WO2019123848A1 - Active suspension device for vehicle - Google Patents

Active suspension device for vehicle Download PDF

Info

Publication number
WO2019123848A1
WO2019123848A1 PCT/JP2018/040358 JP2018040358W WO2019123848A1 WO 2019123848 A1 WO2019123848 A1 WO 2019123848A1 JP 2018040358 W JP2018040358 W JP 2018040358W WO 2019123848 A1 WO2019123848 A1 WO 2019123848A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
damping force
acceleration
gravity
active suspension
Prior art date
Application number
PCT/JP2018/040358
Other languages
French (fr)
Japanese (ja)
Inventor
丈晴 山本
章人 山田
一仁 釜井
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2019560849A priority Critical patent/JP6919791B2/en
Publication of WO2019123848A1 publication Critical patent/WO2019123848A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Definitions

  • the present invention relates to a suspension system of a vehicle, and more particularly to a control method of an active suspension system.
  • an active suspension system using a damping force variable damper In a suspension system of a vehicle, an active suspension system using a damping force variable damper is known.
  • the active suspension device can improve the steering stability and the riding comfort by detecting the vehicle behavior in various directions of the vehicle body, for example, and controlling the damping force of the damping force variable damper provided on each of the four wheels. .
  • the active suspension device controls damping force variable dampers in the suspension devices of the respective wheels based on, for example, skyhook control to suppress the sprung or vertical movement of the vehicle body.
  • Patent Document 1 In order to realize skyhook control which suppresses the vertical movement on the spring in this way, each method has been studied. For example, in Patent Document 1, the vehicle speed, the wheel speed, and the stroke of the damping force variable damper are detected, and the damping force of the damping force variable damper is controlled based on the detected values. Further, in Patent Document 2, acceleration on spring is detected in each wheel, and damping force of each damping force variable damper is controlled based on the acceleration on spring.
  • an active suspension device of a vehicle is configured to reduce the damping force of a vibration damping device provided between a sprung mass and an unsprung mass for each of a plurality of wheels of a vehicle.
  • a detection unit for detecting the vertical behavior of the position of the center of gravity on the spring of the vehicle and the damping force of the plurality of vibration damping devices based on the vertical behavior of the position of the center of gravity And a damping force control unit.
  • the damping forces of the plurality of vibration damping devices are controlled based on the vertical behavior of the center of gravity position. It is possible to set the damping force at one time and control to suppress the vertical behavior of the vehicle body. Since the vertical position of the center of gravity does not include the effects of the pitch or roll of the vehicle body, calculation of the damping force can be simplified to control the vertical behavior of the vibration damping device, and the damping force can be set appropriately. Adjustment work to make it easy.
  • the control unit calculates a gravity center position damping force control value for suppressing the vertical movement on the spring at the gravity center position according to the skyhook control from the vertical behavior of the gravity center position on the spring of the vehicle. It is preferable to set damping force control values in the plurality of vibration damping devices based on the gravity center position damping force control value. Accordingly, the gravity center position damping force control value for suppressing the vertical movement at the gravity center position is calculated according to the skyhook control from the vertical behavior of the gravity center position on the spring of the vehicle, and the damping force control values in the plurality of vibration damping devices Since it is set, the vertical behavior at the center of gravity position is suppressed. Therefore, the operability and the ride quality of the vehicle can be improved.
  • the detection unit is an acceleration detected by the three or more acceleration sensors and the three or more acceleration sensors separated from each other in the front, rear, left, and right directions of the vehicle on the spring. It is good to provide an acceleration operation part which computes the acceleration of the said gravity center position based on it. Thereby, while detecting the acceleration of a gravity center position by three or more acceleration sensors, the roll rate and pitch rate of a vehicle can be detected. Therefore, by using three or more acceleration sensors provided to detect the roll rate and pitch rate of the vehicle, the acceleration at the center of gravity can be detected, and the vibration damping device can be used while suppressing an increase in the number of parts. Control of the damping force can be enabled.
  • control unit calculates a roll rate and a pitch rate of the vehicle based on the acceleration detected by the three or more acceleration sensors, and the barycentric position damping force control value, the roll rate, and Damping force control values of the plurality of vibration damping devices may be set based on the pitch rate.
  • the suppression control of the vertical movement of the vehicle body by the skyhook control can be performed, and the control of suppressing the roll and the pitch of the vehicle body can be performed.
  • the active suspension device of the vehicle of the present invention the influence of the pitch and the roll of the vehicle body is suppressed, and the control of the damping force of the vibration damping device so as to suppress the vibration of the vehicle body at the center of gravity position with a simple configuration and control. It is possible to easily adjust the damping force of the variable damping damper. As a result, it is possible to suppress the adjustment cost of the active suspension device, to provide a product adjusted to a high degree of completion at an early stage, and to suppress the device cost.
  • FIG. 1 is a schematic block diagram of an embodiment of the active suspension device according to the embodiment of the present invention.
  • FIG. 2 is a block diagram of the active suspension device of the present embodiment.
  • FIG. 3 is a model diagram of skyhook control.
  • FIG. 4 is a control conceptual diagram of the active suspension device of the present embodiment.
  • an active suspension device 2 is mounted on a four-wheeled vehicle (hereinafter referred to as a vehicle 1) provided with wheels 3 on the left and right, front and back.
  • vehicle 1 The four wheels 3 of the vehicle 1 are suspended on the vehicle body 8 by suspension units 7a, 7b, 7c and 7d, respectively.
  • the suspension units 7a, 7b, 7c, 7d have damping force variable dampers 12a, 12b, 12c, 12d (vibration damping devices) and springs 13a, 13b, 13c, 13d, respectively, between the vehicle body 8 and the wheels 3.
  • the vehicle body 8 is supported by the damping force variable dampers 12a, 12b, 12c and 12d and the springs 13a, 13b, 13c and 13d with respect to the wheels 3 at each of the left and right front and rear wheels 3.
  • the first acceleration sensor 15 (acceleration detection unit) and the second acceleration sensor 16 (acceleration detection) are spaced apart in the vehicle left-right direction ahead of the spring center of gravity of the vehicle 1, for example, at the rear of the engine room. Section).
  • a third acceleration sensor 17 (acceleration detection unit) is provided at the rear of the vehicle body 8. The first acceleration sensor 15, the second acceleration sensor 16, and the third acceleration sensor 17 detect the acceleration in the vertical direction of the vehicle body 8 at the mounting position thereof.
  • the damping force of the damping force variable dampers 12a, 12b, 12c and 12d is variably controlled by the active suspension control unit 10 (control unit, acceleration computing unit) through control of an electric signal based on the output and oil pressure or air pressure. Ru.
  • the active suspension control unit 10 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) provided for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, etc.
  • the active suspension control unit 10 receives accelerations in the vertical direction of the vehicle body 8 from the first acceleration sensor 15, the second acceleration sensor 16 and the third acceleration sensor 17, respectively, and from the main control unit 18 of the vehicle 1.
  • each damping force variable damper 12a, 12b, 12c, 12d for executing skyhook control is sequentially calculated, and each damping force variable damper 12a, 12b, 12c, 12d is controlled, respectively.
  • the active suspension control unit 10 adds calculation and control for suppressing the rotational behavior of the center of gravity that is the roll and pitch, and calculation and control linked to the driver's operation such as vehicle speed, steering angle information, accelerator and brake. May be executed.
  • FIG. 2 shows an example in the case of having a control unit for performing skyhook control and pitch suppression / roll suppression.
  • the active suspension control unit 10 includes a sprung behavior suppression control unit 21 and an output arbitration control unit 22.
  • the sprung mass behavior suppression control unit 21 has a function of calculating the damping force of each of the damping force variable dampers 12a, 12b, 12c, and 12d in order to suppress the sprung mass, that is, the behavior of the vehicle body 8. , A pitch suppression control unit 26, and a roll suppression control unit 27.
  • the skyhook control unit 25 performs skyhook control which is active suspension control based on the skyhook damper theory.
  • Skyhook control is a known control that calculates an ideal damping force in order to fix the sprung mass to an aerial wire in the air.
  • an acceleration sensor 15 instead of detecting the vertical behavior of the vehicle body 8 in the support portion for each four wheels and performing calculations for skyhook control, an acceleration sensor 15 provided in total at three locations on the left and right front and rear of the vehicle body 8 , 16 and 17, the vertical acceleration at the position of the center of gravity of the vehicle body 8 confirmed in advance is calculated.
  • the position of the center of gravity means the center of gravity of the vehicle body 8 in a state where the vehicle 1 is installed horizontally, that is, the center of gravity on the spring of the vehicle 1.
  • the skyhook control unit 25 calculates an instruction current Ig (center-of-gravity position damping force control value) that suppresses the vertical acceleration of the vehicle body 8 at the center of gravity based on the skyhook damping force Fs (t) calculated as described above. .
  • the pitch suppression control unit 26 calculates a pitch rate based on the detection values of the acceleration sensors 15, 16, 17 and the vehicle speed. Further, based on the calculated pitch rate, an instruction current Ip for pitch suppression is calculated.
  • the roll suppression control unit 27 calculates the roll rate on the basis of the detection value of each acceleration sensor, the vehicle speed, and the steering angle. Further, based on the calculated roll rate, a roll suppression instruction current Ir is calculated.
  • the output arbitration control unit 22 adds the instruction current Ip calculated by the pitch suppression control unit 26 and the instruction current Ir calculated by the roll suppression control unit 27 to the instruction current Ig calculated by the skyhook control unit 25 to obtain front and rear left and right
  • the instruction current (damping force control value) for setting the damping force of each of the damping force variable dampers 12a, 12b, 12c is output.
  • the indication current Ip calculated by the pitch suppression control unit 26 the indication current to the damping force variable dampers 12a and 12b on the front side is IpF, and the indication current to the damping force variable dampers 12c and 12d on the rear side is IpR.
  • IFR Ig + IpF + IrR (4)
  • IFL Ig + IpF + IrL (5)
  • IRR Ig + IpR + IrR (6)
  • IRL Ig + IpR + IrL (7)
  • the command currents IFR, IFL, IRR, and IRL of the damping force variable dampers 12a, 12b, 12c, and 12d obtained as described above are command currents for suppressing the sprung behavior based on the skyhook control.
  • an instruction current Iv based on the vehicle speed and an instruction current Is linked to the driver operation such as steering wheel angle information and accelerator brake are determined, and these instruction currents Iv and Is are calculated by the above (4) to (7)
  • the final instruction current of each damping force variable damper 12a, 12b, 12c, 12d may be added to the instruction current IFR, IFL, IRR, IRL for suppressing the upper behavior.
  • the sprung behavior such as vertical acceleration (bounce acceleration) on spring, roll rate, pitch rate It is calculated.
  • an instruction current Ig to be set as a damping force for suppressing the vertical movement of the vehicle body 8 according to the vertical acceleration is calculated.
  • the instruction current Ir is calculated based on the roll rate
  • the instruction current Ip is calculated based on the pitch rate.
  • the instruction current Ir and the instruction current Ip are added to the instruction current Ig for each wheel 3, and the instruction currents IFL, IFR, IRL, IRR of the damping force variable dampers 12a, 12b, 12c, 12d of each wheel 3 are calculated. Ru.
  • the active suspension device 2 of the present embodiment is the active suspension device 2 that variably controls the damping force variable dampers 12a, 12b, 12c, and 12d of the four wheels 3 of the vehicle 1, and is based on skyhook control.
  • control for suppressing the vertical movement of the vehicle body 8 is performed.
  • the acceleration at the gravity center position of the vehicle body 8 is calculated from the three acceleration sensors 15, 16 and 17 provided on the vehicle body 8, and the damping force variable dampers 12a and 12b are calculated based on the acceleration at this gravity center position.
  • the support current Ig as a component of the command current IFL, IFR, IRL, and IRR is calculated, and therefore, the damping of the plurality of damping force variable dampers 12a, 12b, 12c, and 12d based on the acceleration at the center of gravity.
  • the force can be set at one time to control the vertical movement of the vehicle body 8 to be suppressed. Since the acceleration at the position of the center of gravity is not affected by the pitch or roll of the vehicle body 8, the calculation of the damping force for suppressing the vertical movement can be simplified. Further, at the time of manufacturing the vehicle 1, it is possible to simplify the adjustment operation for appropriately setting the damping force of each of the damping force variable dampers 12a, 12b, 12c, 12d.
  • the command current Ig for suppressing the vertical movement at the center of gravity position is calculated according to the skyhook control, and damping force control values in a plurality of vibration damping devices are set based on the command current Ig. , The vibration at the center of gravity position is suppressed. As a result, the vertical movement of the entire vehicle body is suppressed, and the steering stability and the ride quality can be improved. Further, in the present embodiment, the acceleration at the position of the center of gravity is calculated from the detection values of the three acceleration sensors 15, 16, 17, and the roll rate and the pitch rate of the vehicle 1 are calculated.
  • the vibration suppression control based on the roll rate and the pitch rate
  • the acceleration of the gravity center position can be detected by using three or more acceleration sensors 15, 16, 17 provided, and control of the damping force of the vibration damping device is enabled while suppressing an increase in the number of parts.
  • the roll rate and pitch rate of the vehicle 1 are calculated based on the accelerations detected by the three acceleration sensors 15, 16, 17, and the indication current Ig, the indication current Ir for roll suppression, the instruction for pitch suppression
  • the current Ip is calculated, and these are added to set the damping force of the front and rear, left and right damping force variable dampers 12a, 12b, 12c, 12d, and control of the damping force for suppressing roll and pitch is also facilitated. be able to.
  • the aspect of the present invention is not limited to this embodiment.
  • the acceleration at the position of the center of gravity is calculated from the detection values of the three acceleration sensors.
  • a dedicated acceleration sensor may be provided at the position of the center of gravity. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

An active suspension device 2 for a vehicle 1 for controlling, on the basis of the traveling state of the vehicle 1, the damping force of variable-force dampers 12a, 12b, 12c, 12d that are provided between a sprung mass and an unsprung mass for each of multiple wheels 3 of the vehicle 1. The active suspension device 2 comprises: acceleration sensors 15, 16, 17 that detect bobbing at the center of gravity location of the sprung mass of the vehicle 1; and an active suspension control unit 10 that controls the damping force of the multiple variable-force dampers 12a, 12b, 12c, 12d on the basis of the bobbing at the center of gravity location. The damping force of the variable-force dampers 12a, 12b, 12c, 12d is controlled so as to mitigate, from the bobbing in the center of gravity location, vertical movement at the center of gravity location of the vehicle 1.

Description

車両のアクティブサスペンション装置Vehicle active suspension system
 本発明は、車両のサスペンション装置に係り、詳しくは、アクティブサスペンション装置の制御方法に関する。 The present invention relates to a suspension system of a vehicle, and more particularly to a control method of an active suspension system.
 車両のサスペンション装置において、減衰力可変ダンパを使用したアクティブサスペンション装置が知られている。アクティブサスペンション装置は、例えば車体の各種方向の車両挙動を検出して、四輪に夫々備えられた減衰力可変ダンパの減衰力を制御することで、操安性や乗り心地を改善することができる。
 アクティブサスペンション装置は、例えばスカイフック制御に基づいて各輪のサスペンション装置における減衰力可変ダンパを夫々制御して、ばね上、即ち車体の上下動を抑制する。
In a suspension system of a vehicle, an active suspension system using a damping force variable damper is known. The active suspension device can improve the steering stability and the riding comfort by detecting the vehicle behavior in various directions of the vehicle body, for example, and controlling the damping force of the damping force variable damper provided on each of the four wheels. .
The active suspension device controls damping force variable dampers in the suspension devices of the respective wheels based on, for example, skyhook control to suppress the sprung or vertical movement of the vehicle body.
 このようにばね上の上下動を抑制するスカイフック制御を実現させるために、各手法が研究されている。例えば特許文献1では、車速、車輪速、減衰力可変ダンパのストロークを検出して、これらの検出値に基づいて、減衰力可変ダンパの減衰力を制御する。
 また、特許文献2では、各輪においてばね上の加速度を検出し、このばね上の加速度に基づいて、夫々の減衰力可変ダンパの減衰力を制御する。
In order to realize skyhook control which suppresses the vertical movement on the spring in this way, each method has been studied. For example, in Patent Document 1, the vehicle speed, the wheel speed, and the stroke of the damping force variable damper are detected, and the damping force of the damping force variable damper is controlled based on the detected values.
Further, in Patent Document 2, acceleration on spring is detected in each wheel, and damping force of each damping force variable damper is controlled based on the acceleration on spring.
特開2009-241813号公報JP, 2009-241813, A 特開平6-106937号公報Japanese Patent Application Laid-Open No. 6-106937
 しかしながら、上記特許文献1では、各車輪の減衰力可変ダンパにストロークセンサを備えるので、コストが増加するとともに、サスペンション装置のレイアウトに制約を受けるといった問題点がある。
 また、上記特許文献2では、減衰力可変ダンパのストロークセンサが不要であるものの、各輪の支持位置において車体の加速度を検出して減衰力可変ダンパの減衰力を制御するため、四輪夫々で演算、制御を必要とし、計算コストの高いものとなってしまう。これにより、応答性が低下する可能性がある。
However, in Patent Document 1 described above, since the damping force variable damper of each wheel is provided with a stroke sensor, there is a problem that the cost increases and the layout of the suspension device is restricted.
Moreover, although the stroke sensor of the damping force variable damper is unnecessary in the above-mentioned patent document 2, in order to detect the acceleration of the vehicle body in the supporting position of each wheel and to control the damping force of the damping force variable damper, It requires calculation and control, resulting in high computational cost. This may reduce responsiveness.
 更に、特許文献1及び2のいずれも、車両のロールやピッチ挙動が各車輪の制御に影響を及ぼすため、車両のバウンス(上下)挙動に対する減衰力可変ダンパの減衰力の制御の調整作業に時間を要していた。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、ロールやピッチの影響を抑制してばね上の上下挙動のみに着目した減衰力可変ダンパの減衰力の調整が容易であることによって調整コストを抑え、完成度高く調整された商品を早期に提供でき、かつコストを抑えた車両のアクティブサスペンション装置を提供することにある。
Further, in both Patent Documents 1 and 2, since the roll and pitch behavior of the vehicle affect the control of each wheel, it takes time to adjust the control of the damping force of the variable damping damper with respect to the bounce (upper and lower) behavior of the vehicle. Was required.
The present invention has been made to solve such problems, and the object of the present invention is to suppress the effects of roll and pitch and to focus only on the vertical behavior on the spring. It is an object of the present invention to provide an active suspension device for a vehicle which can reduce the adjustment cost, can quickly provide a highly finished adjusted product, and can reduce the cost by facilitating the adjustment.
 上記の目的を達成するため、本発明の車両のアクティブサスペンション装置は、車両の複数の車輪毎にばね上とばね下との間に設けられた振動減衰装置の減衰力を、車両の走行状態に基づいて制御する車両のアクティブサスペンション装置において、前記車両のばね上の重心位置の上下挙動を検出する検出部と、前記重心位置の上下挙動に基づいて前記複数の振動減衰装置の減衰力を制御する減衰力制御部と、を備えたことを特徴とする。 In order to achieve the above object, an active suspension device of a vehicle according to the present invention is configured to reduce the damping force of a vibration damping device provided between a sprung mass and an unsprung mass for each of a plurality of wheels of a vehicle. In an active suspension system of a vehicle to be controlled based on the above, a detection unit for detecting the vertical behavior of the position of the center of gravity on the spring of the vehicle and the damping force of the plurality of vibration damping devices based on the vertical behavior of the position of the center of gravity And a damping force control unit.
 このように構成した車両のアクティブサスペンション装置によれば、複数の振動減衰装置の減衰力を、重心位置の上下挙動に基づいて制御するので、重心位置の上下挙動に基づいて複数の振動減衰装置の減衰力を一度に設定して、車体の上下挙動を抑制するように制御することが可能となる。重心位置の上下挙動には車体のピッチやロールの影響が含まれないため、振動減衰装置の上下挙動を制御するために減衰力の演算を簡単にすることができるとともに、減衰力を適切に設定するための調整作業を簡易にすることができる。 According to the active suspension device of the vehicle configured in this manner, the damping forces of the plurality of vibration damping devices are controlled based on the vertical behavior of the center of gravity position. It is possible to set the damping force at one time and control to suppress the vertical behavior of the vehicle body. Since the vertical position of the center of gravity does not include the effects of the pitch or roll of the vehicle body, calculation of the damping force can be simplified to control the vertical behavior of the vibration damping device, and the damping force can be set appropriately. Adjustment work to make it easy.
 また、好ましくは、前記制御部は、前記車両のばね上の重心位置の上下挙動より、スカイフック制御にしたがって当該重心位置におけるばね上の上下動を抑制する重心位置減衰力制御値を演算し、前記重心位置減衰力制御値に基づいて前記複数の振動減衰装置における減衰力制御値を設定するとよい。
 これにより、車両のばね上の重心位置の上下挙動より、スカイフック制御にしたがって重心位置における上下動を抑制する重心位置減衰力制御値が演算されて、複数の振動減衰装置における減衰力制御値が設定されるので、重心位置における上下挙動が抑制される。したがって、車両の操安性及び乗り心地を改善することができる。
In addition, preferably, the control unit calculates a gravity center position damping force control value for suppressing the vertical movement on the spring at the gravity center position according to the skyhook control from the vertical behavior of the gravity center position on the spring of the vehicle. It is preferable to set damping force control values in the plurality of vibration damping devices based on the gravity center position damping force control value.
Accordingly, the gravity center position damping force control value for suppressing the vertical movement at the gravity center position is calculated according to the skyhook control from the vertical behavior of the gravity center position on the spring of the vehicle, and the damping force control values in the plurality of vibration damping devices Since it is set, the vertical behavior at the center of gravity position is suppressed. Therefore, the operability and the ride quality of the vehicle can be improved.
 また、好ましくは、前記検出部は、前記ばね上に前記重心位置から互いに前記車両の前後左右方向に互いに離間した3個以上の加速度センサと、前記3個以上の加速度センサにより検出された加速度に基づいて前記重心位置の加速度を演算する加速度演算部と、を備えるとよい。
 これにより、3個以上の加速度センサにより重心位置の加速度を検出するとともに、車両のロールレート及びピッチレートを検出することができる。したがって、車両のロールレート及びピッチレートを検出するために備えた3個以上の加速度センサを利用して、重心位置の加速度を検出することができ、部品点数の増加を抑制しつつ振動減衰装置の減衰力の制御を可能にすることができる。
In addition, preferably, the detection unit is an acceleration detected by the three or more acceleration sensors and the three or more acceleration sensors separated from each other in the front, rear, left, and right directions of the vehicle on the spring. It is good to provide an acceleration operation part which computes the acceleration of the said gravity center position based on it.
Thereby, while detecting the acceleration of a gravity center position by three or more acceleration sensors, the roll rate and pitch rate of a vehicle can be detected. Therefore, by using three or more acceleration sensors provided to detect the roll rate and pitch rate of the vehicle, the acceleration at the center of gravity can be detected, and the vibration damping device can be used while suppressing an increase in the number of parts. Control of the damping force can be enabled.
 また、好ましくは、前記制御部は、前記3個以上の加速度センサにより検出された加速度に基づいて、前記車両のロールレート及びピッチレートを演算し、前記重心位置減衰力制御値、前記ロールレート及び前記ピッチレートに基づいて、前記複数の振動減衰装置の減衰力制御値を夫々設定するとよい。
 これによりスカイフック制御による車体の上下動の抑制制御を行うとともに、車体のロール及びピッチを抑制する制御を行うことができる。
In addition, preferably, the control unit calculates a roll rate and a pitch rate of the vehicle based on the acceleration detected by the three or more acceleration sensors, and the barycentric position damping force control value, the roll rate, and Damping force control values of the plurality of vibration damping devices may be set based on the pitch rate.
Thus, the suppression control of the vertical movement of the vehicle body by the skyhook control can be performed, and the control of suppressing the roll and the pitch of the vehicle body can be performed.
 本発明の車両のアクティブサスペンション装置によれば、車体のピッチやロールの影響が抑制されて、簡単な構成及び制御で重心位置での車体の振動を抑制するように振動減衰装置の減衰力の制御が可能となり、減衰力可変ダンパの減衰力の調整を容易にすることができる。これにより、アクティブサスペンション装置における調整コストを抑え、完成度高く調整された商品を早期に提供できるとともに装置コストを抑えることができる。 According to the active suspension device of the vehicle of the present invention, the influence of the pitch and the roll of the vehicle body is suppressed, and the control of the damping force of the vibration damping device so as to suppress the vibration of the vehicle body at the center of gravity position with a simple configuration and control. It is possible to easily adjust the damping force of the variable damping damper. As a result, it is possible to suppress the adjustment cost of the active suspension device, to provide a product adjusted to a high degree of completion at an early stage, and to suppress the device cost.
本発明の実施形態のアクティブサスペンション装置の概略構成図である。It is a schematic block diagram of the active suspension device of the embodiment of the present invention. 本実施形態のアクティブサスペンション装置のブロック図である。It is a block diagram of the active suspension device of this embodiment. スカイフック制御のモデル図である。It is a model figure of skyhook control. 本実施形態のアクティブサスペンション装置の制御概念図である。It is a control conceptual diagram of the active suspension device of this embodiment.
 以下、本発明を具体化したアクティブサスペンション装置の一実施形態を説明する。
 図1は本発明の実施形態のアクティブサスペンション装置の実施形態の概略構成図である。図2は、本実施形態のアクティブサスペンション装置のブロック図である。図3は、スカイフック制御のモデル図である。図4は、本実施形態のアクティブサスペンション装置の制御概念図である。
Hereinafter, an embodiment of an active suspension device embodying the present invention will be described.
FIG. 1 is a schematic block diagram of an embodiment of the active suspension device according to the embodiment of the present invention. FIG. 2 is a block diagram of the active suspension device of the present embodiment. FIG. 3 is a model diagram of skyhook control. FIG. 4 is a control conceptual diagram of the active suspension device of the present embodiment.
 図1に示すように、本発明の一実施形態のアクティブサスペンション装置2は、左右前後に車輪3を備えた四輪自動車(以下、車両1という)に搭載されている。車両1の四つの車輪3は、夫々サスペンションユニット7a、7b、7c、7dによって車体8に懸架されている。
 サスペンションユニット7a、7b、7c、7dは、車体8と車輪3との間に、減衰力可変ダンパ12a、12b、12c、12d(振動減衰装置)及びスプリング13a、13b、13c、13dを夫々備えている。即ち、車体8は、左右前後の車輪3の夫々において、車輪3に対して減衰力可変ダンパ12a、12b、12c、12dとスプリング13a、13b、13c、13dによって支持されている。
As shown in FIG. 1, an active suspension device 2 according to an embodiment of the present invention is mounted on a four-wheeled vehicle (hereinafter referred to as a vehicle 1) provided with wheels 3 on the left and right, front and back. The four wheels 3 of the vehicle 1 are suspended on the vehicle body 8 by suspension units 7a, 7b, 7c and 7d, respectively.
The suspension units 7a, 7b, 7c, 7d have damping force variable dampers 12a, 12b, 12c, 12d (vibration damping devices) and springs 13a, 13b, 13c, 13d, respectively, between the vehicle body 8 and the wheels 3. There is. That is, the vehicle body 8 is supported by the damping force variable dampers 12a, 12b, 12c and 12d and the springs 13a, 13b, 13c and 13d with respect to the wheels 3 at each of the left and right front and rear wheels 3.
 車体8には、車両1のばね上の重心より前方、例えばエンジンルーム後部に、車両左右方向に離間して、第1の加速度センサ15(加速度検出部)及び第2の加速度センサ16(加速度検出部)を備えている。また、車体8の後部には、第3の加速度センサ17(加速度検出部)が備えられている。第1の加速度センサ15、第2の加速度センサ16及び第3の加速度センサ17は、これらの取り付け位置における車体8の上下方向の加速度を検出する。 The first acceleration sensor 15 (acceleration detection unit) and the second acceleration sensor 16 (acceleration detection) are spaced apart in the vehicle left-right direction ahead of the spring center of gravity of the vehicle 1, for example, at the rear of the engine room. Section). In addition, a third acceleration sensor 17 (acceleration detection unit) is provided at the rear of the vehicle body 8. The first acceleration sensor 15, the second acceleration sensor 16, and the third acceleration sensor 17 detect the acceleration in the vertical direction of the vehicle body 8 at the mounting position thereof.
 減衰力可変ダンパ12a、12b、12c、12dは、アクティブサスコントロールユニット10(制御部、加速度演算部)により出力に基づく電気信号および、油圧あるいは空圧の制御を介して、減衰力が可変制御される。
 アクティブサスコントロールユニット10は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等から構成されている。アクティブサスコントロールユニット10は、第1の加速度センサ15、第2の加速度センサ16及び第3の加速度センサ17から、夫々車体8の上下方向の加速度を入力するとともに、車両1のメインコントロールユニット18から、これらの値に基づき、スカイフック制御を実行するための各減衰力可変ダンパ12a、12b、12c、12dの減衰力を逐次演算し、各減衰力可変ダンパ12a、12b、12c、12dを夫々制御する。
 また、アクティブサスコントロールユニット10は、ロールおよびピッチである重心点の回転挙動を抑制するための演算・制御や車両速度や操舵角情報・アクセル・ブレーキなどのドライバ操作に連動した演算・制御を加えて実行しても良い。
The damping force of the damping force variable dampers 12a, 12b, 12c and 12d is variably controlled by the active suspension control unit 10 (control unit, acceleration computing unit) through control of an electric signal based on the output and oil pressure or air pressure. Ru.
The active suspension control unit 10 includes an input / output device (not shown), a storage device (ROM, RAM, etc.) provided for storing control programs, control maps, etc., a central processing unit (CPU), a timer counter, etc. The active suspension control unit 10 receives accelerations in the vertical direction of the vehicle body 8 from the first acceleration sensor 15, the second acceleration sensor 16 and the third acceleration sensor 17, respectively, and from the main control unit 18 of the vehicle 1. Based on these values, the damping force of each damping force variable damper 12a, 12b, 12c, 12d for executing skyhook control is sequentially calculated, and each damping force variable damper 12a, 12b, 12c, 12d is controlled, respectively. Do.
In addition, the active suspension control unit 10 adds calculation and control for suppressing the rotational behavior of the center of gravity that is the roll and pitch, and calculation and control linked to the driver's operation such as vehicle speed, steering angle information, accelerator and brake. May be executed.
 図2にスカイフック制御およびピッチ抑制・ロール抑制を行う制御部をもつ場合の例を示す。アクティブサスコントロールユニット10は、ばね上挙動抑制制御部21及び出力調停制御部22を備えている。
 ばね上挙動抑制制御部21は、ばね上即ち車体8の挙動を抑制するために、各減衰力可変ダンパ12a、12b、12c、12dの減衰力を演算する機能を有し、スカイフック制御部25、ピッチ抑制制御部26、ロール抑制制御部27を備えている。
FIG. 2 shows an example in the case of having a control unit for performing skyhook control and pitch suppression / roll suppression. The active suspension control unit 10 includes a sprung behavior suppression control unit 21 and an output arbitration control unit 22.
The sprung mass behavior suppression control unit 21 has a function of calculating the damping force of each of the damping force variable dampers 12a, 12b, 12c, and 12d in order to suppress the sprung mass, that is, the behavior of the vehicle body 8. , A pitch suppression control unit 26, and a roll suppression control unit 27.
 スカイフック制御部25は、車体8の上下加速度(バウンス加速度)を抑制するために、スカイフックダンパ理論に基づいてアクティブサスペンション制御であるスカイフック制御を行う。スカイフック制御は、ばね上を空中の架空の線に固定された状態にするために理想的な減衰力を演算する公知の制御である。
 特に、本実施形態では、四輪毎にその支持部における車体8の上下挙動を検出してスカイフック制御用の演算を行うのではなく、車体8の左右前後に計3箇所設けた加速度センサ15、16、17により検出した各上下加速度に基づき、あらかじめ確認した車体8の重心位置での上下加速度を演算する。そして、当該重心位置で仮想的なばね下挙動を演算し、重心位置での上下加速度を抑制するためのスカイフック制御を行う。なお、ここでの重心位置とは、車両1を水平に設置させた状態での、車体8の重心、即ち車両1のばね上の重心である。
In order to suppress the vertical acceleration (bounce acceleration) of the vehicle body 8, the skyhook control unit 25 performs skyhook control which is active suspension control based on the skyhook damper theory. Skyhook control is a known control that calculates an ideal damping force in order to fix the sprung mass to an aerial wire in the air.
In particular, in the present embodiment, instead of detecting the vertical behavior of the vehicle body 8 in the support portion for each four wheels and performing calculations for skyhook control, an acceleration sensor 15 provided in total at three locations on the left and right front and rear of the vehicle body 8 , 16 and 17, the vertical acceleration at the position of the center of gravity of the vehicle body 8 confirmed in advance is calculated. Then, a virtual unsprung behavior is calculated at the barycentric position, and skyhook control is performed to suppress vertical acceleration at the barycentric position. Here, the position of the center of gravity means the center of gravity of the vehicle body 8 in a state where the vehicle 1 is installed horizontally, that is, the center of gravity on the spring of the vehicle 1.
 スカイフック制御について、図3を用いて説明する。図3において、スカイフック減衰力Fs(t)、ばね上質量Mb、ばね下質量Ms、ばね定数Ks(ばね上とばね下との間)、ばね定数Kt(ばね下と地面との間)、減衰係数Cs(ばね上とばね下との間)、減衰係数Ct(ばね下と地面との間)、ばね上の変位Xb(t)、ばね下の変位Xs(t)、地面の変位Xin(t)とする。なお、これらの値は、本実施形態では車両1の重心地点での仮想値となる。 Skyhook control will be described with reference to FIG. In FIG. 3, skyhook damping force Fs (t), sprung mass Mb, unsprung mass Ms, spring constant Ks (between sprung and unsprung), spring constant Kt (between unsprung and ground), Damping coefficient Cs (between sprung and unsprung), damping coefficient Ct (between unsprung and ground), displacement on spring Xb (t), displacement under spring Xs (t), displacement on ground Xin ( t). These values are virtual values at the center of gravity of the vehicle 1 in the present embodiment.
 ばね上およびばね下の上下挙動は、下記式(1)および(2)にて記述できる。
 Mb Xb´´(t)+Cs(Xb´(t)-Xs´(t))+Ks(Xb(t)-Xs(t))=Fs(t)・・・(1)
 Ms Xs´´(t)+Ct(Xs´(t)-Xin´(t))+Kt(Xs(t)-Xin(t))-Cs(Xb´(t)-Xs´(t))-Ks(Xb(t)-Xs(t))=0・・・(2)
 スカイフック減衰力Fs(t)は、下記式(3)により求められる。
The sprung and unsprung up and down behaviors can be described by the following equations (1) and (2).
Mb Xb '' (t) + Cs (Xb '(t) -Xs' (t)) + Ks (Xb (t) -Xs (t)) = Fs (t) (1)
Ms Xs ((t) + Ct (Xs ((t)-Xin ((t)) + Kt (Xs (t)-Xin (t))-Cs (Xb ((t)-Xs ((t))-Ks (Xb (t) −Xs (t)) = 0 (2)
Skyhook damping force Fs (t) is calculated | required by following formula (3).
 Fs(t)=Cs(Xb´(t)-Xs´(t))+Ks(Xb(t)-Xs(t))・・・(3)
 しかしながら、式(3)において、(Xb(t)-Xs(t))、及び(Xb´(t)-Xs´(t))については、サスストローク情報を検出して得られる値である。
 そこで、本実施形態では、スカイフック制御において、ばね下の変位Xs(s)を、式(1)および(2)からばね上とばね下の伝達関数より演算して推定する。
Fs (t) = Cs (Xb '(t) -Xs' (t)) + Ks (Xb (t) -Xs (t)) (3)
However, in the equation (3), (Xb (t) −Xs (t)) and (Xb ′ (t) −Xs ′ (t)) are values obtained by detecting the suspension stroke information.
Therefore, in the present embodiment, in the skyhook control, the unsprung mass displacement Xs (s) is estimated from the equations (1) and (2) by calculating from the sprung and unsprung transfer functions.
 このように、本実施形態では、ばね下の変位を、ばね上とばね下の伝達関数より演算して推定することで、サスストローク、即ち減衰力可変ダンパの実際の移動量の検出を不要としている。
 スカイフック制御部25は、上記のように演算したスカイフック減衰力Fs(t)に基づいて、重心地点での車体8の上下加速度を抑える指示電流Ig(重心位置減衰力制御値)を演算する。
As described above, in the present embodiment, it is not necessary to detect the suspension stroke, that is, the actual moving amount of the damping force variable damper by estimating the unsprung displacement by calculating from the sprung and unsprung transfer functions. There is.
The skyhook control unit 25 calculates an instruction current Ig (center-of-gravity position damping force control value) that suppresses the vertical acceleration of the vehicle body 8 at the center of gravity based on the skyhook damping force Fs (t) calculated as described above. .
 ピッチ抑制制御部26は、各加速度センサ15、16、17の検出値及び車速に基づいてピッチレートを演算する。更に、演算したピッチレートに基づいて、ピッチ抑制用の指示電流Ipを演算する。
 ロール抑制制御部27は、各加速度センサの検出値、車速、操舵角に基づいてロールレートを演算する。更に、演算したロールレートに基づいて、ロール抑制用の指示電流Irを演算する。
The pitch suppression control unit 26 calculates a pitch rate based on the detection values of the acceleration sensors 15, 16, 17 and the vehicle speed. Further, based on the calculated pitch rate, an instruction current Ip for pitch suppression is calculated.
The roll suppression control unit 27 calculates the roll rate on the basis of the detection value of each acceleration sensor, the vehicle speed, and the steering angle. Further, based on the calculated roll rate, a roll suppression instruction current Ir is calculated.
 出力調停制御部22は、スカイフック制御部25において演算した指示電流Igに、ピッチ抑制制御部26で演算した指示電流Ipとロール抑制制御部27で演算した指示電流Irを加算して、前後左右の各減衰力可変ダンパ12a、12b、12cの減衰力を設定する指示電流(減衰力制御値)を夫々出力する。
 詳しくは、ピッチ抑制制御部26で演算した指示電流Ipのうち、前側の減衰力可変ダンパ12a、12bへの指示電流をIpF、後側の減衰力可変ダンパ12c、12dへの指示電流をIpRとし、ロール抑制制御部27で演算した指示電流Irのうち、右側の減衰力可変ダンパ12a、12cへの指示電流をIrR、左側の減衰力可変ダンパ12b、12cへの指示電流をIrLとした場合、各減衰力可変ダンパへの合計の指示電流(右前減衰力可変ダンパ12aへの指示電流IFR、左前減衰力可変ダンパ12bへの指示電流IFL、右後減衰力可変ダンパ12cへの指示電流IRR、左後減衰力可変ダンパ12dへの指示電流IRL)を、以下の式(4)~(7)により求める。
The output arbitration control unit 22 adds the instruction current Ip calculated by the pitch suppression control unit 26 and the instruction current Ir calculated by the roll suppression control unit 27 to the instruction current Ig calculated by the skyhook control unit 25 to obtain front and rear left and right The instruction current (damping force control value) for setting the damping force of each of the damping force variable dampers 12a, 12b, 12c is output.
Specifically, of the indication current Ip calculated by the pitch suppression control unit 26, the indication current to the damping force variable dampers 12a and 12b on the front side is IpF, and the indication current to the damping force variable dampers 12c and 12d on the rear side is IpR. In the instruction current Ir calculated by the roll suppression control unit 27, when the instruction current to the damping force variable dampers 12a and 12c on the right side is IrR and the instruction current to the damping force variable dampers 12b and 12c on the left side is IrL, Total instruction current to each damping force variable damper (instruction current IFR to right front damping force variable damper 12a, instruction current IFL to left front damping force variable damper 12b, instruction current IRR to right rear damping force variable damper 12c, left An instruction current IRL to the rear damping force variable damper 12d is obtained by the following equations (4) to (7).
 IFR=Ig+IpF+IrR・・・(4)
 IFL=Ig+IpF+IrL・・・(5)
 IRR=Ig+IpR+IrR・・・(6)
 IRL=Ig+IpR+IrL・・・(7)
 以上のように求めた各減衰力可変ダンパ12a、12b、12c、12dの指示電流IFR、IFL、IRR、IRLは、スカイフック制御に基づくばね上挙動を抑制するための指示電流である。
IFR = Ig + IpF + IrR (4)
IFL = Ig + IpF + IrL (5)
IRR = Ig + IpR + IrR (6)
IRL = Ig + IpR + IrL (7)
The command currents IFR, IFL, IRR, and IRL of the damping force variable dampers 12a, 12b, 12c, and 12d obtained as described above are command currents for suppressing the sprung behavior based on the skyhook control.
 更に、車速に基づく指示電流Iv及び操舵角情報・アクセル・ブレーキなどのドライバ操作に連動した指示電流Isを求め、これらの指示電流Iv、Isを、上記(4)~(7)で演算したばね上挙動抑制用の指示電流IFR、IFL、IRR、IRLに加算して、各減衰力可変ダンパ12a、12b、12c、12dの最終的な指示電流としてもよい。
 図4に示すように、本実施形態のアクティブサスペンション装置2では、車体8の3つ位置での加速度情報から、ばね上の上下加速度(バウンス加速度)、ロールレート、ピッチレートといったばね上の挙動が演算される。そして、上下加速度に応じて車体8の上下動を抑制するための減衰力に設定する指示電流Igを演算する。また、ロールレートに基づいて指示電流Irを演算するとともに、ピッチレートに基づいて指示電流Ipを演算する。そして、車輪3毎に指示電流Igに指示電流Ir及び指示電流Ipを加算して、各車輪3の減衰力可変ダンパ12a、12b、12c、12dの指示電流IFL、IFR、IRL、IRRが演算される。
Further, an instruction current Iv based on the vehicle speed and an instruction current Is linked to the driver operation such as steering wheel angle information and accelerator brake are determined, and these instruction currents Iv and Is are calculated by the above (4) to (7) The final instruction current of each damping force variable damper 12a, 12b, 12c, 12d may be added to the instruction current IFR, IFL, IRR, IRL for suppressing the upper behavior.
As shown in FIG. 4, in the active suspension device 2 of the present embodiment, from the acceleration information at three positions of the vehicle body 8, the sprung behavior such as vertical acceleration (bounce acceleration) on spring, roll rate, pitch rate It is calculated. Then, an instruction current Ig to be set as a damping force for suppressing the vertical movement of the vehicle body 8 according to the vertical acceleration is calculated. In addition, the instruction current Ir is calculated based on the roll rate, and the instruction current Ip is calculated based on the pitch rate. Then, the instruction current Ir and the instruction current Ip are added to the instruction current Ig for each wheel 3, and the instruction currents IFL, IFR, IRL, IRR of the damping force variable dampers 12a, 12b, 12c, 12d of each wheel 3 are calculated. Ru.
 以上のように、本実施形態のアクティブサスペンション装置2は、車両1の4つの車輪3の減衰力可変ダンパ12a、12b、12c、12dを可変制御するアクティブサスペンション装置2であり、スカイフック制御に基づいて車体8の上下動を抑制する制御が行われる。
 本実施形態では、車体8に備えた3個の加速度センサ15、16、17から車体8の重心位置での加速度を演算し、この重心位置の加速度に基づいて、各減衰力可変ダンパ12a、12b、12c、12dへの指示電流IFL、IFR、IRL、IRRの成分としての支持電流Igが演算されるので、重心位置の加速度に基づいて複数の減衰力可変ダンパ12a、12b、12c、12dの減衰力を一度に設定して、車体8の上下動を抑制するように制御することができる。重心位置の加速度には車体8のピッチやロールの影響が及ぼさないので、上下動を抑制するための減衰力の演算を簡単にすることができる。また、車両1の製造の際に、各減衰力可変ダンパ12a、12b、12c、12dの減衰力を適切に設定するための調整作業を簡易にすることができる。
As described above, the active suspension device 2 of the present embodiment is the active suspension device 2 that variably controls the damping force variable dampers 12a, 12b, 12c, and 12d of the four wheels 3 of the vehicle 1, and is based on skyhook control. Thus, control for suppressing the vertical movement of the vehicle body 8 is performed.
In this embodiment, the acceleration at the gravity center position of the vehicle body 8 is calculated from the three acceleration sensors 15, 16 and 17 provided on the vehicle body 8, and the damping force variable dampers 12a and 12b are calculated based on the acceleration at this gravity center position. , 12c, and 12d, the support current Ig as a component of the command current IFL, IFR, IRL, and IRR is calculated, and therefore, the damping of the plurality of damping force variable dampers 12a, 12b, 12c, and 12d based on the acceleration at the center of gravity. The force can be set at one time to control the vertical movement of the vehicle body 8 to be suppressed. Since the acceleration at the position of the center of gravity is not affected by the pitch or roll of the vehicle body 8, the calculation of the damping force for suppressing the vertical movement can be simplified. Further, at the time of manufacturing the vehicle 1, it is possible to simplify the adjustment operation for appropriately setting the damping force of each of the damping force variable dampers 12a, 12b, 12c, 12d.
 また、本実施形態では、スカイフック制御にしたがって重心位置における上下動を抑制する指示電流Igが演算され、この指示電流Igをベースにして複数の振動減衰装置における減衰力制御値が設定されるので、重心位置における振動が抑制される。これにより、車体全体の上下動が抑制され、操安性及び乗り心地を改善することができる。
 また、本実施形態では、3個の加速度センサ15、16、17の検出値から重心位置の加速度を演算するとともに、車両1のロールレート及びピッチレートを演算する。したがって、この3個の加速度センサ15、16、17によって、重心位置での上下動抑制制御と、ロールレート、ピッチレートに基づく振動抑制制御を、車両1のロールレート及びピッチレートを検出するために備えた3個以上の加速度センサ15、16、17を利用して、重心位置の加速度を検出することができ、部品点数の増加を抑制しつつ振動減衰装置の減衰力の制御を可能にすることができる。
Further, in the present embodiment, the command current Ig for suppressing the vertical movement at the center of gravity position is calculated according to the skyhook control, and damping force control values in a plurality of vibration damping devices are set based on the command current Ig. , The vibration at the center of gravity position is suppressed. As a result, the vertical movement of the entire vehicle body is suppressed, and the steering stability and the ride quality can be improved.
Further, in the present embodiment, the acceleration at the position of the center of gravity is calculated from the detection values of the three acceleration sensors 15, 16, 17, and the roll rate and the pitch rate of the vehicle 1 are calculated. Therefore, in order to detect the roll rate and the pitch rate of the vehicle 1 by the three acceleration sensors 15, 16 and 17, the vertical motion suppression control at the center of gravity position, the vibration suppression control based on the roll rate and the pitch rate The acceleration of the gravity center position can be detected by using three or more acceleration sensors 15, 16, 17 provided, and control of the damping force of the vibration damping device is enabled while suppressing an increase in the number of parts. Can.
 更に、3個の加速度センサ15、16、17により検出された加速度に基づいて、車両1のロールレート及びピッチレートを演算し、指示電流Ig、ロール抑制用の指示電流Ir、ピッチ抑制用の指示電流Ipを演算し、これらを加算して前後左右の減衰力可変ダンパ12a、12b、12c、12dの減衰力を設定しており、ロール及びピッチを抑制するための減衰力の制御も容易にすることができる。 Furthermore, the roll rate and pitch rate of the vehicle 1 are calculated based on the accelerations detected by the three acceleration sensors 15, 16, 17, and the indication current Ig, the indication current Ir for roll suppression, the instruction for pitch suppression The current Ip is calculated, and these are added to set the damping force of the front and rear, left and right damping force variable dampers 12a, 12b, 12c, 12d, and control of the damping force for suppressing roll and pitch is also facilitated. be able to.
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、本実施形態では、重心位置の加速度を3つの加速度センサの検出値から演算しているが、例えば重心位置に専用の加速度センサを備えてもよいし、他の検出値から推定してもよい。 Although the description of the embodiment is finished above, the aspect of the present invention is not limited to this embodiment. For example, in the present embodiment, the acceleration at the position of the center of gravity is calculated from the detection values of the three acceleration sensors. However, for example, a dedicated acceleration sensor may be provided at the position of the center of gravity. Good.
 1  車両
 2  アクティブサスペンション装置
 3  車輪
 8  車体
 10 アクティブサスコントロールユニット(制御部、加速度演算部)
 12a、12b、12c、12d 減衰力可変ダンパ(振動減衰装置)
 13a、13b、13c、13d スプリング(ばね)
 15、16、17 加速度センサ(加速度検出部)
1 Vehicle 2 Active Suspension Device 3 Wheel 8 Vehicle Body 10 Active Suspension Control Unit (Control Unit, Acceleration Calculation Unit)
12a, 12b, 12c, 12d Damping force variable damper (vibration damping device)
13a, 13b, 13c, 13d spring (spring)
15, 16 and 17 Acceleration sensor (acceleration detection unit)

Claims (4)

  1.  車両の複数の車輪毎にばね上とばね下との間に設けられた振動減衰装置の減衰力を、車両の走行状態に基づいて制御する車両のアクティブサスペンション装置において、
     前記車両のばね上の重心位置の上下挙動を検出する上下挙動検出部と、
     前記重心位置の上下挙動に基づいて前記複数の振動減衰装置の減衰力を制御する制御部と、を備えたことを特徴とする車両のアクティブサスペンション装置。
    In an active suspension system of a vehicle, which controls the damping force of a vibration damping device provided between a sprung mass and an unsprung mass for each of a plurality of wheels of the vehicle based on a traveling state of the vehicle,
    An up-and-down behavior detection unit for detecting up-and-down behavior of a position of center of gravity on a spring of the vehicle;
    And a control unit configured to control the damping force of the plurality of vibration damping devices based on the vertical behavior of the position of the center of gravity.
  2.  前記制御部は、前記車両のばね上の重心位置の上下挙動に基づいて、スカイフック制御にしたがって当該重心位置におけるばね上の上下動を抑制する重心位置減衰力制御値を演算し、前記重心位置減衰力制御値に基づいて前記複数の振動減衰装置における減衰力制御値を設定することを特徴とする請求項1に記載の車両のアクティブサスペンション装置。 The control unit calculates a gravity center position damping force control value for suppressing the vertical movement on the spring at the gravity center position according to the skyhook control based on the vertical behavior of the gravity center position on the spring of the vehicle. 2. The active suspension system of a vehicle according to claim 1, wherein damping force control values in the plurality of vibration damping devices are set based on damping force control values.
  3.  前記上下挙動検出部は、
     前記ばね上に前記重心位置から互いに前記車両の前後左右方向に互いに離間した3個以上の加速度センサと、
     前記3個以上の加速度センサにより検出された加速度に基づいて前記重心位置の加速度を演算する加速度演算部と、
    を備えたことを特徴とする請求項2に記載の車両のアクティブサスペンション装置。
    The upper and lower behavior detection unit
    Three or more acceleration sensors spaced apart from each other in the longitudinal and lateral directions of the vehicle from the position of the center of gravity on the spring;
    An acceleration calculation unit that calculates an acceleration at the barycentric position based on the acceleration detected by the three or more acceleration sensors;
    The active suspension device of a vehicle according to claim 2, comprising
  4.  前記制御部は、前記3個以上の加速度センサにより検出された加速度に基づいて、前記車両のロールレート及びピッチレートを演算し、前記重心位置減衰力制御値、前記ロールレート及び前記ピッチレートに基づいて、前記複数の振動減衰装置の減衰力制御値を夫々設定することを特徴とする請求項3に記載の車両のアクティブサスペンション装置。 The control unit calculates a roll rate and a pitch rate of the vehicle based on the acceleration detected by the three or more acceleration sensors, and based on the gravity center position damping force control value, the roll rate, and the pitch rate. 4. The active suspension system of the vehicle according to claim 3, wherein damping force control values of the plurality of vibration damping devices are set respectively.
PCT/JP2018/040358 2017-12-20 2018-10-30 Active suspension device for vehicle WO2019123848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019560849A JP6919791B2 (en) 2017-12-20 2018-10-30 Vehicle active suspension device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-244216 2017-12-20
JP2017244216 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019123848A1 true WO2019123848A1 (en) 2019-06-27

Family

ID=66994055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040358 WO2019123848A1 (en) 2017-12-20 2018-10-30 Active suspension device for vehicle

Country Status (2)

Country Link
JP (1) JP6919791B2 (en)
WO (1) WO2019123848A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173414A (en) * 1990-11-08 1992-06-22 Nissan Motor Co Ltd Active type suspension
JPH05294124A (en) * 1992-04-20 1993-11-09 Unisia Jecs Corp Vehicle suspension device
JPH07195923A (en) * 1993-12-29 1995-08-01 Toyota Motor Corp Unsprung condition detecting device
JP2000272319A (en) * 1999-03-24 2000-10-03 Akira Ebisu Vehicle suspension method and device
JP2010083329A (en) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd Suspension control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173414A (en) * 1990-11-08 1992-06-22 Nissan Motor Co Ltd Active type suspension
JPH05294124A (en) * 1992-04-20 1993-11-09 Unisia Jecs Corp Vehicle suspension device
JPH07195923A (en) * 1993-12-29 1995-08-01 Toyota Motor Corp Unsprung condition detecting device
JP2000272319A (en) * 1999-03-24 2000-10-03 Akira Ebisu Vehicle suspension method and device
JP2010083329A (en) * 2008-09-30 2010-04-15 Hitachi Automotive Systems Ltd Suspension control device

Also Published As

Publication number Publication date
JPWO2019123848A1 (en) 2020-10-22
JP6919791B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6628893B2 (en) Suspension control device
JP6979512B2 (en) Suspension control device
CN111615480B (en) Vehicle, vehicle motion state estimation device, and vehicle motion state estimation method
JP2009508751A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
JP4931789B2 (en) Damping characteristic control device
JP2009508752A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
CN108146180B (en) Method and control device for adjusting the damping force of a shock absorber
JP5293264B2 (en) Damping force control device and damping force control method
JP6299572B2 (en) Vehicle control device
JP5316279B2 (en) Vehicle vibration suppression device
JP2009137545A (en) Damping force control device
WO2019123848A1 (en) Active suspension device for vehicle
JP2011016382A (en) Damping force control device of vehicle
JP2015104966A (en) Vehicle suspension device
JP5162283B2 (en) Control device and control method for damping force variable damper
JP7281497B2 (en) electric suspension device
JP2022053110A (en) Vehicle active suspension device
CN111775649A (en) Shock absorber control method, device and system
JP5157683B2 (en) Suspension control device
JP5571510B2 (en) Suspension control device
JP2023079384A (en) Vibration information estimation device and suspension device
JP5104594B2 (en) Vehicle control device
JP2009137342A (en) Control device for attenuation force variable damper
JP4803128B2 (en) Vehicle damping force control device
WO2010109672A1 (en) Vehicular attenuation force control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891870

Country of ref document: EP

Kind code of ref document: A1