート基の導入は、前記ポリエステル(A3)の末端のヒドロキシ基またはカルボキシル基にポリイソシアネート化合物を反応させることにより行う。該ポリイソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネートが挙げられる。中でも、骨格の一部に芳香族環を含有するポリイソシアネート化合物であると、ガスバリア機能をより向上させることができ好ましい。またポリエステル(A3)の数平均分子量は、300~2000であることが好ましい。
(Polyisocyanate compound)
The polyisocyanate compound (A) used in the present invention has an ester skeleton derived from a polyester (A3) which is a polycondensate obtained by polycondensing a polyvalent carboxylic acid component (A1) and a polyhydric alcohol component (A2). And has an isocyanate group at the end. Since the polyester (A3) has a hydroxyl group or a carboxyl group at the end, introduction of the terminal isocyanate group is carried out by reacting the terminal hydroxy group or carboxyl group of the polyester (A3) with a polyisocyanate compound. Examples of the polyisocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate and hexamethylene diisocyanate. Among them, a polyisocyanate compound containing an aromatic ring in part of the skeleton is preferable because the gas barrier function can be further improved. The number average molecular weight of the polyester (A3) is preferably 300 to 2,000.
 なお、本発明において、数平均分子量または重量平均分子量は、GPCカラムLF-804(昭和電工社製)を用いたゲル浸透クロマトグラフィーにて、示差屈折率検出器(Waters社製Waters2414)により検出された保持時間より測定した。 In the present invention, the number average molecular weight or weight average molecular weight is detected by gel permeation chromatography using a GPC column LF-804 (manufactured by Showa Denko) by a differential refractive index detector (Waters 2414 manufactured by Waters). It measured from the retention time.
 前記ポリエステル(A3)は、多価カルボン酸成分(A1)と、多価アルコール成分(A2)とを重縮合して用いる。 The polyester (A3) is used by polycondensing a polyhydric carboxylic acid component (A1) and a polyhydric alcohol component (A2).
(多価カルボン酸成分(A1))
 前記多価カルボン酸成分(A1)は、前記多価カルボン酸成分(A1)全量に対してオルト配向性芳香族ジカルボン酸又はその酸無水物の少なくとも1種を10~70モル%含有することが特徴である。
 カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその酸無水物(以後これらの、「カルボン酸がオルト位に置換された芳香族多価カルボン酸又はその酸無水物」を「酸成分(C1)」と称する場合がある)としては、オルトフタル酸又はその無水物、ナフタレン2,3-ジカルボン酸又はその無水物、ナフタレン1,2-ジカルボン酸又はその無水物、アントラキノン2,3-ジカルボン酸又はその無水物、及び2,3-アントラセンカルボン酸又はその無水物等が挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していてもよい。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基又はナフチル基等が挙げられる。
(Polyvalent carboxylic acid component (A1))
The polyvalent carboxylic acid component (A1) contains 10 to 70 mol% of at least one ortho-orientation aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the polyvalent carboxylic acid component (A1) It is a feature.
An aromatic polyvalent carboxylic acid or an acid anhydride thereof in which the carboxylic acid is substituted at the ortho position (hereinafter referred to as “an aromatic polyvalent carboxylic acid or an acid anhydride thereof in which the carboxylic acid is substituted at an ortho position” Component (C1) may be referred to as “orthophthalic acid or an anhydride thereof, naphthalene 2,3-dicarboxylic acid or an anhydride thereof, naphthalene 1,2-dicarboxylic acid or an anhydride thereof, anthraquinone 2,3- Examples thereof include dicarboxylic acids or their anhydrides, and 2,3-anthracene carboxylic acids or their anhydrides. These compounds may have a substituent at any carbon atom of the aromatic ring. Examples of the substituent include chloro group, bromo group, methyl group, ethyl group, i-propyl group, hydroxyl group, methoxy group, ethoxy group, ethoxy group, phenoxy group, methylthio group, phenylthio group, cyano group, nitro group, amino group, Examples thereof include phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group and naphthyl group.
 本発明においては、発明の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。具体的には、脂肪族多価カルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等を、不飽和結合含有多価カルボン酸としては、無水マレイン酸、マレイン酸、フマル酸等を、脂環族多価カルボン酸としては1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等を、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、ジフェン酸及びその無水物、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸及びこれらジカルボン酸の無水物或いはエステル形成性誘導体;p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸及びこれらのジヒドロキシカルボン酸のエステル形成性誘導体等の多塩基酸を単独で或いは二種以上の混合物で使用することができる。中でも、有機溶剤溶解性とガスバリア性の観点からコハク酸、アジピン酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。(以後これらの、「その他のカルボン酸または酸無水物」を「酸成分(C2)」と称する場合がある)。 In the present invention, other polyvalent carboxylic acid components may be copolymerized as long as the effects of the present invention are not impaired. Specifically, as aliphatic polyvalent carboxylic acids, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, etc., and as unsaturated bond-containing polyvalent carboxylic acids, maleic anhydride, maleic acid, Fumaric acid etc., 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid etc. as alicyclic polyhydric carboxylic acid, Terephthalic acid, isophthalic acid, pyromellitic as aromatic polyhydric carboxylic acid Acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, diphenic acid and its anhydride, 1,2-bis ( Phenoxy) ethane-p, p'-dicarboxylic acids and anhydrides or ester-forming derivatives of these dicarboxylic acids; p- Dorokishi benzoic acid, can be used in p-(2-hydroxyethoxy) benzoic acid and alone or in mixture of two or more polybasic acids such as ester-forming derivatives of these dihydroxy carboxylic acids. Among them, succinic acid, adipic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid and diphenic acid are preferable from the viewpoint of organic solvent solubility and gas barrier property. (Hereinafter, “other carboxylic acid or acid anhydride” may be referred to as “acid component (C2)”).
 前記酸成分(C1)と前記酸成分(C2)とのモル比率は、C1:C2=1:9~7:3の範囲であり、より好ましくは3:7~7:3の範囲である。酸成分(C1)の比率が7割を超えると得られるポリイソシアネート化合物(A)の剛直性が増加し、金属蒸着フィルムとの密着性が低下するおそれがある。一方酸成分(C1)の比率が1割未満の場合、ポリイソシアネート化合物(A)のガスバリア向上機能が損なわれるおそれがある。 The molar ratio of the acid component (C1) to the acid component (C2) is in the range of C1: C2 = 1: 9 to 7: 3 and more preferably in the range of 3: 7 to 7: 3. If the ratio of the acid component (C1) exceeds 70%, the rigidity of the obtained polyisocyanate compound (A) may be increased, and the adhesion to the metallized film may be reduced. On the other hand, if the ratio of the acid component (C1) is less than 10%, the gas barrier improving function of the polyisocyanate compound (A) may be impaired.
(多価アルコール成分(A2))
 前記多価アルコール成分(A2)は、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコールからなる群から選ばれる少なくとも1種を含有する。中でも、酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを主成分として使用することが最も好ましい。
(Polyhydric alcohol component (A2))
The polyhydric alcohol component (A2) contains at least one selected from the group consisting of ethylene glycol, propylene glycol, butylene glycol and neopentyl glycol. Among them, it is most preferable to use ethylene glycol as the main component, since it is presumed that the oxygen permeation is difficult as the molecular chain is not excessively flexible as the number of carbon atoms between oxygen atoms decreases.
 本発明では前記多価アルコール成分(A2)を用いることが好ましいが、このほか、本発明の効果を損なわない範囲において、他の多価アルコール成分を共重合させてもよい。具体的には、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールがあげられる。 Although it is preferable to use the said polyhydric-alcohol component (A2) in this invention, you may copolymerize another polyhydric-alcohol component in the range which does not impair the effect of this invention besides this. Specifically, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, Tripropylene glycol is mentioned.
 前記多価カルボン酸成分(A1)と多価アルコール成分(A2)との重縮合反応は、公知慣用の方法で行うことができる。前記ポリイソシアネート化合物(A3)の中心骨格のポリエステルポリオールの水酸基価は50~400mgKOH/g、酸価が2mgKOH/g以下であることが好ましい。水酸基価はJIS-K0070に記載の水酸基価測定方法にて、酸価はJIS-K0070に記載の酸価測定法にて測定することができる。水酸基価が50mgKOH/gより小さい場合、分子量が大きすぎる為に粘度が高くなり、良好な塗工適性が得られないおそれがあり、逆に水酸基価が400mgKOH/gを超える場合、分子量が小さくなりすぎる為、硬化塗膜の架橋密度が高くなりすぎ、良好な接着強度が得られないおそれがある。 The polycondensation reaction of the polyvalent carboxylic acid component (A1) with the polyvalent alcohol component (A2) can be carried out by a known and commonly used method. The polyester polyol of the central skeleton of the polyisocyanate compound (A3) preferably has a hydroxyl value of 50 to 400 mg KOH / g and an acid value of 2 mg KOH / g or less. The hydroxyl value can be measured by the hydroxyl value measurement method described in JIS-K 0070, and the acid value can be measured by the acid value measurement method described in JIS-K 0070. If the hydroxyl value is less than 50 mg KOH / g, the molecular weight is too large, so the viscosity may be high, and good coating suitability may not be obtained. Conversely, if the hydroxyl value exceeds 400 mg KOH / g, the molecular weight is small. Since it is too large, the crosslink density of the cured coating film may be too high, and good adhesive strength may not be obtained.
(イソシアネート化)
 前記ポリエステル化合物(A3)の末端にイソシアネート基を導入する方法としては、前述の通り、前記ポリエステル(A3)が有する末端のヒドロキシ基またはカルボキシル基にポリイソシアネート化合物を反応させることにより行う。この反応は特に限定はなく、公知慣用の方法で行うことができる。ただし、分子量制御、粘度調整の観点から、過剰量のイソシアネート反応成分の中にポリオール反応成分を適宜添加することでイソシアネート基を導入する方法が好ましい。
 本発明で用いられるイソシアネートとしては、低分子化合物、高分子化合物のいずれでもよいが、反応制御の観点からジイソシアネート体が好ましい。また、骨格の一部に芳香族環、または脂肪族環を含有するとガスバリア向上機能の観点からより好ましい。たとえば、芳香族環を持つイソシアネートとしては、メタキシリレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、脂肪族環を持つイソシアネートとしては、水素化キシリレンジイソシアネート、水素化トルエンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネートが挙げられる。一方、その他のイソシアネートとしては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートのアロファネート体、ビウレット体およびヌレート体等が挙げられる。
(Isocyanation)
As a method of introduce | transducing an isocyanate group into the terminal of the said polyester compound (A3), it carries out by making a polyisocyanate compound react with the terminal hydroxyl group or carboxyl group which the said polyester (A3) has, as mentioned above. There is no particular limitation on this reaction, and it can be carried out by a known conventional method. However, from the viewpoint of molecular weight control and viscosity adjustment, it is preferable to introduce an isocyanate group by appropriately adding a polyol reaction component to an excessive amount of the isocyanate reaction component.
The isocyanate used in the present invention may be either a low molecular weight compound or a high molecular weight compound, but a diisocyanate is preferred from the viewpoint of reaction control. Moreover, when an aromatic ring or an aliphatic ring is contained in part of the skeleton, it is more preferable from the viewpoint of the gas barrier improving function. For example, as the isocyanate having an aromatic ring, metaxylylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, and as the isocyanate having an aliphatic ring, hydrogenated xylylene diisocyanate, hydrogenated toluene diisocyanate, isophorone diisocyanate, norbornene diisocyanate Can be mentioned. On the other hand, examples of other isocyanates include tetramethylene diisocyanate, hexamethylene diisocyanate, allophanate bodies of hexamethylene diisocyanate, biuret bodies and nurate bodies.
(ブロックイソシアネート)
 また、芳香族環、脂肪族環を含有しているポリイソシアネート化合物であれば、ブロック化イソシアネートであってもよい。イソシアネートブロック化剤としては、例えば芳香族を含有しているものであれば、フェノール、チオフェノール、メチルチオフェノール、エチルチオフェノール、クレゾール、キシレノール、レゾルシノール、ニトロフェノール、クロロフェノールなどのフェノール類、その他にも芳香族アミン類、イミド類、アセチルアセトン、アセト酢酸エステル、マロン酸エチルエステルなどの活性メチレン化合物、メルカプタン類、イミン類、尿素類、ジアリール化合物類重亜硫酸ソーダなども挙げられる。ブロック化イソシアネートは上記イソシアネート化合物とイソシアネートブロック化剤とを従来公知の適宜の方法より付加反応させて得られる。
(Blocked isocyanate)
Moreover, as long as it is a polyisocyanate compound containing an aromatic ring and an aliphatic ring, it may be blocked isocyanate. As an isocyanate blocking agent, for example, as long as it contains an aromatic group, phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, phenols such as chlorophenol, etc. Also, aromatic amines, imides, active methylene compounds such as acetylacetone, acetoacetate ester, malonic acid ethyl ester, mercaptans, imines, ureas, diaryl compounds, sodium bisulfite, etc. may be mentioned. The blocked isocyanate is obtained by the addition reaction of the above-mentioned isocyanate compound and an isocyanate blocking agent by a conventionally known appropriate method.
(ポリエステル(B))
 本発明で使用するポリエステル(B)は、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分(B1)と多価アルコール成分(B2)を重縮合することにより製造される。
 前記ポリエステル(B)の分子量としては、コーティング剤として十分な膜の靭性や塗工適性、溶媒溶解性が付与できるのであれば特に制限はないが、数平均分子量で1000~50000であることが好ましく、より好ましくは、1000~30000である。ポリエステル末端の官能基としては、アルコール末端とカルボン酸末端の両方を有していても良いが、イソシアネート系硬化剤を併用するため、アルコール末端が主体であるポリエステルポリオールであることが好ましい
(Polyester (B))
The polyester (B) used in the present invention is produced by polycondensation of a polyvalent carboxylic acid component (B1) containing at least one of an ortho-oriented aromatic dicarboxylic acid or its anhydride with a polyhydric alcohol component (B2). Be done.
The molecular weight of the polyester (B) is not particularly limited as long as it can impart sufficient film toughness, coating suitability, and solvent solubility as a coating agent, but a number average molecular weight of 1,000 to 50,000 is preferable. More preferably, it is 1000 to 30000. The functional group at the polyester end may have both an alcohol end and a carboxylic acid end, but in order to use an isocyanate-based curing agent in combination, it is preferable that the polyester polyol is mainly composed of an alcohol end.
(ポリエステル(B)のガラス転移温度(Tg))
 本発明で使用するポリエステル(B)のガラス転移温度(以後Tgと称する場合がある)は特に限定はないが、15℃以上であることが好ましい。Tgが15℃を下回る場合、コーティング剤そのものがコーティング操作後に粘着性を発現し、ブロッキングを生じやすくなり、コーティング後の巻き取り操作に支障が生じる場合がある。Tgは中でも18℃以上であることが好ましく、より好ましくは25℃以上である。
なお、本発明において、Tgは示差走査熱量測定装置(METTLER TOLEDO社製DSC822e)により、-50℃~100℃の温度範囲で熱流量を検出することで測定した。
(Glass transition temperature (Tg) of polyester (B))
The glass transition temperature (hereinafter sometimes referred to as Tg) of the polyester (B) used in the present invention is not particularly limited, but is preferably 15 ° C. or more. When the Tg is less than 15 ° C., the coating agent itself develops tackiness after the coating operation and tends to cause blocking, which may cause problems in the winding operation after coating. It is preferable that Tg is 18 degreeC or more especially, More preferably, it is 25 degreeC or more.
In the present invention, Tg was measured by detecting the heat flow rate in a temperature range of −50 ° C. to 100 ° C. using a differential scanning calorimeter (DSC 822e manufactured by METTLER TOLEDO).
 本発明に用いるポリエステル(B)は、多価カルボン酸成分(B1)と、多価アルコール成分(B2)とを重縮合して用いる。 The polyester (B) used in the present invention is used by polycondensing a polyvalent carboxylic acid component (B1) and a polyhydric alcohol component (B2).
(多価カルボン酸成分(B1))
 多価カルボン酸成分(B1)は、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含むことに特徴を有する。また、カルボン酸全成分に対する含有率が70~100モル%であると、バリア性の向上効果が高い上に、コーティング剤として必須の溶媒溶解性に優れることから特に好ましい。
 本発明ではオルト配向芳香族ジカルボン酸又はその無水物を用いることが好ましいが、このほか、本発明の効果を損なわない範囲において、前記酸成分(C2)を使用することができる。中でも、有機溶剤溶解性とガスバリア性の観点からコハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,8-ナフタル酸、ジフェン酸が好ましい。
(Polyvalent carboxylic acid component (B1))
The polyvalent carboxylic acid component (B1) is characterized in that it contains at least one of an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof. In addition, when the content with respect to all the carboxylic acid components is 70 to 100 mol%, the effect of improving the barrier properties is high, and in addition, it is particularly preferable because the solvent solubility excellent as a coating agent is excellent.
In the present invention, it is preferable to use an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof, but in addition, the above-mentioned acid component (C2) can be used as long as the effects of the present invention are not impaired. Among them, succinic acid, 1,3-cyclopentanedicarboxylic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalic acid and diphenic acid are preferable from the viewpoint of organic solvent solubility and gas barrier property.
(多価アルコール成分(B2))
 本発明に用いるポリエステル(B)における多価アルコール成分(B2)は、グリセロールを含有し、多価アルコール全成分に対するグリセロール含有率が50~100モル%であることを特徴とする。グリセロール含有率が50モル%以上であると、分子構造上架橋点が増加することでポリエステル樹脂の分子運動が抑制され、樹脂のバリア機能とともに耐ブロッキング性が向上する。
 グリセロールと併用する多価アルコール成分(B2)は、ガスバリア補填の性能を示すポリエステルを合成することができれば特に限定されないが、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、及び1,3-ビスヒドロキシエチルベンゼンからなる群から選ばれる少なくとも1種を含む多価アルコール成分を含有することが好ましい。中でも、酸素原子間の炭素原子数が少ないほど、分子鎖が過剰に柔軟にならずに、酸素透過しにくいと推定されることから、エチレングリコールを主成分として使用することが最も好ましい。
(Polyhydric alcohol component (B2))
The polyhydric alcohol component (B2) in the polyester (B) used in the present invention is characterized by containing glycerol and having a glycerol content of 50 to 100 mol% with respect to all the polyhydric alcohol components. When the glycerol content is 50 mol% or more, the molecular movement of the polyester resin is suppressed by the increase in the crosslinking point on the molecular structure, and the blocking function and the barrier function of the resin are improved.
The polyhydric alcohol component (B2) used in combination with glycerol is not particularly limited as long as it is possible to synthesize a polyester exhibiting the performance of gas barrier compensation, but ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexane dimethanol, and 1 It is preferable to contain a polyhydric alcohol component containing at least one selected from the group consisting of 3, 3-bishydroxyethylbenzene. Among them, it is most preferable to use ethylene glycol as the main component, since it is presumed that the oxygen permeation is difficult as the molecular chain is not excessively flexible as the number of carbon atoms between oxygen atoms decreases.
 本発明では前述の多価アルコール成分(B2)を用いることが好ましいが、このほか、本発明の効果を損なわない範囲において、他の多価アルコール成分を共重合させてもよい。具体的には、ジオールとしては1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオール、ジメチルブタンジオール、ブチルエチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールが、三価以上のアルコールとしては、トリメチロールプロパン、トリメチロールエタン、トリス(2-ヒドロキシエチル)イソシアヌレート、1,2,4-ブタントリオール、ペンタエリスリトール、ジペンタエリスルトール等があげられる。特に、三価のアルコールの内、トリス(2-ヒドロキシエチル)イソシアヌレートを併用したポリエステルは、分岐構造に由来して架橋密度も適度に高いことにより有機溶媒溶解性が良好な上、バリア機能も優れており、特に好ましく用いられる。 In the present invention, although it is preferable to use the above-mentioned polyhydric alcohol component (B2), in addition to this, other polyhydric alcohol components may be copolymerized within the range not impairing the effects of the present invention. Specifically, as diols, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol, dimethylbutanediol, butylethylpropanediol, diethylene glycol, triethylene Glycol, tetraethylene glycol, dipropylene glycol and tripropylene glycol are tri- or higher alcohols, and trimethylolpropane, trimethylolethane, tris (2-hydroxyethyl) isocyanurate, 1,2,4-butanetriol, Pentaerythritol, dipentaerythritol and the like can be mentioned. In particular, among trihydric alcohols, polyesters which use tris (2-hydroxyethyl) isocyanurate in combination have good organic solvent solubility due to their branched structure and moderately high crosslink density, as well as barrier function. It is excellent and particularly preferably used.
 本発明のポリエステルを得る反応に用いられる触媒としては、モノブチル酸化錫、ジブチル酸化錫等錫系触媒、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等のチタン系触媒、テトラ-ブチル-ジルコネート等のジルコニア系触媒等の酸触媒が挙げられる。エステル反応に対する活性が高い、テトラ-イソプロピル-チタネート、テトラ-ブチル-チタネート等の上記チタン系触媒と上記ジルコニア触媒を組み合わせて用いることが好ましい。前記触媒量は、使用する反応原料全質量に対して1~1000ppm用いられ、より好ましくは10~100ppmである。1ppmを下回ると触媒としての効果が得られにくく、1000ppmを上回るとイソシアネート硬化剤を用いる場合にウレタン化反応を阻害する問題が生じる場合がある。 The catalyst used for the reaction to obtain the polyester of the present invention includes tin-based catalysts such as monobutyl tin oxide, dibutyl tin oxide and the like, titanium-based catalysts such as tetra-isopropyl-titanate and tetra-butyl-titanate, tetra-butyl-zirconate and the like. An acid catalyst such as a zirconia-based catalyst can be mentioned. It is preferable to use the titanium-based catalyst such as tetra-isopropyl-titanate or tetra-butyl-titanate having high activity to the ester reaction in combination with the above-mentioned zirconia catalyst. The amount of the catalyst is 1 to 1000 ppm, preferably 10 to 100 ppm, based on the total mass of the reaction raw material used. If it is less than 1 ppm, it is difficult to obtain the effect as a catalyst, and if it exceeds 1000 ppm, there may occur a problem of inhibiting the urethanation reaction when using an isocyanate curing agent.
(コーティング剤)
 本発明の蒸着フィルム用コーティング剤(以下単に「コーティング剤」と称する場合がある)は、前記ポリイソシアネート化合物(A)と前記ポリエステル(B)とを含有するが、ポリイソシアネート化合物(A)の反応成分とポリエステル(B)の水酸基とが0.5/1~5/1(当量比)となるように配合することが好ましく、バリア機能及び耐ブロッキング性の観点から、より好ましくは1/1~1.5/1である。該範囲を超えてポリイソシアネート成分が過剰な場合、余剰なポリイソシアネート成分が残留することで耐ブロッキング性に劣る傾向にあり、一方ポリエステル(B)が多すぎると硬化塗膜が硬くなり良好な接着強度が得られないおそれがある。
(Coating agent)
The coating agent for deposited film of the present invention (hereinafter sometimes referred to simply as "coating agent") contains the polyisocyanate compound (A) and the polyester (B), but the reaction of the polyisocyanate compound (A) It is preferable to blend so that the component and the hydroxyl group of polyester (B) are 0.5 / 1 to 5/1 (equivalent ratio), and from the viewpoint of the barrier function and blocking resistance, more preferably 1/1 to 5 It is 1.5 / 1. If the amount of the polyisocyanate component exceeds this range, excess blocking of the polyisocyanate component tends to result in poor blocking resistance. On the other hand, if the amount of polyester (B) is too large, the cured coating becomes hard and adhesion is good. There is a possibility that strength can not be obtained.
(コーティング剤に用いる溶媒)
 本発明のコーティング剤は、適宜溶媒を使用してもよい。使用する溶媒は、速乾燥性や水蒸気バリア機能も補填する観点から、非水系であることが好ましく、有機溶媒が主成分であることがこのましい。具体的には、主成分であるポリエステルに対し溶解性が高く、且つ残留溶媒や即乾燥性であることがこのましい。この観点から沸点が100℃以下である有機溶剤が好ましい。好ましく用いられる有機溶媒としては、エステル系溶媒としては酢酸エチル、酢酸プロピル、酢酸ブチル、ケトン系溶媒としては、アセトン、2-ブタノン、エーテル系溶媒としてはテトラヒドロフラン、脂肪族系溶媒としては、ヘキサン、シクロヘキサン、芳香族系溶媒としてはトルエン等を例示することができる。アルコール系溶媒や水を混合する場合は、イソシアネート化合物を硬化剤として併用することから最小限にとどめることがこのましい。
(Solvent used for coating agent)
The coating agent of the present invention may appropriately use a solvent. The solvent to be used is preferably a non-aqueous system from the viewpoint of compensating for the rapid drying property and the water vapor barrier function, and it is preferable that the organic solvent is the main component. Specifically, it is preferable that the solubility is high in the polyester which is the main component, and the residual solvent and the immediate drying property. From this viewpoint, an organic solvent having a boiling point of 100 ° C. or less is preferable. Preferred organic solvents include ethyl acetate, propyl acetate and butyl acetate as ester solvents, acetone and 2-butanone as ketone solvents, tetrahydrofuran as ether solvents, and hexane as aliphatic solvents. Examples of cyclohexane and aromatic solvents include toluene and the like. In the case of mixing an alcohol solvent and water, it is preferable to minimize the use of an isocyanate compound as a curing agent.
(コーティング剤への添加材)
(板状無機化合物)
 本発明のコーティング剤は、板状無機化合物を含有させてもよい。
本発明に板状無機化合物が用いられる場合には、粘着性の低減によるコーティング後の巻き取り適性の向上とガスバリア性を向上させる効果を有する。
(Additives to coating agent)
(Plate-like inorganic compound)
The coating agent of the present invention may contain a plate-like inorganic compound.
When a plate-like inorganic compound is used in the present invention, it has an effect of improving the winding suitability after coating and gas barrier properties by reducing the adhesiveness.
 板状無機化合物を併用した場合には形状が板状であることによりバリア性が向上する特徴がある。板状無機化合物の層間の電荷はバリア性に直接大きく影響しないが、本発明のコーティング剤に対する分散性が、イオン性無機化合物、或いは水に対して膨潤性無機化合物では大幅に劣り、添加量を増加させると本発明のコーティング剤の増粘やチキソ性となることより塗工適性が課題となる。これに対して、無電荷(非イオン性)、或いは水に対して非膨潤性の場合は、添加量を増加させても、増粘やチキソ性となり難く塗工適性が確保できる。本発明で使用される板状無機化合物としては、例えば、板状無機化合物としては、例えば、含水ケイ酸塩(フィロケイ酸塩鉱物等)、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト等、アンチゴライト、クリソタイル等)、パイロフィライト-タルク族(パイロフィライト、タルク、ケロライ等)、スメクタイト族粘土鉱物(モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等)、バーミキュライト族粘土鉱物(バーミキュライト等)、雲母又はマイカ族粘土鉱物(白雲母、金雲母等の雲母、マーガライト、テトラシリリックマイカ、テニオライト等)、緑泥石族(クッケアイト、スドーアイト、クリノクロア、シャモサイト、ニマイト等)、ハイドロタルサイト、板状硫酸バリウム、ベーマイト、ポリリン酸アルミニウム等が挙げられる。これらの鉱物は天然粘土鉱物であっても合成粘土鉱物であってもよい。板状無機化合物は単独又は二種以上組み合わせて使用される。これら板状無機化合物のアスペクト比、コーティング剤内での含有率、粒子径、粒径分布としては、バリア向上機能や、耐ブロッキング適性が付与できていれば特に制限はない。 When the plate-like inorganic compound is used in combination, the barrier property is improved by the plate-like shape. The charge between the layers of the plate-like inorganic compound does not directly affect the barrier property greatly, but the dispersibility with respect to the coating agent of the present invention is significantly inferior to the ionic inorganic compound or the swellable inorganic compound, and the addition amount When it is increased, the coating suitability of the coating agent of the present invention becomes an issue due to the thickening and the thixotropy. On the other hand, in the case of non-charging (non-ionic) or non-swelling property with respect to water, even if the addition amount is increased, it becomes difficult to become thickened or thixotropic, and coating suitability can be secured. Examples of the plate-like inorganic compound used in the present invention include, for example, water-containing silicates (phylosilicate minerals etc.), kaolinite-serpentine group clay minerals (halloysite, kaolinite, ende), for example. Light, dickite, nacrite, etc., antigorite, chrysotile, etc.), pyrophyllite-talc group (pyrophyllite, talc, kerolaite etc.), smectite clay mineral (montmorillonite, beidellite, nontronite, saponite, hectorite, Sauconite, stevensite etc.), vermiculite clay mineral (vermiculite etc), mica or mica group clay minerals (mica such as muscovite, phlogopite etc., margarite, tetrasilylic mica, teniolite etc), chlorite family (cookeite, sudoite) , Krinokuroa, Sha Site Nimaito etc.), hydrotalcite, tabular barium sulfate, boehmite, and aluminum polyphosphate and the like. These minerals may be natural clay minerals or synthetic clay minerals. The plate-like inorganic compounds are used singly or in combination of two or more. The aspect ratio of the plate-like inorganic compound, the content in the coating agent, the particle diameter, and the particle size distribution are not particularly limited as long as the barrier improving function and the blocking resistance can be imparted.
 本発明で使用される板状無機化合物を、本発明のコーティング剤に分散させる方法としては、公知の分散方法が利用できる。例えば、超音波ホモジナイザー、高圧ホモジナイザー、ペイントコンディショナー、ボールミル、ロールミル、サンドミル、サンドグラインダー、ダイノーミル、ディスパーマット、ナノミル、SCミル、ナノマイザー等を挙げることができ、更により好ましくは、高い剪断力を発生させることのできる機器として、ヘンシェルミキサー、加圧ニーダー、バンバリーミキサー、プラネタリーミキサー、二本ロール、三本ロール等が上げられる。これらのうちの1つを単独で用いてもよく、2種類以上装置を組み合わせて用いてもよい。 As a method of dispersing the plate-like inorganic compound used in the present invention in the coating agent of the present invention, a known dispersion method can be used. For example, ultrasonic homogenizers, high pressure homogenizers, paint conditioners, ball mills, roll mills, sand mills, sand grinders, dyno mills, disper mats, nano mills, SC mills, nanomizers, etc. can be mentioned, and still more preferably high shear force is generated Examples of equipment that can be used include a Henschel mixer, a pressure kneader, a Banbury mixer, a planetary mixer, a double roll, a triple roll, and the like. One of these may be used alone, or two or more types of devices may be used in combination.
(酸無水物)
 本発明においては、コーティング剤層の耐酸性を向上させる目的で、公知の酸無水物を添加剤として併用することもできる。酸無水物としては、例えば、フタル酸無水物、コハク酸無水物、ヘット酸無水物、ハイミック酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドラフタル酸無水物、テトラプロムフタル酸無水物、テトラクロルフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノテトラカルボン酸無水物、2,3,6,7-ナフタリンテトラカルボン酸2無水物、5-(2,5-オキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、スチレン無水マレイン酸共重合体等が挙げられる。これらの酸無水物の原料として非石油由来成分が含有されていると、非石油由来成分比率を高くできることから好ましい。こうした化合物の例としてコハク酸無水物が挙げられる。
(Acid anhydride)
In the present invention, for the purpose of improving the acid resistance of the coating agent layer, known acid anhydrides may be used in combination as additives. As the acid anhydride, for example, phthalic anhydride, succinic anhydride, hetic anhydride, hymic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydraphthalic anhydride, tetrabromophthalic acid Anhydride, tetrachlorophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenotetracarboxylic acid anhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 5- (2 And 5, 5-oxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, styrene-maleic anhydride copolymer and the like. It is preferable that non-petroleum-derived components are contained as raw materials of these acid anhydrides, because the ratio of non-petroleum-derived components can be increased. An example of such a compound is succinic anhydride.
(ガス捕捉成分)
 また、必要に応じて、更にガス捕捉機能を有する材料を添加してもよい。酸素捕捉機能を有する材料としては、例えば、ヒンダードフェノール類、ビタミンC、ビタミンE、有機燐化合物、没食子酸、ピロガロール等の酸素と反応する低分子有機化合物や、コバルト、マンガン、ニッケル、鉄、銅等の遷移金属化合物等が挙げられる。水蒸気補足機能を有する材料としては、シリカゲル、ゼオライト、活性炭、炭酸カルシウム等の材料を挙げることができる。これら以外にも遮断したい対象ガスの捕捉成分を添加することができる。
(Gas capture component)
Moreover, you may add the material which has a gas trapping function further as needed. Examples of the material having an oxygen scavenging function include hindered phenols, vitamin C, vitamin E, organic phosphorus compounds, low molecular weight organic compounds that react with oxygen such as gallic acid, pyrogallol, cobalt, manganese, nickel, iron, Transition metal compounds, such as copper, etc. are mentioned. Examples of the material having a water vapor capture function include materials such as silica gel, zeolite, activated carbon, calcium carbonate and the like. In addition to these, it is possible to add the capture component of the target gas to be blocked.
(その他の成分)
 その他、ガスバリア補助機能を損なわない範囲で、各種の添加剤を配合してもよい。添加剤としては、例えば、シリカ、アルミナ、アルミニウムフレーク、ガラスフレークなどの無機充填剤、無機材料を用いる場合には分散剤、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、レベリング剤、スリップ向上剤等が例示できる。
(Other ingredients)
In addition, various additives may be blended as long as the gas barrier auxiliary function is not impaired. Examples of the additive include inorganic fillers such as silica, alumina, aluminum flakes and glass flakes, and dispersants and stabilizers (antioxidants, heat stabilizers, UV absorbers, etc.) when using inorganic materials, and plastic Agents, antistatic agents, lubricants, antiblocking agents, colorants, leveling agents, slip improvers and the like.
(蒸着フィルム)
 本発明のコーティング剤は、蒸着フィルムが持つガスバリア性を大幅に向上させるために使用する。そのためコーティング剤を塗布する対象としては各種蒸着フィルムを用いる。本材料をコーティングしたフィルムは、通常の蒸着フィルムよりも更にガスバリア性に優れるため、ハイガスバリアフィルムとして使用できる。
(Deposition film)
The coating agent of the present invention is used to significantly improve the gas barrier properties of a vapor-deposited film. Therefore, various vapor deposition films are used as an object to which a coating agent is applied. A film coated with the present material can be used as a high gas barrier film because it is more excellent in gas barrier properties than a general vapor deposition film.
(蒸着層の種類)
 本発明で使用するコーティング剤が塗布される蒸着フィルムの蒸着層の種類としては、ガスバリア性を付与できるものであれば特に限定されない。現在包装用に広く用いられている金属蒸着、または金属酸化物蒸着が好適に例示される。金属蒸着としては各種金属が例示できるが、特に安価で広く用いられているアルミニウムが好ましい。また、金属酸化物としては、酸化アルミニウム(AlOx)、酸化ケイ素(SiOx)が、汎用性が高い材料として好ましく例示される。これ以外にも各種有機化合物、無機化合物を蒸着したフィルムや、複数種の材料を蒸着したものを用いても良い。蒸着方法としては特に制限はなく物理的蒸着法である真空蒸着法や、化学的蒸着法であるCVD法が例示できる。蒸着層の厚みは蒸着層単独でも一定のガスバリア機能が発現できこれにコーティング層が設置されることでさらに高バリアフィルムとできれば特に制限はない。しかし、あまりに蒸着層が薄いとガスバリアに対する蒸着層の寄与が少なくなり本発明のコーティング剤を用いても十分なガスバリア機能が発現できなくなり、厚すぎても一定厚み以上ではバリア向上機能が少ないため、好ましくは3~70nmさらに好ましくは5~60nmである。また、これら蒸着フィルムには蒸着の保護として、オーバーコートやアンダーコートが予め施されていても、施されていなくても用いることができる。しかし特に、コーティング層が無い蒸着フィルムでは、本発明のコーティング剤のバリア向上機能を十分に発揮することができるため好ましく用いられる。
(Type of vapor deposition layer)
As a kind of vapor deposition layer of the vapor deposition film by which the coating agent used by this invention is apply | coated, if gas-barrier property can be provided, it will not be specifically limited. Metal deposition or metal oxide deposition widely used at present for packaging is suitably exemplified. Although various metals can be illustrated as metal vapor deposition, especially cheap and widely used aluminum is preferable. In addition, as the metal oxide, aluminum oxide (AlOx) and silicon oxide (SiOx) are preferably exemplified as highly versatile materials. Other than this, a film in which various organic compounds and inorganic compounds are vapor-deposited, or a film in which plural kinds of materials are vapor-deposited may be used. The vapor deposition method is not particularly limited, and examples thereof include a vacuum vapor deposition method which is a physical vapor deposition method and a CVD method which is a chemical vapor deposition method. The thickness of the vapor deposition layer is not particularly limited as long as the vapor deposition layer can exhibit a certain gas barrier function even if it is a single vapor deposition layer, and if it can be made a high barrier film by providing a coating layer thereon. However, if the vapor deposition layer is too thin, the contribution of the vapor deposition layer to the gas barrier decreases, and even if the coating agent of the present invention is used, a sufficient gas barrier function can not be expressed. It is preferably 3 to 70 nm, more preferably 5 to 60 nm. Moreover, these vapor deposition films can be used as protection of vapor deposition, with or without overcoating or undercoating previously applied. However, in particular, a vapor-deposited film having no coating layer is preferably used because the barrier enhancing function of the coating agent of the present invention can be sufficiently exhibited.
(フィルムの種類)
 本発明でのコーティング剤を使用するフィルムは、特に限定はなく、所望の用途に応じた熱可塑性樹脂フィルムを適宜選択することができる。例えば食品包装用としては、ポリエチレンテレフタレート(PET)フィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリエチレンフィルム(LLDPE:リニア低密度ポリエチレンフィルム、HDPE:高密度ポリエチレンフィルム)やポリプロピレンフィルム(CPP:未延伸ポリプロピレンフィルム、OPP:二軸延伸ポリプロピレンフィルム)等のポリオレフィンフィルム、ポリビニルアルコールフィルム、エチレン-ビニルアルコール共重合体フィルム、シクロオレフィンコポリマフィルム等が挙げられる。これらのフィルムには延伸処理があっても、無くても好ましく用いることができる。延伸処理をほどこしているフィルム類は寸法安定性、剛性よりコーティング操作が容易で使いやすい利点がある。また、未延伸フィルムでは逆に基材の寸法安定性、剛性、耐熱性が劣るため蒸着層が欠陥を多く持ちガスバリアが安定しないことが多いので、本発明のコーティング剤を用いることで、バリア機能の強化に大きな効果をだせる利点がある。
(Type of film)
The film using the coating agent in the present invention is not particularly limited, and a thermoplastic resin film can be appropriately selected according to the desired application. For example, for food packaging, polyethylene terephthalate (PET) film, polystyrene film, polyamide film, polyacrylonitrile film, polyethylene film (LLDPE: linear low density polyethylene film, HDPE: high density polyethylene film) or polypropylene film (CPP: unstretched) Polyolefin films such as polypropylene film, OPP: biaxially oriented polypropylene film), polyvinyl alcohol film, ethylene-vinyl alcohol copolymer film, cycloolefin copolymer film and the like. These films can be preferably used with or without a stretching treatment. Films subjected to a stretching process have the advantages of dimensional stability, rigidity and easy coating operation and ease of use. In addition, the unstretched film conversely has poor dimensional stability, rigidity, and heat resistance of the substrate, and the vapor deposition layer has many defects, and in many cases the gas barrier is not stable. Therefore, using the coating agent of the present invention There is an advantage of strengthening the
(コーティングを行う部分)
 本発明では、コーティング剤を蒸着面側に施す必要がある。これは、本発明のコーティング剤が蒸着のピンホールやクラック等の欠陥部分を効率よく穴埋めすることにより、極めて優れたバリア向上機能を付与するためである。コーティング剤が蒸着面の逆側のフィルム面に設置された場合はこのような補強効果を付与することはできずバリアの向上効果が限定的となる。
(Part to do coating)
In the present invention, it is necessary to apply a coating agent to the vapor deposition side. This is because the coating agent of the present invention efficiently fills in the defects such as pinholes and cracks of the vapor deposition to impart an extremely excellent barrier improvement function. When the coating agent is disposed on the film surface opposite to the vapor deposition surface, such a reinforcing effect can not be provided, and the barrier improving effect is limited.
 本発明では、さらに高いバリア機能を付与するためにポリビニルアルコールや、エチレン・ビニールアルコール共重合体、塩化ビニリデン等のガスバリア層を含有するバリア性フィルムを併用して、より高いバリア機能を付与しても良い。 In the present invention, in order to impart a higher barrier function, a barrier film containing a gas barrier layer such as polyvinyl alcohol, ethylene / vinyl alcohol copolymer, vinylidene chloride or the like is used in combination to impart a higher barrier function. Also good.
 (コーティング方法)
 本発明のコーティング剤のコーティング方法としては、蒸着フィルムの蒸着面にコーティングができるのであれば特に制限はない。具体的な方法としては、コールコート、グラビアコート等の各種コーティング方法を例示することができる。また、コーティングに用いる装置についても特に限定はない。
(Coating method)
The coating method of the coating agent of the present invention is not particularly limited as long as the deposition surface of the deposited film can be coated. As a specific method, various coating methods such as call coat and gravure coat can be exemplified. Moreover, there is no limitation in particular also about the apparatus used for coating.
(コーティング膜厚)
 本発明のコーティング剤を塗布する膜厚は特に制限はない。しかし、本発明のコーティング剤は蒸着欠陥をふさぐことでガスバリアの補強効果を高める。そのため、コーティング膜厚は蒸着欠陥さえ塞ぐことができれば厚い必要がなく、0.1μm以上あればバリア向上効果を出すことができる。好ましい厚み範囲としては、コーティング欠陥が生じにくいことと、乾燥性とのバランスより好ましくは0.2μm~5μmの範囲、さらに好ましくは0.3~3μmの範囲である。
(Coating thickness)
The film thickness to which the coating agent of the present invention is applied is not particularly limited. However, the coating agent of the present invention enhances the reinforcing effect of the gas barrier by closing the deposition defects. Therefore, the coating film thickness does not need to be thick as long as the deposition defects can be closed, and if it is 0.1 μm or more, the barrier improvement effect can be obtained. The preferable thickness range is a range of 0.2 μm to 5 μm, more preferably 0.3 to 3 μm, in view of the balance between the fact that coating defects are less likely to occur and the drying property.
(コーティング剤が使用される層構成)
 本発明のコーティング剤が用いられる層構成としては、以下の構成が想定される。いずれも、蒸着層直上にコーティングされることにより良好なバリア機能を付与することができる。
1)アルミ等の金属蒸着延伸フィルムを用いた構成としては、
・本発明のコーティング剤/インキ/蒸着延伸フィルム/ラミネート接着剤/シーラントフィルム
2)酸化アルミニウム等の透明蒸着延伸フィルムを用いた場合、
・透明蒸着延伸フィルム/本発明のコーティング剤/インキ/ラミネート接着剤/シーラントフィルム
3)アルミ等の金属蒸着未延伸フィルムを用いた構成としては
・延伸フィルム/インキ/ラミネート接着剤/本発明のコーティング剤/金属蒸着未延伸フィルム
・コーティング/インキ/金属蒸着未延伸フィルム
4)酸化アルミニウム等の透明蒸着未延伸フィルムを用いた場合
・延伸フィルム/インキ/ラミネート接着剤/本発明のコーティング剤/透明蒸着未延伸フィルム
・本発明のコーティング剤/インキ/透明蒸着未延伸フィルム
いずれの層構成も、フィルム層が2層以下で、インキ層の印刷を施した高ガスバリアのフィルムを提供することができる。特に金属または透明蒸着未延伸フィルムを用いた場合には、単層の高バリアフィルムを提供することができる。
(Layer configuration in which a coating agent is used)
The following constitution is assumed as a layer constitution in which the coating agent of the present invention is used. In any case, a good barrier function can be provided by coating directly on the vapor deposition layer.
1) As composition using metal vapor deposition stretched film such as aluminum,
In the case of using a transparent vapor-deposited stretched film such as a coating agent / ink / vapor-deposited stretched film / laminated adhesive / sealant film 2) aluminum oxide of the present invention,
Transparent vapor-deposited stretched film / coating agent of the present invention / ink / laminated adhesive / sealant film 3) Metallized non-stretched film such as aluminum, etc. Composition of stretched film / ink / laminated adhesive / coating of the present invention Agent / metal deposition unstretched film / coating / ink / metal deposition unstretched film 4) transparent vapor deposited unstretched film such as aluminum oxide etc. stretched film / ink / laminate adhesive / coating agent of the present invention / transparent deposition Unstretched film · Coating agent of the present invention / ink / transparent vapor deposited unstretched film In any layer configuration, it is possible to provide a high gas barrier film having two or less film layers and printed with an ink layer. In particular, when a metal or a transparent vapor deposited unstretched film is used, a single layer high barrier film can be provided.
(透過を遮断できるガス成分種類)
 本発明のコーティング剤を利用したガスバリア用フィルムが遮断できるガスとしては、酸素、水蒸気の他、二酸化炭素、窒素、アルゴン等の不活性ガス、メタノール、エタノール、プロパノール等のアルコール成分、フェノール、クレゾール等のフェノール類の他、低分子化合物からなる香気成分類、例えば、醤油、ソース、味噌、レモネン、メントール、サリチル酸メチル、コーヒー、ココアシャンプー、リンス、等の香り成分を例示することができる。
(Type of gas component that can shut off permeation)
Gases that can be blocked by the film for gas barrier using the coating agent of the present invention include oxygen, water vapor, carbon dioxide, inert gases such as nitrogen and argon, alcohol components such as methanol, ethanol and propanol, phenol, cresol, etc. In addition to phenols of the above, aroma components consisting of low molecular weight compounds such as soy sauce, sauce, miso, lemonon, menthol, methyl salicylate, coffee, cocoa shampoo, rinse, etc. can be exemplified.
 本発明のコーティング材は、蒸着フィルムの水蒸気、酸素のバリア性を向上させ、且つ高いラミネート強度も有するため、ラミネート作業が必要な各種包装材料に加えて、例えば太陽電池用保護フィルム用の接着剤や表示素子用水蒸気バリア性基板のコーティング剤等の電子材料用コーティング剤、建築材料用コーティング剤、工業材料用コーティング等、水蒸気、酸素のガスバリア性の強化を所望される用途であれば好適に使用できる。 The coating material of the present invention improves the barrier property of water vapor and oxygen of a vapor deposited film, and also has high laminating strength, and therefore, in addition to various packaging materials requiring laminating work, an adhesive for protective films for solar cells, for example. And coating agents for electronic materials such as coatings for water vapor barrier substrates for display devices, coatings for building materials, coatings for industrial materials, etc., suitably used for reinforcement of the gas barrier properties of water vapor and oxygen it can.
 次に、本発明を、実施例及び比較例により具体的に説明する。例中断りのない限り、「部」、「%」は質量基準である。なお、グリセロールを含有するポリエステルポリオールは水酸基価から計算される理論数平均分子量と上記の測定方法による数平均分子量が大きく異なるため、実測の数平均分子量を記載する。 Next, the present invention will be specifically described by way of examples and comparative examples. Examples Unless otherwise stated, "parts" and "%" are on a mass basis. The polyester polyol containing glycerol has a theoretical number average molecular weight calculated from the hydroxyl value and a number average molecular weight by the above measuring method greatly different from each other, so the actual number average molecular weight is described.
 なお、本発明において、数平均分子量または重量平均分子量は、GPCカラムLF-804(昭和電工社製)を用いたゲル浸透クロマトグラフィーにて、示差屈折率検出器(Waters社製Waters2414)により検出された保持時間より測定した。 In the present invention, the number average molecular weight or weight average molecular weight is detected by gel permeation chromatography using a GPC column LF-804 (manufactured by Showa Denko) by a differential refractive index detector (Waters 2414 manufactured by Waters). It measured from the retention time.
(製造例1)グリセロールとエチレングリコールと無水フタル酸からなるポリエステルポリオール「Gly7EG5oPA11」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸626.7部、エチレングリコール125.3部、グリセロール248部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が10mgKOH/g以下になったところで減圧下100torrにて加熱を継続し、酸価が2mgKOH/g以下でエステル化反応を終了し、数平均分子量2300のポリエステルポリオール「Gly7EG5oPA11」を得た。
Production Example 1 Method for Producing Polyester Polyol “Gly7 EG5oPA11” Consisting of Glycerol, Ethylene Glycol and Phthalic Anhydride In a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet pipe, rectification pipe, water separator, etc., phthalic anhydride 626 Charge 7 parts of ethylene glycol, 125.3 parts of ethylene glycol, 248 parts of glycerol and 0.05 parts of titanium tetraisopropoxide, gradually heat so that the upper temperature of the rectification tube does not exceed 100 ° C, and set the internal temperature to 220 ° C. Held on When the acid value became 10 mgKOH / g or less, heating was continued at 100 torr under reduced pressure, and the esterification reaction was completed when the acid value was 2 mgKOH / g or less, to obtain a polyester polyol "Gly7EG5oPA11" having a number average molecular weight of 2300.
(製造例2)グリセロールと無水フタル酸からなるポリエステルポリオール「Gly9oPA10」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸567.6部、グリセロール330.9部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を190℃に保持した。その後、酸価が40mgKOH/gになったところで無水フタル酸101.5部を追添し、酸価が70mgKOH/gになったところでエステル化反応を終了し、数平均分子量1200のポリエステルポリオール「Gly9oPA10」を得た。
Production Example 2 Method for Producing Polyester Polyol "Gly 9 o PA 10" Composed of Glycerol and Phthalic Anhydride 567.6 parts of Phthalic Anhydride in a polyester reaction container equipped with a stirrer, nitrogen gas inlet pipe, rectification pipe, water separator, etc. Then, 330.9 parts of glycerol and 0.05 parts of titanium tetraisopropoxide were charged, and the internal temperature was maintained at 190 ° C. by gradually heating so that the upper temperature of the rectification pipe did not exceed 100 ° C. Thereafter, 101.5 parts of phthalic anhydride is further added when the acid value is 40 mg KOH / g, and when the acid value is 70 mg KOH / g, the esterification reaction is completed, and polyester polyol "Gly 9 o PA 10 having a number average molecular weight of 1,200 is obtained. I got
(製造例3)無水フタル酸とエチレングリコールとからなるポリエステルポリオール「EGoPA900」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸697部、エチレングリコール303部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が10mgKOH/g以下になったところで減圧下100torrにて加熱を継続し、酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量900のポリエステルポリオール「EGoPA900」を得た。
Production Example 3 Method for Producing Polyester Polyol “EGoPA 900” Consisting of Phthalic Anhydride and Ethylene Glycol 697 parts of phthalic anhydride in a polyester reaction vessel equipped with a stirrer, nitrogen gas introduction pipe, rectification pipe, water separator, etc. Then, 303 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide were charged, and the internal temperature was maintained at 220 ° C. by gradually heating so that the upper temperature of the rectification pipe did not exceed 100 ° C. Heating is continued at 100 torr under reduced pressure when the acid value is 10 mg KOH / g or less, and the esterification reaction is terminated when the acid value is 2 mg KOH / g or less, and the theoretical number average molecular weight 900 calculated from the hydroxyl value. Polyester polyol "EGoPA 900" was obtained.
(製造例4) グリセロールとエチレングリコールと無水フタル酸からなるポリエステルポリオール「Gly1EG3oPA3.4」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸644.1部、エチレングリコール238.2部、グリセロール117.8部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が10mgKOH/g以下になったところで減圧下100torrにて加熱を継続し、酸価が2mgKOH/g以下でエステル化反応を終了し、数平均分子量1100のポリエステルポリオール「Gly1EG3oPA3.4」を得た。
Production Example 4 Method for Producing Polyester Polyol “Gly1EG3oPA3.4” Consisting of Glycerol, Ethylene Glycol and Phthalic Anhydride In a polyester reaction vessel equipped with a stirrer, nitrogen gas inlet tube, rectification tube, water separator, etc. Charge 644.1 parts of acid, 238.2 parts of ethylene glycol, 117.8 parts of glycerol and 0.05 parts of titanium tetraisopropoxide, and gradually heat so that the upper temperature of the rectification tube does not exceed 100 ° C. The temperature was kept at 220 ° C. When the acid value is 10 mgKOH / g or less, heating is continued at 100 torr under reduced pressure, and the esterification reaction is completed when the acid value is 2 mgKOH / g or less, to obtain a polyester polyol "Gly1EG3oPA3.4" having a number average molecular weight of 1100. The
(製造例5) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA5AA5-850を中心骨格にもつイソシアネート化合物「EGoPA5AA5-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸319.9部、アジピン酸315.6部、エチレングリコール364.6部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量820のポリエステルポリオール「EGoPA5AA5-850」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA5AA5-850」1000部とXDI917.7部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が17%以下になったところでウレタン化反応を終了し、NCO%が15.8%のポリイソシアネート化合物「EGoPA5AA5-850-XDI」を得た。
(Production Example 5) Production method of isocyanate compound "EGoPA5AA5-850-XDI" having polyester polyol EGoPA5AA5-850 consisting of phthalic anhydride, adipic acid and ethylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, 319.9 parts of phthalic anhydride, 315.6 parts of adipic acid, 364.6 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged into a polyester reaction vessel equipped with a water separator etc., and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA5AA5-850" having a theoretical number average molecular weight of 820 calculated from the hydroxyl value.
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the above-mentioned "EGoPA 5AA5-850" and 917.7 parts of XDI are charged, and 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% reached 17% or less, the urethanation reaction was completed to obtain a polyisocyanate compound "EGoPA5AA5-850-XDI" having an NCO% of 15.8%.
(製造例6) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA5AA5-500を中心骨格にもつイソシアネート化合物「EGoPA5AA5-500-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸303.0部、アジピン酸298.9部、エチレングリコール398.1部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量510のポリエステルポリオール「EGoPA5AA5-500」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA5AA5-500」1000部とXDI1475.9部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が22%以下になったところでウレタン化反応を終了し、NCO%が19.2%のポリイソシアネート化合物「EGoPA5AA5-500-XDI」を得た。
(Production Example 6) Production method of isocyanate compound "EGoPA5AA5-500-XDI" having polyester polyol EGoPA5AA5-500 consisting of phthalic anhydride, adipic acid and ethylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, In a polyester reaction vessel equipped with a water separator etc., 303.0 parts of phthalic anhydride, 298.9 parts of adipic acid, 398.1 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged, and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA5AA5-500" having a theoretical number average molecular weight of 510 calculated from the hydroxyl value.
Into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the "EGoPA 5AA 5-500" and 1475.9 parts of XDI are charged, and 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% reached 22% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "EGoPA5AA5-500-XDI" having an NCO% of 19.2%.
(製造例7) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA5AA5-2000を中心骨格にもつイソシアネート化合物「EGoPA5AA5-2000-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸333.7部、アジピン酸329.2部、エチレングリコール337.2部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量1930のポリエステルポリオール「EGoPA5AA5-2000」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA5AA5-500」1000部とXDI390.4部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が10%以下になったところでウレタン化反応を終了し、NCO%が8.5%のポリイソシアネート化合物「EGoPA5AA5-2000-XDI」を得た。
(Production Example 7) Production method of isocyanate compound "EGoPA5AA5-2000-XDI" having polyester polyol EGoPA5AA5-2000 consisting of phthalic anhydride, adipic acid and ethylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, 333.7 parts of phthalic anhydride, 329.2 parts of adipic acid, 337.2 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged into a polyester reaction vessel equipped with a water separator etc., and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA5AA5-2000" having a theoretical number average molecular weight of 1930 calculated from the hydroxyl value.
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the above "EGoPA 5AA5-500" and 390.4 parts of XDI are charged, and it is 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% reached 10% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "EGoPA5AA5-2000-XDI" having an NCO% of 8.5%.
(製造例8) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA7AA3-850を中心骨格にもつイソシアネート化合物「EGoPA7AA3-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸447.0部、アジピン酸189.0部、エチレングリコール363.9部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量800のポリエステルポリオール「EGoPA7AA3-850」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA7AA3-850」1000部とXDI944.6部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が16%以下になったところでウレタン化反応を終了し、NCO%が14.4%のポリイソシアネート化合物「EGoPA7AA3-850-XDI」を得た。
(Production Example 8) Production method of isocyanate compound "EGoPA7AA3-850-XDI" having polyester polyol EGoPA7AA3-850 consisting of phthalic anhydride, adipic acid and ethylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, In a polyester reaction vessel equipped with a water separator etc., 447.0 parts of phthalic anhydride, 189.0 parts of adipic acid, 363.9 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged, and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA7AA3-850" having a theoretical number average molecular weight of 800 calculated from the hydroxyl value.
Into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the above "EGoPA7AA3-850" and 944.6 parts of XDI are charged, and 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% reached 16% or less, the urethanation reaction was completed to obtain a polyisocyanate compound "EGoPA7AA3-850-XDI" having an NCO% of 14.4%.
(製造例9) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA1AA9-850を中心骨格にもつイソシアネート化合物「EGoPA1AA9-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸64.2部、アジピン酸570.0部、エチレングリコール365.8部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量840のポリエステルポリオール「EGoPA1AA9-850」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA1AA9-850」1000部とXDI899.6部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が14%以下になったところでウレタン化反応を終了し、NCO%が12.8%のポリイソシアネート化合物「EGoPA1AA9-850-XDI」を得た。
(Production Example 9) Production method of isocyanate compound "EGoPA1AA9-850-XDI" having as a central skeleton a polyester polyol EGoPA1AA9-850 consisting of phthalic anhydride, adipic acid and ethylene glycol Agitator, nitrogen gas inlet tube, rectification tube, In a polyester reaction vessel equipped with a water separator etc., 64.2 parts of phthalic anhydride, 570.0 parts of adipic acid, 365.8 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged, and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA1AA9-850" having a theoretical number average molecular weight of 840 calculated from the hydroxyl value.
Into a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the above "EGoPA1AA9-850" and 899.6 parts of XDI are charged, and it is 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% was 14% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "EGoPA1AA9-850-XDI" having an NCO% of 12.8%.
(製造例10) 無水フタル酸とアジピン酸とプロピレングリコールとからなるポリエステルポリオールPGoPA5AA5-850を中心骨格にもつイソシアネート化合物「PGoPA5AA5-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸293.3部、アジピン酸289.4部、プロピレングリコール417.3部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を180℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量700のポリエステルポリオール「PGoPA5AA5-850」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「PGoPA5AA5-850」1000部とXDI1069.4部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が18%以下になったところでウレタン化反応を終了し、NCO%が15.5%のポリイソシアネート化合物「PGoPA5AA5-850-XDI」を得た。
(Production Example 10) Production method of isocyanate compound "PGoPA5AA5-850-XDI" having polyester polyol PGoPA5AA5-850 consisting of phthalic anhydride, adipic acid and propylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, Into a polyester reaction vessel equipped with a water separator etc., 293.3 parts of phthalic anhydride, 289.4 parts of adipic acid, 417.3 parts of propylene glycol and 0.05 parts of titanium tetraisopropoxide are charged, and the upper part of the rectification tube The internal temperature was maintained at 180 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "PGoPA5AA5-850" having a theoretical number average molecular weight of 700 calculated from the hydroxyl value.
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the above "PGoPA5AA5-850" and 1069.4 parts of XDI are charged, and it is 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% reached 18% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "PGoPA5AA5-850-XDI" having an NCO% of 15.5%.
(製造例11) 無水フタル酸とアジピン酸とネオペンチルグリコールとからなるポリエステルポリオールNPGoPA5AA5-850を中心骨格にもつイソシアネート化合物「NPGoPA5AA5-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸249.6部、アジピン酸246.2部、ネオペンチルグリコール504.2部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を200℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量720のポリエステルポリオール「NPGoPA5AA5-850」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「NPGoPA5AA5-850」1000部とXDI1050.6部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が18%以下になったところでウレタン化反応を終了し、NCO%が15.7%のポリイソシアネート化合物「NPGoPA5AA5-850-XDI」を得た。
(Production Example 11) Production method of an isocyanate compound "NPGoPA5AA5-850-XDI" having a polyester polyol NPGoPA5AA5-850 consisting of phthalic anhydride, adipic acid and neopentyl glycol as a central skeleton Agitator, nitrogen gas inlet tube, rectification tube Into a polyester reaction vessel equipped with a water separator etc., 249.6 parts of phthalic anhydride, 246.2 parts of adipic acid, 504.2 parts of neopentyl glycol and 0.05 parts of titanium tetraisopropoxide are charged and rectified The internal temperature was maintained at 200 ° C. by gradually heating so that the temperature at the top of the tube did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "NPGoPA5AA5-850" having a theoretical number average molecular weight of 720 calculated from the hydroxyl value.
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet and a reflux condenser, 1000 parts of the above-mentioned "NPGoPA5AA5-850" and 1050.6 parts of XDI are charged, and it is carried out at 60 ° C for 3 hours under nitrogen stream. It was made to react. When the NCO% reached 18% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound “NPGoPA5AA5-850-XDI” having an NCO% of 15.7%.
(製造例12) 無水フタル酸とコハク酸とエチレングリコールとからなるポリエステルポリオールEGoPA5SuA5-850を中心骨格にもつイソシアネート化合物「EGoPA5SuA5-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸342.5部、コハク酸273.0部、エチレングリコール384.5部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量830のポリエステルポリオール「EGoPA5SuA5-850」を得た。
温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA5SuA5-850」1000部とXDI906.3部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が16%以下になったところでウレタン化反応を終了し、NCO%が14.3%のポリイソシアネート化合物「EGoPA5SuA5-850-XDI」を得た。
(Production Example 12) Production method of isocyanate compound "EGoPA5SuA5-850-XDI" having polyester polyol EGoPA5SuA5-850 consisting of phthalic anhydride, succinic acid and ethylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, In a polyester reaction vessel equipped with a water separator etc., 342.5 parts of phthalic anhydride, 273.0 parts of succinic acid, 384.5 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged, and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mg KOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA5SuA5-850" having a theoretical number average molecular weight of 830 calculated from the hydroxyl value.
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet and a reflux condenser, 1000 parts of the above-mentioned "EGoPA5SuA5-850" and 906.3 parts of XDI are charged, and it is 3 hours at 60 ° C under nitrogen stream. It was made to react. When the NCO% reached 16% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "EGoPA5SuA5-850-XDI" having an NCO% of 14.3%.
(製造例13) 無水フタル酸とマレイン酸とエチレングリコールとからなるポリエステルポリオールEGoPA5MA5-850を中心骨格にもつイソシアネート化合物「EGoPA5MA5-850-XDI」の製造方法
 攪拌機、窒素ガス導入管、精留管、水分分離器等を備えたポリエステル反応容器に、無水フタル酸344.2部、マレイン酸269.7部、エチレングリコール386.1部及びチタニウムテトライソプロポキシド0.05部を仕込み、精留管上部温度が100℃を超えないように徐々に加熱して内温を220℃に保持した。酸価が2mgKOH/g以下になったところでエステル化反応を終了し、水酸基価から計算される理論数平均分子量810のポリエステルポリオール「EGoPA5MA5-850」を得た。
 温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記「EGoPA5MA5-850」1000部とXDI930.5部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が18%以下になったところでウレタン化反応を終了し、NCO%が15.7%のポリイソシアネート化合物「EGoPA5MA5-850-XDI」を得た。
(Production Example 13) Production method of isocyanate compound "EGoPA5MA5-850-XDI" having polyester polyol EGoPA5MA5-850 consisting of phthalic anhydride, maleic acid and ethylene glycol as a central skeleton Stirrer, nitrogen gas inlet tube, rectification tube, In a polyester reaction vessel equipped with a water separator etc., 344.2 parts of phthalic anhydride, 269.7 parts of maleic acid, 386.1 parts of ethylene glycol and 0.05 parts of titanium tetraisopropoxide are charged, and the upper part of the rectification pipe The internal temperature was maintained at 220 ° C. by gradually heating so that the temperature did not exceed 100 ° C. When the acid value became 2 mgKOH / g or less, the esterification reaction was completed to obtain a polyester polyol "EGoPA5MA5-850" having a theoretical number average molecular weight of 810 calculated from the hydroxyl value.
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet, and a reflux condenser, 1000 parts of the above-mentioned "EGoPA5MA5-850" and 930.5 parts of XDI are charged, and 3 hours at 60 ° C under a nitrogen stream. It was made to react. When the NCO% reached 18% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "EGoPA5MA 5-850-XDI" having an NCO% of 15.7%.
(製造例14) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA5AA5-850を中心骨格にもつイソシアネート化合物「EGoPA5AA5-850-TDI」の製造方法
 温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記製造例5「EGoPA5AA5-850」1000部とTDI849.6部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が16%以下になったところでウレタン化反応を終了し、NCO%が14.5%のポリイソシアネート化合物「EGoPA5AA5-850-TDI」を得た。
(Production Example 14) Production method of isocyanate compound "EGoPA5AA5-850-TDI" having polyester polyol EGoPA5AA5-850 consisting of phthalic anhydride, adipic acid and ethylene glycol as a central skeleton Thermometer, stirrer, inert gas inlet, In a four-necked flask equipped with an air inlet and a reflux condenser, 1000 parts of the above Preparation Example 5 "EGoPA5AA5-850" and 849.6 parts of TDI were charged and reacted at 60 ° C for 3 hours under a nitrogen stream. When the NCO% reached 16% or less, the urethanation reaction was terminated to obtain a polyisocyanate compound "EGoPA5AA5-850-TDI" having an NCO% of 14.5%.
(製造例15) 無水フタル酸とアジピン酸とエチレングリコールとからなるポリエステルポリオールEGoPA5AA5-850を中心骨格にもつイソシアネート化合物「EGoPA5AA5-850-MDI」の製造方法
 温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記製造例5「EGoPA5AA5-850」1000部とMDI2220.6部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が20%以下になったところでウレタン化反応を終了し、NCO%が18.8%のポリイソシアネート化合物「EGoPA5AA5-850-MDI」を得た。
(Production Example 15) Production method of isocyanate compound "EGoPA5AA5-850-MDI" having a polyester polyol EGoPA5AA5-850 consisting of phthalic anhydride, adipic acid and ethylene glycol as a central skeleton Thermometer, stirrer, inert gas inlet, In a four-necked flask equipped with an air inlet and a reflux condenser, 1000 parts of the above Preparation Example 5 "EGoPA5AA5-850" and 2220.6 parts of MDI were charged, and reacted at 60 ° C for 3 hours under a nitrogen stream. When the NCO% reached 20% or less, the urethanation reaction was completed to obtain a polyisocyanate compound "EGoPA5AA5-850-MDI" having an NCO% of 18.8%.
(製造例16) 無水フタル酸とエチレングリコールとからなるポリエステルポリオール「EGoPA900」を中心骨格にもつイソシアネート化合物「EGoPA900-XDI」の製造方法
 温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた四つ口フラスコに上記製造例3「EGoPA900」1000部とXDI1207.6部を仕込み、窒素気流下60℃で3時間反応させた。NCO%が18%以下になったところでウレタン化反応を終了し、NCO%が14.9%のポリイソシアネート化合物「EGoPA900-XDI」を得た。
(Production Example 16) Method for producing isocyanate compound "EGoPA 900-XDI" having as a central skeleton a polyester polyol "EGoPA 900" consisting of phthalic anhydride and ethylene glycol Thermometer, stirrer, inert gas inlet, air inlet and reflux In a four-necked flask equipped with a condenser, 1000 parts of the above Preparation Example 3 "EGoPA 900" and 1207.6 parts of XDI were charged, and reacted at 60 ° C for 3 hours under a nitrogen stream. When the NCO% reached 18% or less, the urethanation reaction was completed to obtain a polyisocyanate compound "EGoPA 900-XDI" having an NCO% of 14.9%.
 製造例1~4で得られた実施例及び比較例用のポリエステルポリオール(B)の原料モノマー組成、樹脂の数平均分子量、多価アルコール全成分に対するグリセロール含有率(モル%)、多価カルボン酸全成分に対するオルト配向芳香族ジカルボン酸又はその無水物の含有率(モル%)と、前述の方法で測定したガラス転移温度(℃)を表1に示す。 Raw material monomer composition of polyester polyol (B) for Examples and Comparative Examples obtained in Production Examples 1 to 4, number average molecular weight of resin, glycerol content (mol%) with respect to all polyhydric alcohol components, polyvalent carboxylic acid The content (mol%) of the ortho-oriented aromatic dicarboxylic acid or its anhydride with respect to all the components and the glass transition temperature (° C.) measured by the above-mentioned method are shown in Table 1.
 製造例5~16で得られた実施例及び比較例用のポリイソシアネート化合物(A)の原料モノマー組成、NCO%(分子中のイソシアネート基の重量分率)、多価カルボン酸全成分に対するオルト配向芳香族ジカルボン酸又はその無水物の含有率(モル%)を表2に、製造例11~16で得られた実施例及び比較例用のポリイソシアネート化合物の原料モノマー組成、NCO%(分子中のイソシアネート基の重量分率)、多価カルボン酸全成分に対するオルト配向芳香族ジカルボン酸又はその無水物の含有率(モル%)を表2、3に示す。 Raw material monomer composition of the polyisocyanate compound (A) for Examples and Comparative Examples obtained in Production Examples 5 to 16, NCO% (weight fraction of isocyanate group in molecule), ortho orientation with respect to all components of polyvalent carboxylic acid The content (mol%) of the aromatic dicarboxylic acid or its anhydride is shown in Table 2, and the raw material monomer composition of the polyisocyanate compound for the examples and comparative examples obtained in Production Examples 11 to 16, NCO% (in the molecule) The content (mol%) of the ortho-oriented aromatic dicarboxylic acid or the anhydride thereof with respect to the weight fraction of the isocyanate group) and the total component of the polyvalent carboxylic acid is shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 表中の略語は以下の意味である。
XDI:メタキシリレンジイソシアネート
TDI:トリレンジイソシアネート
MDI:ジフェニルメタンジイソシアネート
なお、使用したイソシアネートは以下の通りである。
・XDI: 三井化学(株)製「タケネート500」(不揮発成分100%)
・TDI: 東ソー(株)製「コロネートT-100」(不揮発成分100%)
・MDI: 東ソー(株)製「ミリオネートMT」(不揮発成分100%)
NCO%:ポリイソシアネート化合物(A)に対するイソシアネート基含有量であり、測定値である。
The abbreviations in the table have the following meanings.
XDI: metaxylylene diisocyanate TDI: tolylene diisocyanate MDI: diphenylmethane diisocyanate The isocyanate used is as follows.
・ XDI: Mitsui Chemicals Co., Ltd. “Takenate 500” (nonvolatile component 100%)
・ TDI: Toron Co., Ltd. product "Corronate T-100" (non volatile matter 100%)
-MDI: "Millionate MT" manufactured by Tosoh Corp. (nonvolatile component 100%)
NCO%: It is an isocyanate group content with respect to a polyisocyanate compound (A), and is a measured value.
(実施例及び比較例)
 実施例及び比較例のコーティング剤の配合比率や使用するフィルムは、表4~に示した。
(Example and Comparative Example)
The compounding ratio of the coating agent of the example and the comparative example and the film to be used are shown in Table 4.
(コーティング剤の調製)
 製造例で合成したポリエステル(B)を2-ブタノンに添加し、常温でスターラーで撹拌した。いずれのポリエステルも溶媒に完全に溶解した溶液を調整することができた。得られた溶液に、製造例で合成したポリイソシアネート化合物(A)あるいは市販のイソシアネート化合物を添加し、常温でスターラーで撹拌し均一なコーティング剤を調製した。
(Preparation of coating agent)
The polyester (B) synthesized in the preparation example was added to 2-butanone and stirred with a stirrer at normal temperature. It was possible to prepare a solution in which all the polyesters were completely dissolved in the solvent. To the resulting solution was added the polyisocyanate compound (A) synthesized in the production example or a commercially available isocyanate compound, and the mixture was stirred with a stirrer at room temperature to prepare a uniform coating agent.
ここで、市販のイソシアネート化合物は以下の通りである。
・D-110N: 三井化学(株)製「タケネートD-110N」(メタキシリレンジイソシアネートアダクト体、不揮発成分75.0%、溶媒酢酸エチル)
・KW-75: DIC(株)製「ディックドライKW-75」(トリレンジイソシアネートアダクト体、不揮発成分75.0%、溶媒酢酸エチル)
・T-1890:EVONIC社製「VESTANATT-1890/100」(イソホロンジイソシアネートイソシアヌレート体、不揮発成分100%)を酢酸エチルで希釈し不揮発成分70%に調製したもの
・タケネート500: 三井化学(株)製「タケネート500」(メタキシリレンジイソシアネート、不揮発成分100%)
Here, commercially available isocyanate compounds are as follows.
・ D-110N: Mitsui Chemicals Co., Ltd. “Takenate D-110N” (Meta-xylylene diisocyanate adduct, 75.0% of nonvolatile components, solvent ethyl acetate)
· KW-75: "DIC Dry KW-75" (manufactured by DIC Corporation) (Tolylene diisocyanate adduct, 75.0% nonvolatile component, solvent ethyl acetate)
· T-1890: "VESTANATT-1890 / 100" (isophorone diisocyanate isocyanurate, 100% nonvolatile component) manufactured by EVONIC, diluted with ethyl acetate to prepare 70% nonvolatile component · Takenate 500: Mitsui Chemicals Co., Ltd. Made "Takenate 500" (Meta-xylylene diisocyanate, 100% non-volatile components)
(ガスバリア性フィルムの製造方法 コーティング剤の塗工方法)
 得られたコーティング剤を、蒸着フィルムの蒸着面側にバーコーター#2を用いて塗布量0.5g/m(固形分)となるように塗工し、ドライヤーで80℃の熱風により溶媒を揮発させた後、150℃設定の乾燥機中に30秒間設置し、均一なコーティング層を有するガスバリア性フィルムを得た。
基材である蒸着フィルムとしては、以下を使用した。
・アルミ蒸着PETフィルム:1510#12(東レフィルム加工(株)製)
未延伸フィルム
・LLDPEフィルム:TUX-HC#40(三井化学東セロ(株)製)
未延伸蒸着フィルム
・アルミ蒸着CPPフィルム:2203#25(東レフィルム加工(株)製)
・アルミ蒸着LLDPEフィルム:TUX-F#30(三井化学東セロ(株)製)
(Production method of gas barrier film Coating method of coating agent)
The resulting coating agent is coated on the deposition side of the deposited film to a coating amount of 0.5 g / m 2 (solid content) using a bar coater # 2, and the solvent is applied by hot air at 80 ° C. with a dryer. After volatilization, the film was placed in a dryer set at 150 ° C. for 30 seconds to obtain a gas barrier film having a uniform coating layer.
The following was used as a vapor deposition film which is a base material.
-Aluminum deposited PET film: 1510 # 12 (manufactured by Toray Film Co., Ltd.)
Unstretched film · LLDPE film: TUX-HC # 40 (made by Mitsui Chemicals Tosoh Co., Ltd.)
Unstretched deposited film · Aluminum deposited CPP film: 2203 # 25 (made by Toray Film Co., Ltd.)
Aluminum-deposited LLDPE film: TUX-F # 30 (manufactured by Mitsui Chemicals Toshiro Co., Ltd.)
(ガスバリア性フィルムの評価方法)
 ガスバリア性フィルムの、酸素透過率測定、水蒸気透過率測定、ラミネート強度測定、耐ブロッキング性(塗膜乾燥特性)により評価した。
 ガスバリア性フィルムは、(X)または(Y)のフィルムを使用した。
(Evaluation method of gas barrier film)
The gas barrier film was evaluated by measuring oxygen permeability, measuring water vapor permeability, measuring laminate strength, and blocking resistance (coating drying characteristics).
The gas barrier film used the film of (X) or (Y).
(X)ガスバリア性フィルム
 前述の「ガスバリア性フィルムの製造方法」で得たガスバリア性フィルムをそのまま使用した。
(X) Gas-barrier film The gas-barrier film obtained by the above-mentioned "Method for producing gas-barrier film" was used as it was.
(Y)ガスバリア性フィルムを用いた積層フィルム
 第一の基材にディックドライLX-500とKW-75(いずれもDIC社製)を10/1の配合比で配合し、不揮発分が20%となるように酢酸エチルを配合して得た接着剤を、バーコーター#9を用いて塗布量2.0g/m(固形分)となるように塗工し、ドライヤーで80℃の熱風により溶媒を揮発させた。
 次いで温度40℃、圧力0.4MPa、ラミネート速度40m/minにて第二の基材とドライラミネートして、積層フィルムを得た。この積層フィルムを40℃/3日間かけて硬化させ、「積層フィルム」とした。
 第一の基材または第二の基材としては、前述の「ガスバリア性フィルムの製造方法」で得たガスバリア性フィルムを使用した。第一の基材として使用する場合には、接着剤の塗布面がコーティング層となるように塗工した。
 ここで、使用したフィルム略称は以下の通りである。
・PETフィルム:E5100#12(東洋紡績(株)製)
延伸蒸着フィルム
・アルミ蒸着PETフィルム:1510#12(東レフィルム加工(株)製)
未延伸フィルム
・LLDPEフィルム:TUX-HC#40(三井化学東セロ(株)製)
未延伸蒸着フィルム
・アルミ蒸着CPPフィルム:2203#25(東レフィルム加工(株)製)
・アルミ蒸着LLDPEフィルム:TUX-F#30(三井化学東セロ(株)製)
(Y) Laminated film using a gas barrier film The first substrate is compounded with Dick Dry LX-500 and KW-75 (both manufactured by DIC) at a compounding ratio of 10/1, and the nonvolatile content is 20%. The adhesive obtained by blending ethyl acetate so as to become is coated to a coating amount of 2.0 g / m 2 (solid content) using a bar coater # 9, and the solvent is heated by a hot air at 80 ° C. with a dryer. Was allowed to evaporate.
Subsequently, dry lamination was performed with the second base material at a temperature of 40 ° C., a pressure of 0.4 MPa, and a laminating speed of 40 m / min to obtain a laminated film. The laminated film was cured at 40 ° C./3 days to form a “laminated film”.
The gas barrier film obtained by the above-mentioned "method for producing a gas barrier film" was used as the first substrate or the second substrate. When using as a first base material, it coated so that the application side of adhesives might be a coating layer.
Here, the film abbreviations used are as follows.
-PET film: E5100 # 12 (made by Toyobo Co., Ltd.)
Stretched vapor-deposited film / Aluminum-deposited PET film: 1510 # 12 (made by Toray Film Co., Ltd.)
Unstretched film · LLDPE film: TUX-HC # 40 (made by Mitsui Chemicals Tosoh Co., Ltd.)
Unstretched deposited film · Aluminum deposited CPP film: 2203 # 25 (made by Toray Film Co., Ltd.)
Aluminum-deposited LLDPE film: TUX-F # 30 (manufactured by Mitsui Chemicals Toshiro Co., Ltd.)
(1)酸素透過率測定方法
 (X)のガスバリア性フィルム、(Y)の積層フィルム、及び参考例として未処理の蒸着フィルムを、モコン社製酸素透過率測定装置OX-TRAN2/21MHを用いてJIS-K7126(等圧法)に準じ、23℃90%RHの雰囲気下で測定した。なお、RHは湿度を示す。
(1) Oxygen Permeability Measurement Method Using the gas barrier film of (X), the laminated film of (Y), and an untreated vapor-deposited film as a reference example, using an oxygen permeability measurement device OX-TRAN 2/21 MH manufactured by Mocon Corporation. It was measured in an atmosphere of 23 ° C. and 90% RH according to JIS-K7126 (isostatic pressure method). Here, RH indicates humidity.
(2)水蒸気透過率測定方法
 (X)のガスバリア性フィルム、(Y)の積層フィルム、及び参考例として未処理の蒸着フィルムを、Illinois社製水蒸気透過率測定装置7002を用いて、伝導度法「ISO-15106-3」に準じ、40℃90%RHの雰囲気下で測定した。
(2) Water vapor permeability measurement method Conductivity method using the gas barrier film of (X), the laminated film of (Y), and an untreated vapor-deposited film as a reference example, using a water vapor permeability measurement device 7002 manufactured by Illinois. It was measured in an atmosphere of 40 ° C. and 90% RH according to “ISO-15106-3”.
(3)ラミネート強度測定方法
 (X)のガスバリア性フィルム、(Y)の積層フィルム、及び参考例として未処理の蒸着フィルムを、塗工方向と平行に15mm幅に切断し、(株)エー・アンド・デイ製卓上型材料試験機STB-1225Lを用いて、雰囲気温度25℃、剥離速度を300mm/分に設定し、積層フィルム間を180度剥離方法で剥離した際の引っ張り強度をラミネート強度とした。ラミネート強度の単位はN/15mmとした。
(3) Lamination Strength Measurement Method The gas barrier film of (X), the laminated film of (Y), and an untreated vapor-deposited film as a reference example are cut in parallel with the coating direction to a width of 15 mm. The tensile strength at the time of peeling between laminated films by the 180 degree peeling method is set as the lamination strength, using an STD-1225L table-top material tester made by And Day, setting the atmosphere temperature to 25 ° C. and the peeling speed to 300 mm / min. did. The unit of laminate strength was N / 15 mm.
(4)耐ブロッキング性(塗膜乾燥特性)
 (X)のガスバリア性フィルムを、乾燥させた直後の状態を指で触ることによる指触官能試験で比較した。粘着性が残存しない場合は○、粘着性が残存した場合は×とした。この時点で粘着性が残存した場合には乾燥後にロールに巻いた状態で取り扱えない可能性が高いことを示す。
(4) Blocking resistance (coating drying characteristics)
The gas barrier films of (X) were compared in a state immediately after drying by a touch sensory test by touching with a finger. The case where the tackiness did not remain was ○, and the case where the tackiness remained was ×. If tackiness remains at this point, it indicates that there is a high possibility that the film can not be handled in a state of being wound on a roll after drying.
 実施例及び比較例の結果を表4~表12に示す。表では使用した主剤、硬化剤、溶剤の種類及び配合量を記した。これらに加えて、各種評価結果を記した。表中「-」は未測定であることを表し、配合量における数字は「部」を表し空欄は「ゼロ」を表す。 The results of Examples and Comparative Examples are shown in Tables 4 to 12. In the table, the types and amounts of the main agent, curing agent and solvent used are listed. In addition to these, various evaluation results are written. In the table, "-" represents that it has not been measured, the numbers in the compounding amount represent "parts" and the blanks represent "zero".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004


Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

 表中、略語は以下の意味である。
Gly比率:Gly比率(モル%) 
DC酸含有率:ジカルボン酸含有率(モル%)
測定Mn:数平均分子量(測定値)
Tg:ガラス転移温度(DSC測定値)
設計Mn :数平均分子量(設計値)
実:実施例
比:比較例
基材:基材フィルム
酸素透過率:酸素透過率 (cc/m2/day/atm@90%RH) 
水蒸気透過率:水蒸気透過率 (g/m2/day)
ラミネート強度:ラミネート強度  (N/15mm) 180度剥離
硬化膜中のDC酸含有率:硬化膜中のオルト配向性芳香族ジカルボン酸比率(重量%)
Ad-cf:接着剤の凝集破壊
PE伸:LLDPEフィルム伸び
蒸着/コート:蒸着層とコート層間での剥離
「Ad-cf」および「PE伸」は、蒸着層とコート層の密着性が良好であることを示し、「蒸着/コート」は、蒸着層とコート層の密着性が良好でないことを示す。
In the table, the abbreviations have the following meanings.
Gly ratio: Gly ratio (mol%)
DC acid content: dicarboxylic acid content (mol%)
Measurement Mn: Number average molecular weight (measurement value)
Tg: glass transition temperature (DSC measurement value)
Design Mn: Number average molecular weight (design value)
Actual: Example ratio: Comparative example base material: base film oxygen permeability: oxygen permeability (cc / m2 / day / atm @ 90% RH)
Water vapor transmission rate: Water vapor transmission rate (g / m2 / day)
Lamination strength: Lamination strength (N / 15 mm) DC acid content in 180 degree peel-cured film: Ortho-oriented aromatic dicarboxylic acid ratio in cured film (% by weight)
Ad-cf: Cohesive failure of adhesive PE elongation: LLDPE film elongation deposition / coating: Peeling between the deposited layer and the coated layer "Ad-cf" and "PE elongation" have good adhesion between the deposited layer and the coated layer "Deposition / coat" indicates that the adhesion between the deposited layer and the coated layer is not good.
(参考例1~3)
 本発明の蒸着フィルム用コーティング剤のガスバリア効果を明確化するため、参考例として各実施例、比較例に使用した蒸着フィルムの未処理状態(即ち本発明のコーティング前)の酸素透過率、水蒸気透過率を測定した。結果を表13に示す。
(Reference Examples 1 to 3)
In order to clarify the gas barrier effect of the coating agent for a vapor deposition film of the present invention, the oxygen permeability and water vapor transmission of the vapor deposition film used in each example and comparative example as reference examples are in the untreated state (that is, before the coating of the present invention). The rate was measured. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013

 以上、実施例1~15に示された、前記多価カルボン酸成分(A1)の全量に対し、10~70モル%のオルト配向性芳香族ジカルボン酸又はその酸無水物の少なくとも1種を含有し、前記多価アルコール成分(B2)の全量に対し、50~100モル%のグリセロールを含有するコーティング剤は、参考例のコーティング剤を塗布していない蒸着フィルムと比べ、酸素、水蒸気とも低い透過率を示しバリア機能を向上させるコーティング剤として優れた特性を示した。また、いずれの実施例においても、積層フィルムにおいて高いラミネート強度を示すとともに、優れた耐ブロッキング性(塗膜乾燥特性)を示した。 As described above, it contains 10 to 70 mol% of at least one ortho-orientation aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the polyvalent carboxylic acid component (A1) shown in Examples 1 to 15. The coating agent containing 50 to 100 mol% of glycerol relative to the total amount of the polyhydric alcohol component (B2) has low permeation of both oxygen and water vapor as compared to the vapor-deposited film to which the coating agent of the reference example is not applied. It exhibits excellent properties as a coating agent that shows the rate and improves the barrier function. Also, in any of the examples, the laminate film showed high laminate strength and showed excellent blocking resistance (coating film drying characteristic).
 一方、比較例1~4では一定のバリア機能の向上は認められるが、硬化剤の化学構造に由来する硬い塗膜となったために、積層フィルムにおいてラミネート強度をほとんど示さなかった。また、同じく本発明の必須構造を持たない比較例5~7では、ガス乾燥後に強い粘着性が残存し、ブロッキング等の問題の可能性が強く示唆された。 On the other hand, in Comparative Examples 1 to 4, although a certain improvement in the barrier function was observed, the laminate film showed almost no laminate strength because it became a hard coating film derived from the chemical structure of the curing agent. In addition, in Comparative Examples 5 to 7 similarly having no essential structure of the present invention, strong adhesiveness remained after gas drying, which strongly suggested the possibility of problems such as blocking.

Claims (9)

  1. ポリイソシアネート化合物(A)と、ポリエステル(B)とを含有してなる蒸着フィルム用コーティング剤であって、
    前記ポリイソシアネート化合物(A)が、多価カルボン酸成分(A1)と多価アルコール成分(A2)との重縮合体であるポリエステル(A3)由来のエステル骨格を有し、且つ前記多価カルボン酸成分(A1)全量に対してオルト配向性芳香族ジカルボン酸又はその酸無水物の少なくとも1種を10~70モル%含有するポリイソシアネート化合物(A)であり、
    ポリエステル(B)が、オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分(B1)と多価アルコール成分(B2)との重縮合体であり前記多価アルコール成分(B2)全量に対してグリセロールを50~100モル%含有することを特徴とする蒸着フィルム用コーティング剤。
    It is a coating agent for vapor deposition films which comprises polyisocyanate compound (A) and polyester (B),
    The polyisocyanate compound (A) has an ester skeleton derived from polyester (A3) which is a polycondensate of polyvalent carboxylic acid component (A1) and polyvalent alcohol component (A2), and the polyvalent carboxylic acid A polyisocyanate compound (A) containing 10 to 70 mol% of at least one ortho-oriented aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the component (A1),
    The polyester (B) is a polycondensate of a polyvalent carboxylic acid component (B1) containing at least one of an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof and a polyvalent alcohol component (B2), and the polyvalent alcohol component (B2) A coating agent for a deposited film, comprising 50 to 100 mol% of glycerol based on the total amount.
  2. 多価アルコール成分(A2)が、エチレングリコール、プロピレングリコール、ブチレングリコール、及びネオペンチルグリコールからなる群から選ばれる少なくとも1種を含む、請求項1に記載の蒸着フィルム用コーティング剤。 The coating agent for vapor deposition films of Claim 1 in which a polyhydric-alcohol component (A2) contains at least 1 sort (s) chosen from the group which consists of ethylene glycol, propylene glycol, butylene glycol, and neopentyl glycol.
  3. 前記ポリエステル化合物(A3)の数平均分子量が300~2000の範囲である、請求項1又は2に記載の蒸着フィルム用コーティング剤。 The coating agent for a deposited film according to claim 1 or 2, wherein the number average molecular weight of the polyester compound (A3) is in the range of 300 to 2,000.
  4. 前記ポリイソシアネート化合物(A)の末端イソシアネート基が、キシリレンジイソシアネート基、トリレンジイソシアネート基、又はジフェニルメタンジイソシアネート基の何れかである、請求項1~3の何れかに記載の蒸着フィルム用コーティング剤。 The coating agent for a deposited film according to any one of claims 1 to 3, wherein the terminal isocyanate group of the polyisocyanate compound (A) is any of xylylene diisocyanate group, tolylene diisocyanate group, or diphenylmethane diisocyanate group.
  5. 前記多価カルボン酸成分(B1)全量に対してオルト配向性芳香族ジカルボン酸又はその酸無水物の少なくとも1種を70~100モル%含有する請求項1~4の何れかに記載の蒸着フィルム用コーティング剤。 The vapor deposition film according to any one of claims 1 to 4, which contains 70 to 100 mol% of at least one ortho-orientation aromatic dicarboxylic acid or an acid anhydride thereof with respect to the total amount of the polyvalent carboxylic acid component (B1). Coating agent.
  6. 前記ポリエステル(B)の数平均分子量が1000~30000の範囲である、請求項1~5のいずれかに記載の蒸着フィルム用コーティング剤。 The coating agent for a deposited film according to any one of claims 1 to 5, wherein the number average molecular weight of the polyester (B) is in the range of 1,000 to 30,000.
  7. 請求項1~6の何れかに記載のコーティング剤を蒸着フィルムにコーティングした、ガスバリア性フィルム。 A gas barrier film obtained by coating a vapor deposition film with the coating agent according to any one of claims 1 to 6.
  8. 蒸着フィルムがアルミニウム蒸着フィルムである、請求項7に記載のガスバリア性フィルム。 The gas barrier film according to claim 7, wherein the vapor deposition film is an aluminum vapor deposition film.
  9. 請求項7又は8の何れかに記載のガスバリア性フィルムを用いた包装材。 A packaging material using the gas barrier film according to any one of claims 7 and 8.
PCT/JP2018/044880 2017-12-20 2018-12-06 Coating agent for vapor deposition films, gas barrier film and packaging material WO2019124089A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019519343A JP6551769B1 (en) 2017-12-20 2018-12-06 Coating agent for vapor deposition film, gas barrier film, and packaging material
CN201880079820.0A CN111465664B (en) 2017-12-20 2018-12-06 Coating agent for vapor deposition film, gas barrier film, and packaging material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-243866 2017-12-20
JP2017243866 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019124089A1 true WO2019124089A1 (en) 2019-06-27

Family

ID=66994590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044880 WO2019124089A1 (en) 2017-12-20 2018-12-06 Coating agent for vapor deposition films, gas barrier film and packaging material

Country Status (3)

Country Link
JP (1) JP6551769B1 (en)
CN (1) CN111465664B (en)
WO (1) WO2019124089A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112687A1 (en) * 2021-12-16 2023-06-22 Dic株式会社 Two-pack curable coating agent, layered body, and packaging material
WO2023181365A1 (en) * 2022-03-25 2023-09-28 株式会社麗光 Metal vapor deposited film
JP7472552B2 (en) 2020-03-06 2024-04-23 artience株式会社 Overcoat and print materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090900A1 (en) * 2010-12-28 2012-07-05 東洋製罐株式会社 Two-part curable oxygen-absorbable resin composition, and oxygen-absorbable adhesive agent
JP2013129735A (en) * 2011-12-21 2013-07-04 Dic Corp Gas barrier coating agent, and film using the same
JP2016011324A (en) * 2014-06-27 2016-01-21 Dic株式会社 Polyester resin composition for barrier material and barrier film
WO2017069143A1 (en) * 2015-10-20 2017-04-27 凸版印刷株式会社 Coating solution and gas barrier laminate
WO2017103992A1 (en) * 2015-12-15 2017-06-22 Dic株式会社 Polyester resin composition for barrier material, and barrier film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171419A (en) * 2001-12-04 2003-06-20 Rengo Co Ltd Gas barrier resin composition and gas barrier film formed from the same
JP4867574B2 (en) * 2006-07-13 2012-02-01 三菱瓦斯化学株式会社 Gas barrier film and method for producing the same
KR101563950B1 (en) * 2008-10-01 2015-10-28 도레이 카부시키가이샤 Gas barrier film
US9200179B2 (en) * 2009-03-27 2015-12-01 Mitsui Chemicals, Inc. Polyurethane dispersion and method for producing the same
JPWO2014103994A1 (en) * 2012-12-26 2017-01-12 Dic株式会社 Polyester resin composition, adhesive, and film
JP5765510B1 (en) * 2013-11-27 2015-08-19 Dic株式会社 Resin composition for gas barrier adhesive and adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090900A1 (en) * 2010-12-28 2012-07-05 東洋製罐株式会社 Two-part curable oxygen-absorbable resin composition, and oxygen-absorbable adhesive agent
JP2013129735A (en) * 2011-12-21 2013-07-04 Dic Corp Gas barrier coating agent, and film using the same
JP2016011324A (en) * 2014-06-27 2016-01-21 Dic株式会社 Polyester resin composition for barrier material and barrier film
WO2017069143A1 (en) * 2015-10-20 2017-04-27 凸版印刷株式会社 Coating solution and gas barrier laminate
WO2017103992A1 (en) * 2015-12-15 2017-06-22 Dic株式会社 Polyester resin composition for barrier material, and barrier film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472552B2 (en) 2020-03-06 2024-04-23 artience株式会社 Overcoat and print materials
WO2023112687A1 (en) * 2021-12-16 2023-06-22 Dic株式会社 Two-pack curable coating agent, layered body, and packaging material
JP7375994B1 (en) 2021-12-16 2023-11-08 Dic株式会社 Two-component curing coating agents, laminates, packaging materials
WO2023181365A1 (en) * 2022-03-25 2023-09-28 株式会社麗光 Metal vapor deposited film
JP7428455B1 (en) 2022-03-25 2024-02-06 株式会社麗光 metallized film

Also Published As

Publication number Publication date
JP6551769B1 (en) 2019-07-31
CN111465664A (en) 2020-07-28
CN111465664B (en) 2022-01-07
JPWO2019124089A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP5440892B2 (en) Resin composition for adhesive containing plate-like inorganic compound, and adhesive
JP6191904B1 (en) Gas barrier adhesive, film, and gas barrier film
JP6002966B2 (en) Phosphate-modified compound-containing resin composition for adhesive and adhesive
WO2015079924A1 (en) Resin composition for gas barrier adhesive, and adhesive
JP2017110142A (en) Polyester polyol, coating material, and packaging material
JP5821826B2 (en) adhesive
JP5831778B2 (en) Water vapor barrier resin composition, adhesive, and coating agent
JP6701606B2 (en) Coating material and gas barrier film
JP6551769B1 (en) Coating agent for vapor deposition film, gas barrier film, and packaging material
JP5273219B2 (en) Oxygen barrier adhesive resin composition and adhesive
JP6507753B2 (en) Adhesive for laminating, and laminate using the same
JP2016006140A (en) Coating material for protection of vapor deposition surface, and gas barrier film
JP2017101202A (en) Coating material for protecting vapor deposition surface and gas barrier film
JP2013234220A (en) Method of manufacturing resin dispersion, adhesive, and coating agent
JP2014084333A (en) Adhesive composition for dry laminate
JP6686374B2 (en) Adhesive resin composition, vapor deposition film, and gas barrier film
JP5543408B2 (en) Gas barrier polyester resin composition and gas barrier film
JP6573146B2 (en) Resin composition for gas barrier adhesive, adhesive, and laminate
JP6691661B2 (en) Laminates and packaging materials
TWI577754B (en) Deposited surface protective coating material, and the gas barrier film
WO2018105440A1 (en) Resin composition for gas-barrier adhesive, adhesive, and laminate
JP6176513B1 (en) Deposition surface protection coating material and gas barrier film
JP2016047870A (en) Coating material for protecting vapor deposition surface and gas barrier film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019519343

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892107

Country of ref document: EP

Kind code of ref document: A1