WO2019123961A1 - Rotor and motor - Google Patents

Rotor and motor Download PDF

Info

Publication number
WO2019123961A1
WO2019123961A1 PCT/JP2018/043031 JP2018043031W WO2019123961A1 WO 2019123961 A1 WO2019123961 A1 WO 2019123961A1 JP 2018043031 W JP2018043031 W JP 2018043031W WO 2019123961 A1 WO2019123961 A1 WO 2019123961A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
circumferential direction
rotor core
radial direction
Prior art date
Application number
PCT/JP2018/043031
Other languages
French (fr)
Japanese (ja)
Inventor
邦明 田中
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2019560897A priority Critical patent/JPWO2019123961A1/en
Priority to CN201880081467.XA priority patent/CN111492562A/en
Publication of WO2019123961A1 publication Critical patent/WO2019123961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor and a motor.
  • the rotor of the motor includes a rotor core that rotates with the shaft, and a plurality of magnets provided in the circumferential direction of the rotor core.
  • rotors so-called consistent rotors are known.
  • Patent Document 1 discloses a consistent type rotor in which salient poles are provided between magnets adjacent to each other in the circumferential direction.
  • the rotor has a magnet as one magnetic pole and a salient pole as the other magnetic pole.
  • An object of the present invention is to provide a rotor and a motor capable of suppressing vibration and noise at the time of operation.
  • One aspect of the rotor according to the present invention is a rotor of a consistent type motor, which is contained in a shaft rotating around a central axis extending along the vertical direction, a rotor core fixed to the shaft, and the rotor core And a plurality of magnets provided at intervals in the circumferential direction around the central axis, and in the rotor core, a radial direction centering on the central axis between the magnets adjacent to each other in the circumferential direction.
  • a salient pole portion protruding outward of the magnet is provided, and an iron core portion is provided radially outside the magnet, and a circumferential width of the iron core portion is larger than a circumferential width of the salient pole portion.
  • One aspect of the motor of the present invention includes the above-described rotor, and a stator that faces the rotor in the radial direction via a gap.
  • a rotor and a motor are provided that can suppress vibration and noise during operation.
  • FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment.
  • FIG. 2 is a cross-sectional view of the motor of one embodiment.
  • FIG. 3 is a cross-sectional view of the rotor of one embodiment.
  • FIG. 4 is a graph showing a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in the rotor of one embodiment.
  • FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment.
  • FIG. 2 is a cross-sectional view of the motor of one embodiment.
  • FIG. 3 is a cross-sectional view of the rotor of one embodiment.
  • FIG. 4 is a graph showing a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in
  • FIG. 5 is a graph showing the change (distribution) of the magnetic flux density in the circumferential direction of the rotor 13 when the width in the circumferential direction of the iron core and the width in the circumferential direction of the salient pole are equal in the rotor of the embodiment.
  • FIG. 6 is a cross-sectional view of a rotor of a modification of one embodiment.
  • FIG. 7 is a graph showing a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in the rotor of the modified example of one embodiment. It is.
  • FIG. 1 is a schematic cross-sectional view of a motor 10 according to the present embodiment.
  • a motor (consistent motor) 10 includes a housing 11, a stator 12, a rotor 13 provided with a shaft 20 disposed along a central axis J extending in the vertical direction, and a bearing holder 14. And bearings 15 and 16.
  • the shaft 20 is rotatably supported by the bearings 15 and 16.
  • the shaft 20 has a cylindrical shape extending in a direction along the central axis J.
  • axial direction a direction parallel to the central axis J
  • radial direction a direction parallel to the central axis J
  • radial direction a direction parallel to the central axis J
  • radial direction a direction parallel to the central axis J
  • radial direction a radial direction centered on the central axis J
  • radial direction a radial direction centered on the central axis J
  • the central axis J is centered
  • the circumferential direction to be taken, that is, around the axis of the central axis J is simply referred to as "circumferential direction”.
  • plane view means a state viewed from the axial direction.
  • the scale, the number, etc. in an actual structure and each structure may be made different.
  • FIG. 2 is a cross-sectional view of the motor of the present embodiment.
  • the stator 12 faces the rotor 13 in the radial direction outside the rotor 13 with a gap in between.
  • the stator 12 includes a plurality of teeth 17 spaced apart in the circumferential direction, and a coil 18 wound around the teeth 17.
  • the teeth 17 radially face the rotor 13.
  • the coil 18 generates a magnetic field to be applied to the rotor 13.
  • twelve teeth 17 and coils 18 are provided. That is, the motor 10 of the present embodiment has 12 slots.
  • FIG. 3 is a cross-sectional view of the rotor of the present embodiment.
  • illustration of the shaft 20 is abbreviate
  • the rotor 13 includes a shaft 20 (see FIG. 2), a rotor core 30, and a plurality of magnets 50 included in the rotor core 30.
  • the rotor core 30 has a columnar shape extending in the axial direction. Although not shown, the rotor core 30 is configured, for example, by laminating a plurality of plate members in the axial direction. As shown in FIG. 3, the rotor core 30 includes a fixing hole 31, a magnet housing 35, a first projection (iron core) 37, and a second projection (protruding pole) 38.
  • the fixing hole 31 penetrates the rotor core 30 in the axial direction.
  • the shape viewed along the axial direction of the fixing hole 31 is a circular shape centering on the central axis J.
  • the shaft 20 (see FIG. 2) is passed through the fixing hole 31.
  • the inner peripheral surface of the fixing hole 31 is fixed to the outer peripheral surface of the shaft 20.
  • the rotor core 30 is thereby fixed to the shaft 20.
  • the magnet housing portion 35 houses the magnet 50.
  • a plurality of magnet housing portions 35 are provided on the outer peripheral portion of the rotor core 30 at intervals in the circumferential direction.
  • the plurality of magnet housing portions 35 are arranged at equal intervals in the circumferential direction.
  • the plurality of magnet housing portions 35 are arranged at positions equidistantly in the radial direction from the central axis J, and are arranged in a so-called concentric manner.
  • the number of magnet housings 35 provided in the rotor core 30 is, for example, five.
  • the magnet housing 35 extends in the axial direction.
  • the magnet housing portion 35 is a through hole penetrating the rotor core 30 in the axial direction, but may be a bottomed hole formed in a part of the rotor core 30 in the axial direction.
  • the magnet housing portion 35 includes an inner support surface 35a, an outer support surface 35b, and end support surfaces 35c and 35c.
  • the inner support surface 35 a is provided radially inward in the magnet housing portion 35.
  • the inner support surface 35 a is a flat surface orthogonal to the radial direction.
  • the outer side support surface 35b is provided in parallel with the inner side support surface 35a at intervals in the radial direction with respect to the inner side support surface 35a.
  • the outer side support surface 35b is a flat surface orthogonal to the radial direction.
  • the end support surfaces 35c, 35c extend radially outward from both circumferential ends of the inner support surface 35a.
  • the end support surface 35c is provided only on a part of the inner support surface 35a in the direction connecting the inner support surface 35a and the outer support surface 35b.
  • the magnet housing portion 35 is provided with an opening 35d that opens in the circumferential direction between the end support surface 35c and the outer support surface 35b.
  • the circumferential intervals of the plurality of magnet housing portions 35 are, for example, equal to one another.
  • the number of the plurality of magnet housings 35 is, for example, five.
  • the first protrusion 37 and the second protrusion 38 are provided on the outer peripheral portion of the rotor core 30.
  • the first protrusions 37 are disposed radially outward of the magnets 50 housed in the respective magnet housings 35.
  • the first projection 37 is made of the same material as the rotor core 30.
  • the first protrusion 37 is provided as an iron core located on the radially outer side of the magnet 50.
  • the first protrusion 37 protrudes radially outward.
  • the first protrusion 37 includes extending surfaces 37a and 37a and an outer peripheral surface 37b. The extending surfaces 37 a and 37 a extend radially outward from both circumferential ends of the outer support surface 35 b of the magnet housing portion 35.
  • the outer circumferential surface 37b bulges radially outward from the extending surfaces 37a, 37a on both sides in the circumferential direction.
  • the outer peripheral surface 37b is an arc having a curvature radius R1 centered on the central axis J when viewed from the axial direction.
  • the first projection 37 continuously extends in a uniform cross-sectional shape from one axial end of the rotor core 30 to the other axial end of the rotor core 30.
  • the dimension T1 in the radial direction between the radially outer side surface 50b of the magnet 50 and the outer peripheral surface of the rotor core 30, ie, the outer peripheral surface 37b of the first projection 37 is smaller than the thickness T2 in the radial direction of the magnet 50 . That is, the dimension T1 in the radial direction of the first protrusion 37 as the core portion is smaller than the thickness T2 in the radial direction of the magnet 50.
  • the second protrusions 38 are located between the magnets 50 adjacent to each other in the circumferential direction.
  • the second projection 38 protrudes radially outward.
  • the outer peripheral surface 38a on the radially outer side of the second protrusion 38 has an arc shape with a curvature radius R2 centered on a point C set radially outward of the central axis J when viewed from the axial direction.
  • the point C is disposed on a line L passing through the center of the circumferential direction of the magnets 50 adjacent to each other in the circumferential direction from the central axis J of the rotor core 30 when viewed from the axial direction.
  • the second projection 38 continuously extends in a uniform cross section from one axial end of the rotor core 30 to the other axial end of the rotor core 30.
  • the circumferential width W1 of the first projection 37 is larger than the circumferential width W2 of the second projection 38 (W1> W2).
  • the curvature radius R2 of the outer peripheral surface 38a of the second projection 38 is smaller than the curvature radius R1 of the outer peripheral surface 37b of the first projection 37 (R1> R3).
  • the rotor core 30 is provided with a recess 39.
  • the recess 39 is provided on the outer peripheral portion of the rotor core 30.
  • the recess 39 is provided between the first protrusion 37 and the second protrusion 38 in the circumferential direction. That is, the recess 39 is provided on both sides in the circumferential direction of the second protrusion 38.
  • the recess 39 is recessed radially inward of the first protrusion 37 and the second protrusion 38.
  • the rotor core 30 is provided with a plurality of holes 40 radially outside the fixing hole 31 and radially inside the magnet housing portion 35.
  • the plurality of holes 40 are arranged at equal intervals in the circumferential direction.
  • the rotor core 30 is provided with ten holes 40. Each hole 40 extends axially and penetrates the rotor core 30 in the axial direction.
  • the magnet 50 is a rectangle whose transverse cross section is a radial direction as the longitudinal direction, and is a substantially square pole extending in the axial direction.
  • the magnet 50 is inserted into the magnet housing portion 35. Thereby, the magnet 50 is included in the outer peripheral portion of the rotor core 30.
  • Each magnet 50 is arrange
  • the plurality of magnets 50 are arranged at equal intervals in the circumferential direction. That is, the plurality of magnets 50 are provided at intervals in the circumferential direction around the central axis J. In the present embodiment, the number of magnets 50 provided on the rotor 13 is five.
  • the radially inner side surface 50 a of the magnet 50 contacts the inner support surface 35 a of the magnet housing portion 35.
  • the radially outer side surface 50 b of the magnet 50 contacts the outer support surface 35 b of the magnet housing portion 35.
  • a part of the end surfaces 50 c on both sides in the circumferential direction of the magnet 50 is in contact with the end support surface 35 c of the magnet housing portion 35.
  • the magnet 50 is positioned in the circumferential direction and the radial direction by being housed in the magnet housing portion 35.
  • the end surfaces 50c on both sides in the circumferential direction of the magnet 50 have an outer peripheral side end surface 50d located on the radially outer side of the end support surface 35c.
  • the outer peripheral side end face 50 d is exposed to the recess 39 from the opening 35 d of the magnet housing portion 35.
  • the rotor 13 of the present embodiment includes ten magnetic poles configured by the magnets 50 and the second protrusions 38.
  • FIG. 4 shows the change (distribution) of the magnetic flux density in the circumferential direction of the rotor 13 when the circumferential width W1 of the first projection 37 is larger than the circumferential width W2 of the second projection 38. It is a graph. As shown in FIG. 4, in the rotor 13 of the present embodiment, a first projection 37 which is an actual pole provided with the magnet 50 and a second projection 38 which is a pseudo pole which is not provided with the magnet 50. The magnetic flux density is approximately equal.
  • FIG. 5 shows the circumference of the rotor 13 in the case where the width W1 in the circumferential direction of the first protrusion 37 and the width W2 in the circumferential direction of the second protrusion 38 are equal, as a comparison object with the rotor 13 of this embodiment. It is a graph which shows the change (distribution) of the magnetic flux density in direction. As shown in FIG. 5, in the rotor 13 in which the width W1 in the circumferential direction of the first protrusion 37 and the width W2 in the circumferential direction of the second protrusion 38 are equal to each other, The magnetic flux density is different between the one protrusion 37 and the second protrusion 38 which is a pseudo pole portion in which the magnet 50 is not provided.
  • the magnetic flux density in the first protrusion 37 is higher than the magnetic flux density in the second protrusion 38. This is because the amount of magnetic flux interlinked to the stator 12 from the second protrusion 38 side is larger than the amount of magnetic flux interlinked to the stator 12 from the first protrusion 37 side.
  • the magnet 50 is contained in the rotor core 30, and the circumferential width W1 of the first protrusion 37 provided on the radially outer side of the magnet 50 is the first The width W2 is larger than the circumferential width W2 of the two protrusions 38.
  • the amount of magnetic flux interlinked from the second projection 38 to the stator 12 can be reduced, and the amount of magnetic flux interlinked from the first projection 37 and the second projection 38 to the stator 12 can be made uniform.
  • it is possible to reduce the variation of the radial force caused by the non-uniformity of the magnetic flux and it is possible to reduce the vibration and noise during operation of the rotor 13. Therefore, the rotor 13 and the motor 10 capable of suppressing vibration and noise during operation are provided.
  • the dimension T1 in the radial direction between the radially outer side surface 50b of the magnet 50 and the outer peripheral surface of the rotor core 30, ie, the outer peripheral surface 37b of the first protrusion 37 It is smaller than the radial thickness T2.
  • the magnet 50 can be brought closer to the stator 12 while being held in the magnet housing portion 35. Therefore, the magnetic flux is prevented from leaking except between the magnet 50 and the teeth 17.
  • the recess 39 that is recessed inward in the radial direction is provided on both sides in the circumferential direction of the second protrusion 38.
  • the outer peripheral side end face 50 d which is at least a part of the magnet 50 is exposed to the recess 39.
  • the magnetic flux flows directly between the magnet 50 and the stator 12 without passing through a part of the rotor core 30.
  • the flow of magnetic flux can be made smooth.
  • the magnet 50 is housed in the magnet housing portion 35. Thereby, when the rotor 13 rotates at high speed, the magnet 50 is prevented from being detached from the rotor core 30 by the centrifugal force.
  • the dimension S2 of the gap between the second projection 38 and the teeth 17 in the radial direction is the same as the dimension S1 of the gap between the first projection 37 and the teeth 17.
  • FIG. 6 is a cross-sectional view of a rotor of a modification of the embodiment described above.
  • FIG. 7 shows a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in the rotor of the modified example of the embodiment described above. It is a graph.
  • the rotor 13 ⁇ / b> B of this modification mainly differs from the above-described rotor 13 in the structure of the second protrusion 38 ⁇ / b> B.
  • the rotor 13B of the motor 10 is provided with a first projection 37 and a second projection (a salient pole) 38B on the outer peripheral portion of the rotor core 30B.
  • the circumferential width W1 of the first projection 37 is larger than the circumferential width W3 of the second projection 38B (W1> W3).
  • a first projection 37 which is an actual pole provided with the magnet 50 and a second projection 38B which is a pseudo pole where the magnet 50 is not provided.
  • the magnetic flux density is approximately equal.
  • the application of the motor provided with the rotor of the embodiment described above and its variation is not particularly limited.
  • the motor including the rotors of the above-described embodiment and the modification thereof is mounted on, for example, an electric pump, an electric power steering, and the like.
  • SYMBOLS 10 Motor (consistent type motor), 12 ... Stator, 13, 13B ... Rotor, 17 ... Teeth, 20 ... Shaft, 30, 30B ... Rotor core, 35 ... Magnet accommodation part, 37 ... 1st projection part (iron core part), 37b: outer peripheral surface, 38, 38B: second projection (salicy pole), 38a: outer peripheral surface, 39: recess, 50: magnet, J: central axis, R1, R2, R3: radius of curvature, S1, S2: Dimension of gap, W1, W2 ... circumferential width, T1 ... dimension, T2 ... thickness

Abstract

A rotor of a consequent-type motor, comprising: a shaft that rotates about a central axis extending along the vertical direction; a rotor core fixed to the shaft; and a plurality of magnets encased in the rotor core, the magnets being provided at intervals in the circumferential direction around the central axis. On the rotor core, a salient pole part projecting radially outward about the central axis is provided between mutually adjacent magnets in the circumferential direction, an iron core part is provided radially outward of the magnets, and the circumferential direction width of the iron core part is greater than the circumferential direction width of the salient pole part. FIG. 2

Description

ロータおよびモータRotor and motor
 本発明は、ロータおよびモータに関する。 The present invention relates to a rotor and a motor.
 モータのロータは、シャフトとともに回転するロータコアと、ロータコアの周方向に複数設けられたマグネットと、を備える。このようなロータにおいて、いわゆるコンシクエント型のロータが知られている。例えば、特許文献1には、周方向で互いに隣り合うマグネットの間に突極が設けられたコンシクエント型のロータが開示されている。このロータは、マグネットを一方の磁極とし、突極を他方の磁極とする。 The rotor of the motor includes a rotor core that rotates with the shaft, and a plurality of magnets provided in the circumferential direction of the rotor core. Among such rotors, so-called consistent rotors are known. For example, Patent Document 1 discloses a consistent type rotor in which salient poles are provided between magnets adjacent to each other in the circumferential direction. The rotor has a magnet as one magnetic pole and a salient pole as the other magnetic pole.
日本国公開公報第2012-227989号公報Japanese Unexamined Patent Publication No. 2012-227989
 上記のようなコンシクエント型のロータにおいては、周方向に複数設けられたマグネットで、一方の磁極と他方の磁極とを交互に構成する一般的なロータ(以下、このようなロータをフルマグネット型のロータと称する)に比較すると、振動や騒音が増加しやすいという問題がある。コンシクエント型のロータの場合、実極部(マグネットがある磁極)と擬似極部(マグネットがない鉄心のみの磁極)との周方向の幅が同じである場合、擬似極部からステータへ錯交する磁束の磁束密度と、実極部からステータへ錯交する磁束の磁束密度との間に差が生じる。その結果、ロータとステータとの間における径方向の電磁力が、実極部と疑似極部とでばらつき、ロータの回転や発生するトルクなどが一定にならず、振動や騒音が増加する要因となる。 In the above-mentioned consistent type rotor, a plurality of magnets provided circumferentially, and generally comprising one magnetic pole and the other magnetic pole alternately (hereinafter, such a rotor is a full magnet type) There is a problem that vibration and noise tend to increase as compared with the rotor). In the case of a consistent type rotor, if the width in the circumferential direction of the real pole portion (magnetic pole with magnet) and the pseudo pole portion (magnetic pole only with iron core without magnet) is the same, the pseudo pole portion crosses over to the stator There is a difference between the flux density of the flux and the flux density of the flux that is interrelated from the real pole to the stator. As a result, the electromagnetic force in the radial direction between the rotor and the stator varies between the actual pole part and the pseudo pole part, and the rotation of the rotor, the torque generated, etc. are not constant, which causes the vibration and noise to increase. Become.
 本発明は、上記事情に鑑みて、作動時における振動や騒音を抑えることができるロータおよびモータを提供することを目的の一つとする。 An object of the present invention is to provide a rotor and a motor capable of suppressing vibration and noise at the time of operation.
 本発明のロータの一つの態様は、コンシクエント型モータのロータであって、上下方向に沿って延びる中心軸を中心として回転するシャフトと、前記シャフトに固定されたロータコアと、前記ロータコアに内包され、前記中心軸周りの周方向に間隔をあけて設けられた複数のマグネットと、を備え、前記ロータコアには、周方向において互いに隣り合う前記マグネット同士の間で、前記中心軸を中心とした径方向の外側に突出する突極部が設けられ、前記マグネットの径方向外側には鉄心部が設けられ、前記鉄心部の周方向の幅は、前記突極部の周方向の幅よりも大きい。 One aspect of the rotor according to the present invention is a rotor of a consistent type motor, which is contained in a shaft rotating around a central axis extending along the vertical direction, a rotor core fixed to the shaft, and the rotor core And a plurality of magnets provided at intervals in the circumferential direction around the central axis, and in the rotor core, a radial direction centering on the central axis between the magnets adjacent to each other in the circumferential direction. A salient pole portion protruding outward of the magnet is provided, and an iron core portion is provided radially outside the magnet, and a circumferential width of the iron core portion is larger than a circumferential width of the salient pole portion.
 本発明のモータの一つの態様は、上記のロータと、前記ロータと径方向に隙間を介して対向するステータと、を備える。 One aspect of the motor of the present invention includes the above-described rotor, and a stator that faces the rotor in the radial direction via a gap.
 本発明の一つの態様によれば、作動時における振動や騒音を抑えることができるロータおよびモータが提供される。 According to one aspect of the present invention, a rotor and a motor are provided that can suppress vibration and noise during operation.
図1は、一実施形態のモータの断面模式図である。FIG. 1 is a schematic cross-sectional view of a motor according to an embodiment. 図2は、一実施形態のモータの断面図である。FIG. 2 is a cross-sectional view of the motor of one embodiment. 図3は、一実施形態のロータの断面図である。FIG. 3 is a cross-sectional view of the rotor of one embodiment. 図4は、一実施形態のロータにおいて、鉄心部の周方向の幅を、突極部の周方向の幅よりも大きくした場合の、ロータの周方向における磁束密度の変化を示すグラフである。FIG. 4 is a graph showing a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in the rotor of one embodiment. 図5は、一実施形態のロータにおいて、鉄心部の周方向の幅と突極部の周方向の幅とを等しくした場合の、ロータ13の周方向における磁束密度の変化(分布)を示すグラフである。FIG. 5 is a graph showing the change (distribution) of the magnetic flux density in the circumferential direction of the rotor 13 when the width in the circumferential direction of the iron core and the width in the circumferential direction of the salient pole are equal in the rotor of the embodiment. It is. 図6は、一実施形態の変形例のロータの断面図である。FIG. 6 is a cross-sectional view of a rotor of a modification of one embodiment. 図7は、一実施形態の変形例のロータにおいて、鉄心部の周方向の幅を、突極部の周方向の幅よりも大きくした場合の、ロータの周方向における磁束密度の変化を示すグラフである。FIG. 7 is a graph showing a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in the rotor of the modified example of one embodiment. It is.
 図1は、本実施形態のモータ10の断面模式図である。図1に示すように、モータ(コンシクエント型モータ)10は、ハウジング11と、ステータ12と、上下方向に延びる中心軸Jに沿って配置されるシャフト20を備えるロータ13と、ベアリングホルダ14と、ベアリング15,16と、を備える。シャフト20は、ベアリング15,16に回転可能に支持される。シャフト20は、中心軸Jに沿った方向に延びる円柱状である。 FIG. 1 is a schematic cross-sectional view of a motor 10 according to the present embodiment. As shown in FIG. 1, a motor (consistent motor) 10 includes a housing 11, a stator 12, a rotor 13 provided with a shaft 20 disposed along a central axis J extending in the vertical direction, and a bearing holder 14. And bearings 15 and 16. The shaft 20 is rotatably supported by the bearings 15 and 16. The shaft 20 has a cylindrical shape extending in a direction along the central axis J.
 以下の説明においては、中心軸Jに平行な方向を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から視た状態を意味する。以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。 In the following description, a direction parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, a radial direction centered on the central axis J is simply referred to as “radial direction”, and the central axis J is centered The circumferential direction to be taken, that is, around the axis of the central axis J is simply referred to as "circumferential direction". Furthermore, in the following description, “plan view” means a state viewed from the axial direction. In the following drawings, in order to make each structure intelligible, the scale, the number, etc. in an actual structure and each structure may be made different.
 図2は、本実施形態のモータの断面図である。図2に示すように、ステータ12は、ロータ13の径方向外側においてロータ13と径方向に隙間を介して対向する。ステータ12は、周方向に間隔をあけて設けられた複数のティース17と、各ティース17に巻き回されたコイル18と、を備える。ティース17は、ロータ13と径方向で対向する。コイル18は、ロータ13に印加する磁界を発生する。本実施形態において、ティース17およびコイル18は、例えば12個が設けられている。すなわち、本実施形態のモータ10は、スロット数が12である。 FIG. 2 is a cross-sectional view of the motor of the present embodiment. As shown in FIG. 2, the stator 12 faces the rotor 13 in the radial direction outside the rotor 13 with a gap in between. The stator 12 includes a plurality of teeth 17 spaced apart in the circumferential direction, and a coil 18 wound around the teeth 17. The teeth 17 radially face the rotor 13. The coil 18 generates a magnetic field to be applied to the rotor 13. In the present embodiment, for example, twelve teeth 17 and coils 18 are provided. That is, the motor 10 of the present embodiment has 12 slots.
 図3は、本実施形態のロータの断面図である。なお、図3において、シャフト20の図示を省略する。図2、図3に示すように、ロータ13は、シャフト20(図2参照)と、ロータコア30と、ロータコア30に内包された複数のマグネット50と、を備える。 FIG. 3 is a cross-sectional view of the rotor of the present embodiment. In addition, illustration of the shaft 20 is abbreviate | omitted in FIG. As shown in FIGS. 2 and 3, the rotor 13 includes a shaft 20 (see FIG. 2), a rotor core 30, and a plurality of magnets 50 included in the rotor core 30.
 ロータコア30は、軸方向に延びる柱状である。図示は省略するが、ロータコア30は、例えば、複数の板部材が軸方向に積層されて構成される。図3に示すように、ロータコア30は、固定孔部31と、マグネット収容部35と、第一突起部(鉄心部)37と、第二突起部(突極部)38と、を備える。 The rotor core 30 has a columnar shape extending in the axial direction. Although not shown, the rotor core 30 is configured, for example, by laminating a plurality of plate members in the axial direction. As shown in FIG. 3, the rotor core 30 includes a fixing hole 31, a magnet housing 35, a first projection (iron core) 37, and a second projection (protruding pole) 38.
 固定孔部31は、ロータコア30を軸方向に貫通する。固定孔部31の軸方向に沿って視た形状は、中心軸Jを中心とする円形状である。固定孔部31には、シャフト20(図2参照)が通される。固定孔部31の内周面は、シャフト20の外周面に固定される。これにより、ロータコア30は、シャフト20に固定される。 The fixing hole 31 penetrates the rotor core 30 in the axial direction. The shape viewed along the axial direction of the fixing hole 31 is a circular shape centering on the central axis J. The shaft 20 (see FIG. 2) is passed through the fixing hole 31. The inner peripheral surface of the fixing hole 31 is fixed to the outer peripheral surface of the shaft 20. The rotor core 30 is thereby fixed to the shaft 20.
 マグネット収容部35は、マグネット50を収容する。マグネット収容部35は、ロータコア30の外周部に、周方向に間隔をあけて複数設けられる。複数のマグネット収容部35は、周方向に等間隔に配置される。複数のマグネット収容部35は、中心軸Jから径方向に等距離の位置に配置され、いわゆる同心状に配置される。ロータコア30に設けられるマグネット収容部35の数は、例えば5個である。 The magnet housing portion 35 houses the magnet 50. A plurality of magnet housing portions 35 are provided on the outer peripheral portion of the rotor core 30 at intervals in the circumferential direction. The plurality of magnet housing portions 35 are arranged at equal intervals in the circumferential direction. The plurality of magnet housing portions 35 are arranged at positions equidistantly in the radial direction from the central axis J, and are arranged in a so-called concentric manner. The number of magnet housings 35 provided in the rotor core 30 is, for example, five.
 マグネット収容部35は、軸方向に延びる。マグネット収容部35は、ロータコア30を軸方向に貫通する貫通孔であるが、ロータコア30の軸方向の一部に形成される有底状の穴であってもよい。マグネット収容部35は、内側支持面35aと、外側支持面35bと、端部支持面35c,35cと、を備える。内側支持面35aは、マグネット収容部35において径方向内側に設けられる。内側支持面35aは、径方向と直交する平坦な面である。外側支持面35bは、内側支持面35aに対して径方向に間隔を空けて、内側支持面35aと平行に設けられる。外側支持面35bは、径方向と直交する平坦な面である。端部支持面35c,35cは、内側支持面35aの周方向両端から径方向外側に向かって延びる。端部支持面35cは、内側支持面35aと外側支持面35bとを結ぶ方向において、内側支持面35a側の一部のみに設けられている。このため、マグネット収容部35には、端部支持面35cと外側支持面35bとの間に周方向に開口する開口部35dが設けられる。複数のマグネット収容部35同士の周方向の間隔は、例えば、互いに同じである。複数のマグネット収容部35の数は、例えば、5つである。 The magnet housing 35 extends in the axial direction. The magnet housing portion 35 is a through hole penetrating the rotor core 30 in the axial direction, but may be a bottomed hole formed in a part of the rotor core 30 in the axial direction. The magnet housing portion 35 includes an inner support surface 35a, an outer support surface 35b, and end support surfaces 35c and 35c. The inner support surface 35 a is provided radially inward in the magnet housing portion 35. The inner support surface 35 a is a flat surface orthogonal to the radial direction. The outer side support surface 35b is provided in parallel with the inner side support surface 35a at intervals in the radial direction with respect to the inner side support surface 35a. The outer side support surface 35b is a flat surface orthogonal to the radial direction. The end support surfaces 35c, 35c extend radially outward from both circumferential ends of the inner support surface 35a. The end support surface 35c is provided only on a part of the inner support surface 35a in the direction connecting the inner support surface 35a and the outer support surface 35b. For this reason, the magnet housing portion 35 is provided with an opening 35d that opens in the circumferential direction between the end support surface 35c and the outer support surface 35b. The circumferential intervals of the plurality of magnet housing portions 35 are, for example, equal to one another. The number of the plurality of magnet housings 35 is, for example, five.
 第一突起部37および第二突起部38は、ロータコア30の外周部に設けられる。第一突起部37は、各マグネット収容部35に収容されるマグネット50の径方向外側に配置される。第一突起部37は、ロータコア30と同材料からなる。第一突起部37は、マグネット50の径方向外側に位置する鉄心部として設けられる。第一突起部37は、径方向外側に突出している。第一突起部37は、延出面37a,37aと、外周面37bと、を備える。延出面37a,37aは、マグネット収容部35の外側支持面35bの周方向両端から径方向外側に向かって延びる。外周面37bは、周方向両側の延出面37a,37aから径方向外側に向かって膨出する。外周面37bは、軸方向から視て、中心軸Jを中心とした曲率半径R1の円弧状である。第一突起部37は、ロータコア30の軸方向の一端部から、ロータコア30の軸方向の他端部まで一様な断面形状で連続して延びる。 The first protrusion 37 and the second protrusion 38 are provided on the outer peripheral portion of the rotor core 30. The first protrusions 37 are disposed radially outward of the magnets 50 housed in the respective magnet housings 35. The first projection 37 is made of the same material as the rotor core 30. The first protrusion 37 is provided as an iron core located on the radially outer side of the magnet 50. The first protrusion 37 protrudes radially outward. The first protrusion 37 includes extending surfaces 37a and 37a and an outer peripheral surface 37b. The extending surfaces 37 a and 37 a extend radially outward from both circumferential ends of the outer support surface 35 b of the magnet housing portion 35. The outer circumferential surface 37b bulges radially outward from the extending surfaces 37a, 37a on both sides in the circumferential direction. The outer peripheral surface 37b is an arc having a curvature radius R1 centered on the central axis J when viewed from the axial direction. The first projection 37 continuously extends in a uniform cross-sectional shape from one axial end of the rotor core 30 to the other axial end of the rotor core 30.
 マグネット50の径方向外側の側面50bと、ロータコア30の外周面、すなわち第一突起部37の外周面37bとの間の径方向における寸法T1は、マグネット50の径方向の厚さT2よりも小さい。つまり、鉄心部としての第一突起部37の径方向の寸法T1は、マグネット50の径方向の厚さT2よりも小さい。 The dimension T1 in the radial direction between the radially outer side surface 50b of the magnet 50 and the outer peripheral surface of the rotor core 30, ie, the outer peripheral surface 37b of the first projection 37 is smaller than the thickness T2 in the radial direction of the magnet 50 . That is, the dimension T1 in the radial direction of the first protrusion 37 as the core portion is smaller than the thickness T2 in the radial direction of the magnet 50.
 第二突起部38は、周方向において互いに隣り合うマグネット50同士の間に位置する。第二突起部38は、径方向外側に突出している。第二突起部38の径方向外側の外周面38aは、軸方向から視て、中心軸Jよりも径方向外側に設定された点Cを中心とした曲率半径R2の円弧状である。点Cは、軸方向から見て、ロータコア30の中心軸Jから、周方向で互いに隣り合うマグネット50同士の周方向の中心を通る線L上に配置される。第二突起部38は、ロータコア30の軸方向の一端部から、ロータコア30の軸方向の他端部まで一様な断面で連続して延びる。 The second protrusions 38 are located between the magnets 50 adjacent to each other in the circumferential direction. The second projection 38 protrudes radially outward. The outer peripheral surface 38a on the radially outer side of the second protrusion 38 has an arc shape with a curvature radius R2 centered on a point C set radially outward of the central axis J when viewed from the axial direction. The point C is disposed on a line L passing through the center of the circumferential direction of the magnets 50 adjacent to each other in the circumferential direction from the central axis J of the rotor core 30 when viewed from the axial direction. The second projection 38 continuously extends in a uniform cross section from one axial end of the rotor core 30 to the other axial end of the rotor core 30.
 本実施形態において、第一突起部37の周方向の幅W1は、第二突起部38の周方向の幅W2よりも大きい(W1>W2)。第二突起部38の外周面38aの曲率半径R2は、第一突起部37の外周面37bの曲率半径R1よりも小さい(R1>R3)。図2に示すように、径方向において、第二突起部38とティース17との間隙の寸法S2は、第一突起部37とティース17との間隙の寸法S1と同じである(S1=S2)。 In the present embodiment, the circumferential width W1 of the first projection 37 is larger than the circumferential width W2 of the second projection 38 (W1> W2). The curvature radius R2 of the outer peripheral surface 38a of the second projection 38 is smaller than the curvature radius R1 of the outer peripheral surface 37b of the first projection 37 (R1> R3). As shown in FIG. 2, in the radial direction, the dimension S2 of the gap between the second projection 38 and the tooth 17 is the same as the dimension S1 of the gap between the first projection 37 and the tooth 17 (S1 = S2) .
 ロータコア30は、凹部39を備える。凹部39は、ロータコア30の外周部に設けられる。凹部39は、周方向において、第一突起部37と第二突起部38との間に設けられる。すなわち、凹部39は、第二突起部38の周方向両側に設けられる。凹部39は、第一突起部37および第二突起部38よりも径方向内側に窪む。 The rotor core 30 is provided with a recess 39. The recess 39 is provided on the outer peripheral portion of the rotor core 30. The recess 39 is provided between the first protrusion 37 and the second protrusion 38 in the circumferential direction. That is, the recess 39 is provided on both sides in the circumferential direction of the second protrusion 38. The recess 39 is recessed radially inward of the first protrusion 37 and the second protrusion 38.
 ロータコア30は、固定孔部31の径方向外側、かつマグネット収容部35の径方向内側に、複数の孔40を備える。複数の孔40は、周方向に等間隔に並ぶ。本実施形態において、ロータコア30には、10個の孔40が設けられる。各孔40は、軸方向に延び、ロータコア30を軸方向に貫通する。 The rotor core 30 is provided with a plurality of holes 40 radially outside the fixing hole 31 and radially inside the magnet housing portion 35. The plurality of holes 40 are arranged at equal intervals in the circumferential direction. In the present embodiment, the rotor core 30 is provided with ten holes 40. Each hole 40 extends axially and penetrates the rotor core 30 in the axial direction.
 マグネット50は、横断面が径方向を長手方向とする長方形であり、軸方向に延びる略四角柱である。マグネット50は、マグネット収容部35に挿入される。これにより、マグネット50は、ロータコア30の外周部に内包される。各マグネット50は、周方向に隣り合う第二突起部38同士の間に配置される。複数のマグネット50は、周方向に等間隔に配置される。すなわち、複数のマグネット50は、中心軸J周りの周方向に間隔をあけて設けられる。本実施形態において、ロータ13に設けられるマグネット50の数は、5個である。 The magnet 50 is a rectangle whose transverse cross section is a radial direction as the longitudinal direction, and is a substantially square pole extending in the axial direction. The magnet 50 is inserted into the magnet housing portion 35. Thereby, the magnet 50 is included in the outer peripheral portion of the rotor core 30. Each magnet 50 is arrange | positioned between the 2nd projection parts 38 adjacent to the circumferential direction. The plurality of magnets 50 are arranged at equal intervals in the circumferential direction. That is, the plurality of magnets 50 are provided at intervals in the circumferential direction around the central axis J. In the present embodiment, the number of magnets 50 provided on the rotor 13 is five.
 マグネット50の径方向内側の側面50aは、マグネット収容部35の内側支持面35aに接触する。マグネット50の径方向外側の側面50bは、マグネット収容部35の外側支持面35bに接触する。マグネット50の周方向両側の端面50cの一部は、マグネット収容部35の端部支持面35cに接触する。マグネット50は、マグネット収容部35に収容されることで、周方向および径方向に位置決めされる。マグネット50の周方向両側の端面50cは、端部支持面35cの径方向外側に位置する外周側端面50dを有する。外周側端面50dは、マグネット収容部35の開口部35dから、凹部39に露出する。 The radially inner side surface 50 a of the magnet 50 contacts the inner support surface 35 a of the magnet housing portion 35. The radially outer side surface 50 b of the magnet 50 contacts the outer support surface 35 b of the magnet housing portion 35. A part of the end surfaces 50 c on both sides in the circumferential direction of the magnet 50 is in contact with the end support surface 35 c of the magnet housing portion 35. The magnet 50 is positioned in the circumferential direction and the radial direction by being housed in the magnet housing portion 35. The end surfaces 50c on both sides in the circumferential direction of the magnet 50 have an outer peripheral side end surface 50d located on the radially outer side of the end support surface 35c. The outer peripheral side end face 50 d is exposed to the recess 39 from the opening 35 d of the magnet housing portion 35.
 上記のようにして、本実施形態のロータ13は、マグネット50と第二突起部38とによって構成される磁極を、10個備える。 As described above, the rotor 13 of the present embodiment includes ten magnetic poles configured by the magnets 50 and the second protrusions 38.
 図4は、第一突起部37の周方向の幅W1を、第二突起部38の周方向の幅W2よりも大きくした場合の、ロータ13の周方向における磁束密度の変化(分布)を示すグラフである。図4に示すように、本実施形態のロータ13では、マグネット50が設けられた実極部である第一突起部37と、マグネット50が設けられていない擬似極部である第二突起部38とで、磁束密度が略等しくなっている。 FIG. 4 shows the change (distribution) of the magnetic flux density in the circumferential direction of the rotor 13 when the circumferential width W1 of the first projection 37 is larger than the circumferential width W2 of the second projection 38. It is a graph. As shown in FIG. 4, in the rotor 13 of the present embodiment, a first projection 37 which is an actual pole provided with the magnet 50 and a second projection 38 which is a pseudo pole which is not provided with the magnet 50. The magnetic flux density is approximately equal.
 図5は、本実施形態のロータ13との比較対象として、第一突起部37の周方向の幅W1と第二突起部38の周方向の幅W2とを等しくした場合における、ロータ13の周方向における磁束密度の変化(分布)を示すグラフである。図5に示すように、第一突起部37の周方向の幅W1と第二突起部38の周方向の幅W2とを等しくしたロータ13では、マグネット50が設けられた実極部である第一突起部37と、マグネット50が設けられていない擬似極部である第二突起部38とで、磁束密度が異なっている。具体的には、第一突起部37における磁束密度は、第二突起部38における磁束密度よりも高くなっている。これは、第二突起部38側からステータ12に鎖交する磁束量の方が、第一突起部37側からステータ12に鎖交する磁束量より多いことによる。 FIG. 5 shows the circumference of the rotor 13 in the case where the width W1 in the circumferential direction of the first protrusion 37 and the width W2 in the circumferential direction of the second protrusion 38 are equal, as a comparison object with the rotor 13 of this embodiment. It is a graph which shows the change (distribution) of the magnetic flux density in direction. As shown in FIG. 5, in the rotor 13 in which the width W1 in the circumferential direction of the first protrusion 37 and the width W2 in the circumferential direction of the second protrusion 38 are equal to each other, The magnetic flux density is different between the one protrusion 37 and the second protrusion 38 which is a pseudo pole portion in which the magnet 50 is not provided. Specifically, the magnetic flux density in the first protrusion 37 is higher than the magnetic flux density in the second protrusion 38. This is because the amount of magnetic flux interlinked to the stator 12 from the second protrusion 38 side is larger than the amount of magnetic flux interlinked to the stator 12 from the first protrusion 37 side.
 本実施形態によれば、コンシクエント型のモータ10のロータ13において、マグネット50がロータコア30に内包され、マグネット50の径方向外側に設けられた第一突起部37の周方向の幅W1は、第二突起部38の周方向の幅W2よりも大きい。これにより、第二突起部38からステータ12に鎖交する磁束量を減らし、第一突起部37および第二突起部38からステータ12に鎖交する磁束量を均一化することができる。その結果、磁束の不均一によって生じているラジアル力のバラつきを軽減でき、ロータ13の作動時における低振動、低騒音化を行うことが可能である。したがって、作動時における振動や騒音を抑えることができるロータ13およびモータ10が提供される。 According to the present embodiment, in the rotor 13 of the consistent type motor 10, the magnet 50 is contained in the rotor core 30, and the circumferential width W1 of the first protrusion 37 provided on the radially outer side of the magnet 50 is the first The width W2 is larger than the circumferential width W2 of the two protrusions 38. As a result, the amount of magnetic flux interlinked from the second projection 38 to the stator 12 can be reduced, and the amount of magnetic flux interlinked from the first projection 37 and the second projection 38 to the stator 12 can be made uniform. As a result, it is possible to reduce the variation of the radial force caused by the non-uniformity of the magnetic flux, and it is possible to reduce the vibration and noise during operation of the rotor 13. Therefore, the rotor 13 and the motor 10 capable of suppressing vibration and noise during operation are provided.
 本実施形態のロータ13は、マグネット50の径方向外側の側面50bと、ロータコア30の外周面、すなわち、第一突起部37の外周面37bとの間の径方向における寸法T1は、マグネット50の径方向の厚さT2よりも小さい。これにより、マグネット50をマグネット収容部35内に保持しつつ、よりステータ12側へ近づけることができる。したがって、磁束がマグネット50とティース17との間以外に漏れることが抑制される。 In the rotor 13 of the present embodiment, the dimension T1 in the radial direction between the radially outer side surface 50b of the magnet 50 and the outer peripheral surface of the rotor core 30, ie, the outer peripheral surface 37b of the first protrusion 37 It is smaller than the radial thickness T2. Thus, the magnet 50 can be brought closer to the stator 12 while being held in the magnet housing portion 35. Therefore, the magnetic flux is prevented from leaking except between the magnet 50 and the teeth 17.
 本実施形態によれば、第二突起部38の周方向両側に、径方向内側に向かって窪む凹部39が設けられる。これにより、ステータ12とマグネット50との間を流れる磁束が拡散しないようにすることができ、磁束の流れをスムーズなものとすることができる。 According to the present embodiment, the recess 39 that is recessed inward in the radial direction is provided on both sides in the circumferential direction of the second protrusion 38. Thereby, the magnetic flux flowing between the stator 12 and the magnet 50 can be prevented from being diffused, and the flow of the magnetic flux can be made smooth.
 本実施形態によれば、マグネット50の少なくとも一部である外周側端面50dは、凹部39に露出する。これにより、ロータコア30の一部を介することなく、マグネット50とステータ12との間において磁束が直接流れる。その結果、磁束の流れをスムーズなものとすることができる。 According to the present embodiment, the outer peripheral side end face 50 d which is at least a part of the magnet 50 is exposed to the recess 39. Thereby, the magnetic flux flows directly between the magnet 50 and the stator 12 without passing through a part of the rotor core 30. As a result, the flow of magnetic flux can be made smooth.
 本実施形態によれば、マグネット50は、マグネット収容部35内に収容される。これにより、ロータ13が高速回転した際に、マグネット50が遠心力によってロータコア30から外れることが防止される。 According to the present embodiment, the magnet 50 is housed in the magnet housing portion 35. Thereby, when the rotor 13 rotates at high speed, the magnet 50 is prevented from being detached from the rotor core 30 by the centrifugal force.
 本実施形態のモータ10によれば、径方向において、第二突起部38とティース17との間隙の寸法S2は、第一突起部37とティース17との間隙の寸法S1と同じである。これにより、ロータ13とステータ12との間における径方向の電磁力(ラジアル力)を、第一突起部37が設けられている部分と第二突起部38が設けられている部分とで均一にすることができる。その結果、モータ10において発生する振動・騒音を低減することが可能となる。 According to the motor 10 of the present embodiment, the dimension S2 of the gap between the second projection 38 and the teeth 17 in the radial direction is the same as the dimension S1 of the gap between the first projection 37 and the teeth 17. Thereby, the electromagnetic force (radial force) in the radial direction between the rotor 13 and the stator 12 is made uniform between the portion where the first projection 37 is provided and the portion where the second projection 38 is provided. can do. As a result, it is possible to reduce vibration and noise generated in the motor 10.
[実施形態の変形例]
 (変形例)図6は、上述の実施形態の変形例のロータの断面図である。図7は、上述の実施形態の変形例のロータにおいて、鉄心部の周方向の幅を、突極部の周方向の幅よりも大きくした場合の、ロータの周方向における磁束密度の変化を示すグラフである。本変形例のロータ13Bは、上述のロータ13と比較して、第二突起部38Bの構造が主に異なる。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。図6に示すように、モータ10のロータ13Bは、ロータコア30Bの外周部に、第一突起部37および第二突起部(突極部)38Bが設けられる。本実施形態の変形例において、第一突起部37の周方向の幅W1は、第二突起部38Bの周方向の幅W3よりも大きい(W1>W3)。第一突起部37の外周面37bの曲率半径R1と、第二突起部38Bの外周面38aの曲率半径R3は、等しい(R1=R3)。
[Modification of the embodiment]
(Modification) FIG. 6 is a cross-sectional view of a rotor of a modification of the embodiment described above. FIG. 7 shows a change in magnetic flux density in the circumferential direction of the rotor when the width in the circumferential direction of the core portion is made larger than the width in the circumferential direction of the salient pole in the rotor of the modified example of the embodiment described above. It is a graph. The rotor 13 </ b> B of this modification mainly differs from the above-described rotor 13 in the structure of the second protrusion 38 </ b> B. In addition, about the component of the aspect same as the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 6, the rotor 13B of the motor 10 is provided with a first projection 37 and a second projection (a salient pole) 38B on the outer peripheral portion of the rotor core 30B. In a modification of the present embodiment, the circumferential width W1 of the first projection 37 is larger than the circumferential width W3 of the second projection 38B (W1> W3). The curvature radius R1 of the outer peripheral surface 37b of the first projection 37 and the curvature radius R3 of the outer peripheral surface 38a of the second projection 38B are equal (R1 = R3).
 図7に示すように、本実施形態のロータ13Bでは、マグネット50が設けられた実極部である第一突起部37と、マグネット50が設けられていない擬似極部である第二突起部38Bとで、磁束密度が略等しくなっている。 As shown in FIG. 7, in the rotor 13B of this embodiment, a first projection 37 which is an actual pole provided with the magnet 50 and a second projection 38B which is a pseudo pole where the magnet 50 is not provided. The magnetic flux density is approximately equal.
 このような構成においても、上記実施形態のロータ13、モータ10と同様、第一突起部37および第二突起部38Bからステータ12に鎖交する磁束量を均一化することができる。その結果、磁束の不均一によって生じているラジアル力のバラつきを軽減でき、ロータ13Bの作動時における低振動、低騒音化を行うことが可能である。したがって、作動時における振動や騒音を抑えることができるロータ13B、モータ10が提供される。 Also in such a configuration, as in the rotor 13 and the motor 10 of the above-described embodiment, it is possible to make uniform the amount of magnetic flux interlinked to the stator 12 from the first projection 37 and the second projection 38B. As a result, it is possible to reduce the variation of the radial force caused by the non-uniformity of the magnetic flux, and it is possible to reduce the vibration and noise during operation of the rotor 13B. Therefore, the rotor 13B and the motor 10 capable of suppressing vibration and noise at the time of operation are provided.
 以上に、本発明の一実施形態を説明したが、実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。本発明は実施形態によって限定されることはない。 Although one embodiment of the present invention has been described above, each configuration and combination thereof in the embodiment is an example, and addition, omission, substitution, and other configurations can be made without departing from the spirit of the present invention. Changes are possible. The present invention is not limited by the embodiments.
 例えば、上述した実施形態およびその変形例のロータを備えるモータの用途は、特に限定されない。上述した実施形態およびその変形例のロータを備えるモータは、例えば、電動ポンプ、および電動パワーステアリング等に搭載される。 For example, the application of the motor provided with the rotor of the embodiment described above and its variation is not particularly limited. The motor including the rotors of the above-described embodiment and the modification thereof is mounted on, for example, an electric pump, an electric power steering, and the like.
 10…モータ(コンシクエント型モータ)、12…ステータ、13、13B…ロータ、17…ティース、20…シャフト、30、30B…ロータコア、35…マグネット収容部、37…第一突起部(鉄心部)、37b…外周面、38、38B…第二突起部(突極部)、38a…外周面、39…凹部、50…マグネット、J…中心軸、R1、R2、R3…曲率半径、S1、S2…間隙の寸法、W1、W2…周方向の幅、T1…寸法、T2…厚さ DESCRIPTION OF SYMBOLS 10 ... Motor (consistent type motor), 12 ... Stator, 13, 13B ... Rotor, 17 ... Teeth, 20 ... Shaft, 30, 30B ... Rotor core, 35 ... Magnet accommodation part, 37 ... 1st projection part (iron core part), 37b: outer peripheral surface, 38, 38B: second projection (salicy pole), 38a: outer peripheral surface, 39: recess, 50: magnet, J: central axis, R1, R2, R3: radius of curvature, S1, S2: Dimension of gap, W1, W2 ... circumferential width, T1 ... dimension, T2 ... thickness

Claims (8)

  1.  コンシクエント型モータのロータであって、
     上下方向に沿って延びる中心軸を中心として回転するシャフトと、
     前記シャフトに固定されたロータコアと、
     前記ロータコアに内包され、前記中心軸周りの周方向に間隔をあけて設けられた複数のマグネットと、を備え、
     前記ロータコアには、周方向において互いに隣り合う前記マグネット同士の間で、前記中心軸を中心とした径方向の外側に突出する突極部が設けられ、
     前記マグネットの径方向外側には鉄心部が設けられ、
     前記鉄心部の周方向の幅は、前記突極部の周方向の幅よりも大きい、ロータ。
    It is a rotor of a consistent type motor,
    A shaft rotating about a central axis extending along the vertical direction;
    A rotor core fixed to the shaft;
    And a plurality of magnets included in the rotor core and provided at intervals in the circumferential direction around the central axis,
    The rotor core is provided with salient pole portions protruding outward in the radial direction centering on the central axis between the magnets adjacent to each other in the circumferential direction.
    An iron core portion is provided radially outward of the magnet,
    The rotor, wherein the circumferential width of the iron core portion is larger than the circumferential width of the salient pole portion.
  2.  前記突極部の外周面の曲率半径は、前記鉄心部の外周面の曲率半径よりも小さい、請求項1に記載のロータ。 The rotor according to claim 1, wherein a curvature radius of an outer peripheral surface of the salient pole portion is smaller than a curvature radius of an outer peripheral surface of the iron core portion.
  3.  前記マグネットの径方向外側の側面と前記ロータコアの外周面との間の径方向における寸法は、前記マグネットの径方向の厚さよりも小さい、請求項1又は2に記載のロータ。 The rotor according to claim 1, wherein a dimension in a radial direction between a radially outer side surface of the magnet and an outer peripheral surface of the rotor core is smaller than a radial thickness of the magnet.
  4.  前記ロータコアには、前記突極部の周方向両側に位置し、径方向内側に向かって窪む凹部が設けられる、請求項1~3の何れか一項に記載のロータ。 The rotor according to any one of claims 1 to 3, wherein the rotor core is provided with recessed portions that are recessed inward in the radial direction and located on both sides in the circumferential direction of the salient pole portion.
  5.  前記マグネットの少なくとも一部は、前記凹部に露出する、請求項4に記載のロータ。 The rotor according to claim 4, wherein at least a part of the magnet is exposed to the recess.
  6.  前記ロータコアは、軸方向に延びるマグネット収容部を有し、前記マグネットの少なくとも一部は、前記マグネット収容部内に収容される、請求項1~5の何れか一項に記載のロータ。 The rotor according to any one of claims 1 to 5, wherein the rotor core has an axially extending magnet housing, and at least a part of the magnet is housed in the magnet housing.
  7.  請求項1~6の何れか一項に記載のロータと、
     前記ロータと径方向に隙間を介して対向するステータと、を備える、モータ。
    A rotor according to any one of claims 1 to 6;
    And a stator facing the rotor in the radial direction via a gap.
  8.  前記ステータは、前記ロータと前記径方向で対向するティースを有し、前記径方向において、前記突極部と前記ティースとの間隙の寸法は、前記鉄心部と前記ティースとの間隙の寸法と同じである、請求項7に記載のモータ。 The stator has teeth that face the rotor in the radial direction, and in the radial direction, the dimension of the gap between the salient pole portion and the teeth is the same as the dimension of the gap between the iron core portion and the teeth The motor according to claim 7, which is
PCT/JP2018/043031 2017-12-21 2018-11-21 Rotor and motor WO2019123961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019560897A JPWO2019123961A1 (en) 2017-12-21 2018-11-21 Rotor and motor
CN201880081467.XA CN111492562A (en) 2017-12-21 2018-11-21 Rotor and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-245177 2017-12-21
JP2017245177 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019123961A1 true WO2019123961A1 (en) 2019-06-27

Family

ID=66993302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043031 WO2019123961A1 (en) 2017-12-21 2018-11-21 Rotor and motor

Country Status (3)

Country Link
JP (1) JPWO2019123961A1 (en)
CN (1) CN111492562A (en)
WO (1) WO2019123961A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263774A (en) * 2009-04-10 2010-11-18 Asmo Co Ltd Rotor and motor
JP2010263763A (en) * 2008-12-17 2010-11-18 Asmo Co Ltd Brushless motor
JP2012110214A (en) * 2010-10-19 2012-06-07 Asmo Co Ltd Brushless motor
JP2012244783A (en) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp Magnet embedded type rotor, electric motor, compressor, air conditioner, and electric automobile
JP2014131376A (en) * 2012-12-28 2014-07-10 Denso Corp Rotor, and dynamo-electric machine using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315243A (en) * 2001-04-13 2002-10-25 Hitachi Ltd Permanent magnet type rotary electric machine
JP2003023740A (en) * 2001-07-05 2003-01-24 Mitsubishi Electric Corp Permanent-magnet rotor for permanent-magnet motor
US8242654B2 (en) * 2009-05-20 2012-08-14 Asmo Co., Ltd. Rotor and motor
JP5482423B2 (en) * 2010-05-11 2014-05-07 株式会社デンソー Electric motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263763A (en) * 2008-12-17 2010-11-18 Asmo Co Ltd Brushless motor
JP2010263774A (en) * 2009-04-10 2010-11-18 Asmo Co Ltd Rotor and motor
JP2012110214A (en) * 2010-10-19 2012-06-07 Asmo Co Ltd Brushless motor
JP2012244783A (en) * 2011-05-19 2012-12-10 Mitsubishi Electric Corp Magnet embedded type rotor, electric motor, compressor, air conditioner, and electric automobile
JP2014131376A (en) * 2012-12-28 2014-07-10 Denso Corp Rotor, and dynamo-electric machine using the same

Also Published As

Publication number Publication date
CN111492562A (en) 2020-08-04
JPWO2019123961A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP5240593B2 (en) Rotating electric machine
JP5776652B2 (en) Rotating electrical machine rotor
JP7266180B2 (en) Rotor and motor with same
JP6148269B2 (en) Motor rotor and motor
JP2013099105A (en) Rotor and motor
JP2018023186A (en) Rotary electric machine rotor
JP2016063650A (en) Permanent magnet type electrical rotating machine
JP2006304539A (en) Rotor structure of axial gap rotating electric machine
JP2017093082A (en) Dynamo-electric machine
WO2019123962A1 (en) Rotor and motor
WO2017064938A1 (en) Dynamo-electric machine
WO2019123961A1 (en) Rotor and motor
JP2012044789A (en) Rotary electric machine and method for manufacturing the same
WO2019058699A1 (en) Rotor and motor
JP2017046386A (en) Permanent magnet electric motor
WO2019123950A1 (en) Rotor and motor
JP6745212B2 (en) Rotor and reluctance rotating electric machine
JP7203639B2 (en) Rotating electric machine
CN110797998B (en) Rotor and motor
JP2015220950A (en) Rotating electrical machine
WO2017175461A1 (en) Axial gap rotary electric machine
WO2023021964A1 (en) Dynamoelectric machine
JP2012170231A (en) End plate and rotor for synchronous reluctance motor using the same
KR20170142408A (en) Rotor and motor including the same
JP6385969B2 (en) Single phase brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891789

Country of ref document: EP

Kind code of ref document: A1