WO2019123970A1 - Cool circuit and oil cooler - Google Patents

Cool circuit and oil cooler Download PDF

Info

Publication number
WO2019123970A1
WO2019123970A1 PCT/JP2018/043173 JP2018043173W WO2019123970A1 WO 2019123970 A1 WO2019123970 A1 WO 2019123970A1 JP 2018043173 W JP2018043173 W JP 2018043173W WO 2019123970 A1 WO2019123970 A1 WO 2019123970A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
flow
oil
coolant
path
Prior art date
Application number
PCT/JP2018/043173
Other languages
French (fr)
Japanese (ja)
Inventor
宮川 雅志
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880082387.6A priority Critical patent/CN111542688A/en
Publication of WO2019123970A1 publication Critical patent/WO2019123970A1/en
Priority to US16/904,110 priority patent/US20200318529A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • F16H57/0413Controlled cooling or heating of lubricant; Temperature control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element

Definitions

  • the present disclosure relates to a cooling circuit and an oil cooler.
  • the oil cooler described in Patent Document 1 has a heat exchanger core formed by stacking a large number of plates, and a flow path control valve attached to the top.
  • the flow control valve includes a valve housing and a rotary valve brazed to the top of the plate, and a low temperature cooling water inlet to which low temperature cooling water is supplied, and a high temperature cooling water inlet to which high temperature cooling water is supplied , And a cooling water outlet for returning the cooling water.
  • the core coolant inlet and the core coolant outlet of the heat exchanger core are in communication with the interior of the valve housing.
  • the flow rate of the cooling water used differs depending on the case of heating the oil and the case of cooling the oil. Specifically, the flow rate of the low temperature cooling water used in cooling the oil tends to be larger than the flow rate of the high temperature cooling water used in heating the oil.
  • cooling is performed from one cooling water outlet either at the time of oil heating with a relatively low flow rate of cooling water and at the time of oil cooling with a relatively high flow rate of cooling water. Water is drained. Therefore, the pressure loss of the cooling water tends to be large particularly when cooling oil with a large flow rate of the cooling water.
  • the pressure loss of the cooling water increases, the flow velocity of the cooling water decreases, which may cause problems such as a decrease in heat exchange performance of the oil cooler, an increase in a pump load, and the like.
  • An object of the present disclosure is to provide an oil cooler and a cooling circuit capable of reducing pressure loss while allowing flow rate change.
  • the cooling circuit includes a first cooling water flow path through which the first cooling water flows, a second cooling water flow path through which the second cooling water flows, and the temperature of the inflowing cooling water is less than a predetermined temperature.
  • a thermostat for blocking the flow of the first cooling water in the first cooling water flow path, and heating the oil a thermostat allowing the flow of the first cooling water in the first cooling water flow path when the temperature of the cooling water is equal to or higher than a predetermined temperature.
  • an oil cooler for cooling is an oil cooler for cooling.
  • the oil cooler has a first cooling water inlet through which the first cooling water flowing through the first cooling water flow channel, and a first cooling water outlet through which the cooling water flowing through the oil cooler flows out to the first cooling water flow channel, A second cooling water inlet through which the second cooling water flowing through the second cooling water flow channel flows, and a second cooling water outlet through which the cooling water flowing through the inside of the oil cooler flows out to the second cooling water flow channel;
  • the oil is heated or cooled by heat exchange between the oil and the cooling water flowing in from at least one of the first cooling water inlet and the second cooling water inlet.
  • An oil cooler is an oil cooler in which an oil flow path through which oil flows and a cooling water flow path through which cooling water flows are alternately provided by stacking and arranging a plurality of plates.
  • the cooling water plate constituting the cooling water flow path is an internal flow path through which the cooling water flows, a first cooling water inflow path and a second cooling water inflow path through which the cooling water flows into the internal flow path, and an internal flow path And a first cooling water outlet and a second cooling water outlet for discharging the cooling water therefrom.
  • the cooling water flows into the internal flow path only from the second cooling water inflow path.
  • the cooling water flows from both the first cooling water inflow path and the second cooling water inflow path to the internal flow path. Therefore, the flow rate of the cooling water flowing through the internal flow path can be changed. Further, since the cooling water can be made to flow out from the two outflow passages of the first cooling water outflow passage and the second cooling water outflow passage, compared with the conventional oil cooler having only one outflow passage, Pressure loss can be reduced.
  • FIG. 1 is a block diagram showing a schematic configuration of the cooling circuit of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure of the oil cooler of the first embodiment.
  • FIG. 3 is a perspective view showing a perspective view of the offset fin of the first embodiment.
  • FIG. 4 is a block diagram showing an operation example of the cooling circuit of the first embodiment.
  • FIG. 5 is a time chart showing the transition of the temperature of the cooling water of the engine of the first embodiment and the temperature of the oil of the transmission.
  • FIG. 6 is a block diagram showing an operation example of the cooling circuit of the first embodiment.
  • FIG. 7 is a block diagram showing a schematic configuration of the cooling circuit of the second embodiment.
  • the cooling circuit 10 of the present embodiment shown in FIG. 1 is mounted on a vehicle, and includes an engine cooling circuit 20 in which cooling water of the engine 40 circulates and a transmission cooling circuit in which hydraulic oil of the transmission 50 circulates. And 30.
  • the engine cooling circuit 20 is provided with an engine 40, a radiator 41, a heater core 42, a thermostat 43, and a cooling water pump 44.
  • the engine 40 is connected to the radiator 41 through the cooling water flow path W20.
  • the engine 40 is connected to the heater core 42 through the cooling water flow path W21. Therefore, the cooling water heat-exchanged with the engine 40 can flow to at least one of the radiator 41 and the heater core 42 through the cooling water flow path W20 and the cooling water flow path W21.
  • the cooling water flow path W20 corresponds to a first cooling water flow path
  • the cooling water flowing through the cooling water flow path W20 corresponds to a first cooling water.
  • the radiator 41 cools the cooling water by heat exchange between the cooling water flowing inside and the air flowing outside.
  • the cooling water cooled by the radiator 41 flows into the cooling water pump 44 through the cooling water flow path W22.
  • the cooling water pump 44 is a mechanical pump driven on the basis of the power transmitted from the engine 40 or an electric pump driven on the basis of the power supplied from a battery mounted on the vehicle.
  • the cooling water pump 44 circulates the cooling water to each element of the engine cooling circuit 20 by pressure-feeding the inflowing cooling water to the engine 40.
  • the heater core 42 is a component of an air conditioner of a vehicle.
  • the heater core 42 heats the air flowing in the air conditioning duct by performing heat exchange between the cooling water supplied from the engine 40 and the air flowing in the air conditioning duct of the air conditioner.
  • the heated air is blown out into the vehicle compartment through the air conditioning duct to heat the vehicle interior.
  • the cooling water having flowed inside the heater core 42 flows into the thermostat 43 through the cooling water flow path W23.
  • the cooling water flow path W23 corresponds to a second cooling water flow path
  • the cooling water flowing through the cooling water flow path W23 corresponds to a second cooling water.
  • the thermostat 43 is provided in the middle of the cooling water flow path W22 which connects the radiator 41 and the engine 40.
  • the thermostat 43 When the temperature of the cooling water is lower than the predetermined valve opening temperature Tth1, the thermostat 43 is in a valve closed state in which the cooling water flow path W22 is shut off.
  • the valve opening temperature Tth1 is set to, for example, 80 degrees.
  • the temperature of the cooling water is less than the valve opening temperature Tth1, the flow of the cooling water from the heater core 42 to the engine 40 is permitted, while the flow of the cooling water from the radiator 41 to the engine 40 is blocked.
  • the thermostat 43 When the temperature of the cooling water is equal to or higher than the valve opening temperature Tth1, the thermostat 43 is in an open state in which the cooling water flow path W22 is opened.
  • the thermostat 43 is closed when the temperature of the cooling water is low, such as when the engine 40 is cold-started. Therefore, the cooling water pumped by the cooling water pump 44 circulates through the engine 40 and the heater core 42 which are elements other than the radiator 41. Therefore, since the cooling water is not cooled in the radiator 41, the temperature of the cooling water can be easily raised early. As a result, the engine 40 and the heater core 42 tend to be warmed up early.
  • the thermostat 43 is opened. Therefore, the cooling water pumped by the cooling water pump 44 circulates through the engine 40, the radiator 41, and the heater core 42. As a result, the cooling water cooled in the radiator 41 is supplied to the engine 40, and the engine 40 is cooled by heat exchange with the engine 40. Moreover, since a part of the cooling water heated by flowing through the inside of the engine 40 is supplied to the heater core 42, the temperature of the heater core 42 is maintained at a high temperature. Therefore, the air flowing in the air conditioning duct can be heated by the heater core 42.
  • the transmission cooling circuit 30 is provided with a transmission 50, an oil cooler 51, and an oil pump 52.
  • the transmission 50 is connected to the oil inflow port 510 a of the oil cooler 51 through the oil flow path W ⁇ b> 30.
  • the oil having flowed through the inside of the transmission 50 flows into the oil inflow port 510a of the oil cooler 51 through the oil flow path W30.
  • the oil cooler 51 includes an oil inlet 510a, a first cooling water inlet 511a, a second cooling water inlet 512a, an oil outlet 510b, a first cooling water outlet 511b, and a second cooling water outlet 512b.
  • the oil flowing into the oil inlet 510a flows through the inside of the oil cooler 51 and is then discharged from the oil outlet 510b.
  • the oil discharged from the oil outlet 510b flows into the oil pump 52 through the oil passage W31.
  • the oil pump 52 is an electrically driven pump driven based on the power supplied from, for example, a battery mounted on a vehicle.
  • the oil pump 52 circulates the oil to each element of the transmission cooling circuit 30 by pressure-feeding the inflowing oil to the transmission 50.
  • the first coolant inlet port 511a of the oil cooler 51 is connected to the coolant channel W20 through the bypass channel W40. Therefore, part of the cooling water flowing through the cooling water flow path W20, that is, part of the cooling water discharged from the engine 40 flows into the oil cooler 51 through the bypass flow path W40.
  • a check valve 45 is provided in the middle of the bypass flow passage W40.
  • the check valve 45 permits the circulation of the cooling water in the direction from the cooling water flow path W20 toward the first cooling water inlet 511a, while the cooling water in the direction from the first cooling water flow inlet 511a toward the cooling water flow path W20. Regulating distribution.
  • the check valve 45 corresponds to the flow control portion.
  • the second cooling water inflow port 512 a of the oil cooler 51 is connected to the cooling water flow path W 23 through the bypass flow path W 41. Therefore, a part of the cooling water flowing through the cooling water flow path W23, that is, a part of the cooling water discharged from the heater core 42 flows into the oil cooler 51 through the bypass flow path W41.
  • the cooling water having flowed inside the oil cooler 51 is discharged from the first cooling water outlet 511b or the second cooling water outlet 512b.
  • the first coolant outlet 511b is connected to a portion on the downstream side of a portion of the coolant channel W20 connected to the bypass channel W40 through the bypass channel W42. Therefore, the cooling water discharged from the first cooling water outlet 511b flows into the cooling water channel W20.
  • the second coolant outlet 512b is connected to a portion on the downstream side of a portion of the coolant channel W23 connected to the bypass channel W41 through the bypass channel W43. Therefore, the cooling water discharged from the second cooling water outlet 512b flows into the cooling water channel W23.
  • the oil cooler 51 has a structure in which oil flow paths through which oil flows and cooling water flow paths through which cooling water flows are alternately provided by arranging a plurality of plates in a stacked manner.
  • FIG. 2 shows the cross-sectional structure of the cooling water plate 70 that constitutes the cooling water flow path of the oil cooler 51. As shown in FIG.
  • the cross-sectional shape orthogonal to the plate stacking direction is formed in a substantially hexagonal shape.
  • An internal flow passage 77 through which the cooling water flows is formed in the cooling water plate 70.
  • the cooling water plate 70 there are a first cooling water inflow passage 72a, a second cooling water inflow passage 73a, a first cooling water outflow passage 72b, and a second cooling water outflow passage 73b communicating with the cooling water internal flow passage 77. It is provided.
  • the cooling water plate 70 is provided with an oil inflow passage 71 a and an oil outflow passage 71 b which are not communicated with the cooling water internal passage 77.
  • the first cooling water inflow path 72 a is provided at the corner C 1 of the cooling water plate 70.
  • An oil outflow passage 71 b and a second cooling water inflow passage 73 a are respectively provided at two corner portions C 2 and C 3 adjacent to the corner portion C 1 in the cooling water plate 70.
  • a first cooling water outflow passage 72b, an oil inflow passage 71a, and a second cooling water outflow passage 73b are provided at angles C4 to C6 located diagonally of the corners C1 to C3 in the cooling water plate 70.
  • the inner diameter of the first coolant inlet channel 72a is larger than the inner diameter of the second coolant inlet channel 73a.
  • the inner diameter of the first coolant outlet channel 72b is larger than the inner diameter of the second coolant outlet channel 73b.
  • the direction from the first cooling water inflow passage 72a toward the first cooling water outflow passage 72b is referred to as "X direction", and the direction orthogonal to the X direction is referred to as "Y direction”.
  • the direction from the second cooling water inflow path 73a toward the second cooling water outflow path 73b that is, the direction that bisects the X direction and the Y direction is referred to as an " ⁇ direction”.
  • the X direction corresponds to the first direction
  • the Y direction corresponds to the second direction
  • the ⁇ direction corresponds to the third direction.
  • Offset fins 74 are disposed in the cooling water internal flow passage 77 of the cooling water plate 70. As shown in FIG. 3, the offset fin 74 has a plurality of partially cut and raised cut-and-raised portions 740 in the X direction. The X direction is the opening direction of the offset fin 74. The cut-and-raised portions 740 and 740 adjacent to each other in the X direction are arranged to be offset in the Y direction. In this offset fin 74, when the cooling water is flowing in the X direction shown in FIG.
  • the offset fins 74 correspond to a water flow resistance applying portion.
  • a rib 75 is formed between the first cooling water inflow passage 72 a and the second cooling water inflow passage 73 a in the cooling water plate 70 so as to extend from the inner wall surface of the cooling water plate 70.
  • the rib 75 suppresses the short circuit of the flow of the cooling water between the first cooling water inflow path 72a and the second cooling water inflow path 73a.
  • a rib 76 is formed between the first coolant outlet passage 72 b and the second coolant outlet passage 73 b in the coolant plate 70 so as to extend from the inner wall surface of the coolant plate 70.
  • the rib 76 suppresses a short circuit of the flow of the cooling water between the first cooling water outflow passage 72b and the second cooling water outflow passage 73b.
  • oil flows into the oil inflow path 71a shown in FIG. 2 from the oil inflow port 510a shown in FIG.
  • the oil that has flowed into the oil inflow path 71 a flows into the oil internal flow path formed in the oil plate adjacent to the cooling water plate 70.
  • the oil flowing in the internal oil flow path flows in the direction indicated by the arrow D1 in the figure.
  • the flow direction D1 of the oil is opposed to the flow direction D2 of the cooling water from the first cooling water inflow path 72a toward the first cooling water outflow path 72b.
  • the oil that has flowed into the oil internal flow path is discharged from the oil outlet 510b shown in FIG. 1 through the oil outflow path 71b.
  • the cooling circuit 10 and the oil cooler 51 of the present embodiment will be described.
  • Tth1 valve opening temperature
  • the thermostat 43 is in the valve closed state.
  • the cooling water circulates in the engine cooling circuit 20 as shown by a thick line in FIG. That is, while the cooling water circulates through the engine 40, the heater core 42, the oil cooler 51, the thermostat 43, and the cooling water pump 44, the cooling water does not circulate through the radiator 41.
  • the coolant heated by heat exchange with the engine 40 flows into the second coolant inlet 512a of the oil cooler 51 through the coolant channel W21, the heater core 42, the coolant channel W23, and the bypass channel W41. It flows through the cooling water internal flow passage 77 of the cooler 51.
  • the heat is exchanged between the cooling water flowing through the cooling water internal flow passage 77 of the oil cooler 51 and the oil flowing through the oil internal flow passage, whereby the oil is heated. That is, the oil flowing through the transmission 50 can be heated.
  • the cooling water whose temperature has decreased due to the heat exchange with the oil is discharged to the bypass flow passage W43 through the second cooling water outflow passage 73b and the second cooling water flow outlet 512b.
  • the cooling water discharged to the bypass flow path W43 is heated again by flowing into the engine 40 through the cooling water flow path W23, the thermostat 43, and the cooling water pump 44.
  • the cooling water is flowing from the second cooling water inflow path 73a toward the second cooling water outflow path 73b, the cooling water is likely to receive the water flow resistance from the offset fins 74. Therefore, the flow rate of the cooling water flowing in the oil cooler 51 is reduced.
  • the temperature Te of the cooling water of the engine 40 rises earlier than the temperature Tt of the oil of the transmission 50. Therefore, the temperature difference ⁇ T between the temperature Te of the cooling water of the engine 40 and the temperature Tt of the oil of the transmission 50 becomes large, so even if the flow rate of the cooling water flowing in the oil cooler 51 is small, heating of the oil Is possible.
  • the thermostat 43 is opened.
  • the cooling water circulates in the engine cooling circuit 20 as shown by a thick line in FIG. That is, the cooling water circulates through all the elements of the engine cooling circuit 20.
  • the cooling water cooled in the radiator 41 flows into the first cooling water inlet 511a of the oil cooler 51 through the engine 40, the cooling water passage W20, and the bypass passage W40. Further, the cooling water flowing through the cooling water flow path W23 flows into the second cooling water inflow port 512a of the oil cooler 51 through the bypass flow path W41.
  • the cooling water flowing into the first cooling water inlet 511 a and the second cooling water inlet 512 a flows in the cooling water internal flow passage 77 of the oil cooler 51.
  • the heat is exchanged between the cooling water flowing through the cooling water internal flow passage 77 and the oil flowing through the oil internal flow passage, whereby the oil is cooled. That is, the oil flowing through the transmission 50 is cooled. Therefore, as shown in FIG. 5, after time t11 at which the temperature of the cooling water exceeds the valve opening temperature Tth1, the temperature Tt of the oil of the transmission 50 decreases.
  • the coolant heated by heat exchange of oil is discharged to the bypass channel W42 through the first coolant inlet channel 72a and the first coolant outlet 511b, or the second coolant outlet channel 73b and the second coolant
  • the water is discharged from the water outlet 512b into the bypass channel W43.
  • the cooling water discharged to the bypass flow path W42 is cooled again by flowing into the radiator 41 through the cooling water flow path W20.
  • the actions and effects shown in the following (1) to (6) can be obtained.
  • (1) When the flow of cooling water in the cooling water flow path W20 is blocked by the thermostat 43, the cooling water does not flow into the first cooling water inflow path 72a of the oil cooler 51. The cooling water flows in only from the second cooling water inflow path 73a.
  • the internal flow path 77 of the oil cooler 51 includes the first cooling water inflow path 72a and the second cooling water inflow path 73a. Cooling water flows from both sides. Thus, the flow rate of the cooling water flowing through the oil cooler 51 can be changed.
  • the oil cooler 51 is supplied with cooling water from the two outlets of the first cooling water outlet 511b and the second cooling water outlet 512b, and the two outlets of the first cooling water outlet 72b and the second cooling water outlet 73b. As it can be drained out, the pressure loss of the cooling water can be reduced compared to a conventional oil cooler having only one outlet and one outlet.
  • a check valve 45 is provided in the bypass channel W40 connecting the first coolant inlet 511a of the oil cooler 51 and the coolant channel W20.
  • the check valve 45 regulates the flow of the cooling water in the direction from the first cooling water inlet 511 a of the oil cooler 51 toward the cooling water flow path W ⁇ b> 20.
  • the cooling water which has flowed into the first cooling water inflow path 72a from the first cooling water inflow port 511a is discharged from the first cooling water outflow port 511b through the first cooling water outflow path 72b.
  • the flow direction D2 of the cooling water and the flow direction D1 of the oil face each other. As a result, heat exchange can be performed more efficiently between the cooling water and the oil, so that the oil cooling efficiency can be enhanced.
  • the cooling water plate 70 of the oil cooler 51 has offset fins 74.
  • the offset fins 74 flow in the X direction, which is a direction from the first cooling water inflow path 72a toward the first cooling water outflow path 72b, a water flow resistance received by the cooling water, and a second cooling water inflow path 73a to the second cooling
  • the flow resistance to be received by the cooling water is made different.
  • the latter is larger than the former.
  • the cooling water can easily flow from the first cooling water inflow path 72a toward the first cooling water outflow path 72b, so the cooling water in the oil cooler 51 can easily flow to the radiator 41.
  • the cooling efficiency of the cooling circuit 10 can be enhanced.
  • the flow resistances in two directions can be easily made different only by arranging the offset fins 74 inside the cooling water plate 70.
  • the first cooling water inflow passage 72a and the first cooling water outflow passage 72b are disposed to face each other with the offset fin 74 interposed therebetween in the X direction. Further, the second cooling water inflow path 73a and the second cooling water outflow path 73b are disposed to face each other across the offset fin 74 in the ⁇ direction.
  • the flow resistance on the cooling water flowing in the X direction is made different from the flow resistance on the cooling water flowing in the ⁇ direction, while maintaining high heat exchange efficiency between the cooling water and the oil. Can.
  • a rib 75 is provided between the first cooling water inflow passage 72a and the second cooling water inflow passage 73a in the oil cooler 51. Since a short circuit of the flow of the cooling water between the first cooling water inflow path 72a and the second cooling water inflow path 73a can be suppressed by the rib 75, the reduction of the heat exchange efficiency of the oil cooler 51 is suppressed. Can.
  • the cooling circuit 10 will be described.
  • differences from the cooling circuit 10 of the first embodiment will be mainly described.
  • the engine 40 of this embodiment is an engine with a supercharger.
  • the cooling circuit 10 of the present embodiment is provided with a CAC cooling circuit 80 in which the cooling water of the charge air cooler (CAC) 81 circulates instead of the circuit flowing through the heater core 42. ing.
  • the CAC cooling circuit 80 is provided with a CAC 81, a low water temperature radiator 82, a cooling water pump 83, and a thermostat 84.
  • the CAC 81 is a device that raises the air density by cooling the intake air compressed in the supercharged engine 40. Cooling water is circulated between the CAC 81 and the low water temperature radiator 82 through the cooling water flow paths W50 and W51. The low water temperature radiator 82 cools the cooling water by performing heat exchange between the cooling water flowing inside and the air flowing outside.
  • the coolant pump 83 is provided in the coolant channel W51.
  • the cooling water pump 83 circulates the cooling water in the CAC cooling circuit 80.
  • the second coolant inlet 512a of the oil cooler 51 is connected to the coolant channel W50 through the coolant channel W52.
  • the second coolant outlet 512b of the oil cooler 51 is connected to the coolant channel W51 through the coolant channel W53.
  • the cooling water passage W52 corresponds to a second cooling water passage
  • the cooling water flowing inside the cooling water passage W52 corresponds to a second cooling water.
  • the thermostat 84 is provided at a connection portion of the cooling water passage W50 with the cooling water passage W52.
  • the thermostat 84 is in a closed state when the temperature of the cooling water is lower than the predetermined temperature, and blocks the flow of the cooling water in the cooling water flow path W50.
  • the thermostat 84 is opened when the temperature of the cooling water is equal to or higher than a predetermined temperature, and permits the flow of the cooling water in the cooling water flow path W50.
  • the cooling water flow path W20 is connected to the cooling water flow path W22 through the cooling circuit W24.
  • the cooling circuit W24 is a flow path for causing the cooling water flowing in the cooling water flow path W20 to bypass the radiator 41 and flow in the cooling water flow path W22.
  • each embodiment can also be implemented in the following modes.
  • a solenoid valve may be provided instead of the check valve 45 as a flow control unit that restricts the flow of the cooling water.
  • the oil cooled by the oil cooler 51 is not limited to the oil used for the transmission 50, and may be oil used for a power machine such as the engine 40 or the like.
  • the cooling circuit 10 may be configured to cool a motor mounted on a vehicle, an inverter device for driving the motor, or the like, instead of the engine 40.
  • the cooling water plate 70 may be provided with an appropriate structure other than the offset fins as a water flow resistance applying portion.
  • the present disclosure is not limited to the above specific example. Those skilled in the art may appropriately modify the above-described specific example as long as the features of the present disclosure are included.
  • the elements included in the specific examples described above, and the arrangement, conditions, shape, and the like of the elements are not limited to those illustrated, and can be changed as appropriate.
  • the elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

This oil cooler comprises a plurality of plates arranged in layers, alternately providing oil flow passageways for circulation of oil and cooling water flow passageways for circulation of cooling water. A cooling water plate (70) configuring the cooling water flow passageways is provided with: an inner flow passageway (77) for flowing a cooling water; a first cooling water inflow passageway (72a) and a second cooling water inflow passageway (73a) for the inflow of the cooling water into the inner flow passageway; and a first cooling water outflow passageway (72b) and a second cooling water outflow passageway (73b) for the outflow of the cooling water from the inner flow passageway.

Description

冷却回路及びオイルクーラCooling circuit and oil cooler 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年12月22日に出願された日本国特許出願2017-245714号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-245714 filed on Dec. 22, 2017 and claims the benefit of its priority, and the entire contents of the patent application are as follows: Incorporated herein by reference.
 本開示は、冷却回路及びオイルクーラに関する。 The present disclosure relates to a cooling circuit and an oil cooler.
 従来、下記の特許文献1に記載のオイルクーラがある。特許文献1に記載のオイルクーラは、多数のプレートを積層してなる熱交換器コアと、その頂部に取り付けられた流路制御弁とを有する。流路制御弁は、プレートの頂部にろう付けされたバルブハウジングとロータリバルブとからなり、低温冷却水が供給される低温冷却水導入口と、高温冷却水が供給される高温冷却水導入口と、冷却水を戻す冷却水導出口とを有している。熱交換器コアのコア冷却水入口及びコア冷却水出口は、バルブハウジングの内部に連通されている。ロータリバルブの切り替え位置に応じてこれらの流路が適宜に連通し、オイルの加熱及び冷却が行われる。 Conventionally, there is an oil cooler described in Patent Document 1 below. The oil cooler described in Patent Document 1 has a heat exchanger core formed by stacking a large number of plates, and a flow path control valve attached to the top. The flow control valve includes a valve housing and a rotary valve brazed to the top of the plate, and a low temperature cooling water inlet to which low temperature cooling water is supplied, and a high temperature cooling water inlet to which high temperature cooling water is supplied , And a cooling water outlet for returning the cooling water. The core coolant inlet and the core coolant outlet of the heat exchanger core are in communication with the interior of the valve housing. These flow paths appropriately communicate with each other according to the switching position of the rotary valve to heat and cool the oil.
特開2012-57889号公報JP 2012-57889 A
 特許文献1に記載されるようなオイルクーラでは、オイルを加熱する場合と、オイルを冷却する場合とで、用いられる冷却水の流量が異なる。具体的には、オイルを加熱する際に用いられる高温冷却水の流量よりも、オイルを冷却する際に用いられる低温冷却水の流量の方が多くなりやすい。特許文献1に記載のオイルクーラでは、冷却水の流量が相対的に少ないオイル加熱時、及び冷却水の流量が相対的に多いオイル冷却時のいずれの場合でも、一つの冷却水導出口から冷却水が排出される。そのため、特に冷却水の流量の多いオイル冷却時に冷却水の圧力損失が大きくなりやすい。冷却水の圧力損失が大きくなると、冷却水の流速が低下するため、オイルクーラの熱交換性能が低下したり、ポンプ負荷が増加したりする等の問題が生じる可能性がある。 In the oil cooler as described in Patent Document 1, the flow rate of the cooling water used differs depending on the case of heating the oil and the case of cooling the oil. Specifically, the flow rate of the low temperature cooling water used in cooling the oil tends to be larger than the flow rate of the high temperature cooling water used in heating the oil. In the oil cooler described in Patent Document 1, cooling is performed from one cooling water outlet either at the time of oil heating with a relatively low flow rate of cooling water and at the time of oil cooling with a relatively high flow rate of cooling water. Water is drained. Therefore, the pressure loss of the cooling water tends to be large particularly when cooling oil with a large flow rate of the cooling water. When the pressure loss of the cooling water increases, the flow velocity of the cooling water decreases, which may cause problems such as a decrease in heat exchange performance of the oil cooler, an increase in a pump load, and the like.
 本開示の目的は、流量の変更を可能としつつ、圧力損失を低減することの可能なオイルクーラ及び冷却回路を提供することにある。 An object of the present disclosure is to provide an oil cooler and a cooling circuit capable of reducing pressure loss while allowing flow rate change.
 本開示の一態様による冷却回路は、第1冷却水が流れる第1冷却水流路と、第2冷却水が流れる第2冷却水流路と、流入する冷却水の温度が所定温度未満であるときに第1冷却水流路における第1冷却水の流通を遮断するとともに、冷却水の温度が所定温度以上であるときに第1冷却水流路における第1冷却水の流通を許可するサーモスタットと、オイルを加熱又は冷却するオイルクーラと、を備える。オイルクーラは、第1冷却水流路を流れる第1冷却水が流入する第1冷却水流入口と、オイルクーラの内部を流れた冷却水を第1冷却水流路に流出させる第1冷却水流出口と、第2冷却水流路を流れる第2冷却水が流入する第2冷却水流入口と、オイルクーラの内部を流れた冷却水を第2冷却水流路に流出させる第2冷却水流出口と、を有し、第1冷却水流入口及び第2冷却水流入口の少なくとも一方から流入する冷却水とオイルとの熱交換によりオイルを加熱又は冷却する。 The cooling circuit according to one aspect of the present disclosure includes a first cooling water flow path through which the first cooling water flows, a second cooling water flow path through which the second cooling water flows, and the temperature of the inflowing cooling water is less than a predetermined temperature. A thermostat for blocking the flow of the first cooling water in the first cooling water flow path, and heating the oil, a thermostat allowing the flow of the first cooling water in the first cooling water flow path when the temperature of the cooling water is equal to or higher than a predetermined temperature. Or an oil cooler for cooling. The oil cooler has a first cooling water inlet through which the first cooling water flowing through the first cooling water flow channel, and a first cooling water outlet through which the cooling water flowing through the oil cooler flows out to the first cooling water flow channel, A second cooling water inlet through which the second cooling water flowing through the second cooling water flow channel flows, and a second cooling water outlet through which the cooling water flowing through the inside of the oil cooler flows out to the second cooling water flow channel; The oil is heated or cooled by heat exchange between the oil and the cooling water flowing in from at least one of the first cooling water inlet and the second cooling water inlet.
 この構成によれば、サーモスタットにより第1冷却水流路における第1冷却水の流通が遮断されている場合には、オイルクーラには第2冷却水のみが流入する。これに対し、サーモスタットにより第1冷却水流路における第1冷却水の流通が許可されている場合には、オイルクーラには第1冷却水及び第2冷却水の両方が流入する。よって、オイルクーラを流れる冷却水の流量を変化させることができる。また、第1冷却水流出口及び第2冷却水流出口の2つの流出口から冷却水を流出させることができるため、流出口を一つしか有していない従来のオイルクーラと比較すると、冷却水の圧力損失を低減することができる。 According to this configuration, when the flow of the first cooling water in the first cooling water flow path is blocked by the thermostat, only the second cooling water flows into the oil cooler. On the other hand, when circulation of the first cooling water in the first cooling water flow path is permitted by the thermostat, both the first cooling water and the second cooling water flow into the oil cooler. Thus, the flow rate of the cooling water flowing through the oil cooler can be changed. Further, since the cooling water can be made to flow out from the two outlets of the first cooling water outlet and the second cooling water outlet, compared with the conventional oil cooler having only one outlet, the cooling water Pressure loss can be reduced.
 本開示の一態様によるオイルクーラは、複数のプレートが積層して配置されることにより、オイルが流通するオイル流路と、冷却水が流通する冷却水流路とが交互に設けられるオイルクーラであって、冷却水流路を構成する冷却水用プレートは、冷却水が流れる内部流路と、内部流路に冷却水を流入させる第1冷却水流入路及び第2冷却水流入路と、内部流路から冷却水を流出させる第1冷却水流出路及び第2冷却水流出路と、を備える。 An oil cooler according to an aspect of the present disclosure is an oil cooler in which an oil flow path through which oil flows and a cooling water flow path through which cooling water flows are alternately provided by stacking and arranging a plurality of plates. The cooling water plate constituting the cooling water flow path is an internal flow path through which the cooling water flows, a first cooling water inflow path and a second cooling water inflow path through which the cooling water flows into the internal flow path, and an internal flow path And a first cooling water outlet and a second cooling water outlet for discharging the cooling water therefrom.
 この構成によれば、例えば第1冷却水流入路に冷却水を流入させなければ、第2冷却水流入路のみから内部流路に冷却水が流入するようになる。これに対し、第1冷却水流入路に冷却水を流入させれば、第1冷却水流入路及び第2冷却水流入路の両方から内部流路に冷却水が流れるようになる。したがって、内部流路を流れる冷却水の流量を変化させることができる。また、第1冷却水流出路及び第2冷却水流出路の2つの流出路から冷却水を流出させることができるため、流出路を一つしか有していない従来のオイルクーラと比較すると、冷却水の圧力損失を低減することができる。 According to this configuration, for example, if the cooling water does not flow into the first cooling water inflow path, the cooling water flows into the internal flow path only from the second cooling water inflow path. On the other hand, when the cooling water flows into the first cooling water inflow path, the cooling water flows from both the first cooling water inflow path and the second cooling water inflow path to the internal flow path. Therefore, the flow rate of the cooling water flowing through the internal flow path can be changed. Further, since the cooling water can be made to flow out from the two outflow passages of the first cooling water outflow passage and the second cooling water outflow passage, compared with the conventional oil cooler having only one outflow passage, Pressure loss can be reduced.
図1は、第1実施形態の冷却回路の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the cooling circuit of the first embodiment. 図2は、第1実施形態のオイルクーラの断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure of the oil cooler of the first embodiment. 図3は、第1実施形態のオフセットフィンの斜視構造を示す斜視図である。FIG. 3 is a perspective view showing a perspective view of the offset fin of the first embodiment. 図4は、第1実施形態の冷却回路の動作例を示すブロック図である。FIG. 4 is a block diagram showing an operation example of the cooling circuit of the first embodiment. 図5は、第1実施形態のエンジンの冷却水の温度、及び変速機のオイルの温度の推移を示すタイムチャートである。FIG. 5 is a time chart showing the transition of the temperature of the cooling water of the engine of the first embodiment and the temperature of the oil of the transmission. 図6は、第1実施形態の冷却回路の動作例を示すブロック図である。FIG. 6 is a block diagram showing an operation example of the cooling circuit of the first embodiment. 図7は、第2実施形態の冷却回路の概略構成を示すブロック図である。FIG. 7 is a block diagram showing a schematic configuration of the cooling circuit of the second embodiment.
 以下、冷却回路及びオイルクーラの実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、冷却回路及びオイルクーラの第1実施形態について説明する。
Hereinafter, embodiments of the cooling circuit and the oil cooler will be described with reference to the drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
First Embodiment
First, a first embodiment of the cooling circuit and the oil cooler will be described.
 図1に示される本実施形態の冷却回路10は、車両に搭載されており、エンジン40の冷却水が循環するエンジン用冷却回路20と、変速機50の作動油が循環する変速機用冷却回路30とにより構成されている。
 エンジン用冷却回路20には、エンジン40、ラジエータ41、ヒータコア42、サーモスタット43、及び冷却水ポンプ44が設けられている。
The cooling circuit 10 of the present embodiment shown in FIG. 1 is mounted on a vehicle, and includes an engine cooling circuit 20 in which cooling water of the engine 40 circulates and a transmission cooling circuit in which hydraulic oil of the transmission 50 circulates. And 30.
The engine cooling circuit 20 is provided with an engine 40, a radiator 41, a heater core 42, a thermostat 43, and a cooling water pump 44.
 エンジン40は、冷却水流路W20を通じてラジエータ41に接続されている。また、エンジン40は、冷却水流路W21を通じてヒータコア42に接続されている。したがって、エンジン40と熱交換した冷却水は、冷却水流路W20及び冷却水流路W21を通じてラジエータ41及びヒータコア42の少なくとも一方に流れることが可能となっている。本実施形態では、冷却水流路W20が第1冷却水流路に相当し、冷却水流路W20を流れる冷却水が第1冷却水に相当する。 The engine 40 is connected to the radiator 41 through the cooling water flow path W20. In addition, the engine 40 is connected to the heater core 42 through the cooling water flow path W21. Therefore, the cooling water heat-exchanged with the engine 40 can flow to at least one of the radiator 41 and the heater core 42 through the cooling water flow path W20 and the cooling water flow path W21. In the present embodiment, the cooling water flow path W20 corresponds to a first cooling water flow path, and the cooling water flowing through the cooling water flow path W20 corresponds to a first cooling water.
 ラジエータ41は、その内部を流れる冷却水と、その外部を流れる空気との間で熱交換を行うことにより冷却水を冷却する。ラジエータ41により冷却された冷却水は、冷却水流路W22を通じて冷却水ポンプ44に流入する。
 冷却水ポンプ44は、エンジン40から伝達される動力に基づいて駆動する機械式のポンプ、又は車両に搭載されたバッテリから供給される電力に基づいて駆動する電動式のポンプである。冷却水ポンプ44は、流入する冷却水をエンジン40に圧送することにより、エンジン用冷却回路20の各要素に冷却水を循環させる。
The radiator 41 cools the cooling water by heat exchange between the cooling water flowing inside and the air flowing outside. The cooling water cooled by the radiator 41 flows into the cooling water pump 44 through the cooling water flow path W22.
The cooling water pump 44 is a mechanical pump driven on the basis of the power transmitted from the engine 40 or an electric pump driven on the basis of the power supplied from a battery mounted on the vehicle. The cooling water pump 44 circulates the cooling water to each element of the engine cooling circuit 20 by pressure-feeding the inflowing cooling water to the engine 40.
 ヒータコア42は、車両の空調装置の構成要素である。ヒータコア42は、エンジン40から供給される冷却水と、空調装置の空調ダクト内を流れる空気との間で熱交換を行うことにより、空調ダクト内を流れる空気を加熱する。空調装置では、この加熱された空気が空調ダクトを通じて車室内に吹き出されることにより車室内が暖房される。ヒータコア42の内部を流れた冷却水は、冷却水流路W23を通じてサーモスタット43に流入する。本実施形態では、冷却水流路W23が第2冷却水流路に相当し、冷却水流路W23を流れる冷却水が第2冷却水に相当する。 The heater core 42 is a component of an air conditioner of a vehicle. The heater core 42 heats the air flowing in the air conditioning duct by performing heat exchange between the cooling water supplied from the engine 40 and the air flowing in the air conditioning duct of the air conditioner. In the air conditioner, the heated air is blown out into the vehicle compartment through the air conditioning duct to heat the vehicle interior. The cooling water having flowed inside the heater core 42 flows into the thermostat 43 through the cooling water flow path W23. In the present embodiment, the cooling water flow path W23 corresponds to a second cooling water flow path, and the cooling water flowing through the cooling water flow path W23 corresponds to a second cooling water.
 サーモスタット43は、ラジエータ41とエンジン40とを接続する冷却水流路W22の途中に設けられている。サーモスタット43は、冷却水の温度が所定の開弁温度Tth1未満である場合には、冷却水流路W22を遮断する閉弁状態となる。開弁温度Tth1は、例えば80度に設定されている。冷却水の温度が開弁温度Tth1未満である場合には、ヒータコア42からエンジン40への冷却水の流れが許可される一方、ラジエータ41からエンジン40への冷却水の流れが遮断される。サーモスタット43は、冷却水の温度が開弁温度Tth1以上である場合には、冷却水流路W22を開放する開弁状態となる。冷却水の温度が開弁温度Tth1以上である場合には、ヒータコア42からエンジン40への冷却水の流れが許可されるとともに、ラジエータ41からエンジン40への冷却水の流れも許可される。開弁温度Tth1よりも高い全開温度Tth2を冷却水の温度が超えると、サーモスタット43は全開状態となる。 The thermostat 43 is provided in the middle of the cooling water flow path W22 which connects the radiator 41 and the engine 40. When the temperature of the cooling water is lower than the predetermined valve opening temperature Tth1, the thermostat 43 is in a valve closed state in which the cooling water flow path W22 is shut off. The valve opening temperature Tth1 is set to, for example, 80 degrees. When the temperature of the cooling water is less than the valve opening temperature Tth1, the flow of the cooling water from the heater core 42 to the engine 40 is permitted, while the flow of the cooling water from the radiator 41 to the engine 40 is blocked. When the temperature of the cooling water is equal to or higher than the valve opening temperature Tth1, the thermostat 43 is in an open state in which the cooling water flow path W22 is opened. When the temperature of the cooling water is equal to or higher than the valve opening temperature Tth1, the flow of the cooling water from the heater core 42 to the engine 40 is permitted, and the flow of the cooling water from the radiator 41 to the engine 40 is also permitted. When the temperature of the cooling water exceeds a fully open temperature Tth2 higher than the valve opening temperature Tth1, the thermostat 43 is fully opened.
 エンジン用冷却回路20では、エンジン40の冷間始動時等、冷却水の温度が低い状況では、サーモスタット43が閉弁状態となる。そのため、冷却水ポンプ44により圧送される冷却水は、ラジエータ41以外の要素であるエンジン40及びヒータコア42を循環する。したがって、冷却水がラジエータ41において冷却されることがないため、冷却水の温度を早期に上昇させ易くなる。結果的に、エンジン40及びヒータコア42が早期に暖気され易くなる。 In the engine cooling circuit 20, the thermostat 43 is closed when the temperature of the cooling water is low, such as when the engine 40 is cold-started. Therefore, the cooling water pumped by the cooling water pump 44 circulates through the engine 40 and the heater core 42 which are elements other than the radiator 41. Therefore, since the cooling water is not cooled in the radiator 41, the temperature of the cooling water can be easily raised early. As a result, the engine 40 and the heater core 42 tend to be warmed up early.
 その後、冷却水の温度が開弁温度Tth1以上に上昇すると、サーモスタット43が開弁状態となる。そのため、冷却水ポンプ44により圧送される冷却水は、エンジン40、ラジエータ41、及びヒータコア42を循環する。これにより、ラジエータ41において冷却された冷却水がエンジン40に供給されるため、この冷却水がエンジン40と熱交換することによりエンジン40が冷却される。また、エンジン40の内部を流れることにより加熱された冷却水の一部がヒータコア42に供給されるため、ヒータコア42の温度が高温状態に維持される。そのため、ヒータコア42により、空調ダクト内を流れる空気を加熱することができる。 Thereafter, when the temperature of the cooling water rises to the valve opening temperature Tth1 or more, the thermostat 43 is opened. Therefore, the cooling water pumped by the cooling water pump 44 circulates through the engine 40, the radiator 41, and the heater core 42. As a result, the cooling water cooled in the radiator 41 is supplied to the engine 40, and the engine 40 is cooled by heat exchange with the engine 40. Moreover, since a part of the cooling water heated by flowing through the inside of the engine 40 is supplied to the heater core 42, the temperature of the heater core 42 is maintained at a high temperature. Therefore, the air flowing in the air conditioning duct can be heated by the heater core 42.
 変速機用冷却回路30には、変速機50、オイルクーラ51、及びオイルポンプ52が設けられている。
 変速機50は、オイル流路W30を通じてオイルクーラ51のオイル流入口510aに接続されている。変速機50の内部を流れたオイルは、オイル流路W30を通じてオイルクーラ51のオイル流入口510aに流入する。
The transmission cooling circuit 30 is provided with a transmission 50, an oil cooler 51, and an oil pump 52.
The transmission 50 is connected to the oil inflow port 510 a of the oil cooler 51 through the oil flow path W <b> 30. The oil having flowed through the inside of the transmission 50 flows into the oil inflow port 510a of the oil cooler 51 through the oil flow path W30.
 オイルクーラ51は、オイル流入口510a、第1冷却水流入口511a、第2冷却水流入口512a、オイル流出口510b、第1冷却水流出口511b、及び第2冷却水流出口512bを備えている。
 オイル流入口510aに流入したオイルは、オイルクーラ51の内部を流れた後、オイル流出口510bから排出される。オイル流出口510bから排出されたオイルは、オイル流路W31を通じてオイルポンプ52に流入する。
The oil cooler 51 includes an oil inlet 510a, a first cooling water inlet 511a, a second cooling water inlet 512a, an oil outlet 510b, a first cooling water outlet 511b, and a second cooling water outlet 512b.
The oil flowing into the oil inlet 510a flows through the inside of the oil cooler 51 and is then discharged from the oil outlet 510b. The oil discharged from the oil outlet 510b flows into the oil pump 52 through the oil passage W31.
 オイルポンプ52は、例えば車両に搭載されたバッテリから供給される電力に基づいて駆動する電動式のポンプである。オイルポンプ52は、流入するオイルを変速機50に圧送することにより、変速機用冷却回路30の各要素にオイルを循環させる。
 オイルクーラ51の第1冷却水流入口511aは、バイパス流路W40を通じて冷却水流路W20に接続されている。よって、冷却水流路W20を流れる冷却水の一部、すなわちエンジン40から排出される冷却水の一部は、バイパス流路W40を通じてオイルクーラ51に流入する。バイパス流路W40の途中には、逆止弁45が設けられている。逆止弁45は、冷却水流路W20から第1冷却水流入口511aに向かう方向への冷却水の流通を許可する一方、第1冷却水流入口511aから冷却水流路W20に向かう方向への冷却水の流通を規制している。本実施形態では、逆止弁45が流通規制部に相当する。
The oil pump 52 is an electrically driven pump driven based on the power supplied from, for example, a battery mounted on a vehicle. The oil pump 52 circulates the oil to each element of the transmission cooling circuit 30 by pressure-feeding the inflowing oil to the transmission 50.
The first coolant inlet port 511a of the oil cooler 51 is connected to the coolant channel W20 through the bypass channel W40. Therefore, part of the cooling water flowing through the cooling water flow path W20, that is, part of the cooling water discharged from the engine 40 flows into the oil cooler 51 through the bypass flow path W40. A check valve 45 is provided in the middle of the bypass flow passage W40. The check valve 45 permits the circulation of the cooling water in the direction from the cooling water flow path W20 toward the first cooling water inlet 511a, while the cooling water in the direction from the first cooling water flow inlet 511a toward the cooling water flow path W20. Regulating distribution. In the present embodiment, the check valve 45 corresponds to the flow control portion.
 オイルクーラ51の第2冷却水流入口512aは、バイパス流路W41を通じて冷却水流路W23に接続されている。よって、冷却水流路W23を流れる冷却水の一部、すなわちヒータコア42から排出される冷却水の一部は、バイパス流路W41を通じてオイルクーラ51に流入する。 The second cooling water inflow port 512 a of the oil cooler 51 is connected to the cooling water flow path W 23 through the bypass flow path W 41. Therefore, a part of the cooling water flowing through the cooling water flow path W23, that is, a part of the cooling water discharged from the heater core 42 flows into the oil cooler 51 through the bypass flow path W41.
 第1冷却水流入口511a及び第2冷却水流入口512aの少なくとも一方からオイルクーラ51の内部に流入した冷却水は、オイルクーラ51を流れるオイルと熱交換する。これによりオイルが加熱又は冷却される。オイルクーラ51の内部を流れた冷却水は、第1冷却水流出口511b又は第2冷却水流出口512bから排出される。第1冷却水流出口511bは、バイパス流路W42を通じて、冷却水流路W20におけるバイパス流路W40との接続部分よりも下流側の部分に接続されている。したがって、第1冷却水流出口511bから排出された冷却水は冷却水流路W20に流入する。第2冷却水流出口512bは、バイパス流路W43を通じて、冷却水流路W23におけるバイパス流路W41との接続部分よりも下流側の部分に接続されている。したがって、第2冷却水流出口512bから排出された冷却水は冷却水流路W23に流入する。 The cooling water which has flowed into the inside of the oil cooler 51 from at least one of the first cooling water inlet 511 a and the second cooling water inlet 512 a exchanges heat with the oil flowing through the oil cooler 51. This heats or cools the oil. The cooling water having flowed inside the oil cooler 51 is discharged from the first cooling water outlet 511b or the second cooling water outlet 512b. The first coolant outlet 511b is connected to a portion on the downstream side of a portion of the coolant channel W20 connected to the bypass channel W40 through the bypass channel W42. Therefore, the cooling water discharged from the first cooling water outlet 511b flows into the cooling water channel W20. The second coolant outlet 512b is connected to a portion on the downstream side of a portion of the coolant channel W23 connected to the bypass channel W41 through the bypass channel W43. Therefore, the cooling water discharged from the second cooling water outlet 512b flows into the cooling water channel W23.
 次に、オイルクーラ51の具体的な構造について説明する。
 オイルクーラ51は、複数のプレートが積層して配置されることにより、オイルが流通するオイル流路と、冷却水が流通する冷却水流路とが交互に設けられた構造を有している。図2は、オイルクーラ51の冷却水流路を構成する冷却水用プレート70の断面構造を示したものである。
Next, the specific structure of the oil cooler 51 will be described.
The oil cooler 51 has a structure in which oil flow paths through which oil flows and cooling water flow paths through which cooling water flows are alternately provided by arranging a plurality of plates in a stacked manner. FIG. 2 shows the cross-sectional structure of the cooling water plate 70 that constitutes the cooling water flow path of the oil cooler 51. As shown in FIG.
 図2に示されるように、冷却水用プレート70は、プレート積層方向に直交する断面形状が略六角形状に形成されている。冷却水用プレート70の内部には、冷却水が流れる内部流路77が形成されている。冷却水用プレート70には、冷却水用内部流路77に連通される第1冷却水流入路72a、第2冷却水流入路73a、第1冷却水流出路72b、及び第2冷却水流出路73bが設けられている。また、冷却水用プレート70には、冷却水用内部流路77に連通されていないオイル流入路71a、及びオイル流出路71bが設けられている。第1冷却水流入路72aは、冷却水用プレート70の角部C1に設けられている。冷却水用プレート70において角部C1に隣り合う2つの角部C2,C3には、オイル流出路71b及び第2冷却水流入路73aがそれぞれ設けられている。冷却水用プレート70において角部C1~C3の対角に位置する角度C4~C6には、第1冷却水流出路72b、オイル流入路71a、及び第2冷却水流出路73bが設けられている。第1冷却水流入路72aの内径は、第2冷却水流入路73aの内径よりも大きい。同様に、第1冷却水流出路72bの内径は、第2冷却水流出路73bの内径よりも大きい。 As shown in FIG. 2, in the cooling water plate 70, the cross-sectional shape orthogonal to the plate stacking direction is formed in a substantially hexagonal shape. An internal flow passage 77 through which the cooling water flows is formed in the cooling water plate 70. In the cooling water plate 70, there are a first cooling water inflow passage 72a, a second cooling water inflow passage 73a, a first cooling water outflow passage 72b, and a second cooling water outflow passage 73b communicating with the cooling water internal flow passage 77. It is provided. Further, the cooling water plate 70 is provided with an oil inflow passage 71 a and an oil outflow passage 71 b which are not communicated with the cooling water internal passage 77. The first cooling water inflow path 72 a is provided at the corner C 1 of the cooling water plate 70. An oil outflow passage 71 b and a second cooling water inflow passage 73 a are respectively provided at two corner portions C 2 and C 3 adjacent to the corner portion C 1 in the cooling water plate 70. A first cooling water outflow passage 72b, an oil inflow passage 71a, and a second cooling water outflow passage 73b are provided at angles C4 to C6 located diagonally of the corners C1 to C3 in the cooling water plate 70. The inner diameter of the first coolant inlet channel 72a is larger than the inner diameter of the second coolant inlet channel 73a. Similarly, the inner diameter of the first coolant outlet channel 72b is larger than the inner diameter of the second coolant outlet channel 73b.
 なお、以下では、第1冷却水流入路72aから第1冷却水流出路72bに向かう方向を「X方向」と称し、X方向と直交する方向を「Y方向」と称する。また、第2冷却水流入路73aから第2冷却水流出路73bに向かう方向、すなわちX方向及びY方向を二等分する方向を「α方向」と称する。本実施形態では、X方向が第1方向に相当し、Y方向が第2方向に相当し、α方向が第3方向に相当する。 Hereinafter, the direction from the first cooling water inflow passage 72a toward the first cooling water outflow passage 72b is referred to as "X direction", and the direction orthogonal to the X direction is referred to as "Y direction". Further, the direction from the second cooling water inflow path 73a toward the second cooling water outflow path 73b, that is, the direction that bisects the X direction and the Y direction is referred to as an "α direction". In the present embodiment, the X direction corresponds to the first direction, the Y direction corresponds to the second direction, and the α direction corresponds to the third direction.
 冷却水用プレート70の冷却水用内部流路77には、オフセットフィン74が配置されている。図3に示されるように、オフセットフィン74は、部分的に切り起こされた切り起こし部740をX方向に複数有している。X方向は、オフセットフィン74の開口方向である。X方向において隣り合う切り起こし部740,740は、Y方向にオフセットされて配置されている。このオフセットフィン74では、冷却水が図2に示されるX方向に流れている場合、すなわち冷却水が第1冷却水流入路72aから第1冷却水流出路72bに向かって流れている場合には、切り起こし部740の内部、及び隣り合う切り起こし部740,740の隙間を冷却水が流れるため、冷却水に作用する通水抵抗が小さい。これに対し、冷却水がα方向に流れている場合、すなわち冷却水が第2冷却水流入路73aから第2冷却水流出路73bに向かって流れている場合には、切り起こし部740に冷却水が衝突し易くなるため、冷却水に作用する通水抵抗が大きくなる。本実施形態では、オフセットフィン74が通水抵抗付与部に相当する。 Offset fins 74 are disposed in the cooling water internal flow passage 77 of the cooling water plate 70. As shown in FIG. 3, the offset fin 74 has a plurality of partially cut and raised cut-and-raised portions 740 in the X direction. The X direction is the opening direction of the offset fin 74. The cut-and-raised portions 740 and 740 adjacent to each other in the X direction are arranged to be offset in the Y direction. In this offset fin 74, when the cooling water is flowing in the X direction shown in FIG. 2, that is, when the cooling water flows from the first cooling water inflow passage 72a toward the first cooling water outflow passage 72b, Since the cooling water flows through the inside of the cut and raised portion 740 and the gap between the adjacent cut and raised portions 740 and 740, the water flow resistance acting on the cooling water is small. On the other hand, when the cooling water is flowing in the α direction, that is, when the cooling water flows from the second cooling water inflow path 73a toward the second cooling water outflow path 73b, the cooling water is Since it is easy to collide, the water flow resistance acting on the cooling water becomes large. In the present embodiment, the offset fins 74 correspond to a water flow resistance applying portion.
 冷却水用プレート70における第1冷却水流入路72aと第2冷却水流入路73aとの間には、冷却水用プレート70の内壁面から延びるようにリブ75が形成されている。リブ75は、第1冷却水流入路72aと第2冷却水流入路73aとの間における冷却水の流れの短絡を抑制している。 A rib 75 is formed between the first cooling water inflow passage 72 a and the second cooling water inflow passage 73 a in the cooling water plate 70 so as to extend from the inner wall surface of the cooling water plate 70. The rib 75 suppresses the short circuit of the flow of the cooling water between the first cooling water inflow path 72a and the second cooling water inflow path 73a.
 同様に、冷却水用プレート70における第1冷却水流出路72bと第2冷却水流出路73bとの間には、冷却水用プレート70の内壁面から延びるようにリブ76が形成されている。リブ76は、第1冷却水流出路72bと第2冷却水流出路73bとの間における冷却水の流れの短絡を抑制している。 Similarly, a rib 76 is formed between the first coolant outlet passage 72 b and the second coolant outlet passage 73 b in the coolant plate 70 so as to extend from the inner wall surface of the coolant plate 70. The rib 76 suppresses a short circuit of the flow of the cooling water between the first cooling water outflow passage 72b and the second cooling water outflow passage 73b.
 このオイルクーラ51では、図1に示されるオイル流入口510aから、図2に示されるオイル流入路71aにオイルが流入する。オイル流入路71aに流入したオイルは、冷却水用プレート70と隣り合うオイル用プレートに形成されたオイル用内部流路に流入する。図2に示されるように、オイル用内部流路を流れるオイルは、図中の矢印D1で示される方向に流れる。このオイルの流れ方向D1は、第1冷却水流入路72aから第1冷却水流出路72bに向かう冷却水の流れ方向D2に対向している。このオイル用内部流路に流入したオイルは、オイル流出路71bを通じて、図1に示されるオイル流出口510bから排出される。 In the oil cooler 51, oil flows into the oil inflow path 71a shown in FIG. 2 from the oil inflow port 510a shown in FIG. The oil that has flowed into the oil inflow path 71 a flows into the oil internal flow path formed in the oil plate adjacent to the cooling water plate 70. As shown in FIG. 2, the oil flowing in the internal oil flow path flows in the direction indicated by the arrow D1 in the figure. The flow direction D1 of the oil is opposed to the flow direction D2 of the cooling water from the first cooling water inflow path 72a toward the first cooling water outflow path 72b. The oil that has flowed into the oil internal flow path is discharged from the oil outlet 510b shown in FIG. 1 through the oil outflow path 71b.
 次に、本実施形態の冷却回路10及びオイルクーラ51の動作例について説明する。
 エンジン40の冷間始動時等、エンジン用冷却回路20を流れる冷却水の温度が開弁温度Tth1未満である場合には、サーモスタット43が閉弁状態になっている。この場合、図4に太線で示されるようにエンジン用冷却回路20を冷却水が循環する。すなわち、エンジン40、ヒータコア42、オイルクーラ51、サーモスタット43、及び冷却水ポンプ44に冷却水が循環する一方、ラジエータ41には冷却水が循環しない。
Next, an operation example of the cooling circuit 10 and the oil cooler 51 of the present embodiment will be described.
When the temperature of the coolant flowing through the engine cooling circuit 20 is less than the valve opening temperature Tth1, for example, at the time of cold start of the engine 40, the thermostat 43 is in the valve closed state. In this case, the cooling water circulates in the engine cooling circuit 20 as shown by a thick line in FIG. That is, while the cooling water circulates through the engine 40, the heater core 42, the oil cooler 51, the thermostat 43, and the cooling water pump 44, the cooling water does not circulate through the radiator 41.
 この場合、エンジン40との熱交換により加熱された冷却水が、冷却水流路W21、ヒータコア42、冷却水流路W23、バイパス流路W41を通じてオイルクーラ51の第2冷却水流入口512aに流入し、オイルクーラ51の冷却水用内部流路77を流れる。このオイルクーラ51の冷却水用内部流路77を流れる冷却水と、オイル用内部流路を流れるオイルとの間で熱交換が行われることにより、オイルが加熱される。すなわち、変速機50を流れるオイルを加熱することができる。オイルとの熱交換により温度の低下した冷却水は、第2冷却水流出路73b及び第2冷却水流出口512bを通じてバイパス流路W43に排出される。バイパス流路W43に排出された冷却水は、冷却水流路W23、サーモスタット43、冷却水ポンプ44を通じてエンジン40に流入することにより、再度加熱される。 In this case, the coolant heated by heat exchange with the engine 40 flows into the second coolant inlet 512a of the oil cooler 51 through the coolant channel W21, the heater core 42, the coolant channel W23, and the bypass channel W41. It flows through the cooling water internal flow passage 77 of the cooler 51. The heat is exchanged between the cooling water flowing through the cooling water internal flow passage 77 of the oil cooler 51 and the oil flowing through the oil internal flow passage, whereby the oil is heated. That is, the oil flowing through the transmission 50 can be heated. The cooling water whose temperature has decreased due to the heat exchange with the oil is discharged to the bypass flow passage W43 through the second cooling water outflow passage 73b and the second cooling water flow outlet 512b. The cooling water discharged to the bypass flow path W43 is heated again by flowing into the engine 40 through the cooling water flow path W23, the thermostat 43, and the cooling water pump 44.
 なお、オイルクーラ51では、第2冷却水流入路73aから第2冷却水流出路73bに向かって冷却水が流れているため、冷却水がオフセットフィン74から通水抵抗を受け易い。したがって、オイルクーラ51内を流れる冷却水の流量が少なくなる。この点、図5に示されるように、例えば時刻t10でエンジン40が始動したとすると、変速機50のオイルの温度Ttよりもエンジン40の冷却水の温度Teの方が早期に上昇する。したがって、エンジン40の冷却水の温度Teと変速機50のオイルの温度Ttとの間の温度差ΔTが大きくなるため、仮にオイルクーラ51内を流れる冷却水の流量が少ない場合でも、オイルの加熱が可能である。 In the oil cooler 51, since the cooling water is flowing from the second cooling water inflow path 73a toward the second cooling water outflow path 73b, the cooling water is likely to receive the water flow resistance from the offset fins 74. Therefore, the flow rate of the cooling water flowing in the oil cooler 51 is reduced. In this respect, as shown in FIG. 5, when the engine 40 is started at time t10, for example, the temperature Te of the cooling water of the engine 40 rises earlier than the temperature Tt of the oil of the transmission 50. Therefore, the temperature difference ΔT between the temperature Te of the cooling water of the engine 40 and the temperature Tt of the oil of the transmission 50 becomes large, so even if the flow rate of the cooling water flowing in the oil cooler 51 is small, heating of the oil Is possible.
 その後、エンジン用冷却回路20を流れる冷却水の温度が開弁温度Tth1以上に上昇すると、サーモスタット43が開弁状態になる。この場合、図6に太線で示されるように冷却水がエンジン用冷却回路20を循環する。すなわち、エンジン用冷却回路20の全ての要素を冷却水が循環する。 Thereafter, when the temperature of the cooling water flowing through the engine cooling circuit 20 rises to the valve opening temperature Tth1 or more, the thermostat 43 is opened. In this case, the cooling water circulates in the engine cooling circuit 20 as shown by a thick line in FIG. That is, the cooling water circulates through all the elements of the engine cooling circuit 20.
 この場合、ラジエータ41において冷却された冷却水がエンジン40、冷却水流路W20、バイパス流路W40を通じてオイルクーラ51の第1冷却水流入口511aに流入する。また、冷却水流路W23を流れる冷却水がバイパス流路W41を通じてオイルクーラ51の第2冷却水流入口512aに流入する。これらの第1冷却水流入口511a及び第2冷却水流入口512aに流入した冷却水がオイルクーラ51の冷却水用内部流路77を流れる。この冷却水用内部流路77を流れる冷却水と、オイル用内部流路を流れるオイルとの間で熱交換が行われることにより、オイルが冷却される。すなわち、変速機50を流れるオイルが冷却される。そのため、図5に示されるように、冷却水の温度が開弁温度Tth1を超える時刻t11以降、変速機50のオイルの温度Ttが低下する。 In this case, the cooling water cooled in the radiator 41 flows into the first cooling water inlet 511a of the oil cooler 51 through the engine 40, the cooling water passage W20, and the bypass passage W40. Further, the cooling water flowing through the cooling water flow path W23 flows into the second cooling water inflow port 512a of the oil cooler 51 through the bypass flow path W41. The cooling water flowing into the first cooling water inlet 511 a and the second cooling water inlet 512 a flows in the cooling water internal flow passage 77 of the oil cooler 51. The heat is exchanged between the cooling water flowing through the cooling water internal flow passage 77 and the oil flowing through the oil internal flow passage, whereby the oil is cooled. That is, the oil flowing through the transmission 50 is cooled. Therefore, as shown in FIG. 5, after time t11 at which the temperature of the cooling water exceeds the valve opening temperature Tth1, the temperature Tt of the oil of the transmission 50 decreases.
 オイルを熱交換することにより加熱された冷却水は、第1冷却水流入路72a及び第1冷却水流出口511bを通じてバイパス流路W42に排出されるか、あるいは第2冷却水流出路73b及び第2冷却水流出口512bからバイパス流路W43に排出される。バイパス流路W42に排出された冷却水は、冷却水流路W20を通じてラジエータ41に流入することにより、再度冷却される。 The coolant heated by heat exchange of oil is discharged to the bypass channel W42 through the first coolant inlet channel 72a and the first coolant outlet 511b, or the second coolant outlet channel 73b and the second coolant The water is discharged from the water outlet 512b into the bypass channel W43. The cooling water discharged to the bypass flow path W42 is cooled again by flowing into the radiator 41 through the cooling water flow path W20.
 以上説明した本実施形態の冷却回路10及びオイルクーラ51によれば、以下の(1)~(6)に示される作用及び効果を得ることができる。
 (1)サーモスタット43により冷却水流路W20における冷却水の流通が遮断されている場合、オイルクーラ51の第1冷却水流入路72aに冷却水が流入しないため、オイルクーラ51の内部流路77には、第2冷却水流入路73aのみから冷却水が流入する。これに対し、サーモスタット43により冷却水流路W20における冷却水の流通が許可されている場合、オイルクーラ51の内部流路77には、第1冷却水流入路72a及び第2冷却水流入路73aの両方から冷却水が流入する。よって、オイルクーラ51を流れる冷却水の流量を変化させることができる。また、オイルクーラ51には、第1冷却水流出口511b及び第2冷却水流出口512bの2つの流出口、並びに第1冷却水流出路72b及び第2冷却水流出路73bの2つの流出路から冷却水を流出させることができるため、流出口及び流出路をそれぞれ一つしか有していない従来のオイルクーラと比較すると、冷却水の圧力損失を低減することができる。
According to the cooling circuit 10 and the oil cooler 51 of the present embodiment described above, the actions and effects shown in the following (1) to (6) can be obtained.
(1) When the flow of cooling water in the cooling water flow path W20 is blocked by the thermostat 43, the cooling water does not flow into the first cooling water inflow path 72a of the oil cooler 51. The cooling water flows in only from the second cooling water inflow path 73a. On the other hand, when circulation of the cooling water in the cooling water flow path W20 is permitted by the thermostat 43, the internal flow path 77 of the oil cooler 51 includes the first cooling water inflow path 72a and the second cooling water inflow path 73a. Cooling water flows from both sides. Thus, the flow rate of the cooling water flowing through the oil cooler 51 can be changed. Further, the oil cooler 51 is supplied with cooling water from the two outlets of the first cooling water outlet 511b and the second cooling water outlet 512b, and the two outlets of the first cooling water outlet 72b and the second cooling water outlet 73b. As it can be drained out, the pressure loss of the cooling water can be reduced compared to a conventional oil cooler having only one outlet and one outlet.
 (2)オイルクーラ51の第1冷却水流入口511aと冷却水流路W20とを接続するバイパス流路W40には、逆止弁45が設けられている。逆止弁45は、オイルクーラ51の第1冷却水流入口511aから冷却水流路W20に向かう方向への冷却水の流通を規制する。これにより、サーモスタット43が閉弁状態であるときに、オイルクーラ51の内部流路77を流れる冷却水が冷却水流路W20に向かって逆流することを防止できる。 (2) A check valve 45 is provided in the bypass channel W40 connecting the first coolant inlet 511a of the oil cooler 51 and the coolant channel W20. The check valve 45 regulates the flow of the cooling water in the direction from the first cooling water inlet 511 a of the oil cooler 51 toward the cooling water flow path W <b> 20. Thereby, when the thermostat 43 is in the valve closed state, it is possible to prevent the cooling water flowing in the internal flow passage 77 of the oil cooler 51 from flowing back toward the cooling water flow passage W20.
 (3)オイルクーラ51では、第1冷却水流入口511aから第1冷却水流入路72aに流入した冷却水が第1冷却水流出路72bを通じて第1冷却水流出口511bから排出される。この冷却水の流れ方向D2とオイルの流れ方向D1とが対向している。これにより、より効率的に冷却水とオイルとの間で熱交換を行うことができるため、オイルの冷却効率を高めることができる。 (3) In the oil cooler 51, the cooling water which has flowed into the first cooling water inflow path 72a from the first cooling water inflow port 511a is discharged from the first cooling water outflow port 511b through the first cooling water outflow path 72b. The flow direction D2 of the cooling water and the flow direction D1 of the oil face each other. As a result, heat exchange can be performed more efficiently between the cooling water and the oil, so that the oil cooling efficiency can be enhanced.
 (4)オイルクーラ51の冷却水用プレート70は、オフセットフィン74を有している。オフセットフィン74は、第1冷却水流入路72aから第1冷却水流出路72bに向かう方向であるX方向に流れる際に冷却水が受ける通水抵抗と、第2冷却水流入路73aから第2冷却水流出路73bに向かう方向であるα方向に流れる際に冷却水が受ける通水抵抗とを異ならせる。具体的には、前者の通水抵抗よりも後者の通水抵抗の方が大きい。これにより、冷却水が第1冷却水流入路72aから第1冷却水流出路72bに向かって流れ易くなるため、オイルクーラ51内の冷却水がラジエータ41に流れ易くなる。結果的に、冷却回路10内の冷却水を冷却させ易くなるため、冷却回路10の冷却効率を高めることができる。また、冷却水用プレート70の内部にオフセットフィン74を配置するだけで、2方向の通水抵抗を容易に異ならせることができる。 (4) The cooling water plate 70 of the oil cooler 51 has offset fins 74. When the offset fins 74 flow in the X direction, which is a direction from the first cooling water inflow path 72a toward the first cooling water outflow path 72b, a water flow resistance received by the cooling water, and a second cooling water inflow path 73a to the second cooling When flowing in the α direction, which is a direction toward the water outflow path 73b, the flow resistance to be received by the cooling water is made different. Specifically, the latter is larger than the former. As a result, the cooling water can easily flow from the first cooling water inflow path 72a toward the first cooling water outflow path 72b, so the cooling water in the oil cooler 51 can easily flow to the radiator 41. As a result, since the cooling water in the cooling circuit 10 can be easily cooled, the cooling efficiency of the cooling circuit 10 can be enhanced. Further, the flow resistances in two directions can be easily made different only by arranging the offset fins 74 inside the cooling water plate 70.
 (5)オイルクーラ51では、第1冷却水流入路72a及び第1冷却水流出路72bが、X方向においてオフセットフィン74を挟んで対向するように配置されている。また、第2冷却水流入路73a及び第2冷却水流出路73bが、α方向においてオフセットフィン74を挟んで対向するように配置されている。これにより、冷却水とオイルとの熱交換効率を高く維持しつつも、X方向に流れる冷却水に作用する通水抵抗と、α方向に流れる冷却水に作用する通水抵抗とを異ならせることができる。 (5) In the oil cooler 51, the first cooling water inflow passage 72a and the first cooling water outflow passage 72b are disposed to face each other with the offset fin 74 interposed therebetween in the X direction. Further, the second cooling water inflow path 73a and the second cooling water outflow path 73b are disposed to face each other across the offset fin 74 in the α direction. Thus, the flow resistance on the cooling water flowing in the X direction is made different from the flow resistance on the cooling water flowing in the α direction, while maintaining high heat exchange efficiency between the cooling water and the oil. Can.
 (6)オイルクーラ51における第1冷却水流入路72aと第2冷却水流入路73aとの間にはリブ75が設けられている。リブ75により、第1冷却水流入路72aと第2冷却水流入路73aとの間における冷却水の流れの短絡を抑制することができるため、オイルクーラ51の熱交換効率の低下を抑制することができる。 (6) A rib 75 is provided between the first cooling water inflow passage 72a and the second cooling water inflow passage 73a in the oil cooler 51. Since a short circuit of the flow of the cooling water between the first cooling water inflow path 72a and the second cooling water inflow path 73a can be suppressed by the rib 75, the reduction of the heat exchange efficiency of the oil cooler 51 is suppressed. Can.
 <第2実施形態>
 次に、冷却回路10の第2実施形態について説明する。以下、第1実施形態の冷却回路10との相違点を中心に説明する。なお、本実施形態のエンジン40は、過給機付きのエンジンである。
Second Embodiment
Next, a second embodiment of the cooling circuit 10 will be described. Hereinafter, differences from the cooling circuit 10 of the first embodiment will be mainly described. In addition, the engine 40 of this embodiment is an engine with a supercharger.
 図7に示されるように、本実施形態の冷却回路10は、ヒータコア42を流れる回路に代えて、チャージエアクーラ(Charge Air Cooler : CAC)81の冷却水が循環するCAC用冷却回路80を備えている。CAC用冷却回路80には、CAC81、低水温ラジエータ82、冷却水用ポンプ83、及びサーモスタット84が設けられている。 As shown in FIG. 7, the cooling circuit 10 of the present embodiment is provided with a CAC cooling circuit 80 in which the cooling water of the charge air cooler (CAC) 81 circulates instead of the circuit flowing through the heater core 42. ing. The CAC cooling circuit 80 is provided with a CAC 81, a low water temperature radiator 82, a cooling water pump 83, and a thermostat 84.
 CAC81は、過給機付きエンジン40において圧縮された吸気を冷却することにより空気密度を高める装置である。CAC81と低水温ラジエータ82との間には冷却水流路W50,W51を通じて冷却水が循環している。低水温ラジエータ82は、その内部を流れる冷却水と、その外部を流れる空気との間で熱交換を行うことにより、冷却水を冷却する。 The CAC 81 is a device that raises the air density by cooling the intake air compressed in the supercharged engine 40. Cooling water is circulated between the CAC 81 and the low water temperature radiator 82 through the cooling water flow paths W50 and W51. The low water temperature radiator 82 cools the cooling water by performing heat exchange between the cooling water flowing inside and the air flowing outside.
 冷却水用ポンプ83は、冷却水流路W51に設けられている。冷却水用ポンプ83は、CAC用冷却回路80内の冷却水を循環させる。
 オイルクーラ51の第2冷却水流入口512aは、冷却水流路W52を通じて冷却水流路W50に接続されている。また、オイルクーラ51の第2冷却水流出口512bは、冷却水流路W53を通じて冷却水流路W51に接続されている。本実施形態では、冷却水流路W52が第2冷却水流路に相当し、冷却水流路W52の内部を流れる冷却水が第2冷却水に相当する。
The coolant pump 83 is provided in the coolant channel W51. The cooling water pump 83 circulates the cooling water in the CAC cooling circuit 80.
The second coolant inlet 512a of the oil cooler 51 is connected to the coolant channel W50 through the coolant channel W52. The second coolant outlet 512b of the oil cooler 51 is connected to the coolant channel W51 through the coolant channel W53. In the present embodiment, the cooling water passage W52 corresponds to a second cooling water passage, and the cooling water flowing inside the cooling water passage W52 corresponds to a second cooling water.
 サーモスタット84は、冷却水流路W50における冷却水流路W52との接続部分に設けられている。サーモスタット84は、冷却水の温度が所定温度未満である場合には閉弁状態となり、冷却水流路W50における冷却水の流れを遮断する。サーモスタット84は、冷却水の温度が所定温度以上である場合には開弁状態となり、冷却水流路W50における冷却水の流れを許可する。 The thermostat 84 is provided at a connection portion of the cooling water passage W50 with the cooling water passage W52. The thermostat 84 is in a closed state when the temperature of the cooling water is lower than the predetermined temperature, and blocks the flow of the cooling water in the cooling water flow path W50. The thermostat 84 is opened when the temperature of the cooling water is equal to or higher than a predetermined temperature, and permits the flow of the cooling water in the cooling water flow path W50.
 なお、本実施形態の冷却回路10では、冷却水流路W20が冷却回路W24を通じて冷却水流路W22に接続されている。冷却回路W24は、冷却水流路W20を流れる冷却水を、ラジエータ41を迂回させて冷却水流路W22に流す流路である。
 このような構成によれば、サーモスタット43,84が閉弁状態である場合には、CAC81で熱交換することにより加熱された冷却水がオイルクーラ51に供給される。そのため、オイルクーラ51では、この冷却水とオイルとの間で熱交換が行われることにより、オイルを加熱することができる。
In the cooling circuit 10 of the present embodiment, the cooling water flow path W20 is connected to the cooling water flow path W22 through the cooling circuit W24. The cooling circuit W24 is a flow path for causing the cooling water flowing in the cooling water flow path W20 to bypass the radiator 41 and flow in the cooling water flow path W22.
According to such a configuration, when the thermostats 43 and 84 are in the valve closed state, the cooling water heated by heat exchange with the CAC 81 is supplied to the oil cooler 51. Therefore, the oil cooler 51 can heat the oil by heat exchange between the cooling water and the oil.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・バイパス流路W40には、冷却水の流通を規制する流通規制部として、逆止弁45に代えて、電磁弁を設けてもよい。
Other Embodiments
In addition, each embodiment can also be implemented in the following modes.
In the bypass flow passage W40, a solenoid valve may be provided instead of the check valve 45 as a flow control unit that restricts the flow of the cooling water.
 ・オイルクーラ51により冷却されるオイルは、変速機50に用いられるオイルに限らず、エンジン40等の動力機に用いられるオイルであってもよい。
 ・冷却回路10は、エンジン40に代えて、車両に搭載された電動機や、電動機を駆動させるためのインバータ装置等を冷却するものであってもよい。
The oil cooled by the oil cooler 51 is not limited to the oil used for the transmission 50, and may be oil used for a power machine such as the engine 40 or the like.
The cooling circuit 10 may be configured to cool a motor mounted on a vehicle, an inverter device for driving the motor, or the like, instead of the engine 40.
 ・冷却水用プレート70には、通水抵抗付与部として、オフセットフィン以外の適宜の構造を設けてもよい。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
The cooling water plate 70 may be provided with an appropriate structure other than the offset fins as a water flow resistance applying portion.
The present disclosure is not limited to the above specific example. Those skilled in the art may appropriately modify the above-described specific example as long as the features of the present disclosure are included. The elements included in the specific examples described above, and the arrangement, conditions, shape, and the like of the elements are not limited to those illustrated, and can be changed as appropriate. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (12)

  1.  第1冷却水が流れる第1冷却水流路(W20)と、
     第2冷却水が流れる第2冷却水流路(W23,W52)と、
     流入する冷却水の温度が所定温度未満であるときに前記第1冷却水流路における前記第1冷却水の流通を遮断するとともに、前記冷却水の温度が所定温度以上であるときに前記第1冷却水流路における前記第1冷却水の流通を許可するサーモスタット(43)と、
     オイルを加熱又は冷却するオイルクーラ(51)と、を備え、
     前記オイルクーラは、
     前記第1冷却水流路を流れる前記第1冷却水が流入する第1冷却水流入口(511a)と、
     前記オイルクーラの内部を流れた冷却水を前記第1冷却水流路に流出させる第1冷却水流出口(511b)と、
     前記第2冷却水流路を流れる前記第2冷却水が流入する第2冷却水流入口(512a)と、
     前記オイルクーラの内部を流れた冷却水を前記第2冷却水流路に流出させる第2冷却水流出口(512b)と、を有し、
     前記第1冷却水流入口及び前記第2冷却水流入口の少なくとも一方から流入する冷却水と前記オイルとの熱交換により前記オイルを加熱又は冷却する
     冷却回路。
    A first coolant flow path (W20) through which the first coolant flows;
    A second coolant flow path (W23, W52) through which the second coolant flows;
    The flow of the first cooling water in the first cooling water flow path is blocked when the temperature of the inflowing cooling water is less than a predetermined temperature, and the first cooling is performed when the temperature of the cooling water is equal to or higher than the predetermined temperature A thermostat (43) for permitting the flow of the first cooling water in the water flow path;
    An oil cooler (51) for heating or cooling the oil;
    The oil cooler is
    A first coolant inlet (511a) into which the first coolant flows in the first coolant channel;
    A first coolant outlet (511b) for causing the coolant flowing through the inside of the oil cooler to flow out to the first coolant channel;
    A second coolant inlet (512a) into which the second coolant flows in the second coolant flow path;
    And a second coolant outlet (512b) for causing the coolant flowing inside the oil cooler to flow out to the second coolant channel.
    A cooling circuit heating or cooling the oil by heat exchange between the oil and the cooling water flowing in from at least one of the first cooling water inlet and the second cooling water inlet.
  2.  前記第1冷却水流入口を前記第1冷却水流路に接続するバイパス流路(W40)と、
     前記バイパス流路に設けられ、前記第1冷却水流入口から前記第1冷却水流路に向かう方向への前記第1冷却水の流通を規制する流通規制部(45)と、
     を更に備える請求項1に記載の冷却回路。
    A bypass channel (W40) connecting the first coolant inlet to the first coolant channel;
    A flow control unit (45) provided in the bypass flow path, for restricting the flow of the first cooling water in a direction from the first cooling water inlet toward the first cooling water flow path;
    The cooling circuit of claim 1 further comprising:
  3.  前記流通規制部は、逆止弁からなる
     請求項2に記載の冷却回路。
    The cooling circuit according to claim 2, wherein the flow control unit comprises a check valve.
  4.  前記オイルクーラでは、前記第1冷却水流入口から前記第1冷却水流出口に流れる冷却水の流れ方向と前記オイルの流れ方向とが対向している
     請求項1~3のいずれか一項に記載の冷却回路。
    4. The oil cooler according to claim 1, wherein the flow direction of the cooling water flowing from the first cooling water inlet to the first cooling water outlet is opposite to the flow direction of the oil. Cooling circuit.
  5.  前記オイルは、車両の変速機(50)に用いられるオイルである
     請求項1~4のいずれか一項に記載の冷却回路。
    The cooling circuit according to any one of claims 1 to 4, wherein the oil is an oil used for a transmission (50) of a vehicle.
  6.  前記オイルは、車両の動力機に用いられるオイルである
     請求項1~4のいずれか一項に記載の冷却回路。
    The cooling circuit according to any one of claims 1 to 4, wherein the oil is an oil used for a power machine of a vehicle.
  7.  複数のプレートが積層して配置されることにより、オイルが流通するオイル流路と、冷却水が流通する冷却水流路とが交互に設けられるオイルクーラ(51)であって、
     前記冷却水流路を構成する冷却水用プレート(70)は、
     冷却水が流れる内部流路(77)と、
     前記内部流路に冷却水を流入させる第1冷却水流入路(72a)及び第2冷却水流入路(73a)と、
     前記内部流路から冷却水を流出させる第1冷却水流出路(72b)及び第2冷却水流出路(73b)と、
     を備えるオイルクーラ。
    An oil cooler (51) in which an oil flow path through which oil flows and a cooling water flow path through which cooling water is alternately provided by stacking and arranging a plurality of plates,
    The cooling water plate (70) constituting the cooling water flow path is
    An internal flow path (77) through which the cooling water flows,
    A first cooling water inflow path (72a) and a second cooling water inflow path (73a) for causing the cooling water to flow into the internal flow path;
    A first coolant outlet channel (72b) and a second coolant outlet channel (73b) for causing the coolant to flow out from the internal channel;
    Oil cooler with
  8.  前記冷却水用プレートは、
     前記第1冷却水流入路から前記第1冷却水流出路に向かう第1方向に流れる際に前記冷却水が受ける通水抵抗と、前記第2冷却水流入路から前記第2冷却水流出路に向かう第2方向に流れる際に前記冷却水が受ける通水抵抗とを異ならせる通水抵抗付与部(74)を更に有する
     請求項7に記載のオイルクーラ。
    The cooling water plate is
    A flow resistance, which the cooling water receives when flowing in a first direction from the first cooling water inflow path to the first cooling water outflow path, and a second flow from the second cooling water inflow path to the second cooling water outflow path The oil cooler according to claim 7, further comprising a water flow resistance applying portion (74) that makes the flow resistance different from that received by the cooling water when flowing in two directions.
  9.  前記通水抵抗付与部は、部分的に切り起こされた切り起こし部が前記第1方向に複数形成されるとともに、前記第1方向に隣り合う前記切り起こし部同士が互いにオフセットして配置されているオフセットフィンである
     請求項8に記載のオイルクーラ。
    In the water flow resistance applying portion, a plurality of partially cut and raised cut and raised portions are formed in the first direction, and the cut and raised portions adjacent to each other in the first direction are arranged to be offset from each other The oil cooler according to claim 8, which is an offset fin.
  10.  前記第1方向に直交する方向であって、隣り合う前記切り起こし部同士がオフセットしている方向を第2方向とし、前記第1方向及び前記第2方向を二等分する方向を第3方向とするとき、
     前記第1冷却水流入路及び前記第1冷却水流出路は、前記第2方向において前記オフセットフィンを挟んで対向するように配置され、
     前記第2冷却水流入路及び前記第2冷却水流出路は、前記第3方向において前記オフセットフィンを挟んで対向するように配置されている
     請求項9に記載のオイルクーラ。
    A direction perpendicular to the first direction, in which adjacent cut-and-raised portions are offset from each other, is a second direction, and a direction dividing the first direction and the second direction into third directions is a third direction. And when
    The first cooling water inflow path and the first cooling water outflow path are disposed to face each other across the offset fin in the second direction,
    The oil cooler according to claim 9, wherein the second cooling water inflow path and the second cooling water outflow path are disposed to face each other across the offset fin in the third direction.
  11.  前記第1冷却水流入路と前記第2冷却水流入路との間には、それらの間における前記冷却水の流れの短絡を抑制するリブ(75)が形成されている
     請求項7~10のいずれか一項に記載のオイルクーラ。
    The rib (75) for suppressing a short circuit of the flow of the cooling water between the first cooling water inflow path and the second cooling water inflow path is formed between the first cooling water inflow path and the second cooling water inflow path. The oil cooler according to any one of the preceding claims.
  12.  前記第2冷却水流入路から前記第2冷却水流出路に向かう前記冷却水の流れ方向は、前記オイルの流れ方向に対向している
     請求項7~11のいずれか一項に記載のオイルクーラ。
    The oil cooler according to any one of claims 7 to 11, wherein a flow direction of the cooling water from the second cooling water inflow path to the second cooling water outflow path is opposite to a flow direction of the oil.
PCT/JP2018/043173 2017-12-22 2018-11-22 Cool circuit and oil cooler WO2019123970A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880082387.6A CN111542688A (en) 2017-12-22 2018-11-22 Cooling circuit and oil cooler
US16/904,110 US20200318529A1 (en) 2017-12-22 2020-06-17 Cooling circuit and oil cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-245714 2017-12-22
JP2017245714A JP6919552B2 (en) 2017-12-22 2017-12-22 Cooling circuit and oil cooler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/904,110 Continuation US20200318529A1 (en) 2017-12-22 2020-06-17 Cooling circuit and oil cooler

Publications (1)

Publication Number Publication Date
WO2019123970A1 true WO2019123970A1 (en) 2019-06-27

Family

ID=66994622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043173 WO2019123970A1 (en) 2017-12-22 2018-11-22 Cool circuit and oil cooler

Country Status (4)

Country Link
US (1) US20200318529A1 (en)
JP (1) JP6919552B2 (en)
CN (1) CN111542688A (en)
WO (1) WO2019123970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885545A1 (en) * 2020-03-25 2021-09-29 Mazda Motor Corporation Cooling device for vehicle, and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446390B (en) * 2021-07-22 2023-02-21 中国第一汽车股份有限公司 Transmission oil coolant circulation system, control method, vehicle, and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390765U (en) * 1986-11-29 1988-06-13
JP2002536622A (en) * 1999-02-05 2002-10-29 ロング マニュファクチュアリング リミテッド Self-sealing heat exchanger
JP2010084751A (en) * 2008-09-02 2010-04-15 Nissan Motor Co Ltd Implementation of vehicle oil temperature control system
JP2010209736A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Engine warm-up control device
WO2013180284A1 (en) * 2012-06-01 2013-12-05 いすゞ自動車株式会社 Warming up device for transmission
JP2016125686A (en) * 2014-12-26 2016-07-11 株式会社マーレ フィルターシステムズ Oil cooler
JP2017026275A (en) * 2015-07-28 2017-02-02 トヨタ自動車株式会社 Vehicular heat exchanger

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648665A (en) * 1969-07-11 1972-03-14 Dunlop Holdings Ltd Perforated structures
US4249491A (en) * 1979-09-04 1981-02-10 Kim Hotstart Manufacturing Co., Inc. Multiple liquid heating and circulating system
DE19715324A1 (en) * 1997-04-12 1998-10-15 Bayerische Motoren Werke Ag Heat exchangers for liquid heat exchangers
DE102010025576A1 (en) * 2010-06-29 2011-12-29 Behr Industry Gmbh & Co. Kg heat exchangers
US9239195B2 (en) * 2011-04-26 2016-01-19 Hyundai Motor Company Heat exchanger for vehicle
DE102012200746A1 (en) * 2012-01-19 2013-07-25 Ford Global Technologies, Llc Internal combustion engine having a pump arranged in the coolant circuit and method for operating such an internal combustion engine
CN104595003B (en) * 2013-10-30 2019-01-15 北京宝沃汽车有限公司 Engine variable section cooling system
CN103953416B (en) * 2014-03-17 2016-05-04 东风朝阳朝柴动力有限公司 Diesel engine water temperature oil temperature control system device
US10087793B2 (en) * 2015-01-26 2018-10-02 Modine Manufacturing Company Thermal management unit for vehicle powertrain
JP6398764B2 (en) * 2015-02-06 2018-10-03 株式会社デンソー Thermal management system for vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390765U (en) * 1986-11-29 1988-06-13
JP2002536622A (en) * 1999-02-05 2002-10-29 ロング マニュファクチュアリング リミテッド Self-sealing heat exchanger
JP2010084751A (en) * 2008-09-02 2010-04-15 Nissan Motor Co Ltd Implementation of vehicle oil temperature control system
JP2010209736A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Engine warm-up control device
WO2013180284A1 (en) * 2012-06-01 2013-12-05 いすゞ自動車株式会社 Warming up device for transmission
JP2016125686A (en) * 2014-12-26 2016-07-11 株式会社マーレ フィルターシステムズ Oil cooler
JP2017026275A (en) * 2015-07-28 2017-02-02 トヨタ自動車株式会社 Vehicular heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885545A1 (en) * 2020-03-25 2021-09-29 Mazda Motor Corporation Cooling device for vehicle, and vehicle

Also Published As

Publication number Publication date
JP2019112981A (en) 2019-07-11
US20200318529A1 (en) 2020-10-08
JP6919552B2 (en) 2021-08-18
CN111542688A (en) 2020-08-14

Similar Documents

Publication Publication Date Title
JP6054627B2 (en) Vehicle heat exchanger
CA2406331C (en) Thermal management system
JP6317920B2 (en) Vehicle heat exchanger
US20130140017A1 (en) Heat Exchanger for Vehicle
JP2016008813A (en) Heat exchanger for vehicle
JP2015212609A (en) Can=type heat exchanger
JP2014085105A (en) Heat exchanger for vehicle
KR20200067008A (en) Six-way valve and vehicle thermal management system having the same
WO2015102037A1 (en) Intake air cooling device
US11904728B2 (en) Thermal management system for battery pack and thermal management system for electric vehicle
WO2023045358A1 (en) Electric vehicle and thermal manager thereof
US10933712B2 (en) Cooling and heating system for high-voltage battery of vehicle
KR101795279B1 (en) Split cooling system of internal combustion engine
WO2023029577A1 (en) Electric vehicle and thermal management device thereof
WO2019123970A1 (en) Cool circuit and oil cooler
WO2020175262A1 (en) Flow path switching device
US11926192B2 (en) Refrigerant heat exchange apparatus and indirect heat pump system
JP2006501612A (en) Thermal management system
WO2020152734A1 (en) Cooling device for hybrid vehicles
CN113357936A (en) Heat exchanger and method for operating a heat exchanger
WO2017073568A1 (en) Flowpath structure
JP2016210298A (en) Cooling device of internal combustion engine
CN219382150U (en) Thermal management module and thermal management system
CN210956924U (en) Battery thermal management system and vehicle
WO2024009577A1 (en) System for adjusting temperature of battery, and vehicular system for managing heat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892522

Country of ref document: EP

Kind code of ref document: A1