WO2019123883A1 - Determining device, solar power generation system, determining method, and determining program - Google Patents

Determining device, solar power generation system, determining method, and determining program Download PDF

Info

Publication number
WO2019123883A1
WO2019123883A1 PCT/JP2018/041672 JP2018041672W WO2019123883A1 WO 2019123883 A1 WO2019123883 A1 WO 2019123883A1 JP 2018041672 W JP2018041672 W JP 2018041672W WO 2019123883 A1 WO2019123883 A1 WO 2019123883A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
output data
determination
unit
output
Prior art date
Application number
PCT/JP2018/041672
Other languages
French (fr)
Japanese (ja)
Inventor
後藤勲
下口剛史
谷村晃太郎
池上洋行
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112018006525.1T priority Critical patent/DE112018006525T5/en
Priority to JP2019560860A priority patent/JP7157393B2/en
Priority to CN201880082301.XA priority patent/CN111566930A/en
Publication of WO2019123883A1 publication Critical patent/WO2019123883A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5458Monitor sensor; Alarm systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/547Systems for power line communications via DC power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/30Arrangements in telecontrol or telemetry systems using a wired architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources

Definitions

  • the present invention relates to a determination apparatus, a solar power generation system, a determination method, and a determination program.
  • Patent Document 1 discloses the following monitoring system for solar power generation. That is, the monitoring system for solar power generation is a monitoring system for solar power generation that monitors the power generation status of the solar cell panel with respect to the solar power generation system that collects outputs from a plurality of solar cell panels and sends it to the power conversion device.
  • a measuring device provided at a place where output electric paths from the plurality of solar cell panels are collected and measuring the amount of power generation of each solar cell panel, and connected to the measuring device;
  • a lower communication device having a function of transmitting measurement data, an upper communication device having a function of receiving the measurement data transmitted from the lower communication device, and the solar cell panel via the upper communication device
  • a management device having a function of collecting each of the measurement data.
  • the management apparatus determines the presence or absence of abnormality based on the difference in the amount of power generation at the same time point for each of the solar cell panels, or the maximum value or integration of the amount of power generation for a predetermined period of time for each of the solar cell panels Determine the presence or absence of abnormality based on the value.
  • the determination apparatus of the present disclosure includes an acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series, and the acquisition unit acquired by the acquisition unit And a determination unit that determines an abnormality of each of the plurality of solar cells based on the output data.
  • a photovoltaic power generation system includes: one or more power generation units including a plurality of solar cells connected in series; a junction box for integrating output lines from the respective power generation units; A determination apparatus that acquires time-series output data that is a measurement result of an output of each power generation unit, and determines abnormality of each of the plurality of solar cells in the corresponding power generation unit based on the acquired output data And
  • the determination method of the present disclosure is a determination method in a determination apparatus, which comprises: acquiring time series output data which is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series; Determining an abnormality of each of the plurality of solar cells based on the acquired output data.
  • the determination program of the present disclosure is a determination program used in the determination apparatus, and the computer is configured to output time series output data as a measurement result of an output of a power generation unit including a plurality of solar cells connected in series. It is a program for functioning as an acquisition part to acquire and a judgment part which judges abnormalities of each of a plurality of photovoltaic cells based on the output data acquired by the acquisition part.
  • One aspect of the present disclosure can be implemented not only as a determination device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the determination device.
  • one aspect of the present disclosure can be realized not only as a photovoltaic power generation system including such a characteristic processing unit, but also as a method in which such characteristic processing is used as a step.
  • one aspect of the present disclosure can be realized as a semiconductor integrated circuit that implements part or all of a solar power generation system.
  • FIG. 1 is a diagram showing a configuration of a solar power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of a current collection unit according to the embodiment of the present invention.
  • FIG. 4 is a view showing a configuration of a solar cell unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a power generation state determination system according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a solar power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of a current collection unit according to the embodiment of the present
  • FIG. 7 is a diagram showing a configuration of a determination device in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the power generation state determination system according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of time-series output data acquired by the acquisition unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 10 is a figure which shows an example of the output data of the time series of each photovoltaic cell isolate
  • FIG. 11 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination of a solar battery cell.
  • the present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a determination device capable of improving the accuracy of abnormality determination of a solar power generation system, a solar power generation system, a determination method, and a determination program. To provide.
  • a determination apparatus includes an acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series; And a determination unit that determines an abnormality of each of the plurality of solar cells based on the output data acquired by
  • the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
  • the determination unit calculates, based on the output data acquired by the acquisition unit, time-series output data related to each output of the plurality of solar cells, and the calculated output data And determine the abnormality of the corresponding solar battery cell.
  • the acquisition unit acquires, as the output data, the measurement result for each of the power generation units in a junction box that integrates output lines from one or more of the power generation units.
  • the configuration for measuring the output of the power generation unit can be simplified.
  • a photovoltaic power generation system includes one or more power generation units including a plurality of solar cells connected in series, and a junction box for consolidating output lines from the respective power generation units. Acquiring time series output data which is a measurement result of the output of each power generation unit in the junction box, and based on the acquired output data, each abnormality of the plurality of solar cells in the corresponding power generation unit And a determination device for determining
  • the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
  • the determination method according to the embodiment of the present invention is the determination method in the determination apparatus, which is time-series output data which is a measurement result of the output of the power generation unit including a plurality of solar cells connected in series. And acquiring the abnormality of each of the plurality of solar cells based on the acquired output data.
  • the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
  • the determination program according to the embodiment of the present invention is a determination program used in the determination device, and when the computer is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series. It is a program for functioning as an acquisition part which acquires a series of output data, and a judgment part which judges abnormalities of each of a plurality of photovoltaic cells based on the output data acquired by the acquisition part.
  • the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
  • FIG. 1 is a diagram showing a configuration of a solar power generation system according to an embodiment of the present invention.
  • a solar power generation system 401 includes four power conditioning subsystem (PCS) units 80 and a cubicle 6.
  • the cubicle 6 includes a copper bar 73.
  • PCS units 80 are representatively shown.
  • the number of PCS units 80 is not limited to four, and a larger or smaller number of PCS units 80 may be provided.
  • FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present invention.
  • PCS unit 80 includes four current collecting units 60 and PCS (power conversion device) 8.
  • the PCS 8 includes a copper bar 7 and a power converter 9.
  • FIG. 2 four current collection units 60 are representatively shown.
  • the number of current collection units 60 is not limited to four, and a larger or smaller number of current collection units 60 may be provided.
  • FIG. 3 is a diagram showing a configuration of a current collection unit according to the embodiment of the present invention.
  • current collection unit 60 includes four solar cell units 74 and current collection box 71.
  • the current collection box 71 has a copper bar 72.
  • FIG. 3 four solar cell units 74 are representatively shown.
  • the number of solar cell units 74 is not limited to four, and a larger or smaller number of solar cell units 74 may be provided.
  • FIG. 4 is a view showing a configuration of a solar cell unit according to the embodiment of the present invention.
  • solar cell unit 74 includes four power generation units 78 and connection box 76.
  • the power generation unit 78 has a solar battery cell.
  • the junction box 76 has a copper bar 77.
  • power generation units 78 are representatively shown.
  • the number of power generation units 78 is not limited to four, and a larger or smaller number of power generation units 78 may be provided.
  • the power generation unit 78 is a string in which four solar cells 79A, 79B, 79C, 79D are connected in series in this example.
  • each of solar cell 79A, 79B, 79C, 79D is also called solar cell 79.
  • FIG. 4 four solar cells 79 are representatively shown.
  • the number of solar cells 79 is not limited to four, and a larger or smaller number of solar cells 79 may be provided.
  • the output lines and the aggregation lines, ie, power lines from the plurality of power generation units 78 are electrically connected to the cubicle 6, respectively.
  • output line 1 of power generation unit 78 has a first end connected to power generation unit 78 and a second end connected to copper bar 77. Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77. Copper bar 77 is provided, for example, inside connection box 76.
  • the power generation unit 78 converts the energy of the received sunlight into DC power, and outputs the converted DC power to the output line 1.
  • integrated line 5 has a first end connected to copper bar 77 in the corresponding solar cell unit 74 and a second end connected to copper bar 72.
  • Each aggregation line 5 is aggregated to the aggregation line 2 via the copper bar 72.
  • Copper bar 72 is provided, for example, in the inside of current collection box 71.
  • the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. And each aggregation line 2 is aggregated into an aggregation line 4. Each aggregation line 4 is electrically connected to the cubicle 6.
  • each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collection unit 60 and a second end connected to the copper bar 7.
  • internal line 3 has a first end connected to copper bar 7 and a second end connected to power conversion unit 9.
  • power conversion unit 9 transmits, for example, DC power generated in each power generation unit 78 via output line 1, copper bar 77, central line 5, copper bar 72, central line 2, copper bar 7 and internal line 3. , Convert the received DC power into AC power and output it to the aggregation line 4.
  • the aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
  • the AC power output from the power conversion unit 9 in each PCS 8 to each aggregation line 4 is output to the grid via the copper bar 73.
  • FIG. 5 is a diagram showing a configuration of a power generation state determination system according to the embodiment of the present invention.
  • the solar power generation system 401 includes a power generation state determination system 301.
  • the power generation state determination system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
  • monitoring devices 111 provided corresponding to one current collection unit 60 are representatively shown.
  • the number of monitoring devices 111 is not limited to four, and a larger or smaller number of monitoring devices 111 may be provided.
  • the power generation state determination system 301 includes one collection device 151, a plurality of collection devices 151 may be included.
  • the power generation state determination system 301 information of sensors in the monitoring device 111 which is a slave unit is periodically or irregularly transmitted to the collecting device 151.
  • Monitoring device 111 is provided, for example, in current collection unit 60. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to, for example, the corresponding output line 1 and the aggregation line 5.
  • the monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 by a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 by a sensor.
  • the collection device 151 is provided, for example, in the vicinity of the PCS 8. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
  • the monitoring device 111 and the collection device 151 mutually transmit and receive information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
  • PLC Power Line Communication
  • each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line.
  • the collection device 151 collects the measurement results of each monitoring device 111.
  • FIG. 6 is a diagram showing a configuration of a monitoring device in the power generation state determination system according to the embodiment of the present invention.
  • the output line 1, the aggregate line 5 and the copper bar 77 are shown in more detail.
  • output line 1 includes positive side output line 1p and negative side output line 1n.
  • the consolidation line 5 includes a plus-side consolidation line 5p and a minus-side consolidation line 5n.
  • the copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
  • copper bars 72 in current collection box 71 shown in FIG. 3 include positive side copper bars 72p and negative side copper bars 72n corresponding to positive side central line 5p and negative side central line 5n, respectively.
  • Positive side output line 1p has a first end connected to corresponding power generation unit 78 and a second end connected to positive side copper bar 77p.
  • Negative side output line 1 n has a first end connected to corresponding power generation unit 78 and a second end connected to negative side copper bar 77 n.
  • the positive side aggregation line 5p has a first end connected to the positive side copper bar 77p and a second end connected to the positive side copper bar 72p in the current collection box 71.
  • the minus side consolidation line 5n has a first end connected to the minus side copper bar 77n and a second end connected to the minus side copper bar 72n in the current collection box 71.
  • the monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14.
  • the monitoring device 111 may further include more or less current sensors 16 depending on the number of output lines 1.
  • Monitoring device 111 is provided, for example, in the vicinity of power generation unit 78. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. The monitoring device 111 may be provided outside the connection box 76.
  • the monitoring device 111 is electrically connected to the plus-side consolidation line 5p and the minus-side consolidation line 5n via the plus-side power supply line 26p and the minus-side power supply line 26n, respectively.
  • each of positive side power supply line 26p and negative side power supply line 26n is also referred to as power supply line 26.
  • Each monitoring device 111 transmits the monitoring information indicating the measurement result regarding the corresponding power generation unit 78 via the power line connected to itself and the collection device 151.
  • the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power supply line 26 and the aggregation lines 2 and 5.
  • the detection processing unit 11 is set to create, for example, monitoring information indicating measurement results of the current and voltage of the corresponding output line 1 at predetermined time intervals.
  • the current sensor 16 is, for example, a Hall element type current probe, and measures the current of the output line 1. More specifically, the current sensor 16 measures the current flowing through the corresponding negative side output line 1 n using the power received from the power supply circuit (not shown) of the monitoring device 111, and detects the signal indicating the measurement result. Output to The current sensor 16 may measure the current flowing through the positive side output line 1p.
  • the voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus side copper bar 77p and the minus side copper bar 77n, and outputs a signal indicating the measurement result to the detection processing unit 11.
  • Detection processing unit 11 converts, for example, signals obtained by performing signal processing such as averaging and filtering on each measurement signal received from each current sensor 16 and voltage sensor 17 at predetermined time intervals, into a digital signal.
  • the detection processing unit 11 measures the measured value indicated by each digital signal created, the ID of the corresponding current sensor 16 (hereinafter, also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter, also referred to as voltage sensor ID). And monitoring ID of its own monitoring device 111 (hereinafter also referred to as monitoring device ID).
  • the monitoring information may include the calculated power. More specifically, detection processing unit 11 calculates the generated power corresponding to current sensor 16 by multiplying the measurement value of current sensor 16 by the measurement value of voltage sensor 17 for each current sensor 16, for example. And include the calculated generated power in the monitoring information.
  • the detection processing unit 11 creates a monitoring information packet whose transmission source ID is its own monitoring device ID, whose transmission destination ID is the ID of the collection device 151, and whose data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14.
  • the detection processing unit 11 may include the sequence number in the monitoring information packet.
  • the communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
  • the collection device 151 can transmit and receive information via the aggregation lines 2 and 5. Specifically, for example, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, and receives monitoring information packets from the plurality of monitoring devices 111.
  • the collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collection device 151 acquires monitoring information from the received monitoring information packet, and acquires the count value in the counter as the reception time. The collection device 151 stores the monitoring information in a storage unit (not shown) after including the reception time in the monitoring information.
  • FIG. 7 is a diagram showing a configuration of a determination device in the power generation state determination system according to the embodiment of the present invention.
  • the determination apparatus 101 includes a determination unit 81, a communication processing unit 84, a storage unit 85, and an acquisition unit 86.
  • the ID of the monitoring apparatus 111 to be managed that is, the monitoring apparatus ID is registered. Further, in the storage unit 85, the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID, is registered.
  • the determination device 101 is, for example, a server, periodically acquires monitoring information from the collection device 151, and processes the acquired monitoring information. Determination device 101 may be configured to be incorporated in collection device 151, for example.
  • the communication processing unit 84 in the determination device 101 transmits and receives information to and from another device such as the collection device 151 via the network.
  • the communication processing unit 84 performs monitoring information collection processing at designated daily processing timing, for example, at midnight every day. If the determination device 101 is built in the collection device 151, monitoring information can be easily collected at shorter intervals.
  • the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each monitoring device ID referred to, and performs 24 hours of daily processing timing.
  • a monitoring information request for requesting monitoring information including the reception time belonging to the previous day processing timing (hereinafter also referred to as a processing day) is transmitted to the collection apparatus 151.
  • the collection device 151 When receiving the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
  • FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the power generation state determination system according to the embodiment of the present invention.
  • communication processing unit 84 when communication processing unit 84 receives one or more pieces of monitoring information from collection device 151 as a response to a monitoring information request, communication processing unit 84 stores the received monitoring information in storage unit 85 and also notifies processing completion. Are output to the acquisition unit 86.
  • the acquisition unit 86 acquires time-series output data that is a measurement result of the output of the power generation unit 78.
  • the acquisition unit 86 when the acquisition unit 86 receives the process completion notification from the communication processing unit 84, the acquisition unit 86 refers to the correspondence R1 registered in the storage unit 85, and the time series of the current value and the voltage value included in the monitoring information. Output data for each current sensor ID is acquired from the storage unit 85 and output to the determination unit 81.
  • the acquisition unit 86 acquires, as the output data, the measurement result for each of the power generation units 78 in the connection box 76 that aggregates output lines from the plurality of power generation units 78, and outputs the acquired output data to the determination unit 81.
  • FIG. 9 is a diagram showing an example of time-series output data acquired by the acquisition unit in the determination apparatus according to the embodiment of the present invention.
  • FIG. 9 shows the current value I1 of the current sensor 16 whose current sensor ID shown in FIG. 8 is IDB1.
  • the horizontal axis indicates time, and the vertical axis indicates current value.
  • Determination unit 81 calculates output data related to the output of each of the plurality of solar battery cells 79 based on the output data acquired by acquisition unit 86, and based on the calculated output data, the corresponding solar battery cells 79 Determine the abnormality.
  • determination unit 81 determines, based on time series output data of power generation unit 78 received from acquisition unit 86 (hereinafter also referred to as string output data), a plurality of solar battery cells 79 in power generation unit 78. Output data (hereinafter also referred to as cell output data) related to each output of is calculated. Then, determination unit 81 determines an abnormality of corresponding solar battery cell 79 based on the calculated cell output data.
  • the determination unit 81 separates string output data into time-series output data of each of the plurality of photovoltaic cells 79.
  • time-series output data of the current value and the voltage value of each of the photovoltaic cells 79 is given, for example, as learning data from the user to determination unit 81. Then, the determination unit 81 estimates a parameter of the Hidden Markov Model from the given learning data using the Baum-Welch algorithm, and generates a Hidden Markov Model.
  • the determination unit 81 obtains each cell output data separated from the string output data by inputting the string output data received from the acquisition unit 86 into the generated hidden Markov model.
  • the determination unit 81 classifies each obtained cell output data by performing clustering determination by machine learning using k-means, for example.
  • determination unit 81 determines, for example, for each cell output data, the cell output data of solar cell 79A, 79B, 79C based on the frequency indicated by the cell output data and the waveform of the cell output data. And 79D, which one of the output data corresponds to.
  • FIG. 10 is a figure which shows an example of the output data of the time series of each photovoltaic cell isolate
  • the string output data whose current sensor ID is IDB1 is the cell output data of solar battery cell 79A, the cell output data of solar battery cell 79B, the cell output data of solar battery cell 79C and the solar battery It is separated into cell output data of the cell 79D.
  • determination section 81 Hiroshi Okuno and two others, "Proposal of audio stream separation method and preliminary experiment of simultaneous recognition of plural voices," Information Processing Society of Japan Journal vol. 38, No. 3, March 1997, P.I. 510-523 (non-patent document 1) or Yukihiro Morita, 4 others, "Separation of speech of multiple speakers", Japanese Acoustical Society Kyushu Branch, 2nd Lecture for students, P. 27-30 (Non-Patent Document 2) or “Disaggregation to estimate power consumption of equipment”, NIKKEI ELECTRONICS, April 2015, P.
  • the method described in 81-85 may be used.
  • the determination unit 81 calculates the generated power of each solar battery cell 79. More specifically, determination unit 81 calculates the generated power of each solar battery cell 79 by multiplying the current value and the voltage value of the obtained cell output data.
  • Determination unit 81 compares the calculated generated power of each solar battery cell 79 according to a predetermined method, and determines, for example, a small solar battery cell 79 of the generated power as abnormal.
  • determination unit 81 calculates, for example, an average value of generated power of four solar battery cells 79, and determines that solar battery cell 79 having generated power smaller than the calculated average value by a predetermined value or more is abnormal.
  • the solar cell 79D has a smaller current value than the solar cells 79A, 79B, 79C, and hence the generated power is the smallest.
  • Determination unit 81 determines that solar battery cell 79D is abnormal if the power generated by solar battery cell 79D is smaller than the average value of solar battery cells 79A, 79B, 79C, 79D by a predetermined value or more.
  • the determination unit 81 may determine that among the solar battery cells 79, the solar battery cells 79 that are generated power smaller than the generated power of the solar battery cell 79 having the largest generated power by a predetermined value or more are abnormal.
  • Each device in the power generation state determination system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown).
  • the programs of the plurality of devices can be installed from the outside.
  • the programs of the plurality of apparatuses are distributed as stored in the recording medium.
  • FIG. 11 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination of a solar battery cell.
  • determination apparatus 101 waits until the daily processing timing arrives (NO in step S101).
  • the determination device 101 receives the current value and the voltage value for each power generation unit 78 in the processing day from the collection device 151 (step S102).
  • the determination device 101 separates, for each power generation unit 78, time-series data of the received current value, that is, string output data into cell output data of each solar battery cell 79 (step S103).
  • the determination device 101 classifies cell output data of each of the separated photovoltaic cells 79. That is, the determination device 101 determines, for each of the separated cell output data, which photovoltaic cell 79 the output data corresponds to is output data (step S104).
  • the determination device 101 calculates the generated power using the current value and the voltage value in the cell output data of each of the separated photovoltaic cells 79 (step S105).
  • the determination device 101 compares the calculated generated power of each of the photovoltaic cells 79 to determine an abnormality (step S106).
  • step S101 the determination apparatus 101 stands by until a new daily processing timing arrives.
  • the determination unit 81 calculates cell output data of each solar battery cell 79 based on the string output data of the power generation unit 78, and the abnormality of each solar battery cell 79. Although it is described that the present invention is not limited to this.
  • the determination unit 81 may be configured to determine the abnormality of each of the solar cells 79 from the string output data of the power generation unit 78 without calculating the cell output data of each of the solar cells 79.
  • the acquiring unit 86 is configured to acquire the measurement result of each power generation unit 78 in the connection box 76, but the present invention is not limited to this.
  • the acquisition unit 86 may be configured to measure the current value and the voltage value in the current collection box 71, the PCS 8 or the cubicle 6, and acquire the measurement result.
  • the determination unit 81 is configured to compare the generated power of the respective solar battery cells 79 to determine an abnormality, but the present invention is not limited to this.
  • the determination unit 81 may be configured to determine the abnormality by comparing the current value or the voltage value of each solar battery cell 79.
  • the acquisition unit 86 acquires time-series output data that is the measurement result of the output of the power generation unit 78 including the plurality of solar cells 79 connected in series.
  • the determination unit 81 determines the abnormality of each of the plurality of solar cells 79 based on the output data acquired by the acquisition unit 86.
  • the power generation state is grasped in units of the solar battery cell 79 finer than the unit for measuring the output of the power generation unit 78 Therefore, the abnormality of the power generation unit 78 can be detected in more detail.
  • the determination device in the determination device according to the embodiment of the present invention, it is possible to improve the accuracy of the abnormality determination of the solar power generation system.
  • the determination unit 81 calculates, based on the output data acquired by the acquisition unit 86, time series output data regarding each output of the plurality of photovoltaic cells 79. Then, based on the calculated output data, the abnormality of the corresponding photovoltaic cell 79 is determined.
  • each photovoltaic cell 79 can be grasped by the configuration in which the time-series output data regarding the respective outputs of the photovoltaic cells 79 are calculated, it is possible to detect an abnormality more accurately.
  • the acquisition unit 86 acquires, as output data, the measurement result of each power generation unit 78 in the junction box 76 that combines output lines from one or more power generation units 78. .
  • the configuration for measuring the output of the power generation unit 78 can be simplified.
  • connection box 76 integrates output lines from power generation units 78.
  • the determination device 101 acquires time-series output data that is a measurement result of the output of each power generation unit 78 in the connection box 76, and based on the acquired output data, the plurality of photovoltaic cells 79 in the corresponding power generation unit 78. Determine each anomaly.
  • the power generation state is grasped in units of the solar battery cell 79 finer than the unit for measuring the output of the power generation unit 78 Therefore, the abnormality of the power generation unit 78 can be detected in more detail.
  • time series output data which is a measurement result of the output of the power generation unit 78 including the plurality of solar cells 79 connected in series is acquired.
  • the abnormality of each of the plurality of photovoltaic cells 79 is determined.
  • the power generation state is grasped in units of the solar battery cell 79 finer than the unit for measuring the output of the power generation unit 78 Therefore, the abnormality of the power generation unit 78 can be detected in more detail.
  • An acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series;
  • a determination unit that determines an abnormality of each of the plurality of solar cells based on the output data acquired by the acquisition unit;
  • the power generation unit is a string in which a plurality of solar cells are connected in series,
  • the determination apparatus according to claim 1, wherein the output of the power generation unit is generated power, current or voltage of the power generation unit.
  • One or more power generation units including a plurality of solar cells connected in series; A junction box for collecting output lines from each of the power generation units; Acquiring time series output data which is the measurement result for each of the power generation units in the connection box; A determination device that determines an abnormality of each of the plurality of solar cells in the corresponding power generation unit based on the acquired output data;
  • the power generation unit is a string in which a plurality of solar cells are connected in series, The solar power generation system whose output of the said electric power generation part is the electric power generated by the said electric power generation part, an electric current, or a voltage.

Abstract

This determining device is provided with: an acquisition unit that acquires time-series output data, i.e., measurement results of an output of a power generation unit that includes a plurality of solar cells connected in series; and a determining unit that determines, on the basis of the output data acquired by means of the acquisition unit, abnormalities of respective solar cells.

Description

判定装置、太陽光発電システム、判定方法および判定プログラムJudgment apparatus, photovoltaic power generation system, judgment method and judgment program
 本発明は、判定装置、太陽光発電システム、判定方法および判定プログラムに関する。
 この出願は、2017年12月22日に出願された日本出願特願2017-246522号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present invention relates to a determination apparatus, a solar power generation system, a determination method, and a determination program.
This application claims priority based on Japanese Patent Application No. 2017-246522 filed on Dec. 22, 2017, the entire disclosure of which is incorporated herein.
 特開2012-205078号公報(特許文献1)には、以下のような太陽光発電用監視システムが開示されている。すなわち、太陽光発電用監視システムは、複数の太陽電池パネルからの出力を集約して電力変換装置に送り込む太陽光発電システムについて、前記太陽電池パネルの発電状況を監視する太陽光発電用監視システムであって、前記複数の太陽電池パネルからの出力電路が集約された場所に設けられ、各太陽電池パネルの発電量を計測する計測装置と、前記計測装置に接続され、前記計測装置による発電量の計測データを送信する機能を有する下位側通信装置と、前記下位側通信装置から送信される前記計測データを受信する機能を有する上位側通信装置と、前記上位側通信装置を介して前記太陽電池パネルごとの前記計測データを収集する機能を有する管理装置とを備える。前記管理装置は、前記各太陽電池パネルについての、同一時点における発電量の差に基づいて異常の有無を判定するか、または前記各太陽電池パネルについての、所定期間の発電量の最大値又は積算値に基づいて異常の有無を判定する。 Japanese Unexamined Patent Publication No. 2012-205078 (Patent Document 1) discloses the following monitoring system for solar power generation. That is, the monitoring system for solar power generation is a monitoring system for solar power generation that monitors the power generation status of the solar cell panel with respect to the solar power generation system that collects outputs from a plurality of solar cell panels and sends it to the power conversion device. A measuring device provided at a place where output electric paths from the plurality of solar cell panels are collected and measuring the amount of power generation of each solar cell panel, and connected to the measuring device; A lower communication device having a function of transmitting measurement data, an upper communication device having a function of receiving the measurement data transmitted from the lower communication device, and the solar cell panel via the upper communication device And a management device having a function of collecting each of the measurement data. The management apparatus determines the presence or absence of abnormality based on the difference in the amount of power generation at the same time point for each of the solar cell panels, or the maximum value or integration of the amount of power generation for a predetermined period of time for each of the solar cell panels Determine the presence or absence of abnormality based on the value.
特開2012-205078号公報Unexamined-Japanese-Patent No. 2012-205078
 (1)本開示の判定装置は、直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部とを備える。 (1) The determination apparatus of the present disclosure includes an acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series, and the acquisition unit acquired by the acquisition unit And a determination unit that determines an abnormality of each of the plurality of solar cells based on the output data.
 (4)本開示の太陽光発電システムは、直列接続された複数の太陽電池セルを含む1または複数の発電部と、各前記発電部からの出力ラインを集約する接続箱と、前記接続箱における前記発電部ごとの出力の計測結果である時系列の出力データを取得し、取得した前記出力データに基づいて、対応の前記発電部における前記複数の太陽電池セルの各々の異常を判定する判定装置とを備える。 (4) A photovoltaic power generation system according to the present disclosure includes: one or more power generation units including a plurality of solar cells connected in series; a junction box for integrating output lines from the respective power generation units; A determination apparatus that acquires time-series output data that is a measurement result of an output of each power generation unit, and determines abnormality of each of the plurality of solar cells in the corresponding power generation unit based on the acquired output data And
 (5)本開示の判定方法は、判定装置における判定方法であって、直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得するステップと、取得した前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定するステップとを含む。 (5) The determination method of the present disclosure is a determination method in a determination apparatus, which comprises: acquiring time series output data which is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series; Determining an abnormality of each of the plurality of solar cells based on the acquired output data.
 (6)本開示の判定プログラムは、判定装置において用いられる判定プログラムであって、コンピュータを、直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部、として機能させるためのプログラムである。 (6) The determination program of the present disclosure is a determination program used in the determination apparatus, and the computer is configured to output time series output data as a measurement result of an output of a power generation unit including a plurality of solar cells connected in series. It is a program for functioning as an acquisition part to acquire and a judgment part which judges abnormalities of each of a plurality of photovoltaic cells based on the output data acquired by the acquisition part.
 本開示の一態様は、このような特徴的な処理部を備える判定装置として実現され得るだけでなく、判定装置の一部または全部を実現する半導体集積回路として実現され得る。 One aspect of the present disclosure can be implemented not only as a determination device including such a characteristic processing unit, but also as a semiconductor integrated circuit that implements part or all of the determination device.
 また、本開示の一態様は、このような特徴的な処理部を備える太陽光発電システムとして実現され得るだけでなく、かかる特徴的な処理をステップとする方法として実現され得る。また、本開示の一態様は、太陽光発電システムの一部または全部を実現する半導体集積回路として実現され得る。 Moreover, one aspect of the present disclosure can be realized not only as a photovoltaic power generation system including such a characteristic processing unit, but also as a method in which such characteristic processing is used as a step. In addition, one aspect of the present disclosure can be realized as a semiconductor integrated circuit that implements part or all of a solar power generation system.
図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a solar power generation system according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。FIG. 3 is a diagram showing a configuration of a current collection unit according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。FIG. 4 is a view showing a configuration of a solar cell unit according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る発電状態判定システムの構成を示す図である。FIG. 5 is a diagram showing a configuration of a power generation state determination system according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る発電状態判定システムにおける監視装置の構成を示す図である。FIG. 6 is a diagram showing a configuration of a monitoring device in the power generation state determination system according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る発電状態判定システムにおける判定装置の構成を示す図である。FIG. 7 is a diagram showing a configuration of a determination device in the power generation state determination system according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る発電状態判定システムにおける判定装置が保持する監視情報の一例を示す図である。FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the power generation state determination system according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る判定装置における取得部が取得する時系列の出力データの一例を示す図である。FIG. 9 is a diagram showing an example of time-series output data acquired by the acquisition unit in the determination apparatus according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る判定装置において分離された各太陽電池セルの時系列の出力データの一例を示す図である。FIG. 10: is a figure which shows an example of the output data of the time series of each photovoltaic cell isolate | separated in the determination apparatus which concerns on embodiment of this invention. 図11は、本発明の実施の形態に係る判定装置が太陽電池セルの異常判定を行う際の動作手順を定めたフローチャートである。FIG. 11 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination of a solar battery cell.
 近年、太陽光発電システムを監視して異常を判別するための技術が開発されている。 In recent years, techniques for monitoring a solar power generation system to determine abnormalities have been developed.
 [本開示が解決しようとする課題]
 特許文献1に記載の技術を超えて、太陽光発電システムの異常判定の精度を向上させることが可能な技術が望まれる。
[Problems to be solved by the present disclosure]
A technique capable of improving the accuracy of abnormality determination of a photovoltaic power generation system beyond the technique described in Patent Document 1 is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、太陽光発電システムの異常判定の精度を向上させることが可能な判定装置、太陽光発電システム、判定方法および判定プログラムを提供することである。 The present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a determination device capable of improving the accuracy of abnormality determination of a solar power generation system, a solar power generation system, a determination method, and a determination program. To provide.
 [本開示の効果]
 本開示によれば、太陽光発電システムの異常判定の精度を向上させることができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to improve the accuracy of abnormality determination of the solar power generation system.
 [本願発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
Description of an embodiment of the present invention
First, the contents of the embodiment of the present invention will be listed and described.
 (1)本発明の実施の形態に係る判定装置は、直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部とを備える。 (1) A determination apparatus according to an embodiment of the present invention includes an acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series; And a determination unit that determines an abnormality of each of the plurality of solar cells based on the output data acquired by
 このような構成により、たとえば、太陽電池セルの温度を測る温度計および日射量計を設置することなく、発電部の出力を計測する単位より細かい太陽電池セルの単位で発電状態を把握することができるため、発電部の異常をより詳細に検知することができる。したがって、太陽光発電システムの異常判定の精度を向上させることができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter which measure the temperature of the solar battery cell, the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
 (2)好ましくは、前記判定部は、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の出力に関する時系列の出力データを算出し、算出した前記出力データに基づいて、対応の前記太陽電池セルの異常を判定する。 (2) Preferably, the determination unit calculates, based on the output data acquired by the acquisition unit, time-series output data related to each output of the plurality of solar cells, and the calculated output data And determine the abnormality of the corresponding solar battery cell.
 このように、太陽電池セルの各々の出力に関する時系列の出力データを算出する構成により、各太陽電池セルの出力を把握することができるため、異常をより正確に検知することができる。 Thus, since the output of each photovoltaic cell can be grasped | ascertained by the structure which calculates the time-sequential output data regarding each output of a photovoltaic cell, abnormality can be detected more correctly.
 (3)好ましくは、前記取得部は、1または複数の前記発電部からの出力ラインを集約する接続箱における前記発電部ごとの前記計測結果を前記出力データとして取得する。 (3) Preferably, the acquisition unit acquires, as the output data, the measurement result for each of the power generation units in a junction box that integrates output lines from one or more of the power generation units.
 このような構成により、発電部の出力を計測するための構成を簡易にすることができる。 With such a configuration, the configuration for measuring the output of the power generation unit can be simplified.
 (3)本発明の実施の形態に係る太陽光発電システムは、直列接続された複数の太陽電池セルを含む1または複数の発電部と、各前記発電部からの出力ラインを集約する接続箱と、前記接続箱における前記発電部ごとの出力の計測結果である時系列の出力データを取得し、取得した前記出力データに基づいて、対応の前記発電部における前記複数の太陽電池セルの各々の異常を判定する判定装置とを備える。 (3) A photovoltaic power generation system according to an embodiment of the present invention includes one or more power generation units including a plurality of solar cells connected in series, and a junction box for consolidating output lines from the respective power generation units. Acquiring time series output data which is a measurement result of the output of each power generation unit in the junction box, and based on the acquired output data, each abnormality of the plurality of solar cells in the corresponding power generation unit And a determination device for determining
 このような構成により、たとえば、太陽電池セルの温度を測る温度計および日射量計を設置することなく、発電部の出力を計測する単位より細かい太陽電池セルの単位で発電状態を把握することができるため、発電部の異常をより詳細に検知することができる。したがって、太陽光発電システムの異常判定の精度を向上させることができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter which measure the temperature of the solar battery cell, the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
 (4)本発明の実施の形態に係る判定方法は、判定装置における判定方法であって、直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得するステップと、取得した前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定するステップとを含む。 (4) The determination method according to the embodiment of the present invention is the determination method in the determination apparatus, which is time-series output data which is a measurement result of the output of the power generation unit including a plurality of solar cells connected in series. And acquiring the abnormality of each of the plurality of solar cells based on the acquired output data.
 このような構成により、たとえば、太陽電池セルの温度を測る温度計および日射量計を設置することなく、発電部の出力を計測する単位より細かい太陽電池セルの単位で発電状態を把握することができるため、発電部の異常をより詳細に検知することができる。したがって、太陽光発電システムの異常判定の精度を向上させることができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter which measure the temperature of the solar battery cell, the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
 (5)本発明の実施の形態に係る判定プログラムは、判定装置において用いられる判定プログラムであって、コンピュータを、直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部、として機能させるためのプログラムである。 (5) The determination program according to the embodiment of the present invention is a determination program used in the determination device, and when the computer is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series. It is a program for functioning as an acquisition part which acquires a series of output data, and a judgment part which judges abnormalities of each of a plurality of photovoltaic cells based on the output data acquired by the acquisition part.
 このような構成により、たとえば、太陽電池セルの温度を測る温度計および日射量計を設置することなく、発電部の出力を計測する単位より細かい太陽電池セルの単位で発電状態を把握することができるため、発電部の異常をより詳細に検知することができる。したがって、太陽光発電システムの異常判定の精度を向上させることができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter which measure the temperature of the solar battery cell, the power generation state can be grasped in the unit of the solar battery cell finer than the unit for measuring the output of the power generation unit Since it is possible, it is possible to detect an abnormality of the power generation unit in more detail. Therefore, the accuracy of the abnormality determination of the solar power generation system can be improved.
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present invention will be described using the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated. In addition, at least a part of the embodiments described below may be arbitrarily combined.
 [太陽光発電システムの構成]
 図1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。
[Configuration of photovoltaic system]
FIG. 1 is a diagram showing a configuration of a solar power generation system according to an embodiment of the present invention.
 図1を参照して、太陽光発電システム401は、4つのPCS(Power Conditioning Subsystem)ユニット80と、キュービクル6とを備える。キュービクル6は、銅バー73を含む。 Referring to FIG. 1, a solar power generation system 401 includes four power conditioning subsystem (PCS) units 80 and a cubicle 6. The cubicle 6 includes a copper bar 73.
 図1では、4つのPCSユニット80を代表的に示している。PCSユニット80の数は、4つに限らず、さらに多数または少数のPCSユニット80が設けられてもよい。 In FIG. 1, four PCS units 80 are representatively shown. The number of PCS units 80 is not limited to four, and a larger or smaller number of PCS units 80 may be provided.
 図2は、本発明の実施の形態に係るPCSユニットの構成を示す図である。 FIG. 2 is a diagram showing the configuration of the PCS unit according to the embodiment of the present invention.
 図2を参照して、PCSユニット80は、4つの集電ユニット60と、PCS(電力変換装置)8とを備える。PCS8は、銅バー7と、電力変換部9とを含む。 Referring to FIG. 2, PCS unit 80 includes four current collecting units 60 and PCS (power conversion device) 8. The PCS 8 includes a copper bar 7 and a power converter 9.
 図2では、4つの集電ユニット60を代表的に示している。集電ユニット60の数は、4つに限らず、さらに多数または少数の集電ユニット60が設けられてもよい。 In FIG. 2, four current collection units 60 are representatively shown. The number of current collection units 60 is not limited to four, and a larger or smaller number of current collection units 60 may be provided.
 図3は、本発明の実施の形態に係る集電ユニットの構成を示す図である。 FIG. 3 is a diagram showing a configuration of a current collection unit according to the embodiment of the present invention.
 図3を参照して、集電ユニット60は、4つの太陽電池ユニット74と、集電箱71とを含む。集電箱71は、銅バー72を有する。 Referring to FIG. 3, current collection unit 60 includes four solar cell units 74 and current collection box 71. The current collection box 71 has a copper bar 72.
 図3では、4つの太陽電池ユニット74を代表的に示している。太陽電池ユニット74の数は、4つに限らず、さらに多数または少数の太陽電池ユニット74が設けられてもよい。 In FIG. 3, four solar cell units 74 are representatively shown. The number of solar cell units 74 is not limited to four, and a larger or smaller number of solar cell units 74 may be provided.
 図4は、本発明の実施の形態に係る太陽電池ユニットの構成を示す図である。 FIG. 4 is a view showing a configuration of a solar cell unit according to the embodiment of the present invention.
 図4を参照して、太陽電池ユニット74は、4つの発電部78と、接続箱76とを含む。発電部78は、太陽電池セルを有する。接続箱76は、銅バー77を有する。 Referring to FIG. 4, solar cell unit 74 includes four power generation units 78 and connection box 76. The power generation unit 78 has a solar battery cell. The junction box 76 has a copper bar 77.
 図4では、4つの発電部78を代表的に示している。発電部78の数は、4つに限らず、さらに多数または少数の発電部78が設けられてもよい。 In FIG. 4, four power generation units 78 are representatively shown. The number of power generation units 78 is not limited to four, and a larger or smaller number of power generation units 78 may be provided.
 発電部78は、この例では4つの太陽電池セル79A,79B,79C,79Dが直列接続されたストリングである。以下、太陽電池セル79A,79B,79C,79Dの各々を、太陽電池セル79とも称する。 The power generation unit 78 is a string in which four solar cells 79A, 79B, 79C, 79D are connected in series in this example. Hereinafter, each of solar cell 79A, 79B, 79C, 79D is also called solar cell 79.
 図4では、4つの太陽電池セル79を代表的に示している。太陽電池セル79の数は、4つに限らず、さらに多数または少数の太陽電池セル79が設けられてもよい。 In FIG. 4, four solar cells 79 are representatively shown. The number of solar cells 79 is not limited to four, and a larger or smaller number of solar cells 79 may be provided.
 太陽光発電システム401では、複数の発電部78からの出力ラインおよび集約ラインすなわち電力線がそれぞれキュービクル6に電気的に接続される。 In the solar power generation system 401, the output lines and the aggregation lines, ie, power lines from the plurality of power generation units 78 are electrically connected to the cubicle 6, respectively.
 より詳細には、発電部78の出力ライン1は、発電部78に接続された第1端と、銅バー77に接続された第2端とを有する。各出力ライン1は、銅バー77を介して集約ライン5に集約される。銅バー77は、たとえば接続箱76の内部に設けられている。 More specifically, output line 1 of power generation unit 78 has a first end connected to power generation unit 78 and a second end connected to copper bar 77. Each output line 1 is aggregated into an aggregation line 5 via a copper bar 77. Copper bar 77 is provided, for example, inside connection box 76.
 発電部78は、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を出力ライン1へ出力する。 When receiving the sunlight, the power generation unit 78 converts the energy of the received sunlight into DC power, and outputs the converted DC power to the output line 1.
 図3および図4を参照して、集約ライン5は、対応の太陽電池ユニット74における銅バー77に接続された第1端と、銅バー72に接続された第2端とを有する。各集約ライン5は、銅バー72を介して集約ライン2に集約される。銅バー72は、たとえば集電箱71の内部に設けられている。 Referring to FIGS. 3 and 4, integrated line 5 has a first end connected to copper bar 77 in the corresponding solar cell unit 74 and a second end connected to copper bar 72. Each aggregation line 5 is aggregated to the aggregation line 2 via the copper bar 72. Copper bar 72 is provided, for example, in the inside of current collection box 71.
 図1~図4を参照して、太陽光発電システム401では、上述のように複数の発電部78からの各出力ライン1が集約ライン5に集約され、各集約ライン5が集約ライン2に集約され、各集約ライン2が集約ライン4に集約される。各集約ライン4は、キュービクル6に電気的に接続される。 With reference to FIGS. 1 to 4, in the photovoltaic power generation system 401, as described above, the output lines 1 from the plurality of power generation units 78 are aggregated into the aggregation line 5, and the aggregation lines 5 are aggregated into the aggregation line 2. And each aggregation line 2 is aggregated into an aggregation line 4. Each aggregation line 4 is electrically connected to the cubicle 6.
 より詳細には、各集約ライン2は、対応の集電ユニット60における銅バー72に接続された第1端と、銅バー7に接続された第2端とを有する。PCS8において、内部ライン3は、銅バー7に接続された第1端と、電力変換部9に接続された第2端とを有する。 More specifically, each aggregation line 2 has a first end connected to the copper bar 72 in the corresponding current collection unit 60 and a second end connected to the copper bar 7. In PCS 8, internal line 3 has a first end connected to copper bar 7 and a second end connected to power conversion unit 9.
 PCS8において、電力変換部9は、たとえば、各発電部78において発電された直流電力を出力ライン1、銅バー77、集約ライン5、銅バー72、集約ライン2、銅バー7および内部ライン3経由で受けると、受けた直流電力を交流電力に変換して集約ライン4へ出力する。 In PCS 8, power conversion unit 9 transmits, for example, DC power generated in each power generation unit 78 via output line 1, copper bar 77, central line 5, copper bar 72, central line 2, copper bar 7 and internal line 3. , Convert the received DC power into AC power and output it to the aggregation line 4.
 集約ライン4は、電力変換部9に接続された第1端と、銅バー73に接続された第2端とを有する。 The aggregation line 4 has a first end connected to the power conversion unit 9 and a second end connected to the copper bar 73.
 キュービクル6において、各PCS8における電力変換部9から各集約ライン4へ出力された交流電力は、銅バー73を介して系統へ出力される。 In the cubicle 6, the AC power output from the power conversion unit 9 in each PCS 8 to each aggregation line 4 is output to the grid via the copper bar 73.
 [発電状態判定システム301の構成]
 図5は、本発明の実施の形態に係る発電状態判定システムの構成を示す図である。
[Configuration of Power Generation State Determination System 301]
FIG. 5 is a diagram showing a configuration of a power generation state determination system according to the embodiment of the present invention.
 図5を参照して、太陽光発電システム401は、発電状態判定システム301を備える。発電状態判定システム301は、判定装置101と、複数の監視装置111と、収集装置151とを含む。 Referring to FIG. 5, the solar power generation system 401 includes a power generation state determination system 301. The power generation state determination system 301 includes a determination device 101, a plurality of monitoring devices 111, and a collection device 151.
 図5では、1つの集電ユニット60に対応して設けられた4つの監視装置111を代表的に示している。監視装置111の数は、4つに限らず、さらに多数または少数の監視装置111が設けられてもよい。また、発電状態判定システム301は、1つの収集装置151を備えているが、複数の収集装置151を備えてもよい。 In FIG. 5, four monitoring devices 111 provided corresponding to one current collection unit 60 are representatively shown. The number of monitoring devices 111 is not limited to four, and a larger or smaller number of monitoring devices 111 may be provided. In addition, although the power generation state determination system 301 includes one collection device 151, a plurality of collection devices 151 may be included.
 発電状態判定システム301では、子機である監視装置111におけるセンサの情報が、収集装置151へ定期的または不定期に伝送される。 In the power generation state determination system 301, information of sensors in the monitoring device 111 which is a slave unit is periodically or irregularly transmitted to the collecting device 151.
 監視装置111は、たとえば集電ユニット60に設けられている。より詳細には、監視装置111は、4つの太陽電池ユニット74にそれぞれ対応して4つ設けられている。各監視装置111は、たとえば、対応の出力ライン1および集約ライン5に電気的に接続されている。 Monitoring device 111 is provided, for example, in current collection unit 60. More specifically, four monitoring devices 111 are provided corresponding to the four solar cell units 74, respectively. Each monitoring device 111 is electrically connected to, for example, the corresponding output line 1 and the aggregation line 5.
 監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電流をセンサにより計測する。また、監視装置111は、対応の太陽電池ユニット74における各出力ライン1の電圧をセンサにより計測する。 The monitoring device 111 measures the current of each output line 1 in the corresponding solar cell unit 74 by a sensor. Moreover, the monitoring apparatus 111 measures the voltage of each output line 1 in the corresponding solar cell unit 74 by a sensor.
 収集装置151は、たとえばPCS8の近傍に設けられている。より詳細には、収集装置151は、PCS8に対応して設けられ、信号線46を介して銅バー7に電気的に接続されている。 The collection device 151 is provided, for example, in the vicinity of the PCS 8. More specifically, the collection device 151 is provided corresponding to the PCS 8 and is electrically connected to the copper bar 7 via the signal line 46.
 監視装置111と収集装置151とは、集約ライン2,5を介して電力線通信(PLC:Power Line Communication)を行うことにより互いに情報の送受信を行う。 The monitoring device 111 and the collection device 151 mutually transmit and receive information by performing power line communication (PLC: Power Line Communication) via the aggregation lines 2 and 5.
 より詳細には、各監視装置111は、対応の出力ラインの電流および電圧の計測結果を示す監視情報を送信する。収集装置151は、各監視装置111の計測結果を収集する。 More specifically, each monitoring device 111 transmits monitoring information indicating the measurement result of the current and voltage of the corresponding output line. The collection device 151 collects the measurement results of each monitoring device 111.
 [監視装置111の構成]
 図6は、本発明の実施の形態に係る発電状態判定システムにおける監視装置の構成を示す図である。図6では、出力ライン1、集約ライン5および銅バー77がより詳細に示されている。
[Configuration of Monitoring Device 111]
FIG. 6 is a diagram showing a configuration of a monitoring device in the power generation state determination system according to the embodiment of the present invention. In FIG. 6, the output line 1, the aggregate line 5 and the copper bar 77 are shown in more detail.
 図6を参照して、出力ライン1は、プラス側出力ライン1pと、マイナス側出力ライン1nとを含む。集約ライン5は、プラス側集約ライン5pと、マイナス側集約ライン5nとを含む。銅バー77は、プラス側銅バー77pと、マイナス側銅バー77nとを含む。 Referring to FIG. 6, output line 1 includes positive side output line 1p and negative side output line 1n. The consolidation line 5 includes a plus-side consolidation line 5p and a minus-side consolidation line 5n. The copper bar 77 includes a plus side copper bar 77p and a minus side copper bar 77n.
 図示しないが、図3に示す集電箱71における銅バー72は、プラス側集約ライン5pおよびマイナス側集約ライン5nにそれぞれ対応して、プラス側銅バー72pおよびマイナス側銅バー72nを含む。 Although not shown, copper bars 72 in current collection box 71 shown in FIG. 3 include positive side copper bars 72p and negative side copper bars 72n corresponding to positive side central line 5p and negative side central line 5n, respectively.
 プラス側出力ライン1pは、対応の発電部78に接続された第1端と、プラス側銅バー77pに接続された第2端とを有する。マイナス側出力ライン1nは、対応の発電部78に接続された第1端と、マイナス側銅バー77nに接続された第2端とを有する。 Positive side output line 1p has a first end connected to corresponding power generation unit 78 and a second end connected to positive side copper bar 77p. Negative side output line 1 n has a first end connected to corresponding power generation unit 78 and a second end connected to negative side copper bar 77 n.
 プラス側集約ライン5pは、プラス側銅バー77pに接続された第1端と、集電箱71におけるプラス側銅バー72pに接続された第2端とを有する。マイナス側集約ライン5nは、マイナス側銅バー77nに接続された第1端と、集電箱71におけるマイナス側銅バー72nに接続された第2端とを有する。 The positive side aggregation line 5p has a first end connected to the positive side copper bar 77p and a second end connected to the positive side copper bar 72p in the current collection box 71. The minus side consolidation line 5n has a first end connected to the minus side copper bar 77n and a second end connected to the minus side copper bar 72n in the current collection box 71.
 監視装置111は、検出処理部11と、4つの電流センサ16と、電圧センサ17と、通信部14とを備える。なお、監視装置111は、出力ライン1の数に応じて、さらに多数または少数の電流センサ16を備えてもよい。 The monitoring device 111 includes a detection processing unit 11, four current sensors 16, a voltage sensor 17, and a communication unit 14. The monitoring device 111 may further include more or less current sensors 16 depending on the number of output lines 1.
 監視装置111は、たとえば、発電部78の近傍に設けられている。具体的には、監視装置111は、たとえば、計測対象の出力ライン1が接続された銅バー77が設けられた接続箱76の内部に設けられている。なお、監視装置111は、接続箱76の外部に設けられてもよい。 Monitoring device 111 is provided, for example, in the vicinity of power generation unit 78. Specifically, the monitoring device 111 is provided, for example, inside a connection box 76 provided with a copper bar 77 to which the output line 1 to be measured is connected. The monitoring device 111 may be provided outside the connection box 76.
 監視装置111は、たとえば、プラス側集約ライン5pおよびマイナス側集約ライン5nとそれぞれプラス側電源線26pおよびマイナス側電源線26nを介して電気的に接続されている。以下、プラス側電源線26pおよびマイナス側電源線26nの各々を、電源線26とも称する。 For example, the monitoring device 111 is electrically connected to the plus-side consolidation line 5p and the minus-side consolidation line 5n via the plus-side power supply line 26p and the minus-side power supply line 26n, respectively. Hereinafter, each of positive side power supply line 26p and negative side power supply line 26n is also referred to as power supply line 26.
 各監視装置111は、対応の発電部78に関する計測結果を示す監視情報を、自己および収集装置151に接続される電力線を介して送信する。 Each monitoring device 111 transmits the monitoring information indicating the measurement result regarding the corresponding power generation unit 78 via the power line connected to itself and the collection device 151.
 詳細には、監視装置111における通信部14は、集約ラインを介した電力線通信を、複数の監視装置111の計測結果を収集する収集装置151と行うことが可能である。より詳細には、通信部14は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、通信部14は、電源線26および集約ライン2,5を介して収集装置151と電力線通信を行う。 In detail, the communication unit 14 in the monitoring device 111 can perform power line communication via the aggregation line with the collection device 151 that collects measurement results of the plurality of monitoring devices 111. More specifically, the communication unit 14 can transmit and receive information via the aggregation lines 2 and 5. Specifically, the communication unit 14 performs power line communication with the collection device 151 via the power supply line 26 and the aggregation lines 2 and 5.
 検出処理部11は、たとえば、対応の出力ライン1の電流および電圧の計測結果を示す監視情報を所定時間ごとに作成するように設定されている。 The detection processing unit 11 is set to create, for example, monitoring information indicating measurement results of the current and voltage of the corresponding output line 1 at predetermined time intervals.
 電流センサ16は、たとえば、ホール素子タイプの電流プローブであり、出力ライン1の電流を計測する。より詳細には、電流センサ16は、監視装置111の図示しない電源回路から受けた電力を用いて、対応のマイナス側出力ライン1nを通して流れる電流を計測し、計測結果を示す信号を検出処理部11へ出力する。なお、電流センサ16は、プラス側出力ライン1pを通して流れる電流を計測してもよい。 The current sensor 16 is, for example, a Hall element type current probe, and measures the current of the output line 1. More specifically, the current sensor 16 measures the current flowing through the corresponding negative side output line 1 n using the power received from the power supply circuit (not shown) of the monitoring device 111, and detects the signal indicating the measurement result. Output to The current sensor 16 may measure the current flowing through the positive side output line 1p.
 電圧センサ17は、出力ライン1の電圧を計測する。より詳細には、電圧センサ17は、プラス側銅バー77pおよびマイナス側銅バー77n間の電圧を計測し、計測結果を示す信号を検出処理部11へ出力する。 The voltage sensor 17 measures the voltage of the output line 1. More specifically, the voltage sensor 17 measures the voltage between the plus side copper bar 77p and the minus side copper bar 77n, and outputs a signal indicating the measurement result to the detection processing unit 11.
 検出処理部11は、たとえば、所定時間ごとに、各電流センサ16および電圧センサ17から受けた各計測信号に対して平均化およびフィルタリング等の信号処理を行った信号をデジタル信号に変換する。 Detection processing unit 11 converts, for example, signals obtained by performing signal processing such as averaging and filtering on each measurement signal received from each current sensor 16 and voltage sensor 17 at predetermined time intervals, into a digital signal.
 検出処理部11は、作成した各デジタル信号の示す計測値と、対応の電流センサ16のID(以下、電流センサIDとも称する。)、電圧センサ17のID(以下、電圧センサIDとも称する。)、および自己の監視装置111のID(以下、監視装置IDとも称する。)とを含む監視情報を作成する。 The detection processing unit 11 measures the measured value indicated by each digital signal created, the ID of the corresponding current sensor 16 (hereinafter, also referred to as current sensor ID), and the ID of the voltage sensor 17 (hereinafter, also referred to as voltage sensor ID). And monitoring ID of its own monitoring device 111 (hereinafter also referred to as monitoring device ID).
 なお、監視情報には、算出した電力が含まれる構成であってもよい。より詳細には、検出処理部11は、たとえば、電流センサ16ごとに、電流センサ16の計測値と電圧センサ17の計測値とを乗じることにより、当該電流センサ16に対応する発電電力を算出し、算出した発電電力を監視情報に含める。 The monitoring information may include the calculated power. More specifically, detection processing unit 11 calculates the generated power corresponding to current sensor 16 by multiplying the measurement value of current sensor 16 by the measurement value of voltage sensor 17 for each current sensor 16, for example. And include the calculated generated power in the monitoring information.
 検出処理部11は、送信元IDが自己の監視装置IDであり、送信先IDが収集装置151のIDであり、データ部分が監視情報である監視情報パケットを作成する。そして、検出処理部11は、作成した監視情報パケットを通信部14へ出力する。なお、検出処理部11は、監視情報パケットにシーケンス番号を含めてもよい。 The detection processing unit 11 creates a monitoring information packet whose transmission source ID is its own monitoring device ID, whose transmission destination ID is the ID of the collection device 151, and whose data portion is monitoring information. Then, the detection processing unit 11 outputs the created monitoring information packet to the communication unit 14. The detection processing unit 11 may include the sequence number in the monitoring information packet.
 通信部14は、検出処理部11から受ける監視情報パケットを収集装置151へ送信する。 The communication unit 14 transmits the monitoring information packet received from the detection processing unit 11 to the collection device 151.
 再び図5を参照して、収集装置151は、集約ライン2,5経由で情報を送受信することが可能である。具体的には、収集装置151は、たとえば、信号線46および集約ライン2,5を介して監視装置111と電力線通信を行い、監視情報パケットを複数の監視装置111から受信する。 Referring back to FIG. 5, the collection device 151 can transmit and receive information via the aggregation lines 2 and 5. Specifically, for example, the collection device 151 performs power line communication with the monitoring device 111 via the signal line 46 and the aggregation lines 2 and 5, and receives monitoring information packets from the plurality of monitoring devices 111.
 収集装置151は、カウンタおよび記憶部を有している。収集装置151は、監視装置111から監視情報パケットを受信すると、受信した監視情報パケットから監視情報を取得するとともに、カウンタにおけるカウント値を受信時刻として取得する。収集装置151は、受信時刻を監視情報に含めた後、図示しない記憶部に当該監視情報を保存する。 The collection device 151 has a counter and a storage unit. When receiving the monitoring information packet from the monitoring device 111, the collection device 151 acquires monitoring information from the received monitoring information packet, and acquires the count value in the counter as the reception time. The collection device 151 stores the monitoring information in a storage unit (not shown) after including the reception time in the monitoring information.
 [判定装置の構成および動作]
 図7は、本発明の実施の形態に係る発電状態判定システムにおける判定装置の構成を示す図である。
[Configuration and operation of determination device]
FIG. 7 is a diagram showing a configuration of a determination device in the power generation state determination system according to the embodiment of the present invention.
 図7を参照して、判定装置101は、判定部81と、通信処理部84と、記憶部85と、取得部86とを備える。 Referring to FIG. 7, the determination apparatus 101 includes a determination unit 81, a communication processing unit 84, a storage unit 85, and an acquisition unit 86.
 判定装置101における記憶部85には、たとえば、管理対象の監視装置111のIDすなわち監視装置IDが登録されている。また、記憶部85には、監視装置IDと当該監視装置IDを有する監視装置111に含まれる各センサのIDすなわち電流センサIDおよび電圧センサIDとの対応関係R1が登録されている。 In the storage unit 85 of the determination apparatus 101, for example, the ID of the monitoring apparatus 111 to be managed, that is, the monitoring apparatus ID is registered. Further, in the storage unit 85, the correspondence R1 between the monitoring device ID and the ID of each sensor included in the monitoring device 111 having the monitoring device ID, that is, the current sensor ID and the voltage sensor ID, is registered.
 判定装置101は、たとえばサーバであり、監視情報を収集装置151から定期的に取得し、取得した監視情報を処理する。なお、判定装置101は、たとえば収集装置151に内蔵される構成であってもよい。 The determination device 101 is, for example, a server, periodically acquires monitoring information from the collection device 151, and processes the acquired monitoring information. Determination device 101 may be configured to be incorporated in collection device 151, for example.
 より詳細には、判定装置101における通信処理部84は、ネットワークを介して、収集装置151等の他の装置と情報の送受信を行う。 More specifically, the communication processing unit 84 in the determination device 101 transmits and receives information to and from another device such as the collection device 151 via the network.
 通信処理部84は、指定された日毎処理タイミング、たとえば毎日の午前0時において監視情報収集処理を行う。なお、判定装置101を収集装置151に内蔵する構成にすれば、より短い間隔で監視情報を容易に収集することができる。 The communication processing unit 84 performs monitoring information collection processing at designated daily processing timing, for example, at midnight every day. If the determination device 101 is built in the collection device 151, monitoring information can be easily collected at shorter intervals.
 より詳細には、通信処理部84は、日毎処理タイミングが到来すると、記憶部85に登録されている各監視装置IDを参照し、参照した各監視装置IDに対応し、日毎処理タイミングの24時間前から当該日毎処理タイミングまで(以下、処理日とも称する。)に属する受信時刻を含む監視情報を要求するための監視情報要求を収集装置151へ送信する。 More specifically, when the daily processing timing comes, the communication processing unit 84 refers to each monitoring device ID registered in the storage unit 85, corresponds to each monitoring device ID referred to, and performs 24 hours of daily processing timing. A monitoring information request for requesting monitoring information including the reception time belonging to the previous day processing timing (hereinafter also referred to as a processing day) is transmitted to the collection apparatus 151.
 収集装置151は、判定装置101から監視情報要求を受信すると、受信した監視情報要求に従って、監視情報要求の内容を満足する1または複数の監視情報を判定装置101へ送信する。 When receiving the monitoring information request from the determination device 101, the collection device 151 transmits one or more pieces of monitoring information satisfying the content of the monitoring information request to the determination device 101 in accordance with the received monitoring information request.
 図8は、本発明の実施の形態に係る発電状態判定システムにおける判定装置が保持する監視情報の一例を示す図である。 FIG. 8 is a diagram showing an example of monitoring information held by the determination device in the power generation state determination system according to the embodiment of the present invention.
 図8を参照して、通信処理部84は、監視情報要求の応答として収集装置151から1または複数の監視情報を受信すると、受信した各監視情報を記憶部85に保存するとともに、処理完了通知を取得部86へ出力する。 Referring to FIG. 8, when communication processing unit 84 receives one or more pieces of monitoring information from collection device 151 as a response to a monitoring information request, communication processing unit 84 stores the received monitoring information in storage unit 85 and also notifies processing completion. Are output to the acquisition unit 86.
 取得部86は、発電部78の出力の計測結果である時系列の出力データを取得する。 The acquisition unit 86 acquires time-series output data that is a measurement result of the output of the power generation unit 78.
 より詳細には、取得部86は、通信処理部84から処理完了通知を受けると、記憶部85に登録されている対応関係R1を参照し、監視情報に含まれる電流値および電圧値の時系列の出力データを電流センサIDごとに記憶部85から取得して判定部81へ出力する。 More specifically, when the acquisition unit 86 receives the process completion notification from the communication processing unit 84, the acquisition unit 86 refers to the correspondence R1 registered in the storage unit 85, and the time series of the current value and the voltage value included in the monitoring information. Output data for each current sensor ID is acquired from the storage unit 85 and output to the determination unit 81.
 すなわち、取得部86は、複数の発電部78からの出力ラインを集約する接続箱76における発電部78ごとの計測結果を上記出力データとして取得し、取得した出力データを判定部81へ出力する。 That is, the acquisition unit 86 acquires, as the output data, the measurement result for each of the power generation units 78 in the connection box 76 that aggregates output lines from the plurality of power generation units 78, and outputs the acquired output data to the determination unit 81.
 図9は、本発明の実施の形態に係る判定装置における取得部が取得する時系列の出力データの一例を示す図である。図9は、図8に示す電流センサIDがIDB1である電流センサ16の電流値I1を示す。図9において、横軸は時間を示し、縦軸は電流値を示す。 FIG. 9 is a diagram showing an example of time-series output data acquired by the acquisition unit in the determination apparatus according to the embodiment of the present invention. FIG. 9 shows the current value I1 of the current sensor 16 whose current sensor ID shown in FIG. 8 is IDB1. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates current value.
 判定部81は、取得部86によって取得された出力データに基づいて、複数の太陽電池セル79の各々の出力に関する出力データを算出し、算出した出力データに基づいて、対応の太陽電池セル79の異常を判定する。 Determination unit 81 calculates output data related to the output of each of the plurality of solar battery cells 79 based on the output data acquired by acquisition unit 86, and based on the calculated output data, the corresponding solar battery cells 79 Determine the abnormality.
 より詳細には、判定部81は、取得部86から受けた発電部78の時系列の出力データ(以下、ストリング出力データとも称する。)に基づいて、当該発電部78における複数の太陽電池セル79の各々の出力に関する出力データ(以下、セル出力データとも称する。)をそれぞれ算出する。そして、判定部81は、算出したセル出力データに基づいて、対応の太陽電池セル79の異常を判定する。 More specifically, determination unit 81 determines, based on time series output data of power generation unit 78 received from acquisition unit 86 (hereinafter also referred to as string output data), a plurality of solar battery cells 79 in power generation unit 78. Output data (hereinafter also referred to as cell output data) related to each output of is calculated. Then, determination unit 81 determines an abnormality of corresponding solar battery cell 79 based on the calculated cell output data.
 すなわち、判定部81は、発電部78ごとに、ストリング出力データを複数の太陽電池セル79の各々の時系列の出力データに分離する。 That is, for each power generation unit 78, the determination unit 81 separates string output data into time-series output data of each of the plurality of photovoltaic cells 79.
 具体的には、判定部81には、たとえばユーザから学習データとして各太陽電池セル79の電流値および電圧値の時系列の出力データが与えられる。そして、判定部81は、与えられた学習データから、Baum-Welchアルゴリズムを用いて、隠れマルコフモデルのパラメータを推定して隠れマルコフモデルを生成する。 Specifically, time-series output data of the current value and the voltage value of each of the photovoltaic cells 79 is given, for example, as learning data from the user to determination unit 81. Then, the determination unit 81 estimates a parameter of the Hidden Markov Model from the given learning data using the Baum-Welch algorithm, and generates a Hidden Markov Model.
 判定部81は、取得部86から受けたストリング出力データを、生成した隠れマルコフモデルへ入力することにより、ストリング出力データから分離された各セル出力データを得る。 The determination unit 81 obtains each cell output data separated from the string output data by inputting the string output data received from the acquisition unit 86 into the generated hidden Markov model.
 そして、判定部81は、たとえば、k-meansを用いた機械学習によるクラスタリング判定を行うことにより、得られた各セル出力データを分類する。 Then, the determination unit 81 classifies each obtained cell output data by performing clustering determination by machine learning using k-means, for example.
 より詳細には、判定部81は、たとえば、セル出力データごとに、当該セル出力データの示す周波数および当該セル出力データの波形等に基づいて、当該セル出力データが太陽電池セル79A,79B,79C,79Dのうちのいずれに対応する出力データであるかを判定する。 More specifically, determination unit 81 determines, for example, for each cell output data, the cell output data of solar cell 79A, 79B, 79C based on the frequency indicated by the cell output data and the waveform of the cell output data. And 79D, which one of the output data corresponds to.
 図10は、本発明の実施の形態に係る判定装置において分離された各太陽電池セルの時系列の出力データの一例を示す図である。 FIG. 10: is a figure which shows an example of the output data of the time series of each photovoltaic cell isolate | separated in the determination apparatus which concerns on embodiment of this invention.
 図10を参照して、たとえば、電流センサIDがIDB1であるストリング出力データが、太陽電池セル79Aのセル出力データ、太陽電池セル79Bのセル出力データ、太陽電池セル79Cのセル出力データおよび太陽電池セル79Dのセル出力データに分離される。 Referring to FIG. 10, for example, the string output data whose current sensor ID is IDB1 is the cell output data of solar battery cell 79A, the cell output data of solar battery cell 79B, the cell output data of solar battery cell 79C and the solar battery It is separated into cell output data of the cell 79D.
 なお、判定部81は、ストリング出力データを各セル出力データに分離する方法として、奥乃 博、外2名、“音声ストリーム分離法の提案と複数音声の同時認識の予備実験”、情報処理学会論文誌 vol.38 No3、1997年3月、P.510-523(非特許文献1)または森田 幸博、外4名、“複数話者の発話音声の分離”、日本音響学会九州支部 第2回学生のための講演会、P.27-30(非特許文献2)または、“機器の電力消費を推定するディスアグリゲーション”、NIKKEI ELECTRONICS、2015年4月、P.81-85(非特許文献4)に記載の方法を用いてもよい。 In addition, as a method of separating string output data into cell output data, determination section 81 Hiroshi Okuno and two others, "Proposal of audio stream separation method and preliminary experiment of simultaneous recognition of plural voices," Information Processing Society of Japan Journal vol. 38, No. 3, March 1997, P.I. 510-523 (non-patent document 1) or Yukihiro Morita, 4 others, "Separation of speech of multiple speakers", Japanese Acoustical Society Kyushu Branch, 2nd Lecture for students, P. 27-30 (Non-Patent Document 2) or “Disaggregation to estimate power consumption of equipment”, NIKKEI ELECTRONICS, April 2015, P. The method described in 81-85 (Non-patent Document 4) may be used.
 そして、判定部81は、各太陽電池セル79の発電電力を算出する。より詳細には、判定部81は、得られた各セル出力データの電流値と電圧値とを乗じることにより、各太陽電池セル79の発電電力を算出する。 Then, the determination unit 81 calculates the generated power of each solar battery cell 79. More specifically, determination unit 81 calculates the generated power of each solar battery cell 79 by multiplying the current value and the voltage value of the obtained cell output data.
 判定部81は、算出した各太陽電池セル79の発電電力を所定の方法により比較し、たとえば発電電力の小さい太陽電池セル79を異常と判定する。 Determination unit 81 compares the calculated generated power of each solar battery cell 79 according to a predetermined method, and determines, for example, a small solar battery cell 79 of the generated power as abnormal.
 より詳細には、判定部81は、たとえば、4つの太陽電池セル79の発電電力の平均値を算出し、算出した平均値より所定値以上小さい発電電力の太陽電池セル79を異常と判定する。 More specifically, determination unit 81 calculates, for example, an average value of generated power of four solar battery cells 79, and determines that solar battery cell 79 having generated power smaller than the calculated average value by a predetermined value or more is abnormal.
 具体的には、図10に示す各太陽電池セル79のセル出力データのうち、太陽電池セル79Dは、太陽電池セル79A,79B,79Cと比べて電流値が小さいため発電電力が最も小さい。 Specifically, among the cell output data of each of the solar cells 79 shown in FIG. 10, the solar cell 79D has a smaller current value than the solar cells 79A, 79B, 79C, and hence the generated power is the smallest.
 判定部81は、太陽電池セル79Dの発電電力が太陽電池セル79A,79B,79C,79Dの平均値より所定値以上小さい場合、太陽電池セル79Dを異常と判定する。 Determination unit 81 determines that solar battery cell 79D is abnormal if the power generated by solar battery cell 79D is smaller than the average value of solar battery cells 79A, 79B, 79C, 79D by a predetermined value or more.
 あるいは、判定部81は、各太陽電池セル79のうち、発電電力が最大である太陽電池セル79の発電電力から所定値以上小さい発電電力である太陽電池セル79を異常と判定してもよい。
 [動作の流れ]
 発電状態判定システム301における各装置は、コンピュータを備え、当該コンピュータにおけるCPU等の演算処理部は、以下のフローチャートの各ステップの一部または全部を含むプログラムを図示しないメモリからそれぞれ読み出して実行する。これら複数の装置のプログラムは、それぞれ、外部からインストールすることができる。これら複数の装置のプログラムは、それぞれ、記録媒体に格納された状態で流通する。
Alternatively, the determination unit 81 may determine that among the solar battery cells 79, the solar battery cells 79 that are generated power smaller than the generated power of the solar battery cell 79 having the largest generated power by a predetermined value or more are abnormal.
[Flow of operation]
Each device in the power generation state determination system 301 includes a computer, and an arithmetic processing unit such as a CPU in the computer reads and executes a program including a part or all of each step of the following flowchart from a memory (not shown). The programs of the plurality of devices can be installed from the outside. The programs of the plurality of apparatuses are distributed as stored in the recording medium.
 図11は、本発明の実施の形態に係る判定装置が太陽電池セルの異常判定を行う際の動作手順を定めたフローチャートである。 FIG. 11 is a flowchart that defines an operation procedure when the determination apparatus according to the embodiment of the present invention performs abnormality determination of a solar battery cell.
 図11を参照して、判定装置101は、日毎処理タイミングが到来するまで待機する(ステップS101でNO)。 Referring to FIG. 11, determination apparatus 101 waits until the daily processing timing arrives (NO in step S101).
 そして、判定装置101は、日毎処理タイミングが到来すると(ステップS101でYES)、処理日における発電部78ごとの電流値および電圧値を収集装置151から受信する(ステップS102)。 Then, when the daily processing timing arrives (YES in step S101), the determination device 101 receives the current value and the voltage value for each power generation unit 78 in the processing day from the collection device 151 (step S102).
 次に、判定装置101は、発電部78ごとに、受信した電流値の時系列データ、すなわちストリング出力データを各太陽電池セル79のセル出力データに分離する(ステップS103)。 Next, the determination device 101 separates, for each power generation unit 78, time-series data of the received current value, that is, string output data into cell output data of each solar battery cell 79 (step S103).
 次に、判定装置101は、分離した各太陽電池セル79のセル出力データを分類する。すなわち、判定装置101は、分離したセル出力データごとに、当該セル出力データがいずれの太陽電池セル79に対応する出力データであるかを判定する(ステップS104)。 Next, the determination device 101 classifies cell output data of each of the separated photovoltaic cells 79. That is, the determination device 101 determines, for each of the separated cell output data, which photovoltaic cell 79 the output data corresponds to is output data (step S104).
 次に、判定装置101は、分離した各太陽電池セル79のセル出力データにおける電流値および電圧値を用いて発電電力を算出する(ステップS105)。 Next, the determination device 101 calculates the generated power using the current value and the voltage value in the cell output data of each of the separated photovoltaic cells 79 (step S105).
 次に、判定装置101は、算出した各太陽電池セル79の発電電力を比較して異常を判定する(ステップS106)。 Next, the determination device 101 compares the calculated generated power of each of the photovoltaic cells 79 to determine an abnormality (step S106).
 次に、判定装置101は、新たな日毎処理タイミングが到来するまで待機する(ステップS101)。 Next, the determination apparatus 101 stands by until a new daily processing timing arrives (step S101).
 なお、本発明の実施の形態に係る判定装置では、判定部81は、発電部78のストリング出力データに基づいて各太陽電池セル79のセル出力データを算出し、太陽電池セル79の各々の異常を判定する構成であるとしたが、これに限定するものではない。判定部81は、各太陽電池セル79のセル出力データを算出することなく、発電部78のストリング出力データから太陽電池セル79の各々の異常を判定する構成であってもよい。 In the determination apparatus according to the embodiment of the present invention, the determination unit 81 calculates cell output data of each solar battery cell 79 based on the string output data of the power generation unit 78, and the abnormality of each solar battery cell 79. Although it is described that the present invention is not limited to this. The determination unit 81 may be configured to determine the abnormality of each of the solar cells 79 from the string output data of the power generation unit 78 without calculating the cell output data of each of the solar cells 79.
 また、本発明の実施の形態に係る判定装置では、取得部86は、接続箱76における発電部78ごとの計測結果を取得する構成であるとしたが、これに限定するものではない。取得部86は、集電箱71、PCS8またはキュービクル6において電流値および電圧値を計測し、計測結果を取得する構成であってもよい。 Further, in the determination apparatus according to the embodiment of the present invention, the acquiring unit 86 is configured to acquire the measurement result of each power generation unit 78 in the connection box 76, but the present invention is not limited to this. The acquisition unit 86 may be configured to measure the current value and the voltage value in the current collection box 71, the PCS 8 or the cubicle 6, and acquire the measurement result.
 また、本発明の実施の形態に係る判定装置では、判定部81は、各太陽電池セル79の発電電力を比較して異常を判定する構成であるとしたが、これに限定するものではない。判定部81は、各太陽電池セル79の電流値または電圧値を比較して異常を判定する構成であってもよい。 Further, in the determination apparatus according to the embodiment of the present invention, the determination unit 81 is configured to compare the generated power of the respective solar battery cells 79 to determine an abnormality, but the present invention is not limited to this. The determination unit 81 may be configured to determine the abnormality by comparing the current value or the voltage value of each solar battery cell 79.
 ところで、特許文献1に記載の技術を超えて、太陽光発電システムの異常判定の精度を向上させることが可能な技術が望まれる。 By the way, the technique which can improve the precision of abnormality determination of a solar energy power generation system beyond the technique of patent document 1 is desired.
 本発明の実施の形態に係る判定装置では、取得部86は、直列接続された複数の太陽電池セル79を含む発電部78の出力の計測結果である時系列の出力データを取得する。判定部81は、取得部86によって取得された出力データに基づいて、複数の太陽電池セル79の各々の異常を判定する。 In the determination apparatus according to the embodiment of the present invention, the acquisition unit 86 acquires time-series output data that is the measurement result of the output of the power generation unit 78 including the plurality of solar cells 79 connected in series. The determination unit 81 determines the abnormality of each of the plurality of solar cells 79 based on the output data acquired by the acquisition unit 86.
 このような構成により、たとえば、太陽電池セル79の温度を測る温度計および日射量計を設置することなく、発電部78の出力を計測する単位より細かい太陽電池セル79の単位で発電状態を把握することができるため、発電部78の異常をより詳細に検知することができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter measuring the temperature of the solar battery cell 79, the power generation state is grasped in units of the solar battery cell 79 finer than the unit for measuring the output of the power generation unit 78 Therefore, the abnormality of the power generation unit 78 can be detected in more detail.
 したがって、本発明の実施の形態に係る判定装置では、太陽光発電システムの異常判定の精度を向上させることができる。 Therefore, in the determination device according to the embodiment of the present invention, it is possible to improve the accuracy of the abnormality determination of the solar power generation system.
 また、本発明の実施の形態に係る判定装置では、判定部81は、取得部86によって取得された出力データに基づいて、複数の太陽電池セル79の各々の出力に関する時系列の出力データを算出し、算出した出力データに基づいて、対応の太陽電池セル79の異常を判定する。 Further, in the determination apparatus according to the embodiment of the present invention, the determination unit 81 calculates, based on the output data acquired by the acquisition unit 86, time series output data regarding each output of the plurality of photovoltaic cells 79. Then, based on the calculated output data, the abnormality of the corresponding photovoltaic cell 79 is determined.
 このように、太陽電池セル79の各々の出力に関する時系列の出力データを算出する構成により、各太陽電池セル79の出力を把握することができるため、異常をより正確に検知することができる。 Thus, since the output of each photovoltaic cell 79 can be grasped by the configuration in which the time-series output data regarding the respective outputs of the photovoltaic cells 79 are calculated, it is possible to detect an abnormality more accurately.
 また、本発明の実施の形態に係る判定装置では、取得部86は、1または複数の発電部78からの出力ラインを集約する接続箱76における発電部78ごとの計測結果を出力データとして取得する。 Further, in the determination apparatus according to the embodiment of the present invention, the acquisition unit 86 acquires, as output data, the measurement result of each power generation unit 78 in the junction box 76 that combines output lines from one or more power generation units 78. .
 このような構成により、発電部78の出力を計測するための構成を簡易にすることができる。 With such a configuration, the configuration for measuring the output of the power generation unit 78 can be simplified.
 また、本発明の実施の形態に係る太陽光発電システムでは、接続箱76は、各発電部78からの出力ラインを集約する。判定装置101は、接続箱76における発電部78ごとの出力の計測結果である時系列の出力データを取得し、取得した出力データに基づいて、対応の発電部78における複数の太陽電池セル79の各々の異常を判定する。 Further, in the solar power generation system according to the embodiment of the present invention, connection box 76 integrates output lines from power generation units 78. The determination device 101 acquires time-series output data that is a measurement result of the output of each power generation unit 78 in the connection box 76, and based on the acquired output data, the plurality of photovoltaic cells 79 in the corresponding power generation unit 78. Determine each anomaly.
 このような構成により、たとえば、太陽電池セル79の温度を測る温度計および日射量計を設置することなく、発電部78の出力を計測する単位より細かい太陽電池セル79の単位で発電状態を把握することができるため、発電部78の異常をより詳細に検知することができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter measuring the temperature of the solar battery cell 79, the power generation state is grasped in units of the solar battery cell 79 finer than the unit for measuring the output of the power generation unit 78 Therefore, the abnormality of the power generation unit 78 can be detected in more detail.
 したがって、本発明の実施の形態に係る太陽光発電システムでは、太陽光発電システムの異常判定の精度を向上させることができる。 Therefore, in the solar power generation system according to the embodiment of the present invention, it is possible to improve the accuracy of the abnormality determination of the solar power generation system.
 また、本発明の実施の形態に係る判定装置における判定方法では、まず、直列接続された複数の太陽電池セル79を含む発電部78の出力の計測結果である時系列の出力データを取得する。次に、取得した出力データに基づいて、複数の太陽電池セル79の各々の異常を判定する。 Further, in the determination method in the determination apparatus according to the embodiment of the present invention, first, time series output data which is a measurement result of the output of the power generation unit 78 including the plurality of solar cells 79 connected in series is acquired. Next, based on the acquired output data, the abnormality of each of the plurality of photovoltaic cells 79 is determined.
 このような構成により、たとえば、太陽電池セル79の温度を測る温度計および日射量計を設置することなく、発電部78の出力を計測する単位より細かい太陽電池セル79の単位で発電状態を把握することができるため、発電部78の異常をより詳細に検知することができる。 With such a configuration, for example, without installing a thermometer and a solar radiation meter measuring the temperature of the solar battery cell 79, the power generation state is grasped in units of the solar battery cell 79 finer than the unit for measuring the output of the power generation unit 78 Therefore, the abnormality of the power generation unit 78 can be detected in more detail.
 したがって、本発明の実施の形態に係る判定方法では、太陽光発電システムの異常判定の精度を向上させることができる。 Therefore, in the determination method according to the embodiment of the present invention, it is possible to improve the accuracy of the abnormality determination of the solar power generation system.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the above embodiments are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、
 前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部とを備え、
 前記発電部は、複数の太陽電池セルが直列接続されたストリングであり、
 前記発電部の出力は、前記発電部の発電電力、電流または電圧である、判定装置。
The above description includes the features described below.
[Supplementary Note 1]
An acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series;
A determination unit that determines an abnormality of each of the plurality of solar cells based on the output data acquired by the acquisition unit;
The power generation unit is a string in which a plurality of solar cells are connected in series,
The determination apparatus according to claim 1, wherein the output of the power generation unit is generated power, current or voltage of the power generation unit.
 [付記2]
 直列接続された複数の太陽電池セルを含む1または複数の発電部と、
 各前記発電部からの出力ラインを集約する接続箱と、
 前記接続箱における前記発電部ごとの前記計測結果である時系列の出力データを取得し、
取得した前記出力データに基づいて、対応の前記発電部における前記複数の太陽電池セルの各々の異常を判定する判定装置とを備え、
 前記発電部は、複数の太陽電池セルが直列接続されたストリングであり、
 前記発電部の出力は、前記発電部の発電電力、電流または電圧である、太陽光発電システム。
[Supplementary Note 2]
One or more power generation units including a plurality of solar cells connected in series;
A junction box for collecting output lines from each of the power generation units;
Acquiring time series output data which is the measurement result for each of the power generation units in the connection box;
A determination device that determines an abnormality of each of the plurality of solar cells in the corresponding power generation unit based on the acquired output data;
The power generation unit is a string in which a plurality of solar cells are connected in series,
The solar power generation system whose output of the said electric power generation part is the electric power generated by the said electric power generation part, an electric current, or a voltage.
 1 出力ライン
 2,4,5 集約ライン
 3 内部ライン
 6 キュービクル
 7 銅バー
 8 PCS
 9 電力変換部
 14 通信部
 16 電流センサ
 17 電圧センサ
 26 電源線
 60 集電ユニット
 71 集電箱
 72,73,77 銅バー
 74 太陽電池ユニット
 76 接続箱
 78 発電部
 79 太陽電池セル
 80 PCSユニット
 81 判定部
 84 通信処理部
 85 記憶部
 86 取得部
 101 判定装置
 111 監視装置
 151 収集装置
 301 発電状態判定システム
 401 太陽光発電システム
1 output line 2, 4, 5 aggregate line 3 internal line 6 cubicle 7 copper bar 8 PCS
9 power conversion unit 14 communication unit 16 current sensor 17 voltage sensor 26 power supply line 60 current collection unit 71 current collection box 72, 73, 77 copper bar 74 solar battery unit 76 connection box 78 power generation unit 79 solar battery cell 80 PCS unit 81 judgment Unit 84 Communication processing unit 85 Storage unit 86 Acquisition unit 101 Determination device 111 Monitoring device 151 Collection device 301 Power generation state determination system 401 Solar power generation system

Claims (5)

  1.  直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、
     前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部とを備え、
     前記判定部は、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の出力に関する時系列の出力データを算出し、算出した前記出力データに基づいて、対応の前記太陽電池セルの異常を判定する、判定装置。
    An acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series;
    A determination unit that determines an abnormality of each of the plurality of solar cells based on the output data acquired by the acquisition unit;
    The determination unit calculates, based on the calculated output data, time-series output data related to the output of each of the plurality of solar cells based on the output data acquired by the acquisition unit. The determination apparatus which determines the abnormality of the said photovoltaic cell.
  2.  前記取得部は、1または複数の前記発電部からの出力ラインを集約する接続箱における前記発電部ごとの前記計測結果を前記出力データとして取得する、請求項1に記載の判定装置。 The determination device according to claim 1, wherein the acquisition unit acquires, as the output data, the measurement result for each of the power generation units in a junction box that aggregates output lines from one or more of the power generation units.
  3.  直列接続された複数の太陽電池セルを含む1または複数の発電部と、
     各前記発電部からの出力ラインを集約する接続箱と、
     前記接続箱における前記発電部ごとの出力の計測結果である時系列の出力データを取得し、取得した前記出力データに基づいて、対応の前記発電部における前記複数の太陽電池セルの各々の異常を判定する判定装置とを備え、
     前記判定装置は、取得した前記出力データに基づいて、前記複数の太陽電池セルの各々の出力に関する時系列の出力データを算出し、算出した前記出力データに基づいて、対応の前記太陽電池セルの異常を判定する、太陽光発電システム。
    One or more power generation units including a plurality of solar cells connected in series;
    A junction box for collecting output lines from each of the power generation units;
    The output data of time series which is the measurement result of the output of each power generation unit in the junction box is acquired, and each abnormality of the plurality of solar cells in the corresponding power generation unit is acquired based on the acquired output data. A determination device for determining
    The determination apparatus calculates, based on the acquired output data, time-series output data regarding each output of the plurality of solar cells, and, based on the calculated output data, the corresponding photovoltaic cell Photovoltaic system to determine abnormalities.
  4.  判定装置における判定方法であって、
     直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得するステップと、
     取得した前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定するステップとを含み、
     前記異常を判定するステップにおいては、取得した前記出力データに基づいて、前記複数の太陽電池セルの各々の出力に関する時系列の出力データを算出し、算出した前記出力データに基づいて、対応の前記太陽電池セルの異常を判定する、判定方法。
    It is a determination method in the determination apparatus, and
    Acquiring time series output data which is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series;
    Determining an abnormality of each of the plurality of solar cells based on the acquired output data.
    In the step of determining the abnormality, time-series output data related to each of the plurality of solar cells is calculated based on the acquired output data, and the corresponding output is calculated based on the calculated output data. The judgment method which judges the abnormality of a photovoltaic cell.
  5.  判定装置において用いられる判定プログラムであって、
     コンピュータを、
     直列接続された複数の太陽電池セルを含む発電部の出力の計測結果である時系列の出力データを取得する取得部と、
     前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の異常を判定する判定部、
    として機能させるためのプログラムであり、
     前記判定部は、前記取得部によって取得された前記出力データに基づいて、前記複数の太陽電池セルの各々の出力に関する時系列の出力データを算出し、算出した前記出力データに基づいて、対応の前記太陽電池セルの異常を判定する、判定プログラム。
    A determination program used in the determination apparatus,
    Computer,
    An acquisition unit that acquires time-series output data that is a measurement result of an output of a power generation unit including a plurality of solar cells connected in series;
    A determination unit that determines an abnormality of each of the plurality of solar cells based on the output data acquired by the acquisition unit;
    A program to function as
    The determination unit calculates, based on the calculated output data, time-series output data related to the output of each of the plurality of solar cells based on the output data acquired by the acquisition unit. The determination program which determines the abnormality of the said photovoltaic cell.
PCT/JP2018/041672 2017-12-22 2018-11-09 Determining device, solar power generation system, determining method, and determining program WO2019123883A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018006525.1T DE112018006525T5 (en) 2017-12-22 2018-11-09 Determination device, solar power generation system, determination method and determination program
JP2019560860A JP7157393B2 (en) 2017-12-22 2018-11-09 Determination device, photovoltaic power generation system, determination method and determination program
CN201880082301.XA CN111566930A (en) 2017-12-22 2018-11-09 Determination device, photovoltaic power generation system, determination method, and determination program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246522 2017-12-22
JP2017246522 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019123883A1 true WO2019123883A1 (en) 2019-06-27

Family

ID=66994180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041672 WO2019123883A1 (en) 2017-12-22 2018-11-09 Determining device, solar power generation system, determining method, and determining program

Country Status (4)

Country Link
JP (1) JP7157393B2 (en)
CN (1) CN111566930A (en)
DE (1) DE112018006525T5 (en)
WO (1) WO2019123883A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115081552B (en) * 2022-07-28 2022-11-11 一道新能源科技(衢州)有限公司 Solar cell data exception handling method and system based on cloud platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066231A (en) * 2009-09-17 2011-03-31 Sharp Corp Solar battery module and method for manufacturing the same
JP2014135303A (en) * 2011-04-27 2014-07-24 Sharp Corp Solar cell array management system, solar cell array inspection device, control method, and program
JP2015056418A (en) * 2013-09-10 2015-03-23 一般財団法人電力中央研究所 Solar cell inspection device and solar cell inspection method
US20160061881A1 (en) * 2014-09-02 2016-03-03 Mei Zhang Smart Junction Box for Photovoltaic Systems
JP2016115197A (en) * 2014-12-16 2016-06-23 日本電信電話株式会社 Learning/recognition device for time series pattern and learning/recognition method for time series pattern

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541224B2 (en) 2001-06-26 2004-07-07 独立行政法人産業技術総合研究所 Sound source separation method and separation device
JP6020880B2 (en) 2012-03-30 2016-11-02 ソニー株式会社 Data processing apparatus, data processing method, and program
WO2016103666A1 (en) * 2014-12-24 2016-06-30 パナソニックIpマネジメント株式会社 Monitoring device, solar power generation device, monitoring system, and monitoring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066231A (en) * 2009-09-17 2011-03-31 Sharp Corp Solar battery module and method for manufacturing the same
JP2014135303A (en) * 2011-04-27 2014-07-24 Sharp Corp Solar cell array management system, solar cell array inspection device, control method, and program
JP2015056418A (en) * 2013-09-10 2015-03-23 一般財団法人電力中央研究所 Solar cell inspection device and solar cell inspection method
US20160061881A1 (en) * 2014-09-02 2016-03-03 Mei Zhang Smart Junction Box for Photovoltaic Systems
JP2016115197A (en) * 2014-12-16 2016-06-23 日本電信電話株式会社 Learning/recognition device for time series pattern and learning/recognition method for time series pattern

Also Published As

Publication number Publication date
JPWO2019123883A1 (en) 2021-01-28
DE112018006525T5 (en) 2020-10-22
JP7157393B2 (en) 2022-10-20
CN111566930A (en) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2022151819A1 (en) Clustering analysis-based battery system online fault diagnosis method and system
JP7188399B2 (en) Determination device, photovoltaic power generation system, determination method and determination program
CN108683180B (en) Three-phase low-voltage power distribution network topology reconstruction method
JPWO2011104882A1 (en) Solar power system
CN106291230A (en) A kind of Multifunctional power cable fault location on-line monitoring system
CN112485747A (en) Error state evaluation method for capacitor voltage transformer
JP7400631B2 (en) Judgment device and method
JP6756188B2 (en) Power generation status judgment device, power generation status judgment method and judgment program
JP2020522116A (en) Method and system for real-time diagnosis of operating state of electrochemical system, and electrochemical system incorporating the diagnostic system
CN205157637U (en) Generator carbon brush current distribution monitoring system
WO2019123883A1 (en) Determining device, solar power generation system, determining method, and determining program
CN116800199A (en) Distributed photovoltaic operation electric energy quality monitoring and analyzing method
JP7207401B2 (en) Determination device, weather information processing device, determination method, and weather information processing method
JP7173128B2 (en) GENERATING UNIT RELOCATION EQUIPMENT AND OPERATION PROCESSING METHOD
JP7163931B2 (en) Determination device, determination method and determination program
JP7095734B2 (en) Judgment device, photovoltaic system and judgment method
US20240019468A1 (en) High-resolution electrical measurement data processing
CN106018931B (en) Rate of qualified voltage monitoring method and system
CN107451930A (en) A kind of enterprise's electric load self-test and regulating system and method
CN109507468B (en) Header box branch current detection method and system based on correlation characteristics
CN111398810A (en) Slip ring electric spark detection and diagnosis system and detection and diagnosis method
WO2019150816A1 (en) Monitoring system, analysis device, and determination method
JP2019200075A (en) Monitoring device, determination device, monitoring method and determination method
JP2019201543A (en) Monitoring device, determination device, ground fault measuring device, monitoring method, determination method, and measuring method
WO2023203843A1 (en) Power generation state determination device, power generation state determination method, and determination program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560860

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18891066

Country of ref document: EP

Kind code of ref document: A1