WO2019124073A1 - Recharging tube, raw material feeding device, single crystal pulling up device, usage of recharging tube, recharging method, and single crystal pulling up method - Google Patents

Recharging tube, raw material feeding device, single crystal pulling up device, usage of recharging tube, recharging method, and single crystal pulling up method Download PDF

Info

Publication number
WO2019124073A1
WO2019124073A1 PCT/JP2018/044699 JP2018044699W WO2019124073A1 WO 2019124073 A1 WO2019124073 A1 WO 2019124073A1 JP 2018044699 W JP2018044699 W JP 2018044699W WO 2019124073 A1 WO2019124073 A1 WO 2019124073A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
recharge
raw material
divided
tube
Prior art date
Application number
PCT/JP2018/044699
Other languages
French (fr)
Japanese (ja)
Inventor
飯田 哲広
信明 溝上
孝 岩本
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN201880081647.8A priority Critical patent/CN111465723B/en
Publication of WO2019124073A1 publication Critical patent/WO2019124073A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a charge method and a single crystal pulling method, and in particular, a technique suitable for adding or recharging solid materials in single crystal pulling by CZ method.
  • a technique suitable for adding or recharging solid materials in single crystal pulling by CZ method is claimed on Japanese Patent Application No. 2017-244437, filed Dec. 20, 2017, the content of which is incorporated herein by reference.
  • polycrystalline silicon of various shapes such as rod shape, massive, or granular is used, and each is supplied singly or as a composite to melt a silicon single crystal. It becomes the raw material of the liquid.
  • additional charge a technology for increasing the amount of raw material melt in the crucible by melting the solid raw material initially charged in the crucible and then additionally charging the solid raw material to the formed raw material melt. It is. By applying this "additional charge”, the volume of the crucible to be used can be effectively utilized, and the productivity in silicon single crystal growth can be improved.
  • a technique of supplying a solid material called "recharge” is also performed. Specifically, after growing and pulling up the first single crystal, a solid raw material of an amount corresponding to the decrease due to pulling up of the raw material melt is additionally charged to the residual melt in the crucible.
  • the raw material supply by “additional charge” and “recharge” is performed by using a raw material supply apparatus having a recharge pipe inserted from the pull chamber above the crucible into the pulling furnace, and solidifying the granular solid raw material into the raw material melt in the crucible It is known how to add to.
  • the recharge tube is made of a softer material than polycrystalline silicon as an additional material, such as quartz, to prevent contamination. For this reason, if the length of the recharge pipe is increased, the falling lump of raw material silicon hits when charging the raw material into the recharge pipe, and the inner surface of the recharge pipe is damaged and worn away, and minute pieces such as quartz generated at this time Is mixed into the molten material, causing dislocations. If the length of the recharge tube is increased, the material to be charged into the recharge tube may fall at a falling distance when the material is loaded, so that there is a problem that the dislocationization due to the small pieces such as quartz due to wear is further increased. .
  • the use of the recharge pipe has been limited a predetermined number of times.
  • the length of the recharge pipe is increased, the material to be charged into the recharge pipe is dropped at the time of filling the material, and the falling distance of the material to be charged is increased. There was a problem that time and the number of times of use could be extremely reduced.
  • the amount of deformation increases, and the life of the final recharge tube (usable time until discarding / usable number of times) decreases.
  • the amount of heating in the repair process increases, and the amount of deformation also increases, and the life of the final recharge pipe (usable time until discarding, usable number of times) Will decrease.
  • the recharge pipe cleans the inner surface each time after the completion of the recharge, this work efficiency is significantly reduced if the length of the recharge pipe is increased. Or, there was a possibility that the cleaning was insufficient, resulting in the formation of dislocations or the deterioration of the crystal properties.
  • the present invention has been made in view of the above circumstances, and aims to achieve the following objects. 1. To simultaneously realize an increase in the amount of charge in the recharge pipe and a reduction in the life of the recharge pipe. 2. At the same time, reduce the occurrence of dislocations. 3. At the same time, to prevent the deterioration of the work required to recharge. 4. Also, prevent the deterioration of crystal quality.
  • the recharge pipe of the present invention is a cylindrical recharge pipe in a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible.
  • a plurality of divided tubes which are divided in the axial direction when filling the solid material;
  • the upper end inner diameter of the divided pipe may be set equal to the lower end inner diameter or larger than the lower end inner diameter.
  • the connecting portion may be provided with a flange portion extending outward in the radial direction, and a fastening portion for fastening the flange portion may be provided.
  • the lower end of the divided pipe which is the upper position, can be fitted to the upper end of the divided pipe, which is the lower position at the time of connection.
  • the connection portion may be connected by abutting the upper end surface and the lower end surface of the divided pipe.
  • a buffer member may be provided on the surface where the upper divided pipe and the lower divided pipe are in contact with each other in the connection portion.
  • the inner diameter of the buffer member may be set equal to the inner diameter of the lower end of the divided pipe at the upper position, or larger than the inner diameter of the lower end of the divided pipe at the upper position.
  • the divided pipe may be made of quartz, and the buffer member may be made of a material having flexibility and containing carbon.
  • the raw material supply apparatus is a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible, Any of the above-mentioned recharge tubes, A conical bottom lid removably attached to the lower open end of the recharge tube; A lifting means for suspending the recharging pipe and the bottom cover so as to be able to move up and down and opening the lower opening end of the recharging pipe so that the solid raw material can be charged into the raw material melt in the crucible; Can be equipped.
  • the single crystal pulling apparatus of the present invention is a single crystal pulling apparatus for growing a single crystal from a raw material melt by the Czochralski method,
  • the above-mentioned raw material supply device A furnace body provided with the crucible inside; And a heat shield for shielding radiant heat to the single crystal grown from the raw material melt at the upper position of the crucible inside the furnace body as a cylindrical shape having a diameter-reduced diameter at the lower end.
  • the recharge tube is inserted from above into the inside of the heat shield, and the lower end of the recharge tube is positioned above the lower end of the heat shield, and in this state the inside of the crucible
  • the solid material can be charged into the raw material melt.
  • the connecting portion when the solid raw material is charged into the raw material melt in the crucible, the connecting portion can be set at a position higher than the lower end position of the heat shield.
  • the divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion It can have an inclined support that supports as it can be connected to.
  • the method of using the recharge tube of the present invention is It is a usage method of the recharge pipe as described in any of the above, By filling the solid material, only the divided pipe whose inner surface is damaged can be replaced to a predetermined state.
  • the divided tube may be replaced when the filling of the solid raw material causes a flaw of the inner surface to have a permeability of less than 70% as compared with the condition without flaws. it can.
  • the inner surface of the split tube which has been damaged and replaced can be heated and regenerated.
  • the method of using the recharge pipe according to the present invention can prevent reuse when the deformation of the divided pipe regenerated by heating exceeds a predetermined amount.
  • the recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
  • the divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion
  • the solid material can be further charged in connection with
  • the recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
  • the inclined support supports the divided pipe mounted with the bottom lid at the lower end by the inclined support, and the divided pipe erected along with the filling of the solid material is erected in the vertical direction side, and the connection portion
  • the divided pipe can be connected to the upper side to further charge the solid material.
  • the recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible, After additionally charging or recharging the raw material melt in the crucible,
  • the inclined support supports the plurality of connected divided tubes and can be inclined to separate the divided tubes by the connecting portion.
  • the raw material melt in the crucible is additionally charged or recharged by the above-described recharge method.
  • a single crystal can be grown from the raw material melt.
  • the recharge pipe of the present invention is a cylindrical recharge pipe in a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible.
  • a plurality of divided tubes which are divided in the axial direction when filling the solid material;
  • a connecting portion connecting the divided tubes up and down when the solid material is introduced into the crucible; Have.
  • the recharge pipe can be divided in the axial direction to fill the divided pipe with a short axial dimension.
  • the replacement time of the upper position can be made longer than the replacement time of the divided pipe at the lower position.
  • the recharge pipe divided into three parts only the lower position is exchanged in a short cycle, and the divided pipes in the upper and middle positions are exchanged at the connection position, and the exchange timings are made approximately the same. It becomes possible to set and the like.
  • the pipe length is short, so it has high handling properties, and it is possible to reduce the burden on workers and shorten the working time. At the same time, it is possible to reduce the deterioration rate of the inner surface state caused by the falling of the forming material. For this reason, the life itself to the regeneration process of the recharge tube can be increased to increase the usable number of recharges. In addition, it is possible to reduce the number of times of the regeneration process and to increase the life due to the deformation in the regeneration process.
  • the term “recharge” means to additionally charge or recharge the raw material melt in the crucible.
  • the inner diameter of the upper end of the split pipe at the lower position when connected is equal to the inner diameter of the lower end of the split pipe at the upper position, or the lower end of the split pipe at the upper position It is set larger than the inner diameter of.
  • the upper end inner diameter of the divided pipe is set equal to the lower end inner diameter or larger than the lower end inner diameter.
  • the inner diameter of the divided pipe is reduced from the upper end toward the lower end, or in the cylindrical divided pipe, the inner diameter is reduced toward the lower end only near the lower end. be able to.
  • the connecting portion is provided with a flange portion extending radially outward, and a fastening portion for fastening the flange portion is provided.
  • the upper and lower divided tubes are arranged so that the axial directions coincide with each other, and the flange located near the upper end of the divided tube at the lower position and the flange located near the lower end of the divided tube at the upper position Let the parts face each other. And it becomes possible to connect easily by fastening these flange parts in a parallel state from the up-and-down direction or from the radial outside by fastening parts.
  • the lower end of the divided pipe which is the upper position
  • the upper end of the divided pipe which is the lower position
  • the lower end of the divided pipe, which is the upper position is inserted into the upper end of the divided pipe, which is the lower position at the time of connection, and it is possible to easily connect only by fitting them.
  • connection portion is connected by butting the upper end face and the lower end face of the divided pipe.
  • the upper end surface and the lower end surface of the divided pipe come into contact with each other, and it becomes possible to seal the vicinity of the connection portion of the connected divided pipe.
  • the upper end outer peripheral surface and the lower end inner peripheral surface are in contact with each other to seal the vicinity of the connecting portion of the divided pipe. Is also possible.
  • a buffer member is provided on the surface where the upper divided pipe and the lower divided pipe are in contact with each other in the connection portion.
  • the inner diameter of the buffer member is set equal to the inner diameter of the lower end of the divided pipe at the upper position, or larger than the inner diameter of the lower end of the divided pipe at the upper position.
  • the divided pipe is made of quartz
  • the buffer member is made of a material having flexibility and containing carbon.
  • the raw material supply apparatus is a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible, Any of the above-mentioned recharge tubes, A conical bottom lid removably attached to the lower open end of the recharge tube; A lifting means for suspending the recharging pipe and the bottom cover so as to be able to move up and down and opening the lower opening end of the recharging pipe so that the solid raw material can be charged into the raw material melt in the crucible; Equipped with As a result, in the recharge pipe capable of increasing the amount of recharging, the occurrence of damage due to solid raw material contact is reduced, the occurrence of dislocation is reduced, the number of usable recharge pipes is increased, and the replacement time of each divided pipe is controlled. It is possible to improve work efficiency.
  • the axial length of the split tube can be shortened.
  • the distance to which the solid material to be filled falls is also shortened with respect to the bottom lid and the pulling means located inside the recharge pipe.
  • the single crystal pulling apparatus of the present invention is a single crystal pulling apparatus for growing a single crystal from a raw material melt by the Czochralski method,
  • the above-mentioned raw material supply device A furnace body provided with the crucible inside; And a heat shield for shielding radiant heat to the single crystal grown from the raw material melt at the upper position of the crucible inside the furnace body as a cylindrical shape having a diameter-reduced diameter at the lower end.
  • the recharge tube is inserted from above into the inside of the heat shield, and the lower end of the recharge tube is positioned above the lower end of the heat shield, and in this state the inside of the crucible The solid material is charged into the raw material melt.
  • the recharge pipe which can increase the recharge amount, the occurrence of damage due to contact with the solid material is reduced.
  • the generation of impurities due to the bottom lid and pulling means is reduced, the occurrence of dislocations is reduced, the deterioration of the crystal characteristics of the single crystal to be pulled up is prevented, and the number of usable recharge tubes is increased. It becomes possible to control the replacement time and improve the work efficiency.
  • the connecting portion when the solid raw material is charged into the raw material melt in the crucible, the connecting portion is set at a position higher than the lower end position of the heat shield.
  • fever of the raw material melt solution with respect to the fastening part and buffer member in a connection part or a heater can be reduced.
  • solid material can be filled in the connected divided pipe.
  • the inclination angle of the divided pipe can be changed between the inclined state and the erected state regardless of the connected state of the divided pipe, so that the workability of the filling operation can be improved.
  • the method of using the recharge tube of the present invention is It is a usage method of the recharge pipe as described in any of the above, Only the divided pipe whose inner surface is damaged to a predetermined state is replaced by the filling of the solid material. As a result, it is possible to selectively replace only the divided pipe which is largely deteriorated in the inner surface state due to the falling of the solid material. As a result, the life of the recharge tube is extended by changing the replacement time of each divided tube according to the progress degree of the inner surface degradation state, and the increase in the recharge amount, the reduction of occurrence of dislocation and the prevention of the crystal quality deterioration It is possible to simultaneously achieve cost reduction.
  • the replacement time of the divided pipe at the lower position where the solid material may contact more even when the divided pipe at the upper position is filled the replacement time of the divided pipe at the upper position It can be made shorter and the split tube at the lower position can be replaced quickly.
  • the recharge tube divided into three and having the same shape prepare a split tube more than the number required for the initial recharge amount in the connected state, and the lower position where the pain gets worse first and the replacement state takes place Only the split tubes of can be replaced in a short cycle.
  • the frequency of replacement of the middle divided pipe can be reduced compared to the lower divided pipe.
  • the frequency of replacement of the divided pipe at the upper position can be reduced compared to the divided pipe at the middle position.
  • the divided tube is replaced when there is a portion with a transmittance of less than 70% due to the scratch of the inner surface caused by the filling of the solid material compared to the condition without the scratch. .
  • the portion where the transmittance is less than 70% the portion having the largest area can be a region of about 10 cm square.
  • three to four regions each having a size of about 5 cm square can be formed in a portion where the transmittance is less than 70%.
  • the method of using the recharge tube of the present invention heats and regenerates the inner surface of the split tube which has been damaged and replaced. Thereby, the replaced divided pipe can be made reusable. As a result, it is possible to reuse the divided pipe in a state of maintaining strength and preventing dislocation in a non-scratched state to extend the life and achieve cost reduction.
  • the method of using the recharge pipe according to the present invention does not reuse when the deformation of the divided pipe regenerated by heating exceeds a predetermined amount. In this way, it is possible to secure the safety in the recharge by using only the divided pipe which can maintain the sealing at the connection portion.
  • the recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
  • the divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion And the solid material is further charged.
  • the recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
  • the inclined support supports the divided pipe mounted with the bottom lid at the lower end by the inclined support, and the divided pipe erected along with the filling of the solid material is erected in the vertical direction side, and the connection portion
  • the dividing pipe is connected to the upper side to further charge the solid material.
  • the inclination angle is controlled between the inclined state and the erected state in the vertical direction, and the solid raw material can be charged into the recharging pipe, thereby improving the work efficiency and the safety in the raw material filling step. And improve the crystal quality.
  • the recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible, After additionally charging or recharging the raw material melt in the crucible,
  • the inclined support supports the connected plurality of divided pipes, and the divided pipes are separated by the connection portion by being inclined. As a result, it is possible to improve the work efficiency to the next recharging step after the recharging step, and to reduce the manufacturing cost of the single crystal.
  • the raw material melt in the crucible is additionally charged or recharged by the above-described recharge method.
  • a single crystal is grown from the raw material melt.
  • the increase of the filling amount in the recharge tube and the prevention of the life decrease of the recharge tube are realized simultaneously, and at the same time, the occurrence of dislocation is reduced, the workability for the recharge is prevented, and the crystal quality is reduced. It is possible to achieve the effect that the drop can be prevented.
  • FIG. 1 It is an exploded perspective view showing a 3rd embodiment of a recharge pipe concerning the present invention.
  • S1 Solid raw material
  • S2 Raw material melt 1: Main chamber 2: Pull chamber 2a: Drive mechanism (pulling up means) 3 Crucible 4 Support shaft 4A Susceptor 5 Heater 6 Insulation material 7 Pull-up shaft (pull-up means) 8 ... Suspension jig (lifting means) 9 Upper flange portion 9a Metal flange 10 Recharge pipe 10A Lower divided pipe (divided pipe) 10Aa ... upper end 10Ab ... lower end 10B ... upper divided pipe (divided pipe) 10Ba: upper end portion 10Bb: lower end portion 10C: upper additional split pipe (split pipe) 10D ... inside split tube (split tube) 11 ... connection part 11a, 11b, 1m, 11n ...
  • FIG. 1 is a front sectional view showing a recharge pipe in the present embodiment.
  • FIG. 2 is an exploded perspective view showing the recharge pipe in the present embodiment.
  • FIG. 3 is an enlarged cross-sectional view showing a connection portion in the recharge pipe in the present embodiment.
  • reference numeral 10 is a recharge pipe.
  • the recharge tube 10 according to the present embodiment constitutes a raw material supply device that recharges a single crystal pulling apparatus according to the CZ method (Czochralski method). As shown in FIGS. 1 to 3, the recharge tube 10 according to the present embodiment has a cylindrical shape made of quartz, and the solid raw material is charged therein.
  • the recharge pipe 10 is divided into two in the vertical direction, which is the axial direction in the present embodiment, and the lower divided pipe (divided pipe) 10A and the upper divided pipe (divided pipe) 10B It consists of
  • the lower divided pipe 10A and the upper divided pipe 10B are set to have substantially the same inner diameter, and the upper end of the lower divided pipe 10A and the lower end of the upper divided pipe 10B can be connected by the connecting portion 11.
  • connection portion 11 As the connection portion 11, as shown in FIGS. 2 to 3, a flange portion 11a at the upper end of the lower divided pipe 10A and a flange portion 11b at the lower end of the upper divided pipe 10B are provided.
  • the connecting portion 11 is provided with a plurality of connecting holes 11c and 11c circumferentially separated from each other in the flange portion 11a and the flange portion 11b, and bolts and nuts 11d and 11d as fastening portions for fastening these.
  • the buffer member 11e pinched by the flange part 11a and the flange part 11b is provided.
  • connection holes 11c are arranged at substantially equal intervals in the circumferential direction in the flange portion 11a and the flange portion 11b.
  • six connection holes 11 c are provided, but the number is not limited to this number.
  • the bolts and nuts 11d and 11d are made of metal that is resistant to high temperatures in the single crystal pulling apparatus, and further, to prevent release of minute objects and the like that cause dislocation or the like.
  • it is a set of a bolt and a nut subjected to surface treatment and the like.
  • it can be made of SUS (stainless steel) or the like when heat resistance is not required so much, or molybdenum or the like when high temperature resistance is required.
  • the nut 11 d is a double nut.
  • a metal member 11f is provided between the bolt / nut 11d and the connection hole 11c on the lower surface of the flange portion 11a and the upper surface of the flange portion 11b, and the flange portion 11a, the flange portion 11b, and the bolt Direct contact with the nut 11 d is prevented.
  • the buffer member 11 e contacts the upper surface of the flange portion 11 a and the lower surface of the flange portion 11 b as shown in FIGS. 1 and 3.
  • the buffer member 11 e is in the form of a thin, flexible ring. This is to prevent direct contact between the upper surface of the flange portion 11a fastened by the bolt and nut 11d and the lower surface of the flange portion 11b, and to absorb deformation between them.
  • the buffer member 11 e can be made of a heat-resistant resin that is resistant to high temperatures in the single crystal pulling apparatus.
  • the buffer member 11 e may include or consist of flexible carbon.
  • a fluorine resin such as Teflon (registered trademark), a carbon fiber non-woven fabric, or the like is applied.
  • the outer diameter of the buffer member 11e is not particularly limited, but the inner diameter is larger than the inner diameter of the lower end of the upper divided pipe 10B. In other words, when viewed from the upper side, it is set so as not to protrude inside the recharge pipe 10 more than the lower end of the upper divided pipe 10B. Further, the thickness dimension of the buffer member 11e is not particularly limited as long as it can follow the deformation of the lower divided pipe 10A and the upper divided pipe 10B at the time of fastening by the fastening portion and the sealing of these connecting portions 11 can be maintained. .
  • the buffer member 11e may not be provided.
  • the upper flange portion 9 is set such that its outer dimensions are larger than the outer diameters of the flange portions 11a and 11b. It is done.
  • FIG. 4 is an enlarged front sectional view showing the lower end side of the recharge pipe in the present embodiment.
  • FIG. 5 is a plan sectional view showing the lower end side of the recharge pipe in the present embodiment.
  • the lower end of the lower divided pipe 10A has a conical bottom lid 14 detachably attached to the recharge pipe.
  • the bottom cover 14 is connected to a metal shaft (pulling up means) 15 penetrating the inside of the recharge pipe 10 from the top.
  • the metal shaft 15 penetrates the recharge pipe 10 and is protected by a protective pipe (pulling-up means) 16 in order to prevent direct contact with the solid raw material inside.
  • the protective tube 16 is composed of a coated protective tube 16b directly covering the metal shaft 15, and a sliding protective tube 16a in which the coated protective tube 16b is slidably inserted.
  • the protective tube 16 prevents the metal shaft 15 from coming into direct contact with the solid raw material, and ensures a stable operating state without causing the metal shaft 15 to shift.
  • the sliding protection tube 16a is fixed to the recharge tube 10 by a fixing plate portion 16c, as shown in FIGS.
  • the sliding protective tube 16a is vertically disposed.
  • the sliding protective tube 16 a is disposed at an axial center position of the recharge tube 10.
  • the fixed plate portion 16c is a plate.
  • the fixed plate portion 16c is disposed in the vertical direction, which is the axial direction of the recharge tube 10 and the sliding protection tube 16a.
  • the fixed plate portion 16 c extends from the inner surface of the recharge tube 10 to the recharge tube 10 in the radial direction of the recharge tube 10.
  • the fixed plate portion 16c is connected by the lower divided pipe 10A and the upper divided pipe 10B, and the metal shaft 15 is in the axial direction with respect to the coated protective pipe 16b and the sliding protective pipe 16a which are separated in the vicinity of the connecting portion 11. It penetrates in a continuous state.
  • the metal shaft 15 passing through the recharging pipe 10 is not only prevented from being contaminated with the solid raw material by the covering protection pipe 16b directly covering the same, but also by the action of the sliding protection pipe 16a. It does not shift from the center position.
  • the fixed plate portion 16c is located in the radial direction of the recharge pipe 10, when the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11, they should be arranged to be substantially flush. Good. Thereby, the metal shaft 15 can vertically suspend the recharge tube 10 at the center position of the crucible, and can uniformly supply the solid material into the melt in the crucible.
  • FIG. 6 is an enlarged front view showing the upper end side of the state where the descent of the recharge pipe in the present embodiment is stopped.
  • FIG. 7 is an enlarged front view showing the upper end side of a state in which the metal shaft is further lowered on the upper end side of the recharge pipe in the present embodiment to open the bottom lid.
  • FIG. 8 is a plan view showing a metal upper member used on the upper end side of the recharge pipe in the present embodiment.
  • lifting and lowering means is also provided to the recharge pipe 10 in synchronization with the lifting and lowering of the metal shaft 15.
  • the conical bottom lid 14 is inserted into the lower opening end to lift the recharging pipe 10 in synchronization with the lifting timing by the lifting means (pulling up means) provided on the recharging pipe 10 ing.
  • a metal (stainless steel or the like) washer 19 is provided on the metal shaft 15 as a lifting and lowering means (lifting means) of the recharge pipe 10.
  • the sliding protection pipe 16a is disposed at the center position of the recharge pipe 10, and the metal shaft is moved up and down in the inside thereof.
  • a metal washer 19 is attached to a predetermined height position of the metal shaft 15. Furthermore, as the lifting means by the metal washer 19, a dedicated hanger 18 equipped to suspend the recharging tube 10 uniformly is used.
  • Elevation timing by adjusting the fixing position of the metal washer 19 so that the timing to lift the recharge tube 10 by inserting the conical bottom lid 14 into the lower opening end and the timing to lift the recharge tube 10 coincide with each other. Can be synchronized. Thereby, according to the raising and lowering of the metal shaft 15, the raising and lowering of the recharge pipe 10 can be further stabilized.
  • the metal upper member 20 is made of the same material as the bolt and nut 11 d and is attached to the upper portion of the recharge pipe 10.
  • a metal flange 9a can be provided as a hooking member.
  • the metal flange 9a is provided with a through hole 20a at a predetermined position in the circumferential direction of the metal upper member 20 described above, and is fixed to the metal upper member 20 of the recharge pipe 10 by tightening the long screw 21 with nuts. Structure. In this case, the height adjustment of the metal flange 9 a is performed by the tightening length of the long screw 21 so as to adjust the lowering stop height of the recharge pipe 10.
  • FIG. 9 is a process chart showing a method of filling the recharge pipe in the present embodiment.
  • FIG. 10 is a process chart showing a method of filling the recharge pipe in the present embodiment.
  • FIG. 11 is a process diagram showing a filling method in the conventional recharging tube.
  • FIG. 12 is a flowchart showing the recharging method in the present embodiment.
  • the recharging method includes, as shown in FIG. 12, a recharging amount setting step S01, a coupling length setting step S02, a cleaning step S03, a lowermost divided pipe setting step S04, an inclination step S05, and a raw material.
  • the amount of solid raw material S1 to be additionally charged or recharged to the crucible is set as a recharging amount setting step S01 shown in FIG. Then, as the coupling length setting step S02 shown in FIG. 12, the number of couplings of the divided pipes in the recharge pipe 10 is determined so as to have a volume capable of charging the solid raw material S1 of the amount set in the recharge amount setting step S01.
  • the length (the number of connected pipes) of the divided pipe is set.
  • the recharge pipe 10 since the recharge pipe 10 is divided into two parts, the lower divided pipe 10A and the upper divided pipe 10B, it is set whether to connect the upper divided pipe 10B.
  • the lower divided pipe 10A is not connected to the upper divided pipe 10B as the lowermost divided pipe setting step S04 shown in FIG. Prepare in a separated state. Then, the bottom lid 14 is inserted into the lower open end of the lower divided pipe 10A to be in a closed state, and the lower end of the metal shaft 15 penetrating the protective tube 16 is attached to the bottom lid 14 in a filling ready state.
  • the upper divided pipe 10B is set at the upper position of the lower divided pipe 10A in the divided pipe setting step S08 shown in FIG. Then, in the connecting step S09 shown in FIG. 12, the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11. At this time, also in the upper divided pipe 10B, the metal shaft 15 is made to penetrate the protective pipe 16.
  • the solid raw material S1 is filled in the upper divided pipe 10B following the lower divided pipe 10A.
  • the input solid raw material S1 falls and hits the inner wall surface of the upper divided pipe 10B, but the inner wall surface of the lower divided pipe 10A There is no impact from falling. Therefore, compared with the conventional non-divided recharge tube 100 shown in FIG. 11, since the falling distance of the solid raw material S1 is short, damage to the inner wall surface of the upper divided tube 10B can be reduced.
  • FIG. 13 is a cross-sectional view showing the entire configuration of a single crystal pulling apparatus in which the raw material supply apparatus of the present embodiment is disposed.
  • FIG. 14 shows a state in which the solid raw material is being charged into the raw material solution in the crucible.
  • the single crystal pulling apparatus in this embodiment is a furnace body for pulling a single crystal by the CZ method, and as shown in FIGS. 13 and 14, it comprises a main chamber 1 and a pull chamber 2 as a furnace main body, and further a gate valve 13 Have.
  • the pull chamber 2 has a cylindrical shape smaller in diameter than the main chamber 1, and is disposed on the same central axis as the main chamber 1 at the top via the gate valve 13.
  • the gate valve 13 is provided to operate the interior of the main chamber 1 and the interior of the pull chamber 2 so as to be able to communicate or shut off, and the diameter of communication provided in the gate valve 13 is smaller than that of the pull chamber 2.
  • a crucible 3 is disposed at the center of the main chamber 1.
  • the crucible 3 has a double structure in which an inner quartz crucible 3a and an outer graphite crucible 3b are combined, and is supported via a susceptor 4A on a support shaft 4 called pedestal.
  • the support shaft 4 drives the crucible 3 so as to be vertically movable in the axial direction and rotatable in the circumferential direction.
  • the heater 5 is disposed to surround the crucible 3. Further outside the heater 5, a heat insulating material 6 is disposed along the inner surface of the main chamber 1. On the upper side of the crucible 3, a heat shield 12 is provided around the heater 5 and the heat of the molten raw material melt S2 in the crucible 3.
  • the heat shield 12 is cylindrical or in the shape of an inverted truncated cone or the like, and the lower end thereof is located near the upper side of the raw material melt S2.
  • the solid raw material introduced into the crucible 3 as an initial charge is melted by the heating of the heater 5 to form a raw material melt S2.
  • an additional charge is performed to replenish the shortage of the material melt S2 in the crucible 3 and secure a desired amount of melt.
  • the pull-up shaft 7 is suspended in the pull chamber 2, and the recharge pipe 10 used for the raw material supply device of the present embodiment is suspended.
  • the recharge tube 10 filled with the solid raw material S1 is positioned above the crucible 3 in which the raw material melt S2 is formed via the suspension jig 8 connected to the lower end of the pulling shaft 7.
  • the pull-up shaft 7 is rotationally driven and vertically driven by a drive mechanism 2 a provided at the top of the pull chamber 2.
  • the pulling up shaft 7, the hanging jig 8, the drive mechanism 2a, the metal flange 9a, etc. constitute a pulling up means.
  • the solid material S1 is recharged using a material feeding device provided with the recharge pipe 10.
  • Recharge is performed after melting of the solid material initially charged in the crucible 3 is finished, as shown in FIG.
  • the recharge pipe 10 filled with the solid raw material S1 is placed above the crucible 3 on which the raw material melt S2 is formed via the suspension jig 8 connected to the lower end of the pulling shaft 7.
  • Position on The raw material melt S2 in the crucible 3 is in an insufficient state with respect to the crucible volume because the solid raw material initially charged in the crucible 3 is limited as compared to the volume of the crucible.
  • the melting pipe 10 is lowered to such an extent that melting of the initially charged solid material in the crucible 3 is almost completed and the unmelted solid material is in a floating island state.
  • the metal flange 9 a abuts on a predetermined height position, for example, a small diameter portion provided on the gate valve 13, and the descent only of the recharge pipe 10 is stopped.
  • the length of the lower divided pipe 10A is set such that the connecting portion 11 is positioned above the lower end position of the heat shield 12.
  • the connecting portion 11 is shielded from the heat radiated from the raw material melt S2 or the heat radiated from the heater 5. Therefore, the temperature of the connecting portion 11 does not rise to the same extent as the raw material melt S2.
  • the metal shaft 15 penetrating the recharge pipe 10 directly covers the sliding protection pipe 16 a fixed on the inner surface of the recharge pipe 10 and the metal shaft 15 for sliding protection. It is protected by the covering protection tube 16b inserted in the tube 16a. For this reason, it is possible to prevent the contamination of the solid raw material S1 and at the same time eliminate the deviation from the central axis of the metal shaft 15, and uniformly supply the solid raw material S1 into the crucible 3 in the circumferential direction.
  • the recharge pipe 10 When charging of the solid raw material S1 is completed, the recharge pipe 10 is pulled up and taken out of the pull chamber 2.
  • the charging of the solid raw material S1 can also be repeated using the recharge pipe 10 again.
  • the recharging amount is set in the recharging amount setting step S01, a sufficient amount of solid raw material S1 can be input. For this reason, it is not necessary to repeat injection
  • the suspension jig 8 connected to the lower end of the pulling shaft 7 is replaced with a seed crystal, and the process proceeds to a single crystal growth process. .
  • the solid raw material S1 of an amount commensurate with the reduction of the raw material melt is grown in the crucible 3 after growing the first single crystal by the same work procedure also in the recharge.
  • the raw material melt S2 remaining in the Recharge means as described above, an additional charge which is carried out after introducing the initial raw material into the crucible 3 and melting, and a recharge when continuously processing after pulling up a single crystal.
  • the solid raw material S1 is additionally charged while the raw material melt S2 is in the crucible 3.
  • the recharging pipe 10 is divided into a lower divided pipe 10A and an upper divided pipe 10B in a dividing step S12 shown in FIG.
  • the recharge number counting step S13 shown in FIG. 12 the number of recharges used up to now is counted for each divided pipe.
  • the divided tubes are reused. Therefore, the upper divided pipe 10B is sent to the cleaning step S17 shown in FIG. 12, and the lower divided pipe 10A is sent to the cleaning step S03 shown in FIG.
  • the number of reusable rechargings is about 40 to 50, and a predetermined number of times for the lower divided tube 10A and a predetermined number of times for the upper divided tube 10B are set in advance for each of the divided tubes. This is a process by which the damage by the falling impact of the solid material S1 is different because the falling distance of the solid material S1 is different when the length dimension of the lower divided pipe 10A and the upper divided pipe 10B is different. .
  • the lower split tube 10A and / or the upper split tube 10B are replaced when a portion that becomes turbid and visible compared to a non-used and flawless state is generated Can be set to This visible white turbidity part can be made into the part to which the transmittance
  • the portion having the largest area can be a region of about 10 cm square.
  • the divided tubes are separately sent for reuse.
  • the upper divided pipe 10B is sent to the cleaning step S17 shown in FIG.
  • the lower divided pipe 10A is sent to the washing step S03 shown in FIG.
  • the number-of-recharges determination step S14 can be implemented after the tube penetration visual check step S15.
  • the divided pipe is replaced as the replacement step S16 shown in FIG. 12, and the regeneration processing step S20 shown in FIG. 12 is performed.
  • the regeneration processing step S20 the inner surface of the split pipe replaced with a flaw is subjected to heating and melting processing to eliminate the flaw and to make it transparent for regeneration, thereby making the replaced split pipe reusable.
  • the axial length of the lower divided pipe 10A and the upper divided pipe 10B can be set shorter than in the conventional non-divided recharge pipe 100 shown in FIG. And the deformation caused by the regeneration process can be reduced.
  • the divided pipe is excluded as the discarding step S22 shown in FIG. Discard Further, in the deformation amount determination step S21, when it is determined that the deformation caused by the regeneration processing did not exceed the predetermined amount, the divided pipes are distinguished and reused. For this purpose, the upper divided pipe 10B is sent to the cleaning step S17 shown in FIG. Further, the lower divided pipe 10A is sent to the cleaning step S03 shown in FIG.
  • the raw material supply apparatus having the recharge pipe 10 in the present embodiment and the recharge method using the single crystal pulling apparatus, even if the filling amount of the solid raw material S1 is the same, compared to the recharge pipe 100 which is not divided.
  • the distance over which the solid raw material S1 to be filled falls can be reduced. For this reason, it is possible to reduce the impact on the inner surface of the recharge tube 10 at the time of filling, and to reduce the occurrence of flaws on the inner surface of the recharge tube 10.
  • the usable life of the recharge pipe 10 can be extended even if the filling amount of the solid raw material S1 to be recharged is greatly increased.
  • FIG. 15 is a schematic view showing the inclined support in the lowermost divided pipe setting step S04 according to the present embodiment.
  • FIG. 16 is a schematic view showing the tilt support in the tilt step S05 and the raw material charging step S06 of the present embodiment.
  • FIG. 17 is a schematic view showing the inclined support in the divided pipe setting step S08 and the raw material filling step S06 of the present embodiment.
  • FIG. 18 is a schematic view showing the inclined support in the erecting step S10 and the recharging step S11 of the present embodiment.
  • the present embodiment differs from the first embodiment described above in the point of the inclined support 30.
  • the other corresponding components are denoted by the same reference numerals and the description thereof will be omitted.
  • an inclined support for supporting the recharge pipe 10 in each step such as the lowermost divided pipe setting step S04, the tilting step S05, the raw material charging step S06, the divided pipe setting step S08, the connecting step S09, and the standing step S10.
  • a platform 30 can be used.
  • the inclined support 30 includes a support carriage 32 having a support 31 for supporting the recharge tube 10, and an incline 34 having an inclined support 35 for tilting the support carriage 32. , And an inclination drive unit 39 which inclines the inclination platform 34.
  • the support portion 31 is erected on one side of the substantially flat support carriage portion 32 as shown in FIGS. 15 to 18 so as to be able to support the divided tubes 10A and 10B at the time of inclination, Wheels 33 and 33 are provided on the lower side of the carriage portion 32 so as to be movable.
  • the inclined base 34 which is substantially flat, is connected to a base 36 disposed on a floor surface or the like so as to be rotatable around a horizontal axis 35a.
  • An inclined support portion 35 provided upright on the upper side of the horizontal shaft 35 a to be inclined is connected to the inclined table 34.
  • an inclined drive portion 39 On the back side of the inclined support portion 35, an inclined drive portion 39 whose both ends are rotatably connected by the axis 37, 38 parallel to the horizontal axis 35a with respect to the base 36 located outside the inclined table 34. Is provided.
  • the inclination drive part 39 consists of an air cylinder, an oil cylinder, a ball screw etc., for example, and is made into the drive part which can change the extension.
  • the tilt drive unit 39 is configured to be able to rotate the tilt platform 34 from the horizontal position around the horizontal axis 35 a and drive the tilt platform 34 to the tilt position by the extension change of the tilt drive unit 39.
  • the tilt drive portion 39 is configured to be able to drive the tilt support portion 35 from the vertical position around the horizontal axis 35 a to drive it to the tilt position.
  • the support carriage 32 placed on the tilt table 34 follows and turns from the horizontal position around the horizontal axis 35a to the tilt position and also the support unit 31. From the vertical position, it can be driven to an inclined position by rotating around the horizontal axis 35a.
  • the tilt drive portion 39 charges the support tube portion 32 and the recharge tube 10 mounted on and supported by the support portion 31 and the recharge tube 10 in the state of being turned to the tilt position and in the tilt position.
  • the weight of the solid raw material S1 can be supported.
  • the base portion 36 is provided with an inclined portion 36a at the end opposite to the horizontal shaft 35a of the inclined table 34, and there is no step so that the support carriage 32 can travel from the upper surface to the floor surface of the inclined table 34. It is arranged.
  • the tilt stand 30 in this embodiment has the tilt stand 34 and the support carriage 32 in the horizontal position, and the tilt support 35 and the support 31 are vertical. It will be in the state of the position.
  • the bottom cover 14 is inserted into the lower opening end of the lower divided pipe 10A to be in a closed state. Further, in the lower divided pipe 10A, the lower end of the metal shaft 15 penetrating the protective pipe 16 is attached to the bottom cover 14 to be in a filling ready state.
  • the lower divided pipe 10A in this state is mounted on the support carriage 32 such that the axis of the lower divided pipe 10A is in the vertical direction.
  • the tilt drive unit 39 is driven to be reduced, and as shown in FIG. 16, the tilt stand 34 is rotated from the horizontal position around the horizontal axis 35a to drive it to the tilt position. Further, the tilt support portion 35 is rotated from the vertical position around the horizontal shaft 35a to drive it to the tilt position.
  • the support carriage portion 32 is made to follow and is rotated from the horizontal position around the horizontal axis 35a and driven to the inclined position.
  • the support portion 31 is made to follow and is rotated from the vertical position around the horizontal axis 35 a to drive it to the inclined position.
  • the lower divided pipe 10A is supported in a state of being inclined at a predetermined angle.
  • the solid raw material S1 is filled in the lower divided pipe 10A.
  • the upper divided pipe 10B is set at the upper position of the lower divided pipe 10A in the divided pipe setting step S08. Then, in the connecting step S09, the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11. At this time, the tilt drive portion 39 is driven to be extended, and the support carriage portion 32 is rotated from the tilt position around the horizontal axis 35 a to drive it to the horizontal position. Further, the support portion 31 is rotated from the inclined position around the horizontal shaft 35a to drive it to the vertical position. By driving the support carriage portion 32 and the support portion 31 in this manner, as shown in FIG. 15, the lower divided pipe 10A is supported so that the axis thereof is in the vertical direction. In this state, the bolt / nut 11 d as a fastening portion is fastened in the connecting portion 11. Furthermore, in the upper divided pipe 10B as well, the metal shaft 15 is penetrated through the protective pipe 16.
  • the solid raw material S1 is charged into the upper divided pipe 10B connected to the lower divided pipe 10A.
  • the tilt drive portion 39 is driven to be reduced, and the support carriage portion 32 is rotated from the horizontal position around the horizontal axis 35 a to drive it to the tilt position.
  • the support portion 31 is rotated from the vertical position around the horizontal shaft 35a to drive it to the inclined position.
  • the connected recharge tube 10 is supported so that the axis thereof is in the inclined direction.
  • the solid raw material S1 is filled in the upper divided pipe 10B.
  • the tilt drive unit 39 is driven to extend, and the tilt table 34 is rotated from the tilt position around the horizontal axis 35a to drive it to the horizontal position. Further, the tilt support portion 35 is rotated from the tilt position around the horizontal shaft 35a to drive it to the vertical position.
  • the support carriage portion 32 is rotated from the inclined position around the horizontal shaft 35a and driven to the horizontal position. Further, the support portion 31 is rotated from the inclined position around the horizontal shaft 35a to drive it to the vertical position.
  • the recharge tube 10 is supported in a filling state in which the axis line thereof is in the vertical direction.
  • the support carriage portion 32 is smoothly transported from the tilt table 34 via the tilt portion 36a.
  • the recharge tube 10 filled with the solid material S1 placed on the support carriage portion 32 is transported to the vicinity of the single crystal pulling furnace.
  • the metal shaft 15 is connected to the lower end of the lifting shaft 7 by the suspension jig 8 and is lifted by the drive mechanism 2a.
  • the recharge pipe 10 is positioned above the crucible 3 on which the raw material melt S2 is formed, and the solid raw material S1 is recharged using a raw material supply device equipped with the recharge pipe 10 as a recharge step S11.
  • the recharging tube 10 When the recharging tube 10 is finished, the recharging tube 10 is placed on the support carriage portion 32 and the support carriage portion 32 is transported to the tilt table 34. Then, the tilt drive unit 39 is driven to be reduced, and the support carriage unit 32 is rotated from the horizontal position around the horizontal axis 35 a to drive it to the tilt position. Further, the support portion 31 is rotated from the vertical position around the horizontal shaft 35a to drive it to the inclined position.
  • the connecting portion 11 is separated to separate the lower divided pipe 10A and the upper divided pipe 10B.
  • the inclined support 30 makes it possible to adjust the angle so as to reduce the impact that the solid raw material S1 to be filled abuts on the recharge tube 10 and the like.
  • a third embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a recharge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
  • the present embodiment differs from the above-described first or second embodiment in that it relates to the upper additional divided pipe 10C.
  • the other corresponding components are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 19 is a schematic positive cross-sectional view showing the recharge pipe in the raw material supply device of the present embodiment.
  • FIG. 20 is an enlarged cross-sectional view showing the connection portion of the present embodiment.
  • FIG. 21 is an exploded perspective view showing the recharge pipe of the present embodiment.
  • FIG. 22 is a front sectional view showing a point crystal pulling apparatus of the present embodiment.
  • the amount of the solid raw material S1 to be charged by adding and extending the upper additional divided pipe (division pipe) 10C above the upper divided pipe 10B It will increase.
  • the upper additional divided pipe 10C has a substantially cylindrical shape as shown in FIGS. 19 to 21 and does not have the flange portions 11a and 11b as the connecting portion 11 like the lower divided pipe 10A and the upper divided pipe 10B. Instead, the lower end of the upper additional divided pipe 10C can be fitted to the upper end of the upper divided pipe 10B.
  • the inner surfaces thereof are set to be flush with each other in the vertical direction.
  • the present embodiment shows a state in which the buffer member 11 e is not used.
  • a fitting groove 11h is circumferentially provided at the outer peripheral position as the connecting portion 11.
  • a corresponding fitting groove 11g is circumferentially provided as the connecting portion 11 at the upper end inner peripheral position of the upper divided pipe 10B.
  • the fitting groove 11h In the height direction of the fitting groove 11h and the fitting groove 11g, the fitting groove 11h can be made equal to or larger than the side wall thickness of the upper divided pipe 10B, and the fitting groove 11g can be made longer than the fitting groove 11h. .
  • the protective pipe 16 in the upper additional divided pipe 10C extends in the vertical direction (axial direction) at the axial center of the upper additional divided pipe 10C, similarly to the lower divided pipe 10A and the upper divided pipe 10B.
  • the lower end of the protective pipe 16 is supported by a configuration different from the plate-like fixed plate portion 16c extending in the radial direction from the inner surface of the recharge pipe 10 to the axial center thereof.
  • the lower end of the protective pipe 16 is supported by a fixed inclined plate 16f provided diametrically at the lower end of the upper additional divided pipe 10C.
  • the upper end of the protective pipe 16 in the upper divided pipe 10B is continuous with the lower end of the protective pipe 16 of the upper additional divided pipe 10C without any gap.
  • the lower end of the protective pipe 16 in the upper divided pipe 10B is continuous with the upper end of the protective pipe 16 of the lower divided pipe 10A without a gap.
  • Two fixed inclined plates 16f are provided symmetrically about the axis of the upper additional divided pipe 10C such that the widthwise end is positioned at the axis of the upper additional divided pipe 10C.
  • each fixed inclined plate 16f has an inclination in the width direction.
  • the fixed inclined plate 16f is disposed such that the inclination angle in the width direction is lowered radially outward from the center of the upper additional divided pipe 10C axis.
  • the fixed inclined plate 16f has a through hole penetrating in the vertical direction at the center position of the upper additional divided pipe 10C axis.
  • the periphery of the through hole of the fixed inclined plate 16 f is connected to the lower end of the protective tube 16.
  • a portion located radially outward of the widthwise end of the fixed inclined plate 16f which is lowered is a lower opening.
  • the two fixed inclined plates 16f are joined together at their widthwise ends, which are raised from each other, to form a ridge.
  • the ridge line of the fixed inclined plate 16f has a length equal to the diameter of the upper additional divided pipe 10C.
  • the longitudinal direction end portions of the two fixed inclined plates 16f are formed in a mountain shape.
  • a notch is formed at the lower end of the upper additional divided pipe 10C. Both ends in the longitudinal direction of the fixed inclined plate 16 f and the lower end of the upper additional divided pipe 10 C are connected.
  • the chevron shape at the end of the fixed inclined plate 16f and the cutout shape of the lower end of the upper additional divided pipe 10C correspond to each other.
  • the upper end of the protective pipe 16 of the upper divided pipe 10B is positioned at the lower side of the two fixed inclined plates 16f formed in a mountain shape.
  • the metal shaft 15 can be communicated and supported.
  • the axial length dimension of the recharge tube 10 is increased.
  • the metal shaft 15 is continuous in the axial direction with respect to the respective protective pipes 16 at the axial center position of the recharge pipe 10. It is supposed to penetrate.
  • the solid raw material S1 is filled in the lower divided pipe 10A.
  • the divided pipe setting step S08 the upper divided pipe 10B is set at the upper position of the lower divided pipe 10A.
  • the connecting step S09 the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11.
  • the solid raw material S1 is filled in the upper divided pipe 10B.
  • the recharge amount determination step S07 it is determined whether the solid raw material S1 of the amount set in the recharge amount setting step S01 has been charged.
  • the upper additional divided pipe 10C is placed on the upper divided pipe 10B in the divided pipe setting step S08.
  • the metal shaft 15 is made to penetrate the protective pipe 16 in the coupling step S09, and it is not necessary to fasten the bolt / nut 11d which is the fastening portion.
  • solid raw material S1 is filled in the upper additional divided pipe 10C as raw material charging step S06, and erected so that the axis line of the recharge pipe 10 is in the vertical direction as rising step S10.
  • the lumped solid raw material S1 in the recharge tube 10 is dropped by its own weight, with the suspension jig 8 positioned above the crucible 3 on which the raw material melt S2 is formed. , Feed to the raw material melt S2.
  • the recharge amount can be increased by the upper additional divided pipe 10C. Furthermore, by reducing the number of times of recharging, the required time for the recharging step can be shortened and the production efficiency can be improved.
  • FIG. 23 is an enlarged cross-sectional view showing the connection portion in the recharge pipe of the present embodiment.
  • the fitting groove 11h is not provided circumferentially at the outer peripheral position at the lower end of the upper additional divided pipe 10C.
  • a fitting groove 11g having a radial dimension substantially the same as the thickness dimension of the lower end of the upper additional divided pipe 10C is circumferentially provided at the upper inner peripheral position of the upper divided pipe 10B.
  • the enlarged diameter part 11j diameter-expanded by the part corresponding to the fitting groove 11g radially outward is provided in the upper end outer periphery of upper part divided pipe 10B.
  • the axial dimension of the enlarged diameter portion 11j that is, the length by which the lower additional divided pipe 10C is fitted into the fitting groove 11g, may be made longer than in the third embodiment in which the fitting groove 11h is provided. it can.
  • the enlarged diameter portion 11j is 1/6 or more of the outer diameter of the upper divided pipe 10B main body, and the fitting groove 11g is the enlarged diameter portion It can be longer than 11j.
  • the upper additional divided pipe 10C can be mounted on the upper divided pipe 10B in a state where the stability is increased. Furthermore, instead of the upper additional divided pipe 10C, it becomes possible to place a divided pipe such as the lower divided pipe 10A having no flange portion at its lower end on the upper divided pipe 10B.
  • a thin ring-shaped buffer member 11e is used so that the upper end surface of the upper divided pipe 10B and the lower end surface of the upper additional divided pipe 10C do not come in direct contact with each other. It is possible to use a buffer member 11e.
  • FIG. 24 is a front sectional view showing the recharge pipe of the present embodiment.
  • the recharge pipe 10 of the present embodiment is set so that the inner diameter of the lower end portion 10Ab of the lower divided pipe 10A is smaller than that of the upper end portion 10Aa of the lower divided pipe 10A.
  • the inner diameter of the lower end portion 10Bb of the upper divided pipe 10B is set smaller than the upper end portion 10Ba of the upper divided pipe 10B.
  • each of the upper divided pipe 10B and the lower divided pipe 10A has an inverted truncated cone shape and the diameter is reduced from the upper end to the lower end. Further, the thickness of each of the upper divided pipe 10B and the lower divided pipe 10A increases from the upper end to the lower end.
  • the inner diameter of the upper end portion 10Aa of the lower divided pipe 10A is set to be smaller than that of the lower end portion 10Bb of the upper divided pipe 10B, and viewed from the upper side, the upper portion divided pipe 10B is recharged more than the lower end. It is set so that it does not stick out to the pipe 10 inside.
  • the buffer member 11e when viewed from above, the buffer member 11e is hidden by the lower end portion 10Bb of the upper divided pipe 10B, and the solid raw material S1 to be filled does not directly collide with the buffer member 11e. As a result, the generation of impurities resulting from the buffer member 11 e can be prevented, so that it is possible to prevent the deterioration of crystal characteristics such as carbon concentration fluctuation caused by, for example, the mixing of the buffer member 11 e made carbon.
  • the upper end portion 10Aa of the lower divided pipe 10A is hidden by the lower end portion 10Bb of the upper divided pipe 10B, and the solid raw material S1 to be filled directly collides with the upper end portion 10Aa of the lower divided pipe 10A. I have not. Thereby, it is possible to prevent the occurrence of cracking, chipping or the like in the upper end portion 10Aa of the lower divided pipe 10A. Furthermore, since the lower end portion 10Ab and the lower end portion 10Bb of the divided pipes 10A and 10B are thick, it is possible to improve the strength of the lower end portion 10Ab and the lower end portion 10Bb and to reduce the occurrence of deformation in the regenerating process.
  • FIG. 25 is a front sectional view showing the recharge pipe of the present embodiment.
  • the axial length of the lower divided pipe 10A is set to be larger than that of the upper divided pipe 10B. Thereby, the amount of recharge can be increased.
  • the height position of the connecting portion 11 upward, the distance between the raw material melt S2 and the heater 5 in the crucible 3 and the connecting portion 11 can be increased. Thereby, it becomes possible to reduce the influence of the high temperature on the connecting portion 11 in the recharging step S11.
  • the axial length of the lower divided pipe 10A can be made substantially the same as that of the conventional recharge pipe 100 shown in FIG. In this case, by connecting and using the upper divided pipe 10B, it is possible to increase the amount of charge once. As a result, it is possible to increase the number of times the recharge tube 10 can be used.
  • FIG. 26 is a front sectional view showing the recharge pipe of the present embodiment.
  • the recharge pipe 10 according to the present embodiment is divided into three in the vertical direction, and as shown in FIG. 26, the middle divided pipe (divided pipe) 10D is between the lower divided pipe 10A and the upper divided pipe 10B. Provided.
  • the middle divided pipe 10D is set to have substantially the same inner diameter as the lower divided pipe 10A and the upper divided pipe 10B. Further, the upper end of the lower divided pipe 10A and the lower end of the middle divided pipe 10D are connectable by the connecting portion 11, respectively. Further, the upper end of the middle divided pipe 10D and the lower end of the upper divided pipe 10B can be connected by the connecting portion 11.
  • the connecting portion 11 is provided with a flange 11n at the upper end of the middle divided pipe 10D and a flange 11m at the lower end of the middle divided pipe (divided pipe) 10D.
  • the connecting portion 11 is provided with a plurality of connecting holes 11c and 11c circumferentially separated from each other in the flange portion 11n and the flange portion 11m, and bolts and nuts 11d and 11d as fastening portions for fastening these.
  • the buffer member 11 e is not used, but may be provided.
  • the middle divided pipe 10D is set at the upper position of the lower divided pipe 10A in the divided pipe setting step S08. Then, in the connecting step S09, the connecting portion 11 connects the flange portion 11a of the lower divided pipe 10A and the flange portion 11m of the middle divided pipe 10D by the fastening portion. Further, in the divided pipe setting step S08, the upper divided pipe 10B is set at the upper position of the middle divided pipe 10D. Then, in the connecting step S09, the flange portion 11n of the middle divided pipe 10D and the flange portion 11b of the upper divided pipe 10B are connected by the fastening portion.
  • the falling distance of the solid raw material S1 in the raw material charging step S06 can be further shortened.
  • the damage to the inner wall surface in each divided pipe 10A, 10B, 10D in raw material filling process S06 may be less.
  • the inner surface of the recharge tube of Experimental Example 1 became cloudy due to a flaw or the like caused by the drop of the solid material, and the number of recharges when it was determined that visual regeneration was necessary was used as the reference frequency.
  • each divided tube was reused even after the regeneration treatment, and the regeneration treatment was performed a plurality of times.
  • the deformation amount which seems to be caused by heating in a plurality of regeneration processes exceeds the reference value, and the total number of recharges up to that point when it is determined that it can not be used any more It is the standard life.
  • the initial manufacturing cost was 10
  • the reprocessing cost was 1
  • the deformation resistance cost was 1
  • the total cost when used up to the final life was 10.
  • the initial production cost was 5 and the cost was 2.11 for the lower divided pipe among the recharge pipes.
  • the initial production cost was 5 and the cost was 1.74 similarly for the middle divided pipe.
  • the initial manufacturing cost was 5 and the cost was 1.56.
  • the total cost when used up to the final life was 5.41.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A cylindrical recharging tube 10, which can be used in the growth of a single crystal by Czochralski method, and which is used in a raw material feeding device for additionally charging or recharging a granular massive solid raw material S1 into a raw material molten liquid S2 in a crucible 3. The recharging tube 10 is provided with: multiple split tubes 10A and 10B which are split in the axis direction when the solid raw material is filled; and a connection unit 11 which can connect the split tubes one above the other when the solid raw material is charged into the crucible. It becomes possible to prevent the decrease in the life of the recharging tube, and it also becomes possible to reduce the occurrence of dislocation.

Description

リチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法Recharge Tube, Raw Material Supply Device, Single Crystal Pulling Device, Method of Using Recharge Tube, Recharge Method, Single Crystal Pull Method
 本発明はリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法に関し、特にCZ方による単結晶引き上げにおける固形原料の追加またはリチャージに用いて好適な技術に関する。
 本願は、2017年12月20日に、日本に出願された特願2017-244437号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a charge method and a single crystal pulling method, and in particular, a technique suitable for adding or recharging solid materials in single crystal pulling by CZ method. About.
Priority is claimed on Japanese Patent Application No. 2017-244437, filed Dec. 20, 2017, the content of which is incorporated herein by reference.
 通常、CZ法(チョクラルスキー法)によるシリコン単結晶の育成において、ルツボ内に初期チャージとして投入された固形の多結晶シリコンは、ルツボを囲繞するヒータによって加熱されて溶融する。そして、ルツボ内に原料融液が形成されると、ルツボを一定方向に回転させながら、ルツボ上に保持された種結晶を下降させ、ルツボ内の原料融液に浸漬する。その後、前記の種結晶を所定の方向に回転させながら種結晶を上昇させることにより、種結晶の下方に円柱状のシリコン単結晶を引き上げて育成する。 Usually, in growing a silicon single crystal by the CZ method (Czochralski method), solid polycrystalline silicon introduced as initial charge into a crucible is heated and melted by a heater surrounding the crucible. Then, when the raw material melt is formed in the crucible, while rotating the crucible in a fixed direction, the seed crystal held on the crucible is lowered to be immersed in the raw material melt in the crucible. Thereafter, by raising the seed crystal while rotating the seed crystal in a predetermined direction, a cylindrical silicon single crystal is pulled and grown below the seed crystal.
 初期チャージとしてルツボ内に投入される固形原料は、ロッド状、塊状、または粒状等の各種形状の多結晶シリコンが用いられ、それぞれが単独、または複合して供給され、シリコン単結晶を育成する融液の原料となる。 As solid materials to be introduced into the crucible as initial charge, polycrystalline silicon of various shapes such as rod shape, massive, or granular is used, and each is supplied singly or as a composite to melt a silicon single crystal. It becomes the raw material of the liquid.
 このようなCZ法によるシリコン単結晶の育成では、ルツボ内に初期チャージされた固体原料が溶融すると、溶融後の見かけ上の体積が減少するため、ルツボの容積に比して得られる原料融液量が不足する。このような状態で単結晶を育成すれば、原料融液量の不足に起因して、生産性の低下を余儀なくされる。 In such growth of silicon single crystal by the CZ method, when the solid raw material initially charged in the crucible is melted, the apparent volume after melting decreases, so the raw material melt obtained relative to the volume of the crucible Insufficient quantity. If single crystals are grown in such a state, productivity is forced to decrease due to the shortage of the raw material melt amount.
 上記起因による生産性の低下を回避するには、原料融液の不足分を補充して所望の融液量を確保することが必要になり、ルツボへの初期チャージ後に、固形原料を追加供給する技術として「追加チャージ」が行われている。 In order to avoid the decrease in productivity due to the above reasons, it is necessary to replenish the shortage of the raw material melt to secure a desired melt amount, and after the initial charge to the crucible, the solid raw material is additionally supplied An "additional charge" is being performed as a technology.
 すなわち、「追加チャージ」では、ルツボ内に初期チャージされた固体原料を溶融した後、形成された原料融液に固形原料をさらに追加投入することによって、ルツボ内の原料融液量を増加させる技術である。この「追加チャージ」を適用することによって、使用するルツボの容積を有効に活用することができ、シリコン単結晶育成における生産性を向上させることができる。 That is, in the “additional charge”, a technology for increasing the amount of raw material melt in the crucible by melting the solid raw material initially charged in the crucible and then additionally charging the solid raw material to the formed raw material melt. It is. By applying this "additional charge", the volume of the crucible to be used can be effectively utilized, and the productivity in silicon single crystal growth can be improved.
 さらに、CZ法によるシリコン単結晶の育成では、「リチャージ」と呼ばれる固形原料を供給する技術も行われている。具体的には、最初の単結晶を育成して引き上げた後、原料融液の引き上げによる減少分に見合う量の固形原料をルツボ内の残留融液に追加投入する技術である。 Furthermore, in the growth of silicon single crystals by the CZ method, a technique of supplying a solid material called "recharge" is also performed. Specifically, after growing and pulling up the first single crystal, a solid raw material of an amount corresponding to the decrease due to pulling up of the raw material melt is additionally charged to the residual melt in the crucible.
 言い換えると、「リチャージ」することにより、ルツボ内に所定量の原料融液を再形成して、単結晶の引き上げを繰り返し、1個のルツボ当たりにおける結晶引き上げ本数を多くする技術である。したがって、「リチャージ」を採用することによって、ルツボの効率使用でコストの低減を図るとともに、前述した「追加チャージ」と同様に、生産性を向上させ、シリコン単結晶の育成コストを低減できる。 In other words, by recharging, a predetermined amount of raw material melt is re-formed in the crucible, and pulling up of the single crystal is repeated to increase the number of pulled crystals per crucible. Therefore, by adopting "recharge", the cost can be reduced by efficient use of the crucible, and the productivity can be improved and the growth cost of the silicon single crystal can be reduced as in the "additional charge" described above.
 「追加チャージ」や「リチャージ」による原料供給は、ルツボの上方となるプルチャンバから引き上げ炉内に挿入されたリチャージ管を有する原料供給装置を用いて、粒塊状の固形原料をルツボ内の原料融液に追加投入する方法が知られている。 The raw material supply by “additional charge” and “recharge” is performed by using a raw material supply apparatus having a recharge pipe inserted from the pull chamber above the crucible into the pulling furnace, and solidifying the granular solid raw material into the raw material melt in the crucible It is known how to add to.
 この際、固形原料の追加投入に際して、ルツボに損傷を与る、あるいは、原料融液の液跳ねにより原料融液の飛沫がチャンバ内の部品に付着して、部品の寿命を短くするといった原因により、単結晶の育成に悪影響を及ぼす可能性がある。このような問題を解消するために、特許文献に記載されるように、「追加チャージ」や「リチャージ」に関して、種々の提案がなされている。 At this time, when adding the solid raw material, the crucible is damaged, or splashing of the raw material melt causes droplets of the raw material melt to adhere to the parts in the chamber, thereby shortening the life of the parts. May adversely affect the growth of single crystals. In order to solve such problems, various proposals have been made regarding "additional charge" and "recharge" as described in the patent documents.
特開2003-020295号公報JP 2003-020295 A 特開2005-001977号公報JP, 2005-001977, A 特開2007-217224号公報JP 2007-217224 A
 しかし、近年、引き上げる単結晶の大口径化、あるいは、引き上げ長の増大、または、操業の効率化等の要因により、リチャージ量を増大したいという要求があった。
 この要求を満たそうとした場合、リチャージ管は、プルチャンバ側から挿入されるため、その太さを大きくするには限界がある。したがって、リチャージ管の長さを増大させることになるが、単純に、リチャージ管の長さを増大させた場合、次のような問題が生じていた。
However, in recent years, there has been a demand to increase the amount of recharge due to factors such as increasing the diameter of the single crystal to be pulled up, increasing the pulling length, or improving the efficiency of operation.
In order to meet this requirement, the recharge tube is inserted from the pull chamber side, so there is a limit to increasing its thickness. Therefore, although the length of the recharge pipe is to be increased, simply when the length of the recharge pipe is increased, the following problems occur.
 リチャージ管は、汚染防止のため、石英等、追加原料となる多結晶シリコンよりも柔らかい材質からできている。このため、リチャージ管の長さが長くなると、リチャージ管への原料充填の際に、落下した塊状の原料シリコンが当たって、リチャージ管内面が傷ついて摩耗し、このとき発生した石英等の微小片が溶融原料内に混入し、有転位化の原因となってしまう。
 リチャージ管の長さが長くなると、リチャージ管に充填する原料が原料充填時に落下する落下距離が長くなるため、摩耗による石英等の微小片に起因した有転位化がさらに増大するという問題があった。
The recharge tube is made of a softer material than polycrystalline silicon as an additional material, such as quartz, to prevent contamination. For this reason, if the length of the recharge pipe is increased, the falling lump of raw material silicon hits when charging the raw material into the recharge pipe, and the inner surface of the recharge pipe is damaged and worn away, and minute pieces such as quartz generated at this time Is mixed into the molten material, causing dislocations.
If the length of the recharge tube is increased, the material to be charged into the recharge tube may fall at a falling distance when the material is loaded, so that there is a problem that the dislocationization due to the small pieces such as quartz due to wear is further increased. .
 また、リチャージ管の内面が原料充填の際に塊状の原料シリコンが当たって傷ついてしまうと、リチャージ時のチャンバ内と充填時との温度差などによりリチャージ管が破損する可能性がある。このため、通常この強度低下を見越して所定回数でリチャージ管の使用を制限していた。
 しかし、リチャージ管の長さが長くなると、リチャージ管に充填する原料が原料充填時に落下する落下距離が長くなるため、発生する傷が加速度的に大きく・深く形成されるため、リチャージ管の使用可能時間・使用可能回数が極端に減ってしまうという問題があった。
In addition, if the inner surface of the recharging tube is damaged when massive raw material silicon hits during filling of the material, there is a possibility that the recharging tube may be damaged due to a temperature difference between the inside of the chamber during recharging and the time of filling. Therefore, in view of this strength reduction, the use of the recharge pipe has been limited a predetermined number of times.
However, if the length of the recharge pipe is increased, the material to be charged into the recharge pipe is dropped at the time of filling the material, and the falling distance of the material to be charged is increased. There was a problem that time and the number of times of use could be extremely reduced.
 さらに、このようなリチャージ管の傷発生に起因した強度低下に対する対策として、リチャージ管の内面などを加熱・溶融して発生した傷を無くすためのリペア(再生)工程がおこなう必要があるが、リチャージ管の長さが大きくなると、このリペア回数が必然的に多くなる。
 リペア工程における加熱は、リチャージ管全体に歪みを生じる可能性があるため、その変形が許容範囲内であれば、リペア処理後に使用可能である。しかし、リチャージ管が長尺化して原料充填時の落下距離が大きくなって発生する傷が加速度的に大きく・深く形成されると、リペアに必要な加熱量も増大する。このため、結果的に、変形量が増えて、最終的なリチャージ管のライフ(排棄するまでの使用可能時間・使用可能回数)が減少してしまう。
 同時に、リチャージ管の長尺化にともない、リペア工程における加熱量が増大して、さらに、変形量が増えて、最終的なリチャージ管のライフ(排棄するまでの使用可能時間・使用可能回数)が減少してしまう。
Furthermore, as a measure against the strength reduction due to the occurrence of such a scratch in the recharge tube, it is necessary to carry out a repair (regeneration) step for eliminating the scratch caused by heating and melting the inner surface of the recharge tube. As the length of the tube increases, the number of repairs necessarily increases.
The heating in the repair process may cause distortion in the entire recharge tube, so if the deformation is within the allowable range, it can be used after the repair process. However, if the recharge tube is elongated and the drop distance at the time of raw material filling is increased and the flaw generated is formed large and deeply at an accelerated rate, the heating amount required for repair also increases. As a result, the amount of deformation increases, and the life of the final recharge tube (usable time until discarding / usable number of times) decreases.
At the same time, along with the lengthening of the recharge pipe, the amount of heating in the repair process increases, and the amount of deformation also increases, and the life of the final recharge pipe (usable time until discarding, usable number of times) Will decrease.
 また、リチャージ管はリチャージ終了後に毎回内面を清掃するが、リチャージ管の長さが大きくなると、この作業性が著しく低下してしまう。または、清掃が不十分となり、有転位化あるいは結晶特性の低下を生じる可能性があった。 In addition, although the recharge pipe cleans the inner surface each time after the completion of the recharge, this work efficiency is significantly reduced if the length of the recharge pipe is increased. Or, there was a possibility that the cleaning was insufficient, resulting in the formation of dislocations or the deterioration of the crystal properties.
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
1.リチャージ管における充填量の増大と、リチャージ管のライフ減少防止とを同時に実現すること。
2.同時に、有転位化の発生低減を図ること。
3.同時に、リチャージにかかる作業性の低下を防止すること。
4.また、結晶品質の低下を防止すること。
The present invention has been made in view of the above circumstances, and aims to achieve the following objects.
1. To simultaneously realize an increase in the amount of charge in the recharge pipe and a reduction in the life of the recharge pipe.
2. At the same time, reduce the occurrence of dislocations.
3. At the same time, to prevent the deterioration of the work required to recharge.
4. Also, prevent the deterioration of crystal quality.
 本発明のリチャージ管は、チョクラルスキー法による単結晶の育成に用いられ、粒塊状の固形原料をルツボ内の原料融液に追加チャージまたはリチャージする原料供給装置における円筒状のリチャージ管であって、
 前記固形原料を充填する際に軸方向に分割される複数の分割管と、
 前記固形原料を前記ルツボに投入する際に前記分割管を上下に連結する連結部と、
を有することにより上記課題を解決した。
 本発明のリチャージ管は、前記分割管において、連結時に下側位置となる分割管上端の内径が、上側位置となる分割管下端の内径に対して等しいか、または、上側位置となる分割管下端の内径よりも大きく設定されることができる。
 本発明のリチャージ管は、前記分割管の上端内径が、下端内径に対して等しいか、または、下端内径よりも大きく設定されることができる。
 本発明のリチャージ管は、前記連結部には、径方向外側に延在するフランジ部が設けられ、このフランジ部を締結する締結部が設けられることができる。
 本発明のリチャージ管は、前記連結部において、連結時に下側位置となる分割管上端に上側位置となる分割管下端が嵌合されることができる。
 本発明のリチャージ管は、前記連結部が、前記分割管の上端面と下端面とを突き合わせて連結されることができる。
 本発明のリチャージ管は、前記連結部には、上側の前記分割管と下側の前記分割管とが接触する面に緩衝部材が設けられることができる。
 本発明のリチャージ管は、前記緩衝部材の内径が、上側位置となる分割管下端の内径に対して等しいか、または、上側位置となる分割管下端の内径よりも大きく設定されることができる。
 本発明のリチャージ管は、前記分割管が石英からなり、前記緩衝部材が可撓性を有してカーボンを含む材料からなることができる。
 本発明の原料供給装置は、チョクラルスキー法による単結晶の育成に用いられ、粒塊状の固形原料をルツボ内の原料融液に追加チャージまたはリチャージする原料供給装置であって、
 上記のいずれか記載のリチャージ管と、
 前記リチャージ管の下方開口端に着脱可能に装着される円錐状の底蓋と、
 前記リチャージ管および前記底蓋を吊り下げて昇降可能にするとともに前記リチャージ管の下方開口端を開放して前記ルツボ内の原料融液に前記固形原料を投入可能とする引き上げ手段と、
を具備することができる。
 本発明の単結晶引き上げ装置は、チョクラルスキー法により原料融液から単結晶を育成する単結晶引き上げ装置であって、
 上記の原料供給装置と、
 内部に前記ルツボを備えた炉体と、
 この炉体内で前記ルツボの上方位置に下端内周が縮径した筒状として周設され前記原料融液から育成されている前記単結晶への輻射熱を遮るための熱遮蔽体と、を有し、
 追加チャージ又はリチャージの際、前記リチャージ管を前記熱遮蔽体の内側に上方から挿入するとともに、前記リチャージ管の下端を前記熱遮蔽体の下端よりも上方に位置させ、この状態で前記ルツボ内の前記原料融液に前記固形原料を投入することができる。
 本発明の単結晶引き上げ装置は、前記ルツボ内の前記原料融液に前記固形原料を投入する際に、前記熱遮蔽体下端位置よりも前記連結部が高い位置に設定されることができる。
 本発明の単結晶引き上げ装置は、前記炉体の外側において、前記リチャージ管に前記固形原料を充填する際に、
 下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結可能として支持する傾斜支持台を有することができる。
 本発明のリチャージ管の使用方法は、
 上記のいずれか記載のリチャージ管の使用方法であって、
 前記固形原料の充填によって所定の状態まで内表面が傷ついた前記分割管のみを交換することができる。
 本発明のリチャージ管の使用方法は、前記分割管を、傷のない状態に比べて前記固形原料の充填によって内面の傷により透過率が70%を下回った部分が生じた場合に交換することができる。
 本発明のリチャージ管の使用方法は、傷ついて交換された前記分割管の内面を加熱して再生することができる。
 本発明のリチャージ管の使用方法は、加熱により再生された前記分割管の変形が所定量を超えた場合に再使用しないことができる。
 本発明のリチャージ方法は、上記の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
 下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結してさらに前記固形原料を充填することができる。
 本発明のリチャージ方法は、上記の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
 前記傾斜支持台によって、下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結してさらに前記固形原料を充填することができる。
 本発明のリチャージ方法は、上記の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
 前記ルツボ内の前記原料融液に追加チャージまたはリチャージした後に、
 前記傾斜支持台によって、連結された複数の前記分割管を支持し、傾斜させて前記分割管を前記連結部により分離することができる。
 本発明の単結晶引き上げ方法は、上記のリチャージ方法によって、前記ルツボ内の前記原料融液に追加チャージまたはリチャージした後に、
 前記原料融液から単結晶を育成することができる。
The recharge pipe of the present invention is a cylindrical recharge pipe in a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible. ,
A plurality of divided tubes which are divided in the axial direction when filling the solid material;
A connecting portion connecting the divided tubes up and down when the solid material is introduced into the crucible;
The above problem is solved by having the
In the split pipe of the present invention, in the split pipe, the inner diameter of the upper end of the split pipe at the lower position when connected is equal to the inner diameter of the lower end of the split pipe at the upper position, or the lower end of the split pipe at the upper position It can be set larger than the inner diameter of.
In the recharge pipe of the present invention, the upper end inner diameter of the divided pipe may be set equal to the lower end inner diameter or larger than the lower end inner diameter.
In the recharge pipe of the present invention, the connecting portion may be provided with a flange portion extending outward in the radial direction, and a fastening portion for fastening the flange portion may be provided.
According to the recharge pipe of the present invention, the lower end of the divided pipe, which is the upper position, can be fitted to the upper end of the divided pipe, which is the lower position at the time of connection.
In the recharge pipe of the present invention, the connection portion may be connected by abutting the upper end surface and the lower end surface of the divided pipe.
In the recharge pipe of the present invention, a buffer member may be provided on the surface where the upper divided pipe and the lower divided pipe are in contact with each other in the connection portion.
The inner diameter of the buffer member may be set equal to the inner diameter of the lower end of the divided pipe at the upper position, or larger than the inner diameter of the lower end of the divided pipe at the upper position.
In the recharge pipe of the present invention, the divided pipe may be made of quartz, and the buffer member may be made of a material having flexibility and containing carbon.
The raw material supply apparatus according to the present invention is a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible,
Any of the above-mentioned recharge tubes,
A conical bottom lid removably attached to the lower open end of the recharge tube;
A lifting means for suspending the recharging pipe and the bottom cover so as to be able to move up and down and opening the lower opening end of the recharging pipe so that the solid raw material can be charged into the raw material melt in the crucible;
Can be equipped.
The single crystal pulling apparatus of the present invention is a single crystal pulling apparatus for growing a single crystal from a raw material melt by the Czochralski method,
The above-mentioned raw material supply device,
A furnace body provided with the crucible inside;
And a heat shield for shielding radiant heat to the single crystal grown from the raw material melt at the upper position of the crucible inside the furnace body as a cylindrical shape having a diameter-reduced diameter at the lower end. ,
At the time of additional charging or recharging, the recharge tube is inserted from above into the inside of the heat shield, and the lower end of the recharge tube is positioned above the lower end of the heat shield, and in this state the inside of the crucible The solid material can be charged into the raw material melt.
In the single crystal pulling apparatus of the present invention, when the solid raw material is charged into the raw material melt in the crucible, the connecting portion can be set at a position higher than the lower end position of the heat shield.
In the single crystal pulling apparatus according to the present invention, when charging the solid material into the recharge pipe outside the furnace body,
The divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion It can have an inclined support that supports as it can be connected to.
The method of using the recharge tube of the present invention is
It is a usage method of the recharge pipe as described in any of the above,
By filling the solid material, only the divided pipe whose inner surface is damaged can be replaced to a predetermined state.
According to the method of using the recharge tube of the present invention, the divided tube may be replaced when the filling of the solid raw material causes a flaw of the inner surface to have a permeability of less than 70% as compared with the condition without flaws. it can.
According to the method of using the recharge tube of the present invention, the inner surface of the split tube which has been damaged and replaced can be heated and regenerated.
The method of using the recharge pipe according to the present invention can prevent reuse when the deformation of the divided pipe regenerated by heating exceeds a predetermined amount.
The recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
The divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion The solid material can be further charged in connection with
The recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
The inclined support supports the divided pipe mounted with the bottom lid at the lower end by the inclined support, and the divided pipe erected along with the filling of the solid material is erected in the vertical direction side, and the connection portion Thus, the divided pipe can be connected to the upper side to further charge the solid material.
The recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
After additionally charging or recharging the raw material melt in the crucible,
The inclined support supports the plurality of connected divided tubes and can be inclined to separate the divided tubes by the connecting portion.
According to the single crystal pulling method of the present invention, the raw material melt in the crucible is additionally charged or recharged by the above-described recharge method.
A single crystal can be grown from the raw material melt.
 本発明のリチャージ管は、チョクラルスキー法による単結晶の育成に用いられ、粒塊状の固形原料をルツボ内の原料融液に追加チャージまたはリチャージする原料供給装置における円筒状のリチャージ管であって、
 前記固形原料を充填する際に軸方向に分割される複数の分割管と、
 前記固形原料を前記ルツボに投入する際に前記分割管を上下に連結する連結部と、
を有する。これにより、固形原料を充填する際に、リチャージ管を軸方向に分割して軸方向寸法の短い分割管に充填をおこなうことができる。これにより、固形原料の充填量が同じであっても、分割されていないリチャージ管に比べて、充填する固形原料が落下する距離が短くなる。したがって、充填時におけるリチャージ管内面への衝撃を減少させ、リチャージ管内面での傷発生を低減することが可能となる。
The recharge pipe of the present invention is a cylindrical recharge pipe in a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible. ,
A plurality of divided tubes which are divided in the axial direction when filling the solid material;
A connecting portion connecting the divided tubes up and down when the solid material is introduced into the crucible;
Have. As a result, when the solid raw material is charged, the recharge pipe can be divided in the axial direction to fill the divided pipe with a short axial dimension. Thereby, even if the filling amount of the solid raw material is the same, the distance in which the solid raw material to be filled falls is short compared to the non-divided recharge tube. Therefore, it is possible to reduce the impact on the surface of the recharge tube at the time of filling, and to reduce the occurrence of scratches on the surface of the recharge tube.
 これにより、石英等とされるリチャージ管から微粉末が発生することを防止して、有転位化の発生を抑制することが可能となる。同時に、固形原料を軸方向上端付近まで充填した後に、次の分割管を連結部によって連結して、さらに固形原料を充填することで、固形原料落下距離を増大させずに、リチャージする固形原料の全充填量を大幅に増大することが可能となる。 This makes it possible to prevent the generation of fine powder from the recharge tube made of quartz or the like, and to suppress the occurrence of dislocation formation. At the same time, after filling the solid material to the vicinity of the upper end in the axial direction, the next divided pipe is connected by the connecting portion, and the solid material is charged to recharge the solid material without increasing the falling distance of the solid material. It is possible to significantly increase the total filling volume.
 また、上記の構成により、固形形原料落下に起因する内面状態劣化の大きな分割管のみを選択的に交換することが可能となる。これにより、内面劣化状態の進行度にしたがって、各分割管の交換時期を異ならせることが可能となる。 Moreover, according to the above configuration, it is possible to selectively replace only the divided pipe which is largely deteriorated in the inner surface state due to the falling of the solid material. Thereby, it becomes possible to make the replacement time of each divided pipe different according to the progress degree of the inner surface deterioration state.
 例えば、2分割されているリチャージ管において、下側位置の分割管の交換時期に対して上側位置の交換時期が長くなるようにすることができる。あるいは、3分割されているリチャージ管において、下側位置のみを短いサイクルで交換するとともに、上側および中側位置の分割管は、連結位置を入れ替えて使用することで、交換時期をほぼ同じ程度に設定することなどが可能となる。 For example, in the recharge pipe divided into two, the replacement time of the upper position can be made longer than the replacement time of the divided pipe at the lower position. Alternatively, in the recharge pipe divided into three parts, only the lower position is exchanged in a short cycle, and the divided pipes in the upper and middle positions are exchanged at the connection position, and the exchange timings are made approximately the same. It becomes possible to set and the like.
 さらに、リチャージ終了後に管の内面を洗浄する際にも、管長が短いため高いハンドリング性有しており、作業員の負担を低減して、作業時間を短縮することが可能となる。
 同時に、形原料落下に起因する内面状態の劣化速度を低減することが可能となる。このため、リチャージ管の再生処理までのライフそのものを増大して使用可能なリチャージ回数を増大させることができる。また、再生処理の回数を削減して再生処理での変形によるライフを増大させることが可能となる。
Furthermore, even when the inner surface of the pipe is cleaned after completion of the recharge, the pipe length is short, so it has high handling properties, and it is possible to reduce the burden on workers and shorten the working time.
At the same time, it is possible to reduce the deterioration rate of the inner surface state caused by the falling of the forming material. For this reason, the life itself to the regeneration process of the recharge tube can be increased to increase the usable number of recharges. In addition, it is possible to reduce the number of times of the regeneration process and to increase the life due to the deformation in the regeneration process.
 ここで、本発明においてリチャージとは、ルツボ内の原料融液に追加チャージまたはリチャージすることを意味するものとされる。 Here, in the present invention, the term "recharge" means to additionally charge or recharge the raw material melt in the crucible.
 本発明のリチャージ管は、前記分割管において、連結時に下側位置となる分割管上端の内径が、上側位置となる分割管下端の内径に対して等しいか、または、上側位置となる分割管下端の内径よりも大きく設定される。これにより、連結時に下側位置となる分割管が、平面視して上側位置となる分割管よりも内側(中心側)に突出することがない。このため、充填される固形原料が下側位置となる分割管上端に直接ぶつかることがない。これにより、下側位置となる分割管上端付近で傷ができる。あるいは、この下側位置となる分割管上端付近に割れ・欠けが発生して、これに起因する不純物の発生を防止できる。このため、有転位化の防止と、結晶特性悪化の防止を実現することができる。 In the split pipe of the present invention, in the split pipe, the inner diameter of the upper end of the split pipe at the lower position when connected is equal to the inner diameter of the lower end of the split pipe at the upper position, or the lower end of the split pipe at the upper position It is set larger than the inner diameter of. As a result, the divided pipe at the lower position at the time of connection does not protrude inward (center side) from the divided pipe at the upper position in plan view. For this reason, the solid raw material to be charged does not directly collide with the upper end of the divided pipe which is the lower position. Thereby, a flaw can be made in the vicinity of the upper end of the divided pipe which is the lower position. Alternatively, cracking or chipping occurs near the upper end of the divided pipe which is the lower position, and generation of impurities resulting therefrom can be prevented. For this reason, it is possible to realize the prevention of the occurrence of dislocation and the prevention of the deterioration of the crystal characteristics.
 本発明のリチャージ管は、前記分割管の上端内径が、下端内径に対して等しいか、または、下端内径よりも大きく設定される。これにより、例えば、分割管の内径が、上端から下端に向けて縮径する構成とすることや、円柱状の分割管において、その内径が、下端付近のみ下端に向けて縮径する構成とすることができる。 In the recharge pipe of the present invention, the upper end inner diameter of the divided pipe is set equal to the lower end inner diameter or larger than the lower end inner diameter. Thus, for example, the inner diameter of the divided pipe is reduced from the upper end toward the lower end, or in the cylindrical divided pipe, the inner diameter is reduced toward the lower end only near the lower end. be able to.
 本発明のリチャージ管は、前記連結部には、径方向外側に延在するフランジ部が設けられ、このフランジ部を締結する締結部が設けられる。これにより、連結部において、上下の分割管を軸線方向が一致するように並べた状態で、下側位置の分割管上端付近に位置するフランジ部と、上側位置の分割管下端付近に位置するフランジ部とを対向させる。そして、これら平行状態のフランジ部を上下方向から、あるいは、径方向外側から締結部によって締結することで、容易に連結することが可能となる。 In the recharge pipe of the present invention, the connecting portion is provided with a flange portion extending radially outward, and a fastening portion for fastening the flange portion is provided. Thus, in the connecting portion, the upper and lower divided tubes are arranged so that the axial directions coincide with each other, and the flange located near the upper end of the divided tube at the lower position and the flange located near the lower end of the divided tube at the upper position Let the parts face each other. And it becomes possible to connect easily by fastening these flange parts in a parallel state from the up-and-down direction or from the radial outside by fastening parts.
 本発明のリチャージ管は、前記連結部において、連結時に下側位置となる分割管上端に上側位置となる分割管下端が嵌合される。これにより、連結時に下側位置となる分割管上端に、上側位置となる分割管下端を差し込んで、これらを嵌合させるだけで、容易に連結することが可能となる。 In the recharge pipe of the present invention, the lower end of the divided pipe, which is the upper position, is fitted to the upper end of the divided pipe, which is the lower position at the time of connection. As a result, the lower end of the divided pipe, which is the upper position, is inserted into the upper end of the divided pipe, which is the lower position at the time of connection, and it is possible to easily connect only by fitting them.
 本発明のリチャージ管は、前記連結部が、前記分割管の上端面と下端面とを突き合わせて連結される。これにより、分割管の上端面と下端面とが互いに接触し、連結した分割管の連結部付近を密閉することが可能となる。これにより、リチャージ時に単結晶引き上げ装置内で、リチャージ管の内部と外部とを分離した状態を維持して、所定のリチャージ位置まで、リチャージ管を移動させることが可能となる。
 さらに、連結部において、分割管の上端面と下端面とが接触していない場合には、上端外周面と下端内周面とが接触するようにして、分割管の連結部付近を密閉することも可能である。
In the recharge pipe of the present invention, the connection portion is connected by butting the upper end face and the lower end face of the divided pipe. As a result, the upper end surface and the lower end surface of the divided pipe come into contact with each other, and it becomes possible to seal the vicinity of the connection portion of the connected divided pipe. As a result, it is possible to move the recharge tube to a predetermined recharge position while maintaining the state in which the inside and the outside of the recharge tube are separated in the single crystal pulling apparatus at the time of recharge.
Furthermore, when the upper end surface and the lower end surface of the divided pipe do not contact each other in the connecting portion, the upper end outer peripheral surface and the lower end inner peripheral surface are in contact with each other to seal the vicinity of the connecting portion of the divided pipe. Is also possible.
 本発明のリチャージ管は、前記連結部には、上側の前記分割管と下側の前記分割管とが接触する面に緩衝部材が設けられる。これにより、剛性を有する石英等からなる連結する分割管どうしが直接接触せずに、可撓性を有する緩衝部材を介して連結し連結部付近を容易に密閉することができる。同時に、石英等からなる連結する分割管どうしが直接接触して破損などの不具合が生じることを防止できる。 In the recharge pipe according to the present invention, a buffer member is provided on the surface where the upper divided pipe and the lower divided pipe are in contact with each other in the connection portion. As a result, the connecting divided tubes made of quartz or the like having rigidity do not come in direct contact with each other and can be connected via the flexible buffer member to easily seal the vicinity of the connecting portion. At the same time, it is possible to prevent the occurrence of problems such as breakage caused by direct contact between the connected divided pipes made of quartz or the like.
 本発明のリチャージ管は、前記緩衝部材の内径が、上側位置となる分割管下端の内径に対して等しいか、または、上側位置となる分割管下端の内径よりも大きく設定される。これにより、緩衝部材が上側位置となる分割管に隠れて、充填される固形原料が緩衝部材に直接ぶつかることがない。これにより、緩衝部材に起因する不純物の発生を防止できるため、例えばカーボンを含有するとされる緩衝部材が混入してしまうことによる炭素濃度が高くなるなどの結晶特性悪化を防止することが可能となる。 In the recharge pipe of the present invention, the inner diameter of the buffer member is set equal to the inner diameter of the lower end of the divided pipe at the upper position, or larger than the inner diameter of the lower end of the divided pipe at the upper position. Thus, the solid material to be filled does not directly collide with the buffer member because the buffer member is hidden in the divided pipe at the upper position. As a result, the generation of impurities caused by the buffer member can be prevented, so that it is possible to prevent the deterioration of crystal characteristics such as an increase in carbon concentration due to the mixing of the buffer member containing carbon, for example. .
 本発明のリチャージ管は、前記分割管が石英からなり、前記緩衝部材が可撓性を有してカーボンを含む材料からなる。これにより、分割管どうしが変形した場合でも、この変形を吸収して連結部付近を容易に密閉することができる。同時に、石英等からなる連結する分割管どうしが直接接触して破損などの不具合が生じることを防止できる。 In the recharge pipe of the present invention, the divided pipe is made of quartz, and the buffer member is made of a material having flexibility and containing carbon. Thereby, even when the divided pipes are deformed, the deformation can be absorbed to easily seal the vicinity of the connection portion. At the same time, it is possible to prevent the occurrence of problems such as breakage caused by direct contact between the connected divided pipes made of quartz or the like.
 本発明の原料供給装置は、チョクラルスキー法による単結晶の育成に用いられ、粒塊状の固形原料をルツボ内の原料融液に追加チャージまたはリチャージする原料供給装置であって、
 上記のいずれか記載のリチャージ管と、
 前記リチャージ管の下方開口端に着脱可能に装着される円錐状の底蓋と、
 前記リチャージ管および前記底蓋を吊り下げて昇降可能にするとともに前記リチャージ管の下方開口端を開放して前記ルツボ内の原料融液に前記固形原料を投入可能とする引き上げ手段と、
を具備する。これにより、リチャージ量を増大可能なリチャージ管において固形原料当接による傷発生を低減し、有転位化発生を低減し、リチャージ管の使用可能回数を増大し、各分割管の交換時期を制御して、作業効率を向上させることが可能となる。
The raw material supply apparatus according to the present invention is a raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible,
Any of the above-mentioned recharge tubes,
A conical bottom lid removably attached to the lower open end of the recharge tube;
A lifting means for suspending the recharging pipe and the bottom cover so as to be able to move up and down and opening the lower opening end of the recharging pipe so that the solid raw material can be charged into the raw material melt in the crucible;
Equipped with As a result, in the recharge pipe capable of increasing the amount of recharging, the occurrence of damage due to solid raw material contact is reduced, the occurrence of dislocation is reduced, the number of usable recharge pipes is increased, and the replacement time of each divided pipe is controlled. It is possible to improve work efficiency.
 同時に、分割管の軸方向長さを短縮することができる。また、リチャージ管内部に位置する底蓋や引き上げ手段に対しても、充填する固形原料が落下する距離を短縮する。これらにより、充填時における底蓋や引き上げ手段への衝撃を減少させて、底蓋や引き上げ手段に起因する不純物の発生を低減することが可能となる。 At the same time, the axial length of the split tube can be shortened. In addition, the distance to which the solid material to be filled falls is also shortened with respect to the bottom lid and the pulling means located inside the recharge pipe. As a result, it is possible to reduce the impact on the bottom lid and the pulling means at the time of filling, and to reduce the generation of impurities resulting from the bottom lid and the pulling means.
 本発明の単結晶引き上げ装置は、チョクラルスキー法により原料融液から単結晶を育成する単結晶引き上げ装置であって、
 上記の原料供給装置と、
 内部に前記ルツボを備えた炉体と、
 この炉体内で前記ルツボの上方位置に下端内周が縮径した筒状として周設され前記原料融液から育成されている前記単結晶への輻射熱を遮るための熱遮蔽体と、を有し、
 追加チャージ又はリチャージの際、前記リチャージ管を前記熱遮蔽体の内側に上方から挿入するとともに、前記リチャージ管の下端を前記熱遮蔽体の下端よりも上方に位置させ、この状態で前記ルツボ内の前記原料融液に前記固形原料を投入する。これにより、リチャージ量を増大可能なリチャージ管において固形原料当接による傷発生を低減する。また、底蓋や引き上げ手段に起因する不純物発生を低減し、有転位化発生を低減し、引き上げる単結晶の結晶特性悪化を防止して、リチャージ管の使用可能回数を増大し、各分割管の交換時期を制御して、作業効率を向上させることが可能となる。
The single crystal pulling apparatus of the present invention is a single crystal pulling apparatus for growing a single crystal from a raw material melt by the Czochralski method,
The above-mentioned raw material supply device,
A furnace body provided with the crucible inside;
And a heat shield for shielding radiant heat to the single crystal grown from the raw material melt at the upper position of the crucible inside the furnace body as a cylindrical shape having a diameter-reduced diameter at the lower end. ,
At the time of additional charging or recharging, the recharge tube is inserted from above into the inside of the heat shield, and the lower end of the recharge tube is positioned above the lower end of the heat shield, and in this state the inside of the crucible The solid material is charged into the raw material melt. As a result, in the recharge pipe which can increase the recharge amount, the occurrence of damage due to contact with the solid material is reduced. In addition, the generation of impurities due to the bottom lid and pulling means is reduced, the occurrence of dislocations is reduced, the deterioration of the crystal characteristics of the single crystal to be pulled up is prevented, and the number of usable recharge tubes is increased. It becomes possible to control the replacement time and improve the work efficiency.
 本発明の単結晶引き上げ装置は、前記ルツボ内の前記原料融液に前記固形原料を投入する際に、前記熱遮蔽体下端位置よりも前記連結部が高い位置に設定される。これにより、連結部における締結部や緩衝部材に対する原料融液やヒータの熱からの高温に起因する悪影響を低減することができる。同時に、最下側位置となる分割管以外に対して、原料融液やヒータの熱からの高温に起因する変形発生などの悪影響を低減することができる。 In the single crystal pulling apparatus of the present invention, when the solid raw material is charged into the raw material melt in the crucible, the connecting portion is set at a position higher than the lower end position of the heat shield. Thereby, the bad influence resulting from the high temperature from the heat | fever of the raw material melt solution with respect to the fastening part and buffer member in a connection part or a heater can be reduced. At the same time, it is possible to reduce adverse effects such as deformation due to high temperature from the heat of the raw material melt and the heater with respect to the divided tubes other than the lowermost position.
 本発明の単結晶引き上げ装置は、前記炉体の外側において、前記リチャージ管に前記固形原料を充填する際に、
 下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結可能として支持する傾斜支持台を有する。この構成により、充填作業をおこなう際には、まず、傾斜支持台に傾斜状態として、底蓋を装着した最下側位置となる分割管を支持(載置)する。次いで、この分割管に固形原料を充填する。そして、この最下側位置となる分割管の上端付近まで固形原料が充填されたら、連結部によって次の分割管を連結する。さらに連結した分割管に固形原料を充填することができる。しかも、この充填作業中に、分割管の連結状態にかかわらず、分割管を傾斜状態と屹立状態との間で傾斜角度を変えることができるため、充填作業の作業性を向上できる。また、充填する固形原料がリチャージ管等へ当接する衝撃を低減するように角度調節することが可能となる。さらに、充填が終了した際には、リチャージをおこなうために、鉛直方向に吊り上げ可能なように、リチャージ管の軸線方向が鉛直になるように屹立させることも容易になる。
In the single crystal pulling apparatus according to the present invention, when charging the solid material into the recharge pipe outside the furnace body,
The divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion And an inclined support that supports as connectable to the With this configuration, when the filling operation is performed, first, the divided pipe at the lowermost position where the bottom cover is mounted is supported (placed) in an inclined state on the inclined support. Then, the divided tube is filled with the solid material. Then, when the solid raw material is filled up to the vicinity of the upper end of the divided pipe which is the lowermost position, the next divided pipe is connected by the connecting portion. Furthermore, solid material can be filled in the connected divided pipe. Moreover, during this filling operation, the inclination angle of the divided pipe can be changed between the inclined state and the erected state regardless of the connected state of the divided pipe, so that the workability of the filling operation can be improved. In addition, it is possible to adjust the angle so as to reduce the impact of the solid raw material to be filled coming into contact with the recharging pipe or the like. Furthermore, when charging is completed, it is also easy to set up so that the axial direction of the recharge pipe is vertical so that it can be lifted in the vertical direction in order to perform recharging.
 本発明のリチャージ管の使用方法は、
 上記のいずれか記載のリチャージ管の使用方法であって、
 前記固形原料の充填によって所定の状態まで内表面が傷ついた前記分割管のみを交換する。これにより、固形原料落下に起因する内面状態劣化の大きな分割管のみを選択的に交換することが可能となる。これにより、内面劣化状態の進行度にしたがって、各分割管の交換時期を異ならせて、リチャージ管としてのライフを延長し、リチャージ量の増大と有転位化発生の低減と結晶品質低下の防止とコスト削減とを同時に図ることが可能となる。
The method of using the recharge tube of the present invention is
It is a usage method of the recharge pipe as described in any of the above,
Only the divided pipe whose inner surface is damaged to a predetermined state is replaced by the filling of the solid material. As a result, it is possible to selectively replace only the divided pipe which is largely deteriorated in the inner surface state due to the falling of the solid material. As a result, the life of the recharge tube is extended by changing the replacement time of each divided tube according to the progress degree of the inner surface degradation state, and the increase in the recharge amount, the reduction of occurrence of dislocation and the prevention of the crystal quality deterioration It is possible to simultaneously achieve cost reduction.
 例えば、二分割されているリチャージ管において、上側位置の分割管の充填時にも固形原料がより多く当接する可能性のある下側位置の分割管の交換時期を、上側位置の分割管の交換時期よりも短くして、下側位置の分割管を早く交換することができる。あるいは、三分割されるとともに同じ形状にされているリチャージ管において、連結状態における初期のリチャージ量に必要な個数よりも多い分割管を用意し、先に痛みがひどくなり交換状態となる下側位置の分割管のみを短いサイクルで交換することができる。さらに、下側位置の分割管に比べて中側位置の分割管の交換頻度を低くすることができる。また、中側位置の分割管に比べて上側位置の分割管の交換頻度を低くすることができる。さらに、上中下の位置の分割管における連結位置を順に入れ替えて使用することで交換時期をほぼ同じ程度に設定することなど、これ以外にも、リチャージ管としてのライフ延長を図ることが可能となる。 For example, in the divided divided recharge pipe, the replacement time of the divided pipe at the lower position where the solid material may contact more even when the divided pipe at the upper position is filled, the replacement time of the divided pipe at the upper position It can be made shorter and the split tube at the lower position can be replaced quickly. Alternatively, in the recharge tube divided into three and having the same shape, prepare a split tube more than the number required for the initial recharge amount in the connected state, and the lower position where the pain gets worse first and the replacement state takes place Only the split tubes of can be replaced in a short cycle. Furthermore, the frequency of replacement of the middle divided pipe can be reduced compared to the lower divided pipe. Further, the frequency of replacement of the divided pipe at the upper position can be reduced compared to the divided pipe at the middle position. Furthermore, it is possible to extend the life as a recharge pipe, such as setting the replacement time to almost the same degree by using the connection positions in the divided pipes at the upper, middle, and lower positions in turn, and using them in sequence. Become.
 本発明のリチャージ管の使用方法は、前記分割管を、傷のない状態に比べて前記固形原料の充填によって生じた内面の傷により透過率が70%を下回った部分が生じた場合に交換する。これにより、内面状態劣化の大きな分割管のみを選択的に交換することが可能となる。透過率が70%よりも低下した場合には、分割管の強度が低下するため不適であう。また、この透過率が70%を下回った部分は、最も大きな面積を有する部分が、10cm四方程度の大きさの領域であることができる。あるいは、透過率が70%を下回った部分が5cm四方程度の領域が3~4箇所形成された状態とすることもできる。
 これにより、リチャージ管の強度を保証して、有転位化発生を防止し、結晶品質の低下を防止することができる。
According to the method of using the recharge tube of the present invention, the divided tube is replaced when there is a portion with a transmittance of less than 70% due to the scratch of the inner surface caused by the filling of the solid material compared to the condition without the scratch. . As a result, it is possible to selectively replace only the divided pipe having a large inner surface state deterioration. If the transmission rate is lower than 70%, the divided pipes are not suitable because the strength is reduced. Also, in the portion where the transmittance is less than 70%, the portion having the largest area can be a region of about 10 cm square. Alternatively, three to four regions each having a size of about 5 cm square can be formed in a portion where the transmittance is less than 70%.
As a result, the strength of the recharge tube can be ensured, the occurrence of dislocation can be prevented, and the deterioration of crystal quality can be prevented.
 本発明のリチャージ管の使用方法は、傷ついて交換された前記分割管の内面を加熱して再生する。これにより、交換した分割管を再使用可能とすることができる。これにより、傷のない状態で、強度を維持しかつ有転位化を防止した状態で分割管を再使用し、ライフを延長してコスト削減を図ることが可能となる。 The method of using the recharge tube of the present invention heats and regenerates the inner surface of the split tube which has been damaged and replaced. Thereby, the replaced divided pipe can be made reusable. As a result, it is possible to reuse the divided pipe in a state of maintaining strength and preventing dislocation in a non-scratched state to extend the life and achieve cost reduction.
 本発明のリチャージ管の使用方法は、加熱により再生された前記分割管の変形が所定量を超えた場合に再使用しない。これにより、連結部における密閉を維持可能な分割管のみを使用して、リチャージにおける安全性を確保することができる。 The method of using the recharge pipe according to the present invention does not reuse when the deformation of the divided pipe regenerated by heating exceeds a predetermined amount. In this way, it is possible to secure the safety in the recharge by using only the divided pipe which can maintain the sealing at the connection portion.
 本発明のリチャージ方法は、上記の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
 下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結してさらに前記固形原料を充填する。これにより、有転位化の発生を抑制し、引き上げる結晶において、炭素濃度の変動などの品質劣化を抑制した状態で、リチャージ管により増量した原料を追加あるいはリチャージして単結晶引き上げをおこなうことが可能となる。
The recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
The divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion And the solid material is further charged. Thereby, it is possible to perform single crystal pulling by adding or recharging the raw material increased by the recharge pipe in a state where generation of dislocation is suppressed and quality deterioration such as fluctuation of carbon concentration is suppressed in the pulling crystal. It becomes.
 本発明のリチャージ方法は、上記の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
 前記傾斜支持台によって、下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結してさらに前記固形原料を充填する。これにより、傾斜状態と鉛直方向への屹立状態との間で傾斜角度を制御して、固形原料のリチャージ管への充填を可能とし、原料充填工程における作業効率の向上と、安全性の向上と、結晶品質の向上とを図ることを可能とすることができる。
The recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
The inclined support supports the divided pipe mounted with the bottom lid at the lower end by the inclined support, and the divided pipe erected along with the filling of the solid material is erected in the vertical direction side, and the connection portion Thus, the dividing pipe is connected to the upper side to further charge the solid material. As a result, the inclination angle is controlled between the inclined state and the erected state in the vertical direction, and the solid raw material can be charged into the recharging pipe, thereby improving the work efficiency and the safety in the raw material filling step. And improve the crystal quality.
 本発明のリチャージ方法は、上記の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
 前記ルツボ内の前記原料融液に追加チャージまたはリチャージした後に、
 前記傾斜支持台によって、連結された複数の前記分割管を支持し、傾斜させて前記分割管を前記連結部により分離する。これにより、リチャージ工程後における次のリチャージ工程への作業効率を向上し、単結晶の製造コストを低減することが可能となる。
The recharging method of the present invention is, in the single crystal pulling apparatus described above, a method of additionally charging or recharging the raw material melt in the crucible,
After additionally charging or recharging the raw material melt in the crucible,
The inclined support supports the connected plurality of divided pipes, and the divided pipes are separated by the connection portion by being inclined. As a result, it is possible to improve the work efficiency to the next recharging step after the recharging step, and to reduce the manufacturing cost of the single crystal.
 本発明の単結晶引き上げ方法は、上記のリチャージ方法によって、前記ルツボ内の前記原料融液に追加チャージまたはリチャージした後に、
 前記原料融液から単結晶を育成する。これにより、リチャージ量を増大し、結晶品質低減を防止し、有転位化発生を抑制し、作業効率を向上するとともに製造コストを低減して単結晶引き上げをおこなうことができる。
According to the single crystal pulling method of the present invention, the raw material melt in the crucible is additionally charged or recharged by the above-described recharge method.
A single crystal is grown from the raw material melt. As a result, the amount of recharging can be increased, the reduction in crystal quality can be prevented, the occurrence of dislocation can be suppressed, the working efficiency can be improved, and the manufacturing cost can be reduced to perform single crystal pulling.
 本発明によれば、リチャージ管における充填量の増大と、リチャージ管のライフ減少防止とを同時に実現し、同時に、有転位化の発生低減と、リチャージにかかる作業性の低下防止と、結晶品質の低下を防止することができるという効果を奏することが可能となる。 According to the present invention, the increase of the filling amount in the recharge tube and the prevention of the life decrease of the recharge tube are realized simultaneously, and at the same time, the occurrence of dislocation is reduced, the workability for the recharge is prevented, and the crystal quality is reduced. It is possible to achieve the effect that the drop can be prevented.
本発明に係る原料供給装置に使用されるリチャージ管の第1実施形態を示す正断面図である。It is a front sectional view showing a 1st embodiment of a recharge pipe used for a materials feeding device concerning the present invention. 本発明に係るリチャージ管の第1実施形態を示す分解斜視図である。It is an exploded perspective view showing a 1st embodiment of a recharge pipe concerning the present invention. 本発明に係るリチャージ管の第1実施形態における分割管の連結部を示す拡大断面図である。It is an expanded sectional view showing the connection part of the division pipe in a 1st embodiment of the recharge pipe concerning the present invention. 本発明に係る原料供給装置に使用されるリチャージ管の第1実施形態における下端側を示す拡大正断面図である。It is an expansion right sectional view showing the lower end side in a 1st embodiment of the recharge pipe used for the materials feeding device concerning the present invention. 本発明に係る原料供給装置に使用されるリチャージ管の第1実施形態を示す平断面図である。It is a plane sectional view showing a 1st embodiment of a recharge pipe used for a materials feeding device concerning the present invention. 本発明に係る原料供給装置に使用されるリチャージ管の第1実施形態におけるリチャージ管の上昇が停止した状態の上端側を示す拡大正面図である。It is an enlarged front view showing the upper end side of the state where rise of the recharge pipe in the first embodiment of the recharge pipe used for the raw material supply device according to the present invention is stopped. 本発明に係る原料供給装置に使用されるリチャージ管の第1実施形態における上端側のさらに金属製シャフトを降下して底蓋を開放した状態の上端側を示す拡大正面図である。It is an enlarged front view showing the upper end side in the state where the metal shaft on the upper end side in the first embodiment of the recharge pipe used in the raw material supply device according to the present invention is further lowered to open the bottom lid. 本発明に係る原料供給装置に使用されるリチャージ管の第1実施形態における上端側に用いられる金属製上部部材を示す平面図である。It is a top view which shows the metal upper member used on the upper end side in 1st Embodiment of the recharge pipe used for the raw material supply apparatus which concerns on this invention. 本発明に係るリチャージ方法の第1実施形態における分割管への充填工程を示す模式図である。It is a schematic diagram which shows the filling process to the division pipe in 1st Embodiment of the recharge method which concerns on this invention. 本発明に係るリチャージ方法の第1実施形態における分割管への充填工程を示す模式図である。It is a schematic diagram which shows the filling process to the division pipe in 1st Embodiment of the recharge method which concerns on this invention. 従来のリチャージ管への充填工程を示す模式図である。It is a schematic diagram which shows the filling process to the conventional recharge pipe. 本発明に係るリチャージ方法の第1実施形態を示すフローチャートである。It is a flowchart which shows 1st Embodiment of the recharge method which concerns on this invention. 本発明に係る原料供給装置を配置した単結晶引き上げ装置の第1実施形態を示す模式図である。It is a schematic diagram which shows 1st Embodiment of the single-crystal pulling apparatus which has arrange | positioned the raw material supply apparatus which concerns on this invention. 本発明に係る原料供給装置を配置した単結晶引き上げ装置の第1実施形態を示す模式図である。It is a schematic diagram which shows 1st Embodiment of the single-crystal pulling apparatus which has arrange | positioned the raw material supply apparatus which concerns on this invention. 本発明に係る単結晶引き上げ装置の第2実施形態における傾斜支持台を示す模式図である。It is a schematic diagram which shows the inclination support stand in 2nd Embodiment of the single crystal pulling apparatus which concerns on this invention. 本発明に係る単結晶引き上げ装置の第2実施形態における傾斜支持台を示す模式図である。It is a schematic diagram which shows the inclination support stand in 2nd Embodiment of the single crystal pulling apparatus which concerns on this invention. 本発明に係る単結晶引き上げ装置の第2実施形態における傾斜支持台を示す模式図である。It is a schematic diagram which shows the inclination support stand in 2nd Embodiment of the single crystal pulling apparatus which concerns on this invention. 本発明に係る単結晶引き上げ装置の第2実施形態における傾斜支持台を示す模式図である。It is a schematic diagram which shows the inclination support stand in 2nd Embodiment of the single crystal pulling apparatus which concerns on this invention. 本発明に係るリチャージ管の第3実施形態を示す模式断面図である。It is a schematic cross section which shows 3rd Embodiment of the recharge pipe | tube which concerns on this invention. 本発明に係るリチャージ管の第3実施形態における分割管連結部を示す拡大断面図である。It is an expanded sectional view showing a divided pipe connection part in a 3rd embodiment of a recharge pipe concerning the present invention. 本発明に係るリチャージ管の第3実施形態を示す分解斜視図である。It is an exploded perspective view showing a 3rd embodiment of a recharge pipe concerning the present invention. 本発明に係る単結晶引き上げ装置の第3実施形態における原料供給装置を示す模式図である。It is a schematic diagram which shows the raw material supply apparatus in 3rd Embodiment of the single crystal pulling apparatus which concerns on this invention. 本発明に係るリチャージ管の第4実施形態における分割管連結部を示す模式断面図である。It is a schematic cross section which shows the division pipe connection part in 4th Embodiment of the recharge pipe which concerns on this invention. 本発明に係るリチャージ管の第5実施形態における模式図である。It is a schematic diagram in 5th Embodiment of the recharge pipe | tube which concerns on this invention. 本発明に係るリチャージ管の第6実施形態における模式図である。It is a schematic diagram in 6th Embodiment of the recharge pipe | tube which concerns on this invention. 本発明に係るリチャージ管の第7実施形態における模式図である。It is a schematic diagram in 7th Embodiment of the recharge pipe | tube which concerns on this invention.
S1…固形原料
S2…原料融液
1…メインチャンバ
2…プルチャンバ
2a…駆動機構(引き上げ手段)
3…ルツボ
4…支持軸
4A…サセプタ
5…ヒータ
6…断熱材
7…引上軸(引き上げ手段)
8…吊り下げ治具(引き上げ手段)
9…上フランジ部
9a…金属製フランジ
10…リチャージ管
10A…下側分割管(分割管)
10Aa…上端部
10Ab…下端部
10B…上側分割管(分割管)
10Ba…上端部
10Bb…下端部
10C…上追加分割管(分割管)
10D…中側分割管(分割管)
11…連結部
11a,11b,1m,11n…フランジ部
11c…連結孔
11d…ボルト・ナット(締結部)
11e…緩衝部材
11g…嵌合溝
11h…嵌合溝
12…熱遮蔽体
13…ゲートバルブ
14…底蓋
15…金属製シャフト(引き上げ手段)
16…保護管(引き上げ手段)
16a…摺動保護管
16b…被覆保護管
16c…固定板部
16f…固定傾斜板
18…ハンガー
19…金属製ワッシャー
20…金属製上部部材
21…長ネジ
30…傾斜支持台
31…支持部
32…支持台車部
33…車輪
34…傾斜台
35…傾斜支持部
35a…水平軸
36…基部
36a…傾斜部
37,38…軸線
39…傾斜駆動部
S1: Solid raw material S2: Raw material melt 1: Main chamber 2: Pull chamber 2a: Drive mechanism (pulling up means)
3 Crucible 4 Support shaft 4A Susceptor 5 Heater 6 Insulation material 7 Pull-up shaft (pull-up means)
8 ... Suspension jig (lifting means)
9 Upper flange portion 9a Metal flange 10 Recharge pipe 10A Lower divided pipe (divided pipe)
10Aa ... upper end 10Ab ... lower end 10B ... upper divided pipe (divided pipe)
10Ba: upper end portion 10Bb: lower end portion 10C: upper additional split pipe (split pipe)
10D ... inside split tube (split tube)
11 ... connection part 11a, 11b, 1m, 11n ... flange part 11c ... connection hole 11d ... bolt and nut (fastening part)
11e Buffer member 11g Mating groove 11h Mating groove 12 Heat shield 13 Gate valve 14 Bottom lid 15 Metal shaft (pulling up means)
16 ... Protective pipe (lifting means)
16a: Sliding protective tube 16b: Coating protective tube 16c: Fixed plate portion 16f: Fixed inclined plate 18: Hanger 19: Metal washer 20: Metal upper member 21: Long screw 30: Tilted support base 31: Support portion 32: Support truck portion 33: Wheel 34: Tilting stand 35: Tilting support portion 35a: Horizontal axis 36: Base portion 36a: Tilting portion 37, 38: Axis 39: Tilting drive portion
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第1実施形態を、図面に基づいて説明する。
 図1は、本実施形態におけるリチャージ管を示す正断面図である。図2は、本実施形態におけるリチャージ管を示す分解斜視図である。図3は、本実施形態におけるリチャージ管における連結部を示す拡大断面図である。図において、符号10は、リチャージ管である。
Hereinafter, a first embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a recharge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
FIG. 1 is a front sectional view showing a recharge pipe in the present embodiment. FIG. 2 is an exploded perspective view showing the recharge pipe in the present embodiment. FIG. 3 is an enlarged cross-sectional view showing a connection portion in the recharge pipe in the present embodiment. In the figure, reference numeral 10 is a recharge pipe.
 本実施形態に係るリチャージ管10は、後述するように、CZ法(チョクラルスキー法)による単結晶引き上げ装置に対してリチャージをおこなう原料供給装置を構成している。
 本実施形態に係るリチャージ管10は、図1~図3に示すように、石英からなる円筒状とされ、固形原料をその内部に充填する。
The recharge tube 10 according to the present embodiment, as described later, constitutes a raw material supply device that recharges a single crystal pulling apparatus according to the CZ method (Czochralski method).
As shown in FIGS. 1 to 3, the recharge tube 10 according to the present embodiment has a cylindrical shape made of quartz, and the solid raw material is charged therein.
 リチャージ管10は、図1~図2に示すように、本実施形態では軸方向である上下方向に二分割されており、下側分割管(分割管)10Aと上側分割管(分割管)10Bとからなる。
 下側分割管10Aと上側分割管10Bとは、略同一の内径を有するように設定され、下側分割管10A上端と上側分割管10B下端とが連結部11によって連結可能とされている。
As shown in FIGS. 1 and 2, the recharge pipe 10 is divided into two in the vertical direction, which is the axial direction in the present embodiment, and the lower divided pipe (divided pipe) 10A and the upper divided pipe (divided pipe) 10B It consists of
The lower divided pipe 10A and the upper divided pipe 10B are set to have substantially the same inner diameter, and the upper end of the lower divided pipe 10A and the lower end of the upper divided pipe 10B can be connected by the connecting portion 11.
 連結部11としては、図2~図3に示すように、下側分割管10A上端のフランジ部11aと、上側分割管10B下端のフランジ部11bと、が設けられる。連結部11としては、フランジ部11aとフランジ部11bとに周方向に離間して複数設けられた連結孔11c,11cと、これらを締結する締結部としてのボルト・ナット11d、11dと、が設けられる。連結部11としては、フランジ部11aとフランジ部11bとに挟持される緩衝部材11eと、が設けられる。 As the connection portion 11, as shown in FIGS. 2 to 3, a flange portion 11a at the upper end of the lower divided pipe 10A and a flange portion 11b at the lower end of the upper divided pipe 10B are provided. The connecting portion 11 is provided with a plurality of connecting holes 11c and 11c circumferentially separated from each other in the flange portion 11a and the flange portion 11b, and bolts and nuts 11d and 11d as fastening portions for fastening these. Be As the connection part 11, the buffer member 11e pinched by the flange part 11a and the flange part 11b is provided.
 連結孔11cは、図2~図3に示すように、フランジ部11aとフランジ部11bとにおいてその周方向に略均等な間隔を有して複数配置されている。本実施形態においては、連結孔11cが六箇所設けられているがこの数に限定されるものではない。 As shown in FIGS. 2 to 3, a plurality of connection holes 11c are arranged at substantially equal intervals in the circumferential direction in the flange portion 11a and the flange portion 11b. In the present embodiment, six connection holes 11 c are provided, but the number is not limited to this number.
 ボルト・ナット11d、11dは、図3に示すように、単結晶引き上げ装置内における高温にも耐性を有する金属製とされ、さらに、有転位化等の原因となる微小物等を放出しないように例えば表面処理等を施したボルト・ナットの組とされる。具体的には、耐熱性能がそれほど求められない場合にはSUS(ステンレス)等、あるいは、より高温耐性が要求される場合には、モリブデン等からなるものとすることができる。また、ナット11dはダブルナットとされる。 As shown in FIG. 3, the bolts and nuts 11d and 11d are made of metal that is resistant to high temperatures in the single crystal pulling apparatus, and further, to prevent release of minute objects and the like that cause dislocation or the like. For example, it is a set of a bolt and a nut subjected to surface treatment and the like. Specifically, it can be made of SUS (stainless steel) or the like when heat resistance is not required so much, or molybdenum or the like when high temperature resistance is required. Further, the nut 11 d is a double nut.
 また、ボルト・ナット11dと連結孔11cとの間には、フランジ部11aの下面とフランジ部11bの上面とに、金属製の部材11fが設けられて、フランジ部11aとフランジ部11bとボルト・ナット11dとが直接接触しないようになっている。 Further, a metal member 11f is provided between the bolt / nut 11d and the connection hole 11c on the lower surface of the flange portion 11a and the upper surface of the flange portion 11b, and the flange portion 11a, the flange portion 11b, and the bolt Direct contact with the nut 11 d is prevented.
 緩衝部材11eは、図1,図3に示すように、フランジ部11aの上面とフランジ部11bの下面とに接触する。緩衝部材11eは、可撓性を有する薄厚のリング状とされている。これは、ボルト・ナット11dによって締結されたフランジ部11aの上面とフランジ部11bの下面とが直接接触しないように、また、これらの間の変形などを吸収するようにするためである。具体的には、緩衝部材11eが、単結晶引き上げ装置内における高温にも耐性を有する耐熱性樹脂とされることができる。あるいは、緩衝部材11eが、可撓性を有するカーボンを含むかカーボンからなるものとされてもよい。また、緩衝部材11eとして、テフロン(登録商標)等のフッ素樹脂、炭素繊維不織布などが適応される。 The buffer member 11 e contacts the upper surface of the flange portion 11 a and the lower surface of the flange portion 11 b as shown in FIGS. 1 and 3. The buffer member 11 e is in the form of a thin, flexible ring. This is to prevent direct contact between the upper surface of the flange portion 11a fastened by the bolt and nut 11d and the lower surface of the flange portion 11b, and to absorb deformation between them. Specifically, the buffer member 11 e can be made of a heat-resistant resin that is resistant to high temperatures in the single crystal pulling apparatus. Alternatively, the buffer member 11 e may include or consist of flexible carbon. Further, as the buffer member 11e, a fluorine resin such as Teflon (registered trademark), a carbon fiber non-woven fabric, or the like is applied.
 緩衝部材11eは、その外径は特に規定されないが、その内径寸法は上側分割管10B下端の内径よりも大きい。言いかえると、上側から見たときに、上側分割管10B下端よりもリチャージ管10内側にはみ出さないように設定されている。また、緩衝部材11eの厚さ寸法は、締結部による締結時に下側分割管10Aおよび上側分割管10Bの変形に追従可能で、これら連結部11の密閉を維持可能な程度であれば特に限定されない。 The outer diameter of the buffer member 11e is not particularly limited, but the inner diameter is larger than the inner diameter of the lower end of the upper divided pipe 10B. In other words, when viewed from the upper side, it is set so as not to protrude inside the recharge pipe 10 more than the lower end of the upper divided pipe 10B. Further, the thickness dimension of the buffer member 11e is not particularly limited as long as it can follow the deformation of the lower divided pipe 10A and the upper divided pipe 10B at the time of fastening by the fastening portion and the sealing of these connecting portions 11 can be maintained. .
 さらに、下側分割管10Aの上端面および上側分割管10Bの下端面が突き合わせて密閉可能な程度に平面精度が高い場合には、緩衝部材11eを設けないこともできる。 Furthermore, when the plane accuracy is high enough that the upper end surface of the lower divided pipe 10A and the lower end surface of the upper divided pipe 10B can butt seal each other, the buffer member 11e may not be provided.
 上側分割管10B上端には、図1~図2に示すように、上フランジ部9この上フランジ部9は、フランジ部11aおよびフランジ部11bの外径よりもその外形寸法が大きくなるように設定されている。 At the upper end of the upper divided pipe 10B, as shown in FIGS. 1 to 2, the upper flange portion 9 is set such that its outer dimensions are larger than the outer diameters of the flange portions 11a and 11b. It is done.
 図4は、本実施形態におけるリチャージ管の下端側を示す拡大正断面図である。図5は、本実施形態におけるリチャージ管の下端側を示す平断面図である。
 リチャージ管は、図4に示すように、下側分割管10Aの下方開口端に円錐状の底蓋14を着脱可能に装着されている。
 底蓋14は、上部からリチャージ管10の内部を貫通する金属製シャフト(引き上げ手段)15に連結している。
FIG. 4 is an enlarged front sectional view showing the lower end side of the recharge pipe in the present embodiment. FIG. 5 is a plan sectional view showing the lower end side of the recharge pipe in the present embodiment.
As shown in FIG. 4, the lower end of the lower divided pipe 10A has a conical bottom lid 14 detachably attached to the recharge pipe.
The bottom cover 14 is connected to a metal shaft (pulling up means) 15 penetrating the inside of the recharge pipe 10 from the top.
 金属製シャフト15は、図4に示すように、リチャージ管10を貫通し、その内部で固形原料との直接接触を防止するため、保護管(引き上げ手段)16によって保護されている。保護管16は、金属製シャフト15を直接覆う被覆保護管16bと、この被覆保護管16bを摺動可能に挿入させた摺動保護管16aとで構成されている。保護管16は、金属製シャフト15が固形原料と直接接触するのを防止するとともに、金属製シャフト15にずれが生じることなく安定した作動状態を確保するものとされる。 As shown in FIG. 4, the metal shaft 15 penetrates the recharge pipe 10 and is protected by a protective pipe (pulling-up means) 16 in order to prevent direct contact with the solid raw material inside. The protective tube 16 is composed of a coated protective tube 16b directly covering the metal shaft 15, and a sliding protective tube 16a in which the coated protective tube 16b is slidably inserted. The protective tube 16 prevents the metal shaft 15 from coming into direct contact with the solid raw material, and ensures a stable operating state without causing the metal shaft 15 to shift.
 摺動保護管16aは、図4~図5に示すように、固定板部16cによってリチャージ管10に固定されている。摺動保護管16aは垂直方向に配置される。摺動保護管16aは、リチャージ管10の軸中心位置に配置される。固定板部16cは板体である。固定板部16cは、リチャージ管10および摺動保護管16aの軸方向である鉛直方向に配置される。固定板部16cは、リチャージ管10の径方向において、リチャージ管10の内面からリチャージ管10まで延在する。 The sliding protection tube 16a is fixed to the recharge tube 10 by a fixing plate portion 16c, as shown in FIGS. The sliding protective tube 16a is vertically disposed. The sliding protective tube 16 a is disposed at an axial center position of the recharge tube 10. The fixed plate portion 16c is a plate. The fixed plate portion 16c is disposed in the vertical direction, which is the axial direction of the recharge tube 10 and the sliding protection tube 16a. The fixed plate portion 16 c extends from the inner surface of the recharge tube 10 to the recharge tube 10 in the radial direction of the recharge tube 10.
 固定板部16cは、下側分割管10Aおよび上側分割管10Bとで連接され、連結部11付近で離間した被覆保護管16bと摺動保護管16aとに対して、金属製シャフト15が軸方向に連続した状態で貫通するようになっている。 The fixed plate portion 16c is connected by the lower divided pipe 10A and the upper divided pipe 10B, and the metal shaft 15 is in the axial direction with respect to the coated protective pipe 16b and the sliding protective pipe 16a which are separated in the vicinity of the connecting portion 11. It penetrates in a continuous state.
 したがって、リチャージ管10を貫通する金属製シャフト15は、これを直接覆う被覆保護管16bにより固形原料への汚染が防止されるだけでなく、さらに、摺動保護管16aの作用によりリチャージ管10の中心位置からずれることがない。 Therefore, the metal shaft 15 passing through the recharging pipe 10 is not only prevented from being contaminated with the solid raw material by the covering protection pipe 16b directly covering the same, but also by the action of the sliding protection pipe 16a. It does not shift from the center position.
 なお、固定板部16cはリチャージ管10の径方向に位置しているので、下側分割管10Aおよび上側分割管10Bを連結部11によって連結する際に、ほぼ面一となるように配置すればよい。
 これにより、金属製シャフト15は、リチャージ管10をルツボの中心位置に垂直に吊り下げることが可能になり、ルツボ内の融液内へ均等に固形原料を供給できる。
In addition, since the fixed plate portion 16c is located in the radial direction of the recharge pipe 10, when the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11, they should be arranged to be substantially flush. Good.
Thereby, the metal shaft 15 can vertically suspend the recharge tube 10 at the center position of the crucible, and can uniformly supply the solid material into the melt in the crucible.
 図6は、本実施形態におけるリチャージ管の下降が停止した状態の上端側を示す拡大正面図である。図7は、本実施形態におけるリチャージ管の上端側のさらに金属製シャフトを降下して底蓋を開放した状態の上端側を示す拡大正面図である。図8は、本実施形態におけるリチャージ管における上端側に用いられる金属製上部部材を示す平面図である。 FIG. 6 is an enlarged front view showing the upper end side of the state where the descent of the recharge pipe in the present embodiment is stopped. FIG. 7 is an enlarged front view showing the upper end side of a state in which the metal shaft is further lowered on the upper end side of the recharge pipe in the present embodiment to open the bottom lid. FIG. 8 is a plan view showing a metal upper member used on the upper end side of the recharge pipe in the present embodiment.
 原料供給装置では、金属製シャフト15の昇降に同期するように、リチャージ管10にも昇降手段を設けている。原料供給装置では、円錐状の底蓋14を下方開口端に挿入してリチャージ管10を吊り上げるタイミングと、リチャージ管10に設けた昇降手段(引き上げ手段)による吊り上げタイミングとが同期するように構成している。昇降タイミングを同期させることによって、金属製シャフト15の昇降のみならず、リチャージ管10の昇降も安定させることができる。 In the raw material supply device, lifting and lowering means is also provided to the recharge pipe 10 in synchronization with the lifting and lowering of the metal shaft 15. In the raw material supply device, the conical bottom lid 14 is inserted into the lower opening end to lift the recharging pipe 10 in synchronization with the lifting timing by the lifting means (pulling up means) provided on the recharging pipe 10 ing. By synchronizing the elevation timing, not only elevation of the metal shaft 15 but also elevation of the recharge tube 10 can be stabilized.
 原料供給装置では、図6~図7に示すように、リチャージ管10の昇降手段(引き上げ手段)として、金属製(ステンレス等)ワッシャー19が金属製シャフト15に設けられている。リチャージ管10の中心位置に摺動保護管16aを配置し、その内部で金属製シャフトを昇降させる構造であり、金属製シャフト15の所定の高さ位置に金属製ワッシャー19が取り付けられる。さらに、金属製ワッシャー19による昇降手段には、リチャージ管10を均一に吊り下げるために装備した専用のハンガー18が用いられる。 In the raw material supply apparatus, as shown in FIGS. 6 to 7, a metal (stainless steel or the like) washer 19 is provided on the metal shaft 15 as a lifting and lowering means (lifting means) of the recharge pipe 10. The sliding protection pipe 16a is disposed at the center position of the recharge pipe 10, and the metal shaft is moved up and down in the inside thereof. A metal washer 19 is attached to a predetermined height position of the metal shaft 15. Furthermore, as the lifting means by the metal washer 19, a dedicated hanger 18 equipped to suspend the recharging tube 10 uniformly is used.
 円錐状の底蓋14を下方開口端に挿入してリチャージ管10を吊り上げるタイミングと、リチャージ管10を吊り上げるタイミングとが合致するように、金属製ワッシャー19の固定位置を調整することにより、昇降タイミングを同期させることができる。これにより、金属製シャフト15の昇降に合わせ、リチャージ管10の昇降も一層安定させることができる。 Elevation timing by adjusting the fixing position of the metal washer 19 so that the timing to lift the recharge tube 10 by inserting the conical bottom lid 14 into the lower opening end and the timing to lift the recharge tube 10 coincide with each other. Can be synchronized. Thereby, according to the raising and lowering of the metal shaft 15, the raising and lowering of the recharge pipe 10 can be further stabilized.
 金属製上部部材20は、ボルト・ナット11dと同じ材質で構成され、リチャージ管10の上部に取り付けられる。
 掛止部材として金属製フランジ9aを設けることもできる。
The metal upper member 20 is made of the same material as the bolt and nut 11 d and is attached to the upper portion of the recharge pipe 10.
A metal flange 9a can be provided as a hooking member.
 金属製フランジ9aは、上記の金属製上部部材20の円周方向で所定位置に通し孔20aを設けて、長ネジ21を通しナット類で締め付けてリチャージ管10の金属製上部部材20に固定される構造である。この場合に、金属製フランジ9aの高さ調整は、長ネジ21の締め付け長さによって行われ、リチャージ管10の下降停止高さを調整するようにしている。 The metal flange 9a is provided with a through hole 20a at a predetermined position in the circumferential direction of the metal upper member 20 described above, and is fixed to the metal upper member 20 of the recharge pipe 10 by tightening the long screw 21 with nuts. Structure. In this case, the height adjustment of the metal flange 9 a is performed by the tightening length of the long screw 21 so as to adjust the lowering stop height of the recharge pipe 10.
 図9は、本実施形態におけるリチャージ管への充填方法を示す工程図である。図10は、本実施形態におけるリチャージ管への充填方法を示す工程図である。図11は、従来のリチャージ管における充填方法を示す工程図である。図12は、本実施形態におけるリチャージ方法を示すフローチャートである。 FIG. 9 is a process chart showing a method of filling the recharge pipe in the present embodiment. FIG. 10 is a process chart showing a method of filling the recharge pipe in the present embodiment. FIG. 11 is a process diagram showing a filling method in the conventional recharging tube. FIG. 12 is a flowchart showing the recharging method in the present embodiment.
 本実施形態におけるリチャージ方法は、図12に示すように、リチャージ量設定工程S01と、連結長さ設定工程S02と、洗浄工程S03と、最下部分割管セット工程S04と、傾斜工程S05と、原料充填工程S06と、リチャージ量判定工程S07と、分割管セット工程S08と、連結工程S09と、屹立工程S10と、リチャージ工程S11と、分割工程S12と、リチャージ回数カウント工程S13と、リチャージ回数判定工程S14と、管透過目視確認工程S15と、交換工程S16と、洗浄工程S17と、再生処理工程S20と、変形量判定工程S21と、排棄工程S22と、を有することができる。 As shown in FIG. 12, the recharging method according to the present embodiment includes, as shown in FIG. 12, a recharging amount setting step S01, a coupling length setting step S02, a cleaning step S03, a lowermost divided pipe setting step S04, an inclination step S05, and a raw material. Filling step S06, recharge amount determination step S07, divided pipe setting step S08, connection step S09, erecting step S10, recharge step S11, division step S12, recharge number counting step S13, recharge number determination step It can have S14, tube penetration visual observation process S15, exchange process S16, cleaning process S17, regeneration treatment process S20, deformation amount determination process S21, and discard process S22.
 本実施形態におけるリチャージ方法は、図12に示すリチャージ量設定工程S01として、ルツボに追加チャージあるいはリチャージする固形原料S1の量を設定する。そして、図12に示す連結長さ設定工程S02として、リチャージ量設定工程S01で設定した量の固形原料S1を充填可能な容積を有するように、リチャージ管10における分割管の連結数を決定する。 In the recharging method according to this embodiment, the amount of solid raw material S1 to be additionally charged or recharged to the crucible is set as a recharging amount setting step S01 shown in FIG. Then, as the coupling length setting step S02 shown in FIG. 12, the number of couplings of the divided pipes in the recharge pipe 10 is determined so as to have a volume capable of charging the solid raw material S1 of the amount set in the recharge amount setting step S01.
 このとき、後述する固形原料S1の落下距離とリチャージ管10内面へのダメージを考慮して、分割管の長さ(接続個数)を設定する。なお、本実施形態においてはリチャージ管10が下側分割管10Aと上側分割管10Bとの二分割としているので、上側分割管10Bを接続するか否かを設定することになる。 At this time, in consideration of the falling distance of the solid raw material S1 described later and the damage to the inner surface of the recharge pipe 10, the length (the number of connected pipes) of the divided pipe is set. In the present embodiment, since the recharge pipe 10 is divided into two parts, the lower divided pipe 10A and the upper divided pipe 10B, it is set whether to connect the upper divided pipe 10B.
 次いで、図12に示す洗浄工程S03として、使用する分割管の内面を洗浄した後、図12に示す最下部分割管セット工程S04として、下側分割管10Aを上側分割管10Bと接続せずに分離した状態で準備する。次いで、下側分割管10Aの下方開口端に底蓋14を挿入して閉塞状態とし、さらに、保護管16に貫通させた金属製シャフト15下端を底蓋14に取り付けた充填準備状態とする。 Then, after cleaning the inner surface of the divided pipe to be used as the cleaning step S03 shown in FIG. 12, the lower divided pipe 10A is not connected to the upper divided pipe 10B as the lowermost divided pipe setting step S04 shown in FIG. Prepare in a separated state. Then, the bottom lid 14 is inserted into the lower open end of the lower divided pipe 10A to be in a closed state, and the lower end of the metal shaft 15 penetrating the protective tube 16 is attached to the bottom lid 14 in a filling ready state.
 次いで、図12に示す傾斜工程S05として、この下側分割管10Aを所定角度傾けた状態で支持した状態で、図12に示す原料充填工程S06として、図9に示すように、固形原料S1を下側分割管10Aに充填する。
 このとき、固形原料S1は下側分割管10A内壁面に当たるが、図11に示す従来の分割されていないリチャージ管100に比べて、固形原料S1の落下距離が短いため、下側分割管10A内壁面へのダメージは少なくて済む。
Next, as shown in FIG. 9, as the raw material filling step S06 shown in FIG. 12 with the lower divided pipe 10A supported in the inclined state at the predetermined angle as the inclination step S05 shown in FIG. The lower divided pipe 10A is filled.
At this time, although the solid raw material S1 hits the inner wall surface of the lower divided pipe 10A, the falling distance of the solid raw material S1 is shorter than that of the conventional non-divided recharge pipe 100 shown in FIG. Less damage to the wall.
 次いで、図12に示すリチャージ量判定工程S07として、リチャージ量設定工程S01で設定された量の固形原料S1が充填されたかを判定する。そして、固形原料S1の量が足りない場合には、図12に示す分割管セット工程S08として、上側分割管10Bを下側分割管10Aの上側位置にセットする。そして、図12に示す連結工程S09として、連結部11によって下側分割管10Aと上側分割管10Bとを接続する。このとき、上側分割管10Bにおいても、金属製シャフト15を保護管16に貫通させる。 Subsequently, it is determined whether the solid raw material S1 of the quantity set by recharge amount setting process S01 was filled as recharge amount determination process S07 shown in FIG. Then, when the amount of the solid raw material S1 is insufficient, the upper divided pipe 10B is set at the upper position of the lower divided pipe 10A in the divided pipe setting step S08 shown in FIG. Then, in the connecting step S09 shown in FIG. 12, the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11. At this time, also in the upper divided pipe 10B, the metal shaft 15 is made to penetrate the protective pipe 16.
 次いで、図12に示す原料充填工程S06として、図10に示すように、固形原料S1を下側分割管10Aに続いて上側分割管10Bに充填する。
 このとき、下側分割管10Aには固形原料S1が充填された状態であるため、投入された固形原料S1は、落下して上側分割管10Bの内壁面に当たるが、下側分割管10A内壁面には落下衝撃を与えることがない。したがって、図11に示す従来の分割されていないリチャージ管100に比べて、固形原料S1の落下距離が短いため、上側分割管10B内壁面へのダメージは少なくて済む。
Next, as shown in FIG. 10, as the raw material filling step S06 shown in FIG. 12, the solid raw material S1 is filled in the upper divided pipe 10B following the lower divided pipe 10A.
At this time, since the lower divided pipe 10A is filled with the solid raw material S1, the input solid raw material S1 falls and hits the inner wall surface of the upper divided pipe 10B, but the inner wall surface of the lower divided pipe 10A There is no impact from falling. Therefore, compared with the conventional non-divided recharge tube 100 shown in FIG. 11, since the falling distance of the solid raw material S1 is short, damage to the inner wall surface of the upper divided tube 10B can be reduced.
 次いで、図12に示すリチャージ量判定工程S07として、リチャージ量設定工程S01で設定された量の固形原料S1が充填されたかを判定する。そして、固形原料S1が設定量に達した場合には、図12に示す屹立工程S10として、リチャージ管10の軸線が鉛直方向となるように屹立させる。 Subsequently, it is determined whether the solid raw material S1 of the quantity set by recharge amount setting process S01 was filled as recharge amount determination process S07 shown in FIG. Then, when the solid raw material S1 reaches the set amount, erecting is performed so that the axis line of the recharge pipe 10 is in the vertical direction as the erecting step S10 shown in FIG.
 図13は、本実施形態の原料供給装置を配置した単結晶引き上げ装置の全体構成を示す断面図である。図14は、固形原料をルツボ内の原料溶液へ投入している状態を示している。 FIG. 13 is a cross-sectional view showing the entire configuration of a single crystal pulling apparatus in which the raw material supply apparatus of the present embodiment is disposed. FIG. 14 shows a state in which the solid raw material is being charged into the raw material solution in the crucible.
 本実施形態における単結晶引き上げ装置は、CZ法によって単結晶を引き上げる炉体とされ、図13,図14に示すように、炉本体としてメインチャンバ1およびプルチャンバ2から構成され、さらにゲートバルブ13を備えている。プルチャンバ2はメインチャンバ1より小径の円筒形状からなり、メインチャンバ1と同一の中心軸上で、ゲートバルブ13を介して上部に配置される。 The single crystal pulling apparatus in this embodiment is a furnace body for pulling a single crystal by the CZ method, and as shown in FIGS. 13 and 14, it comprises a main chamber 1 and a pull chamber 2 as a furnace main body, and further a gate valve 13 Have. The pull chamber 2 has a cylindrical shape smaller in diameter than the main chamber 1, and is disposed on the same central axis as the main chamber 1 at the top via the gate valve 13.
 ゲートバルブ13は、メインチャンバ1の内部とプルチャンバ2の内部を連通、または遮断可能に操作するために設けられるものであり、ゲートバルブ13に設けられた連通径はプルチャンバ2より小径である。 The gate valve 13 is provided to operate the interior of the main chamber 1 and the interior of the pull chamber 2 so as to be able to communicate or shut off, and the diameter of communication provided in the gate valve 13 is smaller than that of the pull chamber 2.
 メインチャンバ1の中心部には、ルツボ3が配置されている。このルツボ3は、内側の石英ルツボ3aと外側の黒鉛ルツボ3bを組み合わせた二重構造であり、ペディスタルと呼ばれる支持軸4上にサセプタ4Aを介して支持される。支持軸4は、ルツボ3を軸方向に昇降可能、かつ、周方向に回転可能として駆動する。 A crucible 3 is disposed at the center of the main chamber 1. The crucible 3 has a double structure in which an inner quartz crucible 3a and an outer graphite crucible 3b are combined, and is supported via a susceptor 4A on a support shaft 4 called pedestal. The support shaft 4 drives the crucible 3 so as to be vertically movable in the axial direction and rotatable in the circumferential direction.
 ヒータ5は、ルツボ3を囲繞するように配置されている。ヒータ5のさらに外側には、断熱材6が、メインチャンバ1の内面に沿って配置されている。ルツボ3の上側には、引き上げる単結晶をヒータ5およびルツボ3内の溶融した原料融液S2の熱から遮蔽する熱遮蔽体12が周設される。熱遮蔽体12は円筒状あるいは逆円錐台形状等とされ、その下端が原料融液S2上側付近に位置している。 The heater 5 is disposed to surround the crucible 3. Further outside the heater 5, a heat insulating material 6 is disposed along the inner surface of the main chamber 1. On the upper side of the crucible 3, a heat shield 12 is provided around the heater 5 and the heat of the molten raw material melt S2 in the crucible 3. The heat shield 12 is cylindrical or in the shape of an inverted truncated cone or the like, and the lower end thereof is located near the upper side of the raw material melt S2.
 ルツボ3内に初期チャージとして投入された固形原料は、ヒータ5の加熱によって溶融され原料融液S2を形成する。初期チャージした固形原料の溶融後には、ルツボ3内の原料融液S2の不足分を補充し所望の融液量を確保するために、追加チャージが行われる。 The solid raw material introduced into the crucible 3 as an initial charge is melted by the heating of the heater 5 to form a raw material melt S2. After melting the initially charged solid material, an additional charge is performed to replenish the shortage of the material melt S2 in the crucible 3 and secure a desired amount of melt.
 このため、プルチャンバ2内には引上軸7が垂下され、本実施形態の原料供給装置に使用されるリチャージ管10が吊り下げられる。このとき、固形原料S1を充填したリチャージ管10は、引上軸7の下端に連結された吊り下げ治具8を介して、原料融液S2を形成したルツボ3の上方に位置される。引上軸7は、プルチャンバ2の最上部に設けられた、駆動機構2aにより、回転駆動および昇降駆動される。
 引上軸7、吊り下げ治具8、駆動機構2a、金属製フランジ9a等は引き上げ手段を構成する。
For this reason, the pull-up shaft 7 is suspended in the pull chamber 2, and the recharge pipe 10 used for the raw material supply device of the present embodiment is suspended. At this time, the recharge tube 10 filled with the solid raw material S1 is positioned above the crucible 3 in which the raw material melt S2 is formed via the suspension jig 8 connected to the lower end of the pulling shaft 7. The pull-up shaft 7 is rotationally driven and vertically driven by a drive mechanism 2 a provided at the top of the pull chamber 2.
The pulling up shaft 7, the hanging jig 8, the drive mechanism 2a, the metal flange 9a, etc. constitute a pulling up means.
 本実施形態における単結晶引き上げ装置においては、図12に示すリチャージ工程S11として、リチャージ管10を備えた原料供給装置を用いて固形原料S1のリチャージをおこなう。 In the single crystal pulling apparatus according to the present embodiment, as the recharging step S11 shown in FIG. 12, the solid material S1 is recharged using a material feeding device provided with the recharge pipe 10.
 リチャージは、図13に示すように、ルツボ3内に初期チャージされた固形原料の溶融が終わった後におこなう。追加チャージをおこなう場合には、固形原料S1が充填されたリチャージ管10を、引上軸7の下端に連結された吊り下げ治具8を介して、原料融液S2を形成したルツボ3の上方に位置させる。
 ルツボ3内の原料融液S2は、ルツボ3内に初期チャージされる固体原料がルツボの容積に比して制限されることから、ルツボ容積に対し不足状態である。
Recharge is performed after melting of the solid material initially charged in the crucible 3 is finished, as shown in FIG. When the additional charge is performed, the recharge pipe 10 filled with the solid raw material S1 is placed above the crucible 3 on which the raw material melt S2 is formed via the suspension jig 8 connected to the lower end of the pulling shaft 7. Position on
The raw material melt S2 in the crucible 3 is in an insufficient state with respect to the crucible volume because the solid raw material initially charged in the crucible 3 is limited as compared to the volume of the crucible.
 ルツボ3内の初期チャージした固形原料の溶融がほぼ終わり、固形原料の溶け残りが浮島状態になった程度で、リチャージ管10を下降させる。
 このとき、図13に示すように、金属製フランジ9aが所定の高さ位置、例えば、ゲートバルブ13に設けられた小径部に当接し、リチャージ管10のみの下降が停止する。
The melting pipe 10 is lowered to such an extent that melting of the initially charged solid material in the crucible 3 is almost completed and the unmelted solid material is in a floating island state.
At this time, as shown in FIG. 13, the metal flange 9 a abuts on a predetermined height position, for example, a small diameter portion provided on the gate valve 13, and the descent only of the recharge pipe 10 is stopped.
 ここで、図13,図14に示すように、連結部11は、熱遮蔽体12の下端位置よりも上方位置となるように下側分割管10Aの長さが設定される。これにより、原料融液S2から輻射される熱、あるいは、ヒータ5から輻射される熱から、連結部11が遮蔽された状態とされている。このため、連結部11は原料融液S2と同程度には温度上昇しない。 Here, as shown in FIGS. 13 and 14, the length of the lower divided pipe 10A is set such that the connecting portion 11 is positioned above the lower end position of the heat shield 12. As a result, the connecting portion 11 is shielded from the heat radiated from the raw material melt S2 or the heat radiated from the heater 5. Therefore, the temperature of the connecting portion 11 does not rise to the same extent as the raw material melt S2.
 一方、金属製シャフト15に連結された円錐状の底蓋14の下降には支障がなく、さらにその位置から引上軸7を下げると、図14に示すように、底蓋14が開放し、リチャージ管10内の粒塊状の固形原料S1が自重により落下して、原料融液S2に供給される。 On the other hand, there is no hindrance to the descent of the conical bottom lid 14 connected to the metal shaft 15, and when the pulling up shaft 7 is further lowered from that position, the bottom lid 14 is opened as shown in FIG. The granular solid material S1 in the recharge pipe 10 falls by its own weight and is supplied to the raw material melt S2.
 このとき、図14に示すように、リチャージ管10を貫通する金属製シャフト15は、リチャージ管10の内面に固設された摺動保護管16aと、金属製シャフト15を直接覆って摺動保護管16a内に挿入された被覆保護管16bと、で保護されている。このため、固形原料S1の汚染を防止し、同時に金属製シャフト15の中心軸からのずれをなくし、ルツボ3内へ円周方向で均等に固形原料S1を供給できる。 At this time, as shown in FIG. 14, the metal shaft 15 penetrating the recharge pipe 10 directly covers the sliding protection pipe 16 a fixed on the inner surface of the recharge pipe 10 and the metal shaft 15 for sliding protection. It is protected by the covering protection tube 16b inserted in the tube 16a. For this reason, it is possible to prevent the contamination of the solid raw material S1 and at the same time eliminate the deviation from the central axis of the metal shaft 15, and uniformly supply the solid raw material S1 into the crucible 3 in the circumferential direction.
 固形原料S1の投入が終わると、リチャージ管10を上方に引き上げ、プルチャンバ2外へ取り出す。
 ここで、ルツボ3内の原料融液量が目標値に達しない場合は、再度、リチャージ管10を使用して固形原料S1の投入を繰り返すこともできる。しかし、本実施形態においては、リチャージ量設定工程S01において、リチャージ量を設定しているため、充分な量の固形原料S1を投入できる。このため、固形原料S1の投入を繰り返す必要がない。
When charging of the solid raw material S1 is completed, the recharge pipe 10 is pulled up and taken out of the pull chamber 2.
Here, when the raw material melt amount in the crucible 3 does not reach the target value, the charging of the solid raw material S1 can also be repeated using the recharge pipe 10 again. However, in the present embodiment, since the recharging amount is set in the recharging amount setting step S01, a sufficient amount of solid raw material S1 can be input. For this reason, it is not necessary to repeat injection | pouring of solid raw material S1.
 追加チャージが完了し、ルツボ3内の原料融液S2が目標量に達すると、引上軸7の下端に連結された吊り下げ治具8を種結晶に付け替え、単結晶の育成過程に移行する。 When the additional charge is completed and the raw material melt S2 in the crucible 3 reaches the target amount, the suspension jig 8 connected to the lower end of the pulling shaft 7 is replaced with a seed crystal, and the process proceeds to a single crystal growth process. .
 以上では、追加チャージの作業手順について説明したが、リチャージにおいても、同様の作業手順によって、最初の単結晶を育成した後、原料融液の減少分に見合う量の固形原料S1が、ルツボ3内に残存する原料融液S2に追加投入される。
 なお、リチャージは、上記のように、初期原料をルツボ3に投入して溶融後におこなう追加チャージ、および、単結晶引き上げ後に連続して処理をおこなう際のリチャージを意味する。追加チャージおよびリチャージのどちらも、ルツボ3内に原料融液S2がある状態で、固形原料S1を追加投入する。
Although the work procedure of the additional charge has been described above, the solid raw material S1 of an amount commensurate with the reduction of the raw material melt is grown in the crucible 3 after growing the first single crystal by the same work procedure also in the recharge. The raw material melt S2 remaining in the
Recharge means, as described above, an additional charge which is carried out after introducing the initial raw material into the crucible 3 and melting, and a recharge when continuously processing after pulling up a single crystal. In both the additional charge and the recharge, the solid raw material S1 is additionally charged while the raw material melt S2 is in the crucible 3.
 リチャージ工程S11が終了したら、図12に示す分割工程S12として、リチャージ管10を下側分割管10Aと上側分割管10Bとに分割する。
 次いで、図12に示すリチャージ回数カウント工程S13として、分割管ごとに、いままで、使用したリチャージ回数をカウントする。
When the recharging step S11 is completed, the recharging pipe 10 is divided into a lower divided pipe 10A and an upper divided pipe 10B in a dividing step S12 shown in FIG.
Next, as the recharge number counting step S13 shown in FIG. 12, the number of recharges used up to now is counted for each divided pipe.
 次いで、図12に示すリチャージ回数判定工程S14として、リチャージ回数カウント工程S13でカウントしたリチャージ回数が、所定回数を越えていないと判断した場合には、分割管ごとに再使用する。このため、上側分割管10Bは、図12に示す洗浄工程S17へ、下側分割管10Aは、図12に示す洗浄工程S03へ、送られる。 Next, as the number-of-recharges determination step S14 shown in FIG. 12, if it is determined that the number of recharges counted in the number-of-recharges count step S13 does not exceed the predetermined number, the divided tubes are reused. Therefore, the upper divided pipe 10B is sent to the cleaning step S17 shown in FIG. 12, and the lower divided pipe 10A is sent to the cleaning step S03 shown in FIG.
 ここで、再使用可能なリチャージ回数は、40~50回程度とされ、あらかじめ、分割管ごとに、下側分割管10Aの所定回数、および、上側分割管10Bの所定回数がそれぞれ設定される。これは、下側分割管10Aおよび上側分割管10Bで、その長さ寸法が異なる場合、固形原料S1の落下距離が異なるため、固形原料S1の落下衝撃によるダメージが違ってくることによる処理である。 Here, the number of reusable rechargings is about 40 to 50, and a predetermined number of times for the lower divided tube 10A and a predetermined number of times for the upper divided tube 10B are set in advance for each of the divided tubes. This is a process by which the damage by the falling impact of the solid material S1 is different because the falling distance of the solid material S1 is different when the length dimension of the lower divided pipe 10A and the upper divided pipe 10B is different. .
 次いで、図12に示す管透過目視確認工程S15として、それぞれの分割管ごとに、固形原料S1の落下衝撃によるダメージを目視で判定する。
 このとき、固形原料S1の充填によって所定の状態まで内表面が傷ついた分割管のみを交換することにより、固形原料S1落下に起因する内面状態劣化の大きな分割管のみを選択的に交換することが可能となる。
Next, in the tube penetration visual check step S15 shown in FIG. 12, damage due to the drop impact of the solid raw material S1 is visually determined for each divided tube.
At this time, by replacing only the divided pipe whose inner surface is damaged to a predetermined state by the filling of the solid raw material S1, selectively replacing only the divided pipe having large internal state deterioration due to the falling of the solid raw material S1. It becomes possible.
 管透過目視確認工程S15における交換の基準としては、下側分割管10Aおよび/または上側分割管10Bにおいて、未使用で傷のない状態に比べて白濁して視認可能な部分が生じた場合に交換するように設定できる。この視認可能な白濁部分は、固形原料S1の充填によって生じた内面の傷により透過率が70%を下回った部分とすることができる。 As a reference for replacement in the tube transmission visual check step S15, the lower split tube 10A and / or the upper split tube 10B are replaced when a portion that becomes turbid and visible compared to a non-used and flawless state is generated Can be set to This visible white turbidity part can be made into the part to which the transmittance | permeability fell below 70% by the flaw of the inner surface produced by filling of solid raw material S1.
 特に、この透過率が70%を下回った部分は、最も大きな面積を有する部分が、10cm四方程度の大きさの領域であることができる。あるいは、透過率が70%を下回った部分が5cm四方程度の領域が3~4箇所形成された状態とすることが適する。 In particular, in the portion where the transmittance is less than 70%, the portion having the largest area can be a region of about 10 cm square. Alternatively, it is suitable that three to four areas each having a diameter of about 5 cm square be formed in a portion where the transmittance is less than 70%.
 管透過目視確認工程S15において、白濁領域が基準に達しないと判断した場合には、再使用するために、分割管ごとに区別して送られる。上側分割管10Bは、図12に示す洗浄工程S17へ送られる。また、下側分割管10Aは、図12に示す洗浄工程S03へ、送られる。 If it is determined in the tube penetration visual confirmation step S15 that the white turbid region does not reach the reference, the divided tubes are separately sent for reuse. The upper divided pipe 10B is sent to the cleaning step S17 shown in FIG. Further, the lower divided pipe 10A is sent to the washing step S03 shown in FIG.
 なお、リチャージ回数判定工程S14と管透過目視確認工程S15とは、どちらか一方のみ実施することも可能である。あるいは、リチャージ回数判定工程S14を管透過目視確認工程S15の後に実施することもできる。 In addition, it is also possible to implement only one of the number-of-recharges determination step S14 and the pipe permeation visual confirmation step S15. Alternatively, the number-of-recharges determination step S14 can be performed after the tube penetration visual check step S15.
 管透過目視確認工程S15において、白濁領域が基準に達したと判断した場合には、図12に示す交換工程S16として、当該分割管を交換して、図12に示す再生処理工程S20をおこなう。
 再生処理工程S20においては、傷ついて交換された分割管の内面を加熱・溶融処理をおこなって、傷をなくして透明化し再生することにより、交換した分割管を再使用可能とする。
When it is determined in the pipe permeation visual check step S15 that the white turbid region has reached the standard, the divided pipe is replaced as the replacement step S16 shown in FIG. 12, and the regeneration processing step S20 shown in FIG. 12 is performed.
In the regeneration processing step S20, the inner surface of the split pipe replaced with a flaw is subjected to heating and melting processing to eliminate the flaw and to make it transparent for regeneration, thereby making the replaced split pipe reusable.
 ここで、再生処理工程S20において、下側分割管10Aおよび上側分割管10Bの軸方向長さが、図11に示す従来の分割されていないリチャージ管100に比べて短く設定できるため、総加熱量が少なくて済み、再生処理によって生じる変形が少なくて済む。 Here, in the regeneration process step S20, the axial length of the lower divided pipe 10A and the upper divided pipe 10B can be set shorter than in the conventional non-divided recharge pipe 100 shown in FIG. And the deformation caused by the regeneration process can be reduced.
 再生処理工程S20の終了後、図12に示す変形量判定工程S21として、再生処理によって生じる変形が所定量を超えていたと判断した場合には、図12に示す排棄工程S22として、その分割管を排棄する。また、変形量判定工程S21として、再生処理によって生じる変形が所定量を超えていなかったと判断した場合には、分割管ごとに区別して再使用する。このために、上側分割管10Bは、図12に示す洗浄工程S17へ送られる。また、下側分割管10Aは、図12に示す洗浄工程S03へ送られる。 After the completion of the regeneration processing step S20, when it is determined that the deformation caused by the regeneration processing exceeds the predetermined amount as the deformation amount determination step S21 shown in FIG. 12, the divided pipe is excluded as the discarding step S22 shown in FIG. Discard Further, in the deformation amount determination step S21, when it is determined that the deformation caused by the regeneration processing did not exceed the predetermined amount, the divided pipes are distinguished and reused. For this purpose, the upper divided pipe 10B is sent to the cleaning step S17 shown in FIG. Further, the lower divided pipe 10A is sent to the cleaning step S03 shown in FIG.
 以上により、本実施形態におけるリチャージ方法を終了する。 Thus, the recharge method in the present embodiment is completed.
 本実施形態におけるリチャージ管10を有する原料供給装置、単結晶引き上げ装置を用いたリチャージ方法によれば、固形原料S1の充填量が同じであっても、分割されていないリチャージ管100に比べて、充填する固形原料S1が落下する距離を少なくできる。このため、充填時におけるリチャージ管10内面への衝撃を減少させ、リチャージ管10内面での傷発生を低減することが可能となる。 According to the raw material supply apparatus having the recharge pipe 10 in the present embodiment, and the recharge method using the single crystal pulling apparatus, even if the filling amount of the solid raw material S1 is the same, compared to the recharge pipe 100 which is not divided. The distance over which the solid raw material S1 to be filled falls can be reduced. For this reason, it is possible to reduce the impact on the inner surface of the recharge tube 10 at the time of filling, and to reduce the occurrence of flaws on the inner surface of the recharge tube 10.
 これにより、リチャージする固形原料S1の充填量を大幅に増大しても、リチャージ管10の使用可能なライフを延長することができる。しかも、内面劣化状態の進行度にしたがって、各分割管10A,10Bの交換時期を異ならせて、安全性向上および有転位化発生防止を図ることが可能となる。 Thereby, the usable life of the recharge pipe 10 can be extended even if the filling amount of the solid raw material S1 to be recharged is greatly increased. In addition, it is possible to improve the safety and prevent the occurrence of dislocation by changing the replacement times of the divided pipes 10A and 10B according to the progress degree of the inner surface deterioration state.
 さらに、緩衝部材11eを設け、また、分割管10A,10Bを再生処理するとの判断をおこなって、リチャージ管10の密閉状態が悪化することを防止できる。また、原料供給作業の効率化を達成することができる。 Furthermore, it is possible to prevent the deterioration of the sealed state of the recharge pipe 10 by providing the buffer member 11e and judging that the divided pipes 10A and 10B are to be regenerated. In addition, the efficiency of the raw material supply operation can be achieved.
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第2実施形態を、図面に基づいて説明する。
 図15は、本実施形態の最下部分割管セット工程S04における傾斜支持台を示す模式図である。図16は、本実施形態の傾斜工程S05および原料充填工程S06における傾斜支持台を示す模式図である。図17は、本実施形態の分割管セット工程S08および原料充填工程S06における傾斜支持台を示す模式図である。図18は、本実施形態の屹立工程S10およびリチャージ工程S11における傾斜支持台を示す模式図である。
Hereinafter, a second embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a recharge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
FIG. 15 is a schematic view showing the inclined support in the lowermost divided pipe setting step S04 according to the present embodiment. FIG. 16 is a schematic view showing the tilt support in the tilt step S05 and the raw material charging step S06 of the present embodiment. FIG. 17 is a schematic view showing the inclined support in the divided pipe setting step S08 and the raw material filling step S06 of the present embodiment. FIG. 18 is a schematic view showing the inclined support in the erecting step S10 and the recharging step S11 of the present embodiment.
 本実施形態において上述した第1実施形態と異なるのは傾斜支持台30に関する点であり、これ以外の対応する構成要素に関して、同一の符号を付してその説明を省略する。 The present embodiment differs from the first embodiment described above in the point of the inclined support 30. The other corresponding components are denoted by the same reference numerals and the description thereof will be omitted.
 本実施形態においては、最下部分割管セット工程S04、傾斜工程S05、原料充填工程S06、分割管セット工程S08、連結工程S09、屹立工程S10等の各工程において、リチャージ管10を支持する傾斜支持台30を用いることができる。 In the present embodiment, an inclined support for supporting the recharge pipe 10 in each step such as the lowermost divided pipe setting step S04, the tilting step S05, the raw material charging step S06, the divided pipe setting step S08, the connecting step S09, and the standing step S10. A platform 30 can be used.
 傾斜支持台30は、図15~図18に示すように、リチャージ管10を支持する支持部31を有する支持台車部32と、支持台車部32を傾斜させる傾斜支持部35を有する傾斜台34と、傾斜台34を傾斜させる傾斜駆動部39と、を有している。 As shown in FIGS. 15 to 18, the inclined support 30 includes a support carriage 32 having a support 31 for supporting the recharge tube 10, and an incline 34 having an inclined support 35 for tilting the support carriage 32. , And an inclination drive unit 39 which inclines the inclination platform 34.
 支持部31は、図15~図18に示すように、略平板状とされる支持台車部32の片側に立設されて、傾斜時に、分割管10A,10Bを支持可能とされるとともに、支持台車部32にはその下側に車輪33,33が設けられて、移動可能とされている。 The support portion 31 is erected on one side of the substantially flat support carriage portion 32 as shown in FIGS. 15 to 18 so as to be able to support the divided tubes 10A and 10B at the time of inclination, Wheels 33 and 33 are provided on the lower side of the carriage portion 32 so as to be movable.
 略平板状とされる傾斜台34は、床面等に配置された基部36に対して水平軸35aの周りを回動可能として接続されている。
 傾斜台34には、傾斜される水平軸35aの上側に立設された傾斜支持部35が接続されている。
The inclined base 34, which is substantially flat, is connected to a base 36 disposed on a floor surface or the like so as to be rotatable around a horizontal axis 35a.
An inclined support portion 35 provided upright on the upper side of the horizontal shaft 35 a to be inclined is connected to the inclined table 34.
 傾斜支持部35の背面側には、傾斜台34よりも外側位置となる基部36に対して、水平軸35aを平行な軸線37,38によってその両端が回動可能に接続された傾斜駆動部39が設けられている。 On the back side of the inclined support portion 35, an inclined drive portion 39 whose both ends are rotatably connected by the axis 37, 38 parallel to the horizontal axis 35a with respect to the base 36 located outside the inclined table 34. Is provided.
 傾斜駆動部39は、例えば、エアシリンダ、オイルシリンダ、ボールネジなどからなり、その延長を変化可能な駆動部とされる。傾斜駆動部39は、傾斜駆動部39の延長変化により、傾斜台34を水平位置から水平軸35a周りに回動して傾斜位置へ駆動可能なものとされている。また、傾斜駆動部39は、傾斜支持部35を鉛直位置から水平軸35a周りに回動して傾斜位置へ駆動可能なものとされている。 The inclination drive part 39 consists of an air cylinder, an oil cylinder, a ball screw etc., for example, and is made into the drive part which can change the extension. The tilt drive unit 39 is configured to be able to rotate the tilt platform 34 from the horizontal position around the horizontal axis 35 a and drive the tilt platform 34 to the tilt position by the extension change of the tilt drive unit 39. Further, the tilt drive portion 39 is configured to be able to drive the tilt support portion 35 from the vertical position around the horizontal axis 35 a to drive it to the tilt position.
 この傾斜駆動部39の駆動により、傾斜台34に載置された支持台車部32を追従して水平位置から水平軸35a周りに回動して傾斜位置へ、また、支持部31を追従して鉛直位置から水平軸35a周りに回動して傾斜位置へ、駆動可能なものとされている。 By driving the tilt drive unit 39, the support carriage 32 placed on the tilt table 34 follows and turns from the horizontal position around the horizontal axis 35a to the tilt position and also the support unit 31. From the vertical position, it can be driven to an inclined position by rotating around the horizontal axis 35a.
 同時に、傾斜駆動部39は、傾斜位置までの回動動作と傾斜位置とされた状態で、支持台車部32および支持部31に載置・支持されたリチャージ管10と、このリチャージ管10に充填された固形原料S1との重量を支持可能とされている。 At the same time, the tilt drive portion 39 charges the support tube portion 32 and the recharge tube 10 mounted on and supported by the support portion 31 and the recharge tube 10 in the state of being turned to the tilt position and in the tilt position. The weight of the solid raw material S1 can be supported.
 基部36には、傾斜台34の水平軸35aと反対側の端部に傾斜部36aが設けられ、傾斜台34の上面から床面まで支持台車部32が走行可能なように段差のない状態として配置されている。 The base portion 36 is provided with an inclined portion 36a at the end opposite to the horizontal shaft 35a of the inclined table 34, and there is no step so that the support carriage 32 can travel from the upper surface to the floor surface of the inclined table 34. It is arranged.
 本実施形態における傾斜支持台30は、図15に示すように、傾斜駆動部39の伸張した状態で、傾斜台34および支持台車部32を水平位置とし、傾斜支持部35および支持部31を鉛直位置とした状態とする。 As shown in FIG. 15, in the state where the tilt drive unit 39 is extended, the tilt stand 30 in this embodiment has the tilt stand 34 and the support carriage 32 in the horizontal position, and the tilt support 35 and the support 31 are vertical. It will be in the state of the position.
 そして、最下部分割管セット工程S04として、下側分割管10Aの下方開口端に底蓋14を挿入して閉塞状態とする。さらに、下側分割管10Aでは、保護管16に貫通させた金属製シャフト15下端を底蓋14に取り付けて充填準備状態とする。この状態の下側分割管10Aを、下側分割管10Aの軸線が鉛直方向となるように支持台車部32に載置する。 Then, in the lowermost divided pipe setting step S04, the bottom cover 14 is inserted into the lower opening end of the lower divided pipe 10A to be in a closed state. Further, in the lower divided pipe 10A, the lower end of the metal shaft 15 penetrating the protective pipe 16 is attached to the bottom cover 14 to be in a filling ready state. The lower divided pipe 10A in this state is mounted on the support carriage 32 such that the axis of the lower divided pipe 10A is in the vertical direction.
 次いで、傾斜工程S05として、傾斜駆動部39を縮小するように駆動して、図16に示すように、傾斜台34を水平位置から水平軸35a周りに回動して傾斜位置へ駆動する。また、傾斜支持部35を鉛直位置から水平軸35a周りに回動して傾斜位置へ駆動する。 Next, in the tilting step S05, the tilt drive unit 39 is driven to be reduced, and as shown in FIG. 16, the tilt stand 34 is rotated from the horizontal position around the horizontal axis 35a to drive it to the tilt position. Further, the tilt support portion 35 is rotated from the vertical position around the horizontal shaft 35a to drive it to the tilt position.
 これにより、支持台車部32を追従させて水平位置から水平軸35a周りに回動して傾斜位置へ駆動する。また、支持部31を追従させて鉛直位置から水平軸35a周りに回動して傾斜位置へ駆動する。このように、支持台車部32と支持部31とをそれぞれ駆動することで、下側分割管10Aを所定角度傾けた状態で支持した状態とする。 As a result, the support carriage portion 32 is made to follow and is rotated from the horizontal position around the horizontal axis 35a and driven to the inclined position. Further, the support portion 31 is made to follow and is rotated from the vertical position around the horizontal axis 35 a to drive it to the inclined position. As described above, by driving the support carriage portion 32 and the support portion 31 respectively, the lower divided pipe 10A is supported in a state of being inclined at a predetermined angle.
 次いで、原料充填工程S06として、固形原料S1を下側分割管10Aに充填する。 Next, in the raw material filling step S06, the solid raw material S1 is filled in the lower divided pipe 10A.
 また、分割管セット工程S08として、図17に示すように、上側分割管10Bを下側分割管10Aの上側位置にセットする。そして、連結工程S09として、連結部11によって下側分割管10Aと上側分割管10Bとを接続する。このとき、傾斜駆動部39を伸張するように駆動して、支持台車部32を傾斜位置から水平軸35a周りに回動して水平位置へ駆動する。また、支持部31を傾斜位置から水平軸35a周りに回動して鉛直位置へ駆動する。このように支持台車部32と支持部31とをそれぞれ駆動することで、図15に示すように、下側分割管10Aをその軸線が鉛直方向となるように支持する。この状態で、連結部11において締結部としてのボルト・ナット11dを締結する。
 さらに、上側分割管10Bにおいても、金属製シャフト15を保護管16に貫通させる。
Further, as shown in FIG. 17, the upper divided pipe 10B is set at the upper position of the lower divided pipe 10A in the divided pipe setting step S08. Then, in the connecting step S09, the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11. At this time, the tilt drive portion 39 is driven to be extended, and the support carriage portion 32 is rotated from the tilt position around the horizontal axis 35 a to drive it to the horizontal position. Further, the support portion 31 is rotated from the inclined position around the horizontal shaft 35a to drive it to the vertical position. By driving the support carriage portion 32 and the support portion 31 in this manner, as shown in FIG. 15, the lower divided pipe 10A is supported so that the axis thereof is in the vertical direction. In this state, the bolt / nut 11 d as a fastening portion is fastened in the connecting portion 11.
Furthermore, in the upper divided pipe 10B as well, the metal shaft 15 is penetrated through the protective pipe 16.
 次いで、原料充填工程S06として、固形原料S1を下側分割管10Aに連結された上側分割管10Bに充填する。このとき、傾斜駆動部39を縮小するように駆動して、支持台車部32を水平位置から水平軸35a周りに回動して傾斜位置へ駆動する。また、支持部31を鉛直位置から水平軸35a周りに回動して傾斜位置へ駆動する。このように、支持台車部32と支持部31とをそれぞれ駆動することで、図17に示すように、接続されたリチャージ管10をその軸線が傾斜方向となるように支持する。その後、固形原料S1を上側分割管10Bに充填する。 Next, in the raw material charging step S06, the solid raw material S1 is charged into the upper divided pipe 10B connected to the lower divided pipe 10A. At this time, the tilt drive portion 39 is driven to be reduced, and the support carriage portion 32 is rotated from the horizontal position around the horizontal axis 35 a to drive it to the tilt position. Further, the support portion 31 is rotated from the vertical position around the horizontal shaft 35a to drive it to the inclined position. Thus, by driving the support carriage portion 32 and the support portion 31 respectively, as shown in FIG. 17, the connected recharge tube 10 is supported so that the axis thereof is in the inclined direction. Thereafter, the solid raw material S1 is filled in the upper divided pipe 10B.
 原料充填工程S06が終了したら、傾斜駆動部39を伸張するように駆動して、傾斜台34を傾斜位置から水平軸35a周りに回動して水平位置へ駆動する。また、傾斜支持部35を傾斜位置から水平軸35a周りに回動して鉛直位置へ駆動する。 When the raw material filling step S06 is completed, the tilt drive unit 39 is driven to extend, and the tilt table 34 is rotated from the tilt position around the horizontal axis 35a to drive it to the horizontal position. Further, the tilt support portion 35 is rotated from the tilt position around the horizontal shaft 35a to drive it to the vertical position.
 これにより、支持台車部32を傾斜位置から水平軸35a周りに回動して水平位置へ駆動する。また、支持部31を傾斜位置から水平軸35a周りに回動して鉛直位置へ駆動する。支持台車部32と支持部31とをそれぞれ駆動することで、リチャージ管10をその軸線が鉛直方向となる充填状態として支持する。 As a result, the support carriage portion 32 is rotated from the inclined position around the horizontal shaft 35a and driven to the horizontal position. Further, the support portion 31 is rotated from the inclined position around the horizontal shaft 35a to drive it to the vertical position. By driving the support carriage portion 32 and the support portion 31 respectively, the recharge tube 10 is supported in a filling state in which the axis line thereof is in the vertical direction.
 この状態で、図18に示すように、支持台車部32を傾斜台34から傾斜部36aを介してなめらかに搬送する。これにより、支持台車部32に載置した固形原料S1の充填されたリチャージ管10を単結晶引き上げ炉近傍まで搬送する。そして、金属製シャフト15を吊り下げ治具8によって引上軸7下端に接続し、駆動機構2aによって吊り上げる。 In this state, as shown in FIG. 18, the support carriage portion 32 is smoothly transported from the tilt table 34 via the tilt portion 36a. Thus, the recharge tube 10 filled with the solid material S1 placed on the support carriage portion 32 is transported to the vicinity of the single crystal pulling furnace. Then, the metal shaft 15 is connected to the lower end of the lifting shaft 7 by the suspension jig 8 and is lifted by the drive mechanism 2a.
 次いで、リチャージ管10を、原料融液S2を形成したルツボ3の上方に位置させて、リチャージ工程S11として、リチャージ管10を備えた原料供給装置を用いて固形原料S1のリチャージをおこなう。 Next, the recharge pipe 10 is positioned above the crucible 3 on which the raw material melt S2 is formed, and the solid raw material S1 is recharged using a raw material supply device equipped with the recharge pipe 10 as a recharge step S11.
 リチャージ管10が終了したら、リチャージ管10を支持台車部32に載置して、支持台車部32を傾斜台34まで搬送する。そして、傾斜駆動部39を縮小するように駆動して、支持台車部32を水平位置から水平軸35a周りに回動して傾斜位置へ駆動する。また、支持部31を鉛直位置から水平軸35a周りに回動して傾斜位置へ駆動する。このように、支持台車部32と支持部31とをそれぞれ駆動することで、接続されたリチャージ管10をその軸線が傾斜方向となるように支持する。その後、連結部11を分離して、下側分割管10Aと上側分割管10Bとを分離する。 When the recharging tube 10 is finished, the recharging tube 10 is placed on the support carriage portion 32 and the support carriage portion 32 is transported to the tilt table 34. Then, the tilt drive unit 39 is driven to be reduced, and the support carriage unit 32 is rotated from the horizontal position around the horizontal axis 35 a to drive it to the tilt position. Further, the support portion 31 is rotated from the vertical position around the horizontal shaft 35a to drive it to the inclined position. Thus, by driving the support carriage portion 32 and the support portion 31 respectively, the connected recharging tube 10 is supported so that the axis thereof is in the inclined direction. Thereafter, the connecting portion 11 is separated to separate the lower divided pipe 10A and the upper divided pipe 10B.
 本実施形態によれば、傾斜支持台30を用いることにより、分割管10A,10Bを分割・連結するリチャージ管10への充填工程を効率的にかつ安全におこなうことが可能となる。
 さらに、傾斜支持台30によって、充填する固形原料S1がリチャージ管10等へ当接する衝撃を低減するように角度調節することが可能となる。
According to the present embodiment, by using the inclined support 30, it is possible to efficiently and safely perform the process of filling the recharge pipe 10 for dividing and connecting the divided pipes 10A and 10B.
Furthermore, the inclined support 30 makes it possible to adjust the angle so as to reduce the impact that the solid raw material S1 to be filled abuts on the recharge tube 10 and the like.
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第3実施形態を、図面に基づいて説明する。
 本実施形態において上述した第1または第2実施形態と異なるのは上追加分割管10Cに関する点であり、これ以外の対応する構成要素に関して、同一の符号を付してその説明を省略する。
Hereinafter, a third embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a recharge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
The present embodiment differs from the above-described first or second embodiment in that it relates to the upper additional divided pipe 10C. The other corresponding components are denoted by the same reference numerals, and the description thereof will be omitted.
 図19は、本実施形態の原料供給装置におけるリチャージ管を示す模式正断面図である。図20は、本実施形態の連結部を示す拡大断面図である。図21は、本実施形態のリチャージ管を示す分解斜視図である。図22は、本実施形態の点結晶引き上げ装置を示す正断面図である。 FIG. 19 is a schematic positive cross-sectional view showing the recharge pipe in the raw material supply device of the present embodiment. FIG. 20 is an enlarged cross-sectional view showing the connection portion of the present embodiment. FIG. 21 is an exploded perspective view showing the recharge pipe of the present embodiment. FIG. 22 is a front sectional view showing a point crystal pulling apparatus of the present embodiment.
 本実施形態のリチャージ管10は、図19~図21に示すように、上側分割管10Bの上側にさらに上追加分割管(分割管)10Cを追加・延長して充填する固形原料S1の量を増加するものである。 As shown in FIGS. 19 to 21, in the recharge pipe 10 of the present embodiment, the amount of the solid raw material S1 to be charged by adding and extending the upper additional divided pipe (division pipe) 10C above the upper divided pipe 10B It will increase.
 上追加分割管10Cは、図19~図21に示すように、略円筒状とされ、下側分割管10Aおよび上側分割管10Bのように連結部11としてフランジ部11a,11bを有さない。その代わりに、上追加分割管10Cの下端は、上側分割管10B上端に嵌合可能とされている。上追加分割管10Cを上側分割管10Bに載置した際に、これらの内面は上下方向に面一となるように設定されている。
 なお、図において、本実施形態では、緩衝部材11eを用いない状態を示している。
The upper additional divided pipe 10C has a substantially cylindrical shape as shown in FIGS. 19 to 21 and does not have the flange portions 11a and 11b as the connecting portion 11 like the lower divided pipe 10A and the upper divided pipe 10B. Instead, the lower end of the upper additional divided pipe 10C can be fitted to the upper end of the upper divided pipe 10B. When the upper additional divided pipe 10C is placed on the upper divided pipe 10B, the inner surfaces thereof are set to be flush with each other in the vertical direction.
In the drawings, the present embodiment shows a state in which the buffer member 11 e is not used.
 上追加分割管10Cの下端には、図19~図21に示すように、連結部11として、その外周位置に嵌合溝11hが周設される。また上追加分割管10Cの下端には、上側分割管10B上端内周位置に、連結部11として、対応する嵌合溝11gが周設される。これらにより、上追加分割管10Cを上側分割管10Bに載置した際に、嵌合溝11hが上側分割管10B上端に嵌まり込む。同時に、嵌合溝11gが上追加分割管10Cの下端を支持することになる。このとき、嵌合溝11gの径方向外側に位置する内周面は、嵌合溝11hの径方向内側に位置する外周面と略接する状態となる。 At the lower end of the upper additional divided pipe 10C, as shown in FIGS. 19 to 21, a fitting groove 11h is circumferentially provided at the outer peripheral position as the connecting portion 11. Further, at the lower end of the upper additional divided pipe 10C, a corresponding fitting groove 11g is circumferentially provided as the connecting portion 11 at the upper end inner peripheral position of the upper divided pipe 10B. Thus, when the upper additional divided pipe 10C is placed on the upper divided pipe 10B, the fitting groove 11h fits into the upper end of the upper divided pipe 10B. At the same time, the fitting groove 11g supports the lower end of the upper additional divided pipe 10C. At this time, the inner circumferential surface located on the radially outer side of the fitting groove 11g is in a state of being substantially in contact with the outer circumferential surface located on the radially inner side of the fitting groove 11h.
 嵌合溝11hおよび嵌合溝11gの高さ方向寸法は、それぞれ嵌合溝11hを上側分割管10B側壁肉厚以上とし、嵌合溝11gを嵌合溝11hよりも長い寸法とすることができる。 In the height direction of the fitting groove 11h and the fitting groove 11g, the fitting groove 11h can be made equal to or larger than the side wall thickness of the upper divided pipe 10B, and the fitting groove 11g can be made longer than the fitting groove 11h. .
 また、上追加分割管10Cにおける保護管16は、下側分割管10Aおよび上側分割管10Bと同様に、上追加分割管10Cの軸中心に鉛直方向(軸方向)に延在する。しかし、上追加分割管10Cでは、リチャージ管10の内面からその軸中心まで径方向に延在する板状の固定板部16cとは異なる構成により保護管16の下端が支持される。上追加分割管10Cでは、上追加分割管10C下端に直径方向にわたって設けられた固定傾斜板16fによって、保護管16の下端が支持されるようになっている。 Further, the protective pipe 16 in the upper additional divided pipe 10C extends in the vertical direction (axial direction) at the axial center of the upper additional divided pipe 10C, similarly to the lower divided pipe 10A and the upper divided pipe 10B. However, in the upper additional divided pipe 10C, the lower end of the protective pipe 16 is supported by a configuration different from the plate-like fixed plate portion 16c extending in the radial direction from the inner surface of the recharge pipe 10 to the axial center thereof. In the upper additional divided pipe 10C, the lower end of the protective pipe 16 is supported by a fixed inclined plate 16f provided diametrically at the lower end of the upper additional divided pipe 10C.
 さらに、上側分割管10Bにおける保護管16上端は、上追加分割管10Cの保護管16下端と隙間なく連続した状態とされる。また、上側分割管10Bにおける保護管16下端は、下側分割管10Aの保護管16上端と隙間なく連続した状態とされる。これらにより、投入する固形原料S1が保護管16の接続部分に引っ掛かってしまい原料投入に支障をきたすことを防止できる。なお、それぞれの保護管16が連続した状態とは、互いに接触するか、または、離間していても、この接続部分に固形原料S1が引っ掛からない程度とされることができる。 Further, the upper end of the protective pipe 16 in the upper divided pipe 10B is continuous with the lower end of the protective pipe 16 of the upper additional divided pipe 10C without any gap. Further, the lower end of the protective pipe 16 in the upper divided pipe 10B is continuous with the upper end of the protective pipe 16 of the lower divided pipe 10A without a gap. By these, it can prevent that solid raw material S1 to be thrown in is caught in the connection part of the protective tube 16, and causing trouble in raw material injection. The state in which the respective protective tubes 16 are continuous can be in such a degree that the solid raw material S1 does not get caught on this connection portion even if they are in contact with each other or are separated from each other.
 固定傾斜板16fは、上追加分割管10C軸中心に幅方向端部が位置するように、上追加分割管10C軸中心に対称として2枚設けられる。ここで、それぞれの固定傾斜板16fが、幅方向に傾斜を有する。固定傾斜板16fは、幅方向における傾斜角度が上追加分割管10C軸中心から径方向外側に向けて下降するように配置されている。また、固定傾斜板16fは、上追加分割管10C軸中心位置に上下方向に貫通する貫通孔を有している。ここで、固定傾斜板16fの貫通孔における周囲が保護管16の下端に接続されている。 Two fixed inclined plates 16f are provided symmetrically about the axis of the upper additional divided pipe 10C such that the widthwise end is positioned at the axis of the upper additional divided pipe 10C. Here, each fixed inclined plate 16f has an inclination in the width direction. The fixed inclined plate 16f is disposed such that the inclination angle in the width direction is lowered radially outward from the center of the upper additional divided pipe 10C axis. Further, the fixed inclined plate 16f has a through hole penetrating in the vertical direction at the center position of the upper additional divided pipe 10C axis. Here, the periphery of the through hole of the fixed inclined plate 16 f is connected to the lower end of the protective tube 16.
 上追加分割管10C下端は、それぞれの固定傾斜板16fにおいて下降した幅方向端部よりも径方向外側となる部分が下部開口とされている。上追加分割管10C下端の下部開口は、上追加分割管10Cを上側分割管10Bに載置した際に、上追加分割管10Cと上側分割管10Bとの内側が連通可能とされている。 At the lower end of the upper additional divided pipe 10C, a portion located radially outward of the widthwise end of the fixed inclined plate 16f which is lowered is a lower opening. When the upper additional divided pipe 10C is placed on the upper divided pipe 10B, the lower opening of the lower end of the upper additional divided pipe 10C can communicate the inside of the upper additional divided pipe 10C with the upper divided pipe 10B.
 二枚の固定傾斜板16fは、互いに上昇した幅方向端部が接合されて稜線が形成される。この固定傾斜板16fの稜線は、上追加分割管10Cの直径と等しい長さを有する。また、二枚の固定傾斜板16fの長さ方向端部は山形に形成されている。また、上追加分割管10Cの下端には、切り欠かれた部分が形成される。固定傾斜板16fの長さ方向における両端部と上追加分割管10Cの下端とは接続されている。これらの固定傾斜板16f端部の山形形状と、上追加分割管10C下端の切り欠かれた形状とは、対応した状態とされている。 The two fixed inclined plates 16f are joined together at their widthwise ends, which are raised from each other, to form a ridge. The ridge line of the fixed inclined plate 16f has a length equal to the diameter of the upper additional divided pipe 10C. Further, the longitudinal direction end portions of the two fixed inclined plates 16f are formed in a mountain shape. In addition, a notch is formed at the lower end of the upper additional divided pipe 10C. Both ends in the longitudinal direction of the fixed inclined plate 16 f and the lower end of the upper additional divided pipe 10 C are connected. The chevron shape at the end of the fixed inclined plate 16f and the cutout shape of the lower end of the upper additional divided pipe 10C correspond to each other.
 山形に形成された二枚の固定傾斜板16fの下側で形成される部分は、上追加分割管10Cを上側分割管10Bに載置した際に、上側分割管10Bの保護管16上端が位置して、金属製シャフト15を連通支持可能となっている。 When the upper additional divided pipe 10C is placed on the upper divided pipe 10B, the upper end of the protective pipe 16 of the upper divided pipe 10B is positioned at the lower side of the two fixed inclined plates 16f formed in a mountain shape. Thus, the metal shaft 15 can be communicated and supported.
 これにより、リチャージ管10としての軸方向長さ寸法が大きくなる。同時に、リチャージ管10の軸中心位置で、上追加分割管10C、上側分割管10B、下側分割管10Aにおいて、それぞれの保護管16に対して、金属製シャフト15が軸方向に連続した状態で貫通するようになっている。 As a result, the axial length dimension of the recharge tube 10 is increased. At the same time, in the upper additional divided pipe 10C, the upper divided pipe 10B, and the lower divided pipe 10A, the metal shaft 15 is continuous in the axial direction with respect to the respective protective pipes 16 at the axial center position of the recharge pipe 10. It is supposed to penetrate.
 本実施形態においても、原料充填工程S06として固形原料S1を下側分割管10Aに充填する。そして、分割管セット工程S08として、上側分割管10Bを下側分割管10Aの上側位置にセットする。そして、連結工程S09として、連結部11によって下側分割管10Aと上側分割管10Bとを接続する。そして、原料充填工程S06として固形原料S1を上側分割管10Bに充填する。そして、リチャージ量判定工程S07として、リチャージ量設定工程S01で設定された量の固形原料S1が充填されたかを判定する。 Also in the present embodiment, as the raw material charging step S06, the solid raw material S1 is filled in the lower divided pipe 10A. Then, in the divided pipe setting step S08, the upper divided pipe 10B is set at the upper position of the lower divided pipe 10A. Then, in the connecting step S09, the lower divided pipe 10A and the upper divided pipe 10B are connected by the connecting portion 11. Then, in the raw material filling step S06, the solid raw material S1 is filled in the upper divided pipe 10B. Then, as the recharge amount determination step S07, it is determined whether the solid raw material S1 of the amount set in the recharge amount setting step S01 has been charged.
 その後、分割管セット工程S08として、上追加分割管10Cを上側分割管10Bに載置する。
 本実施形態においては、連結工程S09としては、金属製シャフト15を保護管16に貫通させるのみで、締結部であるボルト・ナット11dの締結は必要ない。
Thereafter, the upper additional divided pipe 10C is placed on the upper divided pipe 10B in the divided pipe setting step S08.
In the present embodiment, only the metal shaft 15 is made to penetrate the protective pipe 16 in the coupling step S09, and it is not necessary to fasten the bolt / nut 11d which is the fastening portion.
 さらに、原料充填工程S06として固形原料S1を上追加分割管10Cに充填し、屹立工程S10として、リチャージ管10の軸線が鉛直方向となるように屹立させる。
 次いで、図22に示すように、吊り下げ治具8を介して、原料融液S2を形成したルツボ3の上方に位置させ、リチャージ管10内の粒塊状の固形原料S1が自重により落下して、原料融液S2に供給する。
Furthermore, solid raw material S1 is filled in the upper additional divided pipe 10C as raw material charging step S06, and erected so that the axis line of the recharge pipe 10 is in the vertical direction as rising step S10.
Next, as shown in FIG. 22, the lumped solid raw material S1 in the recharge tube 10 is dropped by its own weight, with the suspension jig 8 positioned above the crucible 3 on which the raw material melt S2 is formed. , Feed to the raw material melt S2.
 本実施形態においては、上追加分割管10Cによって、リチャージ量を増加することができる。
 さらに、リチャージ回数の低減により、リチャージ工程の所要時間を短縮し、生産効率を向上させることができる。
In the present embodiment, the recharge amount can be increased by the upper additional divided pipe 10C.
Furthermore, by reducing the number of times of recharging, the required time for the recharging step can be shortened and the production efficiency can be improved.
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第4実施形態を、図面に基づいて説明する。
 本実施形態において上述した第3実施形態と異なるのは連結部に関する点であり、これ以外の対応する構成要素に関して、同一の符号を付してその説明を省略する。
 図23は、本実施形態のリチャージ管における連結部を示す拡大断面図である。
Hereinafter, a fourth embodiment of a recharging tube, a raw material supply device, a single crystal pulling device, a method of using the recharging tube, a recharging method, and a single crystal pulling method according to the present invention will be described based on the drawings.
The present embodiment differs from the third embodiment described above in the connection point, and the other corresponding components are denoted by the same reference numerals and the description thereof will be omitted.
FIG. 23 is an enlarged cross-sectional view showing the connection portion in the recharge pipe of the present embodiment.
 本実施形態のリチャージ管10は、図23に示すように、上追加分割管10Cの下端に外周位置に嵌合溝11hが周設されていない。同時に、上側分割管10B上端内周位置に、上追加分割管10C下端の厚み寸法と略同一の径方向寸法を有する嵌合溝11gが段差として周設される。 In the recharge pipe 10 of the present embodiment, as shown in FIG. 23, the fitting groove 11h is not provided circumferentially at the outer peripheral position at the lower end of the upper additional divided pipe 10C. At the same time, a fitting groove 11g having a radial dimension substantially the same as the thickness dimension of the lower end of the upper additional divided pipe 10C is circumferentially provided at the upper inner peripheral position of the upper divided pipe 10B.
 このため、上側分割管10B上端外周には、嵌合溝11gに対応した分だけ径方向外側に拡径された拡径部11jが設けられている。また、この拡径部11jの軸方向寸法、つまり、上追加分割管10C下端が嵌合溝11gに嵌まり込む長さは、嵌合溝11hを設けた第3実施形態よりも大きくすることができる。 For this reason, the enlarged diameter part 11j diameter-expanded by the part corresponding to the fitting groove 11g radially outward is provided in the upper end outer periphery of upper part divided pipe 10B. Further, the axial dimension of the enlarged diameter portion 11j, that is, the length by which the lower additional divided pipe 10C is fitted into the fitting groove 11g, may be made longer than in the third embodiment in which the fitting groove 11h is provided. it can.
 具体的には、拡径部11jおよび嵌合溝11gの高さ方向寸法は、それぞれ拡径部11jが上側分割管10B本体の外直径の1/6以上とし、嵌合溝11gは拡径部11jよりも長くすることができる。 Specifically, in the height direction of the enlarged diameter portion 11j and the fitting groove 11g, the enlarged diameter portion 11j is 1/6 or more of the outer diameter of the upper divided pipe 10B main body, and the fitting groove 11g is the enlarged diameter portion It can be longer than 11j.
 これにより、本実施形態のリチャージ管10は、安定度を増大した状態で、上追加分割管10Cを上側分割管10Bに載置することが可能となる。
 さらに、上追加分割管10Cに変えて、下側分割管10Aなど、下端にフランジ部の形成されていない分割管を上側分割管10Bに載置することも可能となる。
Thereby, in the recharge pipe 10 of the present embodiment, the upper additional divided pipe 10C can be mounted on the upper divided pipe 10B in a state where the stability is increased.
Furthermore, instead of the upper additional divided pipe 10C, it becomes possible to place a divided pipe such as the lower divided pipe 10A having no flange portion at its lower end on the upper divided pipe 10B.
 また、上側分割管10Bの上端面と、上追加分割管10Cの下端面とが直接接触しないように、薄リング状の緩衝部材11eを用いることや、拡径部11j内面位置に、筒状の緩衝部材11eを用いることが可能である。 In addition, a thin ring-shaped buffer member 11e is used so that the upper end surface of the upper divided pipe 10B and the lower end surface of the upper additional divided pipe 10C do not come in direct contact with each other. It is possible to use a buffer member 11e.
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第5実施形態を、図面に基づいて説明する。
 本実施形態において上述した第1~第4実施形態と異なるのは分割管の内径に関する点であり、これ以外の対応する構成要素に関して、同一の符号を付してその説明を省略する。
 図24は、本実施形態のリチャージ管を示す正断面図である。
Hereinafter, a fifth embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a recharge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
The present embodiment differs from the above-described first to fourth embodiments in terms of the inner diameter of the divided tube, and the corresponding components other than this are denoted by the same reference numerals and the description thereof will be omitted.
FIG. 24 is a front sectional view showing the recharge pipe of the present embodiment.
 本実施形態のリチャージ管10は、図23に示すように、下側分割管10Aにおける上端部10Aaに比べて、下側分割管10Aにおける下端部10Abの内径が小さくなるように設定されている。同様に、上側分割管10Bにおける上端部10Baに比べて、上側分割管10Bにおける下端部10Bbの内径が小さくなるように設定されている。 As shown in FIG. 23, the recharge pipe 10 of the present embodiment is set so that the inner diameter of the lower end portion 10Ab of the lower divided pipe 10A is smaller than that of the upper end portion 10Aa of the lower divided pipe 10A. Similarly, the inner diameter of the lower end portion 10Bb of the upper divided pipe 10B is set smaller than the upper end portion 10Ba of the upper divided pipe 10B.
 したがって、上側分割管10Bと下側分割管10Aとのいずれも、その内面が逆円錐台状として上端側から下端側に向けて縮径している。また、上側分割管10Bと下側分割管10Aとのいずれも、その肉厚が上端側から下端側に向けて増大している。 Accordingly, the inner surface of each of the upper divided pipe 10B and the lower divided pipe 10A has an inverted truncated cone shape and the diameter is reduced from the upper end to the lower end. Further, the thickness of each of the upper divided pipe 10B and the lower divided pipe 10A increases from the upper end to the lower end.
 また、上側分割管10Bにおける下端部10Bbに比べて、下側分割管10Aにおける上端部10Aaの内径が小さくなるように設定されており、上側から見たときに、上側分割管10B下端よりもリチャージ管10内側にはみ出さないように設定されている。 Further, the inner diameter of the upper end portion 10Aa of the lower divided pipe 10A is set to be smaller than that of the lower end portion 10Bb of the upper divided pipe 10B, and viewed from the upper side, the upper portion divided pipe 10B is recharged more than the lower end. It is set so that it does not stick out to the pipe 10 inside.
 本実施形態のリチャージ管10においては、上から見たときに、緩衝部材11eが上側分割管10Bの下端部10Bbに隠れて、充填される固形原料S1が緩衝部材11eに直接ぶつかることがない。これにより、緩衝部材11eに起因する不純物の発生を防止できるため、例えばカーボン性とされる緩衝部材11eが混入してしまうことによる炭素濃度変動などの結晶特性悪化を防止することが可能となる。 In the recharge pipe 10 of the present embodiment, when viewed from above, the buffer member 11e is hidden by the lower end portion 10Bb of the upper divided pipe 10B, and the solid raw material S1 to be filled does not directly collide with the buffer member 11e. As a result, the generation of impurities resulting from the buffer member 11 e can be prevented, so that it is possible to prevent the deterioration of crystal characteristics such as carbon concentration fluctuation caused by, for example, the mixing of the buffer member 11 e made carbon.
 また、上から見たときに、下側分割管10Aの上端部10Aaが上側分割管10Bの下端部10Bbに隠れて、充填される固形原料S1が下側分割管10Aの上端部10Aaに直接ぶつかることがない。これにより、下側分割管10Aの上端部10Aaに割れ・欠けなどが発生することを防止できる。さらに、分割管10A,10Bの下端部10Ab,下端部10Bbが肉厚となるために、下端部10Ab,下端部10Bbにおける強度の向上と、再生処理における変形発生低減とを図ることができる。 Further, when viewed from above, the upper end portion 10Aa of the lower divided pipe 10A is hidden by the lower end portion 10Bb of the upper divided pipe 10B, and the solid raw material S1 to be filled directly collides with the upper end portion 10Aa of the lower divided pipe 10A. I have not. Thereby, it is possible to prevent the occurrence of cracking, chipping or the like in the upper end portion 10Aa of the lower divided pipe 10A. Furthermore, since the lower end portion 10Ab and the lower end portion 10Bb of the divided pipes 10A and 10B are thick, it is possible to improve the strength of the lower end portion 10Ab and the lower end portion 10Bb and to reduce the occurrence of deformation in the regenerating process.
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第6実施形態を、図面に基づいて説明する。
 本実施形態において上述した第1~第5実施形態と異なるのは分割管の軸方向長さの比に関する点であり、これ以外の対応する構成要素に関して、同一の符号を付してその説明を省略する。
 図25は、本実施形態のリチャージ管を示す正断面図である。
Hereinafter, a sixth embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a recharge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
The present embodiment differs from the first to fifth embodiments described above in the point of the ratio of the axial length of the split tube, and the corresponding components other than this are denoted by the same reference numerals and explanations thereof I omit it.
FIG. 25 is a front sectional view showing the recharge pipe of the present embodiment.
 本実施形態のリチャージ管10は、図25に示すように、下側分割管10Aの軸方向長さが、上側分割管10Bに比べて大きくなるように設定されている。
 これにより、リチャージ量を増大することができる。同時に、連結部11の高さ位置を上方に設定することで、ルツボ3内の原料融液S2およびヒータ5と、この連結部11との離間距離を大きくできる。これにより、リチャージ工程S11における連結部11への高温の影響を低減することが可能となる。
As shown in FIG. 25, in the recharge pipe 10 of the present embodiment, the axial length of the lower divided pipe 10A is set to be larger than that of the upper divided pipe 10B.
Thereby, the amount of recharge can be increased. At the same time, by setting the height position of the connecting portion 11 upward, the distance between the raw material melt S2 and the heater 5 in the crucible 3 and the connecting portion 11 can be increased. Thereby, it becomes possible to reduce the influence of the high temperature on the connecting portion 11 in the recharging step S11.
 また、下側分割管10Aの軸方向長さを、図11に示す従来のリチャージ管100と同程度とすることも可能である。この場合、上側分割管10Bを接続して使用することで、一回のリチャージ量を増大することができる。結果的に、リチャージ管10の利用可能回数を大きくすることが可能となる。 In addition, the axial length of the lower divided pipe 10A can be made substantially the same as that of the conventional recharge pipe 100 shown in FIG. In this case, by connecting and using the upper divided pipe 10B, it is possible to increase the amount of charge once. As a result, it is possible to increase the number of times the recharge tube 10 can be used.
 以下、本発明に係るリチャージ管、原料供給装置、単結晶引き上げ装置、リチャージ管の使用方法、リチャージ方法、単結晶引き上げ方法の第7実施形態を、図面に基づいて説明する。
 本実施形態において上述した第1~第5実施形態と異なるのはリチャージ管の分割数、つまり、分割管の接続数に関する点であり、これ以外の対応する構成要素に関して、同一の符号を付してその説明を省略する。
 図26は、本実施形態のリチャージ管を示す正断面図である。
Hereinafter, a seventh embodiment of a recharge tube, a raw material supply apparatus, a single crystal pulling apparatus, a method of using the recharge tube, a charge method, and a single crystal pulling method according to the present invention will be described based on the drawings.
The present embodiment differs from the first to fifth embodiments described above in the number of divisions of the recharge tube, that is, in terms of the number of connections of the divided tubes, and the same reference numerals are given to the other corresponding components. The explanation is omitted.
FIG. 26 is a front sectional view showing the recharge pipe of the present embodiment.
 本実施形態のリチャージ管10は、上下方向に三分割されており、図26に示すように、下側分割管10Aと上側分割管10Bとの間に、中側分割管(分割管)10Dが設けられる。 The recharge pipe 10 according to the present embodiment is divided into three in the vertical direction, and as shown in FIG. 26, the middle divided pipe (divided pipe) 10D is between the lower divided pipe 10A and the upper divided pipe 10B. Provided.
 中側分割管10Dは、下側分割管10Aと上側分割管10Bと略同一の内径を有するように設定される。また、下側分割管10A上端と中側分割管10D下端が、それぞれ、連結部11によって連結可能とされている。また、中側分割管10D上端と上側分割管10B下端が、連結部11によって連結可能とされている。 The middle divided pipe 10D is set to have substantially the same inner diameter as the lower divided pipe 10A and the upper divided pipe 10B. Further, the upper end of the lower divided pipe 10A and the lower end of the middle divided pipe 10D are connectable by the connecting portion 11, respectively. Further, the upper end of the middle divided pipe 10D and the lower end of the upper divided pipe 10B can be connected by the connecting portion 11.
 連結部11としては、下側分割管10Aと上側分割管10Bと同様に、中側分割管10D上端のフランジ部11nと、中側分割管(分割管)10D下端のフランジ部11mと、が設けられる。連結部11としては、フランジ部11nとフランジ部11mとに周方向に離間して複数設けられた連結孔11c,11cと、これらを締結する締結部としてのボルト・ナット11d、11dと、が設けられる。なお、本実施形態では、緩衝部材11eを用いないが、これを設ける構成とすることもできる。 Similar to the lower divided pipe 10A and the upper divided pipe 10B, the connecting portion 11 is provided with a flange 11n at the upper end of the middle divided pipe 10D and a flange 11m at the lower end of the middle divided pipe (divided pipe) 10D. Be The connecting portion 11 is provided with a plurality of connecting holes 11c and 11c circumferentially separated from each other in the flange portion 11n and the flange portion 11m, and bolts and nuts 11d and 11d as fastening portions for fastening these. Be In the present embodiment, the buffer member 11 e is not used, but may be provided.
 本実施形態においては、分割管セット工程S08として、中側分割管10Dを下側分割管10Aの上側位置にセットする。そして、連結工程S09として、連結部11によって下側分割管10Aのフランジ部11aと中側分割管10Dのフランジ部11mとを締結部によって連結する。
 また、分割管セット工程S08として、上側分割管10Bを中側分割管10Dの上側位置にセットする。そして、連結工程S09として、中側分割管10Dのフランジ部11nと上側分割管10Bのフランジ部11bとを締結部によって連結する。
In the present embodiment, the middle divided pipe 10D is set at the upper position of the lower divided pipe 10A in the divided pipe setting step S08. Then, in the connecting step S09, the connecting portion 11 connects the flange portion 11a of the lower divided pipe 10A and the flange portion 11m of the middle divided pipe 10D by the fastening portion.
Further, in the divided pipe setting step S08, the upper divided pipe 10B is set at the upper position of the middle divided pipe 10D. Then, in the connecting step S09, the flange portion 11n of the middle divided pipe 10D and the flange portion 11b of the upper divided pipe 10B are connected by the fastening portion.
 本実施形態においては、リチャージ管10が上下方向に三分割されていることにより、原料充填工程S06における固形原料S1の落下距離をさらに短くすることができる。これにより、原料充填工程S06における各分割管10A,10B,10Dにおける内壁面へのダメージは少なくて済む。
 また、下側分割管10Aと上側分割管10Bとの間に中側分割管10Dを複数接続することが可能であり、所望のリチャージ量まで増加することが容易になる。これにより、リチャージ量に対するリチャージの回数を削減することが可能となる。
In the present embodiment, since the recharging pipe 10 is divided into three in the vertical direction, the falling distance of the solid raw material S1 in the raw material charging step S06 can be further shortened. Thereby, the damage to the inner wall surface in each divided pipe 10A, 10B, 10D in raw material filling process S06 may be less.
Further, it is possible to connect a plurality of middle side divided pipes 10D between the lower divided pipe 10A and the upper divided pipe 10B, and it becomes easy to increase to a desired amount of recharge. This makes it possible to reduce the number of recharges with respect to the amount of recharge.
 なお、本発明においては、上述した各実施形態における各々の構成を適宜組み合わせて用いること、あるいは、特定の構成のみを採用しない状態とすることも可能である。 In the present invention, it is possible to appropriately combine and use each configuration in each embodiment described above, or to adopt a state in which only a specific configuration is not adopted.
 以下、本発明にかかる実施例を説明する。 Hereinafter, examples according to the present invention will be described.
 φ300mmのシリコン単結晶引き上げ装置において、リチャージに用いられるリチャージ管として、φ300mm程度、軸方向長さが1.8mの石英管を用いてリチャージをおこなった。これを実験例1とする。 In a silicon single crystal pulling apparatus having a diameter of 300 mm, recharging was carried out using a quartz tube having a diameter of about 300 mm and a length of 1.8 m in the axial direction as a recharging tube used for recharging. This is referred to as Experimental Example 1.
 同様に、リチャージ管として、軸方向長さが下側1.5m、上側0.3mに二分割された石英管を用いてリチャージをおこなった。これを実験例2とする。 Similarly, as a recharging tube, recharging was performed using a quartz tube having an axial length of 1.5 m on the lower side and 0.3 m on the upper side. This is referred to as Experimental Example 2.
 同様に、リチャージ管として、軸方向長さが下側0.9m、上側0.9mに二分割された石英管を用いてリチャージをおこなった。これを実験例3とする。 Similarly, as a recharging tube, recharging was performed using a quartz tube having an axial length of 0.9 m on the lower side and 0.9 m on the upper side. This is referred to as Experimental Example 3.
 同様に、リチャージ管として、軸方向長さが下側0.6m、中側0.6m、上側0.6mに三分割された石英管を用いてリチャージをおこなった。これを実験例4とする。 Similarly, as a recharging tube, recharging was performed using a quartz tube whose axial length is divided into three parts of 0.6 m on the lower side, 0.6 m on the middle side, and 0.6 m on the upper side. This is referred to as Experimental Example 4.
 実験例1のリチャージ管の内面が、固形原料の落下に起因する傷等によって白濁し、目視による再生処理が必要であると判断した際のリチャージ回数を基準回数とした。 The inner surface of the recharge tube of Experimental Example 1 became cloudy due to a flaw or the like caused by the drop of the solid material, and the number of recharges when it was determined that visual regeneration was necessary was used as the reference frequency.
 実験例2においては、そのリチャージ管のうち下側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、1.21倍であった。
 また、上側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、2.29倍であった。
In Experimental Example 2, the number of times the regeneration process was required similarly for the lower divided pipe among the recharge pipes was 1.21 times the reference number.
Further, the number of times the regeneration process was required for the upper divided pipe was 2.29 times the reference number.
 実験例3においては、そのリチャージ管のうち下側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、1.45倍であった。
 また、上側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、1.49倍であった。
In Experimental Example 3, the number of times the regeneration process was required similarly for the lower divided pipe among the recharge pipes was 1.45 times the reference number.
In addition, the number of times the regeneration process was required similarly for the upper divided pipe was 1.49 times the reference number.
 実験例4においては、そのリチャージ管のうち、下側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、1.90倍であった。
 また、中側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、2.05倍であった。
 また、上側の分割管に対して同様に再生処理が必要となった回数は、基準回数に対して、2.15倍であった。
In Experimental Example 4, the number of times the regeneration process was similarly required for the lower divided pipe among the recharge pipes was 1.90 times the reference number.
Further, the number of times the regeneration process was required for the middle divided pipe was 2.05 times the reference number.
Further, the number of times the regeneration process was required similarly for the upper divided pipe was 2.15 times the reference number.
 各実験例において、再生処理後もそれぞれの分割管を再利用するとともに、複数回の再生処理をおこなった。 In each of the experimental examples, each divided tube was reused even after the regeneration treatment, and the regeneration treatment was performed a plurality of times.
 実験例1のリチャージ管において、複数回の再生処理における加熱に起因したとみられる変形量が基準値を超えて、それ以上使用できない(排棄)と判断した際のそれまでのリチャージ回数の総計を基準ライフとした。 In the recharge tube of the experimental example 1, the deformation amount which seems to be caused by heating in a plurality of regeneration processes exceeds the reference value, and the total number of recharges up to that point when it is determined that it can not be used any more It is the standard life.
 実験例2においては、そのリチャージ管のうち下側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.10倍であった。
 また、上側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.51倍であった。
In Experimental Example 2, the number of times when it was determined that the lower divided pipe among the recharge pipes was similarly discarded was 1.10 times the reference life.
In addition, the number of times that the upper divided pipe was judged to be discarded similarly was 1.51 times the reference life.
 実験例3においては、そのリチャージ管のうち下側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.15倍であった。
 また、上側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.37倍であった。
In Experimental Example 3, the number of times when it was determined that the lower divided pipe among the recharge pipes was similarly discarded was 1.15 times the reference life.
In addition, the number of times that the upper divided pipe was judged to be discarded similarly was 1.37 times the reference life.
 実験例4においては、そのリチャージ管のうち下側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.25倍であった。
 また、中側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.40倍であった。
 また、上側の分割管に対して同様に排棄と判断した回数計は、基準ライフに対して、1.49倍であった。
 なお、上記の回数は、いずれも、それぞれ3本程度のリチャージ管において、最終ライフまで使用した際の平均値を採用したものである。
In Experimental Example 4, the number of times when it was determined that the lower divided pipe among the recharge pipes was similarly discarded was 1.25 times the reference life.
In addition, the number of times when it was determined that the middle divided pipe was similarly discarded was 1.40 times the reference life.
In addition, the number of times when it was determined that the upper divided pipe was similarly discarded was 1.49 times the reference life.
In addition, the above-mentioned frequency | count each employ | adopts the average value at the time of using to the last life in about 3 recharge pipe | tubes, respectively.
 さらに、各実験例におけるそれぞれの分割管の初期製造コストに対し、再生処理が必要となった回数の増大分、および、変形耐性ライフの増加から変化したコストの比を算出し、各分割管のコストの和を、その実験例のリチャージ管における総コストとして算出した。 Furthermore, with respect to the initial production cost of each divided tube in each experimental example, the ratio of the increase in the number of times the regeneration process is required and the cost changed from the increase in deformation resistance life are calculated. The sum of costs was calculated as the total cost in the recharge tube of the experimental example.
 実験例1のリチャージ管において、初期の製造コストを10とし、再生処理コストを1、変形耐性コストを1とし、また、最終ライフまで使用した際の総コストを10とした。 In the recharge pipe of Experimental Example 1, the initial manufacturing cost was 10, the reprocessing cost was 1, the deformation resistance cost was 1, and the total cost when used up to the final life was 10.
 これに対し、実験例2においては、そのリチャージ管のうち下側の分割管に対して同様に、初期の製造コストが9であり、コストが6.76であった。
 また、上側の分割管に対して同様に、初期の製造コストが3であり、コストが0.87であった。
 実験例2のリチャージ管においては、最終ライフまで使用した際の総コストが7.63となった。
On the other hand, in Experimental Example 2, similarly to the lower divided pipe among the recharge pipes, the initial production cost was 9 and the cost was 6.76.
Also, similarly for the upper divided pipe, the initial manufacturing cost was 3, and the cost was 0.87.
In the recharge pipe of Experimental Example 2, the total cost when used up to the final life was 7.63.
 実験例3においては、そのリチャージ管のうち下側の分割管に対して同様に、初期の製造コストが6であり、コストが3.60であった。
 また、上側の分割管に対して同様に、初期の製造コストが6であり、コストが2.94であった。
 実験例3のリチャージ管においては、最終ライフまで使用した際の総コストが6.54となった。
In Experimental Example 3, similarly to the lower divided pipe among the recharge pipes, the initial production cost was 6 and the cost was 3.60.
Also, similarly for the upper divided pipe, the initial manufacturing cost was 6, and the cost was 2.94.
In the recharge pipe of Experimental Example 3, the total cost when used up to the final life was 6.54.
 実験例4においては、そのリチャージ管のうち下側の分割管に対して同様に、初期の製造コストが5であり、コストが2.11であった。
 また、中側の分割管に対して同様に初期の製造コストが5であり、コストが1.74であった。
 また、上側の分割管に対して同様に、初期の製造コストが5であり、コストが1.56であった。
 実験例3のリチャージ管においては、最終ライフまで使用した際の総コストが5.41となった。
In Experimental Example 4, the initial production cost was 5 and the cost was 2.11 for the lower divided pipe among the recharge pipes.
In addition, the initial production cost was 5 and the cost was 1.74 similarly for the middle divided pipe.
Also, similarly for the upper divided pipe, the initial manufacturing cost was 5 and the cost was 1.56.
In the recharge pipe of Experimental Example 3, the total cost when used up to the final life was 5.41.
 これらの結果から、軸方向に分割したリチャージ管を用いることで、使用可能回数が伸び、結果的に、リチャージのコストを低減することが可能であることがわかる。 From these results, it can be understood that the number of usable times can be extended by using the axially divided recharge tube, and as a result, the cost of the recharge can be reduced.
 さらに、実験例1のリチャージ管において使用回数が多くなった場合に、リチャージ管内面からの石英微粉に起因して発生していたとみなせる有転位化が、実験例2~4では大幅に減少することも確認することができた。 Furthermore, when the number of times of use in the recharge tube of Experimental Example 1 increases, the number of dislocations that can be considered to be generated due to the fine quartz powder from the inner surface of the recharge tube is significantly reduced in Experimental Examples 2 to 4. I was able to confirm.
 また、実験例2~4において、炭素濃度の異常も発生していないことから、緩衝部材の破片購入は発生していないことも確認することができた。 Further, in Experimental Examples 2 to 4, it was also confirmed that the purchase of fragments of the buffer member did not occur because no abnormality in the carbon concentration occurred.

Claims (21)

  1.  チョクラルスキー法による単結晶の育成に用いられ、粒塊状の固形原料をルツボ内の原料融液に追加チャージまたはリチャージする原料供給装置における円筒状のリチャージ管であって、
     前記固形原料を充填する際に軸方向に分割される複数の分割管と、
     前記固形原料を前記ルツボに投入する際に前記分割管を上下に連結する連結部と、
    を有することを特徴とするリチャージ管。
    A cylindrical recharging pipe in a raw material supply apparatus which is used for growing a single crystal by the Czochralski method and additionally charges or recharges a bulky solid raw material to a raw material melt in a crucible,
    A plurality of divided tubes which are divided in the axial direction when filling the solid material;
    A connecting portion connecting the divided tubes up and down when the solid material is introduced into the crucible;
    A recharge tube characterized by having.
  2.  前記分割管において、連結時に下側位置となる分割管上端の内径が、上側位置となる分割管下端の内径に対して等しいか、または、上側位置となる分割管下端の内径よりも大きく設定されることを特徴とする請求項1記載のリチャージ管。 In the divided pipe, the inner diameter of the upper end of the divided pipe at the lower position at the time of connection is set equal to the inner diameter of the lower end of the divided pipe at the upper position or larger than the inner diameter of the lower end of the divided pipe at the upper position The recharge tube according to claim 1, characterized in that:
  3.  前記分割管の上端内径が、下端内径に対して等しいか、または、下端内径よりも大きく設定されることを特徴とする請求項1記載のリチャージ管。 The recharge tube according to claim 1, wherein the upper end inner diameter of the divided tube is set equal to the lower end inner diameter or larger than the lower end inner diameter.
  4.  前記連結部には、径方向外側に延在するフランジ部が設けられ、このフランジ部を締結する締結部が設けられることを特徴とする請求項1記載のリチャージ管。 The said connection part is provided with the flange part extended to radial direction outer side, The fastening part which fastens this flange part is provided, The recharge pipe | tube of Claim 1 characterized by the above-mentioned.
  5.  前記連結部において、連結時に下側位置となる分割管上端に上側位置となる分割管下端が嵌合されることを特徴とする請求項1記載のリチャージ管。 The recharge pipe according to claim 1, wherein the lower end of the divided pipe which is the upper position is fitted to the upper end of the divided pipe which is the lower position at the time of connection in the connecting portion.
  6.  前記連結部が、前記分割管の上端面と下端面とを突き合わせて連結されることを特徴とする請求項1記載のリチャージ管。 The recharge pipe according to claim 1, wherein the connection portion is connected such that the upper end surface and the lower end surface of the divided pipe are butted.
  7.  前記連結部には、上側の前記分割管と下側の前記分割管とが接触する面に緩衝部材が設けられることを特徴とする請求項5記載のリチャージ管。 The recharge pipe according to claim 5, wherein a shock absorbing member is provided on a surface where the upper divided pipe and the lower divided pipe are in contact with each other.
  8.  前記緩衝部材の内径が、上側位置となる分割管下端の内径に対して等しいか、または、上側位置となる分割管下端の内径よりも大きく設定されることを特徴とする請求項7記載のリチャージ管。 8. The recharge according to claim 7, wherein the inner diameter of the buffer member is set equal to the inner diameter of the lower end of the divided pipe at the upper position, or larger than the inner diameter of the lower end of the divided pipe at the upper position. tube.
  9.  前記分割管が石英からなり、前記緩衝部材が可撓性を有してカーボンを含む材料からなることを特徴とする請求項7記載のリチャージ管。 The recharge tube according to claim 7, wherein the divided tube is made of quartz, and the buffer member is made of a flexible material containing carbon.
  10.  チョクラルスキー法による単結晶の育成に用いられ、粒塊状の固形原料をルツボ内の原料融液に追加チャージまたはリチャージする原料供給装置であって、
     請求項1から9のいずれか記載のリチャージ管と、
     前記リチャージ管の下方開口端に着脱可能に装着される円錐状の底蓋と、
     前記リチャージ管および前記底蓋を吊り下げて昇降可能にするとともに前記リチャージ管の下方開口端を開放して前記ルツボ内の原料融液に前記固形原料を投入可能とする引き上げ手段と、
    を具備することを特徴とする原料供給装置。
    A raw material supply apparatus which is used to grow a single crystal by the Czochralski method, and additionally charges or recharges the granular solid raw material to the raw material melt in the crucible,
    A recharge pipe according to any one of claims 1 to 9,
    A conical bottom lid removably attached to the lower open end of the recharge tube;
    A lifting means for suspending the recharging pipe and the bottom cover so as to be able to move up and down and opening the lower opening end of the recharging pipe so that the solid raw material can be charged into the raw material melt in the crucible;
    The raw material supply apparatus characterized by having.
  11.  チョクラルスキー法により原料融液から単結晶を育成する単結晶引き上げ装置であって、
     請求項10記載の原料供給装置と、
     内部に前記ルツボを備えた炉体と、
     この炉体内で前記ルツボの上方位置に下端内周が縮径した筒状として周設され前記原料融液から育成されている前記単結晶への輻射熱を遮るための熱遮蔽体と、を有し、
     追加チャージ又はリチャージの際、前記リチャージ管を前記熱遮蔽体の内側に上方から挿入するとともに、前記リチャージ管の下端を前記熱遮蔽体の下端よりも上方に位置させ、この状態で前記ルツボ内の前記原料融液に前記固形原料を投入することを特徴とする単結晶引き上げ装置。
    A single crystal pulling apparatus for growing a single crystal from a raw material melt by the Czochralski method, comprising:
    A raw material supply apparatus according to claim 10;
    A furnace body provided with the crucible inside;
    And a heat shield for shielding radiant heat to the single crystal grown from the raw material melt at the upper position of the crucible inside the furnace body as a cylindrical shape having a diameter-reduced diameter at the lower end. ,
    At the time of additional charging or recharging, the recharge tube is inserted from above into the inside of the heat shield, and the lower end of the recharge tube is positioned above the lower end of the heat shield, and in this state the inside of the crucible A single crystal pulling apparatus characterized by charging the solid material into the raw material melt.
  12.  前記ルツボ内の前記原料融液に前記固形原料を投入する際に、前記熱遮蔽体の下端位置よりも前記連結部が高い位置に設定されることを特徴とする請求項11記載の単結晶引き上げ装置。 12. The single crystal pulling according to claim 11, wherein when the solid raw material is charged into the raw material melt in the crucible, the connecting portion is set at a position higher than the lower end position of the heat shield. apparatus.
  13.  前記炉体の外側において、前記リチャージ管に前記固形原料を充填する際に、
     下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結可能として支持する傾斜支持台を有することを特徴とする請求項11記載の単結晶引き上げ装置。
    When charging the solid material into the recharging pipe outside the furnace body,
    The divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion 12. The single crystal pulling apparatus according to claim 11, further comprising: an inclined support supported as being connectable to the first.
  14.  請求項1から9のいずれか記載のリチャージ管の使用方法であって、
     前記固形原料の充填によって所定の状態まで内表面が傷ついた前記分割管のみを交換することを特徴とするリチャージ管の使用方法。
    A method of using the recharge tube according to any one of claims 1 to 9,
    A method of using a recharge pipe, comprising replacing only the divided pipe whose inner surface is damaged to a predetermined state by the filling of the solid material.
  15.  前記分割管を、傷のない状態に比べて前記固形原料の充填によって内面の傷により透過率が70%を下回った部分が生じた場合に交換することを特徴とする請求項14記載のリチャージ管の使用方法。 15. The recharge tube according to claim 14, wherein the divided tube is replaced when the filling of the solid material causes a flaw of the inner surface to have a permeability of less than 70% as compared with the condition without a scratch. How to use
  16.  傷ついて交換された前記分割管の内面を加熱して再生することを特徴とする請求項14記載のリチャージ管の使用方法。 The method according to claim 14, wherein the inner surface of the split pipe replaced with a scratch is heated and regenerated.
  17.  加熱により再生された前記分割管の変形が所定量を超えた場合に再使用しないことを特徴とする請求項16記載のリチャージ管の使用方法。 The method of using a recharge pipe according to claim 16, wherein when the deformation of the divided pipe regenerated by heating exceeds a predetermined amount, it is not reused.
  18.  請求項11記載の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
     下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結してさらに前記固形原料を充填することを特徴とするリチャージ方法。
    The single crystal pulling apparatus according to claim 11, wherein the raw material melt in the crucible is additionally charged or recharged.
    The divided pipe mounted with the bottom cover at the lower end is supported by being inclined, and the divided pipe inclined along with the filling of the solid material is erected in the vertical direction side, and the divided pipe is upside by the connecting portion And charging the solid material.
  19.  請求項13記載の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
     前記傾斜支持台によって、下端に前記底蓋を装着した前記分割管を傾斜して支持するとともに、前記固形原料の充填にともなって傾斜した前記分割管を鉛直方向側に屹立させて、前記連結部により前記分割管を上側に連結してさらに前記固形原料を充填することを特徴とするリチャージ方法。
    The single crystal pulling apparatus according to claim 13, wherein the raw material melt in the crucible is additionally charged or recharged.
    The inclined support supports the divided pipe mounted with the bottom lid at the lower end by the inclined support, and the divided pipe erected along with the filling of the solid material is erected in the vertical direction side, and the connection portion The split tube is connected to the upper side by the above to further charge the solid material.
  20.  請求項13記載の単結晶引き上げ装置において、前記ルツボ内の前記原料融液に追加チャージまたはリチャージするリチャージ方法であって、
     前記ルツボ内の前記原料融液に追加チャージまたはリチャージした後に、
     前記傾斜支持台によって、連結された複数の前記分割管を支持し、傾斜させて前記分割管を前記連結部により分離することを特徴とするリチャージ方法。
    The single crystal pulling apparatus according to claim 13, wherein the raw material melt in the crucible is additionally charged or recharged.
    After additionally charging or recharging the raw material melt in the crucible,
    A method of recharging comprising: supporting the plurality of connected divided tubes by the inclined support and separating the divided tubes by the connecting portion by inclining the divided tubes.
  21.  請求項18記載のリチャージ方法によって、前記ルツボ内の前記原料融液に追加チャージまたはリチャージした後に、
    前記原料融液から単結晶を育成することを特徴とする単結晶引き上げ方法。
     
     
     
     
     
    A method according to claim 18, after the raw material melt in the crucible is additionally charged or recharged,
    A single crystal pulling method characterized in that a single crystal is grown from the raw material melt.




PCT/JP2018/044699 2017-12-20 2018-12-05 Recharging tube, raw material feeding device, single crystal pulling up device, usage of recharging tube, recharging method, and single crystal pulling up method WO2019124073A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880081647.8A CN111465723B (en) 2017-12-20 2018-12-05 Refill tube, raw material supply device, single crystal pulling device, method for using refill tube, refill method, and single crystal pulling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017244437A JP7135315B2 (en) 2017-12-20 2017-12-20 Recharge tube, raw material supply device, single crystal pulling device, usage of recharge tube, recharging method, single crystal pulling method
JP2017-244437 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019124073A1 true WO2019124073A1 (en) 2019-06-27

Family

ID=66994806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044699 WO2019124073A1 (en) 2017-12-20 2018-12-05 Recharging tube, raw material feeding device, single crystal pulling up device, usage of recharging tube, recharging method, and single crystal pulling up method

Country Status (4)

Country Link
JP (1) JP7135315B2 (en)
CN (1) CN111465723B (en)
TW (1) TWI720354B (en)
WO (1) WO2019124073A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164383A1 (en) * 2022-02-25 2023-08-31 Globalwafers Co., Ltd. Ingot puller apparatus having silicon feed tubes with kick plates
TWI839914B (en) 2022-09-27 2024-04-21 大陸商西安奕斯偉材料科技股份有限公司 Crucible support assembly for single crystal furnace and single crystal furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102460012B1 (en) * 2021-01-19 2022-10-28 에스케이실트론 주식회사 Material feed hopper
CN114717646B (en) * 2022-03-31 2023-11-28 中环领先(徐州)半导体材料有限公司 Charging pipe, charging method and crystal growth apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035357A (en) * 2002-07-05 2004-02-05 Komatsu Electronic Metals Co Ltd Raw material feeding device in single crystal pulling apparatus, raw material for manufacturing single crystal semiconductor, and raw material feeding vessel
JP2008285351A (en) * 2007-05-16 2008-11-27 Sumco Corp Material supply apparatus, single crystal drawing apparatus equipped with the same, and material supply method
KR20140145657A (en) * 2013-06-13 2014-12-24 포토멕 주식회사 Apparatus for Material Insert
JP2017122017A (en) * 2016-01-05 2017-07-13 信越半導体株式会社 Recharge tube stocker

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345624B2 (en) * 2004-09-21 2009-10-14 株式会社Sumco Raw material supply apparatus and raw material supply method by Czochralski method
JP5857945B2 (en) * 2012-11-20 2016-02-10 信越半導体株式会社 Raw material filling method and single crystal manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035357A (en) * 2002-07-05 2004-02-05 Komatsu Electronic Metals Co Ltd Raw material feeding device in single crystal pulling apparatus, raw material for manufacturing single crystal semiconductor, and raw material feeding vessel
JP2008285351A (en) * 2007-05-16 2008-11-27 Sumco Corp Material supply apparatus, single crystal drawing apparatus equipped with the same, and material supply method
KR20140145657A (en) * 2013-06-13 2014-12-24 포토멕 주식회사 Apparatus for Material Insert
JP2017122017A (en) * 2016-01-05 2017-07-13 信越半導体株式会社 Recharge tube stocker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023164383A1 (en) * 2022-02-25 2023-08-31 Globalwafers Co., Ltd. Ingot puller apparatus having silicon feed tubes with kick plates
TWI839914B (en) 2022-09-27 2024-04-21 大陸商西安奕斯偉材料科技股份有限公司 Crucible support assembly for single crystal furnace and single crystal furnace

Also Published As

Publication number Publication date
CN111465723B (en) 2021-11-30
TW201928130A (en) 2019-07-16
JP2019112238A (en) 2019-07-11
JP7135315B2 (en) 2022-09-13
CN111465723A (en) 2020-07-28
TWI720354B (en) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2019124073A1 (en) Recharging tube, raw material feeding device, single crystal pulling up device, usage of recharging tube, recharging method, and single crystal pulling up method
JP4345624B2 (en) Raw material supply apparatus and raw material supply method by Czochralski method
KR101977049B1 (en) Side feed system for czochralski growth of silicon ingots
US20110036860A1 (en) Single-crystal growth apparatus and raw-material supply method
KR100800212B1 (en) Apparatus and method for supplying solid raw material to single crystal grower
JP4103593B2 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
EP2471978B1 (en) Method for recharging silicon feedstock
JP2008285351A (en) Material supply apparatus, single crystal drawing apparatus equipped with the same, and material supply method
KR101901874B1 (en) Method for filling raw material, and method for preparaing single crystal
DE112016000581T5 (en) A method of cleaning a single crystal pulling apparatus, a cleaning tool for use therein, and a method of manufacturing a single crystal
JP6503933B2 (en) Silicon melt supply apparatus and method, and silicon single crystal production apparatus
US7001456B2 (en) Apparatus and method for supplying Crystalline materials in czochralski method
US6805746B2 (en) Method for supplying CZ material
JP2007314394A (en) Device and method for feeding raw material by czochralski method
JP2005001977A (en) Apparatus and method for supplying raw material in czochralski method
KR20200026247A (en) Recharge tube and manufacturing method of single crystal
CN109943883B (en) Conversion fitting of Czochralski growth device
JP7412276B2 (en) Filling method for raw silicon
US9422635B2 (en) Single crystal production apparatus and single crystal production method having pedestal with grooves
KR101554411B1 (en) Apparatus and method for growing ingot
KR20160135550A (en) Continuous Ingot Growing Apparatus
JP2013116828A (en) Method for producing single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892749

Country of ref document: EP

Kind code of ref document: A1