WO2019123788A1 - Corrosion suppression method for carbon steel members in plant - Google Patents

Corrosion suppression method for carbon steel members in plant Download PDF

Info

Publication number
WO2019123788A1
WO2019123788A1 PCT/JP2018/037763 JP2018037763W WO2019123788A1 WO 2019123788 A1 WO2019123788 A1 WO 2019123788A1 JP 2018037763 W JP2018037763 W JP 2018037763W WO 2019123788 A1 WO2019123788 A1 WO 2019123788A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
film
carbon steel
nickel
aqueous solution
Prior art date
Application number
PCT/JP2018/037763
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 細川
伊藤 剛
太田 信之
大内 智
慎太郎 柳澤
誠 長瀬
石田 一成
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2019123788A1 publication Critical patent/WO2019123788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method of suppressing corrosion of carbon steel members of a plant, and more particularly to a method of suppressing corrosion of carbon steel members of a plant suitable for application to boiling water nuclear power plants and thermal power plants.
  • a boiling water nuclear power plant (hereinafter referred to as a BWR plant) has a nuclear reactor in which a core is disposed in a reactor pressure vessel (hereinafter referred to as RPV).
  • Reactor water supplied to the core by the recirculation pump (or internal pump) is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel assembly loaded in the core, and a part becomes steam.
  • the steam is channeled from the RPV to the turbine to rotate the turbine.
  • the steam discharged from the turbine is condensed by the condenser into water.
  • This water is supplied to the reactor through the water supply pipe as the water supply.
  • the feed water mainly removes metal impurities in a filtration demineralizer provided in a feed water pipe.
  • Reactor water is cooling water present in the RPV.
  • the corrosion products that are the source of radioactive corrosion products are generated on the surfaces of the component parts of the BWR plant, such as RPV and recirculation piping, which come in contact with the reactor water
  • the main component that contacts the reactor water For example, stainless steel, nickel base alloy and the like with low corrosion are used.
  • low-alloy steel RPV is coated with stainless steel on its inner surface to prevent low-alloy steel from coming into direct contact with furnace water.
  • a part of the reactor water is purified by the filter demineralizer of the reactor purification system to actively remove metal impurities slightly present in the reactor water.
  • a method of suppressing the corrosion of carbon steel members constituting a nuclear power plant for example, a method of injecting oxygen into a water supply system to form a passivation film consisting of an oxide film on the surface of carbon steel members, ammonia and hydrazine etc.
  • a method of adjusting the pH of the feed water to the alkaline side by adding a chemical to the feed water has been proposed in BWR plants and pressurized water nuclear power plants (hereinafter referred to as PWR plants) (see, for example, JP-A-2000-292589). .
  • JP-A-2006-38483 and JP-A-2012-247322 have a range of 60 ° C. to 100 ° C. including iron (II) ion, an oxidant and a pH adjuster (hydrazine) during shutdown of a nuclear power plant. It is described that a film forming solution is brought into contact with the surface of a stainless steel component of a nuclear power plant to form a magnetite film on this surface. Furthermore, these publications also describe that, during shutdown of a nuclear power plant, an aqueous solution containing a noble metal (e.g. platinum) is brought into contact with the magnetite film to deposit the noble metal on the magnetite film.
  • a noble metal e.g. platinum
  • JP2007-182604A and JP2007-192672A do not inject a chemical during operation, and as a method of suppressing corrosion of a carbon steel member by surface treatment, on the surface of a carbon steel member of a nuclear power plant A method of forming a ferrite film is described.
  • a film forming solution containing iron (II) ions and an oxidant having a pH in the range of 5.5 to 9.0, and a temperature range of normal temperature to 100 ° C.
  • a nickel metal film is formed on the surface of the carbon steel member, and contains nickel ions, iron (II) ions, an oxidizing agent and a pH adjuster, the pH is in the range of 5.5 to 9.0, and the temperature is 60
  • a method is proposed to form a nickel ferrite film on the surface of the nickel metal film using a film forming solution in the range of 100 ° C. to 100 ° C. and then convert the nickel metal film to a nickel ferrite film by high temperature water (For example, JP-A-2011-32551).
  • JP-A-2015-158486 discloses an aqueous solution containing a complex ion-forming agent, a noble metal ion and a reducing agent when attaching a noble metal to the inner surface of a recirculation system piping which is a component of a BWR plant. It is stated to be in contact with
  • carbon can be obtained by the respective methods described in JP-A-2006-38483, JP-A-2012-247322, JP-A-2007-182604, JP-A-2007-192672 and JP-A-2011-32551.
  • a noble metal adheres to the surface of the nickel ferrite film
  • the nickel ferrite film formed on the surface of the steel member may be eluted by the action of the noble metal and eventually disappear as described in detail later. is there. Therefore, the nickel ferrite film can not suppress the corrosion of the carbon steel member for a long time.
  • An object of the present invention is to provide a method of inhibiting corrosion of a carbon steel member of a plant, which can further extend a period during which corrosion of the carbon steel member of the plant is inhibited.
  • a feature of the present invention for achieving the above object is to form a nickel metal film on a surface of a carbon steel member of a plant in contact with water, cover the surface with a nickel metal film, and deposit a noble metal on the surface of the nickel metal film.
  • the contact of the noble metal with the nickel metal film on which the noble metal is attached is brought into contact with water containing an oxidizing agent at 130 ° C. or more and less than 200 ° C.
  • the formation of the nickel metal film and the deposition of the noble metal are performed after plant shutdown and before plant start-up It is about to be done.
  • the corrosion potential of the nickel metal coating and the carbon steel member in contact with the water is lowered by the action of the noble metal adhering to the nickel metal coating.
  • Such a decrease in corrosion potential and water in a temperature range of 130 ° C. or more and less than 200 ° C. containing an oxidizing agent to the nickel metal film makes the nickel metal film also contact by the action of the deposited noble metal It is converted to a stable nickel ferrite film which does not elute. Since the surface of the carbon steel member is covered with the stable nickel ferrite to which the noble metal adheres, the corrosion of the carbon steel member of the plant can be suppressed for a longer period of time.
  • FIG. 1 It is a flowchart which shows the procedure of the corrosion-control method of the carbon steel member of the plant of Example 1 applied to the purification system piping of a boiling water type nuclear power plant which is one suitable Example of this invention. It is explanatory drawing which shows the state which connected the film-forming apparatus used when enforcing the corrosion suppression method of the carbon steel member of the plant of Example 1 to the purification system piping of a boiling water type nuclear plant. It is a detailed block diagram of the film formation apparatus shown in FIG. It is sectional drawing of purification system piping of a boiling water type nuclear plant before the corrosion suppression method of the carbon steel member of the plant shown by FIG. 1 is started.
  • oxygen contained in water in a temperature range of 130 ° C. or more and less than 200 ° C. and Fe 2+ in the purification system piping are formed on the inner surface of the purification system piping.
  • FIG. 14 It is a flowchart which shows the procedure of the corrosion-control method of the carbon steel member of the plant of Example 4 applied to the purification system piping of a boiling water type nuclear plant which is another Example of this invention.
  • 14 is a heating system connected to a purification system piping to convert a nickel metal film formed on the inner surface of the purification system piping into a nickel ferrite film in the method for suppressing adhesion of radionuclides to carbon steel members of the plant shown in FIG.
  • FIG. It is explanatory drawing which shows the corrosion-control method of the carbon steel member of the plant of Example 5 applied to the feed water piping of a thermal power plant which is another Example of this invention.
  • JP-A-2011-32551 a nickel metal film is formed on the surface of a carbon steel member of a BWR plant while the BWR plant is stopped, a nickel ferrite film is formed on the surface of the nickel metal film, and further During the operation, water containing oxygen at 150 ° C. or higher is brought into contact with the surface of the nickel ferrite film to convert the above nickel metal film into a nickel ferrite film.
  • the inventors finally deposit a noble metal on the surface of the nickel metal film formed on the surface of the carbon steel member, and 130 ° C.
  • Ferrite film formation techniques include iron (II) ions, an oxidant and a pH adjuster (for example, hydrazine) as described in the aforementioned JP-A-2006-38483 and JP-A-2012-247322.
  • a film forming solution in a low temperature range of 60 ° C. to 100 ° C. is brought into contact with the surface of a component of a nuclear power plant to form a magnetite film on the surface of the component.
  • the noble metal injected into the reactor water during operation of the nuclear power plant in order to reduce the concentration of dissolved oxygen in the reactor water adheres to the surface of the ferrite film formed on the component.
  • the surface of the ferrite film formed on the component includes a noble metal ion during shutdown of the nuclear power plant. The solution is brought into contact, and a noble metal is deposited on the surface of the ferrite film.
  • the inventors have found that when a noble metal is deposited on a nickel ferrite film formed on a surface of a carbon steel member in contact with furnace water at a low temperature range of 60 ° C. to 100 ° C., the reason for the nickel ferrite to elute is Study was carried out. According to this examination, the nickel ferrite film formed on the surface of the carbon steel member at such a low temperature range during shutdown of the nuclear power plant is a film of Ni 0.7 Fe 2.3 O 4 and is unstable I understood. Note that Ni 0.7 Fe 2.3 O 4 is a form in the case where x is 0.3 in Ni 1-x Fe 2 + x O 4 .
  • the reaction of the Ni 0.7 Fe 2.3 O 4 causes the reactor to operate during operation of the nuclear power plant. It was found to elute in water.
  • an unstable Ni 0.7 Fe 2.3 O 4 film is formed in the above-mentioned low temperature range, a large number of small particles of Ni 0.7 Fe 2.3 O 4 adhere to the surface of the carbon steel member. ing. Also for this reason, a film of Ni 0.7 Fe 2.3 O 4 with platinum adhering to the upper surface is eluted.
  • JP-A-2011-32551 a film-forming aqueous solution (film-forming solution) containing nickel ions, iron (II) ions and an oxidant and having a pH in the range of 5.5 to 9.0
  • a nickel ferrite film is formed on the nickel metal film in contact with the nickel metal film. Therefore, the nickel ferrite contained in the nickel ferrite film is a nickel ferrite having a large amount of Fe, that is, a nickel ferrite having less Ni and more Fe than Ni 0.7 Fe 2.3 O 4 .
  • JP-A-2011-32551 discloses that a nickel ferrite film containing nickel ferrite having a high iron content and formed on a nickel metal film is brought into contact with water containing oxygen at 150 ° C. Iron ions from nickel ferrite with high iron content, oxygen contained in water at 150 ° C., and iron contained in carbon steel members are transferred to the nickel metal film and react with the nickel in the nickel metal film, as described above unstable nickel ferrite (e.g., Ni 0.7 Fe 2.3 O 4) is generated. As a result, the nickel metal film formed on the surface of the carbon steel member is converted into an unstable nickel ferrite film (for example, a Ni 0.7 Fe 2.3 O 4 film).
  • unstable nickel ferrite e.g., Ni 0.7 Fe 2.3 O 4
  • the conversion of the nickel metal film to the unstable nickel ferrite film is because when the nickel metal film is converted to the nickel ferrite film, the amount of iron supplied to the nickel metal film is large and the amount of nickel is insufficient.
  • the nickel ferrite film originally covering the nickel metal film reacts with the nickel metal transferred from the nickel metal film after contact with high temperature water to form a film of Ni 0.7 Fe 2.3 O 4 .
  • the nickel content of the original nickel ferrite film is lower than that of Ni 0.7 Fe 2.3 O 4 , and the original nickel ferrite film is a nickel ferrite film which is unstable in a reducing environment.
  • Nickel metal which covers the surface of a carbon steel member is a substance which contributes to formation of a stable nickel ferrite film which controls corrosion of a carbon steel member, as mentioned later.
  • the formation of a nickel metal film on the surface of a carbon steel member is possible by bringing an aqueous solution containing nickel ions and a reducing agent into contact with the surface of the carbon steel member.
  • the nickel ion contained in the aqueous solution is substituted with Fe contained in the carbon steel member, and the substituted nickel ion becomes nickel metal by the action of the reducing agent, and a nickel metal film is formed on the surface of the carbon steel member.
  • adhesion of a noble metal to the surface of a nickel metal film formed on the surface of a carbon steel member is possible by bringing an aqueous solution containing noble metal ions (eg, platinum ions) and a reducing agent into contact with the formed nickel metal film. It is.
  • the adhesion of nickel ions contained in the aqueous solution to the surface of the carbon steel member is possible even when Fe 2+ is eluted from the carbon steel member.
  • any of platinum, palladium, rhodium, ruthenium, osmium and iridium may be used as the noble metal to be deposited on the nickel metal film formed on the surface of the carbon steel member.
  • any of hydrazine derivatives such as hydrazine, form hydrazine, hydrazine carboxamide and carbohydrazide and hydroxylamine may be used.
  • the examination result regarding corrosion suppression of a carbon steel member is demonstrated below.
  • the present inventors did not form an unstable Ni 0.7 Fe 2.3 O 4 film on the surface of a carbon steel member in a low temperature range of 60 ° C. to 100 ° C., but did not form a stable nickel ferrite even by the deposited noble metal.
  • a stable nickel ferrite film (a nickel ferrite film in which x is 0 in Ni 1-x Fe 2 + x O 4 which covers the surface of a carbon steel member and does not dissolve even by the action of a noble metal, ie, NiFe It could be converted to a 2 O 4 film).
  • test piece A made of carbon steel not having nickel and platinum attached
  • test piece B made of carbon steel having a nickel metal film formed on the surface and platinum attached to the surface of the nickel metal film. Then, it was immersed in simulated water simulating the conditions of the reactor water during operation of the BWR plant to determine the corrosion amount of the test piece.
  • test pieces A and B were placed in a closed loop circulation pipe, and simulated water simulating reactor water in the reactor was circulated in the circulation pipe. The temperature of the simulated water is 280 ° C.
  • Each of the test pieces A and B installed in the circulation pipe was immersed in the simulated water flowing in the circulation pipe for 500 hours.
  • each of the test pieces A and B is removed from the circulation pipe, the oxide film formed in high temperature water is dissolved and removed by the cathode dissolution method, and the amount of metal remaining in the test piece is determined. The amount of corrosion was determined from the difference with the previous test piece metal amount.
  • a nickel metal film of a carbon steel member in which a nickel metal film is formed on the surface and a noble metal (for example, platinum) is attached to the surface of the nickel metal film is in contact with oxygen containing water of 130 ° C. or more.
  • a noble metal for example, platinum
  • the reason for conversion to a stable nickel ferrite film (NiFe 2 O 4 film) covering the surface of a carbon steel member will be described.
  • the nickel metal film and the carbon steel member are heated to 130 ° C. or more. Oxygen contained in the water is transferred into the nickel metal film, and Fe contained in the carbon steel member is converted into Fe 2+ and transferred into the nickel metal film.
  • Nickel ferrite in which nickel in the nickel metal film reacts with oxygen and Fe 2+ transferred to the nickel metal film in a high temperature environment of 130 ° C. or more, and x is 0 in Ni 1-x Fe 2 + x O 4 Is generated.
  • x is 0 in Ni 1-x Fe 2 + x O 4 Is generated.
  • Ni 1 -x Fe 2 + A nickel ferrite is formed where x is 0 at x O 4 .
  • the nickel ferrite film covers the surface of the carbon steel member.
  • Ni 1-x Fe 2 + x O 4 generated as described above from a nickel metal contained in a nickel metal film covering the surface of a carbon steel member in a high temperature environment of 130 ° C. or higher
  • Some nickel ferrites are large in crystal growth, and do not elute into water like the Ni 0.7 Fe 2.3 O 4 film even if precious metals are attached, and they are stable against corrosion of the base carbon steel.
  • a stable nickel ferrite in which x is 0 is reduced in the corrosion potential of the carbon steel member and the nickel metal film by the action of a noble metal such as platinum attached to the nickel metal film. Generated to Thus, in a high temperature environment of 130 ° C.
  • the nickel ferrite film formed in the presence of platinum from nickel metal covering the surface of a carbon steel member is formed in a low temperature range of 60 ° C. to 100 ° C.
  • the corrosion of the carbon steel member can be suppressed for a longer period of time than the Ni 0.7 Fe 2.3 O 4 coating.
  • the temperature of the water containing oxygen brought into contact with the nickel metal film is less than 130 ° C., the nickel metal film is not converted to a stable nickel ferrite film (NiFe 2 O 4 film).
  • the temperature of water containing oxygen to be brought into contact with the nickel metal film needs to be 130 ° C. or more.
  • the temperature of the water may be less than 200 ° C. That is, water containing oxygen to be brought into contact with the nickel metal film is heated to a temperature range of 130 ° C. or more and less than 200 ° C. in order to convert the nickel metal film into a stable nickel ferrite (NiFe 2 O 4 ) film.
  • the inventors have made contact with the surface of the carbon steel member even when the nickel metal film having a noble metal attached to the surface is contacted with water containing oxygen and having a temperature within the temperature range of 130 ° C. or more and less than 200 ° C. It has been found that the formed nickel metal film can be converted to a stable nickel ferrite film (NiFe 2 O 4 film).
  • a nickel metal film on the surface of a carbon steel member in order to form a nickel metal film on the surface of a carbon steel member, it contains a nickel ion, formic acid and a reducing agent (for example, hydrazine) and has a pH of 4.0 to 11.0 (4.0 to 11.0).
  • a nickel ion, formic acid and a reducing agent for example, hydrazine
  • a reducing agent for example, hydrazine
  • the aqueous solution in the temperature range of 60 ° C. to 100 ° C. is brought into contact with the surface of the corresponding carbon steel member, the surface of the carbon steel member is completely covered with the nickel metal film, Fe 2+ elutes from the carbon steel member into the aqueous solution.
  • the eluted Fe 2+ precipitates in the aqueous solution as iron hydroxide and magnetite.
  • the precipitated aqueous solution of iron hydroxide and magnetite, nickel ion, formic acid and hydrazine is a cation exchange resin tower and It is supplied to the disassembling device.
  • Nickel ions and Fe 2+ contained in the aqueous solution are removed in a cation exchange resin column, and formic acid and hydrazine are decomposed in a decomposition apparatus.
  • the aqueous solution is introduced into the mixed bed resin tower, and the impurities contained in the aqueous solution are removed by the ion exchange resin in the mixed bed resin tower to purify the aqueous solution.
  • Fe 2+ ions that could not be removed by the cation exchange resin tower and the mixed bed resin tower may be present in the aqueous solution.
  • Fe 2+ present in the aqueous solution is oxidized by oxygen dissolved in the aqueous solution, and hydrogen peroxide supplied to the aqueous solution to decompose formic acid and hydrazine contained in the aqueous solution. It becomes 3+ and precipitates as iron hydroxide and magnetite.
  • a complex ion forming agent for example, ammonia
  • the ion (eg, platinum ion) and the reductant (eg, hydrazine) are each injected, and the iron ion remaining in the aqueous solution and the injected complex ion forming agent, eg, ammonia form iron-ammonia complex ion, It is known to suppress the precipitation of iron ions (see JP-A-2015-158486).
  • the iron ion and ammonia form an iron-ammonia complex ion by each of the reactions shown in the formulas (1) to (3).
  • a reducing agent for example, hydrazine
  • complex ions increases the solubility of Fe 3+ and suppresses the precipitation of iron hydroxide and magnetite
  • a reducing agent for example, hydrazine
  • Any substance can be used, and at least one of ammonia, monoamines such as hydroxylamine, a cyan compound, urea, and a thiocyan compound is used.
  • iron ions Fe 3+
  • iron ions such as ammonia, which suppress precipitation of iron ions in the aqueous solution
  • a substance that forms complex ions is injected into the aqueous solution to form platinum ions (precious metal ions) and a reducing agent (for example, hydrazine) on the surface of the carbon steel member with platinum ions as platinum. It can be attached to the surface of the nickel metal film.
  • a film forming aqueous solution containing nickel ions and a reducing agent is brought into contact with the surface of a carbon steel member to form a nickel metal film on the surface of the carbon steel member, a noble metal is deposited on the surface of the nickel metal film, oxygen is included 130 ° C.
  • Water in a temperature range of not less than 200 ° C. is brought into contact with the nickel metal film to which the noble metal is attached, and nickel metal contained in the nickel metal film, oxygen contained in water and iron contained in the carbon steel member
  • a nickel ferrite film is formed on the surface of a carbon steel member by using the catalytic action of a noble metal at high temperatures of not less than 200 ° C. and not less than 200 ° C.
  • the present invention relates to a method of inhibiting corrosion of a carbon steel member of a plant.
  • the nickel metal film formed on the surface of the carbon steel member and having the noble metal attached thereto is brought into contact with water within the range of 130 ° C. or more and less than 200 ° C. Since the stable nickel ferrite film is formed on the surface of the carbon steel member under the high temperature within the range of 130 ° C. or more and less than 200 ° C. by utilizing the catalytic action of the noble metal, the formed nickel ferrite film is Even if precious metals are attached, they do not elute in water, and corrosion of carbon steel members can be suppressed over a long period of time (specifically, over a plurality of operation cycles).
  • a method of inhibiting corrosion of a carbon steel member of a plant according to a first embodiment which is a preferred embodiment of the present invention will be described with reference to FIG. 1, FIG. 2 and FIG.
  • the method of suppressing corrosion of a carbon steel member of the present embodiment is applied to a carbon steel purification system pipe (carbon steel member) of a boiling water nuclear power plant (BWR plant).
  • the BWR plant 1 includes a reactor 2, a turbine 9, a condenser 10, a recirculation system, a reactor purification system, a water supply system, and the like.
  • the nuclear reactor 2 is a steam generator and has a reactor pressure vessel (hereinafter referred to as RPV) 3 containing a core 4 and has an outer surface of a core shroud (not shown) surrounding the core 4 in the RPV 3 and the RPV 3
  • the jet pump 5 is installed in an annular downcomer formed between it and the inner surface.
  • the core 4 is loaded with a number of fuel assemblies (not shown).
  • the fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material.
  • the recirculation system has a stainless steel recirculation system pipe 6 and a recirculation pump 7 installed in the recirculation system pipe 6.
  • the water supply system includes a condensate pump 12, a condensate purification apparatus (for example, a condensate demineralizer) 13, a low pressure feed water heater 14, a feed water pump 15, and a high pressure feed water to a feed water pipe 11 connecting the condenser 10 and the RPV 3
  • the heater 16 is installed and arranged in this order from the condenser 10 toward the RPV 3.
  • the reactor purification system comprises a purification system pipe 18 connecting the recirculation system pipe 6 and the water supply pipe 11, with the purification system pump 19, the regenerative heat exchanger 20, the non-regeneration heat exchanger 21 and the reactor water purification device 22 in this order. It has been installed.
  • the bypass piping 28 bypassing the reactor water purification device 22 is connected to the purification system piping 18 on the upstream side and the downstream side of the reactor water purification device 22.
  • the valve 27 is provided in the purification system pipe 18 on the side of the reactor water purification device 22 with respect to the connection point between the bypass pipe 28 and the purification system pipe 18.
  • the purification system piping 18 is connected to the recirculation system piping 6 upstream of the recirculation pump 7.
  • the reactor 2 is installed in a reactor containment vessel 90 disposed in a reactor building (not shown).
  • the cooling water in the RPV 3 (hereinafter referred to as “furnace water”) is pressurized by the recirculation pump 7 and is jetted into the jet pump 5 through the recirculation system pipe 6.
  • Reactor water present in the downcomer around the nozzle of the jet pump 5 is also drawn into the jet pump 5 and supplied to the core 4.
  • the reactor water supplied to the core 4 is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel rods, and a part thereof becomes steam.
  • the steam is led from the RPV 3 through the main steam piping 8 to the turbine 9 to rotate the turbine 9.
  • a generator (not shown) connected to the turbine 9 rotates to generate electric power.
  • the steam discharged from the turbine 9 is condensed by the condenser 10 into water.
  • This water is supplied to the RPV 3 through the water supply pipe 11 as water supply.
  • the feed water flowing through the feed water pipe 11 is pressurized by the condensate pump 12, impurities are removed by the condensate purification device 13, and the pressure is further boosted by the feed pump 15.
  • the feedwater is heated by the low pressure feedwater heater 14 and the high pressure feedwater heater 16 and introduced into the RPV 3.
  • Extracted steam extracted from the turbine 9 in the extraction pipe 17 is supplied to the low pressure feed water heater 14 and the high pressure feed water heater 16, respectively, and serves as a heating source of the feed water.
  • the purified reactor water is heated by the regenerative heat exchanger 20 and returned to the interior of the RPV 3 through the purification system piping 18 and the water supply piping 11.
  • the film forming devices 30 and 31A are used, and as shown in FIG. 2, these film forming devices 30 and 31A are used for the purification system piping 18 of the BWR plant. Connected
  • the detailed configuration of the film forming devices 30 and 30A will be described with reference to FIG.
  • the configuration of each of the film forming devices 30 and 30A is the same.
  • the film forming devices 30 and 30A include a circulation pipe 31, a surge tank 32, a heater 33, circulation pumps 34 and 35, a nickel ion injection device 36, a reducing agent injection device 41, a platinum ion injection device 46, a cooler 52, cation exchange.
  • the resin tower 53, the mixed bed resin tower 54, the decomposition device 55, the oxidant supply device 56, and the ejector 61 are provided.
  • An on-off valve 62, a circulation pump 35, valves 63, 66, 69 and 74, a surge tank 32, a circulation pump 34, a valve 77 and an on-off valve 78 are provided in the circulation pipe 31 in this order from the upstream.
  • a pipe 65 bypassing the valve 63 is connected to the circulation pipe 31, and the valve 64 and the filter 51 are installed in the pipe 65.
  • a cooler 52 and a valve 67 are installed in a pipe 68 which bypasses the valve 66 and is connected to the circulation pipe 31 at both ends.
  • the cation exchange resin tower 53 and the valve 70 are installed in the pipe 71 whose both ends are connected to the circulation pipe 31 and which bypasses the valve 69.
  • the mixed bed resin tower 54 and the valve 72 are installed on the piping 73 whose both ends are connected to the piping 71 and which bypasses the cation exchange resin tower 53 and the valve 70.
  • the cation exchange resin column 53 is filled with a cation exchange resin
  • the mixed bed resin column 54 is filled with a cation exchange resin and an anion exchange resin.
  • the decomposition device 55 is filled with an activated carbon catalyst in which, for example, ruthenium is attached to the surface of activated carbon.
  • a surge tank 32 is installed in the circulation pipe 31 between the valve 74 and the circulation pump 34.
  • a heater 33 is disposed in the surge tank 32.
  • a pipe 80 provided with the valve 79 and the ejector 61 is connected to the circulation pipe 31 between the valve 77 and the circulation pump 34 and is further connected to the surge tank 32.
  • a hopper (not shown) for supplying oxalic acid (reduction decontaminant) used to reduce and dissolve the contaminants on the inner surface of the purification system pipe 18 is provided in the ejector 61.
  • a nickel ion implantation apparatus 36 has a chemical solution tank 37, an injection pump 38 and an injection pipe 39.
  • the chemical solution tank 37 is connected to the circulation pipe 31 by an injection pipe 39 having an injection pump 38 and a valve 40.
  • An aqueous solution of nickel formate (an aqueous solution containing nickel ions) prepared by dissolving nickel formate (Ni (HCOO) 2 ⁇ 2 H 2 O) in a dilute aqueous solution of formic acid is filled in the chemical solution tank 37.
  • a platinum ion implantation device (noble metal ion implantation device) 46 has a chemical solution tank 47, an injection pump 48 and an injection pipe 49.
  • the chemical solution tank 47 is connected to the circulation pipe 31 by an injection pipe 49 having an injection pump 48 and a valve 50.
  • An aqueous solution containing platinum ions prepared by dissolving a platinum complex eg, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 ] .nH 2 O) in water (eg, sodium hexahydroxoplatinate) Hydrate aqueous solution
  • the aqueous solution containing platinum ions is a kind of aqueous solution containing precious metal ions.
  • the reducing agent injection device 41 has a chemical solution tank 42, an injection pump 43 and an injection pipe 44.
  • the chemical solution tank 42 is connected to the circulation pipe 31 by an injection pipe 44 having an injection pump 43 and a valve 45.
  • the injection pipes 39, 49 and 44 are connected to the circulation pipe 31 between the valve 77 and the on-off valve 78 in order from the valve 77 to the on-off valve 78.
  • the oxidant supply device 56 has a chemical solution tank 57, a supply pump 58 and a supply pipe 59.
  • the chemical solution tank 57 is connected to a pipe 76 upstream of the valve 75 by a supply pipe 59 having a supply pump 58 and a valve 60.
  • Hydrogen peroxide which is an oxidant, is filled in the chemical solution tank 57.
  • an aqueous solution in which ozone is dissolved may be used as the oxidant.
  • a pH meter 81 is attached to the circulation pipe 31 between a connection point of the injection pipe 44 and the circulation pipe 31 and the on-off valve 78.
  • the BWR plant 1 is stopped after the operation in one operation cycle is finished. After the shutdown, a part of the fuel assemblies loaded in the core 4 is taken out as a spent fuel assembly, and a new fuel assembly with a burnup of 0 GWd / t is loaded in the core 4. After such refueling is completed, the BWR plant 1 is restarted for operation in the next operation cycle. Maintenance inspection of the BWR plant 1 is performed using a period during which the BWR plant 1 is stopped for refueling.
  • the target method of inhibiting corrosion of carbon steel members of the plant of this embodiment is implemented.
  • the adhesion treatment of nickel metal to the inner surface of the purification system piping 18 in contact with the reactor water, the adhesion treatment of noble metal such as platinum to the adhered nickel metal and the noble metal are adhered.
  • the conversion of nickel metal into stable nickel ferrite is carried out.
  • the method of suppressing the corrosion of carbon steel members of the plant of the present embodiment will be described below based on the procedure shown in FIG.
  • the film forming devices 30 and 30A are used.
  • a film forming apparatus is connected to a carbon steel piping system to be subjected to film formation (step S1).
  • the bonnet of the valve 23 installed in the purification system piping 18 is opened upstream of the purification system pump 19 to seal the recirculation system piping 6 side.
  • One end of the circulation pipe 31 of the film forming apparatus 30 on the side of the on-off valve 78 is connected to the flange of the valve 23.
  • the bonnet of the valve 25 installed in the purification system pipe 18 between the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21 is opened to seal the non-regenerating heat exchanger 21 side.
  • the other end of the circulation pipe 31 on the side of the on-off valve 62 is connected to the flange of the valve 25. Both ends of the circulation pipe 31 are connected to the purification system pipe 18, and a closed loop including the purification system pipe 18 and the circulation pipe 31 is formed. Similarly, one end of the on-off valve 78 side of the circulation piping 31 of the film forming apparatus 30A is connected to the flange of the valve 32A, and the other end on the on-off valve 62 side of the circulation piping 31 is connected to the flange of the valve 26 The film forming device 30A is connected to the purification system pipe 18.
  • the film forming apparatus 30 is connected to the purification system pipe 18 of the reactor purification system, but in addition to the purification system pipe 18, a residual heat removal system which is a carbon steel member and communicated with the RPV 3
  • the film forming apparatus 30 is connected to any carbon steel piping of the reactor isolation cooling system, core spray system, or water supply system, and the carbon steel members of the plant of this embodiment are corroded to the carbon steel piping. A suppression method may be applied.
  • the steps S2 to S14 described below are performed by the film forming device 30 on the portion of the purification system piping 18 between the valve 23 and the valve 25.
  • the film forming device 30A performs the purification system piping 18 , Between the valve 26 and the valve 32A.
  • Chemical decontamination is carried out on a carbon steel piping system to be subjected to film formation (step S2).
  • an oxide film containing a radionuclide is formed on the inner surface of the purification system pipe 18 in contact with the reactor water flowing from the RPV 3.
  • the removal of the oxide film improves the adhesion between the nickel metal film and the inner surface of the purification system pipe 18.
  • a chemical decontamination in particular, a reduction decontamination using a reduction decontamination solution containing oxalic acid which is a reduction decontamination agent is performed on the inner surface of the purification system pipe 18.
  • the chemical decontamination to be applied to the inner surface of the purification system pipe 18 in step S2 is a known reductive decontamination described in JP-A-2000-105295. This reduction decontamination will be described.
  • the circulation pumps 34 and 35 are driven with the on-off valve 62, the valves 63, 66, 69, 74 and 77, and the on-off valve 78 opened and the other valves closed.
  • the water heated to 90 ° C. by the heater 33 in the surge tank 32 in the purification system pipe 18 circulates in the closed loop formed by the circulation pipe 31 and the purification system pipe 18.
  • the valve 79 is opened to introduce a part of the water flowing in the circulation pipe 31 into the pipe 80.
  • a predetermined amount of oxalic acid supplied from the hopper and ejector 61 into the pipe 80 is introduced into the surge tank 32 by the water flowing through the pipe 80.
  • the oxalic acid is dissolved in water in the surge tank 32, and an oxalic acid aqueous solution (reduction decontamination solution) is generated in the surge tank 32.
  • the oxalic acid aqueous solution is discharged from the surge tank 32 to the circulation pipe 31 by driving the circulation pump 34.
  • the hydrazine solution in the chemical solution tank 42 of the reducing agent injection device 41 is injected into the oxalic acid aqueous solution in the circulation pipe 31 through the injection pipe 44 by opening the valve 45 and driving the injection pump 43.
  • Purification system by controlling the injection pump 43 (or the opening degree of the valve 45) based on the pH value of the aqueous solution of oxalic acid measured by the pH meter 81 to adjust the injection amount of the hydrazine aqueous solution into the circulation pipe 31
  • the pH of the aqueous solution of oxalic acid supplied to the pipe 18 is adjusted to 2.5.
  • nickel metal when nickel metal is attached to the inner surface of the purification system pipe 18 and a noble metal such as platinum is attached on the nickel metal film, hydrazine which is a reducing agent used for reduction decontamination is used. In the process, it is used as a pH adjuster to adjust the pH of an aqueous solution of oxalic acid.
  • An oxalic acid aqueous solution having a pH of 2.5 and 90 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18, and the oxalic acid in the aqueous solution is formed on the inner surface of the purification system pipe 18. Dissolve.
  • the oxalic acid aqueous solution flows in the purification system pipe 18 while dissolving the oxide film, and passes through the purification system pump 19 and the regenerative heat exchanger 20, the non-regenerating heat exchanger 21, the bypass piping 28 and the regenerative heat exchanger 20. It is returned to the circulation pipe 31.
  • the aqueous solution of oxalic acid returned to the circulation pipe 31 is pressurized by the circulation pump 35 through the on-off valve 62 and passes through the valves 63, 66, 68 and 73 to reach the surge tank 32.
  • the aqueous solution of oxalic acid circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18 to carry out reduction decontamination of the inner surface of the purification system pipe 18 to dissolve the oxide film formed on the inner surface. .
  • the radionuclide concentration and Fe concentration of the aqueous solution of oxalic acid increase with the dissolution of the oxide film.
  • a part of the aqueous solution of oxalic acid returned to the circulation pipe 31 is guided to the cation exchange resin tower 53 by the pipe 71 by opening the valve 70 and adjusting the opening degree of the valve 69 .
  • the radionuclide contained in the oxalic acid aqueous solution and the metal cation such as Fe are adsorbed to the cation exchange resin in the cation exchange resin tower 53 and removed.
  • the oxalic acid aqueous solution discharged from the cation exchange resin column 53 and the oxalic acid aqueous solution passed through the valve 69 are again supplied from the circulation piping 31 to the purification system piping 18 and used for reduction and decontamination of the purification system piping 18.
  • valve 60 is opened to start the supply pump 58, and the hydrogen peroxide in the chemical solution tank 57 is supplied to the aqueous solution of oxalic acid flowing in the circulation pipe 31 through the supply pipe 59 and the pipe 76 in the state where the valve 75 is closed. Do. An aqueous solution of oxalic acid containing hydrogen peroxide is led from the circulation pipe 31 into the purification system pipe 18.
  • Fe (II) contained in iron (II) oxalate formed on the inner surface of the purification system pipe 18 is oxidized to Fe (III) by the action of hydrogen peroxide, and the iron (II) oxalate is oxidized It is dissolved in an aqueous solution of oxalic acid as an iron (III) complex. That is, iron oxalate (II) and hydrogen peroxide and oxalic acid contained in an aqueous solution of oxalic acid form an iron (III) oxalate complex, water and hydrogen ions by the reaction shown in formula (4).
  • Metal cations such as radionuclide contained in the aqueous solution of oxalic acid are adsorbed to the cation exchange resin in the cation exchange resin tower 53 and removed.
  • the disappearance of hydrogen peroxide in the oxalic acid aqueous solution can be confirmed, for example, by immersing a test paper reacting with hydrogen peroxide in the oxalic acid aqueous solution sampled from the circulation pipe 31 and observing the color appearing on the test paper.
  • the dose rate of the reduction decontamination site of the purification system pipe 18 decreases to the set dose rate, or when the reduction decontamination time of the purification system pipe 18 reaches a predetermined time, oxalic acid contained in the aqueous solution of oxalic acid and Decompose hydrazine (Reductive decontamination reagent decomposition process).
  • the decrease of the dose rate at the reduction decontamination site to the set dose rate is confirmed by the dose rate obtained based on the output signal of the radiation detector that detects the radiation from the reduction decontamination site of the purification system pipe 18 be able to.
  • Decomposition of oxalic acid and hydrazine is carried out as follows.
  • the valve 75 is opened to partially reduce the opening degree of the valve 74, and the oxalic acid aqueous solution containing hydrazine which has passed through the valve 69 and the valve 70 is supplied to the disassembling apparatus 55 through the valve 75 and the pipe 76.
  • the hydrogen peroxide in the chemical solution tank 57 is supplied to the decomposition device 55 through the supply pipe 59 and the pipe 76.
  • the oxalic acid and hydrazine contained in the oxalic acid aqueous solution are decomposed in the decomposition apparatus 55 by the action of the activated carbon catalyst and the supplied hydrogen peroxide.
  • the decomposition reaction of oxalic acid and hydrazine in the decomposition apparatus 55 is represented by Formula (5) and Formula (6).
  • the decomposition of oxalic acid and hydrazine in the decomposition apparatus 55 is performed while circulating the oxalic acid aqueous solution in a closed loop including the circulation pipe 31 and the purification system pipe 18.
  • the supply amount of hydrogen peroxide from the chemical solution tank 57 to the decomposition device 55 is set so that the supplied hydrogen peroxide is not completely consumed by the decomposition device 55 for decomposition of oxalic acid and hydrazine and does not flow out of the decomposition device 55.
  • the rotational speed of the feed pump 58 is controlled and adjusted.
  • oxalic acid may exist in the aqueous solution of oxalic acid discharged from the decomposition apparatus 55, and iron (II) oxalate may be formed on the inner surface of the purification system pipe 18 is there. Therefore, when the decomposition of oxalic acid and hydrazine contained in the aqueous oxalic acid solution proceeds to a certain extent, the amount of hydrogen peroxide supplied from the chemical solution tank 57 to the decomposition device 55 is set so that the hydrogen peroxide flows out from the decomposition device 55. increase. At this time, in order to prevent the hydrogen peroxide from flowing into the cation exchange resin tower 53, the valve 70 is closed in advance.
  • the iron (II) oxalate formed on the inner surface of the purification system pipe 18 in the reduction decontamination reagent decomposition process becomes an iron (III) oxalate complex by the action of hydrogen peroxide in the aqueous solution of oxalic acid. Dissolve in aqueous oxalic acid solution. As decomposition of oxalic acid and the like in the aqueous oxalic acid solution proceeds, oxalic acid which converts Fe (II) contained in iron (II) oxalate to Fe (III) runs short, and Fe on the inner surface of the circulation pipe 31 It becomes easy to precipitate (OH) 3 .
  • formic acid is injected into an aqueous solution of oxalic acid to suppress precipitation of Fe (OH) 3 .
  • the injection of formic acid is performed, for example, by supplying formic acid from the hopper and ejector 61 described above to the aqueous solution of oxalic acid flowing in the pipe 80 and guiding it to the surge tank 32.
  • the supplied formic acid is mixed with the aqueous oxalic acid solution.
  • the aqueous solution of oxalic acid containing formic acid contains hydrogen peroxide discharged from the decomposition apparatus 55 in addition to the lowered concentrations of oxalic acid and hydrazine.
  • the hydrogen peroxide contained in the oxalic acid aqueous solution dissolves iron (II) oxalate deposited on the inner surface of the purification system pipe 18, and the formic acid dissolves Fe (OH) 3 .
  • the decomposition of oxalic acid and hydrazine contained in the aqueous oxalic acid solution is also continued in the decomposition apparatus 55.
  • the opening degree of the valve 60 is squeezed to adjust the supply amount of hydrogen peroxide to such an extent that hydrogen peroxide does not flow out from the decomposition device 55 and inject new formic acid Close the valve 79 to stop it.
  • the valve 70 is opened to reduce the opening degree of the valve 69, and the oxalic acid aqueous solution is supplied to the cation exchange resin tower 53.
  • the metal cations in the aqueous oxalic acid solution are removed by the cation exchange resin in the cation exchange resin tower 53, and the metal cation concentration of the aqueous oxalic acid solution decreases.
  • the decomposition of oxalic acid, hydrazine and formic acid is continued in the decomposition unit 55.
  • oxalic acid, hydrazine and formic acid hydrazine is decomposed first, then oxalic acid is decomposed, and formic acid remains last. In this state, the oxalic acid decomposition process is completed.
  • the purification system piping 18 is in the state shown in FIG. 4 by removing the oxide film containing the radionuclide from the inner surface of the purification system piping 18.
  • the inner surface is in contact with the aqueous solution containing the remaining formic acid as described above.
  • the temperature of the film forming solution is adjusted (step S3). Valves 69 and 74 are opened and valves 70 and 75 are closed. Since the circulation pumps 34 and 35 are driven, the remaining aqueous solution containing formic acid circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18.
  • the aqueous solution containing the formic acid is heated by the heater 33 to 90.degree.
  • the temperature of the formic acid aqueous solution (the film-forming aqueous solution described later) is desirably in the temperature range of 60 ° C. to 100 ° C. (60 ° C. or more and 100 ° C. or less). Further, the valve 64 is opened and the valve 63 is closed.
  • the formic acid aqueous solution flowing in the circulation pipe 31 is supplied to the filter 51, and the fine solid content remaining in the formic acid aqueous solution is removed by the filter 51.
  • fine solid content is not removed, as described later, when an aqueous solution of nickel formate is injected into the circulation pipe 31, a nickel metal film is also formed on the surface of the solid, and the injected nickel ions are wasted. Be done.
  • a nickel ion aqueous solution is injected (step S4).
  • the valve 63 is opened, the valve 64 is closed, and the water flow to the filter 51 is stopped.
  • the valve 40 of the nickel ion implantation apparatus 36 is opened and the injection pump 38 is driven to inject the aqueous solution of nickel formate in the chemical solution tank 37 into the aqueous solution of 90 ° C. containing residual formic acid flowing through the circulation pipe 31 through the injection pipe 39 Do.
  • the nickel ion concentration of the aqueous solution of nickel formate to be injected is, for example, 200 ppm.
  • a reducing agent is injected (step S5).
  • the valve 45 of the reducing agent injection device 41 is opened to drive the injection pump 43, and an aqueous solution of hydrazine, which is the reducing agent in the chemical solution tank 42, flows through the injection piping 44 through the circulation piping 31 including nickel ions and formic acid 90 Injected into an aqueous solution of ° C.
  • the hydrazine concentration of the aqueous hydrazine solution to be injected is, for example, 200 ppm.
  • the aqueous hydrazine solution contains nickel ions and formic acid so that the pH of the aqueous solution at 90 ° C. is in the range of 4.0 to 11.0 (4.0 or more and 11.0 or less), for example, 4.0. ,
  • the injection amount to the aqueous solution is adjusted.
  • An aqueous solution containing a nickel ion, formic acid and hydrazine and having a pH of 4.0 and a temperature of 90 ° C., ie, a film forming aqueous solution (film forming solution) is supplied from the circulation piping 31 to the purification system piping 18 by driving the circulation pump 34. .
  • a nickel metal film 82 is formed on the inner surface of the purification system pipe 18 by the film forming aqueous solution 83 contacting the inner surface of the purification system pipe 18 (see FIG. 5). The formation of the nickel metal film 82 is performed as follows.
  • the substitution reaction between the nickel ions contained in the film formation aqueous solution 83 and the Fe (II) ions in the purification system piping 18 is accelerated and purification is performed.
  • the amount of nickel ions taken into the inner surface of the system piping 18 increases, and the elution of iron (II) ions into the film-forming aqueous solution 83 increases.
  • the nickel ions taken into the inner surface of the purification system pipe 18 become nickel metal by the action of the hydrazine contained in the film forming aqueous solution 83, so the nickel metal film 82 is formed on the inner surface of the purification system pipe 18.
  • the substitution reaction between nickel ions and iron (II) ions is most active when the pH of the film-forming aqueous solution 83 in contact with the inner surface of the purification system pipe 18 is 4.0, and is taken into the inner surface of the purification system pipe 18
  • the amount of nickel ions is the highest.
  • the pH of the aqueous solution for film formation 83 is increased to 7 or the like by the injection of the reducing agent, the amount of the incorporated nickel ions to be nickel metal increases.
  • the film forming aqueous solution 83 discharged from the purification system pipe 18 to the circulation pipe 31 is pressurized by the circulation pumps 35 and 34, and the nickel formate aqueous solution from the nickel ion injection device 36 and the hydrazine aqueous solution from the reducing agent injection device 41 are injected respectively. It is supplied to the purification system pipe 18 again.
  • the film-forming aqueous solution 83 in the closed loop including the circulation pipe 31 and the purification system pipe 18 the nickel metal film is in contact with the film-forming aqueous solution 83 eventually, between the valve 23 and the valve 25.
  • the entire surfaces of the inner surface of the purification system pipe 18 and the inner surface of the purification system pipe 18 between the valve 26 and the valve 32A are uniformly covered. At this time, for example, 50 ⁇ g to 300 ⁇ g (50 to 300 ⁇ g / cm 2 ) of nickel metal per square centimeter are present on the inner surface of the purification system pipe 18.
  • a liquid surface of a 90 ° C. aqueous solution (or a film formation aqueous solution) containing the remaining formic acid is formed, and a space (not shown) exists above the liquid surface.
  • a space exists above the liquid surface.
  • Oxygen in the air in the space is supplied to the 90 ° C. aqueous solution (or film-forming aqueous solution) containing the remaining formic acid in the surge tank 32 through the liquid surface. Due to the supply of oxygen in the surge tank 32, the aqueous solution contains about 2 ppm of a trace amount of oxygen.
  • an aqueous hydrazine solution containing 200 ppm of hydrazine is injected into the aqueous solution.
  • the film-forming aqueous solution produced in the circulation pipe 31 by injection of the hydrazine aqueous solution contains a large amount of hydrazine as compared to about 2 ppm of oxygen. Since the oxygen contained in the aqueous solution for film formation is decomposed by the injected reducing agent, for example, hydrazine, to become water, the oxygen dissolved in the aqueous solution for film formation disappears.
  • an oxygen-free film-forming aqueous solution containing nickel ions, formic acid and hydrazine and having a pH of 4.0 and 90 ° C. is supplied into the purification system piping 18.
  • the nickel ions taken into the inner surface of the purification system pipe 18 become nickel metal by the action of the hydrazine contained in the film forming aqueous solution, and eventually a nickel metal film is formed on the inner surface of the purification system pipe 18.
  • the inner surface of the purification system pipe 18 is a nickel metal film containing unstable nickel ferrite (Ni 0.7 Fe 2.3 O 4 ) It is formed.
  • a film-forming aqueous solution containing no oxygen is generated, and the film-forming aqueous solution is supplied to the purification system pipe 18 so that the inner surface of the purification system pipe 18 does not contain unstable nickel ferrite.
  • a metal film can be formed.
  • the aqueous solution for film formation contains hydrazine, the thickness of the nickel metal film formed on the inner surface of the purification system pipe 18 can be increased.
  • an inert gas for example, nitrogen
  • an inert gas for example, nitrogen
  • An aqueous solution containing no oxygen can be supplied from the surge tank 32 to the circulation pipe 31.
  • hydrazine By injecting hydrazine into this aqueous solution, a film-forming aqueous solution containing no oxygen can be generated in the circulation pipe 31.
  • an inert gas By injecting an inert gas into the aqueous solution in the surge tank 32, it is possible to reduce the amount of hydrazine injected into the circulation pipe 31 for the generation of the film-forming aqueous solution.
  • step S6 It is determined whether the formation of the nickel metal film is completed.
  • the steps S4 to S6 are repeated.
  • the injection pump 38 is stopped and the valve 40 is closed to stop the injection of the aqueous solution of nickel formate into the circulation pipe 31 and the injection pump 43 to stop the injection of the aqueous hydrazine solution into the circulation pipe 31, and the formation of the nickel metal film on the inner surface of the purification system pipe 18 is ended.
  • the set time is determined by measuring in advance the time taken for the nickel metal on the surface of the carbon steel test piece to reach 50 ⁇ g / cm 2 .
  • the formic acid decomposes the reducing agent (step S7).
  • the opening degree of the valve 69 is squeezed, and the valve 70 is opened to pass a film forming aqueous solution 83 containing nickel ions, formic acid and hydrazine to the cation exchange resin tower 53.
  • nickel ions are adsorbed to the cation exchange resin, and the concentration of nickel ions in the film forming aqueous solution 83 decreases.
  • valve 75 is opened to close a part of the opening degree of the valve 74, and a part of the film forming aqueous solution 83 containing nickel ions, formic acid and hydrazine pressurized by the circulation pump 35 is decomposed through the pipe 76
  • the hydrogen peroxide in the chemical solution tank 57 is supplied to the decomposition device 55 through the supply pipe 59 and the pipe 76.
  • Formic acid, which is a counter ion of nickel ions, and hydrazine, which is a reducing agent, contained in the aqueous solution for film formation 83 are decomposed into carbon dioxide, nitrogen and water in the decomposition apparatus 55 by the action of the activated carbon catalyst and hydrogen peroxide. .
  • the film-forming aqueous solution in which formic acid and the reducing agent are decomposed is purified (step S8).
  • the valve 74 is opened and the valve 75 is closed to stop the supply of the formic acid, the aqueous solution of film formation 83 having reduced hydrazine concentration to the decomposition device 55, and the valve 67 is opened.
  • the valve 66 is closed, the valve 72 is opened, and a part of the opening of the valve 69 is closed.
  • the valve 70 is closed.
  • the circulation pumps 35 and 34 are driven.
  • the film forming aqueous solution 83 reduced in concentration of formic acid and hydrazine returned to the circulation pipe 31 from the purification system pipe 18 is cooled to 60 ° C. by the cooler 52. Further, formic acid, a film forming aqueous solution 83 having a reduced concentration of hydrazine and at 60 ° C. is led to the mixed bed resin tower 54, and nickel ions, other cations and anions remaining in the film forming aqueous solution 83 are mixed. It is adsorbed and removed by the cation exchange resin and the anion exchange resin in the floor resin tower 54 (first purification step). The aqueous solution for film formation at 60 ° C.
  • the film-forming aqueous solution substantially free of each ion is water substantially at 60 ° C., but contains a trace amount of iron ion (Fe 3+ ) remaining.
  • a complex ion forming agent aqueous solution is injected (step S9).
  • the valve 69 is opened and the valve 72 is closed, the valve 79 is opened, water is supplied to the ejector 61, and an aqueous ammonia solution which is a complex ion forming agent aqueous solution is sucked from the hopper.
  • the aqueous ammonia solution is supplied to water at 60 ° C. in the surge tank 32 containing a trace amount of iron ions.
  • a 60 ° C. aqueous solution containing a trace amount of Fe 3+ and ammonia is pressurized from the surge tank 32 by the circulation pump 34 and supplied to the purification system piping 18 by the circulation piping 31. This 60 ° C. aqueous solution containing ammonia reaches the circulating pump 35 along the constructed closed loop, and is boosted by the circulating pump 35 and returned to the surge tank 32.
  • a platinum ion aqueous solution is injected (step S10).
  • the valve 50 is opened to drive the injection pump 48.
  • the aqueous solution at 60 ° C. containing ammonia, which flows in the circulation pipe 31, is kept at 60 ° C. by heating by the heater 33.
  • An aqueous solution containing ammonia at 60 ° C. flowing through the circulation pipe 31 through the injection pipe 49 and containing the platinum ion in the chemical solution tank 47 eg, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 Aqueous solution of n H 2 O) is injected.
  • the concentration of platinum ions in this aqueous solution to be injected is, for example, 1 ppm.
  • platinum is in an aqueous solution of sodium hexahydroxoplatinate hydrate, platinum is in an ionic state.
  • a 60 ° C. aqueous solution containing platinum ions and ammonia is supplied from the circulation piping 31 to the purification system piping 18 by driving the circulation pumps 34 and 33, and is returned from the purification system piping 18 to the circulation piping 31.
  • the aqueous solution containing platinum ions circulates in a closed loop including the circulation pipe 31 and the purification system pipe 18.
  • the rotational speed of the injection pump 48 is controlled in accordance with the calculated injection rate of the aqueous solution of Na 2 [Pt (OH) 6 ] ⁇ nH 2 O into the circulation pipe 31, and Na 2 [Pt (OH 6 ) The nH 2 O aqueous solution is injected into the circulation pipe 31.
  • a reducing agent is injected (step S11).
  • the valve 45 of the reducing agent injection device 41 is opened to drive the injection pump 43, and an aqueous solution of hydrazine, which is the reducing agent in the chemical solution tank 42, flows through the injection pipe 44 through the circulation pipe 31. Injected into an aqueous solution of ° C.
  • the hydrazine concentration of the aqueous hydrazine solution to be injected is, for example, 100 ppm.
  • the aqueous hydrazine solution is a circulation pipe after the aqueous solution of 60 ° C. containing ammonia and Na 2 [Pt (OH) 6 ] .nH 2 O reaches the connection point of the injection pipe 44 and the circulation pipe 31 which is the injection point of the hydrazine aqueous solution. It is injected into 31.
  • a 60 ° C. aqueous solution containing platinum ions, hydrazine and ammonia is supplied from the circulation pipe 31 to the purification system pipe 18.
  • the hydrazine aqueous solution is circulated It is desirable to inject into 31.
  • an aqueous solution at 60 ° C. containing ammonia and platinum ions is supplied from the circulation pipe 31 to the purification system pipe 18 and injection of the platinum ion aqueous solution into the circulation pipe 31 is completed, platinum ions, hydrazine and ammonia
  • the aqueous solution 85 (see FIG. 6) containing 60 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18.
  • the concentration of hydrazine at the connection point of the aqueous hydrazine solution injected from the chemical solution tank 42 through the connection point of the circulation pipe 31 and the injection pipe 44 is set in advance to 100 ppm, for example.
  • the rate of injection of the hydrazine aqueous solution into the circulation pipe 31 is calculated, and the hydrazine in the aqueous solution containing platinum ions at 60.degree. C.
  • the amount of aqueous hydrazine solution to be filled in the chemical solution tank 42 is calculated to reduce platinum ions adsorbed on the surface of the nickel metal film 82 to platinum 84, and the calculated amount of aqueous hydrazine solution is filled in the chemical solution tank 42 Do.
  • the rotational speed of the injection pump 43 is controlled in accordance with the calculated injection rate of the aqueous hydrazine solution into the circulation pipe 31, and the aqueous hydrazine solution in the chemical solution tank 42 is injected into the circulation pipe 31.
  • platinum ions adsorbed on the surface of the nickel metal film 82 are reduced by the injected hydrazine to become platinum 84, and platinum 84 adheres to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18 (see FIG. 6) ).
  • ammonia contained in the aqueous solution 85 in contact with the nickel metal film 82 reacts with a trace amount of iron ion (Fe 3+ ) contained in the aqueous solution 85 to generate iron-ammonia complex ion.
  • iron ion concentration in the aqueous solution 85 decreases, and the iron ions contained in the aqueous solution 85 do not precipitate as iron hydroxide and magnetite.
  • the platinum ion contained in the aqueous solution 85 is not attached to iron hydroxide and magnetite as platinum, and the amount of platinum attached on the nickel metal film 82 is increased.
  • step S12 It is determined whether the deposition of platinum is completed (step S12). When the elapsed time from the injection of the platinum ion aqueous solution and the reducing agent aqueous solution reaches a predetermined time, it is determined that the adhesion of a predetermined amount of platinum to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is completed. . When the elapsed time does not reach the predetermined time, each process of steps S10 to S12 is repeated.
  • the aqueous solution remaining in the purification system pipe 18 and the circulation pipe 31 is purified (step S13).
  • the valve 72 is opened to close a part of the opening degree of the valve 69 and the circulation pump 35 is used.
  • a 60 ° C. aqueous solution containing platinum ions and hydrazine, ammonia, which has been pressurized, is supplied to the mixed bed resin column 54.
  • the platinum ion, other metal cations (eg, sodium ion), hydrazine, ammonia and OH groups contained in the aqueous solution are adsorbed onto the ion exchange resin in the mixed bed resin column 54 and removed from the aqueous solution ( 2 purification process).
  • the waste liquid is treated (step S14).
  • the circulation pipe 31 and the waste liquid treatment apparatus (not shown) are connected by a high pressure hose (not shown) having a pump (not shown).
  • the aqueous solution which is radioactive waste liquid remaining in the purification system pipe 18 and the circulation pipe 31 is driven by the pump from the circulation pipe 31 through the high pressure hose to the waste liquid treatment apparatus (not shown) It is discharged and treated by the waste liquid treatment device.
  • wash water is supplied into the purification system pipe 18 and the circulation pipe 31 and the circulation pumps 34 and 35 are driven to wash the inside of these pipes.
  • the cleaning water in the purification system piping 18 and the circulation piping 31 is discharged to the above-described waste liquid treatment apparatus.
  • the portion of the purification system piping 18 between the valve 23 and the valve 25 upstream of the non-regeneration heat exchanger 21 and the portion between the valve 26 and the valve 32A downstream of the regeneration heat exchanger 20 The formation of the nickel metal film 82 on the inner surface of the and the deposition of platinum 84 on the nickel metal film 82 are completed.
  • a nickel metal film 82 to which platinum 84 is attached is not formed on the inner surface of a portion of the purification system piping 18 downstream of the valve 25 and upstream of the valve 26.
  • the film forming apparatus is removed from the piping system (step S15). After the processes of steps S1 to S14 are performed, each of the film forming devices 30 and 30A is removed from the purification system piping 18, and the purification system piping 18 is restored.
  • the nuclear plant is started (step S16). After refueling and maintenance inspection of BWR plant 1 are completed, nickel metal film 82 adhering platinum 84 has purification system piping 18 formed on the inner surface to start operation in the next operation cycle The BWR plant 1 is started.
  • the reactor water in the temperature range of 130 ° C. or more and less than 200 ° C. is brought into contact with the nickel metal film to which platinum is attached (step S17).
  • the reactor water present in the downcomer in the RPV 3 is supplied to the core 4 through the recirculation system pipe 6 and the jet pump 5 as described above.
  • Reactor water discharged from the core is returned to the downcomer.
  • the reactor water in the downcomer flows into the purification system piping 18 via the recirculation system piping 6 and eventually flows into the water supply piping 11 and is returned into the RPV 3.
  • Control rods (not shown) are withdrawn from the core 4 to bring the core 4 from a subcritical state to a critical state, and the reactor water in the core 4 is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel rods. In the core 4, no steam is generated. Further, the control rods are withdrawn from the core 4, and the pressure in the RPV 3 is raised to the rated pressure in the heating and pressurizing process of the reactor 2, and the reactor water is heated by the heat generated by the nuclear fission and the reactor water in the RPV 3 The temperature reaches the rated temperature (280 ° C).
  • the reactor power is rated by the further withdrawal of control rods from the core 4 and the increase in the flow rate of reactor water supplied to the core 4 It is raised to the output (100% output).
  • the rated operation of the BWR plant 1 maintaining the rated output is continued until the end of the operating cycle.
  • the reactor power rises, for example, to 10% power, the steam generated in the core 4 is supplied to the turbine 9 through the main steam piping 8 to start power generation.
  • the reactor water 86 contains oxygen and hydrogen peroxide. Oxygen and hydrogen peroxide are generated by radiolysis of the reactor water 86 in the RPV 3.
  • the reactor water 86 containing oxygen in the RPV 3 is led from the recirculation system piping 6 into the purification system piping 18 with the purification system pump 19 being driven, and is formed on the inner surface of the purification system piping 18 , And contacts the deposited nickel metal film 82 (see FIG. 7).
  • the heating of the reactor water by the heat generated by the above-mentioned nuclear fission causes the temperature of the reactor water 86 in contact with the nickel metal film 82 to rise, eventually to 130 ° C. or more, and finally to 280 ° C. at the rated output. To rise.
  • the temperature of the reactor water 86 greatly differs before and after the regenerative heat exchanger 20 and the non-regenerative heat exchanger 21.
  • the reactor water 86 of about 280 ° C. flows in the portion of the purification system piping 18 upstream of the regenerative heat exchanger 20.
  • the temperature of the reactor water 86 flowing out from the regenerative heat exchanger 20 to the valve 25 side falls to a range of about 200 ° C to about 150 ° C.
  • the reactor water 86 drops to a temperature in the range of 50 ° C.
  • the reactor water 86 that has flowed out of the reactor water purification device 22 is used as water supply, and after being heated to a range of about 150 ° C. to 200 ° C. by the regenerative heat exchanger 20, joins the water supply flowing in the water supply pipe 11.
  • the furnace water 86 flowing through the furnace, the furnace water 86 flowing through the portion between the regenerative heat exchanger 20 and the valve 25 of the purification system pipe 18, and the furnace water flowing through the portion between the valve 26 and the valve 32A of the purification system pipe 18 86 has a temperature in the temperature range of 130 ° C. or more and less than 200 ° C. although there is a time lag.
  • the temperature of the reactor water in the RPV 3 rises to a higher temperature exceeding 130 ° C.
  • the purification system piping 18 and its nickel metal film 82 are heated to the same temperature as the furnace water 86 by contacting the furnace water 86 containing oxygen in the temperature range of 130 ° C. or more and less than 200 ° C.
  • Oxygen contained in the reactor water 86 is transferred into the nickel metal film formed on the inner surface of the purification system pipe 18 respectively between the valve 23 and the valve 25 and between the valve 26 and the valve 32A, which is a carbon steel member Fe contained in the purification system pipe 18 is converted to Fe 2+ to move into the nickel metal film (see FIG. 8).
  • oxygen contained in the reactor water 86 and Fe 2+ from the purification system pipe 18 are easily transferred into the nickel metal film.
  • the oxygen concentration of the reactor water is low, the water molecules of the reactor water are decomposed by the corrosion of iron to generate oxygen, and this oxygen functions in the same manner as the oxygen contained in the above-mentioned reactor water 86.
  • the corrosion potential of the cleaning system pipe 18 and the nickel metal film 82 is reduced by the action of platinum 84 attached to the nickel metal film 82, and the high temperature environment of 130 ° C. or more and less than 200 ° C.
  • Nickel reacts with oxygen and Fe 2+ transferred into the nickel metal film 82 to form a stable nickel ferrite (NiFe 2 O 4 ) in which x is 0 in Ni 1 -xFe 2 + x O 4 .
  • NiFe 2 O 4 nickel ferrite
  • the ease with which nickel and iron are incorporated into the ferrite structure is affected by platinum (noble metal), and in the presence of platinum, nickel is more easily incorporated than iron, so Ni 1-x Fe 2 + x.
  • a stable nickel ferrite with x at 0 at O 4 is produced.
  • the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 87, and between the valve 23 and the valve 25 and between the valve 26 and the valve 32A.
  • the inner surface of the purification system pipe 18 in the above is covered with a stable nickel ferrite film 87 in which platinum 84 is attached to the surface (see FIG. 9).
  • Ni 1-x Fe 2 + x O 4 produced as described above from the nickel metal contained in the nickel metal film 82 covering the inner surface of the purification system pipe 18 in a high temperature environment of 130 ° C. or more and less than 200 ° C.
  • NiFe 2 O 4 nickel ferrite (NiFe 2 O 4 ) in which x is 0 in the above, crystals are grown large, and even if a noble metal is attached, it does not dissolve in water like Ni 0.7 Fe 2.3 O 4 film, and is stable. The corrosion of the carbon steel which is the material, that is, the purification system piping 18 is suppressed.
  • the nickel ferrite film 87 formed of the nickel metal film 82 and having x of 0 in Ni 1-x Fe 2 + x O 4 has the function of the platinum 84 adhered even during the operation of the BWR plant 1. Is a stable nickel ferrite film which does not elute into reactor water.
  • the thus formed stable nickel ferrite film 87 which does not dissolve into the reactor water by the action of the attached platinum 84 is more than the Ni 0.7 Fe 2.3 O 4 film formed at a temperature range of 60 ° C. to 100 ° C. Corrosion of the purification system pipe 18 can be suppressed over a long period of time. Specifically, the stable nickel ferrite film 87 formed on the inner surface of the purification system pipe 18 does not elute by the action of the attached platinum 84, and a plurality of operation cycles, for example, five operation cycles (for example, Can cover the inner surface of the purification system piping 18 for five years. As described above, since the stable nickel ferrite film 87 can cover the inner surface of the purification system pipe 18 for a long time, corrosion of the purification system pipe 18 is suppressed for a long time.
  • Carbon steel members tend to be particularly susceptible to corrosion when contacted with water at a temperature in the range of 150 ° C. to 200 ° C.
  • the purification system piping 18 is a portion between the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21 on the upstream side of the reactor water purification device 22 and the downstream of the reactor water purification device 22.
  • the furnace water 86 At the side between the regenerative heat exchanger 20 and the connection point between the purification system piping 18 and the water supply piping 11, it contacts the furnace water 86 at a temperature in the range of 150 ° C. to 200 ° C. Therefore, the corrosion of the purification system piping 18 is increased in these parts.
  • stable nickel ferrite films 87 are formed on the inner surface of the purification system pipe 18 between the valve 23 and the valve 25 and between the valve 26 and the valve 32A, respectively. Corrosion is suppressed for a long time by the formed stable nickel ferrite film 87. Also in the purification system pipe 18 between the valve 23 and the regenerative heat exchanger 20, since the stable nickel ferrite film 87 is formed on the inner surface, the corrosion is suppressed.
  • valve 25 is as close as possible to the non-regenerating heat exchanger 21 and the valve 26 is as close to the regenerative heat exchanger 20 as possible.
  • 32A may be installed in the purification system piping 18 as close as possible to the connection point between the purification system piping 18 and the water supply piping 11.
  • the stable nickel ferrite film 87 formed on the inner surface of the purification system pipe 18 can suppress the adhesion of radionuclides to the purification system pipe 18 over a plurality of operation cycles. For this reason, the number of times of chemical decontamination performed on the purification system pipe 18 can be reduced.
  • a stable nickel ferrite film 87 is formed on the inner surface of the purification system pipe 18 between the valve 23 and the non-regenerating heat exchanger 21 on the upstream side of the reactor water purification apparatus 22, in particular, purification The adhesion of the radionuclide to the inner surface of the portion of the system piping 18 can be suppressed.
  • a film forming aqueous solution containing nickel ions and a reducing agent is brought into contact with the inner surface of the purification system pipe 18, and the inner surface of the purification system pipe 18 is brought into contact with the reactor water.
  • a covering nickel metal coating 82 can be formed.
  • this nickel metal film 82 it is possible to prevent the elution of Fe 2+ from the purification system pipe 18 to the film forming aqueous solution during the precious metal adhesion treatment, and adhesion of noble metal (for example, platinum) to the inner surface of the purification system pipe 18 Is not inhibited by the elution of Fe 2+ , which is required for the adhesion of the noble metal to its inner surface (specifically, the adhesion of the noble metal to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18) Time can be shortened. Further, the adhesion of the noble metal to the inner surface can be efficiently performed, and the adhesion amount of the noble metal to the inner surface of the purification system pipe 18 is increased.
  • noble metal for example, platinum
  • 50 ⁇ g / cm 2 of nickel metal is present in the nickel metal film 82 formed on the inner surface of the purification system pipe 18.
  • the nickel metal film 82 covers the entire inner surface of the purification system pipe 18 in contact with the film-forming aqueous solution, and the BWR plant in the next operation cycle is After the start-up, the contact of the reactor water flowing in the purification system pipe 18 with the base material of the purification system pipe 18 is blocked by the nickel metal film 82. For this reason, the corrosion of the purification system piping 18 due to the reactor water is suppressed, and further, the radionuclides contained in the reactor water do not take in the base material of the purification system piping 18.
  • the nickel metal film 82 formed on the inner surface of the purification system piping 18 not only shortens the time required for the adhesion of platinum to the purification system piping 18, but in combination with the action of the adhered platinum 84, the purification system piping This contributes to the formation of a stable nickel ferrite film 87 which does not elute into the reactor water even by the deposited platinum on the inner surface of 18.
  • nickel metal film 82 In the formation of the nickel metal film 82 on the inner surface of the purification system pipe 18, nickel ions contained in the aqueous solution for film formation are replaced with iron ions contained in the purification system pipe 18 and taken into the inner surface of the purification system pipe 18.
  • the nickel ion incorporated on the inner surface is reduced to a nickel metal by hydrazine (reducing agent) contained in the aqueous solution.
  • reducing agent hydrazine
  • nickel metal film 82 is formed on the inner surface of purification system pipe 18, so nickel is formed compared to when nickel metal film is formed on the oxide film. Contributes to the formation of a high ratio of stable nickel ferrite.
  • an oxidizing agent eg, hydrogen peroxide
  • a method of suppressing corrosion of a carbon steel member of a plant of embodiment 2 which is another embodiment of the present invention will be described with reference to FIG.
  • the method for suppressing the corrosion of carbon steel members of the plant of the present embodiment is applied to a carbon steel water supply pipe of a BWR plant.
  • step S1 of this embodiment one end of the circulation piping 31 of the film forming apparatus 30 on the side of the on-off valve 78 is connected to a first valve (not shown) provided in the water supply pipe 11 at the outlet of the low pressure water supply heater 14
  • the other end of the circulation pipe 31 on the side of the on-off valve 62 is connected to the second valve (not shown) provided to the water supply pipe 11 at the inlet of the high-pressure water supply heater 16.
  • the first valve is provided in the water supply pipe 11 as close as possible to the outlet of the low pressure feed water heater 14 and the second valve as close as possible to the inlet of the high pressure feed water heater 16.
  • the connection of the both ends of the circulation pipe 31 to the first valve and the second valve is performed in the same manner as the connection of the circulation pipe 31 to the valve 23 and the valve 25 in the first embodiment.
  • the radionuclide is not attached to the inner surface of the water supply pipe 11 to be constructed, the high temperature water flows and an oxide film is formed, so that the low pressure feed water heater 14 and the high pressure feed water heater are formed in step S2. Chemical decontamination is performed on the inner surface of the water supply pipe 11 between 16 for the purpose of removing the oxide film.
  • aqueous solution containing nickel ions and formic acid and having a pH of 4.0 at 90 ° C. is carried out from the film forming apparatus 30 to the water supply pipe 11 between the low pressure water supply heater 14 and the high pressure water supply heater 16.
  • the aqueous solution circulates in a closed loop including the water supply pipe 11 and the circulation pipe 31.
  • a nickel metal film is formed on the inner surface of the feed water pipe 11 between the low pressure feed water heater 14 and the high pressure feed water heater 16.
  • step S6 After the determination in step S6 is "Yes", steps S7 and S8 are performed.
  • the respective steps of steps S9 to S11 are performed, and an aqueous solution at 60 ° C. containing platinum ions, ammonia and hydrazine is supplied to the water supply pipe 11 between the low pressure water supply heater 14 and the high pressure water supply heater 16. Platinum adheres to the surface of the nickel metal film formed on the inner surface of the water supply pipe 11.
  • step S12 After the determination in step S12 is "Yes”, each process of steps S13 to S15 is performed.
  • step S15 the circulation pipe 31 is removed from the water supply pipe 11, and the water supply pipe 11 is restored to the original state.
  • step S17 the steam supplied from the RPV 3 to the turbine 9 is condensed by the condenser 10 in the reactor power rising process after the heating and pressurizing process of the reactor 2 is completed, and the water generated by this condensation is The water is supplied to the RPV 3 through the water supply pipe 11 as the water supply.
  • the feed water flowing through the feed water pipe 11 is heated by the low pressure feed water heater 14. Soon, the low-pressure feedwater heater 14 discharges the feedwater having a temperature in the temperature range of 130 ° C. or more and less than 200 ° C.
  • the feed water at this temperature contacts the platinum metal 84 deposited nickel metal film 82 formed on the inner surface of the feed water pipe 11 between the low pressure feed water heater 14 and the high pressure feed water heater 16.
  • the nickel metal film 82 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 87.
  • the low-pressure feed water heater 14 discharges the feed water at 150 ° C.
  • the present embodiment can obtain each effect generated in the first embodiment for the water supply pipe 11 other than the adhesion suppression of the radionuclide.
  • a method of suppressing corrosion of a carbon steel member of a plant of embodiment 3 which is another embodiment of the present invention will be described with reference to FIG.
  • the method for suppressing the corrosion of carbon steel members of the plant of this embodiment is applied to each of a carbon steel purification system pipe and a bottom drain pipe of a BWR plant.
  • the respective steps of steps S1 to S17 in the method of suppressing corrosion of carbon steel members of the plant of Embodiment 1 are performed.
  • the steps S1 to S15 are performed while the BWR plant 1 is shut down.
  • both ends of the circulation pipe 31A of the film forming apparatus 30A are connected to the valves 26 and 32, respectively, as in the first embodiment.
  • the end of the circulation piping 31 of the film forming apparatus 30 on the side of the on-off valve 78 is branched into two, one branched end is connected to the valve 23, and the other branched end is connected to the bottom drain piping 89 It is connected to the provided valve 88.
  • One end of the bottom drain pipe 89 is connected to the bottom of the RPV 3, and the other end of the bottom drain pipe 89 is connected to the purification system pipe 18 on the upstream side of the purification system pump 19.
  • the other end of the circulation pipe 31 on the side of the on-off valve 62 is connected to the valve 25.
  • steps S2 to S17 described above are sequentially performed.
  • Each step of steps S4 and S5 is carried out, and an aqueous solution containing nickel ions and formic acid and having a pH of 4.0 at 90 ° C. is supplied from the film forming apparatus 30 to the purification system piping 18 and the bottom drain piping 89.
  • the aqueous solution is supplied from the film forming apparatus 30A to a portion of the purification system pipe 18 between the valve 26 and the valve 32A.
  • the nickel metal film is the inner surface of the bottom drain pipe 89, the inner surface of the portion of the purification system pipe 18 between the valve 23 and the valve 25, and the inner surface of the portion of the purification system pipe 18 between the valve 26 and the valve 32A. Are formed respectively.
  • step S6 After the determination in step S6 is "Yes”, steps S7 and S8 are performed. Further, each step of steps S9 to S11 is carried out, and platinum is attached to the surface of the nickel metal film formed on the inner surface of the bottom drain pipe 89 and the purification system pipe 18. After the determination in step S12 is "Yes”, each process of steps S13 to S15 is performed. In step S15, the circulation piping 31 is removed from the bottom drain piping 89 and the purification system piping 18, and the circulation piping 31A is removed from the purification system piping 18, and the bottom drain piping 89 and the purification system piping 18 are restored as they were.
  • step S17 the reactor water in the RPV 3 is led to the purification system piping 18, and by opening the valve 88, the reactor water is also supplied to the bottom drain piping 89.
  • the reactor water of a temperature within the temperature range of 130 ° C. or more and less than 200 ° C. comes in contact with the nickel metal film to which platinum is attached formed on the inner surface of the bottom drain pipe 89 and the purification system pipe 18, the nickel metal film is stable. Converted to a nickel ferrite (NiFe 2 O 4 ) film.
  • the present embodiment can obtain each effect produced in the first embodiment.
  • a method of suppressing corrosion of a carbon steel member of a plant according to a fourth embodiment which is another preferred embodiment of the present invention will be described below with reference to FIGS.
  • the method of inhibiting corrosion of a carbon steel member of the present embodiment is applied to the purification system piping of a BWR plant that has experienced operation in at least one operation cycle.
  • the processes of steps S1 to S15 and S17 performed in the first embodiment and the processes of new steps S18 and S19 are performed.
  • the film forming apparatus 30 used in the first embodiment is used in each of the steps S1 to S14, and a new heating system 91 is used in each of the steps S18 and S17.
  • the heating system 91 is a pressure-resistant structure, and includes a circulation pipe 92, a circulation pump 93, a heating device 94, and a valve 95 that is a pressure booster.
  • a circulation pump 93 is provided in the circulation pipe 92, and a heating device 94 is provided in the circulation pipe 92 upstream of the circulation pump 93.
  • the heating device 94 may be disposed downstream of the circulation pump 93.
  • the pipe 96 bypasses the circulation pump 93, one end of the pipe 96 is connected to the circulation pipe 92 upstream of the circulation pump 93, and the other end of the pipe 96 is downstream of the circulation pump 93 to the circulation pipe 92.
  • a valve 95 is provided in the pipe 96.
  • An on-off valve 97 is provided at the upstream end of the circulation pipe 92, and an on-off valve 98 is provided at the downstream end of the circulation pipe.
  • the film forming apparatus is removed from the piping system (step S14).
  • the film forming device 30 connected to the purification system piping 18 is removed from the purification system piping 18.
  • One end of the circulation pipe 31 of the film forming apparatus 30 is removed from the flange of the valve 23, and the other end of the circulation pipe 31 is removed from the flange of the valve 25.
  • the heating system is connected to the piping system (step S18).
  • One end of the circulation pipe 92 (third pipe) of the heating system 91 on the side of the on-off valve 98 is connected to the flange of the valve 23, and the circulation pipe 92 is in communication with the purification system pipe 18.
  • the other end of the circulation pipe 92 on the side of the on-off valve 97 is connected to the flange of the valve 25, and the circulation pipe 92 is connected to the purification system pipe 18 between the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21.
  • Both ends of the circulation pipe 92 are connected to the purification system pipe 18, and a closed loop including the purification system pipe 18 and the circulation pipe 92 is formed.
  • step S17 oxygen-containing water within a temperature range of 130 ° C. or more and less than 200 ° C. is brought into contact with the platinum-deposited nickel metal film (step S17).
  • Water containing oxygen is filled in a closed loop including the circulation pipe 92 and the purification system pipe 18.
  • the circulation pump 93 is driven to circulate oxygen-containing water in the closed loop.
  • the rotational speed of the circulation pump 93 is increased to a certain rotational speed, and then the opening degree of the valve 95 is gradually decreased to increase the pressure of the water discharged from the circulation pump 93.
  • the heating device 94 heats the water containing oxygen circulating in the closed loop to raise the temperature of the water.
  • the temperature of the water is raised while the pressure of the water discharged from the circulation pump 93 is increased.
  • the rotational speed of the circulation pump 93 is further increased.
  • the pressure of the water circulating in the closed loop rises to, for example, the range of 0.3 MPa to 1.4 MPa
  • the temperature of the circulating water is about 133.5 ° C. to about 195.0 ° C.
  • rise within the range of The pressure of the circulating water is regulated, and the temperature of the water is regulated to a temperature range of 130 ° C. or more and less than 200 ° C., for example, 150 ° C.
  • the temperature of water circulating in the closed loop is maintained at 150 ° C. while the nickel metal film formed on the inner surface of the purification system pipe 18 is converted to a stable nickel ferrite film.
  • 150 ° C. water 86 A containing oxygen is supplied from the circulation pipe 92 to the purification system pipe 18 and contacts the nickel metal film 82 formed on the inner surface of the purification system pipe 18 to which platinum 84 is attached (see FIG. 7) .
  • the purification system piping 18 is surrounded by a heat insulating material (not shown) except for the vicinity of the valves 23 and 25 to which both ends of the circulation piping 92 are connected.
  • each of the water 86A containing oxygen, the purification system pipe 18 and the nickel metal film 82 reaches 150 ° C., it constitutes oxygen (O 2 ) contained in the water 86A and some water molecules contained in the water 86A Oxygen is transferred into the nickel metal film 82, and Fe contained in the purification system pipe 18 is converted into Fe 2+ to be transferred into the nickel metal film 82 (see FIG. 8).
  • the oxygen contained in the water 86A easily moves alone in the water 86A of 130 ° C. or more, and easily enters the nickel metal film 82.
  • the action of the platinum 84 attached to the nickel metal film 82 lowers the corrosion potential of the purification system pipe 18 and the nickel metal film 82.
  • the nickel in the nickel metal film 82 reacts with the oxygen and Fe 2+ transferred into the nickel metal film 82 to obtain Ni 1-x Fe
  • a stable nickel ferrite (NiFe 2 O 4 ) which does not elute by the action of platinum where x is 0 in 2 + x O 4 , is produced.
  • the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is converted to a stable nickel ferrite (NiFe 2 O 4 ) film 87, and the nickel ferrite film 87 corresponds to the valves 23 and 25 of the purification system pipe 18. It covers the inner surface of the part in between (see FIG. 9). Platinum adheres to the surface of the stable nickel ferrite film 87.
  • the heating system is removed from the piping system (step S19). After the nickel ferrite film 87 is formed to cover the inner surface of the purification system pipe 18, the heating system 91 connected to the purification system pipe 18 is removed from the purification system pipe 18. Thereafter, the purification system piping 18 is restored.
  • both ends of the circulation pipe 31A of the film forming apparatus 30A are connected to the valves 26 and 32, respectively, and the purification system pipe 18 is between the valve 26 and the valve 32A.
  • the film forming apparatus 30A is removed from the purification system pipe after the process of step S14 (step S15).
  • the two ends of 92 are connected to valves 26 and 32, respectively.
  • 150 ° C. water containing oxygen from the heating system 91 is supplied to the portion of the purification system piping 18 between the valve 26 and the valve 32A as described above.
  • the platinum-deposited nickel metal film formed on the inner surface of the portion of the purification system piping 18 between the valve 26 and the valve 32A is converted into a stable nickel ferrite film with platinum attached (step S17). Thereafter, another heating system 91 is also removed from the purification system pipe 18.
  • the reactor water flowing in the purification system piping 18 is not in direct contact with the base material of the purification system piping 18 because the nickel ferrite film 87 is formed.
  • the present embodiment can obtain the effects produced in the first embodiment. Furthermore, in the present embodiment, in order to convert the nickel metal film 82 formed on the inner surface of the purification system pipe 18 into the stable nickel ferrite film 87 using the heating system 91, the conversion process in step S17 is processed by the BWR plant 1 It can be done while the operation is stopped. Therefore, when the BWR plant 1 is started, the stable nickel ferrite film 87 is already formed on the inner surface of the purification system pipe 18, so in the present embodiment, the stable nickel ferrite on the inner surface in the first embodiment. Corrosion of the purification system piping 18 can be suppressed even before the film 87 is formed.
  • oxygen-containing water in the temperature range of 130 ° C. or more and less than 200 ° C. is brought into contact with the nickel metal film 82 formed on the inner surface of the purification system pipe 18 using the heating system 91.
  • the time required to heat the water to a predetermined temperature can be shortened.
  • the degree of pressure resistance required of the heating system 91 can be reduced.
  • a method of suppressing corrosion of a carbon steel member of a plant of embodiment 5 which is another embodiment of the present invention will be described with reference to FIG.
  • the method for suppressing corrosion of carbon steel members of a plant of this embodiment is applied to a carbon steel water supply pipe of a thermal power plant (hereinafter referred to as a thermal plant).
  • the thermal power plant 115 includes a boiler 99, which is a steam generating device, a high pressure turbine 9A, a low pressure turbine 9B, a condenser 10, and a water supply system.
  • the high pressure turbine 9A and the low pressure turbine 9B are connected to the boiler 99 by the main steam pipe 8.
  • a moisture separation superheater 100 including a moisture separator 101 and a superheater 102 is installed in the main steam piping 8 between the high pressure turbine 9A and the low pressure turbine 9B.
  • the main steam control valve 110 is installed in the main steam pipe 8 existing between the boiler 99 and the high pressure turbine 9A.
  • a steam supply pipe 106 connected to the main steam pipe 8 upstream of the main steam control valve 110 and provided with an on-off valve is connected to the superheater 102.
  • the high pressure turbine 9A and the low pressure turbine 9B are connected to each other by one rotating shaft 104 and further to the generator 103.
  • the low pressure turbine 9 B is in communication with the condenser 10 by the steam passage 105.
  • a heat transfer pipe 113 through which seawater flows is disposed in the condenser 10.
  • Condenser pump 12, low-pressure feedwater heater 14B, low-pressure feedwater heater 14A, feedwater pump 15 and high-pressure feedwater heater 16 are connected to feedwater pipe 11 connecting condenser 10 and boiler 99 from condenser 10 to boiler It is installed in this order toward 99.
  • a steam extraction pipe 107 connected to the high pressure turbine 9 A and a steam discharge pipe 112 connected to the superheater 102 are connected to the high pressure feed water heater 16.
  • a bleed pipe 108A connected to the low pressure turbine 9B and a drain pipe 111 connected to the moisture separator 101 are connected to the low pressure feed water heater 14A.
  • a bleed pipe 108B connected to the low pressure turbine 9B at a later stage than the connection point of the bleed pipe 108A is connected to the low pressure feed water heater 14B.
  • a drain water recovery pipe 109 connected to the high pressure feed water heater 16 and the low pressure feed water heaters 14A and 14B is connected to the condenser 10.
  • the steam generated by the boiler 99 is supplied to the high pressure turbine 9A and the low pressure turbine 9B, and discharged to the condenser 10 through the steam passage 105.
  • the steam discharged to the condenser 10 is condensed by the seawater supplied into the heat transfer pipe 113 by the seawater pump 114 to become water. This water passes through the feed water pipe 11 as feed water, and is heated by the high pressure feed water heater 16 and the low pressure feed water heaters 14A and 14B and supplied to the boiler 99 along the way.
  • each process of steps S1 to S17 implemented in the first embodiment is performed.
  • the nuclear power plant but the thermal power plant is started in step S16, and the feed water instead of the reactor water is contacted with the nickel metal film in step S17.
  • step S1 the above-described film forming apparatus 30 is connected to the water supply pipe 11 between the low pressure water supply heater 14A and the low pressure water supply heater 14B. That is, one end of the circulation pipe 31 of the film forming apparatus 30 is connected to the first valve (not shown) installed in the water supply pipe 11 at a position close to the inlet of the low pressure feed water heater 14A. Is connected to a second valve (not shown) installed in the water supply pipe 11 at a position close to the outlet of the low pressure water supply heater 14B.
  • step S2 reduction decontamination is performed (step S2).
  • step S3 to S17 described above are sequentially performed.
  • the steps S4 and S5 are performed, and a nickel metal film is formed on the inner surface of the water supply pipe 11 between the low pressure water supply heater 14B and the low pressure water supply heater 14A.
  • step S6 After the determination in step S6 is "Yes", steps S7 and S8 are performed. Further, each step of steps S9 to S11 is carried out, and platinum is attached to the surface of the nickel metal film formed on the inner surface of the water supply pipe 11 described above. After the determination in step S12 is "Yes”, each process of steps S13 to S15 is performed. In step S15, the circulation pipe 31 is removed from the water supply pipe 11, and the water supply pipe 11 is restored to the original state.
  • step S16 the thermal power plant is activated, and step S17 is performed.
  • step S17 the steam supplied from the boiler 99 to the high pressure turbine 9A and the low pressure turbine 9B is condensed by the condenser 10, and the water generated by the condensation is supplied to the boiler 99 through the water supply pipe 11 as the water supply.
  • the feedwater flowing through the feedwater pipe 11 is heated by the low pressure feedwater heaters 14 B and 14 A and the high pressure feedwater heater 16. Soon, a temperature within the temperature range of 130 ° C. to less than 200 ° C., for example, 160 ° C. of feed water is discharged from the low pressure feed water heater 14B.
  • the feed water at this temperature contacts the nickel metal film 82 with platinum 84 deposited on the inner surface of the portion of the feed water pipe 11 between the low pressure feed water heater 14B and the low pressure feed water heater 14A.
  • the nickel metal film 82 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 87.
  • Such a present Example can acquire each effect which arises in Example 1 for water supply piping 11 other than adhesion control of a radionuclide.
  • each step of steps S18 and S19 may be performed instead of step S16, and the step of step S17 may be performed using the heating system 91.
  • Cooler 53 ... Cation exchange resin Tower, 54: mixed bed resin tower, 55: decomposition device, 56: oxidant supply device, 58: supply pump, 82: nickel metal film, 84: platinum, 87: nickel ferrite film, 89: bottom drain Pipe, 91 ... heating system, 99 ... boiler.

Abstract

Provided is a corrosion suppression method for carbon steel members in a plant that can further extend the length of time where corrosion is suppressed in the carbon steel members in the plant. A circulation pipe of a film-forming device is connected to a carbon steel-made cleaning system pipe communicating with a reactor pressure vessel of a nuclear plant in a stopped state (S1). A film-forming solution prepared by injection of nickel ions (S4) and injection of a reducing agent (S5) is supplied to the cleaning system pipe from the circulation pipe and a nickel metal film is formed on the inside surface of the cleaning system pipe. Subsequently, an aqueous solution containing platinum ions and a reducing agent is supplied to the cleaning system pipe from the circulation pipe, causing platinum to adhere to the nickel metal film. The film-forming device is disconnected from the cleaning system pipe (S15) and the nuclear plant is activated (S16). Oxygen-containing reactor water in a range of 130˚C to under 200˚C is brought into contact with the platinum-adhered nickel metal film inside the cleaning system pipe to transform the nickel metal film into a stable nickel ferrite film wherein no elution occurs even when the platinum exerts action.

Description

プラントの炭素鋼部材の腐食抑制方法Corrosion control method of carbon steel member of plant
 本発明は、プラントの炭素鋼部材の腐食抑制方法に係わり、特に、沸騰水型原子力プラント及び火力プラントに適用するのに好適なプラントの炭素鋼部材の腐食抑制方法に関する。 The present invention relates to a method of suppressing corrosion of carbon steel members of a plant, and more particularly to a method of suppressing corrosion of carbon steel members of a plant suitable for application to boiling water nuclear power plants and thermal power plants.
 例えば、沸騰水型原子力プラント(以下、BWRプラントという)は、炉心を原子炉圧力容器(以下、RPVという)内に配置した原子炉を有する。再循環ポンプ(またはインターナルポンプ)によって炉心に供給された炉水は、炉心内に装荷された燃料集合体内の核燃料物質の核分裂で発生する熱によって加熱され、一部が蒸気になる。この蒸気は、RPVからタービンに導かれ、タービンを回転させる。タービンから排出された蒸気は、復水器で凝縮されて水になる。この水は、給水として給水配管を通して原子炉に供給される。給水は、RPV内での放射性腐食生成物の発生を抑制するため、給水配管に設けられたろ過脱塩装置で主として金属不純物が除去される。炉水とは、RPV内に存在する冷却水である。 For example, a boiling water nuclear power plant (hereinafter referred to as a BWR plant) has a nuclear reactor in which a core is disposed in a reactor pressure vessel (hereinafter referred to as RPV). Reactor water supplied to the core by the recirculation pump (or internal pump) is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel assembly loaded in the core, and a part becomes steam. The steam is channeled from the RPV to the turbine to rotate the turbine. The steam discharged from the turbine is condensed by the condenser into water. This water is supplied to the reactor through the water supply pipe as the water supply. In order to suppress the generation of radioactive corrosion products in the RPV, the feed water mainly removes metal impurities in a filtration demineralizer provided in a feed water pipe. Reactor water is cooling water present in the RPV.
 また、放射性腐食生成物の元となる腐食生成物は、RPV及び再循環系配管等のBWRプラントの構成部材の炉水と接触する表面で発生するため、炉水と接触する主要な構成部材には、腐食の少ないステンレス鋼及びニッケル基合金などが使用される。また、低合金鋼製のRPVは、内面にステンレス鋼の肉盛りが施され、低合金鋼が、直接、炉水と接触することを防いでいる。さらに、炉水の一部を原子炉浄化系のろ過脱塩装置によって浄化し、炉水中に僅かに存在する金属不純物を積極的に除去している。 In addition, since the corrosion products that are the source of radioactive corrosion products are generated on the surfaces of the component parts of the BWR plant, such as RPV and recirculation piping, which come in contact with the reactor water, the main component that contacts the reactor water For example, stainless steel, nickel base alloy and the like with low corrosion are used. In addition, low-alloy steel RPV is coated with stainless steel on its inner surface to prevent low-alloy steel from coming into direct contact with furnace water. Furthermore, a part of the reactor water is purified by the filter demineralizer of the reactor purification system to actively remove metal impurities slightly present in the reactor water.
 一方、RPVに連絡される原子炉浄化系、残留熱除去系、原子炉隔離時冷却系、炉心スプレイ系及び給水系などの構成部材には、プラントの製造所要コストを低減する観点、あるいは高温水に起因するステンレス鋼の応力腐食割れを避ける観点から、主に炭素鋼部材が用いられる。これらの系統のうち、残留熱除去系、原子炉隔離時冷却系及び炉心スプレイ系では、系統内を流れた冷却水が炉水に戻されるのは一時的であるため、その冷却水に含まれる、系統の腐食生成物が炉水に与える影響は小さい。しかし、炉水浄化系及び給水系では腐食量が大きくなる温度領域(130℃~180℃)が存在するため、炉水への腐食生成物の流入量の増加、及び浄化装置への負荷増加が懸念される。加えて、系統の腐食量が多くなると構成部材の健全性に影響を及ぼすため、健全性確認の検査が必要となり、定期検査作業の増加に繋がる。このため、原子力プラントの炭素鋼部材の腐食抑制に対する検討がこれまでも行われてきた。 On the other hand, for components such as the reactor purification system, residual heat removal system, reactor isolation cooling system, core spray system and water supply system communicated to RPV, from the viewpoint of reducing the production cost of the plant, or high temperature water Carbon steel members are mainly used from the viewpoint of avoiding stress corrosion cracking of stainless steel caused by the above. Of these systems, in the residual heat removal system, the reactor isolation cooling system, and the core spray system, the cooling water that has flowed through the system is temporarily included in the cooling water because it is temporarily returned to the reactor water. The effect of corrosion products in the system on the reactor water is small. However, since there is a temperature range (130 ° C to 180 ° C) where the amount of corrosion increases in the reactor water purification system and the water supply system, the inflow of corrosion products into the reactor water and the load on the purification device increase. I am concerned. In addition, if the amount of corrosion of the system is increased, the soundness of the components will be affected, so an inspection for soundness confirmation will be required, leading to an increase in regular inspection work. For this reason, studies on corrosion inhibition of carbon steel members of nuclear power plants have been conducted.
 原子力プラントを構成する炭素鋼部材の腐食を抑制する方法として、例えば、給水系に酸素を注入して炭素鋼部材の表面に酸化皮膜からなる不働体皮膜を形成する方法、及びアンモニア及びヒドラジンなどの薬品を給水に添加して給水のpHをアルカリ側に調整する方法が、BWRプラント及び加圧水型原子力プラント(以下、PWRプラントという)で提案されている(例えば、特開2000-292589号公報参照)。しかし、酸素及びアルカリ性の薬剤等を注入する方法では、炭素鋼部材の腐食抑制の効果を継続して得るためには原子力プラントの運転中においてその薬剤を注入し続ける必要がある。薬剤の注入を停止すると、その効果が得られなくなる。また、アルカリ性の薬剤を注入する場合には、薬剤が原子炉浄化系に設けられた炉水浄化装置内のイオン交換樹脂の負荷となるため、放射性廃棄物量が増大する恐れがある。 As a method of suppressing the corrosion of carbon steel members constituting a nuclear power plant, for example, a method of injecting oxygen into a water supply system to form a passivation film consisting of an oxide film on the surface of carbon steel members, ammonia and hydrazine etc. A method of adjusting the pH of the feed water to the alkaline side by adding a chemical to the feed water has been proposed in BWR plants and pressurized water nuclear power plants (hereinafter referred to as PWR plants) (see, for example, JP-A-2000-292589). . However, in the method of injecting oxygen and alkaline chemicals and the like, it is necessary to continue to inject the chemical during operation of the nuclear power plant in order to continuously obtain the effect of suppressing the corrosion of the carbon steel member. If you stop injecting the drug, the effect is lost. In addition, in the case of injecting an alkaline agent, since the agent is a load of the ion exchange resin in the reactor water purification apparatus provided in the reactor purification system, the amount of radioactive waste may be increased.
 特開2006-38483号公報及び特開2012-247322号公報は、原子力プラントの運転停止中で、鉄(II)イオン、酸化剤及びpH調整剤(ヒドラジン)を含む60℃~100℃の範囲の皮膜形成液を、原子力プラントの、ステンレス鋼製の構成部材の表面に接触させ、この表面にマグネタイト皮膜を形成することを記載する。さらに、これらの公開公報は、原子力プラントの停止中に、貴金属(例えば、白金)を含む水溶液をマグネタイト皮膜に接触させ、貴金属をマグネタイト皮膜上に付着させることも記載している。 JP-A-2006-38483 and JP-A-2012-247322 have a range of 60 ° C. to 100 ° C. including iron (II) ion, an oxidant and a pH adjuster (hydrazine) during shutdown of a nuclear power plant. It is described that a film forming solution is brought into contact with the surface of a stainless steel component of a nuclear power plant to form a magnetite film on this surface. Furthermore, these publications also describe that, during shutdown of a nuclear power plant, an aqueous solution containing a noble metal (e.g. platinum) is brought into contact with the magnetite film to deposit the noble metal on the magnetite film.
 特開2007-182604号公報及び特開2007-192672号公報が、その運転中に薬剤を注入せず、表面処理によって炭素鋼部材の腐食を抑制する方法として、原子力プラントの炭素鋼部材の表面にフェライト皮膜を形成する方法を記載している。この方法では、鉄(II)イオン及び酸化剤を含み、pHが5.5~9.0の範囲にあって常温から100℃の温度範囲の皮膜形成液を、原子力プラントの停止中に炭素鋼部材の表面に接触させ、この表面にフェライト皮膜を形成する。 JP2007-182604A and JP2007-192672A do not inject a chemical during operation, and as a method of suppressing corrosion of a carbon steel member by surface treatment, on the surface of a carbon steel member of a nuclear power plant A method of forming a ferrite film is described. In this method, a film forming solution containing iron (II) ions and an oxidant, having a pH in the range of 5.5 to 9.0, and a temperature range of normal temperature to 100 ° C. Contact with the surface of the member to form a ferrite film on this surface.
 さらに、炭素鋼部材の表面にニッケル金属皮膜を形成し、ニッケルイオン、鉄(II)イオン、酸化剤及びpH調整剤を含み、pHが5.5ないし9.0の範囲にあり、温度が60℃ないし100℃の範囲にある皮膜形成液を用いて、そのニッケル金属皮膜の表面にニッケルフェライト皮膜を形成し、その後、そのニッケル金属皮膜を高温水によってニッケルフェライト皮膜に転換する方法が提案されている(例えば、特開2011-32551号公報)。 Furthermore, a nickel metal film is formed on the surface of the carbon steel member, and contains nickel ions, iron (II) ions, an oxidizing agent and a pH adjuster, the pH is in the range of 5.5 to 9.0, and the temperature is 60 A method is proposed to form a nickel ferrite film on the surface of the nickel metal film using a film forming solution in the range of 100 ° C. to 100 ° C. and then convert the nickel metal film to a nickel ferrite film by high temperature water (For example, JP-A-2011-32551).
 特開2015-158486号公報は、BWRプラントの構成部材である再循環系配管の内面に貴金属を付着させるとき、錯イオン形成剤、貴金属イオン及び還元剤を含む水溶液を、再循環系配管の内面に接触させることを記載している。 JP-A-2015-158486 discloses an aqueous solution containing a complex ion-forming agent, a noble metal ion and a reducing agent when attaching a noble metal to the inner surface of a recirculation system piping which is a component of a BWR plant. It is stated to be in contact with
特開2000-292589号公報Unexamined-Japanese-Patent No. 2000-292589 特開2006-38483号公報JP, 2006-38483, A 特開2012-247322号公報JP, 2012-247322, A 特開2007-182604号公報JP 2007-182604 A 特開2007-192672号公報Japanese Patent Application Publication No. 2007-192672 特開2011-32551号公報JP, 2011-32551, A 特開2015-158486号公報JP, 2015-158486, A
 しかし、特開2006-38483号公報、特開2012-247322号公報、特開2007-182604号公報、特開2007-192672号公報及び特開2011-32551号公報に記載されたそれぞれの方法で炭素鋼部材の表面に形成されるニッケルフェライト皮膜は、このニッケルフェライト皮膜の表面に貴金属が付着したとき、後で詳細に説明するように、貴金属の作用によって溶出し、やがて消失してしまう可能性がある。このため、そのニッケルフェライト皮膜は、長期にわたって炭素鋼部材の腐食を抑制することができなくなる。 However, carbon can be obtained by the respective methods described in JP-A-2006-38483, JP-A-2012-247322, JP-A-2007-182604, JP-A-2007-192672 and JP-A-2011-32551. When a noble metal adheres to the surface of the nickel ferrite film, the nickel ferrite film formed on the surface of the steel member may be eluted by the action of the noble metal and eventually disappear as described in detail later. is there. Therefore, the nickel ferrite film can not suppress the corrosion of the carbon steel member for a long time.
 本発明の目的は、プラントの炭素鋼部材の腐食が抑制される期間を、さらに伸ばすことができるプラントの炭素鋼部材の腐食抑制方法を提供することにある。 An object of the present invention is to provide a method of inhibiting corrosion of a carbon steel member of a plant, which can further extend a period during which corrosion of the carbon steel member of the plant is inhibited.
 上記した目的を達成する本発明の特徴は、プラントの炭素鋼部材の、水と接する表面にニッケル金属皮膜を形成してその表面をニッケル金属皮膜で覆い、ニッケル金属皮膜の表面に貴金属を付着させ、この貴金属が付着したニッケル金属皮膜に、酸化剤を含む130℃以上200℃未満の水を接触させ、ニッケル金属皮膜の形成及びその貴金属の付着は、プラントの運転停止後でプラントの起動前に行われることにある。 A feature of the present invention for achieving the above object is to form a nickel metal film on a surface of a carbon steel member of a plant in contact with water, cover the surface with a nickel metal film, and deposit a noble metal on the surface of the nickel metal film. The contact of the noble metal with the nickel metal film on which the noble metal is attached is brought into contact with water containing an oxidizing agent at 130 ° C. or more and less than 200 ° C. The formation of the nickel metal film and the deposition of the noble metal are performed after plant shutdown and before plant start-up It is about to be done.
 その水に接触するニッケル金属皮膜及び炭素鋼部材の腐食電位が、ニッケル金属皮膜に付着している貴金属の作用によって低下する。このような腐食電位の低下、及び酸化剤を含む130℃以上200℃未満の温度範囲の水の、そのニッケル金属皮膜への接触により、ニッケル金属皮膜が、付着した貴金属の作用によっても接触する水中に溶出しない安定なニッケルフェライト皮膜に変換される。炭素鋼部材の表面が貴金属が付着した安定なニッケルフェライトによって覆われるため、プラントの炭素鋼部材の腐食をより長い期間に亘って抑制することができる。 The corrosion potential of the nickel metal coating and the carbon steel member in contact with the water is lowered by the action of the noble metal adhering to the nickel metal coating. Such a decrease in corrosion potential and water in a temperature range of 130 ° C. or more and less than 200 ° C. containing an oxidizing agent to the nickel metal film makes the nickel metal film also contact by the action of the deposited noble metal It is converted to a stable nickel ferrite film which does not elute. Since the surface of the carbon steel member is covered with the stable nickel ferrite to which the noble metal adheres, the corrosion of the carbon steel member of the plant can be suppressed for a longer period of time.
 本発明によれば、付着した貴金属の作用によっても接触する水中に溶出しない安定なニッケルフェライト皮膜が炭素鋼部材の表面に形成されるため、プラントの炭素鋼部材の腐食をより長い期間に亘って抑制することができる。 According to the present invention, since a stable nickel ferrite film which does not dissolve in the water which contacts even by the action of the deposited noble metal is formed on the surface of the carbon steel member, corrosion of the carbon steel member of the plant is prolonged over a longer period. It can be suppressed.
本発明の好適な一実施例である、沸騰水型原子力プラントの浄化系配管に適用される実施例1のプラントの炭素鋼部材の腐食抑制方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the corrosion-control method of the carbon steel member of the plant of Example 1 applied to the purification system piping of a boiling water type nuclear power plant which is one suitable Example of this invention. 実施例1のプラントの炭素鋼部材の腐食抑制方法を実施する際に用いられる皮膜形成装置を沸騰水型原子力プラントの浄化系配管に接続した状態を示す説明図である。It is explanatory drawing which shows the state which connected the film-forming apparatus used when enforcing the corrosion suppression method of the carbon steel member of the plant of Example 1 to the purification system piping of a boiling water type nuclear plant. 図2に示す皮膜形成装置の詳細構成図である。It is a detailed block diagram of the film formation apparatus shown in FIG. 図1に示されるプラントの炭素鋼部材の腐食抑制方法が開始される前における、沸騰水型原子力プラントの浄化系配管の断面図である。It is sectional drawing of purification system piping of a boiling water type nuclear plant before the corrosion suppression method of the carbon steel member of the plant shown by FIG. 1 is started. 図1に示されるプラントの炭素鋼部材の腐食抑制方法により浄化系配管の内面にニッケル金属皮膜が形成された状態を示す説明図である。It is explanatory drawing which shows the state in which the nickel metal film was formed in the inner surface of purification system piping by the corrosion suppression method of the carbon steel member of the plant shown by FIG. 図1に示されるプラントの炭素鋼部材の腐食抑制方法により浄化系配管の内面に形成されたニッケル金属皮膜の表面に貴金属を付着させた状態を示す説明図である。It is explanatory drawing which shows the state which made the noble metal adhere on the surface of the nickel metal film formed in the inner surface of purification system piping by the corrosion suppression method of the carbon steel member of the plant shown by FIG. 図1に示されるプラントの炭素鋼部材の腐食抑制方法において、浄化系配管の内面に形成されて白金が付着したニッケル金属皮膜に酸素を含む130℃以上200℃未満の温度範囲の水を接触させる状態を示す説明図である。In the method for suppressing corrosion of carbon steel members of a plant shown in FIG. 1, the nickel metal film formed on the inner surface of the purification system pipe and having platinum adhered is brought into contact with water containing oxygen in a temperature range of 130 ° C. or more and 200 ° C. It is an explanatory view showing a state. 図1に示されるプラントの炭素鋼部材の腐食抑制方法において、130℃以上200℃未満の温度範囲の水に含まれる酸素、及び浄化系配管内のFe2+が、浄化系配管の内面に形成されて白金が付着したニッケル金属皮膜に移行する状態を示す説明図である。In the method for suppressing corrosion of carbon steel members of a plant shown in FIG. 1, oxygen contained in water in a temperature range of 130 ° C. or more and less than 200 ° C. and Fe 2+ in the purification system piping are formed on the inner surface of the purification system piping. It is an explanatory view showing a state of being transferred to a nickel metal film to which platinum is attached. 図1に示されるプラントの炭素鋼部材の腐食抑制方法において、浄化系配管の内面に形成されたニッケル金属皮膜がニッケルフェライト皮膜に転換された状態を示す説明図である。It is explanatory drawing which shows the state by which the nickel metal film formed in the inner surface of purification system piping was converted into the nickel ferrite film in the corrosion suppression method of the carbon steel member of the plant shown by FIG. 炭素鋼試験片による実機模擬環境腐食試験の結果を示した説明図である。It is explanatory drawing which showed the result of the real machine simulation environmental corrosion test by a carbon steel test piece. 白金を付着したニッケル金属皮膜を形成した炭素鋼試験片を用いた実機模擬環境腐食試験により、その炭素鋼試験片に形成された酸化皮膜の、レーザーラマンスペクトル分析結果を示す説明図である。It is explanatory drawing which shows the laser Raman spectrum analysis result of the oxide film formed in the carbon steel test piece by the real machine simulation environmental corrosion test using the carbon steel test piece which formed the nickel metal film which adhered platinum. 本発明の他の実施例である、沸騰水型原子力プラントの給水配管に適用される実施例2のプラントの炭素鋼部材の腐食抑制方法を示す説明図である。It is explanatory drawing which shows the corrosion-control method of the carbon steel member of the plant of Example 2 applied to the feed water piping of a boiling water type nuclear plant which is another Example of this invention. 本発明の他の実施例である、沸騰水型原子力プラントの浄化系配管に適用される実施例3のプラントの炭素鋼部材の腐食抑制方法を示す説明図である。It is explanatory drawing which shows the corrosion-control method of the carbon steel member of the plant of Example 3 applied to the purification system piping of a boiling water type nuclear power plant which is another Example of this invention. 本発明の他の実施例である、沸騰水型原子力プラントの浄化系配管に適用される実施例4のプラントの炭素鋼部材の腐食抑制方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the corrosion-control method of the carbon steel member of the plant of Example 4 applied to the purification system piping of a boiling water type nuclear plant which is another Example of this invention. 図14に示されるプラントの炭素鋼部材への放射性核種の付着抑制方法において浄化系配管の内面に形成されたニッケル金属皮膜をニッケルフェライト皮膜に変換するために浄化系配管に接続される加熱システムの構成図である。14 is a heating system connected to a purification system piping to convert a nickel metal film formed on the inner surface of the purification system piping into a nickel ferrite film in the method for suppressing adhesion of radionuclides to carbon steel members of the plant shown in FIG. FIG. 本発明の他の実施例である、火力プラントの給水配管に適用される実施例5のプラントの炭素鋼部材の腐食抑制方法を示す説明図である。It is explanatory drawing which shows the corrosion-control method of the carbon steel member of the plant of Example 5 applied to the feed water piping of a thermal power plant which is another Example of this invention.
 発明者らは、特開2011-32551号公報に記載された炭素鋼部材の防食方法の効果を更に高めるための、詳細な検討及び実験を行った。特開2011-32551号公報では、BWRプラントの停止中において、BWRプラントの炭素鋼部材の表面にニッケル金属皮膜を形成し、このニッケル金属皮膜の表面にニッケルフェライト皮膜を形成し、さらに、BWRプラントの運転中において、酸素を含む150℃以上の水をニッケルフェライト皮膜の表面に接触させて上記のニッケル金属皮膜をニッケルフェライト皮膜に変換させている。発明者らによる検討の結果、発明者らは、最終的に、炭素鋼部材の表面に形成されたニッケル金属皮膜の表面に貴金属を付着させ、130℃以上(好ましくは、130℃以上200℃未満)の温度範囲の水をそのニッケル金属皮膜の表面に接触させて、ニッケル金属皮膜をNi含有率が定比に近い安定なニッケルフェライト皮膜に変換させることにより、その炭素鋼部材の防食効果を更に高めることができるとの結論を見出した。 The inventors conducted detailed studies and experiments to further enhance the effect of the method of preventing corrosion of a carbon steel member described in JP-A-2011-32551. In JP-A-2011-32551, a nickel metal film is formed on the surface of a carbon steel member of a BWR plant while the BWR plant is stopped, a nickel ferrite film is formed on the surface of the nickel metal film, and further During the operation, water containing oxygen at 150 ° C. or higher is brought into contact with the surface of the nickel ferrite film to convert the above nickel metal film into a nickel ferrite film. As a result of studies by the inventors, the inventors finally deposit a noble metal on the surface of the nickel metal film formed on the surface of the carbon steel member, and 130 ° C. or more (preferably, 130 ° C. or more and less than 200 ° C. Water is brought into contact with the surface of the nickel metal film to convert the nickel metal film into a stable nickel ferrite film whose Ni content is close to a fixed ratio, thereby further preventing the corrosion of the carbon steel member I found the conclusion that it can be enhanced.
 発明者らは、近年、応力腐食割れ対策として導入が進んでいる貴金属注入技術と上記したフェライト皮膜形成技術の同時成立性について検討した。フェライト皮膜形成技術としては、前述の特開2006-38483号公報及び特開2012-247322号公報に記載されるように、鉄(II)イオン、酸化剤及びpH調整剤(例えば、ヒドラジン)を含む、60℃~100℃の低い温度範囲の皮膜形成液を原子力プラントの構成部材の表面に接触させて構成部材の表面にマグネタイト皮膜を形成するものがある。このマグネタイト皮膜の炉水と接触する表面に貴金属を付着させてその影響を調べたところ、原子力プラントの、水素注入模擬条件での運転中において、マグネタイト皮膜が付着された貴金属の作用により炉水中に溶出するという現象を見出した。また、60℃~100℃の低い温度範囲で炭素鋼部材の炉水と接触する表面に形成されたニッケルフェライト皮膜上に貴金属を付着させた場合においても、原子力プラントの水素注入模擬条件での運転中においてニッケルフェライト皮膜が付着された貴金属の作用により炉水中に溶出するという現象を見出した。 The inventors have recently investigated the simultaneous formation of the noble metal injection technology, which is being introduced as a countermeasure against stress corrosion cracking, and the above-described ferrite film formation technology. Ferrite film formation techniques include iron (II) ions, an oxidant and a pH adjuster (for example, hydrazine) as described in the aforementioned JP-A-2006-38483 and JP-A-2012-247322. There is one in which a film forming solution in a low temperature range of 60 ° C. to 100 ° C. is brought into contact with the surface of a component of a nuclear power plant to form a magnetite film on the surface of the component. Noble metals were deposited on the surface of the magnetite film in contact with the reactor water, and the effect was examined. During operation of the nuclear plant under the hydrogen injection simulation conditions, the effect of the noble metal to which the magnetite film was deposited was added to the reactor water. We found a phenomenon of elution. In addition, even in the case where a noble metal is deposited on a nickel ferrite film formed on the surface of a carbon steel member in contact with reactor water at a low temperature range of 60 ° C. to 100 ° C., operation under hydrogen injection simulation conditions of a nuclear power plant The phenomenon was found that the nickel ferrite film eluted in the reactor water due to the action of the noble metal to which the nickel ferrite film was attached.
 なお、炭素鋼部材の表面に形成されたフェライト皮膜の表面への貴金属の付着には2つのケースがある。第1のケースでは、炉水中の溶存酸素濃度を低減するために原子力プラントの運転中に炉水に注入された貴金属が、構成部材上に形成されたフェライト皮膜表面に付着する。第2のケースでは、特開2006-38483号公報及び特開2012-247322号公報に記載されるように、原子力プラントの停止中に、構成部材上に形成されたフェライト皮膜表面に貴金属イオンを含む溶液を接触させ、そのフェライト皮膜表面に貴金属を付着させる。 In addition, there are two cases in the adhesion of the noble metal to the surface of the ferrite film formed on the surface of the carbon steel member. In the first case, the noble metal injected into the reactor water during operation of the nuclear power plant in order to reduce the concentration of dissolved oxygen in the reactor water adheres to the surface of the ferrite film formed on the component. In the second case, as described in JP-A-2006-38483 and JP-A-2012-247322, the surface of the ferrite film formed on the component includes a noble metal ion during shutdown of the nuclear power plant. The solution is brought into contact, and a noble metal is deposited on the surface of the ferrite film.
 炭素鋼部材の表面に形成されたフェライト皮膜のそのような溶出は、やがて、炭素鋼部材上のフェライト皮膜の消失をもたらし、フェライト皮膜が消失した後、すなわち、運転サイクルの末期において、フェライト皮膜によってもたらされていた防食効果が消失する。また、この運転サイクルでの原子力プラントの運転を停止した後、炭素鋼部材の表面に、再度、フェライト皮膜を形成する必要がある。 Such elution of the ferrite film formed on the surface of the carbon steel member eventually leads to the disappearance of the ferrite film on the carbon steel member, and after the ferrite film disappears, ie at the end of the operation cycle, by the ferrite film The anticorrosion effect that has been brought about disappears. In addition, after stopping the operation of the nuclear power plant in this operation cycle, it is necessary to form a ferrite film again on the surface of the carbon steel member.
 発明者らは、60℃~100℃の低い温度範囲で炭素鋼部材の炉水と接触する表面に形成したニッケルフェライト皮膜上に貴金属を付着させたときに、そのニッケルフェライトが溶出する理由について、検討を行った。この検討により、原子力プラントの運転停止中において、そのような低い温度範囲で炭素鋼部材の表面に形成されたニッケルフェライト皮膜は、Ni0.7Fe2.34の皮膜であり、不安定であることが分かった。なお、Ni0.7Fe2.34は、Ni1-xFe2+x4においてxが0.3である場合の形態である。このため、不安定な皮膜であるNi0.7Fe2.34皮膜上に、例えば、白金が付着されているとき、Ni0.7Fe2.34が、その白金の作用により、原子力プラントの運転中において炉水中に溶出するということが分かった。また、不安定なNi0.7Fe2.34の皮膜は、上記の低い温度範囲で形成されるため、炭素鋼部材の表面にNi0.7Fe2.34の小さい粒が多数付着している状態になっている。この理由によっても、上面に白金が付着したNi0.7Fe2.34の皮膜が溶出する。 The inventors have found that when a noble metal is deposited on a nickel ferrite film formed on a surface of a carbon steel member in contact with furnace water at a low temperature range of 60 ° C. to 100 ° C., the reason for the nickel ferrite to elute is Study was carried out. According to this examination, the nickel ferrite film formed on the surface of the carbon steel member at such a low temperature range during shutdown of the nuclear power plant is a film of Ni 0.7 Fe 2.3 O 4 and is unstable I understood. Note that Ni 0.7 Fe 2.3 O 4 is a form in the case where x is 0.3 in Ni 1-x Fe 2 + x O 4 . Therefore, for example, when platinum is deposited on the unstable film Ni 0.7 Fe 2.3 O 4 film, the reaction of the Ni 0.7 Fe 2.3 O 4 causes the reactor to operate during operation of the nuclear power plant. It was found to elute in water. In addition, since an unstable Ni 0.7 Fe 2.3 O 4 film is formed in the above-mentioned low temperature range, a large number of small particles of Ni 0.7 Fe 2.3 O 4 adhere to the surface of the carbon steel member. ing. Also for this reason, a film of Ni 0.7 Fe 2.3 O 4 with platinum adhering to the upper surface is eluted.
 特開2011-32551号公報に記載されているように、BWRプラントの炭素鋼部材の表面に形成されたニッケル金属皮膜を覆うニッケルフェライト皮膜に、酸素を含む150℃以上の水を接触させて、そのニッケル金属皮膜をニッケルフェライト皮膜に変換させた場合には、ニッケル金属皮膜から変換されたニッケルフェライト皮膜は、不安定なニッケルフェライト皮膜、例えば、Ni0.7Fe2.34の皮膜になる。 As described in JP 2011-32551 A, water containing oxygen at 150 ° C. or more is brought into contact with a nickel ferrite film covering a nickel metal film formed on the surface of a carbon steel member of a BWR plant, When the nickel metal film is converted to a nickel ferrite film, the nickel ferrite film converted from the nickel metal film becomes an unstable nickel ferrite film, for example, a film of Ni 0.7 Fe 2.3 O 4 .
 この理由を以下に説明する。特開2011-32551号公報では、前述したように、ニッケルイオン、鉄(II)イオン及び酸化剤を含み、pHが5.5ないし9.0の範囲にある皮膜形成水溶液(皮膜形成液)をニッケル金属皮膜に接触させてニッケル金属皮膜上にニッケルフェライト皮膜が形成される。このため、このニッケルフェライト皮膜に含まれるニッケルフェライトは、Fe量の多いニッケルフェライト、つまり、Ni0.7Fe2.34よりもNiが少なくFeが多いニッケルフェライトになる。 The reason is described below. In JP-A-2011-32551, as described above, a film-forming aqueous solution (film-forming solution) containing nickel ions, iron (II) ions and an oxidant and having a pH in the range of 5.5 to 9.0 A nickel ferrite film is formed on the nickel metal film in contact with the nickel metal film. Therefore, the nickel ferrite contained in the nickel ferrite film is a nickel ferrite having a large amount of Fe, that is, a nickel ferrite having less Ni and more Fe than Ni 0.7 Fe 2.3 O 4 .
 特開2011-32551号公報では、ニッケル金属皮膜上に形成された、鉄含有率の高いニッケルフェライトを含むニッケルフェライト皮膜に酸素を含む150℃の水を接触させることによって、このニッケルフェライト皮膜内の鉄含有率の高いニッケルフェライトからの鉄イオン、150℃の水に含まれる酸素、及び炭素鋼部材に含まれる鉄がそのニッケル金属皮膜に移行してニッケル金属皮膜内のニッケルと反応し、前述の不安定なニッケルフェライト(例えば、Ni0.7Fe2.34)が生成される。この結果、炭素鋼部材の表面に形成されたニッケル金属皮膜は、不安定なニッケルフェライト皮膜(例えば、Ni0.7Fe2.34皮膜)に変換される。ニッケル金属皮膜の不安定なニッケルフェライト皮膜への変換は、ニッケル金属皮膜をニッケルフェライト皮膜に変換する際にニッケル金属皮膜への鉄供給量が多くなってニッケルの量が不足するためである。なお、ニッケル金属皮膜を元々覆っていたニッケルフェライト皮膜は、高温水接触後にニッケル金属皮膜から移行されたニッケル金属と反応してNi0.7Fe2.34の皮膜になる。元々のニッケルフェライト皮膜のニッケルフェライトのNi含有率はNi0.7Fe2.34のそれよりも低く、その元々のニッケルフェライト皮膜は、還元環境では不安定なニッケルフェライト皮膜である。 JP-A-2011-32551 discloses that a nickel ferrite film containing nickel ferrite having a high iron content and formed on a nickel metal film is brought into contact with water containing oxygen at 150 ° C. Iron ions from nickel ferrite with high iron content, oxygen contained in water at 150 ° C., and iron contained in carbon steel members are transferred to the nickel metal film and react with the nickel in the nickel metal film, as described above unstable nickel ferrite (e.g., Ni 0.7 Fe 2.3 O 4) is generated. As a result, the nickel metal film formed on the surface of the carbon steel member is converted into an unstable nickel ferrite film (for example, a Ni 0.7 Fe 2.3 O 4 film). The conversion of the nickel metal film to the unstable nickel ferrite film is because when the nickel metal film is converted to the nickel ferrite film, the amount of iron supplied to the nickel metal film is large and the amount of nickel is insufficient. The nickel ferrite film originally covering the nickel metal film reacts with the nickel metal transferred from the nickel metal film after contact with high temperature water to form a film of Ni 0.7 Fe 2.3 O 4 . The nickel content of the original nickel ferrite film is lower than that of Ni 0.7 Fe 2.3 O 4 , and the original nickel ferrite film is a nickel ferrite film which is unstable in a reducing environment.
 このため、BWRプラントの運転中に注入された貴金属、例えば白金がその不安定なニッケル皮膜の表面に付着したとき、このニッケルフェライト皮膜が貴金属(例えば、白金)の作用により炉水中に溶出する。やがて、運転サイクルの末期において、ニッケル金属皮膜を元々覆っていたニッケルフェライト皮膜、及びニッケル金属皮膜から変換されたニッケルフェライト皮膜が、消失し、炭素鋼部材が露出して炉水と接触する可能性がある。 For this reason, when a noble metal such as platinum injected during operation of the BWR plant adheres to the surface of the unstable nickel film, this nickel ferrite film elutes in the reactor water by the action of the noble metal (eg platinum). Eventually, at the end of the operation cycle, the nickel ferrite film originally covering the nickel metal film and the nickel ferrite film converted from the nickel metal film may disappear and the carbon steel member may be exposed to contact with the reactor water There is.
 ところで、貴金属を炭素鋼部材の表面に付着させる際に、炭素鋼部材に含まれるFeがFe2+として溶出していると、貴金属を炭素鋼部材の表面に付着させることができなくなる。このため、発明者らは、貴金属を炭素鋼部材の表面に付着させる場合における、炭素鋼部材からのFe2+の溶出を防ぐ対策を検討した。そして、発明者らは、炭素鋼部材の表面をニッケル金属の皮膜で覆うことによって炭素鋼部材からのFe2+の溶出を防ぐことができることを見出した。炭素鋼部材の表面を覆うニッケル金属は、後述するように、炭素鋼部材の腐食を抑制する安定なニッケルフェライト皮膜の形成に寄与する物質である。炭素鋼部材の表面にニッケル金属皮膜を形成してこのニッケル金属皮膜で炭素鋼部材の表面を覆うことによって、炭素鋼部材からのFe2+の溶出を防ぐことができ、貴金属のニッケル金属皮膜表面への付着を短い時間で行うことができた。併せて、炭素鋼部材への貴金属の付着量も増大した。 By the way, when noble metal is attached to the surface of the carbon steel member, if Fe contained in the carbon steel member is eluted as Fe 2+ , the noble metal can not be attached to the surface of the carbon steel member. For this reason, the inventors examined measures to prevent the elution of Fe 2+ from the carbon steel member when a noble metal is attached to the surface of the carbon steel member. Then, the inventors found that covering the surface of the carbon steel member with a nickel metal film can prevent the elution of Fe 2+ from the carbon steel member. Nickel metal which covers the surface of a carbon steel member is a substance which contributes to formation of a stable nickel ferrite film which controls corrosion of a carbon steel member, as mentioned later. By forming a nickel metal film on the surface of the carbon steel member and covering the surface of the carbon steel member with this nickel metal film, elution of Fe 2+ from the carbon steel member can be prevented, and the nickel metal film surface of noble metal The adhesion to the skin could be made in a short time. At the same time, the adhesion amount of the noble metal to the carbon steel member also increased.
 炭素鋼部材の表面へのニッケル金属皮膜の形成は、ニッケルイオン及び還元剤を含む水溶液を炭素鋼部材の表面に接触させることによって可能である。その水溶液に含まれるニッケルイオンが炭素鋼部材に含まれるFeと置換され、置換されたニッケルイオンが還元剤の作用によりニッケル金属になり、炭素鋼部材の表面にニッケル金属皮膜が形成される。また、炭素鋼部材の表面に形成されたニッケル金属皮膜表面への貴金属の付着は、貴金属イオン(例えば、白金イオン)及び還元剤を含む水溶液を、形成されたニッケル金属皮膜に接触させることによって可能である。上記水溶液に含まれるニッケルイオンの炭素鋼部材表面への付着は、炭素鋼部材からFe2+が溶出している場合においても可能である。 The formation of a nickel metal film on the surface of a carbon steel member is possible by bringing an aqueous solution containing nickel ions and a reducing agent into contact with the surface of the carbon steel member. The nickel ion contained in the aqueous solution is substituted with Fe contained in the carbon steel member, and the substituted nickel ion becomes nickel metal by the action of the reducing agent, and a nickel metal film is formed on the surface of the carbon steel member. In addition, adhesion of a noble metal to the surface of a nickel metal film formed on the surface of a carbon steel member is possible by bringing an aqueous solution containing noble metal ions (eg, platinum ions) and a reducing agent into contact with the formed nickel metal film. It is. The adhesion of nickel ions contained in the aqueous solution to the surface of the carbon steel member is possible even when Fe 2+ is eluted from the carbon steel member.
 このように、炭素鋼部材の表面にニッケル金属皮膜を形成することによって、炭素鋼部材からのFe2+の溶出を防ぐことができ、短い時間でより多くの貴金属を炭素鋼部材に付着させることができる。 Thus, by forming a nickel metal film on the surface of the carbon steel member, elution of Fe 2+ from the carbon steel member can be prevented, and more noble metal can be attached to the carbon steel member in a short time. Can.
 炭素鋼部材の表面に形成されたニッケル金属皮膜上に付着させる貴金属としては、白金、パラジウム、ロジウム、ルテニウム、オスミウム及びイリジウムのいずれかを用いてもよい。また、還元剤としては、ヒドラジン、ホルムヒドラジン、ヒドラジンカルボアミド及びカルボヒドラジド等のヒドラジン誘導体及びヒドロキシルアミンのいずれかを用いてもよい。 Any of platinum, palladium, rhodium, ruthenium, osmium and iridium may be used as the noble metal to be deposited on the nickel metal film formed on the surface of the carbon steel member. Further, as the reducing agent, any of hydrazine derivatives such as hydrazine, form hydrazine, hydrazine carboxamide and carbohydrazide and hydroxylamine may be used.
 さらに、炭素鋼部材の腐食抑制に関する検討結果を以下に説明する。発明者らは、60℃~100℃の低い温度範囲で不安定なNi0.7Fe2.34の皮膜を炭素鋼部材の表面に形成するのではなく、付着した貴金属によっても溶出しない安定なニッケルフェライト皮膜の、炭素鋼部材の表面への形成を目指した。そこで、発明者らは、炭素鋼部材への貴金属の付着を効果的に行うために、炭素鋼部材の表面に形成したニッケル金属皮膜をその安定なニッケルフェライト皮膜の形成に利用できないかを種々検討した。この結果、ニッケル金属皮膜に白金を付着させた状態で高温(130℃以上)の水を、炭素鋼部材の表面に形成されたニッケル金属皮膜の、貴金属が付着された表面に接触させることによって、そのニッケル金属皮膜を、炭素鋼部材の表面を覆う、貴金属の作用によっても溶出しない安定なニッケルフェライト皮膜(Ni1-xFe2+x4においてxが0であるニッケルフェライト皮膜、すなわち、NiFe24皮膜)に変換させることができた。 Furthermore, the examination result regarding corrosion suppression of a carbon steel member is demonstrated below. The present inventors did not form an unstable Ni 0.7 Fe 2.3 O 4 film on the surface of a carbon steel member in a low temperature range of 60 ° C. to 100 ° C., but did not form a stable nickel ferrite even by the deposited noble metal. We aimed at the formation of the coating on the surface of carbon steel member. Therefore, the inventors variously examined whether the nickel metal film formed on the surface of the carbon steel member can be utilized for the formation of the stable nickel ferrite film in order to effectively adhere the noble metal to the carbon steel member. did. As a result, by bringing high temperature (130 ° C. or more) water into contact with the noble metal-deposited surface of the nickel metal coating formed on the surface of the carbon steel member while platinum is attached to the nickel metal coating, A stable nickel ferrite film (a nickel ferrite film in which x is 0 in Ni 1-x Fe 2 + x O 4 which covers the surface of a carbon steel member and does not dissolve even by the action of a noble metal, ie, NiFe It could be converted to a 2 O 4 film).
 発明者らは、ニッケル及び白金を付着していない炭素鋼製の試験片A、及び表面にニッケル金属皮膜を形成してニッケル金属皮膜表面に白金を付着した炭素鋼製の試験片Bを用いて、BWRプラントの運転中の炉水の条件を模擬した模擬水に浸漬して試験片の腐食量を求めた。この実験は、試験片A及びBを閉ループの循環配管内に設置し、その循環配管内に原子炉内の炉水を模擬した模擬水を循環させて行った。模擬水の温度は280℃である。循環配管内に設置された試験片A及びBのそれぞれは、循環配管内を流れる模擬水中に500時間浸漬された。500時間が経過した後、試験片A及びBのそれぞれを循環配管から取り出し、カソード溶解法により高温水中で形成された酸化皮膜を溶解除去し、試験片に残存している金属量を求め、試験前の試験片金属量との差分から腐食量を求めた。 The inventors used a test piece A made of carbon steel not having nickel and platinum attached, and a test piece B made of carbon steel having a nickel metal film formed on the surface and platinum attached to the surface of the nickel metal film. Then, it was immersed in simulated water simulating the conditions of the reactor water during operation of the BWR plant to determine the corrosion amount of the test piece. In this experiment, test pieces A and B were placed in a closed loop circulation pipe, and simulated water simulating reactor water in the reactor was circulated in the circulation pipe. The temperature of the simulated water is 280 ° C. Each of the test pieces A and B installed in the circulation pipe was immersed in the simulated water flowing in the circulation pipe for 500 hours. After 500 hours have passed, each of the test pieces A and B is removed from the circulation pipe, the oxide film formed in high temperature water is dissolved and removed by the cathode dissolution method, and the amount of metal remaining in the test piece is determined. The amount of corrosion was determined from the difference with the previous test piece metal amount.
 それぞれの試験片における腐食量の測定結果を図10に示す。図10から明らかなように、ニッケル金属皮膜表面に白金を付着させた試験片Bでは、ニッケル及び白金を付着していない試験片Aに比べて腐食量が著しく低下した。 The measurement result of the amount of corrosion in each test piece is shown in FIG. As apparent from FIG. 10, in the test piece B in which platinum was attached to the surface of the nickel metal film, the corrosion amount was significantly reduced compared to the test piece A in which nickel and platinum were not attached.
 さらに、循環配管から取り出された試験片A及びBの各表面における化学組成をラマン分光によって分析した。この分析結果を図11に示す。実質的に炭素鋼である試験片Aの表面には、主にFe34からなる皮膜が形成されていた。腐食量が大幅に低減された試験片Bの表面には、ニッケルフェライト(NiFe24)を主成分とする酸化皮膜が形成されていた。このNiFe24は、Ni1-xFe2+x4においてxが0である形態である。 Furthermore, the chemical composition on each surface of the test pieces A and B removed from the circulation pipe was analyzed by Raman spectroscopy. The analysis results are shown in FIG. A film mainly composed of Fe 3 O 4 was formed on the surface of the test piece A, which is substantially carbon steel. An oxide film mainly composed of nickel ferrite (NiFe 2 O 4 ) was formed on the surface of the test piece B in which the amount of corrosion was significantly reduced. This NiFe 2 O 4 is a form in which x is 0 in Ni 1-x Fe 2 + x O 4 .
 表面にニッケル金属皮膜が形成されてこのニッケル金属皮膜表面に貴金属(例えば、白金)が付着された炭素鋼部材(試験片B)のニッケル金属皮膜が、酸素を含む130℃以上の水との接触により、炭素鋼部材の表面を覆う安定なニッケルフェライト皮膜(NiFe24皮膜)に変換される理由を説明する。130℃以上の水が炭素鋼部材上のニッケル金属皮膜に接触すると、ニッケル金属皮膜及び炭素鋼部材が130℃以上に加熱される。その水に含まれる酸素がニッケル金属皮膜内に移行し、炭素鋼部材に含まれるFeがFe2+となってニッケル金属皮膜内に移行する。ニッケル金属皮膜内のニッケルが、130℃以上の高温環境で、ニッケル金属皮膜内に移行した酸素及びFe2+と反応し、Ni1-xFe2+x4においてxが0であるニッケルフェライトが生成される。この際、フェライト構造の中へのニッケル及び鉄のそれぞれの取り込まれ易さは貴金属の影響を受け、貴金属が存在する場合は鉄よりもニッケルが取り込まれ易くなるため、Ni1-xFe2+x4においてxが0であるニッケルフェライトが生成される。このニッケルフェライトの皮膜が、炭素鋼部材の表面を覆う。 A nickel metal film of a carbon steel member (test piece B) in which a nickel metal film is formed on the surface and a noble metal (for example, platinum) is attached to the surface of the nickel metal film is in contact with oxygen containing water of 130 ° C. or more. The reason for conversion to a stable nickel ferrite film (NiFe 2 O 4 film) covering the surface of a carbon steel member will be described. When water at 130 ° C. or more contacts the nickel metal film on the carbon steel member, the nickel metal film and the carbon steel member are heated to 130 ° C. or more. Oxygen contained in the water is transferred into the nickel metal film, and Fe contained in the carbon steel member is converted into Fe 2+ and transferred into the nickel metal film. Nickel ferrite in which nickel in the nickel metal film reacts with oxygen and Fe 2+ transferred to the nickel metal film in a high temperature environment of 130 ° C. or more, and x is 0 in Ni 1-x Fe 2 + x O 4 Is generated. At this time, the ease with which each of nickel and iron is incorporated into the ferrite structure is affected by the noble metal, and in the presence of the noble metal, nickel is more easily incorporated than iron, so Ni 1 -x Fe 2 + A nickel ferrite is formed where x is 0 at x O 4 . The nickel ferrite film covers the surface of the carbon steel member.
 炭素鋼部材の表面を覆ったニッケル金属皮膜に含まれるニッケル金属から、130℃以上の高温の環境下において上記のように生成された、Ni1-xFe2+x4においてxが0であるニッケルフェライトは、結晶が大きく成長しており、貴金属が付着してもNi0.7Fe2.34皮膜のように水中に溶出しなく安定であり、母材の炭素鋼の腐食抑制に作用する。このNi1-xFe2+x4においてxが0である安定なニッケルフェライトは、ニッケル金属皮膜に付着した白金等の貴金属の作用により、炭素鋼部材及びニッケル金属皮膜の腐食電位が低下されるために生成される。このように、130℃以上の高温の環境下で、炭素鋼部材の表面を覆ったニッケル金属から白金の存在下で生成されたそのニッケルフェライト皮膜は、60℃~100℃の低い温度範囲で生成されたNi0.7Fe2.34皮膜よりも長期に亘って炭素鋼部材の腐食を抑制することができる。 X is 0 in Ni 1-x Fe 2 + x O 4 generated as described above from a nickel metal contained in a nickel metal film covering the surface of a carbon steel member in a high temperature environment of 130 ° C. or higher Some nickel ferrites are large in crystal growth, and do not elute into water like the Ni 0.7 Fe 2.3 O 4 film even if precious metals are attached, and they are stable against corrosion of the base carbon steel. In this Ni 1-x Fe 2 + x O 4 , a stable nickel ferrite in which x is 0 is reduced in the corrosion potential of the carbon steel member and the nickel metal film by the action of a noble metal such as platinum attached to the nickel metal film. Generated to Thus, in a high temperature environment of 130 ° C. or higher, the nickel ferrite film formed in the presence of platinum from nickel metal covering the surface of a carbon steel member is formed in a low temperature range of 60 ° C. to 100 ° C. The corrosion of the carbon steel member can be suppressed for a longer period of time than the Ni 0.7 Fe 2.3 O 4 coating.
 ニッケル金属皮膜に接触させる酸素を含む水の温度が130℃未満である場合には、ニッケル金属皮膜は、安定なニッケルフェライト皮膜(NiFe24皮膜)に変換されない。ニッケル金属皮膜を貴金属の作用により溶出しない安定なニッケルフェライト皮膜に変換させるためには、ニッケル金属皮膜に接触させる酸素を含む水の温度を130℃以上にする必要がある。さらに、酸素を含むその水の温度上昇に要する時間を短縮するためには、その水の温度を200℃未満にするとよい。すなわち、ニッケル金属皮膜に接触させる酸素を含む水は、ニッケル金属皮膜を安定なニッケルフェライト(NiFe24)皮膜に変換させるために、130℃以上200℃未満の温度範囲に加熱する。 If the temperature of the water containing oxygen brought into contact with the nickel metal film is less than 130 ° C., the nickel metal film is not converted to a stable nickel ferrite film (NiFe 2 O 4 film). In order to convert the nickel metal film into a stable nickel ferrite film which is not eluted by the action of a noble metal, the temperature of water containing oxygen to be brought into contact with the nickel metal film needs to be 130 ° C. or more. Furthermore, in order to reduce the time required for the temperature rise of the water containing oxygen, the temperature of the water may be less than 200 ° C. That is, water containing oxygen to be brought into contact with the nickel metal film is heated to a temperature range of 130 ° C. or more and less than 200 ° C. in order to convert the nickel metal film into a stable nickel ferrite (NiFe 2 O 4 ) film.
 発明者らは、表面に貴金属を付着したニッケル金属皮膜に、酸素を含む130℃以上200℃未満の温度範囲内の温度になっている水を接触させた場合においても、炭素鋼部材の表面に形成されたニッケル金属皮膜を安定なニッケルフェライト皮膜(NiFe24皮膜)に変換できることを見出したのである。 The inventors have made contact with the surface of the carbon steel member even when the nickel metal film having a noble metal attached to the surface is contacted with water containing oxygen and having a temperature within the temperature range of 130 ° C. or more and less than 200 ° C. It has been found that the formed nickel metal film can be converted to a stable nickel ferrite film (NiFe 2 O 4 film).
 なお、炭素鋼部材の表面にニッケル金属皮膜を形成するために、ニッケルイオン、ギ酸及び還元剤(例えば、ヒドラジン)を含み、pHが4.0~11.0(4.0以上11.0以下)の範囲にあって温度が60℃以上100℃以下の温度範囲の水溶液を該当する炭素鋼部材の表面に接触させると、炭素鋼部材の表面が完全にニッケル金属皮膜で覆われるまでの間、炭素鋼部材からFe2+がその水溶液に溶出する。溶出したFe2+は、水酸化鉄及びマグネタイトとしてその水溶液中に析出する。 In addition, in order to form a nickel metal film on the surface of a carbon steel member, it contains a nickel ion, formic acid and a reducing agent (for example, hydrazine) and has a pH of 4.0 to 11.0 (4.0 to 11.0). When the aqueous solution in the temperature range of 60 ° C. to 100 ° C. is brought into contact with the surface of the corresponding carbon steel member, the surface of the carbon steel member is completely covered with the nickel metal film, Fe 2+ elutes from the carbon steel member into the aqueous solution. The eluted Fe 2+ precipitates in the aqueous solution as iron hydroxide and magnetite.
 炭素鋼部材の表面へのニッケル金属皮膜の形成が終了した後、析出した水酸化鉄及びマグネタイト、ニッケルイオン、ギ酸及びヒドラジンを含むその水溶液が、ギ酸及びヒドラジンの分解工程において、カチオン交換樹脂塔及び分解装置に供給される。水溶液に含まれるニッケルイオン及びFe2+がカチオン交換樹脂塔で除去され、ギ酸及びヒドラジンが分解装置で分解される。ギ酸及びヒドラジンの分解後、その水溶液が混床樹脂塔に導かれ、水溶液に含まれる不純物が混床樹脂塔内のイオン交換樹脂で除去されてその水溶液が浄化される。 After the formation of the nickel metal film on the surface of the carbon steel member is completed, the precipitated aqueous solution of iron hydroxide and magnetite, nickel ion, formic acid and hydrazine is a cation exchange resin tower and It is supplied to the disassembling device. Nickel ions and Fe 2+ contained in the aqueous solution are removed in a cation exchange resin column, and formic acid and hydrazine are decomposed in a decomposition apparatus. After decomposition of formic acid and hydrazine, the aqueous solution is introduced into the mixed bed resin tower, and the impurities contained in the aqueous solution are removed by the ion exchange resin in the mixed bed resin tower to purify the aqueous solution.
 水溶液の浄化後においても、カチオン交換樹脂塔及び混床樹脂塔で除去しきれなかったFe2+がその水溶液中に存在する可能性がある。水溶液の浄化後において水溶液中に存在するFe2+は、その水溶液に溶存する酸素、及びその水溶液に含まれるギ酸及びヒドラジンを分解するためにその水溶液に供給される過酸化水素により酸化されてFe3+となり、水酸化鉄及びマグネタイトとして析出する。その後、貴金属イオン及び還元剤をその水溶液に注入した場合、注入された貴金属イオンの一部が還元剤の作用によって析出している水酸化鉄及びマグネタイトに貴金属として付着してしまい、炭素鋼部材の表面に形成されたニッケル金属皮膜上に付着する貴金属の量が低減してしまい、所定量の貴金属をニッケル金属皮膜の表面に付着させるために要する時間が、長くなってしまう。 Even after purification of the aqueous solution, Fe 2+ ions that could not be removed by the cation exchange resin tower and the mixed bed resin tower may be present in the aqueous solution. After purification of the aqueous solution, Fe 2+ present in the aqueous solution is oxidized by oxygen dissolved in the aqueous solution, and hydrogen peroxide supplied to the aqueous solution to decompose formic acid and hydrazine contained in the aqueous solution. It becomes 3+ and precipitates as iron hydroxide and magnetite. Thereafter, when a noble metal ion and a reducing agent are injected into the aqueous solution, a part of the injected noble metal ion adheres to iron hydroxide and magnetite deposited by the action of the reducing agent as a noble metal. The amount of precious metal deposited on the nickel metal film formed on the surface is reduced, and the time required to deposit a predetermined amount of precious metal on the surface of the nickel metal film becomes long.
 水溶液に残留する鉄イオン(Fe3+)が水酸化鉄及びマグネタイトとして析出し、貴金属が水酸化鉄及びマグネタイトに付着することを避けるために、水溶液に錯イオン形成剤(例えば、アンモニア)、貴金属イオン(例えば、白金イオン)及び還元剤(例えば、ヒドラジン)のそれぞれを注入し、水溶液に残留する鉄イオンと注入された錯イオン形成剤、例えば、アンモニアが鉄-アンモニア錯イオンを形成し、その鉄イオンの析出を抑えることが知られている(特開2015-158486号公報参照)。その鉄イオンとアンモニアは、式(1)から式(3)に示された各反応によって、鉄-アンモニア錯イオンを生成する。 In order to prevent iron ions (Fe 3+ ) remaining in the aqueous solution from precipitating as iron hydroxide and magnetite and attaching the noble metal to the iron hydroxide and magnetite, a complex ion forming agent (for example, ammonia) in the aqueous solution, noble metal The ion (eg, platinum ion) and the reductant (eg, hydrazine) are each injected, and the iron ion remaining in the aqueous solution and the injected complex ion forming agent, eg, ammonia form iron-ammonia complex ion, It is known to suppress the precipitation of iron ions (see JP-A-2015-158486). The iron ion and ammonia form an iron-ammonia complex ion by each of the reactions shown in the formulas (1) to (3).
  Fe3++NH3 → [Fe(NH3)]3+    ……(1)
  Fe3++2NH3 → [Fe(NH323+   ……(2)
  Fe3++3NH3 → [Fe(NH333+   ……(3)
 このように、鉄-アンモニア錯イオンがその水溶液中に生成されると、還元剤であるヒドラジンが注入されてその水溶液のpHが8程度以上のアルカリ性になったとしても、その水溶液内で鉄イオンの析出が抑制される。錯イオン形成剤を水溶液に注入することにより、水溶液に含まれる貴金属イオンを、還元剤の助けをかりて、プラントの炭素鋼部材の表面に形成されたニッケル金属皮膜の表面に効率良く付着させることができる。このため、炭素鋼部材の表面への貴金属の付着に要する時間をさらに短縮することができる。
Fe 3+ + NH 3 → [Fe (NH 3 )] 3+ (1)
Fe 3 + +2 NH 3 → [Fe (NH 3 ) 2 ] 3 + ... (2)
Fe 3+ + 3NH 3 → [Fe (NH 3 ) 3 ] 3+ ... (3)
Thus, when iron-ammonia complex ion is generated in the aqueous solution, even if the pH of the aqueous solution becomes alkaline of about 8 or more when the reducing agent hydrazine is injected, the iron ion in the aqueous solution Precipitation is suppressed. By injecting a complex ion-forming agent into an aqueous solution, noble metal ions contained in the aqueous solution are efficiently attached to the surface of a nickel metal film formed on the surface of a carbon steel member of a plant with the aid of a reducing agent. Can. Therefore, the time required for the adhesion of the noble metal to the surface of the carbon steel member can be further shortened.
 錯イオン形成剤としては、還元剤(例えば、ヒドラジン)の注入により水溶液のpHが増加した場合においても、錯イオンの形成によってFe3+の溶解度を上昇させ、水酸化鉄及びマグネタイトの析出を抑制できる物質であれば良く、アンモニア、ヒドロキシルアミン等のモノアミン類、シアン化合物、尿素及びチオシアン化合物のうち少なくとも1つを用いる。 Even when the pH of the aqueous solution is increased by the injection of a reducing agent (for example, hydrazine) as a complex ion forming agent, the formation of complex ions increases the solubility of Fe 3+ and suppresses the precipitation of iron hydroxide and magnetite Any substance can be used, and at least one of ammonia, monoamines such as hydroxylamine, a cyan compound, urea, and a thiocyan compound is used.
 以上に述べたように、浄化後の水溶液中に鉄イオン(Fe3+)が残留している場合であっても、水溶液内での鉄イオンの析出を抑制する、アンモニアのような鉄イオンと錯イオンを形成する物質(錯イオン形成剤)を、その水溶液に注入することにより、白金イオン(貴金属イオン)と還元剤(例えばヒドラジン)の働きで白金イオンを白金として炭素鋼部材の表面に形成されたニッケル金属皮膜の表面に付着させることができるのである。 As described above, even if iron ions (Fe 3+ ) remain in the aqueous solution after purification, iron ions such as ammonia, which suppress precipitation of iron ions in the aqueous solution, A substance that forms complex ions (complex ion forming agent) is injected into the aqueous solution to form platinum ions (precious metal ions) and a reducing agent (for example, hydrazine) on the surface of the carbon steel member with platinum ions as platinum. It can be attached to the surface of the nickel metal film.
 以上に述べた検討結果に基づいて、発明者らは、以下に述べる発明を新たに創生することができた。 Based on the above-described examination results, the inventors were able to newly create the invention described below.
 ニッケルイオン及び還元剤を含む皮膜形成水溶液を炭素鋼部材の表面に接触させ、炭素鋼部材のその表面にニッケル金属皮膜を形成し、貴金属をそのニッケル金属皮膜表面に付着させ、酸素を含み130℃以上200℃未満の温度範囲の水を、貴金属を付着したニッケル金属皮膜に接触させ、そのニッケル金属皮膜に含まれるニッケル金属、水に含まれる酸素及び炭素鋼部材に含まれる鉄を基に、130℃以上200℃未満の高温下で、貴金属の触媒作用を利用して炭素鋼部材の表面にニッケルフェライト皮膜を形成する。 A film forming aqueous solution containing nickel ions and a reducing agent is brought into contact with the surface of a carbon steel member to form a nickel metal film on the surface of the carbon steel member, a noble metal is deposited on the surface of the nickel metal film, oxygen is included 130 ° C. Water in a temperature range of not less than 200 ° C. is brought into contact with the nickel metal film to which the noble metal is attached, and nickel metal contained in the nickel metal film, oxygen contained in water and iron contained in the carbon steel member A nickel ferrite film is formed on the surface of a carbon steel member by using the catalytic action of a noble metal at high temperatures of not less than 200 ° C. and not less than 200 ° C.
 この発明はプラントの炭素鋼部材の腐食抑制方法に関する発明である。この発明によれば、炭素鋼部材の表面に形成されて貴金属が付着されているニッケル金属皮膜に130℃以上200℃未満の範囲内の水を接触させて、そのニッケル金属皮膜に含まれるニッケル金属を基に、貴金属の触媒作用を利用して130℃以上200℃未満の範囲内の高温下で、炭素鋼部材の表面に安定なニッケルフェライト皮膜を形成するので、この形成されたニッケルフェライト皮膜は、貴金属が付着していても水に溶出しなく、より長期に亘って(具体的には、複数の運転サイクルに亘って)炭素鋼部材の腐食を抑制することができる。 The present invention relates to a method of inhibiting corrosion of a carbon steel member of a plant. According to the present invention, the nickel metal film formed on the surface of the carbon steel member and having the noble metal attached thereto is brought into contact with water within the range of 130 ° C. or more and less than 200 ° C. Since the stable nickel ferrite film is formed on the surface of the carbon steel member under the high temperature within the range of 130 ° C. or more and less than 200 ° C. by utilizing the catalytic action of the noble metal, the formed nickel ferrite film is Even if precious metals are attached, they do not elute in water, and corrosion of carbon steel members can be suppressed over a long period of time (specifically, over a plurality of operation cycles).
 以上の検討結果を反映した、本発明の実施例を以下に説明する。 Examples of the present invention reflecting the above examination results will be described below.
 本発明の好適な一実施例である実施例1のプラントの炭素鋼部材の腐食抑制方法を図1、図2及び図3を用いて説明する。本実施例の炭素鋼部材の腐食抑制方法は、沸騰水型原子力発電プラント(BWRプラント)の、炭素鋼製の浄化系配管(炭素鋼部材)に適用される。 A method of inhibiting corrosion of a carbon steel member of a plant according to a first embodiment which is a preferred embodiment of the present invention will be described with reference to FIG. 1, FIG. 2 and FIG. The method of suppressing corrosion of a carbon steel member of the present embodiment is applied to a carbon steel purification system pipe (carbon steel member) of a boiling water nuclear power plant (BWR plant).
 このBWRプラントの概略構成を、図2を用いて説明する。BWRプラント1は、原子炉2、タービン9、復水器10、再循環系、原子炉浄化系及び給水系等を備えている。原子炉2は、蒸気発生装置であり、炉心4を内蔵する原子炉圧力容器(以下、RPVという)3を有し、RPV3内で炉心4を取り囲む炉心シュラウド(図示せず)の外面とRPV3の内面との間に形成される環状のダウンカマ内にジェットポンプ5を設置している。炉心4には多数の燃料集合体(図示せず)が装荷されている。燃料集合体は、核燃料物質で製造された複数の燃料ペレットが充填された複数の燃料棒を含んでいる。 The schematic configuration of this BWR plant will be described with reference to FIG. The BWR plant 1 includes a reactor 2, a turbine 9, a condenser 10, a recirculation system, a reactor purification system, a water supply system, and the like. The nuclear reactor 2 is a steam generator and has a reactor pressure vessel (hereinafter referred to as RPV) 3 containing a core 4 and has an outer surface of a core shroud (not shown) surrounding the core 4 in the RPV 3 and the RPV 3 The jet pump 5 is installed in an annular downcomer formed between it and the inner surface. The core 4 is loaded with a number of fuel assemblies (not shown). The fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material.
 再循環系は、ステンレス鋼製の再循環系配管6、及び再循環系配管6に設置された再循環ポンプ7を有する。給水系は、復水器10とRPV3を連絡する給水配管11に、復水ポンプ12、復水浄化装置(例えば、復水脱塩器)13、低圧給水加熱器14、給水ポンプ15及び高圧給水加熱器16を、復水器10からRPV3に向って、この順に設置して構成されている。原子炉浄化系は、再循環系配管6と給水配管11を連絡する浄化系配管18に、浄化系ポンプ19、再生熱交換器20、非再生熱交換器21及び炉水浄化装置22をこの順に設置している。炉水浄化装置22をバイパスするバイパス配管28が、炉水浄化装置22の上流側と下流側で浄化系配管18に接続される。弁27が、バイパス配管28と浄化系配管18の接続点よりも炉水浄化装置22側で浄化系配管18に設けられる。浄化系配管18は、再循環ポンプ7の上流で再循環系配管6に接続される。原子炉2は、原子炉建屋(図示せず)内に配置された原子炉格納容器90内に設置されている。 The recirculation system has a stainless steel recirculation system pipe 6 and a recirculation pump 7 installed in the recirculation system pipe 6. The water supply system includes a condensate pump 12, a condensate purification apparatus (for example, a condensate demineralizer) 13, a low pressure feed water heater 14, a feed water pump 15, and a high pressure feed water to a feed water pipe 11 connecting the condenser 10 and the RPV 3 The heater 16 is installed and arranged in this order from the condenser 10 toward the RPV 3. The reactor purification system comprises a purification system pipe 18 connecting the recirculation system pipe 6 and the water supply pipe 11, with the purification system pump 19, the regenerative heat exchanger 20, the non-regeneration heat exchanger 21 and the reactor water purification device 22 in this order. It has been installed. The bypass piping 28 bypassing the reactor water purification device 22 is connected to the purification system piping 18 on the upstream side and the downstream side of the reactor water purification device 22. The valve 27 is provided in the purification system pipe 18 on the side of the reactor water purification device 22 with respect to the connection point between the bypass pipe 28 and the purification system pipe 18. The purification system piping 18 is connected to the recirculation system piping 6 upstream of the recirculation pump 7. The reactor 2 is installed in a reactor containment vessel 90 disposed in a reactor building (not shown).
 RPV3内の冷却水(以下、炉水という)は、再循環ポンプ7で昇圧され、再循環系配管6を通ってジェットポンプ5内に噴出される。ダウンカマ内でジェットポンプ5のノズルの周囲に存在する炉水も、ジェットポンプ5内に吸引されて炉心4に供給される。炉心4に供給された炉水は、燃料棒内の核燃料物質の核分裂で発生する熱によって加熱され、その一部が蒸気になる。この蒸気は、RPV3から主蒸気配管8を通ってタービン9に導かれ、タービン9を回転させる。タービン9に連結された発電機(図示せず)が回転し、電力が発生する。タービン9から排出された蒸気は、復水器10で凝縮されて水になる。この水は、給水として、給水配管11を通りRPV3内に供給される。給水配管11を流れる給水は、復水ポンプ12で昇圧され、復水浄化装置13で不純物が除去され、給水ポンプ15でさらに昇圧される。給水は、低圧給水加熱器14及び高圧給水加熱器16で加熱されてRPV3内に導かれる。抽気配管17でタービン9から抽気された抽気蒸気が、低圧給水加熱器14及び高圧給水加熱器16にそれぞれ供給され、給水の加熱源となる。 The cooling water in the RPV 3 (hereinafter referred to as “furnace water”) is pressurized by the recirculation pump 7 and is jetted into the jet pump 5 through the recirculation system pipe 6. Reactor water present in the downcomer around the nozzle of the jet pump 5 is also drawn into the jet pump 5 and supplied to the core 4. The reactor water supplied to the core 4 is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel rods, and a part thereof becomes steam. The steam is led from the RPV 3 through the main steam piping 8 to the turbine 9 to rotate the turbine 9. A generator (not shown) connected to the turbine 9 rotates to generate electric power. The steam discharged from the turbine 9 is condensed by the condenser 10 into water. This water is supplied to the RPV 3 through the water supply pipe 11 as water supply. The feed water flowing through the feed water pipe 11 is pressurized by the condensate pump 12, impurities are removed by the condensate purification device 13, and the pressure is further boosted by the feed pump 15. The feedwater is heated by the low pressure feedwater heater 14 and the high pressure feedwater heater 16 and introduced into the RPV 3. Extracted steam extracted from the turbine 9 in the extraction pipe 17 is supplied to the low pressure feed water heater 14 and the high pressure feed water heater 16, respectively, and serves as a heating source of the feed water.
 再循環系配管6内を流れる炉水の一部は、浄化系ポンプ19の駆動によって浄化系配管18内に流入し、再生熱交換器20及び非再生熱交換器21で冷却された後、炉水浄化装置22で浄化される。浄化された炉水は、再生熱交換器20で加熱されて浄化系配管18及び給水配管11を経てRPV3内に戻される。 A part of the reactor water flowing in the recirculation system piping 6 flows into the purification system piping 18 by the drive of the purification system pump 19, and after being cooled by the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21, the furnace It is purified by the water purifier 22. The purified reactor water is heated by the regenerative heat exchanger 20 and returned to the interior of the RPV 3 through the purification system piping 18 and the water supply piping 11.
 本実施例のプラントの炭素鋼部材の腐食抑制方法では、皮膜形成装置30及び31Aが用いられ、これらの皮膜形成装置30及び31Aが、図2に示すように、BWRプラントの浄化系配管18に接続される。 In the method of suppressing corrosion of carbon steel members of the plant of this embodiment, the film forming devices 30 and 31A are used, and as shown in FIG. 2, these film forming devices 30 and 31A are used for the purification system piping 18 of the BWR plant. Connected
 皮膜形成装置30及び30Aの詳細な構成を、図3を用いて説明する。皮膜形成装置30及び30Aのそれぞれの構成は同じである。 The detailed configuration of the film forming devices 30 and 30A will be described with reference to FIG. The configuration of each of the film forming devices 30 and 30A is the same.
 皮膜形成装置30及び30Aは、循環配管31、サージタンク32、加熱器33、循環ポンプ34,35、ニッケルイオン注入装置36、還元剤注入装置41、白金イオン注入装置46、冷却器52、カチオン交換樹脂塔53、混床樹脂塔54、分解装置55、酸化剤供給装置56及びエゼクタ61を備えている。 The film forming devices 30 and 30A include a circulation pipe 31, a surge tank 32, a heater 33, circulation pumps 34 and 35, a nickel ion injection device 36, a reducing agent injection device 41, a platinum ion injection device 46, a cooler 52, cation exchange. The resin tower 53, the mixed bed resin tower 54, the decomposition device 55, the oxidant supply device 56, and the ejector 61 are provided.
 開閉弁62、循環ポンプ35、弁63,66,69及び74、サージタンク32、循環ポンプ34、弁77及び開閉弁78が、上流よりこの順に循環配管31に設けられている。弁63をバイパスする配管65が循環配管31に接続され、弁64及びフィルタ51が配管65に設置される。弁66をバイパスして両端が循環配管31に接続される配管68には、冷却器52及び弁67が設置される。両端が循環配管31に接続されて弁69をバイパスする配管71に、カチオン交換樹脂塔53及び弁70が設置される。両端が配管71に接続されてカチオン交換樹脂塔53及び弁70をバイパスする配管73に、混床樹脂塔54及び弁72が設置される。カチオン交換樹脂塔53は陽イオン交換樹脂を充填しており、混床樹脂塔54は陽イオン交換樹脂及び陰イオン交換樹脂を充填している。 An on-off valve 62, a circulation pump 35, valves 63, 66, 69 and 74, a surge tank 32, a circulation pump 34, a valve 77 and an on-off valve 78 are provided in the circulation pipe 31 in this order from the upstream. A pipe 65 bypassing the valve 63 is connected to the circulation pipe 31, and the valve 64 and the filter 51 are installed in the pipe 65. A cooler 52 and a valve 67 are installed in a pipe 68 which bypasses the valve 66 and is connected to the circulation pipe 31 at both ends. The cation exchange resin tower 53 and the valve 70 are installed in the pipe 71 whose both ends are connected to the circulation pipe 31 and which bypasses the valve 69. The mixed bed resin tower 54 and the valve 72 are installed on the piping 73 whose both ends are connected to the piping 71 and which bypasses the cation exchange resin tower 53 and the valve 70. The cation exchange resin column 53 is filled with a cation exchange resin, and the mixed bed resin column 54 is filled with a cation exchange resin and an anion exchange resin.
 弁75及び弁75よりも下流に位置する分解装置55が設置される配管76が、弁74をバイパスして循環配管31に接続される。分解装置55は、内部に、例えば、ルテニウムを活性炭の表面に添着した活性炭触媒を充填している。サージタンク32が弁74と循環ポンプ34の間で循環配管31に設置される。加熱器33がサージタンク32内に配置される。弁79及びエゼクタ61が設けられる配管80が、弁77と循環ポンプ34の間で循環配管31に接続され、さらに、サージタンク32に接続されている。浄化系配管18の内面の汚染物を還元溶解するために用いるシュウ酸(還元除染剤)をサージタンク32内に供給するためのホッパ(図示せず)がエゼクタ61に設けられている。 A pipe 76 in which the valve 75 and the decomposition device 55 located downstream of the valve 75 are installed bypasses the valve 74 and is connected to the circulation pipe 31. The decomposition device 55 is filled with an activated carbon catalyst in which, for example, ruthenium is attached to the surface of activated carbon. A surge tank 32 is installed in the circulation pipe 31 between the valve 74 and the circulation pump 34. A heater 33 is disposed in the surge tank 32. A pipe 80 provided with the valve 79 and the ejector 61 is connected to the circulation pipe 31 between the valve 77 and the circulation pump 34 and is further connected to the surge tank 32. A hopper (not shown) for supplying oxalic acid (reduction decontaminant) used to reduce and dissolve the contaminants on the inner surface of the purification system pipe 18 is provided in the ejector 61.
 ニッケルイオン注入装置36が、薬液タンク37、注入ポンプ38及び注入配管39を有する。薬液タンク37は、注入ポンプ38及び弁40を有する注入配管39によって循環配管31に接続される。ギ酸ニッケル(Ni(HCOO)・2H2O)を希薄なギ酸水溶液に溶解して調製したギ酸ニッケル水溶液(ニッケルイオンを含む水溶液)が、薬液タンク37内に充填される。 A nickel ion implantation apparatus 36 has a chemical solution tank 37, an injection pump 38 and an injection pipe 39. The chemical solution tank 37 is connected to the circulation pipe 31 by an injection pipe 39 having an injection pump 38 and a valve 40. An aqueous solution of nickel formate (an aqueous solution containing nickel ions) prepared by dissolving nickel formate (Ni (HCOO) 2 · 2 H 2 O) in a dilute aqueous solution of formic acid is filled in the chemical solution tank 37.
 白金イオン注入装置(貴金属イオン注入装置)46が、薬液タンク47、注入ポンプ48及び注入配管49を有する。薬液タンク47は、注入ポンプ48及び弁50を有する注入配管49によって循環配管31に接続される。白金錯体(例えば、ヘキサヒドロキソ白金酸ナトリウム水和物(Na[Pt(OH)]・nHO))を水に溶解して調整した白金イオンを含む水溶液(例えば、ヘキサヒドロキソ白金酸ナトリウム水和物水溶液)が、薬液タンク47内に充填されている。白金イオンを含む水溶液は貴金属イオンを含む水溶液の一種である。 A platinum ion implantation device (noble metal ion implantation device) 46 has a chemical solution tank 47, an injection pump 48 and an injection pipe 49. The chemical solution tank 47 is connected to the circulation pipe 31 by an injection pipe 49 having an injection pump 48 and a valve 50. An aqueous solution containing platinum ions prepared by dissolving a platinum complex (eg, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 ] .nH 2 O) in water (eg, sodium hexahydroxoplatinate) Hydrate aqueous solution) is filled in the drug solution tank 47. The aqueous solution containing platinum ions is a kind of aqueous solution containing precious metal ions.
 還元剤注入装置41が、薬液タンク42、注入ポンプ43及び注入配管44を有する。薬液タンク42は、注入ポンプ43及び弁45を有する注入配管44によって循環配管31に接続される。還元剤であるヒドラジンの水溶液が薬液タンク42内に充填される。 The reducing agent injection device 41 has a chemical solution tank 42, an injection pump 43 and an injection pipe 44. The chemical solution tank 42 is connected to the circulation pipe 31 by an injection pipe 44 having an injection pump 43 and a valve 45. An aqueous solution of hydrazine, which is a reducing agent, is filled in the chemical solution tank 42.
 注入配管39,49及び44が、弁77から開閉弁78に向かってその順番で、弁77と開閉弁78の間で循環配管31に接続される。 The injection pipes 39, 49 and 44 are connected to the circulation pipe 31 between the valve 77 and the on-off valve 78 in order from the valve 77 to the on-off valve 78.
 酸化剤供給装置56が、薬液タンク57、供給ポンプ58及び供給配管59を有する。薬液タンク57は、供給ポンプ58及び弁60を有する供給配管59によって弁75よりも上流で配管76に接続される。酸化剤である過酸化水素が薬液タンク57内に充填される。酸化剤としては、オゾンを溶解した水溶液を用いてもよい。 The oxidant supply device 56 has a chemical solution tank 57, a supply pump 58 and a supply pipe 59. The chemical solution tank 57 is connected to a pipe 76 upstream of the valve 75 by a supply pipe 59 having a supply pump 58 and a valve 60. Hydrogen peroxide, which is an oxidant, is filled in the chemical solution tank 57. As the oxidant, an aqueous solution in which ozone is dissolved may be used.
 pH計81が、注入配管44と循環配管31の接続点と開閉弁78の間で循環配管31に取り付けられる。 A pH meter 81 is attached to the circulation pipe 31 between a connection point of the injection pipe 44 and the circulation pipe 31 and the on-off valve 78.
 BWRプラント1は、1つの運転サイクルでの運転が終了した後に停止される。この運転停止後に、炉心4に装荷されている燃料集合体の一部が使用済燃料集合体として取り出され、燃焼度0GWd/tの新しい燃料集合体が炉心4に装荷される。このような燃料交換が終了した後、BWRプラント1が、次の運転サイクルでの運転のために再起動される。燃料交換のためにBWRプラント1が停止されている期間を利用して、BWRプラント1の保守点検が行われる。 The BWR plant 1 is stopped after the operation in one operation cycle is finished. After the shutdown, a part of the fuel assemblies loaded in the core 4 is taken out as a spent fuel assembly, and a new fuel assembly with a burnup of 0 GWd / t is loaded in the core 4. After such refueling is completed, the BWR plant 1 is restarted for operation in the next operation cycle. Maintenance inspection of the BWR plant 1 is performed using a period during which the BWR plant 1 is stopped for refueling.
 上記のようにBWRプラント1の運転が停止されている期間中において、BWRプラント1における炭素鋼部材の一つである、RPV12に連絡される炭素鋼製の配管系、例えば、浄化系配管18を対象にした、本実施例のプラントの炭素鋼部材の腐食抑制方法が実施される。この炭素鋼部材の腐食抑制方法では、浄化系配管18の、炉水と接触する内面へのニッケル金属の付着処理、付着されたニッケル金属への貴金属、例えば、白金の付着処理及び貴金属が付着されたニッケル金属の安定なニッケルフェライトへの変換処理が行われる。 As described above, while the operation of the BWR plant 1 is stopped, a carbon steel piping system communicated with the RPV 12, which is one of the carbon steel members in the BWR plant 1, for example, the purification system piping 18 The target method of inhibiting corrosion of carbon steel members of the plant of this embodiment is implemented. In this method of suppressing corrosion of a carbon steel member, the adhesion treatment of nickel metal to the inner surface of the purification system piping 18 in contact with the reactor water, the adhesion treatment of noble metal such as platinum to the adhered nickel metal and the noble metal are adhered. The conversion of nickel metal into stable nickel ferrite is carried out.
 本実施例のプラントの炭素鋼部材の腐食抑制方法を、図1に示す手順に基づいて以下に説明する。本実施例のプラントの炭素鋼部材の腐食抑制方法では、皮膜形成装置30及び30Aが用いられる。 The method of suppressing the corrosion of carbon steel members of the plant of the present embodiment will be described below based on the procedure shown in FIG. In the method of suppressing corrosion of a carbon steel member of a plant of the present embodiment, the film forming devices 30 and 30A are used.
 まず、皮膜形成対象の炭素鋼製の配管系に、皮膜形成装置を接続する(ステップS1)。BWRプラント1の運転が停止されているときに、例えば、浄化系ポンプ19の上流で浄化系配管18に設置された弁23のボンネットを開放して再循環系配管6側を封止する。皮膜形成装置30の循環配管31の開閉弁78側の一端部が弁23のフランジに接続される。さらに、再生熱交換器20と非再生熱交換器21の間で浄化系配管18に設置された弁25のボンネットを開放して非再生熱交換器21側を封止する。循環配管31の開閉弁62側の他端部が、弁25のフランジに接続される。循環配管31の両端が浄化系配管18に接続され、浄化系配管18及び循環配管31を含む閉ループが形成される。同様に、皮膜形成装置30Aの循環配管31の開閉弁78側の一端部が弁32Aのフランジに接続されて、この循環配管31の開閉弁62側の他端部が弁26のフランジに接続され、皮膜形成装置30Aが浄化系配管18に接続される。 First, a film forming apparatus is connected to a carbon steel piping system to be subjected to film formation (step S1). When the operation of the BWR plant 1 is stopped, for example, the bonnet of the valve 23 installed in the purification system piping 18 is opened upstream of the purification system pump 19 to seal the recirculation system piping 6 side. One end of the circulation pipe 31 of the film forming apparatus 30 on the side of the on-off valve 78 is connected to the flange of the valve 23. Furthermore, the bonnet of the valve 25 installed in the purification system pipe 18 between the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21 is opened to seal the non-regenerating heat exchanger 21 side. The other end of the circulation pipe 31 on the side of the on-off valve 62 is connected to the flange of the valve 25. Both ends of the circulation pipe 31 are connected to the purification system pipe 18, and a closed loop including the purification system pipe 18 and the circulation pipe 31 is formed. Similarly, one end of the on-off valve 78 side of the circulation piping 31 of the film forming apparatus 30A is connected to the flange of the valve 32A, and the other end on the on-off valve 62 side of the circulation piping 31 is connected to the flange of the valve 26 The film forming device 30A is connected to the purification system pipe 18.
 なお、本実施例では、皮膜形成装置30を原子炉浄化系の浄化系配管18に接続しているが、浄化系配管18以外に、炭素鋼部材であってRPV3に連絡される残留熱除去系、原子炉隔離時冷却系及び炉心スプレイ系、給水系のいずれかの炭素鋼製の配管に皮膜形成装置30を接続し、この炭素鋼製の配管に本実施例のプラントの炭素鋼部材の腐食抑制方法を適用してもよい。 In the present embodiment, the film forming apparatus 30 is connected to the purification system pipe 18 of the reactor purification system, but in addition to the purification system pipe 18, a residual heat removal system which is a carbon steel member and communicated with the RPV 3 The film forming apparatus 30 is connected to any carbon steel piping of the reactor isolation cooling system, core spray system, or water supply system, and the carbon steel members of the plant of this embodiment are corroded to the carbon steel piping. A suppression method may be applied.
 以下に説明するステップS2~S14の各工程は、皮膜形成装置30により、浄化系配管18の、弁23と弁25の間の部分に対して実施され、皮膜形成装置30Aにより、浄化系配管18の、弁26と弁32Aの間の部分に対して実施される。 The steps S2 to S14 described below are performed by the film forming device 30 on the portion of the purification system piping 18 between the valve 23 and the valve 25. The film forming device 30A performs the purification system piping 18 , Between the valve 26 and the valve 32A.
 皮膜形成対象の炭素鋼製の配管系に対する化学除染を実施する(ステップS2)。前の運転サイクルでの運転を経験したBWRプラント1では、放射性核種を含む酸化皮膜が、RPV3から流れ込む炉水と接触する浄化系配管18の内面に形成されている。後述のニッケル金属皮膜を浄化系配管18の内面に形成する前に、浄化系配管18の線量率を下げるためにも、その内面から放射性核種を含む酸化皮膜を除去することが好ましい。この酸化皮膜の除去は、ニッケル金属皮膜と浄化系配管18の内面の密着性を向上させる。この酸化皮膜を除去するために、化学除染、特に、還元除染剤であるシュウ酸を含む還元除染液を用いた還元除染が、浄化系配管18の内面に対して実施される。 Chemical decontamination is carried out on a carbon steel piping system to be subjected to film formation (step S2). In the BWR plant 1 that has experienced the operation in the previous operation cycle, an oxide film containing a radionuclide is formed on the inner surface of the purification system pipe 18 in contact with the reactor water flowing from the RPV 3. Before forming a nickel metal film to be described later on the inner surface of the purification system pipe 18, it is preferable to remove the oxide film containing the radionuclide from the inner surface also in order to lower the dose rate of the purification system pipe 18. The removal of the oxide film improves the adhesion between the nickel metal film and the inner surface of the purification system pipe 18. In order to remove the oxide film, a chemical decontamination, in particular, a reduction decontamination using a reduction decontamination solution containing oxalic acid which is a reduction decontamination agent is performed on the inner surface of the purification system pipe 18.
 ステップS2において、浄化系配管18の内面に対して適用される化学除染は、特開2000-105295号公報に記載された公知の還元除染である。この還元除染について説明する。まず、開閉弁62,弁63,66,69,74及び77、及び開閉弁78をそれぞれ開き、他の弁を閉じた状態で、循環ポンプ34及び35を駆動する。これにより、浄化系配管18内にサージタンク32内で加熱器33によって90℃に加熱された水が、循環配管31及び浄化系配管18によって形成される閉ループ内を循環する。この水の温度が90℃になったとき、弁79を開いて循環配管31内を流れる一部の水を配管80内に導く。ホッパ及びエゼクタ61から配管80内に供給された所定量のシュウ酸が、配管80内を流れる水によりサージタンク32内に導かる。このシュウ酸がサージタンク32内で水に溶解し、シュウ酸水溶液(還元除染液)がサージタンク32内で生成される。 The chemical decontamination to be applied to the inner surface of the purification system pipe 18 in step S2 is a known reductive decontamination described in JP-A-2000-105295. This reduction decontamination will be described. First, the circulation pumps 34 and 35 are driven with the on-off valve 62, the valves 63, 66, 69, 74 and 77, and the on-off valve 78 opened and the other valves closed. Thus, the water heated to 90 ° C. by the heater 33 in the surge tank 32 in the purification system pipe 18 circulates in the closed loop formed by the circulation pipe 31 and the purification system pipe 18. When the temperature of the water reaches 90 ° C., the valve 79 is opened to introduce a part of the water flowing in the circulation pipe 31 into the pipe 80. A predetermined amount of oxalic acid supplied from the hopper and ejector 61 into the pipe 80 is introduced into the surge tank 32 by the water flowing through the pipe 80. The oxalic acid is dissolved in water in the surge tank 32, and an oxalic acid aqueous solution (reduction decontamination solution) is generated in the surge tank 32.
 このシュウ酸水溶液は、循環ポンプ34の駆動によってサージタンク32から循環配管31に排出される。還元剤注入装置41の薬液タンク42内のヒドラジン水溶液が、弁45を開いて注入ポンプ43を駆動することにより、注入配管44を通して循環配管31内のシュウ酸水溶液に注入される。pH計81で測定されたシュウ酸水溶液のpH値に基づいて注入ポンプ43(または弁45の開度)を制御して循環配管31内へのヒドラジン水溶液の注入量を調節することにより、浄化系配管18に供給されるシュウ酸水溶液のpHが2.5に調節される。本実施例では、浄化系配管18の内面にニッケル金属を付着させるとき、及びそのニッケル金属の皮膜の上に貴金属、例えば、白金を付着させるときに用いる還元剤であるヒドラジンが、還元除染の工程ではシュウ酸水溶液のpHを調整するpH調整剤として用いられる。 The oxalic acid aqueous solution is discharged from the surge tank 32 to the circulation pipe 31 by driving the circulation pump 34. The hydrazine solution in the chemical solution tank 42 of the reducing agent injection device 41 is injected into the oxalic acid aqueous solution in the circulation pipe 31 through the injection pipe 44 by opening the valve 45 and driving the injection pump 43. Purification system by controlling the injection pump 43 (or the opening degree of the valve 45) based on the pH value of the aqueous solution of oxalic acid measured by the pH meter 81 to adjust the injection amount of the hydrazine aqueous solution into the circulation pipe 31 The pH of the aqueous solution of oxalic acid supplied to the pipe 18 is adjusted to 2.5. In this embodiment, when nickel metal is attached to the inner surface of the purification system pipe 18 and a noble metal such as platinum is attached on the nickel metal film, hydrazine which is a reducing agent used for reduction decontamination is used. In the process, it is used as a pH adjuster to adjust the pH of an aqueous solution of oxalic acid.
 pHが2.5で90℃のシュウ酸水溶液が循環配管31から浄化系配管18に供給され、その水溶液中のシュウ酸が、浄化系配管18の内面に形成された、放射性核種を含む酸化皮膜を溶解する。シュウ酸水溶液は、酸化皮膜を溶解しながら浄化系配管18内を流れ、浄化系ポンプ19及び再生熱交換器20、非再生熱交換器、21、バイパス配管28、再生熱交換器20を通過して循環配管31に戻される。循環配管31に戻されたシュウ酸水溶液は、開閉弁62を通って循環ポンプ35で昇圧され、弁63、66、68及び73を通過してサージタンク32に達する。このように、シュウ酸水溶液は、循環配管31及び浄化系配管18を含む閉ループ内を循環し、浄化系配管18の内面の還元除染を実施してその内面に形成された酸化皮膜を溶解する。 An oxalic acid aqueous solution having a pH of 2.5 and 90 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18, and the oxalic acid in the aqueous solution is formed on the inner surface of the purification system pipe 18. Dissolve. The oxalic acid aqueous solution flows in the purification system pipe 18 while dissolving the oxide film, and passes through the purification system pump 19 and the regenerative heat exchanger 20, the non-regenerating heat exchanger 21, the bypass piping 28 and the regenerative heat exchanger 20. It is returned to the circulation pipe 31. The aqueous solution of oxalic acid returned to the circulation pipe 31 is pressurized by the circulation pump 35 through the on-off valve 62 and passes through the valves 63, 66, 68 and 73 to reach the surge tank 32. As described above, the aqueous solution of oxalic acid circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18 to carry out reduction decontamination of the inner surface of the purification system pipe 18 to dissolve the oxide film formed on the inner surface. .
 酸化皮膜の溶解に伴って、シュウ酸水溶液の放射性核種濃度及びFe濃度が上昇する。これらの濃度上昇を抑えるために、弁70を開いて弁69の開度を調節することにより、循環配管31に戻されたシュウ酸水溶液の一部を、配管71によりカチオン交換樹脂塔53に導く。シュウ酸水溶液に含まれた放射性核種及びFe等の金属陽イオンは、カチオン交換樹脂塔53内の陽イオン交換樹脂に吸着されて除去される。カチオン交換樹脂塔53から排出されたシュウ酸水溶液及び弁69を通過したシュウ酸水溶液は、循環配管31から浄化系配管18に再び供給され、浄化系配管18の還元除染に用いられる。 The radionuclide concentration and Fe concentration of the aqueous solution of oxalic acid increase with the dissolution of the oxide film. In order to suppress the increase in concentration, a part of the aqueous solution of oxalic acid returned to the circulation pipe 31 is guided to the cation exchange resin tower 53 by the pipe 71 by opening the valve 70 and adjusting the opening degree of the valve 69 . The radionuclide contained in the oxalic acid aqueous solution and the metal cation such as Fe are adsorbed to the cation exchange resin in the cation exchange resin tower 53 and removed. The oxalic acid aqueous solution discharged from the cation exchange resin column 53 and the oxalic acid aqueous solution passed through the valve 69 are again supplied from the circulation piping 31 to the purification system piping 18 and used for reduction and decontamination of the purification system piping 18.
 シュウ酸を用いた、炭素鋼部材(例えば、浄化系配管18)の表面に対する還元除染では、炭素鋼部材の表面に難溶解性のシュウ酸鉄(II)が形成され、このシュウ酸鉄(II)により、炭素鋼部材の表面に形成された放射性核種を含む酸化皮膜のシュウ酸による溶解が抑制される場合がある。この場合には、弁69を全開にし、弁70を閉じてシュウ酸水溶液のカチオン交換樹脂塔53への供給を停止する。さらに、弁60を開いて供給ポンプ58を起動し、薬液タンク57内の過酸化水素を、弁75を閉じた状態で、供給配管59及び配管76を通して循環配管31内を流れるシュウ酸水溶液に供給する。過酸化水素を含むシュウ酸水溶液が循環配管31から浄化系配管18内に導かれる。浄化系配管18の内面に形成されたシュウ酸鉄(II)に含まれるFe(II)が、その過酸化水素の作用により、Fe(III)に酸化され、そのシュウ酸鉄(II)がシュウ酸鉄(III)錯体としてシュウ酸水溶液中に溶解する。すなわち、シュウ酸鉄(II)、及びシュウ酸水溶液に含まれる過酸化水素及びシュウ酸が、式(4)に示す反応により、シュウ酸鉄(III)錯体、水及び水素イオンを生成する。 In reduction decontamination of the surface of a carbon steel member (for example, purification system piping 18) using oxalic acid, poorly soluble iron (II) oxalate is formed on the surface of the carbon steel member, and this iron oxalate ( The dissolution by oxalic acid of the oxide film containing the radionuclide formed on the surface of the carbon steel member may be suppressed by II). In this case, the valve 69 is fully opened and the valve 70 is closed to stop the supply of the oxalic acid aqueous solution to the cation exchange resin column 53. Further, the valve 60 is opened to start the supply pump 58, and the hydrogen peroxide in the chemical solution tank 57 is supplied to the aqueous solution of oxalic acid flowing in the circulation pipe 31 through the supply pipe 59 and the pipe 76 in the state where the valve 75 is closed. Do. An aqueous solution of oxalic acid containing hydrogen peroxide is led from the circulation pipe 31 into the purification system pipe 18. Fe (II) contained in iron (II) oxalate formed on the inner surface of the purification system pipe 18 is oxidized to Fe (III) by the action of hydrogen peroxide, and the iron (II) oxalate is oxidized It is dissolved in an aqueous solution of oxalic acid as an iron (III) complex. That is, iron oxalate (II) and hydrogen peroxide and oxalic acid contained in an aqueous solution of oxalic acid form an iron (III) oxalate complex, water and hydrogen ions by the reaction shown in formula (4).
  2Fe(COO)2+H22+2(COOH)2 →
            2Fe[(COO)2]2 +2H2O+2H+    …(4)
 浄化系配管18の内面に形成されたシュウ酸鉄(II)が溶解され、シュウ酸水溶液に注入した過酸化水素が式(4)の反応によって消失したことが確認された後、循環配管31の弁66を通過したシュウ酸水溶液の一部を、配管71を通してカチオン交換樹脂塔53に供給する。シュウ酸水溶液に含まれる放射性核種等の金属陽イオンが、カチオン交換樹脂塔53内の陽イオン交換樹脂に吸着されて除去される。なお、シュウ酸水溶液内の過酸化水素の消失は、例えば循環配管31からサンプリングしたシュウ酸水溶液に過酸化水素に反応する試験紙を浸漬し、試験紙に現れる色を見ることによって確認できる。
2Fe (COO) 2 + H 2 O 2 +2 (COOH) 2 →
2Fe [(COO) 2] 2 - + 2H 2 O + 2H + ... (4)
The iron (II) oxalate formed on the inner surface of the purification system piping 18 is dissolved, and it is confirmed that the hydrogen peroxide injected into the oxalic acid aqueous solution has disappeared by the reaction of formula (4). Part of the aqueous oxalic acid solution that has passed through the valve 66 is supplied to the cation exchange resin tower 53 through the pipe 71. Metal cations such as radionuclide contained in the aqueous solution of oxalic acid are adsorbed to the cation exchange resin in the cation exchange resin tower 53 and removed. The disappearance of hydrogen peroxide in the oxalic acid aqueous solution can be confirmed, for example, by immersing a test paper reacting with hydrogen peroxide in the oxalic acid aqueous solution sampled from the circulation pipe 31 and observing the color appearing on the test paper.
 浄化系配管18の還元除染箇所の線量率が設定線量率まで低下したとき、または、浄化系配管18の還元除染時間が所定の時間に達したとき、シュウ酸水溶液に含まれるシュウ酸及びヒドラジンを分解する(還元除染剤分解工程)。なお、還元除染箇所における線量率の設定線量率への低下は、浄化系配管18の還元除染箇所からの放射線を検出する放射線検出器の出力信号に基づいて求められた線量率により確認することができる。 When the dose rate of the reduction decontamination site of the purification system pipe 18 decreases to the set dose rate, or when the reduction decontamination time of the purification system pipe 18 reaches a predetermined time, oxalic acid contained in the aqueous solution of oxalic acid and Decompose hydrazine (Reductive decontamination reagent decomposition process). The decrease of the dose rate at the reduction decontamination site to the set dose rate is confirmed by the dose rate obtained based on the output signal of the radiation detector that detects the radiation from the reduction decontamination site of the purification system pipe 18 be able to.
 シュウ酸及びヒドラジンの分解は、以下のように行われる。弁75を開いて弁74の開度を一部減少させ、弁69と弁70を通過した、ヒドラジンを含むシュウ酸水溶液は、弁75を通って配管76により分解装置55に供給される。このとき、薬液タンク57内の過酸化水素が、供給配管59及び配管76を通して分解装置55に供給される。シュウ酸水溶液に含まれるシュウ酸及びヒドラジンは、分解装置55内で、活性炭触媒及び供給された過酸化水素の作用により分解される。分解装置55内でのシュウ酸及びヒドラジンの分解反応は、式(5)及び式(6)で表される。 Decomposition of oxalic acid and hydrazine is carried out as follows. The valve 75 is opened to partially reduce the opening degree of the valve 74, and the oxalic acid aqueous solution containing hydrazine which has passed through the valve 69 and the valve 70 is supplied to the disassembling apparatus 55 through the valve 75 and the pipe 76. At this time, the hydrogen peroxide in the chemical solution tank 57 is supplied to the decomposition device 55 through the supply pipe 59 and the pipe 76. The oxalic acid and hydrazine contained in the oxalic acid aqueous solution are decomposed in the decomposition apparatus 55 by the action of the activated carbon catalyst and the supplied hydrogen peroxide. The decomposition reaction of oxalic acid and hydrazine in the decomposition apparatus 55 is represented by Formula (5) and Formula (6).
  (COOH)2+H22 → 2CO2+2H2O     ……(5)
  N24+2H22 → N2+4H2O         ……(6)
シュウ酸及びヒドラジンの分解装置55内での分解は、シュウ酸水溶液を循環配管31及び浄化系配管18を含む閉ループ内を循環させながら行われる。供給した過酸化水素がシュウ酸及びヒドラジンの分解のために分解装置55で完全に消費されて分解装置55から流出しないように、薬液タンク57から分解装置55への過酸化水素の供給量を、供給ポンプ58の回転速度を制御して調節する。
(COOH) 2 + H 2 O 2 → 2CO 2 + 2H 2 O ...... (5)
N 2 H 4 + 2 H 2 O 2 → N 2 + 4 H 2 O (6)
The decomposition of oxalic acid and hydrazine in the decomposition apparatus 55 is performed while circulating the oxalic acid aqueous solution in a closed loop including the circulation pipe 31 and the purification system pipe 18. The supply amount of hydrogen peroxide from the chemical solution tank 57 to the decomposition device 55 is set so that the supplied hydrogen peroxide is not completely consumed by the decomposition device 55 for decomposition of oxalic acid and hydrazine and does not flow out of the decomposition device 55. The rotational speed of the feed pump 58 is controlled and adjusted.
 還元除染剤分解工程においても、分解装置55から排出されたシュウ酸水溶液にシュウ酸が存在する可能性があり、浄化系配管18の内面にシュウ酸鉄(II)が形成される可能性がある。そこで、シュウ酸水溶液に含まれるシュウ酸及びヒドラジンの分解がある程度進んだ段階で、分解装置55から過酸化水素が流出するように、薬液タンク57から分解装置55への過酸化水素の供給量を増加させる。この際、カチオン交換樹脂塔53への過酸化水素の流入を避けるために、事前に弁70を閉止する。 Also in the reduction decontamination reagent decomposition process, oxalic acid may exist in the aqueous solution of oxalic acid discharged from the decomposition apparatus 55, and iron (II) oxalate may be formed on the inner surface of the purification system pipe 18 is there. Therefore, when the decomposition of oxalic acid and hydrazine contained in the aqueous oxalic acid solution proceeds to a certain extent, the amount of hydrogen peroxide supplied from the chemical solution tank 57 to the decomposition device 55 is set so that the hydrogen peroxide flows out from the decomposition device 55. increase. At this time, in order to prevent the hydrogen peroxide from flowing into the cation exchange resin tower 53, the valve 70 is closed in advance.
 還元除染剤分解工程で浄化系配管18の内面に形成されたシュウ酸鉄(II)は、前述したように、シュウ酸水溶液内の過酸化水素の作用によりシュウ酸鉄(III)錯体になりシュウ酸水溶液中に溶解する。シュウ酸水溶液中のシュウ酸等の分解が進んでいるため、シュウ酸鉄(II)に含まれるFe(II)をFe(III)に変換するシュウ酸が不足し、循環配管31の内面にFe(OH)3が析出しやすくなる。このため、Fe(OH)3の析出を抑制するため、シュウ酸水溶液にギ酸を注入する。ギ酸の注入は、例えば、前述のホッパ及びエゼクタ61からギ酸を配管80内を流れるシュウ酸水溶液に供給してサージタンク32に導くことにより行われる。供給されたギ酸は、シュウ酸水溶液に混合される。 As described above, the iron (II) oxalate formed on the inner surface of the purification system pipe 18 in the reduction decontamination reagent decomposition process becomes an iron (III) oxalate complex by the action of hydrogen peroxide in the aqueous solution of oxalic acid. Dissolve in aqueous oxalic acid solution. As decomposition of oxalic acid and the like in the aqueous oxalic acid solution proceeds, oxalic acid which converts Fe (II) contained in iron (II) oxalate to Fe (III) runs short, and Fe on the inner surface of the circulation pipe 31 It becomes easy to precipitate (OH) 3 . For this reason, formic acid is injected into an aqueous solution of oxalic acid to suppress precipitation of Fe (OH) 3 . The injection of formic acid is performed, for example, by supplying formic acid from the hopper and ejector 61 described above to the aqueous solution of oxalic acid flowing in the pipe 80 and guiding it to the surge tank 32. The supplied formic acid is mixed with the aqueous oxalic acid solution.
 なお、シュウ酸鉄(II)を溶解するための酸化剤のシュウ酸水溶液への注入、及び水酸化鉄の析出を抑制するためのギ酸のシュウ酸水溶液への注入は、還元除染剤分解工程が開始された後に行われる。 Note that the injection of an oxidant into the aqueous solution of oxalic acid to dissolve iron (II) oxalate, and the injection of formic acid into the aqueous solution of oxalic acid to suppress precipitation of iron hydroxide Will be done after the
 ギ酸を含むシュウ酸水溶液は、濃度の低下したシュウ酸及びヒドラジンに加え、分解装置55から排出された過酸化水素を含んでいる。シュウ酸水溶液に含まれる過酸化水素は浄化系配管18内面に析出したシュウ酸鉄(II)を溶解し、ギ酸はFe(OH)3を溶解する。シュウ酸水溶液に含まれるシュウ酸及びヒドラジンの分解も、分解装置55内で継続される。 The aqueous solution of oxalic acid containing formic acid contains hydrogen peroxide discharged from the decomposition apparatus 55 in addition to the lowered concentrations of oxalic acid and hydrazine. The hydrogen peroxide contained in the oxalic acid aqueous solution dissolves iron (II) oxalate deposited on the inner surface of the purification system pipe 18, and the formic acid dissolves Fe (OH) 3 . The decomposition of oxalic acid and hydrazine contained in the aqueous oxalic acid solution is also continued in the decomposition apparatus 55.
 次に、シュウ酸の分解工程を終了するため、弁60の開度を絞って、過酸化水素の供給量を、分解装置55から過酸化水素が流出しない程度に調節し、新たなギ酸の注入を停止するために弁79を閉じる。シュウ酸水溶液の過酸化水素濃度が1ppm以下になったとき、弁70を開いて弁69の開度を低減させ、カチオン交換樹脂塔53にシュウ酸水溶液を供給する。シュウ酸水溶液内の金属陽イオンは、前述したように、カチオン交換樹脂塔53内の陽イオン交換樹脂で除去され、シュウ酸水溶液の金属陽イオン濃度が低下する。分解装置55内でシュウ酸、ヒドラジン及びギ酸の分解は継続される。シュウ酸、ヒドラジン及びギ酸のうちでは、ヒドラジンが先に分解され、次いでシュウ酸が分解され、ギ酸が最後に残る。この状態でシュウ酸の分解工程を終了する。 Next, in order to complete the decomposition process of oxalic acid, the opening degree of the valve 60 is squeezed to adjust the supply amount of hydrogen peroxide to such an extent that hydrogen peroxide does not flow out from the decomposition device 55 and inject new formic acid Close the valve 79 to stop it. When the hydrogen peroxide concentration of the oxalic acid aqueous solution becomes 1 ppm or less, the valve 70 is opened to reduce the opening degree of the valve 69, and the oxalic acid aqueous solution is supplied to the cation exchange resin tower 53. As described above, the metal cations in the aqueous oxalic acid solution are removed by the cation exchange resin in the cation exchange resin tower 53, and the metal cation concentration of the aqueous oxalic acid solution decreases. The decomposition of oxalic acid, hydrazine and formic acid is continued in the decomposition unit 55. Among oxalic acid, hydrazine and formic acid, hydrazine is decomposed first, then oxalic acid is decomposed, and formic acid remains last. In this state, the oxalic acid decomposition process is completed.
 以上に述べた化学除染が終了したとき、浄化系配管18は、浄化系配管18の内面から放射性核種を含む酸化皮膜が除去されて図4に示す状態になっており、浄化系配管18の内面が前述した残存するギ酸を含む水溶液に接触している。 When the chemical decontamination described above is completed, the purification system piping 18 is in the state shown in FIG. 4 by removing the oxide film containing the radionuclide from the inner surface of the purification system piping 18. The inner surface is in contact with the aqueous solution containing the remaining formic acid as described above.
 皮膜形成液の温度調整を行う(ステップS3)。弁69及び74を開けて弁70及び75を閉じる。循環ポンプ34及び35が駆動しているので、残存するギ酸を含む水溶液が循環配管31及び浄化系配管18を含む閉ループ内を循環する。そのギ酸を含む水溶液が、加熱器33によって90℃まで加熱される。このギ酸水溶液(後述の皮膜形成水溶液)の温度は、60℃~100℃(60℃以上100℃以下)の温度範囲にすることが望ましい。さらに、弁64を開いて弁63を閉じる。この結果、循環配管31内を流れているギ酸水溶液がフィルタ51に供給され、ギ酸水溶液に残留している微細な固形分がフィルタ51によって除去される。微細な固形分を除去しない場合には、後述するように、ギ酸ニッケル水溶液を循環配管31に注入したとき、その固形物の表面にもニッケル金属皮膜が形成され、注入したニッケルイオンが無駄に消費される。 The temperature of the film forming solution is adjusted (step S3). Valves 69 and 74 are opened and valves 70 and 75 are closed. Since the circulation pumps 34 and 35 are driven, the remaining aqueous solution containing formic acid circulates in the closed loop including the circulation pipe 31 and the purification system pipe 18. The aqueous solution containing the formic acid is heated by the heater 33 to 90.degree. The temperature of the formic acid aqueous solution (the film-forming aqueous solution described later) is desirably in the temperature range of 60 ° C. to 100 ° C. (60 ° C. or more and 100 ° C. or less). Further, the valve 64 is opened and the valve 63 is closed. As a result, the formic acid aqueous solution flowing in the circulation pipe 31 is supplied to the filter 51, and the fine solid content remaining in the formic acid aqueous solution is removed by the filter 51. When fine solid content is not removed, as described later, when an aqueous solution of nickel formate is injected into the circulation pipe 31, a nickel metal film is also formed on the surface of the solid, and the injected nickel ions are wasted. Be done.
 ニッケルイオン水溶液を注入する(ステップS4)。弁63を開いて弁64を閉じ、フィルタ51への通水を停止する。ニッケルイオン注入装置36の弁40を開いて注入ポンプ38を駆動し、薬液タンク37内のギ酸ニッケル水溶液を、注入配管39を通して循環配管31内を流れる、残存するギ酸を含む90℃の水溶液に注入する。注入されるギ酸ニッケル水溶液のニッケルイオン濃度は、例えば、200ppmである。 A nickel ion aqueous solution is injected (step S4). The valve 63 is opened, the valve 64 is closed, and the water flow to the filter 51 is stopped. The valve 40 of the nickel ion implantation apparatus 36 is opened and the injection pump 38 is driven to inject the aqueous solution of nickel formate in the chemical solution tank 37 into the aqueous solution of 90 ° C. containing residual formic acid flowing through the circulation pipe 31 through the injection pipe 39 Do. The nickel ion concentration of the aqueous solution of nickel formate to be injected is, for example, 200 ppm.
 還元剤を注入する(ステップS5)。還元剤注入装置41の弁45を開いて注入ポンプ43を駆動し、薬液タンク42内の還元剤であるヒドラジンの水溶液を、注入配管44を通して循環配管31内を流れる、ニッケルイオン及びギ酸を含み90℃の水溶液に注入される。注入されるヒドラジン水溶液のヒドラジン濃度は、例えば、200ppmである。ヒドラジン水溶液は、ニッケルイオン及びギ酸を含み90℃の水溶液のpHが4.0~11.0(4.0以上11.0以下)の範囲になるように、例えば、4.0になるように、その水溶液への注入量が調節される。 A reducing agent is injected (step S5). The valve 45 of the reducing agent injection device 41 is opened to drive the injection pump 43, and an aqueous solution of hydrazine, which is the reducing agent in the chemical solution tank 42, flows through the injection piping 44 through the circulation piping 31 including nickel ions and formic acid 90 Injected into an aqueous solution of ° C. The hydrazine concentration of the aqueous hydrazine solution to be injected is, for example, 200 ppm. The aqueous hydrazine solution contains nickel ions and formic acid so that the pH of the aqueous solution at 90 ° C. is in the range of 4.0 to 11.0 (4.0 or more and 11.0 or less), for example, 4.0. , The injection amount to the aqueous solution is adjusted.
 ニッケルイオン、ギ酸及びヒドラジンを含みpHが4.0で90℃の水溶液、すなわち、皮膜形成水溶液(皮膜形成液)は、循環ポンプ34の駆動により、循環配管31から浄化系配管18に供給される。この皮膜形成水溶液83が浄化系配管18の内面に接触することにより、ニッケル金属皮膜82が浄化系配管18の内面に形成される(図5参照)。このニッケル金属皮膜82の形成は、以下のようにして行われる。浄化系配管18の内面とpH4.0の皮膜形成水溶液83との接触によって、皮膜形成水溶液83に含まれるニッケルイオンと浄化系配管18内のFe(II)イオンとの置換反応が加速されて浄化系配管18の内面に取り込まれるニッケルイオンの量が多くなり、皮膜形成水溶液83への鉄(II)イオンの溶出が増大する。浄化系配管18の内面に取り込まれたニッケルイオンは、皮膜形成水溶液83に含まれるヒドラジンの作用によりニッケル金属となるため、浄化系配管18の内面にニッケル金属皮膜82が形成される。 An aqueous solution containing a nickel ion, formic acid and hydrazine and having a pH of 4.0 and a temperature of 90 ° C., ie, a film forming aqueous solution (film forming solution) is supplied from the circulation piping 31 to the purification system piping 18 by driving the circulation pump 34. . A nickel metal film 82 is formed on the inner surface of the purification system pipe 18 by the film forming aqueous solution 83 contacting the inner surface of the purification system pipe 18 (see FIG. 5). The formation of the nickel metal film 82 is performed as follows. By the contact between the inner surface of the purification system pipe 18 and the film formation aqueous solution 83 of pH 4.0, the substitution reaction between the nickel ions contained in the film formation aqueous solution 83 and the Fe (II) ions in the purification system piping 18 is accelerated and purification is performed. The amount of nickel ions taken into the inner surface of the system piping 18 increases, and the elution of iron (II) ions into the film-forming aqueous solution 83 increases. The nickel ions taken into the inner surface of the purification system pipe 18 become nickel metal by the action of the hydrazine contained in the film forming aqueous solution 83, so the nickel metal film 82 is formed on the inner surface of the purification system pipe 18.
 ニッケルイオンと鉄(II)イオンとの置換反応は、浄化系配管18の内面と接触する皮膜形成水溶液83のpHが4.0のときに最も活発であり、浄化系配管18の内面に取り込まれるニッケルイオンの量が最も多くなる。還元剤の注入により皮膜形成水溶液83のpHが7等に大きくなると、取り込まれたニッケルイオンがニッケル金属になる量が増大する。 The substitution reaction between nickel ions and iron (II) ions is most active when the pH of the film-forming aqueous solution 83 in contact with the inner surface of the purification system pipe 18 is 4.0, and is taken into the inner surface of the purification system pipe 18 The amount of nickel ions is the highest. When the pH of the aqueous solution for film formation 83 is increased to 7 or the like by the injection of the reducing agent, the amount of the incorporated nickel ions to be nickel metal increases.
 浄化系配管18から循環配管31に排出された皮膜形成水溶液83は、循環ポンプ35及び34で昇圧され、ニッケルイオン注入装置36からのギ酸ニッケル水溶液及び還元剤注入装置41からのヒドラジン水溶液をそれぞれ注入されて、再び、浄化系配管18に供給される。このように、皮膜形成水溶液83を、循環配管31及び浄化系配管18を含む閉ループ内を循環させることによって、やがて、ニッケル金属皮膜が、皮膜形成水溶液83と接触する、弁23と弁25の間の浄化系配管18の内面及び弁26と弁32Aの間の浄化系配管18の内面のそれぞれの全面を均一に覆う。このとき、浄化系配管18の内面に存在するニッケル金属は、例えば1平方センチメートル当たり50μgから300μg(50~300μg/cm2)となる。 The film forming aqueous solution 83 discharged from the purification system pipe 18 to the circulation pipe 31 is pressurized by the circulation pumps 35 and 34, and the nickel formate aqueous solution from the nickel ion injection device 36 and the hydrazine aqueous solution from the reducing agent injection device 41 are injected respectively. It is supplied to the purification system pipe 18 again. Thus, by circulating the film-forming aqueous solution 83 in the closed loop including the circulation pipe 31 and the purification system pipe 18, the nickel metal film is in contact with the film-forming aqueous solution 83 eventually, between the valve 23 and the valve 25. The entire surfaces of the inner surface of the purification system pipe 18 and the inner surface of the purification system pipe 18 between the valve 26 and the valve 32A are uniformly covered. At this time, for example, 50 μg to 300 μg (50 to 300 μg / cm 2 ) of nickel metal per square centimeter are present on the inner surface of the purification system pipe 18.
 サージタンク32内では、残存するギ酸を含む90℃の水溶液(または皮膜形成水溶液)の液面が形成され、この液面よりも上方に空間(図示せず)が存在し、この空間内には空気が存在する。その空間内の空気中の酸素が、その液面を介してサージタンク32内の残存するギ酸を含む90℃の水溶液(または皮膜形成水溶液)に供給される。サージタンク32内での酸素の供給によって、その水溶液は約2ppmの微量の酸素を含むことになる。浄化系配管18に内面に取りこまれたニッケルイオンをニッケル金属に変換するために、ステップS5において、その水溶液に、200ppmのヒドラジンを含むヒドラジン水溶液が注入される。ヒドラジン水溶液の注入により循環系配管31内で生成された皮膜形成水溶液は、約2ppmの酸素に比べて多量のヒドラジンを含んでいる。皮膜形成水溶液に含まれる酸素は、注入された還元剤、例えば、ヒドラジンにより分解されて水になるため、皮膜形成水溶液に溶存する酸素が消滅する。この結果、ニッケルイオン、ギ酸及びヒドラジンを含みpHが4.0で90℃の、酸素を含まない皮膜形成水溶液が、浄化系配管18内に供給される。浄化系配管18の内面に取り込まれたニッケルイオンは、皮膜形成水溶液に含まれるヒドラジンの作用によりニッケル金属となり、やがて、浄化系配管18の内面にニッケル金属皮膜が形成される。 In the surge tank 32, a liquid surface of a 90 ° C. aqueous solution (or a film formation aqueous solution) containing the remaining formic acid is formed, and a space (not shown) exists above the liquid surface. There is air. Oxygen in the air in the space is supplied to the 90 ° C. aqueous solution (or film-forming aqueous solution) containing the remaining formic acid in the surge tank 32 through the liquid surface. Due to the supply of oxygen in the surge tank 32, the aqueous solution contains about 2 ppm of a trace amount of oxygen. In order to convert the nickel ions incorporated into the inner surface of the purification system pipe 18 into nickel metal, in step S5, an aqueous hydrazine solution containing 200 ppm of hydrazine is injected into the aqueous solution. The film-forming aqueous solution produced in the circulation pipe 31 by injection of the hydrazine aqueous solution contains a large amount of hydrazine as compared to about 2 ppm of oxygen. Since the oxygen contained in the aqueous solution for film formation is decomposed by the injected reducing agent, for example, hydrazine, to become water, the oxygen dissolved in the aqueous solution for film formation disappears. As a result, an oxygen-free film-forming aqueous solution containing nickel ions, formic acid and hydrazine and having a pH of 4.0 and 90 ° C. is supplied into the purification system piping 18. The nickel ions taken into the inner surface of the purification system pipe 18 become nickel metal by the action of the hydrazine contained in the film forming aqueous solution, and eventually a nickel metal film is formed on the inner surface of the purification system pipe 18.
 浄化系配管18の内面と接触する皮膜形成水溶液に酸素が含まれていると、浄化系配管18の内面に、不安定なニッケルフェライト(Ni0.7Fe2.34)が含まれたニッケル金属皮膜が形成される。しかし、ヒドラジンの注入によって酸素を含まない皮膜形成水溶液を生成し、この皮膜形成水溶液を浄化系配管18に供給することにより、浄化系配管18の内面に、不安定なニッケルフェライトが含まれないニッケル金属皮膜を形成することができる。さらに、皮膜形成水溶液にヒドラジンが含まれているため、浄化系配管18の内面に形成されたニッケル金属皮膜の厚みをより厚くすることができる。 If oxygen is contained in the film forming aqueous solution in contact with the inner surface of the purification system pipe 18, the inner surface of the purification system pipe 18 is a nickel metal film containing unstable nickel ferrite (Ni 0.7 Fe 2.3 O 4 ) It is formed. However, by injecting hydrazine, a film-forming aqueous solution containing no oxygen is generated, and the film-forming aqueous solution is supplied to the purification system pipe 18 so that the inner surface of the purification system pipe 18 does not contain unstable nickel ferrite. A metal film can be formed. Furthermore, since the aqueous solution for film formation contains hydrazine, the thickness of the nickel metal film formed on the inner surface of the purification system pipe 18 can be increased.
 特開2006-38483号公報の図10に示されているように、サージタンク32内の水溶液中に不活性ガス(例えば、窒素)をバブリングし、その水溶液内の溶存酸素を排出してもよい。サージタンク32から循環配管31に酸素を含まない水溶液を供給することができ、この水溶液にヒドラジンを注入することによって、酸素を含まない皮膜形成水溶液を循環配管31内で生成することができる。サージタンク32内の水溶液中に不活性ガスを注入することによって、皮膜形成水溶液の生成のために、循環配管31内に注入するヒドラジンの量を低減することができる。 As shown in FIG. 10 of JP-A-2006-38483, an inert gas (for example, nitrogen) may be bubbled into the aqueous solution in the surge tank 32, and the dissolved oxygen in the aqueous solution may be discharged. . An aqueous solution containing no oxygen can be supplied from the surge tank 32 to the circulation pipe 31. By injecting hydrazine into this aqueous solution, a film-forming aqueous solution containing no oxygen can be generated in the circulation pipe 31. By injecting an inert gas into the aqueous solution in the surge tank 32, it is possible to reduce the amount of hydrazine injected into the circulation pipe 31 for the generation of the film-forming aqueous solution.
 ニッケル金属皮膜の形成が完了したかを判定する(ステップS6)。浄化系配管18の内面に形成されたニッケル金属皮膜82が不十分な場合(その内面に存在するニッケル金属が50μg/cm2未満の場合)には、ステップS4~S6の各工程が繰り返される。浄化系配管18の内面に存在するニッケル金属が50μg/cm2になったとき、注入ポンプ38を停止して弁40を閉じて循環配管31へのギ酸ニッケル水溶液の注入を停止すると共に注入ポンプ43を停止して弁45を閉じて循環配管31へのヒドラジン水溶液の注入を停止し、浄化系配管18の内面へのニッケル金属皮膜の形成を終了する。ギ酸ニッケル水溶液を循環配管31に注入してからの経過時間が設定時間になったとき、浄化系配管18の内面に存在するニッケル金属が50μg/cm2になったと判定する。その設定時間は、炭素鋼試験片の表面のニッケル金属が50μg/cm2になるまでの時間を予め測定することによって求められる。 It is determined whether the formation of the nickel metal film is completed (step S6). When the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is insufficient (when the nickel metal present on the inner surface is less than 50 μg / cm 2 ), the steps S4 to S6 are repeated. When the nickel metal present on the inner surface of the purification system pipe 18 reaches 50 μg / cm 2 , the injection pump 38 is stopped and the valve 40 is closed to stop the injection of the aqueous solution of nickel formate into the circulation pipe 31 and the injection pump 43 To stop the injection of the aqueous hydrazine solution into the circulation pipe 31, and the formation of the nickel metal film on the inner surface of the purification system pipe 18 is ended. When the elapsed time from the injection of the aqueous solution of nickel formate into the circulation pipe 31 becomes the set time, it is determined that the amount of nickel metal present on the inner surface of the purification system pipe 18 has become 50 μg / cm 2 . The set time is determined by measuring in advance the time taken for the nickel metal on the surface of the carbon steel test piece to reach 50 μg / cm 2 .
 ギ酸、還元剤を分解する(ステップS7)。弁69の開度を絞り、弁70を開いてニッケルイオン、ギ酸、ヒドラジンを含む皮膜形成水溶液83をカチオン交換樹脂塔53に通水する。これにより、ニッケルイオンがカチオン交換樹脂に吸着されて皮膜形成水溶液83中のニッケルイオン濃度が低下する。続いて、弁75を開いて弁74の開度の一部を閉じ、循環ポンプ35で昇圧されたニッケルイオン、ギ酸、及びヒドラジンを含む皮膜形成水溶液83の一部を、配管76を通して分解装置55に導く。さらに、薬液タンク57内の過酸化水素を供給配管59及び配管76を通して分解装置55に供給する。皮膜形成水溶液83に含まれる、ニッケルイオンの対イオンであるギ酸、還元剤であるヒドラジンは、分解装置55内で、活性炭触媒及び過酸化水素の作用により、二酸化炭素、窒素及び水に分解される。 The formic acid decomposes the reducing agent (step S7). The opening degree of the valve 69 is squeezed, and the valve 70 is opened to pass a film forming aqueous solution 83 containing nickel ions, formic acid and hydrazine to the cation exchange resin tower 53. As a result, nickel ions are adsorbed to the cation exchange resin, and the concentration of nickel ions in the film forming aqueous solution 83 decreases. Subsequently, the valve 75 is opened to close a part of the opening degree of the valve 74, and a part of the film forming aqueous solution 83 containing nickel ions, formic acid and hydrazine pressurized by the circulation pump 35 is decomposed through the pipe 76 Lead to Furthermore, the hydrogen peroxide in the chemical solution tank 57 is supplied to the decomposition device 55 through the supply pipe 59 and the pipe 76. Formic acid, which is a counter ion of nickel ions, and hydrazine, which is a reducing agent, contained in the aqueous solution for film formation 83 are decomposed into carbon dioxide, nitrogen and water in the decomposition apparatus 55 by the action of the activated carbon catalyst and hydrogen peroxide. .
 ギ酸と還元剤が分解された皮膜形成水溶液を浄化する(ステップS8)。ギ酸とヒドラジン(還元剤)が分解された後、弁74を開いて弁75を閉じてギ酸、ヒドラジン濃度を低減させた皮膜形成水溶液83の分解装置55への供給を停止し、弁67を開いて弁66を閉じ、弁72を開いて弁69の開度の一部を閉じる。このとき、弁70は閉じている。循環ポンプ35及び34は駆動している。浄化系配管18から循環配管31に戻された、ギ酸、ヒドラジン濃度を低減させた皮膜形成水溶液83は、冷却器52で60℃になるまで冷却される。さらに、ギ酸、ヒドラジン濃度を低減させた60℃の皮膜形成水溶液83が混床樹脂塔54に導かれ、この皮膜形成水溶液83に残留しているニッケルイオン、他の陽イオン及び陰イオンが、混床樹脂塔54内の陽イオン交換樹脂及び陰イオン交換樹脂に吸着されて除去される(第1浄化工程)。ギ酸、ヒドラジン濃度を低減させた60℃の皮膜形成水溶液を、上記の各イオンが実質的になくなるまで、循環配管31及び浄化系配管18を循環させる。各イオンが実質的になくなった皮膜形成水溶液は、実質的に60℃の水であるが、残留した微量の鉄イオン(Fe3+)を含んでいる。 The film-forming aqueous solution in which formic acid and the reducing agent are decomposed is purified (step S8). After the formic acid and hydrazine (reductant) are decomposed, the valve 74 is opened and the valve 75 is closed to stop the supply of the formic acid, the aqueous solution of film formation 83 having reduced hydrazine concentration to the decomposition device 55, and the valve 67 is opened. The valve 66 is closed, the valve 72 is opened, and a part of the opening of the valve 69 is closed. At this time, the valve 70 is closed. The circulation pumps 35 and 34 are driven. The film forming aqueous solution 83 reduced in concentration of formic acid and hydrazine returned to the circulation pipe 31 from the purification system pipe 18 is cooled to 60 ° C. by the cooler 52. Further, formic acid, a film forming aqueous solution 83 having a reduced concentration of hydrazine and at 60 ° C. is led to the mixed bed resin tower 54, and nickel ions, other cations and anions remaining in the film forming aqueous solution 83 are mixed. It is adsorbed and removed by the cation exchange resin and the anion exchange resin in the floor resin tower 54 (first purification step). The aqueous solution for film formation at 60 ° C. in which the concentrations of formic acid and hydrazine are reduced is circulated in the circulation piping 31 and the purification system piping 18 until the above-described ions are substantially eliminated. The film-forming aqueous solution substantially free of each ion is water substantially at 60 ° C., but contains a trace amount of iron ion (Fe 3+ ) remaining.
 錯イオン形成剤水溶液を注入する(ステップS9)。第1浄化工程が終了した後、弁69を開いて弁72を閉じ、弁79を開いてエゼクタ61に通水し、ホッパから錯イオン形成剤水溶液であるアンモニア水溶液を吸引する。このアンモニア水溶液が、サージタンク32内の、微量の鉄イオンを含む60℃の水に供給される。微量のFe3+、及びアンモニアを含む60℃の水溶液は、サージタンク32から、循環ポンプ34によって昇圧されて循環配管31により浄化系配管18へと供給される。アンモニアを含むこの60℃の水溶液は、構成される閉ループに沿って循環ポンプ35に到達し、循環ポンプ35で昇圧されてサージタンク32へと戻される。 A complex ion forming agent aqueous solution is injected (step S9). After completion of the first purification step, the valve 69 is opened and the valve 72 is closed, the valve 79 is opened, water is supplied to the ejector 61, and an aqueous ammonia solution which is a complex ion forming agent aqueous solution is sucked from the hopper. The aqueous ammonia solution is supplied to water at 60 ° C. in the surge tank 32 containing a trace amount of iron ions. A 60 ° C. aqueous solution containing a trace amount of Fe 3+ and ammonia is pressurized from the surge tank 32 by the circulation pump 34 and supplied to the purification system piping 18 by the circulation piping 31. This 60 ° C. aqueous solution containing ammonia reaches the circulating pump 35 along the constructed closed loop, and is boosted by the circulating pump 35 and returned to the surge tank 32.
 白金イオン水溶液を注入する(ステップS10)。アンモニア注入が終了した後、弁50を開いて注入ポンプ48を駆動する。循環配管31内を流れる、アンモニアを含む60℃の水溶液は、加熱器33による加熱により60℃に保たれる。循環配管31内を流れる、アンモニアを含む60℃の水溶液に、注入配管49を通して薬液タンク47内の白金イオンを含む水溶液(例えば、ヘキサヒドロキソ白金酸ナトリウム水和物(Na[Pt(OH)]・nHO)の水溶液)が注入される。注入されるこの水溶液の白金イオンの濃度は、例えば、1ppmである。ヘキサヒドロキソ白金酸ナトリウム水和物の水溶液内では、白金がイオン状態になっている。白金イオン及びアンモニアを含む、60℃の水溶液が、循環ポンプ34及び33の駆動により、循環配管31から浄化系配管18に供給され、浄化系配管18から循環配管31に戻される。その白金イオンを含む水溶液は、循環配管31及び浄化系配管18を含む閉ループ内を循環する。 A platinum ion aqueous solution is injected (step S10). After the end of the ammonia injection, the valve 50 is opened to drive the injection pump 48. The aqueous solution at 60 ° C. containing ammonia, which flows in the circulation pipe 31, is kept at 60 ° C. by heating by the heater 33. An aqueous solution containing ammonia at 60 ° C. flowing through the circulation pipe 31 through the injection pipe 49 and containing the platinum ion in the chemical solution tank 47 (eg, sodium hexahydroxoplatinate hydrate (Na 2 [Pt (OH) 6 Aqueous solution of n H 2 O) is injected. The concentration of platinum ions in this aqueous solution to be injected is, for example, 1 ppm. In an aqueous solution of sodium hexahydroxoplatinate hydrate, platinum is in an ionic state. A 60 ° C. aqueous solution containing platinum ions and ammonia is supplied from the circulation piping 31 to the purification system piping 18 by driving the circulation pumps 34 and 33, and is returned from the purification system piping 18 to the circulation piping 31. The aqueous solution containing platinum ions circulates in a closed loop including the circulation pipe 31 and the purification system pipe 18.
 注入開始直後において、薬液タンク47から循環配管31と注入配管49の接続点を通して循環配管31に注入される、Na[Pt(OH)]・nHOの水溶液のその接続点での白金濃度が、設定濃度、例えば、1ppmとなるように、予め、Na[Pt(OH)]・nHOの水溶液の循環配管31への注入速度を計算し、さらに、循環配管31内を流れる、アンモニアを含む60℃の水溶液内の白金イオンをその設定濃度にして、浄化系配管18の内面に形成されたニッケル金属皮膜表面に所定量の白金を付着させるのに必要な、薬液タンク47に充填するNa[Pt(OH)]・nHOの水溶液の量を計算し、計算されたNa[Pt(OH)]・nHOの水溶液の量を薬液タンク47に充填する。計算されたNa[Pt(OH)]・nHOの水溶液の循環配管31への注入速度に合わせて注入ポンプ48の回転速度を制御し、薬液タンク47内のNa[Pt(OH)]・nHOの水溶液を循環配管31内に注入する。 Immediately after the start of injection, platinum at the connection point of an aqueous solution of Na 2 [Pt (OH) 6 ] · nH 2 O, which is injected from the chemical solution tank 47 through the connection point of the circulation pipe 31 and the injection pipe 49 into the circulation pipe 31 The injection rate of the aqueous solution of Na 2 [Pt (OH) 6 ] · nH 2 O into the circulation pipe 31 is calculated in advance so that the concentration becomes the set concentration, for example, 1 ppm. The chemical solution tank 47 necessary for depositing a predetermined amount of platinum on the surface of the nickel metal film formed on the inner surface of the purification system pipe 18 with the preset concentration of platinum ions in the aqueous solution of 60 ° C. flowing and flowing. the amount of Na 2 [Pt (OH) 6 ] · nH 2 O in aqueous solution filled calculated, filling amount of the aqueous solution of the calculated Na 2 [Pt (OH) 6 ] · nH 2 O in the chemical tank 47 The . The rotational speed of the injection pump 48 is controlled in accordance with the calculated injection rate of the aqueous solution of Na 2 [Pt (OH) 6 ] · nH 2 O into the circulation pipe 31, and Na 2 [Pt (OH 6 ) The nH 2 O aqueous solution is injected into the circulation pipe 31.
 還元剤を注入する(ステップS11)。還元剤注入装置41の弁45を開いて注入ポンプ43を駆動し、薬液タンク42内の還元剤であるヒドラジンの水溶液を、注入配管44を通して循環配管31内を流れる、白金イオン及びアンモニアを含む60℃の水溶液に注入される。注入されるヒドラジン水溶液のヒドラジン濃度は、例えば、100ppmである。 A reducing agent is injected (step S11). The valve 45 of the reducing agent injection device 41 is opened to drive the injection pump 43, and an aqueous solution of hydrazine, which is the reducing agent in the chemical solution tank 42, flows through the injection pipe 44 through the circulation pipe 31. Injected into an aqueous solution of ° C. The hydrazine concentration of the aqueous hydrazine solution to be injected is, for example, 100 ppm.
 ヒドラジン水溶液は、アンモニア及びNa[Pt(OH)]・nHOを含む60℃の水溶液がヒドラジン水溶液の注入点である注入配管44と循環配管31の接続点に到達した以降に循環配管31に注入される。この場合には、白金イオン、ヒドラジン及びアンモニアを含む60℃の水溶液が、循環配管31から浄化系配管18に供給される。しかし、より好ましくは、薬液タンク47内に充填された所定量のNa[Pt(OH)]・nHOの水溶液を全て循環配管31内に注入し終わった直後にヒドラジン水溶液を循環配管31に注入することが望ましい。この場合には、アンモニア及び白金イオンを含む60℃の水溶液が循環配管31から浄化系配管18に供給され、白金イオン水溶液の循環配管31への注入が終了した後では、白金イオン、ヒドラジン及びアンモニアを含む60℃の水溶液85(図6参照)が循環配管31から浄化系配管18に供給される。 The aqueous hydrazine solution is a circulation pipe after the aqueous solution of 60 ° C. containing ammonia and Na 2 [Pt (OH) 6 ] .nH 2 O reaches the connection point of the injection pipe 44 and the circulation pipe 31 which is the injection point of the hydrazine aqueous solution. It is injected into 31. In this case, a 60 ° C. aqueous solution containing platinum ions, hydrazine and ammonia is supplied from the circulation pipe 31 to the purification system pipe 18. However, more preferably, immediately after all the aqueous solution of Na 2 [Pt (OH) 6 ] · nH 2 O filled in the chemical solution tank 47 has been injected into the circulation pipe 31, the hydrazine aqueous solution is circulated It is desirable to inject into 31. In this case, after an aqueous solution at 60 ° C. containing ammonia and platinum ions is supplied from the circulation pipe 31 to the purification system pipe 18 and injection of the platinum ion aqueous solution into the circulation pipe 31 is completed, platinum ions, hydrazine and ammonia The aqueous solution 85 (see FIG. 6) containing 60 ° C. is supplied from the circulation pipe 31 to the purification system pipe 18.
 前者のヒドラジン水溶液の注入の場合には、ヒドラジンにより白金イオンを白金にする還元反応が、最初に、循環配管31内を流れる、ヒドラジン及び白金イオンを含む水溶液内で生じるのに対して、後者のヒドラジン水溶液の注入の場合には、既に、白金イオンが浄化系配管18の内面に形成されたニッケル金属皮膜82の表面に吸着されており、この吸着された白金イオンがヒドラジンにより還元されるので、浄化系配管18の内面に形成されたニッケル金属皮膜82表面への白金84の付着量がさらに増加する(図6参照)。 In the case of the injection of hydrazine aqueous solution in the former case, the reduction reaction of platinum ion to platinum with hydrazine first occurs in the aqueous solution containing hydrazine and platinum ion, which flows in circulation pipe 31, while the latter In the case of injection of a hydrazine aqueous solution, platinum ions are already adsorbed on the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18, and the adsorbed platinum ions are reduced by hydrazine, The adhesion amount of platinum 84 to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18 further increases (see FIG. 6).
 ヒドラジン水溶液の注入開始直後において、薬液タンク42から循環配管31と注入配管44の接続点を通して注入されるヒドラジン水溶液のその接続点でのヒドラジン濃度が、設定濃度、例えば、100ppmとなるように、予め、ヒドラジン水溶液の循環配管31への注入速度を計算し、さらに、循環配管31内を流れる60℃の白金イオンを含む水溶液内のヒドラジンをその設定濃度にして、浄化系配管18の内面に形成されたニッケル金属皮膜82表面に吸着された白金イオンを白金84に還元するために必要な、薬液タンク42に充填するヒドラジン水溶液の量を計算し、計算されたヒドラジン水溶液の量を薬液タンク42に充填する。計算されたヒドラジン水溶液の循環配管31への注入速度に合わせて注入ポンプ43の回転速度を制御し、薬液タンク42内のヒドラジン水溶液を循環配管31内に注入する。 Immediately after the start of injection of the hydrazine aqueous solution, the concentration of hydrazine at the connection point of the aqueous hydrazine solution injected from the chemical solution tank 42 through the connection point of the circulation pipe 31 and the injection pipe 44 is set in advance to 100 ppm, for example. The rate of injection of the hydrazine aqueous solution into the circulation pipe 31 is calculated, and the hydrazine in the aqueous solution containing platinum ions at 60.degree. C. flowing in the circulation pipe 31 is formed at the set concentration to form the inner surface of the purification system pipe 18 The amount of aqueous hydrazine solution to be filled in the chemical solution tank 42 is calculated to reduce platinum ions adsorbed on the surface of the nickel metal film 82 to platinum 84, and the calculated amount of aqueous hydrazine solution is filled in the chemical solution tank 42 Do. The rotational speed of the injection pump 43 is controlled in accordance with the calculated injection rate of the aqueous hydrazine solution into the circulation pipe 31, and the aqueous hydrazine solution in the chemical solution tank 42 is injected into the circulation pipe 31.
 なお、薬液タンク47内のNa[Pt(OH)]・nHOの水溶液(白金イオンを含む水溶液)が、全量、循環配管31に注入されたとき、注入ポンプ48の駆動を停止して弁50を閉じる。これにより、白金イオンを含む水溶液の循環配管31への注入が停止される。また、薬液タンク42内のヒドラジン水溶液(還元剤水溶液)が、全量、循環配管31に注入されたとき、注入ポンプ43の駆動を停止して弁45を閉じる。これにより、ヒドラジン水溶液の循環配管31への注入が停止される。 When the entire aqueous solution (aqueous solution containing platinum ions) of Na 2 [Pt (OH) 6 ] .nH 2 O in the chemical solution tank 47 is injected into the circulation pipe 31, the driving of the injection pump 48 is stopped. And the valve 50 is closed. Thus, the injection of the aqueous solution containing platinum ions into the circulation pipe 31 is stopped. In addition, when the entire hydrazine solution (reducing agent aqueous solution) in the chemical solution tank 42 is injected into the circulation pipe 31, the driving of the injection pump 43 is stopped and the valve 45 is closed. Thus, the injection of the hydrazine aqueous solution into the circulation pipe 31 is stopped.
 ニッケル金属皮膜82表面に吸着した白金イオンが注入されたヒドラジンによって還元されて白金84となるため、浄化系配管18の内面に形成されたニッケル金属皮膜82表面に白金84が付着する(図6参照)。 The platinum ions adsorbed on the surface of the nickel metal film 82 are reduced by the injected hydrazine to become platinum 84, and platinum 84 adheres to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18 (see FIG. 6) ).
 本実施例では、ニッケル金属皮膜82と接触する水溶液85に含まれたアンモニアがこの水溶液85に含まれる微量の鉄イオン(Fe3+)と反応し、鉄-アンモニア錯イオンを生成する。このため、水溶液85中の鉄イオン濃度が減少し、水溶液85に含まれる鉄イオンが水酸化鉄及びマグネタイトとして析出しなくなる。水溶液85に含まれる白金イオンが、白金として水酸化鉄及びマグネタイトに付着することがなくなり、ニッケル金属皮膜82上に付着する白金の量が増加する。 In this embodiment, ammonia contained in the aqueous solution 85 in contact with the nickel metal film 82 reacts with a trace amount of iron ion (Fe 3+ ) contained in the aqueous solution 85 to generate iron-ammonia complex ion. For this reason, the iron ion concentration in the aqueous solution 85 decreases, and the iron ions contained in the aqueous solution 85 do not precipitate as iron hydroxide and magnetite. The platinum ion contained in the aqueous solution 85 is not attached to iron hydroxide and magnetite as platinum, and the amount of platinum attached on the nickel metal film 82 is increased.
 白金の付着が完了したかを判定する(ステップS12)。白金イオン水溶液及び還元剤水溶液の注入からの経過時間が所定時間になったとき、浄化系配管18の内面に形成されたニッケル金属皮膜82表面への所定量の白金の付着が完了したと判定する。その経過時間が所定時間に到達しないときには、ステップS10~S12の各工程が繰り返される。 It is determined whether the deposition of platinum is completed (step S12). When the elapsed time from the injection of the platinum ion aqueous solution and the reducing agent aqueous solution reaches a predetermined time, it is determined that the adhesion of a predetermined amount of platinum to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is completed. . When the elapsed time does not reach the predetermined time, each process of steps S10 to S12 is repeated.
 浄化系配管18及び循環配管31内に残留する水溶液を浄化する(ステップS13)。浄化系配管18の内面に形成されたニッケル金属皮膜82表面への白金84の付着が完了したと判定された後、弁72を開いて弁69の開度の一部を閉じ、循環ポンプ35で昇圧された、白金イオン及びヒドラジン、アンモニアを含む60℃の水溶液を、混床樹脂塔54に供給する。その水溶液に含まれる白金イオン、他の金属陽イオン(例えば、ナトリウムイオン)、ヒドラジン、アンモニア及びOH基が、混床樹脂塔54内のイオン交換樹脂に吸着し、その水溶液から除去される(第2浄化工程)。 The aqueous solution remaining in the purification system pipe 18 and the circulation pipe 31 is purified (step S13). After it is judged that the adhesion of platinum 84 to the surface of the nickel metal film 82 formed on the inner surface of the purification system piping 18 is completed, the valve 72 is opened to close a part of the opening degree of the valve 69 and the circulation pump 35 is used. A 60 ° C. aqueous solution containing platinum ions and hydrazine, ammonia, which has been pressurized, is supplied to the mixed bed resin column 54. The platinum ion, other metal cations (eg, sodium ion), hydrazine, ammonia and OH groups contained in the aqueous solution are adsorbed onto the ion exchange resin in the mixed bed resin column 54 and removed from the aqueous solution ( 2 purification process).
 廃液を処理する(ステップS14)。第2浄化工程が終了した後、ポンプ(図示せず)を有する高圧ホース(図示せず)により循環配管31と廃液処理装置(図示せず)を接続する。第2浄化工程の終了後に、浄化系配管18及び循環配管31内に残存する、放射性廃液である水溶液は、そのポンプを駆動して循環配管31から高圧ホースを通して廃液処理装置(図示せず)に排出され、廃液処理装置で処理される。浄化系配管18及び循環配管31内の水溶液が排出された後、洗浄水を浄化系配管18及び循環配管31内に供給し、循環ポンプ34,35を駆動してこれらの配管内を洗浄する。洗浄終了後、浄化系配管18及び循環配管31内の洗浄水を、上記の廃液処理装置に排出する。 The waste liquid is treated (step S14). After the second purification step is completed, the circulation pipe 31 and the waste liquid treatment apparatus (not shown) are connected by a high pressure hose (not shown) having a pump (not shown). After the completion of the second purification step, the aqueous solution which is radioactive waste liquid remaining in the purification system pipe 18 and the circulation pipe 31 is driven by the pump from the circulation pipe 31 through the high pressure hose to the waste liquid treatment apparatus (not shown) It is discharged and treated by the waste liquid treatment device. After the aqueous solution in the purification system pipe 18 and the circulation pipe 31 is discharged, wash water is supplied into the purification system pipe 18 and the circulation pipe 31 and the circulation pumps 34 and 35 are driven to wash the inside of these pipes. After completion of the cleaning, the cleaning water in the purification system piping 18 and the circulation piping 31 is discharged to the above-described waste liquid treatment apparatus.
 以上により、浄化系配管18の、非再生熱交換器21よりも上流の弁23と弁25の間の部分、及び再生熱交換器20よりも下流の弁26と弁32Aの間の部分のそれぞれの内面へのニッケル金属皮膜82の形成、及びニッケル金属皮膜82上への白金84の付着の各処理が終了する。なお、浄化系配管18の、弁25よりも下流であって弁26よりも上流の部分には、内面に、白金84が付着したニッケル金属皮膜82が形成されていない。 As described above, the portion of the purification system piping 18 between the valve 23 and the valve 25 upstream of the non-regeneration heat exchanger 21 and the portion between the valve 26 and the valve 32A downstream of the regeneration heat exchanger 20 The formation of the nickel metal film 82 on the inner surface of the and the deposition of platinum 84 on the nickel metal film 82 are completed. A nickel metal film 82 to which platinum 84 is attached is not formed on the inner surface of a portion of the purification system piping 18 downstream of the valve 25 and upstream of the valve 26.
 皮膜形成装置を配管系から除去する(ステップS15)。ステップS1~S14の各工程が実施された後、皮膜形成装置30及び30Aのそれぞれが浄化系配管18から取り外され、浄化系配管18が復旧される。 The film forming apparatus is removed from the piping system (step S15). After the processes of steps S1 to S14 are performed, each of the film forming devices 30 and 30A is removed from the purification system piping 18, and the purification system piping 18 is restored.
 原子力プラントを起動させる(ステップS16)。燃料交換及びBWRプラント1の保守点検が終了した後、次の運転サイクルでの運転を開始するために、白金84を付着しているニッケル金属皮膜82が内面に形成された浄化系配管18を有するBWRプラント1が起動される。 The nuclear plant is started (step S16). After refueling and maintenance inspection of BWR plant 1 are completed, nickel metal film 82 adhering platinum 84 has purification system piping 18 formed on the inner surface to start operation in the next operation cycle The BWR plant 1 is started.
 130℃以上200℃未満の温度範囲の炉水を、白金が付着されたニッケル金属皮膜に接触させる(ステップS17)。BWRプラント1が起動されたとき、RPV3内のダウンカマに存在する炉水は、前述したように、再循環系配管6及びジェットポンプ5を通って炉心4に供給される。炉心から吐出された炉水は、ダウンカマに戻される。ダウンカマ内の炉水は、再循環系配管6を経由して浄化系配管18内に流入し、やがて、給水配管11に流入してRPV3内に戻される。 The reactor water in the temperature range of 130 ° C. or more and less than 200 ° C. is brought into contact with the nickel metal film to which platinum is attached (step S17). When the BWR plant 1 is started, the reactor water present in the downcomer in the RPV 3 is supplied to the core 4 through the recirculation system pipe 6 and the jet pump 5 as described above. Reactor water discharged from the core is returned to the downcomer. The reactor water in the downcomer flows into the purification system piping 18 via the recirculation system piping 6 and eventually flows into the water supply piping 11 and is returned into the RPV 3.
 炉心4から制御棒(図示せず)が引き抜かれて炉心4が未臨界状態から臨界状態になり、炉心4内の炉水が燃料棒内の核燃料物質の核分裂で生じる熱で加熱される。炉心4では蒸気が発生していない。さらに、制御棒が炉心4から引き抜かれ、原子炉2の昇温昇圧過程において、RPV3内の圧力が定格圧力まで上昇され、その核分裂で生じる熱によって炉水が加熱されてRPV3内の炉水の温度が定格温度(280℃)になる。RPV3内の圧力が定格圧力になり、炉水温度が定格温度に上昇した後、炉心4からのさらなる制御棒の引き抜き、及び炉心4に供給される炉水の流量増加により、原子炉出力が定格出力(100%出力)まで上昇される。定格出力を維持した、BWRプラント1の定格運転が、その運転サイクルの終了まで継続される。原子炉出力が、例えば、10%出力まで上昇したとき、炉心4で発生した蒸気が主蒸気配管8を通してタービン9に供給され、発電が開始される。 Control rods (not shown) are withdrawn from the core 4 to bring the core 4 from a subcritical state to a critical state, and the reactor water in the core 4 is heated by the heat generated by the nuclear fission of the nuclear fuel material in the fuel rods. In the core 4, no steam is generated. Further, the control rods are withdrawn from the core 4, and the pressure in the RPV 3 is raised to the rated pressure in the heating and pressurizing process of the reactor 2, and the reactor water is heated by the heat generated by the nuclear fission and the reactor water in the RPV 3 The temperature reaches the rated temperature (280 ° C). After the pressure in RPV 3 reaches the rated pressure and the reactor water temperature rises to the rated temperature, the reactor power is rated by the further withdrawal of control rods from the core 4 and the increase in the flow rate of reactor water supplied to the core 4 It is raised to the output (100% output). The rated operation of the BWR plant 1 maintaining the rated output is continued until the end of the operating cycle. When the reactor power rises, for example, to 10% power, the steam generated in the core 4 is supplied to the turbine 9 through the main steam piping 8 to start power generation.
 炉水86には、酸素及び過酸化水素が含まれている。酸素及び過酸化水素は、RPV3内で炉水86の放射線分解により生成される。RPV3内の、酸素を含む炉水86が、浄化系ポンプ19が駆動されている状態で、再循環系配管6から浄化系配管18内に導かれ、浄化系配管18の内面に形成されている、白金84が付着したニッケル金属皮膜82に接触する(図7参照)。前述の核分裂で生じる熱による炉水の加熱により、このニッケル金属皮膜82に接触する炉水86の温度は、上昇し、やがて、130℃以上になり、最終的には定格出力時の280℃まで上昇する。 The reactor water 86 contains oxygen and hydrogen peroxide. Oxygen and hydrogen peroxide are generated by radiolysis of the reactor water 86 in the RPV 3. The reactor water 86 containing oxygen in the RPV 3 is led from the recirculation system piping 6 into the purification system piping 18 with the purification system pump 19 being driven, and is formed on the inner surface of the purification system piping 18 , And contacts the deposited nickel metal film 82 (see FIG. 7). The heating of the reactor water by the heat generated by the above-mentioned nuclear fission causes the temperature of the reactor water 86 in contact with the nickel metal film 82 to rise, eventually to 130 ° C. or more, and finally to 280 ° C. at the rated output. To rise.
 この炉水86の温度は再生熱交換器20及び非再生熱交換器21の前後で大きく異なる。RPV3内の炉水86の温度が280℃であるとき、浄化系配管18の、再生熱交換器20よりも上流の部分には、約280℃の炉水86が流れる。再生熱交換器20での熱交換の結果、再生熱交換器20から弁25側に流出する炉水86の温度は200℃から150℃程度の範囲に低下する。さらに、非再生熱交換器21において、炉水86は、50℃から室温程度までの範囲の温度に低下し、この温度範囲内で、イオン交換樹脂を含む炉水浄化装置22に供給される。炉水浄化装置22から流出した炉水86は、給水として用いられるため、再生熱交換器20で150℃から200℃程度の範囲に加熱された後、給水配管11を流れる給水に合流する。 The temperature of the reactor water 86 greatly differs before and after the regenerative heat exchanger 20 and the non-regenerative heat exchanger 21. When the temperature of the reactor water 86 in the RPV 3 is 280 ° C., the reactor water 86 of about 280 ° C. flows in the portion of the purification system piping 18 upstream of the regenerative heat exchanger 20. As a result of the heat exchange in the regenerative heat exchanger 20, the temperature of the reactor water 86 flowing out from the regenerative heat exchanger 20 to the valve 25 side falls to a range of about 200 ° C to about 150 ° C. Furthermore, in the non-regenerating heat exchanger 21, the reactor water 86 drops to a temperature in the range of 50 ° C. to about room temperature, and is supplied to the reactor water purification device 22 containing the ion exchange resin within this temperature range. The reactor water 86 that has flowed out of the reactor water purification device 22 is used as water supply, and after being heated to a range of about 150 ° C. to 200 ° C. by the regenerative heat exchanger 20, joins the water supply flowing in the water supply pipe 11.
 BWRプラント1が起動されてRPV3内の圧力が定格圧力(このときの炉水の温度は280℃)まで上昇する期間において、浄化系配管18の、弁23と再生熱交換器20の間の部分を流れる炉水86、浄化系配管18の、再生熱交換器20と弁25の間の部分を流れる炉水86、及び浄化系配管18の、弁26と弁32Aの間の部分を流れる炉水86は、時間のずれはあるが、130℃以上200℃未満の温度範囲内の温度になる。原子炉2の昇温昇圧過程において、RPV3内の圧力が上昇するに伴って、RPV3内の炉水の温度は130℃を超えてより高い温度まで上昇する。 A portion of the purification system piping 18 between the valve 23 and the regenerative heat exchanger 20 in a period when the BWR plant 1 is started and the pressure in the RPV 3 rises to the rated pressure (the temperature of the furnace water at this time is 280 ° C.) The furnace water 86 flowing through the furnace, the furnace water 86 flowing through the portion between the regenerative heat exchanger 20 and the valve 25 of the purification system pipe 18, and the furnace water flowing through the portion between the valve 26 and the valve 32A of the purification system pipe 18 86 has a temperature in the temperature range of 130 ° C. or more and less than 200 ° C. although there is a time lag. In the heating and pressurizing process of the reactor 2, as the pressure in the RPV 3 rises, the temperature of the reactor water in the RPV 3 rises to a higher temperature exceeding 130 ° C.
 このため、弁23と弁25の間の浄化系配管18の内面及び弁26と弁32Aの間の浄化系配管18の内面のそれぞれに形成された、白金84が付着したニッケル金属皮膜82の表面が、130℃以上200℃未満の温度範囲の酸素を含む炉水86と接触することによって、浄化系配管18及びそのニッケル金属皮膜82が炉水86と同じ温度に加熱される。炉水86に含まれる酸素が、弁23と弁25の間及び弁26と弁32Aの間のそれぞれにおいて浄化系配管18の内面に形成されたニッケル金属皮膜内に移行し、炭素鋼部材である浄化系配管18に含まれるFeがFe2+となってニッケル金属皮膜内に移行する(図8参照)。130℃以上200℃未満の高温環境では、炉水86に含まれる酸素及び浄化系配管18からのFe2+が、ニッケル金属皮膜内に移行し易くなる。なお、炉水の酸素濃度が低い場合には、炉水の水分子が鉄の腐食によって分解されて酸素が生じ、この酸素が前述の炉水86に含まれる酸素と同じ働きをする。ニッケル金属皮膜82に付着した白金84の作用による、浄化系配管18及びニッケル金属皮膜82のそれぞれの腐食電位の低下、及び130℃以上200℃未満の高温環境の形成により、ニッケル金属皮膜82内のニッケルがニッケル金属皮膜82内に移行した酸素及びFe2+と反応し、Ni1-xFe2+x4においてxが0である安定なニッケルフェライト(NiFe24)が生成される。この際、フェライト構造へのニッケルと鉄の取り込まれ易さは白金(貴金属)の影響を受け、白金が存在する場合は鉄よりもニッケルが取り込まれ易くなるため、Ni1-xFe2+x4においてxが0である安定なニッケルフェライトが生成される。そして、浄化系配管18の内面に形成されたニッケル金属皮膜82は安定なニッケルフェライト(NiFe24)皮膜87に変換され、弁23と弁25の間及び弁26と弁32Aの間のそれぞれにおける浄化系配管18の内面が、表面に白金84が付着された安定なニッケルフェライト皮膜87で覆われる(図9参照)。浄化系配管18の内面を覆ったニッケル金属皮膜82に含まれるニッケル金属から、130℃以上200℃未満の高温の環境下において上記のように生成された、Ni1-xFe2+x4においてxが0であるニッケルフェライト(NiFe24)は、結晶が大きく成長しており、貴金属が付着してもNi0.7Fe2.34皮膜のように水中に溶出しなく安定であり、母材である炭素鋼、すなわち、浄化系配管18の腐食を抑制する。 Therefore, the surface of the nickel metal film 82 to which platinum 84 is formed, formed on the inner surface of the purification system pipe 18 between the valve 23 and the valve 25 and the inner surface of the purification system pipe 18 between the valve 26 and the valve 32A. However, the purification system piping 18 and its nickel metal film 82 are heated to the same temperature as the furnace water 86 by contacting the furnace water 86 containing oxygen in the temperature range of 130 ° C. or more and less than 200 ° C. Oxygen contained in the reactor water 86 is transferred into the nickel metal film formed on the inner surface of the purification system pipe 18 respectively between the valve 23 and the valve 25 and between the valve 26 and the valve 32A, which is a carbon steel member Fe contained in the purification system pipe 18 is converted to Fe 2+ to move into the nickel metal film (see FIG. 8). In a high temperature environment of 130 ° C. or more and less than 200 ° C., oxygen contained in the reactor water 86 and Fe 2+ from the purification system pipe 18 are easily transferred into the nickel metal film. When the oxygen concentration of the reactor water is low, the water molecules of the reactor water are decomposed by the corrosion of iron to generate oxygen, and this oxygen functions in the same manner as the oxygen contained in the above-mentioned reactor water 86. The corrosion potential of the cleaning system pipe 18 and the nickel metal film 82 is reduced by the action of platinum 84 attached to the nickel metal film 82, and the high temperature environment of 130 ° C. or more and less than 200 ° C. Nickel reacts with oxygen and Fe 2+ transferred into the nickel metal film 82 to form a stable nickel ferrite (NiFe 2 O 4 ) in which x is 0 in Ni 1 -xFe 2 + x O 4 . At this time, the ease with which nickel and iron are incorporated into the ferrite structure is affected by platinum (noble metal), and in the presence of platinum, nickel is more easily incorporated than iron, so Ni 1-x Fe 2 + x. A stable nickel ferrite with x at 0 at O 4 is produced. Then, the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 87, and between the valve 23 and the valve 25 and between the valve 26 and the valve 32A. The inner surface of the purification system pipe 18 in the above is covered with a stable nickel ferrite film 87 in which platinum 84 is attached to the surface (see FIG. 9). Ni 1-x Fe 2 + x O 4 produced as described above from the nickel metal contained in the nickel metal film 82 covering the inner surface of the purification system pipe 18 in a high temperature environment of 130 ° C. or more and less than 200 ° C. In nickel ferrite (NiFe 2 O 4 ) in which x is 0 in the above, crystals are grown large, and even if a noble metal is attached, it does not dissolve in water like Ni 0.7 Fe 2.3 O 4 film, and is stable. The corrosion of the carbon steel which is the material, that is, the purification system piping 18 is suppressed.
 本実施例によれば、ニッケル金属皮膜82に付着した白金84により浄化系配管18及びニッケル金属皮膜82の腐食電位が低下した状態で、かつ130℃以上200℃未満の高温環境下で、前述したように、ニッケル金属皮膜82から生成された、Ni1-xFe2+x4においてxが0であるニッケルフェライトの皮膜87は、BWRプラント1の運転中においても、付着した白金84の作用により炉水中に溶出しない安定なニッケルフェライト皮膜である。このように生成された、付着した白金84の作用によっても炉水中に溶出しない安定なニッケルフェライト皮膜87は、60℃~100℃の低い温度範囲で生成されたNi0.7Fe2.34皮膜よりも長期に亘って浄化系配管18の腐食を抑制することができる。具体的には、浄化系配管18の内面に形成されたその安定なニッケルフェライト皮膜87は、付着した白金84の作用によって溶出することがなく、複数の運転サイクル、例えば、5つの運転サイクル(例えば、5年間)に亘って浄化系配管18の内面を覆うことができる。このように、安定なニッケルフェライト皮膜87が長期に亘って浄化系配管18の内面を覆うことができるため、浄化系配管18は長期に亘って腐食が抑制される。 According to this embodiment, in the state where the corrosion potential of the purification system pipe 18 and the nickel metal film 82 is lowered by the platinum 84 attached to the nickel metal film 82, and in the high temperature environment of 130 ° C. or more and less than 200 ° C. Thus, the nickel ferrite film 87 formed of the nickel metal film 82 and having x of 0 in Ni 1-x Fe 2 + x O 4 has the function of the platinum 84 adhered even during the operation of the BWR plant 1. Is a stable nickel ferrite film which does not elute into reactor water. The thus formed stable nickel ferrite film 87 which does not dissolve into the reactor water by the action of the attached platinum 84 is more than the Ni 0.7 Fe 2.3 O 4 film formed at a temperature range of 60 ° C. to 100 ° C. Corrosion of the purification system pipe 18 can be suppressed over a long period of time. Specifically, the stable nickel ferrite film 87 formed on the inner surface of the purification system pipe 18 does not elute by the action of the attached platinum 84, and a plurality of operation cycles, for example, five operation cycles (for example, Can cover the inner surface of the purification system piping 18 for five years. As described above, since the stable nickel ferrite film 87 can cover the inner surface of the purification system pipe 18 for a long time, corrosion of the purification system pipe 18 is suppressed for a long time.
 炭素鋼部材は、150℃~200℃の範囲内の温度の水に接触するときに腐食が特に大きくなる傾向にある。BWRプラント1の定格運転時においては、浄化系配管18は、炉水浄化装置22の上流側で再生熱交換器20と非再生熱交換器21の間の部分、及び炉水浄化装置22の下流側で再生熱交換器20と、浄化系配管18と給水配管11の接続点との間の部分で、150℃~200℃の範囲内の温度の炉水86に接触する。それ故に、浄化系配管18は、これらの部分で、腐食が増大する。本実施例では、弁23と弁25の間及び弁26と弁32Aの間のそれぞれにおいて浄化系配管18の内面に安定なニッケルフェライト皮膜87を形成しているため、腐食が増大するそれらの部分での腐食が、形成された安定なニッケルフェライト皮膜87によって長期に亘って抑制される。弁23と再生熱交換器20の間の浄化系配管18も、内面に安定なニッケルフェライト皮膜87が形成されているので腐食が抑制される。 Carbon steel members tend to be particularly susceptible to corrosion when contacted with water at a temperature in the range of 150 ° C. to 200 ° C. During rated operation of the BWR plant 1, the purification system piping 18 is a portion between the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21 on the upstream side of the reactor water purification device 22 and the downstream of the reactor water purification device 22. At the side between the regenerative heat exchanger 20 and the connection point between the purification system piping 18 and the water supply piping 11, it contacts the furnace water 86 at a temperature in the range of 150 ° C. to 200 ° C. Therefore, the corrosion of the purification system piping 18 is increased in these parts. In this embodiment, stable nickel ferrite films 87 are formed on the inner surface of the purification system pipe 18 between the valve 23 and the valve 25 and between the valve 26 and the valve 32A, respectively. Corrosion is suppressed for a long time by the formed stable nickel ferrite film 87. Also in the purification system pipe 18 between the valve 23 and the regenerative heat exchanger 20, since the stable nickel ferrite film 87 is formed on the inner surface, the corrosion is suppressed.
 浄化系配管18の、腐食が増大する部分での腐食抑制のためには、弁25はできるだけ非再生熱交換器21の近くで、弁26はできるだけ再生熱交換器20の近くで、さらに、弁32Aはできるだけ浄化系配管18と給水配管11の接続点の近くで浄化系配管18に設置すると良い。 In order to suppress corrosion in the portion of the purification system piping 18 where corrosion is increased, the valve 25 is as close as possible to the non-regenerating heat exchanger 21 and the valve 26 is as close to the regenerative heat exchanger 20 as possible. 32A may be installed in the purification system piping 18 as close as possible to the connection point between the purification system piping 18 and the water supply piping 11.
 さらに、浄化系配管18の内面に形成されたその安定なニッケルフェライト皮膜87は、複数の運転サイクルに亘って浄化系配管18への放射性核種の付着を抑制することができる。このため、浄化系配管18に対して実施される化学除染の回数を減少させることができる。特に、炉水浄化装置22よりも上流側の、弁23と非再生熱交換器21との間で、浄化系配管18の内面に安定なニッケルフェライト皮膜87を形成しているため、特に、浄化系配管18のその部分の内面への放射性核種の付着を抑制することができる。 Furthermore, the stable nickel ferrite film 87 formed on the inner surface of the purification system pipe 18 can suppress the adhesion of radionuclides to the purification system pipe 18 over a plurality of operation cycles. For this reason, the number of times of chemical decontamination performed on the purification system pipe 18 can be reduced. In particular, since a stable nickel ferrite film 87 is formed on the inner surface of the purification system pipe 18 between the valve 23 and the non-regenerating heat exchanger 21 on the upstream side of the reactor water purification apparatus 22, in particular, purification The adhesion of the radionuclide to the inner surface of the portion of the system piping 18 can be suppressed.
 本実施例によれば、ニッケルイオン及び還元剤(例えば、ヒドラジン)を含む皮膜形成水溶液を浄化系配管18の内面に接触させ、浄化系配管18の、炉水と接触する内面に、この内面を覆うニッケル金属皮膜82を形成することができる。このニッケル金属皮膜82によって、浄化系配管18から貴金属付着処理中の皮膜形成水溶液へのFe2+の溶出を防止することができ、浄化系配管18の内面への貴金属(例えば、白金)の付着がFe2+の溶出によって阻害されることがなくなり、その内面への貴金属の付着(具体的には、浄化系配管18の内面に形成されたニッケル金属皮膜82表面への貴金属の付着)に要する時間を短縮することができる。また、その内面への貴金属の付着を効率良く行うことができ、浄化系配管18の内面への貴金属の付着量が増加する。 According to the present embodiment, a film forming aqueous solution containing nickel ions and a reducing agent (for example, hydrazine) is brought into contact with the inner surface of the purification system pipe 18, and the inner surface of the purification system pipe 18 is brought into contact with the reactor water. A covering nickel metal coating 82 can be formed. By this nickel metal film 82, it is possible to prevent the elution of Fe 2+ from the purification system pipe 18 to the film forming aqueous solution during the precious metal adhesion treatment, and adhesion of noble metal (for example, platinum) to the inner surface of the purification system pipe 18 Is not inhibited by the elution of Fe 2+ , which is required for the adhesion of the noble metal to its inner surface (specifically, the adhesion of the noble metal to the surface of the nickel metal film 82 formed on the inner surface of the purification system pipe 18) Time can be shortened. Further, the adhesion of the noble metal to the inner surface can be efficiently performed, and the adhesion amount of the noble metal to the inner surface of the purification system pipe 18 is increased.
 本実施例では、浄化系配管18の内面に形成されたニッケル金属皮膜82には、50μg/cm2のニッケル金属が存在する。このように、50μg/cm2のニッケル金属が存在すると、ニッケル金属皮膜82が、浄化系配管18の、皮膜形成水溶液に接触する内面の全面を覆った状態となり、次の運転サイクルにおけるBWRプラントの起動後において、浄化系配管18内を流れる炉水が浄化系配管18の母材と接触することが、そのニッケル金属皮膜82によって、遮られる。このため、炉水による浄化系配管18の腐食が抑制され、さらに、炉水に含まれる放射性核種の浄化系配管18の母材への取り込みが生じない。 In the present embodiment, 50 μg / cm 2 of nickel metal is present in the nickel metal film 82 formed on the inner surface of the purification system pipe 18. Thus, when 50 μg / cm 2 of nickel metal is present, the nickel metal film 82 covers the entire inner surface of the purification system pipe 18 in contact with the film-forming aqueous solution, and the BWR plant in the next operation cycle is After the start-up, the contact of the reactor water flowing in the purification system pipe 18 with the base material of the purification system pipe 18 is blocked by the nickel metal film 82. For this reason, the corrosion of the purification system piping 18 due to the reactor water is suppressed, and further, the radionuclides contained in the reactor water do not take in the base material of the purification system piping 18.
 浄化系配管18の内面に形成されたニッケル金属皮膜82は、浄化系配管18への白金の付着に要する時間を短縮させるだけでなく、付着した白金84の作用と相俟って、浄化系配管18の内面への、付着した白金によっても炉水に溶出しない安定なニッケルフェライト皮膜87の形成に貢献する。 The nickel metal film 82 formed on the inner surface of the purification system piping 18 not only shortens the time required for the adhesion of platinum to the purification system piping 18, but in combination with the action of the adhered platinum 84, the purification system piping This contributes to the formation of a stable nickel ferrite film 87 which does not elute into the reactor water even by the deposited platinum on the inner surface of 18.
 浄化系配管18内面へのニッケル金属皮膜82の形成は、皮膜形成水溶液に含まれたニッケルイオンが浄化系配管18に含まれる鉄イオンと置換されて浄化系配管18の内面に取り込まれ、皮膜形成水溶液に含まれるヒドラジン(還元剤)によりその内面に取り込まれたニッケルイオンが還元されてニッケル金属になる。このように、置換反応によって浄化系配管18に取り込まれたニッケルイオンから還元剤の作用により生成されたニッケル金属は、浄化系配管18の母材との密着性が強い。このため、形成されたニッケル金属皮膜82は、浄化系配管18からはがれることはない。 In the formation of the nickel metal film 82 on the inner surface of the purification system pipe 18, nickel ions contained in the aqueous solution for film formation are replaced with iron ions contained in the purification system pipe 18 and taken into the inner surface of the purification system pipe 18. The nickel ion incorporated on the inner surface is reduced to a nickel metal by hydrazine (reducing agent) contained in the aqueous solution. As described above, the nickel metal produced by the action of the reducing agent from the nickel ion taken into the purification system pipe 18 by the substitution reaction has strong adhesion to the base material of the purification system pipe 18. For this reason, the formed nickel metal film 82 does not peel off from the purification system pipe 18.
 本実施例では、浄化系配管18の内面を還元除染した後、浄化系配管18の内面にニッケル金属皮膜82を形成するため、酸化皮膜の上にニッケル金属皮膜を形成した場合に比べてニッケル比率の高い安定なニッケルフェライトの形成に貢献する。 In this embodiment, after the inner surface of the purification system pipe 18 is reduced and decontaminated, nickel metal film 82 is formed on the inner surface of purification system pipe 18, so nickel is formed compared to when nickel metal film is formed on the oxide film. Contributes to the formation of a high ratio of stable nickel ferrite.
 シュウ酸水溶液を用いた、浄化系配管18内面の還元除染時、及びシュウ酸の分解時において、炭素鋼部材である浄化系配管18の内面に形成されたシュウ酸鉄(II)を、シュウ酸水溶液に注入した酸化剤(例えば、過酸化水素)の作用によって除去する。このシュウ酸鉄(II)の除去により、浄化系配管18とニッケル金属皮膜82の密着性が向上し、ニッケル金属皮膜82が浄化系配管18の内面からはがれることを防止できる。 At the time of reduction decontamination of the inner surface of the purification system pipe 18 using an aqueous solution of oxalic acid, and at the time of decomposition of oxalic acid, iron oxalate (II) formed on the inner surface of the purification system pipe 18 which is a carbon steel member It is removed by the action of an oxidizing agent (eg, hydrogen peroxide) injected into the aqueous acid solution. By the removal of the iron (II) oxalate, the adhesion between the purification system pipe 18 and the nickel metal film 82 is improved, and the peeling of the nickel metal film 82 from the inner surface of the purification system pipe 18 can be prevented.
 本発明の他の実施例である実施例2のプラントの炭素鋼部材の腐食抑制方法を、図12を用いて説明する。本実施例のプラントの炭素鋼部材の腐食抑制方法は、BWRプラントの、炭素鋼製の給水配管に適用される。 A method of suppressing corrosion of a carbon steel member of a plant of embodiment 2 which is another embodiment of the present invention will be described with reference to FIG. The method for suppressing the corrosion of carbon steel members of the plant of the present embodiment is applied to a carbon steel water supply pipe of a BWR plant.
 本実施例では、実施例1のプラントの炭素鋼部材の腐食抑制方法におけるステップS1~S17の各工程が実施される。なお、ステップS1~S15の各工程はBWRプラント1の運転停止中に実施される。本実施例のステップS1では、皮膜形成装置30の循環配管31の開閉弁78側の一端部が低圧給水加熱器14の出口で給水配管11に設けられた第1弁(図示せず)に接続され、循環配管31の開閉弁62側の他端部が高圧給水加熱器16の入口で給水配管11に設けられた第2弁(図示せず)に接続される。なお、第1弁は低圧給水加熱器14の出口にできるだけ近い位置で、第2弁は高圧給水加熱器16の入口にできるだけ近い位置で、給水配管11に設けられる。循環配管31の両端部の第1弁及び第2弁への接続は、実施例1における循環配管31の弁23及び弁25のそれぞれへの接続と同様に行われる。施工対象である給水配管11の内面には、放射性核種は付着していないが、高温水が流れるために酸化皮膜が形成されているので、ステップS2において、低圧給水加熱器14と高圧給水加熱器16の間の給水配管11の内面に対して酸化皮膜を除去する目的で化学除染を実施する。 In the present embodiment, the respective steps of steps S1 to S17 in the method of suppressing corrosion of carbon steel members of the plant of Embodiment 1 are performed. The steps S1 to S15 are performed while the BWR plant 1 is shut down. In step S1 of this embodiment, one end of the circulation piping 31 of the film forming apparatus 30 on the side of the on-off valve 78 is connected to a first valve (not shown) provided in the water supply pipe 11 at the outlet of the low pressure water supply heater 14 The other end of the circulation pipe 31 on the side of the on-off valve 62 is connected to the second valve (not shown) provided to the water supply pipe 11 at the inlet of the high-pressure water supply heater 16. The first valve is provided in the water supply pipe 11 as close as possible to the outlet of the low pressure feed water heater 14 and the second valve as close as possible to the inlet of the high pressure feed water heater 16. The connection of the both ends of the circulation pipe 31 to the first valve and the second valve is performed in the same manner as the connection of the circulation pipe 31 to the valve 23 and the valve 25 in the first embodiment. Although the radionuclide is not attached to the inner surface of the water supply pipe 11 to be constructed, the high temperature water flows and an oxide film is formed, so that the low pressure feed water heater 14 and the high pressure feed water heater are formed in step S2. Chemical decontamination is performed on the inner surface of the water supply pipe 11 between 16 for the purpose of removing the oxide film.
 その後、前述のステップS3~S17の各工程が順番に実施される。ステップS4及びS5の各工程が実施され、ニッケルイオン及びギ酸を含み90℃でpHが4.0の水溶液が皮膜形成装置30から低圧給水加熱器14と高圧給水加熱器16の間の給水配管11に供給される。その水溶液が、この給水配管11及び循環配管31を含む閉ループ内を循環する。この結果、ニッケル金属皮膜が、低圧給水加熱器14と高圧給水加熱器16の間の給水配管11の内面に形成される。 Thereafter, the steps S3 to S17 described above are sequentially performed. An aqueous solution containing nickel ions and formic acid and having a pH of 4.0 at 90 ° C. is carried out from the film forming apparatus 30 to the water supply pipe 11 between the low pressure water supply heater 14 and the high pressure water supply heater 16. Supplied to The aqueous solution circulates in a closed loop including the water supply pipe 11 and the circulation pipe 31. As a result, a nickel metal film is formed on the inner surface of the feed water pipe 11 between the low pressure feed water heater 14 and the high pressure feed water heater 16.
 ステップS6の判定が「Yes」になった後、ステップS7及びS8が実施される。ステップS9~S11の各工程が実施され、白金イオン、アンモニア及びヒドラジンを含む60℃の水溶液が低圧給水加熱器14と高圧給水加熱器16の間の給水配管11に供給される。この給水配管11の内面に形成されたニッケル金属皮膜の表面に白金が付着される。ステップS12の判定が「Yes」になった後、ステップS13~S15の各工程が実施される。ステップS15において、循環配管31が給水配管11から取り外され、給水配管11が元通りに復旧される。 After the determination in step S6 is "Yes", steps S7 and S8 are performed. The respective steps of steps S9 to S11 are performed, and an aqueous solution at 60 ° C. containing platinum ions, ammonia and hydrazine is supplied to the water supply pipe 11 between the low pressure water supply heater 14 and the high pressure water supply heater 16. Platinum adheres to the surface of the nickel metal film formed on the inner surface of the water supply pipe 11. After the determination in step S12 is "Yes", each process of steps S13 to S15 is performed. In step S15, the circulation pipe 31 is removed from the water supply pipe 11, and the water supply pipe 11 is restored to the original state.
 その後、ステップS16でBWRプラント1が起動され、そして、ステップS17が実施される。ステップS17では、原子炉2の昇温昇圧過程が終了した後の原子炉出力上昇過程において、RPV3からタービン9に供給された蒸気が復水器10で凝縮され、この凝縮によって生成された水が給水として給水配管11を通してRPV3に供給される。給水配管11を流れる給水は、低圧給水加熱器14で加熱される。やがて、低圧給水加熱器14から130℃以上200℃未満の温度範囲内の温度の給水が排出される。この温度の給水が、低圧給水加熱器14と高圧給水加熱器16の間の給水配管11の内面に形成された、白金84が付着したニッケル金属皮膜82に接触する。この結果、実施例1で述べたように、ニッケル金属皮膜82が安定なニッケルフェライト(NiFe24)皮膜87に変換される。なお、BWRプラント1の定格運転では、低圧給水加熱器14から150℃の給水が排出される。 Thereafter, the BWR plant 1 is activated in step S16, and step S17 is performed. In step S17, the steam supplied from the RPV 3 to the turbine 9 is condensed by the condenser 10 in the reactor power rising process after the heating and pressurizing process of the reactor 2 is completed, and the water generated by this condensation is The water is supplied to the RPV 3 through the water supply pipe 11 as the water supply. The feed water flowing through the feed water pipe 11 is heated by the low pressure feed water heater 14. Soon, the low-pressure feedwater heater 14 discharges the feedwater having a temperature in the temperature range of 130 ° C. or more and less than 200 ° C. The feed water at this temperature contacts the platinum metal 84 deposited nickel metal film 82 formed on the inner surface of the feed water pipe 11 between the low pressure feed water heater 14 and the high pressure feed water heater 16. As a result, as described in Example 1, the nickel metal film 82 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 87. In the rated operation of the BWR plant 1, the low-pressure feed water heater 14 discharges the feed water at 150 ° C.
 本実施例は、放射性核種の付着抑制以外の、給水配管11を対象にした、実施例1で生じる各効果を得ることができる。 The present embodiment can obtain each effect generated in the first embodiment for the water supply pipe 11 other than the adhesion suppression of the radionuclide.
 本発明の他の実施例である実施例3のプラントの炭素鋼部材の腐食抑制方法を、図12を用いて説明する。本実施例のプラントの炭素鋼部材の腐食抑制方法は、BWRプラントの、炭素鋼製の浄化系配管及びボトムドレン配管のそれぞれに適用される。本実施例では、実施例1のプラントの炭素鋼部材の腐食抑制方法におけるステップS1~S17の各工程が実施される。なお、ステップS1~S15の各工程はBWRプラント1の運転停止中に実施される。本実施例のステップS1では、皮膜形成装置30Aの循環配管31Aの両端部が、実施例1と同様に、弁26及び32のそれぞれに接続される。皮膜形成装置30の循環配管31の開閉弁78側の端部が2つに分岐され、分岐された一つの端部が弁23に接続され、分岐された他の端部がボトムドレン配管89に設けられた弁88に接続される。ボトムドレン配管89の一端部はRPV3の底部に接続され、ボトムドレン配管89の他端部は浄化系ポンプ19よりも上流側で浄化系配管18に接続される。循環配管31の開閉弁62側の他端部が、弁25に接続される。 A method of suppressing corrosion of a carbon steel member of a plant of embodiment 3 which is another embodiment of the present invention will be described with reference to FIG. The method for suppressing the corrosion of carbon steel members of the plant of this embodiment is applied to each of a carbon steel purification system pipe and a bottom drain pipe of a BWR plant. In the present embodiment, the respective steps of steps S1 to S17 in the method of suppressing corrosion of carbon steel members of the plant of Embodiment 1 are performed. The steps S1 to S15 are performed while the BWR plant 1 is shut down. In step S1 of the present embodiment, both ends of the circulation pipe 31A of the film forming apparatus 30A are connected to the valves 26 and 32, respectively, as in the first embodiment. The end of the circulation piping 31 of the film forming apparatus 30 on the side of the on-off valve 78 is branched into two, one branched end is connected to the valve 23, and the other branched end is connected to the bottom drain piping 89 It is connected to the provided valve 88. One end of the bottom drain pipe 89 is connected to the bottom of the RPV 3, and the other end of the bottom drain pipe 89 is connected to the purification system pipe 18 on the upstream side of the purification system pump 19. The other end of the circulation pipe 31 on the side of the on-off valve 62 is connected to the valve 25.
 その後、前述のステップS2~S17の各工程が順番に実施される。ステップS4及びS5の各工程が実施され、ニッケルイオン及びギ酸を含み90℃の水溶液のpHが4.0の水溶液が皮膜形成装置30から浄化系配管18及びボトムドレン配管89に供給される。また、その水溶液が、皮膜形成装置30Aから浄化系配管18の、弁26と弁32Aの間の部分に供給される。この結果、ニッケル金属皮膜が、ボトムドレン配管89の内面、浄化系配管18の、弁23と弁25の間の部分の内面及び浄化系配管18の、弁26と弁32Aの間の部分の内面にそれぞれ形成される。 Thereafter, the steps S2 to S17 described above are sequentially performed. Each step of steps S4 and S5 is carried out, and an aqueous solution containing nickel ions and formic acid and having a pH of 4.0 at 90 ° C. is supplied from the film forming apparatus 30 to the purification system piping 18 and the bottom drain piping 89. In addition, the aqueous solution is supplied from the film forming apparatus 30A to a portion of the purification system pipe 18 between the valve 26 and the valve 32A. As a result, the nickel metal film is the inner surface of the bottom drain pipe 89, the inner surface of the portion of the purification system pipe 18 between the valve 23 and the valve 25, and the inner surface of the portion of the purification system pipe 18 between the valve 26 and the valve 32A. Are formed respectively.
 ステップS6の判定が「Yes」になった後、ステップS7及びS8が実施される。さらに、ステップS9~S11の各工程が実施され、ボトムドレン配管89及び浄化系配管18の内面に形成されたニッケル金属皮膜の表面に白金を付着する。ステップS12の判定が「Yes」になった後、ステップS13~S15の各工程が実施される。ステップS15において、循環配管31がボトムドレン配管89及び浄化系配管18から、そして、循環配管31Aが浄化系配管18から取り外され、ボトムドレン配管89及び浄化系配管18が元通りに復旧される。 After the determination in step S6 is "Yes", steps S7 and S8 are performed. Further, each step of steps S9 to S11 is carried out, and platinum is attached to the surface of the nickel metal film formed on the inner surface of the bottom drain pipe 89 and the purification system pipe 18. After the determination in step S12 is "Yes", each process of steps S13 to S15 is performed. In step S15, the circulation piping 31 is removed from the bottom drain piping 89 and the purification system piping 18, and the circulation piping 31A is removed from the purification system piping 18, and the bottom drain piping 89 and the purification system piping 18 are restored as they were.
 その後、ステップS16でBWRプラント1が起動され、そして、ステップS17が実施される。ステップS17では、RPV3内の炉水が浄化系配管18に導かれ、弁88を開くことによってその炉水がボトムドレン配管89にも供給される。ボトムドレン配管89及び浄化系配管18の内面に形成された、白金が付着されたニッケル金属皮膜に130℃以上200℃未満の温度範囲内の温度の炉水が接触すると、そのニッケル金属皮膜は安定なニッケルフェライト(NiFe24)皮膜に変換される。 Thereafter, the BWR plant 1 is activated in step S16, and step S17 is performed. In step S17, the reactor water in the RPV 3 is led to the purification system piping 18, and by opening the valve 88, the reactor water is also supplied to the bottom drain piping 89. When the reactor water of a temperature within the temperature range of 130 ° C. or more and less than 200 ° C. comes in contact with the nickel metal film to which platinum is attached formed on the inner surface of the bottom drain pipe 89 and the purification system pipe 18, the nickel metal film is stable. Converted to a nickel ferrite (NiFe 2 O 4 ) film.
 本実施例は、実施例1で生じる各効果を得ることができる。 The present embodiment can obtain each effect produced in the first embodiment.
 本発明の好適な他の実施例である実施例4のプラントの炭素鋼部材の腐食抑制方法を、図14及び図15を用いて以下に説明する。本実施例の炭素鋼部材の腐食抑制方法は、少なくとも1つの運転サイクルでの運転を経験したBWRプラントの浄化系配管に適用される。 A method of suppressing corrosion of a carbon steel member of a plant according to a fourth embodiment which is another preferred embodiment of the present invention will be described below with reference to FIGS. The method of inhibiting corrosion of a carbon steel member of the present embodiment is applied to the purification system piping of a BWR plant that has experienced operation in at least one operation cycle.
 本実施例では、実施例1で実施されるステップS1~S15及びS17の各工程、及び新たなステップS18及びS19の各工程が実施される。本実施例は、実施例1で用いられる皮膜形成装置30がステップS1~S14の各工程で用いられ、さらに、新たな加熱システム91がステップS18及びS17の各工程で用いられる。 In this embodiment, the processes of steps S1 to S15 and S17 performed in the first embodiment and the processes of new steps S18 and S19 are performed. In the present embodiment, the film forming apparatus 30 used in the first embodiment is used in each of the steps S1 to S14, and a new heating system 91 is used in each of the steps S18 and S17.
 加熱システム91の構成を、図15を用いて説明する。加熱システム91は、耐圧構造であって、循環配管92、循環ポンプ93、加熱装置94及び昇圧装置である弁95を有する。循環ポンプ93が循環配管92に設けられ、加熱装置94が循環ポンプ93の上流で循環配管92に設けられる。加熱装置94は循環ポンプ93の下流に配置してもよい。配管96が循環ポンプ93をバイパスしており、配管96の一端部が循環ポンプ93よりも上流で循環配管92に接続され、配管96の他端部が循環ポンプ93よりも下流で循環配管92に接続される。弁95が配管96に設けられる。開閉弁97が循環配管92の上流側端部に設けられ、開閉弁98が循環配管の下流側端部に設けられる。 The configuration of the heating system 91 will be described with reference to FIG. The heating system 91 is a pressure-resistant structure, and includes a circulation pipe 92, a circulation pump 93, a heating device 94, and a valve 95 that is a pressure booster. A circulation pump 93 is provided in the circulation pipe 92, and a heating device 94 is provided in the circulation pipe 92 upstream of the circulation pump 93. The heating device 94 may be disposed downstream of the circulation pump 93. The pipe 96 bypasses the circulation pump 93, one end of the pipe 96 is connected to the circulation pipe 92 upstream of the circulation pump 93, and the other end of the pipe 96 is downstream of the circulation pump 93 to the circulation pipe 92. Connected A valve 95 is provided in the pipe 96. An on-off valve 97 is provided at the upstream end of the circulation pipe 92, and an on-off valve 98 is provided at the downstream end of the circulation pipe.
 皮膜形成装置を配管系から除去する(ステップS14)。本実施例において、ステップS1~S13の各工程が実施された後、浄化系配管18に接続されている皮膜形成装置30が浄化系配管18から取り外される。皮膜形成装置30の循環配管31の一端部が弁23のフランジから取り外され、循環配管31の他端部が弁25のフランジから取り外される。 The film forming apparatus is removed from the piping system (step S14). In the present embodiment, after each step of steps S1 to S13 is performed, the film forming device 30 connected to the purification system piping 18 is removed from the purification system piping 18. One end of the circulation pipe 31 of the film forming apparatus 30 is removed from the flange of the valve 23, and the other end of the circulation pipe 31 is removed from the flange of the valve 25.
 加熱システムを配管系に接続する(ステップS18)。加熱システム91の循環配管92(第3配管)の開閉弁98側の一端部が弁23のフランジに接続され、循環配管92が浄化系配管18に連絡される。循環配管92の開閉弁97側の他端部が弁25のフランジに接続され、循環配管92が再生熱交換器20と非再生熱交換器21の間で浄化系配管18に接続される。循環配管92の両端が浄化系配管18に接続され、浄化系配管18及び循環配管92を含む閉ループが形成される。 The heating system is connected to the piping system (step S18). One end of the circulation pipe 92 (third pipe) of the heating system 91 on the side of the on-off valve 98 is connected to the flange of the valve 23, and the circulation pipe 92 is in communication with the purification system pipe 18. The other end of the circulation pipe 92 on the side of the on-off valve 97 is connected to the flange of the valve 25, and the circulation pipe 92 is connected to the purification system pipe 18 between the regenerative heat exchanger 20 and the non-regenerating heat exchanger 21. Both ends of the circulation pipe 92 are connected to the purification system pipe 18, and a closed loop including the purification system pipe 18 and the circulation pipe 92 is formed.
 次に、130℃以上200℃未満の温度範囲内の、酸素を含む水を、白金が付着されたニッケル金属皮膜に接触させる(ステップS17)。酸素を含む水が、循環配管92及び浄化系配管18を含む閉ループ内に充填される。循環ポンプ93を駆動して、酸素を含む水を、その閉ループ内で循環させる。循環ポンプ93の回転速度を或る回転速度まで増加させ、その後、弁95の開度を徐々に減少させて循環ポンプ93から吐出される水の圧力を高める。加熱装置94により、その閉ループ内を循環する酸素を含む水を加熱し、その水の温度を上昇させる。このように、循環ポンプ93から吐出される水の圧力を高めながら、その水の温度を上昇させる。弁95が全閉になった後は、循環ポンプ93の回転速度を、さらに、増加させる。このような操作により、その閉ループ内を循環する水の圧力が、例えば、0.3MPa~1.4MPaの範囲に上昇したとき、循環する水の温度は約133.5℃~約195.0℃の範囲内に上昇する。循環する水の圧力を調節し、その水の温度を130℃以上200℃未満の温度範囲内の、例えば、150℃に調節する。閉ループ内を循環する水の温度は、浄化系配管18の内面に形成されたニッケル金属皮膜を安定なニッケルフェライト皮膜に変換する間、150℃に保持される。 Next, oxygen-containing water within a temperature range of 130 ° C. or more and less than 200 ° C. is brought into contact with the platinum-deposited nickel metal film (step S17). Water containing oxygen is filled in a closed loop including the circulation pipe 92 and the purification system pipe 18. The circulation pump 93 is driven to circulate oxygen-containing water in the closed loop. The rotational speed of the circulation pump 93 is increased to a certain rotational speed, and then the opening degree of the valve 95 is gradually decreased to increase the pressure of the water discharged from the circulation pump 93. The heating device 94 heats the water containing oxygen circulating in the closed loop to raise the temperature of the water. Thus, the temperature of the water is raised while the pressure of the water discharged from the circulation pump 93 is increased. After the valve 95 is fully closed, the rotational speed of the circulation pump 93 is further increased. By such an operation, when the pressure of the water circulating in the closed loop rises to, for example, the range of 0.3 MPa to 1.4 MPa, the temperature of the circulating water is about 133.5 ° C. to about 195.0 ° C. Rise within the range of The pressure of the circulating water is regulated, and the temperature of the water is regulated to a temperature range of 130 ° C. or more and less than 200 ° C., for example, 150 ° C. The temperature of water circulating in the closed loop is maintained at 150 ° C. while the nickel metal film formed on the inner surface of the purification system pipe 18 is converted to a stable nickel ferrite film.
 酸素を含む150℃の水86Aが、循環配管92から浄化系配管18に供給され、浄化系配管18の内面に形成された、白金84が付着したニッケル金属皮膜82に接触する(図7参照)。浄化系配管18は、循環配管92の両端部が接続された弁23及び25の付近を除いて、保温材(図示せず)で取り囲まれている。150℃の水86Aがニッケル金属皮膜82に接触することによって、浄化系配管18及びニッケル金属皮膜82のそれぞれが加熱され、それぞれの温度が150℃になる。 150 ° C. water 86 A containing oxygen is supplied from the circulation pipe 92 to the purification system pipe 18 and contacts the nickel metal film 82 formed on the inner surface of the purification system pipe 18 to which platinum 84 is attached (see FIG. 7) . The purification system piping 18 is surrounded by a heat insulating material (not shown) except for the vicinity of the valves 23 and 25 to which both ends of the circulation piping 92 are connected. When the water 86A at 150 ° C. comes into contact with the nickel metal film 82, each of the purification system pipe 18 and the nickel metal film 82 is heated to a temperature of 150 ° C.
 酸素を含む水86A、浄化系配管18及びニッケル金属皮膜82のそれぞれが、150℃になるため、その水86Aに含まれる酸素(O2)及び水86Aに含まれる一部の水分子を構成する酸素がニッケル金属皮膜82内に移行し、浄化系配管18に含まれるFeがFe2+となってニッケル金属皮膜82内に移行する(図8参照)。水86Aに含まれる酸素は、130℃以上の水86A中では単独で移動し易くなり、ニッケル金属皮膜82内に入り易くなる。ニッケル金属皮膜82に付着した白金84の作用により、浄化系配管18及びニッケル金属皮膜82の腐食電位が低下する。ニッケル金属皮膜82の腐食電位の低下、及び150℃の高温環境の形成により、ニッケル金属皮膜82内のニッケルがニッケル金属皮膜82内に移行した酸素及びFe2+と反応し、Ni1-xFe2+x4においてxが0である、白金の作用によっても溶出しない安定なニッケルフェライト(NiFe24)が生成される。このため、浄化系配管18の内面に形成されたニッケル金属皮膜82が安定なニッケルフェライト(NiFe24)皮膜87に変換され、ニッケルフェライト皮膜87が浄化系配管18の弁23と弁25の間の部分の内面を覆うことになる(図9参照)。白金は、安定なニッケルフェライト皮膜87の表面に付着している。 Since each of the water 86A containing oxygen, the purification system pipe 18 and the nickel metal film 82 reaches 150 ° C., it constitutes oxygen (O 2 ) contained in the water 86A and some water molecules contained in the water 86A Oxygen is transferred into the nickel metal film 82, and Fe contained in the purification system pipe 18 is converted into Fe 2+ to be transferred into the nickel metal film 82 (see FIG. 8). The oxygen contained in the water 86A easily moves alone in the water 86A of 130 ° C. or more, and easily enters the nickel metal film 82. The action of the platinum 84 attached to the nickel metal film 82 lowers the corrosion potential of the purification system pipe 18 and the nickel metal film 82. Due to the reduction of the corrosion potential of the nickel metal film 82 and the formation of a high temperature environment of 150 ° C., the nickel in the nickel metal film 82 reacts with the oxygen and Fe 2+ transferred into the nickel metal film 82 to obtain Ni 1-x Fe A stable nickel ferrite (NiFe 2 O 4 ), which does not elute by the action of platinum where x is 0 in 2 + x O 4 , is produced. For this reason, the nickel metal film 82 formed on the inner surface of the purification system pipe 18 is converted to a stable nickel ferrite (NiFe 2 O 4 ) film 87, and the nickel ferrite film 87 corresponds to the valves 23 and 25 of the purification system pipe 18. It covers the inner surface of the part in between (see FIG. 9). Platinum adheres to the surface of the stable nickel ferrite film 87.
 加熱システムを配管系から取り外す(ステップS19)。ニッケルフェライト皮膜87が浄化系配管18の内面を覆って形成された後、浄化系配管18に接続されている加熱システム91が浄化系配管18から取り外される。その後、浄化系配管18が復旧される。 The heating system is removed from the piping system (step S19). After the nickel ferrite film 87 is formed to cover the inner surface of the purification system pipe 18, the heating system 91 connected to the purification system pipe 18 is removed from the purification system pipe 18. Thereafter, the purification system piping 18 is restored.
 なお、本実施例において、実施例1のように、皮膜形成装置30Aの循環配管31Aの両端部が弁26及び32のそれぞれに接続され、浄化系配管18の、弁26と弁32Aの間の部分の内面に、表面に白金が付着したニッケル金属皮膜が形成されたときには、ステップS14の工程終了後に、皮膜形成装置30Aを浄化系配管から取り外し(ステップS15)、別の加熱システム91の循環配管92の両端部を弁26及び32のそれぞれに接続する。そして、加熱システム91から酸素を含む150℃の水が、前述したように、浄化系配管18の、弁26と弁32Aの間の部分に供給される。浄化系配管18の、弁26と弁32Aの間の部分の内面に形成された、白金を付着したニッケル金属皮膜が白金を付着した安定なニッケルフェライト皮膜に変換される(ステップS17)。その後、別の加熱システム91も浄化系配管18から取り外される。 In the present embodiment, as in the first embodiment, both ends of the circulation pipe 31A of the film forming apparatus 30A are connected to the valves 26 and 32, respectively, and the purification system pipe 18 is between the valve 26 and the valve 32A. When a nickel metal film on the surface of which platinum adheres is formed on the inner surface of the part, the film forming apparatus 30A is removed from the purification system pipe after the process of step S14 (step S15). The two ends of 92 are connected to valves 26 and 32, respectively. Then, 150 ° C. water containing oxygen from the heating system 91 is supplied to the portion of the purification system piping 18 between the valve 26 and the valve 32A as described above. The platinum-deposited nickel metal film formed on the inner surface of the portion of the purification system piping 18 between the valve 26 and the valve 32A is converted into a stable nickel ferrite film with platinum attached (step S17). Thereafter, another heating system 91 is also removed from the purification system pipe 18.
 燃料交換及びBWRプラント1の保守点検が終了した後、次の運転サイクルでの運転を開始するために、白金84が付着したニッケルフェライト皮膜87が内面に形成された浄化系配管18を有するBWRプラント1が起動される。浄化系配管18内を流れる炉水は、ニッケルフェライト皮膜87が形成されているため、浄化系配管18の母材に直接接触することはない。 A BWR plant having a purification system pipe 18 on the inner surface of which a nickel ferrite film 87 to which platinum 84 is attached is formed to start operation in the next operation cycle after refueling and maintenance inspection of the BWR plant 1 are completed. 1 is activated. The reactor water flowing in the purification system piping 18 is not in direct contact with the base material of the purification system piping 18 because the nickel ferrite film 87 is formed.
 本実施例は実施例1で生じた各効果を得ることができる。さらに、本実施例では、加熱システム91を用いて浄化系配管18の内面に形成されたニッケル金属皮膜82を安定なニッケルフェライト皮膜87に変換するため、ステップS17におけるその変換の処理をBWRプラント1の運転停止中に行うことができる。このため、BWRプラント1を起動するときには、浄化系配管18の内面に、既に、安定なニッケルフェライト皮膜87が形成されているので、本実施例では、実施例1においてその内面に安定なニッケルフェライト皮膜87が形成される前の時点においても浄化系配管18の腐食を抑制することができる。 The present embodiment can obtain the effects produced in the first embodiment. Furthermore, in the present embodiment, in order to convert the nickel metal film 82 formed on the inner surface of the purification system pipe 18 into the stable nickel ferrite film 87 using the heating system 91, the conversion process in step S17 is processed by the BWR plant 1 It can be done while the operation is stopped. Therefore, when the BWR plant 1 is started, the stable nickel ferrite film 87 is already formed on the inner surface of the purification system pipe 18, so in the present embodiment, the stable nickel ferrite on the inner surface in the first embodiment. Corrosion of the purification system piping 18 can be suppressed even before the film 87 is formed.
 さらに、本実施例では、加熱システム91を用いて130℃以上200℃未満の温度範囲の、酸素を含む水を、浄化系配管18の内面に形成されたニッケル金属皮膜82に接触させるので、その水を所定温度まで加熱するために要する時間を短縮することができる。また、加熱システム91の必要とする耐圧性の度合いを低減することができる。 Furthermore, in the present embodiment, oxygen-containing water in the temperature range of 130 ° C. or more and less than 200 ° C. is brought into contact with the nickel metal film 82 formed on the inner surface of the purification system pipe 18 using the heating system 91. The time required to heat the water to a predetermined temperature can be shortened. Also, the degree of pressure resistance required of the heating system 91 can be reduced.
 本発明の他の実施例である実施例5のプラントの炭素鋼部材の腐食抑制方法を、図16を用いて説明する。本実施例のプラントの炭素鋼部材の腐食抑制方法は、火力発電プラント(以下、火力プラントという)の、炭素鋼製の給水配管に適用される。 A method of suppressing corrosion of a carbon steel member of a plant of embodiment 5 which is another embodiment of the present invention will be described with reference to FIG. The method for suppressing corrosion of carbon steel members of a plant of this embodiment is applied to a carbon steel water supply pipe of a thermal power plant (hereinafter referred to as a thermal plant).
 火力プラントの概略構成を、図16を用いて説明する。火力プラント115は、蒸気発生装置であるボイラ99、高圧タービン9A、低圧タービン9B、復水器10及び給水系を備える。高圧タービン9A及び低圧タービン9Bは、主蒸気配管8によってボイラ99に接続される。湿分分離器101及び過熱器102を含む湿分分離過熱器100は、高圧タービン9Aと低圧タービン9Bの間で主蒸気配管8に設置される。主蒸気調節弁110が、ボイラ99と高圧タービン9Aの間に存在する主蒸気配管8に設置される。主蒸気調節弁110よりも上流で主蒸気配管8に接続されて開閉弁が設けられた蒸気供給管106が、過熱器102に接続される。高圧タービン9A及び低圧タービン9Bは、1つの回転軸104によって互いに連結され、さらに、発電機103にも連結される。低圧タービン9Bは、蒸気通路105によって復水器10に連絡される。復水器10内には、海水が流れる伝熱管113が配置される。復水器10とボイラ99を連絡する給水配管11には、復水ポンプ12、低圧給水加熱器14B、低圧給水加熱器14A、給水ポンプ15及び高圧給水加熱器16が、復水器10からボイラ99に向って、この順に設置されている。 The schematic configuration of the thermal power plant will be described with reference to FIG. The thermal power plant 115 includes a boiler 99, which is a steam generating device, a high pressure turbine 9A, a low pressure turbine 9B, a condenser 10, and a water supply system. The high pressure turbine 9A and the low pressure turbine 9B are connected to the boiler 99 by the main steam pipe 8. A moisture separation superheater 100 including a moisture separator 101 and a superheater 102 is installed in the main steam piping 8 between the high pressure turbine 9A and the low pressure turbine 9B. The main steam control valve 110 is installed in the main steam pipe 8 existing between the boiler 99 and the high pressure turbine 9A. A steam supply pipe 106 connected to the main steam pipe 8 upstream of the main steam control valve 110 and provided with an on-off valve is connected to the superheater 102. The high pressure turbine 9A and the low pressure turbine 9B are connected to each other by one rotating shaft 104 and further to the generator 103. The low pressure turbine 9 B is in communication with the condenser 10 by the steam passage 105. In the condenser 10, a heat transfer pipe 113 through which seawater flows is disposed. Condenser pump 12, low-pressure feedwater heater 14B, low-pressure feedwater heater 14A, feedwater pump 15 and high-pressure feedwater heater 16 are connected to feedwater pipe 11 connecting condenser 10 and boiler 99 from condenser 10 to boiler It is installed in this order toward 99.
 高圧タービン9Aに接続された抽気管107及び過熱器102に接続された蒸気排出管112が、高圧給水加熱器16に接続される。低圧タービン9Bに接続された抽気管108A及び湿分分離器101に接続されたドレン管111が、低圧給水加熱器14Aに接続される。抽気管108Aの接続点よりも後段で低圧タービン9Bに接続された抽気管108Bが、低圧給水加熱器14Bに接続される。高圧給水加熱器16及び低圧給水加熱器14A及び14Bに接続されドレン水回収配管109が、復水器10に接続される。 A steam extraction pipe 107 connected to the high pressure turbine 9 A and a steam discharge pipe 112 connected to the superheater 102 are connected to the high pressure feed water heater 16. A bleed pipe 108A connected to the low pressure turbine 9B and a drain pipe 111 connected to the moisture separator 101 are connected to the low pressure feed water heater 14A. A bleed pipe 108B connected to the low pressure turbine 9B at a later stage than the connection point of the bleed pipe 108A is connected to the low pressure feed water heater 14B. A drain water recovery pipe 109 connected to the high pressure feed water heater 16 and the low pressure feed water heaters 14A and 14B is connected to the condenser 10.
 ボイラ99で発生した蒸気は、高圧タービン9A及び低圧タービン9Bに供給され、蒸気通路105を通って復水器10に排出される。復水器10に排出された蒸気は、海水ポンプ114により伝熱管113内に供給される海水によって凝縮されて水になる。この水は、給水として給水配管11を通り、途中、高圧給水加熱器16及び低圧給水加熱器14A及び14Bによって加熱されてボイラ99に供給される。 The steam generated by the boiler 99 is supplied to the high pressure turbine 9A and the low pressure turbine 9B, and discharged to the condenser 10 through the steam passage 105. The steam discharged to the condenser 10 is condensed by the seawater supplied into the heat transfer pipe 113 by the seawater pump 114 to become water. This water passes through the feed water pipe 11 as feed water, and is heated by the high pressure feed water heater 16 and the low pressure feed water heaters 14A and 14B and supplied to the boiler 99 along the way.
 本実施例においても、実施例1で実施されたステップS1~S17の各工程が実施される。ただし、本実施例では、ステップS16において原子力プラントではなく火力プラントが起動され、ステップS17において炉水ではなく給水がニッケル金属皮膜に接触される。 Also in the present embodiment, each process of steps S1 to S17 implemented in the first embodiment is performed. However, in the present embodiment, not the nuclear power plant but the thermal power plant is started in step S16, and the feed water instead of the reactor water is contacted with the nickel metal film in step S17.
 ステップS1では、前述の皮膜形成装置30が、低圧給水加熱器14Aと低圧給水加熱器14Bの間で給水配管11に接続される。すなわち、皮膜形成装置30の循環配管31の一端部が低圧給水加熱器14Aの入口に近い位置で給水配管11に設置された第1弁(図示せず)に接続され、循環配管31の他端部が低圧給水加熱器14Bの出口に近い位置で給水配管11に設置された第2弁(図示せず)に接続される。給水配管11のその部分の内面に形成された酸化皮膜を除去するために、還元除染が実施される(ステップS2)。その後、前述のステップS3~S17の各工程が順番に実施される。ステップS4及びS5の各工程が実施され、ニッケル金属皮膜が、低圧給水加熱器14Bと低圧給水加熱器14Aの間の給水配管11の内面に形成される。 In step S1, the above-described film forming apparatus 30 is connected to the water supply pipe 11 between the low pressure water supply heater 14A and the low pressure water supply heater 14B. That is, one end of the circulation pipe 31 of the film forming apparatus 30 is connected to the first valve (not shown) installed in the water supply pipe 11 at a position close to the inlet of the low pressure feed water heater 14A. Is connected to a second valve (not shown) installed in the water supply pipe 11 at a position close to the outlet of the low pressure water supply heater 14B. In order to remove the oxide film formed on the inner surface of the portion of the water supply pipe 11, reduction decontamination is performed (step S2). Thereafter, the steps S3 to S17 described above are sequentially performed. The steps S4 and S5 are performed, and a nickel metal film is formed on the inner surface of the water supply pipe 11 between the low pressure water supply heater 14B and the low pressure water supply heater 14A.
 ステップS6の判定が「Yes」になった後、ステップS7及びS8が実施される。さらに、ステップS9~S11の各工程が実施され、上記の給水配管11の内面に形成されたニッケル金属皮膜の表面に白金が付着される。ステップS12の判定が「Yes」になった後、ステップS13~S15の各工程が実施される。ステップS15において、循環配管31が給水配管11から取り外され、給水配管11が元通りに復旧される。 After the determination in step S6 is "Yes", steps S7 and S8 are performed. Further, each step of steps S9 to S11 is carried out, and platinum is attached to the surface of the nickel metal film formed on the inner surface of the water supply pipe 11 described above. After the determination in step S12 is "Yes", each process of steps S13 to S15 is performed. In step S15, the circulation pipe 31 is removed from the water supply pipe 11, and the water supply pipe 11 is restored to the original state.
 その後、ステップS16で火力プラントが起動され、そして、ステップS17が実施される。ステップS17では、ボイラ99から高圧タービン9A及び低圧タービン9Bに供給された蒸気が復水器10で凝縮され、この凝縮によって生成された水が給水として給水配管11を通してボイラ99に供給される。給水配管11を流れる給水は、低圧給水加熱器14B及び14A、及び高圧給水加熱器16で加熱される。やがて、130℃以上200℃未満の温度範囲内の温度、例えば、160℃の給水が、低圧給水加熱器14Bから排出される。この温度の給水が、給水配管11の、低圧給水加熱器14Bと低圧給水加熱器14Aの間の部分の内面に形成された、白金84が付着したニッケル金属皮膜82に接触する。この結果、実施例1で述べたように、ニッケル金属皮膜82が安定なニッケルフェライト(NiFe24)皮膜87に変換される。 Thereafter, in step S16, the thermal power plant is activated, and step S17 is performed. In step S17, the steam supplied from the boiler 99 to the high pressure turbine 9A and the low pressure turbine 9B is condensed by the condenser 10, and the water generated by the condensation is supplied to the boiler 99 through the water supply pipe 11 as the water supply. The feedwater flowing through the feedwater pipe 11 is heated by the low pressure feedwater heaters 14 B and 14 A and the high pressure feedwater heater 16. Soon, a temperature within the temperature range of 130 ° C. to less than 200 ° C., for example, 160 ° C. of feed water is discharged from the low pressure feed water heater 14B. The feed water at this temperature contacts the nickel metal film 82 with platinum 84 deposited on the inner surface of the portion of the feed water pipe 11 between the low pressure feed water heater 14B and the low pressure feed water heater 14A. As a result, as described in Example 1, the nickel metal film 82 is converted into a stable nickel ferrite (NiFe 2 O 4 ) film 87.
 このような本実施例は、放射性核種の付着抑制以外の、給水配管11を対象とした、実施例1で生じる各効果を得ることができる。 Such a present Example can acquire each effect which arises in Example 1 for water supply piping 11 other than adhesion control of a radionuclide.
 実施例2,3及び5のそれぞれにおいて、ステップS16の替りにステップS18及びS19の各工程を実施し、ステップS17の工程を加熱システム91を用いて実施してもよい。 In each of the second, third, and fifth embodiments, each step of steps S18 and S19 may be performed instead of step S16, and the step of step S17 may be performed using the heating system 91.
 1…沸騰水型原子力発電プラント、2…原子炉圧力容器、4…炉心、6…再循環系配管、9…タービン、9A…高圧タービン、9B…低圧タービン、11…給水配管、14,14A,14B…低圧給水加熱器、16…高圧給水加熱器、18…浄化系配管、30,30A…皮膜形成装置、31,31A,92…循環配管、33…加熱器、34,35…循環ポンプ、36…ニッケルイオン注入装置、37,42,47,57…薬液タンク、38,43,48…注入ポンプ、41…還元剤注入装置、46…白金イオン注入装置、52…冷却器、53…カチオン交換樹脂塔、54…混床樹脂塔、55…分解装置、56…酸化剤供給装置、58…供給ポンプ、82…ニッケル金属皮膜、84…白金、87…ニッケルフェライト皮膜、89…ボトムドレン配管、91…加熱システム、99…ボイラ。 DESCRIPTION OF SYMBOLS 1 ... Boiling water type nuclear power plant, 2 ... Reactor pressure vessel, 4 ... Core, 6: Recirculation system piping, 9 ... Turbine, 9A ... High pressure turbine, 9B ... Low pressure turbine, 11 ... Water supply piping, 14, 14A, 14B: low pressure feed water heater, 16: high pressure feed water heater, 18: purification system piping, 30, 30A: film forming device, 31, 31A, 92: circulation piping, 33: heater, 34, 35: circulation pump, 36 ... Nickel ion injection device, 37, 42, 47, 57 ... Chemical solution tank, 38, 43, 48 ... Injection pump, 41 ... Reduction agent injection device, 46 ... Platinum ion injection device, 52 ... Cooler, 53 ... Cation exchange resin Tower, 54: mixed bed resin tower, 55: decomposition device, 56: oxidant supply device, 58: supply pump, 82: nickel metal film, 84: platinum, 87: nickel ferrite film, 89: bottom drain Pipe, 91 ... heating system, 99 ... boiler.

Claims (14)

  1.  プラントの炭素鋼部材の、水と接する表面にニッケル金属皮膜を形成して前記表面を前記ニッケル金属皮膜で覆い、前記ニッケル金属皮膜の表面に貴金属を付着させ、前記貴金属が付着した前記ニッケル金属皮膜に、酸化剤を含む130℃以上200℃未満の水を接触させ、前記ニッケル金属皮膜の形成及び前記貴金属の付着は、前記プラントの運転停止後で前記プラントの起動前に行われることを特徴とするプラントの炭素鋼部材の腐食抑制方法。 A nickel metal film is formed on the surface of a carbon steel member of a plant in contact with water, the surface is covered with the nickel metal film, a noble metal is adhered to the surface of the nickel metal film, and the noble metal is adhered. Contact with water containing an oxidizing agent at 130 ° C. or more and less than 200 ° C., and the formation of the nickel metal film and the deposition of the noble metal are performed after the shutdown of the plant and before the start of the plant. Method for suppressing the corrosion of carbon steel members in plants.
  2.  前記ニッケル金属皮膜の形成は、ニッケルイオン及び還元剤を含む皮膜形成液を前記炭素鋼部材の表面に接触させることにより行われ、前記貴金属の付着は、貴金属イオン及び還元剤を含む水溶液を前記形成されたニッケル金属皮膜の前記表面に接触させることにより行われる請求項1に記載のプラントの炭素鋼部材の腐食抑制方法。 The formation of the nickel metal film is performed by bringing a film forming solution containing nickel ions and a reducing agent into contact with the surface of the carbon steel member, and the deposition of the noble metal forms the aqueous solution containing noble metal ions and a reducing agent. The method of inhibiting corrosion of a carbon steel member of a plant according to claim 1, which is performed by contacting the surface of the formed nickel metal film.
  3.  前記皮膜形成液のpHが4.0以上11.0以下の範囲に存在する請求項2に記載のプラントの炭素鋼部材の腐食抑制方法。 The method of suppressing corrosion of a carbon steel member of a plant according to claim 2, wherein the pH of the film forming solution is in the range of 4.0 or more and 11.0 or less.
  4.  前記ニッケル金属皮膜の形成は、前記炭素鋼部材に形成されている酸化皮膜を除去した後に行われる請求項1ないし請求項3のいずれか1項に記載のプラントの炭素鋼部材の腐食抑制方法。 The method for suppressing corrosion of a carbon steel member of a plant according to any one of claims 1 to 3, wherein the formation of the nickel metal film is performed after removing the oxide film formed on the carbon steel member.
  5.  前記酸化皮膜の除去は化学除染によって行われる請求項4に記載のプラントの炭素鋼部材の腐食抑制方法。 The method for suppressing corrosion of a carbon steel member of a plant according to claim 4, wherein the removal of the oxide film is performed by chemical decontamination.
  6.  前記化学除染に用いられる還元除染液に、ギ酸及び酸化剤の少なくとも一つを注入する請求項5に記載のプラントの炭素鋼部材の腐食抑制方法。 The method for suppressing corrosion of a carbon steel member of a plant according to claim 5, wherein at least one of formic acid and an oxidizing agent is injected into the reduction decontamination solution used for the chemical decontamination.
  7.  シュウ酸溶液にギ酸または酸化剤、またはその両者を注入する時期は還元剤の分解工程開始後である請求項6に記載のプラントの炭素鋼部材の腐食抑制方法。 The method for suppressing corrosion of carbon steel members of a plant according to claim 6, wherein the timing of injecting formic acid or the oxidizing agent or both into the oxalic acid solution is after the start of the decomposition step of the reducing agent.
  8.  前記ニッケル金属皮膜の前記形成が、蒸気発生装置に連絡される、前記炭素鋼部材である第1配管に、第2配管を通して前記皮膜形成液を供給して、この皮膜形成液を前記炭素鋼部材の前記表面である前記第1配管の内面に接触させることにより前記内面において行われ、
     前記貴金属の付着が、前記貴金属イオン及び前記還元剤を含む前記水溶液を、前記第2配管を通して前記第1配管に供給して、この水溶液を前記第1配管の前記内面に形成された前記ニッケル金属皮膜の前記表面に接触させることにより行われる請求項2に記載のプラントの炭素鋼部材の腐食抑制方法。
    The film-forming solution is supplied through a second pipe to a first pipe, which is the carbon steel member, in which the formation of the nickel metal film is communicated to a steam generating apparatus, and the film-forming liquid is used as the carbon steel member. The inner surface of the first pipe being in contact with the inner surface of the first pipe,
    The adhesion of the noble metal supplies the aqueous solution containing the noble metal ion and the reducing agent to the first pipe through the second pipe, and the aqueous solution is formed on the inner surface of the first pipe. The method of inhibiting corrosion of a carbon steel member of a plant according to claim 2, which is performed by contacting the surface of the film.
  9.  前記皮膜形成液を前記第1配管及び前記第2配管を含む閉ループ内で循環させ、前記貴金属イオン及び前記還元剤を含む前記水溶液を前記閉ループ内で循環させる請求項8に記載のプラントの炭素鋼部材の腐食抑制方法。 The carbon steel plant according to claim 8, wherein the film forming solution is circulated in a closed loop including the first pipe and the second pipe, and the aqueous solution containing the noble metal ion and the reducing agent is circulated in the closed loop. Corrosion control method for parts.
  10.  前記貴金属が付着した前記ニッケル金属皮膜への、130℃以上200℃未満の前記水の接触は、前記プラントが起動した後に行われる請求項8または9に記載のプラントの炭素鋼部材の腐食抑制方法。 The method for inhibiting corrosion of carbon steel member of plant according to claim 8 or 9, wherein the contact of the water at 130 ° C or more and less than 200 ° C with the nickel metal film to which the noble metal is attached is performed after the plant is started. .
  11.  前記プラントが原子力プラントであって前記蒸気発生装置が原子炉であり、130℃以上200℃未満の前記水が、前記原子炉内での加熱によって生成される炉水である請求項10に記載のプラントの炭素鋼部材の腐食抑制方法。 The plant according to claim 10, wherein the plant is a nuclear plant, and the steam generator is a nuclear reactor, and the water of 130 ° C. or more and less than 200 ° C. is reactor water generated by heating in the nuclear reactor. Corrosion control method of carbon steel member of plant.
  12.  130℃以上200℃未満の前記水が、前記蒸気発生装置に供給される給水であって前記プラントに設けられた、高圧給水加熱装置及び前記高圧給水加熱装置の前段に配置された低圧給水加熱装置のうち前記低圧給水加熱装置で加熱された前記給水である請求項10に記載のプラントの炭素鋼部材の腐食抑制方法。 The high-pressure feedwater heating apparatus and the low-pressure feedwater heating apparatus disposed at the front stage of the high-pressure feedwater heating apparatus, provided in the plant, are the feedwaters supplied to the steam generator and the water at 130 ° C or more and less than 200 ° C. The method for suppressing corrosion of a carbon steel member of a plant according to claim 10, wherein the feed water is heated by the low pressure feed water heating device.
  13.  前記第2配管を前記第1配管から取り外した後、第3配管の両端部を前記第1配管に接続して前記第1配管及び前記第3配管を含む閉ループを形成し、前記酸化剤を含む130℃以上200℃未満の前記水の前記第1配管への供給は、前記閉ループ内を循環する、前記酸化剤を含む前記水を、前記第3配管に設けられた加熱装置により130℃以上200℃未満の温度範囲に加熱して前記第3配管から前記第1配管に供給することによって行い、前記貴金属が付着した前記ニッケル金属皮膜のニッケルフェライト皮膜への変換は、前記第1配管の前記内面に形成された前記ニッケル金属皮膜に、前記第3配管から供給される、前記酸化剤を含む前記水を接触させることにより行われ、前記ニッケル金属皮膜が、前記貴金属が付着した前記ニッケルフェライト皮膜に変換された後、前記第3配管が前記第1配管から取り外される請求項8に記載のプラントの炭素鋼部材の腐食抑制方法。 After removing the second pipe from the first pipe, both ends of the third pipe are connected to the first pipe to form a closed loop including the first pipe and the third pipe, and the oxidizing agent is included. The supply of the water to the first pipe at 130 ° C. or more and less than 200 ° C. circulates the inside of the closed loop, and the water containing the oxidant is heated to 130 ° C. or more 200 by the heating device provided in the third pipe. C. by heating to a temperature range of less than .degree. C. and supplying the first pipe from the third pipe, and the conversion of the nickel metal film to the nickel ferrite film to which the noble metal is attached is the inner surface of the first pipe. The nickel metal film formed on the substrate is brought into contact with the water containing the oxidizing agent supplied from the third pipe, and the nickel metal film is the nickel metal film having the noble metal attached thereto. After being converted into Kel ferrite film, the third pipe corrosion inhibiting method for a carbon steel member of the plant of claim 8 which is detached from the first pipe.
  14.  前記貴金属イオン及び前記還元剤を含む前記水溶液に錯イオン形成剤を注入し、前記錯イオン形成剤を含む前記水溶液を、前記ニッケル金属皮膜の前記表面に接触させる請求項8ないし13のいずれか1項に記載のプラントの炭素鋼部材の腐食抑制方法。 14. A complex ion forming agent is injected into the aqueous solution containing the noble metal ion and the reducing agent, and the aqueous solution containing the complex ion forming agent is brought into contact with the surface of the nickel metal film. The corrosion control method of the carbon steel member of the plant as described in a term.
PCT/JP2018/037763 2017-12-20 2018-10-10 Corrosion suppression method for carbon steel members in plant WO2019123788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-243770 2017-12-20
JP2017243770A JP6868545B2 (en) 2017-12-20 2017-12-20 Corrosion control method for carbon steel parts of plants

Publications (1)

Publication Number Publication Date
WO2019123788A1 true WO2019123788A1 (en) 2019-06-27

Family

ID=66994639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037763 WO2019123788A1 (en) 2017-12-20 2018-10-10 Corrosion suppression method for carbon steel members in plant

Country Status (2)

Country Link
JP (1) JP6868545B2 (en)
WO (1) WO2019123788A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475171B2 (en) 2020-03-17 2024-04-26 日立Geニュークリア・エナジー株式会社 Chemical decontamination method and chemical decontamination apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032551A (en) * 2009-08-04 2011-02-17 Hitachi-Ge Nuclear Energy Ltd Method of inhibiting corrosion of carbon steel member
JP2015158486A (en) * 2014-01-27 2015-09-03 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to structural member of nuclear power plant
JP2018048831A (en) * 2016-09-20 2018-03-29 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to carbon steel member in nuclear power plant and method for suppressing adhesion of radionuclide to carbon steel member in nuclear power plant
JP2018054538A (en) * 2016-09-30 2018-04-05 日立Geニュークリア・エナジー株式会社 Method for depositing precious metal on carbon steel member in nuclear power plant and method for preventing attachment of radioactive nuclide to carbon steel member in nuclear power plant
JP2018165645A (en) * 2017-03-28 2018-10-25 日立Geニュークリア・エナジー株式会社 Deposition method of noble metal to carbon steel member of atomic power plant, and deposition suppression method of radioactive nuclei to carbon steel member of atomic plower plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032551A (en) * 2009-08-04 2011-02-17 Hitachi-Ge Nuclear Energy Ltd Method of inhibiting corrosion of carbon steel member
JP2015158486A (en) * 2014-01-27 2015-09-03 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to structural member of nuclear power plant
JP2018048831A (en) * 2016-09-20 2018-03-29 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to carbon steel member in nuclear power plant and method for suppressing adhesion of radionuclide to carbon steel member in nuclear power plant
JP2018054538A (en) * 2016-09-30 2018-04-05 日立Geニュークリア・エナジー株式会社 Method for depositing precious metal on carbon steel member in nuclear power plant and method for preventing attachment of radioactive nuclide to carbon steel member in nuclear power plant
JP2018165645A (en) * 2017-03-28 2018-10-25 日立Geニュークリア・エナジー株式会社 Deposition method of noble metal to carbon steel member of atomic power plant, and deposition suppression method of radioactive nuclei to carbon steel member of atomic plower plant

Also Published As

Publication number Publication date
JP6868545B2 (en) 2021-05-12
JP2019108600A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
EP3296999B1 (en) Adhesion method of noble metal to carbon steel material of atomic energy plant and adhesion restraint method of radionuclide to carbon steel material of atomic energy plant
JP6619717B2 (en) Method for adhering noble metals to carbon steel members of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel members of nuclear power plant
JP2012247322A (en) Method for forming platinum film on plant component
JP2016102727A (en) Method for preventing adhesion of radioactive nuclide to carbon steel member of nuclear power plant, and film formation device
JP6931622B2 (en) Method of attaching precious metals to carbon steel members of nuclear power plants and methods of suppressing adhesion of radionuclides to carbon steel members of nuclear power plants
JP6751044B2 (en) Method for depositing precious metal on carbon steel member of nuclear power plant, and method for suppressing deposition of radionuclide on carbon steel member of nuclear power plant
WO2019123788A1 (en) Corrosion suppression method for carbon steel members in plant
JP6552892B2 (en) Method for attaching noble metals to structural members of nuclear power plants
JP7344132B2 (en) Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
JP5377147B2 (en) Method of forming nickel ferrite film on carbon steel member
JP6523973B2 (en) Method for suppressing adhesion of radionuclides, and film forming apparatus for carbon steel piping
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JP2009210307A (en) Adhesion suppression method of radioactive nuclide on nuclear power plant constituting member, and ferrite film forming device
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
JP7001534B2 (en) Method of suppressing adhesion of radionuclides to structural members of nuclear power plants
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP7142587B2 (en) Method for depositing precious metals on carbon steel member of nuclear power plant and method for suppressing deposition of radionuclides on carbon steel member of nuclear power plant
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
JP7104616B2 (en) Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants
JP2019157215A (en) Corrosion prevention method of carbon steel member of plant
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP2019164059A (en) Method for suppressing radioactive nuclide deposition on carbon steel member of nuclear power plant
JP2020148574A (en) Method for forming nickel metallic coating onto carbon steel member of nuclear power plant, and method for suppressing adhesion of radionuclide onto carbon steel member of nuclear power plant
JP2020160030A (en) Method for suppressing dose of nuclear power plant constitution member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892479

Country of ref document: EP

Kind code of ref document: A1