WO2019123558A1 - Self-position estimation system - Google Patents

Self-position estimation system Download PDF

Info

Publication number
WO2019123558A1
WO2019123558A1 PCT/JP2017/045664 JP2017045664W WO2019123558A1 WO 2019123558 A1 WO2019123558 A1 WO 2019123558A1 JP 2017045664 W JP2017045664 W JP 2017045664W WO 2019123558 A1 WO2019123558 A1 WO 2019123558A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
dop
position estimation
predetermined value
satellites
Prior art date
Application number
PCT/JP2017/045664
Other languages
French (fr)
Japanese (ja)
Inventor
尚子 高田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2017/045664 priority Critical patent/WO2019123558A1/en
Publication of WO2019123558A1 publication Critical patent/WO2019123558A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection

Definitions

  • the present invention relates to a self-position estimation system that performs self-position estimation with higher accuracy by using a plurality of self-position estimation results based on the output of a self-position measurement sensor in combination.
  • second positioning means for positioning the position of the moving body using the positioning result of the position of the moving body in the past and the velocity information of the moving body, and the positioning result of the first or second positioning means in the past It comprises: third positioning means for positioning the position of a mobile using the obtained variable solution; and control means 60 for selecting positioning means for executing positioning processing among the positioning means, the control means selecting If the reliability of the positioning result of the determined positioning means is lower than a predetermined reference value, another positioning means is selected to execute the positioning process.
  • Reliability of the external sensor and the variance of the sensor output Calculated from, in the case the reliability of the positioning results of a sensor is lower than a predetermined reference value techniques for switching to a different sensor is disclosed.
  • the self-position estimation system of the present invention estimates self-position with reference to the outputs of a plurality of external sensors, and an error index value serving as an index of measurement error of each external sensor Using the above weights for the error index value calculation unit to be estimated, the weight setting unit for setting the weight of each external sensor based on each error index value, and the self position estimated based on the output of each external sensor And a self-position estimation control unit for taking a weighted average and estimating a final self-position.
  • the present invention is intended to estimate a self position by referring to radio waves of a plurality of GPS satellites, and select a GPS receiver which receives the radio waves of the GPS satellites and a GPS satellite whose CN ratio of radio waves is a predetermined value or more.
  • a GPS satellite comprising: selection means, and a self position estimation unit for estimating a self position based on radio waves of a plurality of selected GPS satellites, and used for self position estimation according to a combination of outputs of the satellite selection means The combination of
  • FIG. 1 is a functional block diagram of a self-position estimation system according to a first embodiment.
  • 7 shows an example of an external sensor arrangement of an autonomous vehicle equipped with the self-position estimation apparatus of the first embodiment.
  • FIG. 7 is a diagram for explaining the correlation of PN codes observed from radio waves of a satellite A. The figure explaining the correlation of the PN code observed from the electric wave of satellite B.
  • FIG. FIG. 7 is a functional block diagram of a self-position estimation system according to a second embodiment. List of satellite selection logic corresponding to the reception status of the GPS receiver.
  • the flowchart of the satellite selection method of mode 1.
  • the flowchart of the satellite selection method of mode 4. Flow chart of satellite selection method of mode 5.
  • the ⁇ R setting logic list corresponding to the reception status of the GPS receiver.
  • the figure which illustrates the possible range of ⁇ R 1 ′ to ⁇ R 5 ′. diagram for explaining a method of setting the value of sigma] R 1 '.
  • the details of the self-position estimation system 100 according to the first embodiment, which estimates the self-position of a mobile unit 200 such as an autonomous vehicle, will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a functional block diagram of the self-position estimation system 100.
  • the self-position estimation system 100 includes a self-position estimation unit 12 and an error index value in addition to an external sensor 11 (for example, a GPS sensor, a camera, a rider, a laser, a wheel speed sensor) that measures the self position.
  • the calculation unit 13, the weight setting unit 14, the self-position estimation generalization unit 15, and the control device 16 are included.
  • the configuration using n external sensors 11 (11a to 11n) and the corresponding self position estimation units 12 (12a to 12n) is exemplified, but the type and number of external sensors may be changed as necessary. And you should choose appropriately.
  • each function expressed by the self position estimation unit 12, the error index value calculation unit 13, the weight setting unit 14, and the self position estimation generalization unit 15 is an auxiliary storage such as a hard disk provided in the self position estimation system 100.
  • This is realized by loading a program recorded in the device into a main storage device such as a semiconductor memory and executing it by an arithmetic device such as a CPU. In the following, such a known operation is appropriately omitted. While explaining.
  • a method of processing the output of the external sensor 11 in the self-position estimation system 100 will be described using an example in which the first external sensor 11a is a GPS sensor.
  • the first self-position estimating unit 12a estimates the self-position estimation value r 1 based on the GPS information. .
  • this estimated self-position value r 1 contains an error ⁇ 1 and deviates from the true self-position r 0, since the error ⁇ 1 is unknown, the first self-position estimation unit 12 a is true The self position r 0 can not be determined.
  • the first error index value calculator 13a when the GPS information which is the output of the first external sensor 11a is input to the first error index value calculator 13a, the first error index value calculator 13a generates the first external sensor based on the GPS information. An error index value that is an index of the magnitude of the error ⁇ 1 of 11 a is calculated.
  • another external sensor the second external sensor 11b in the example of FIG. 1 You may refer to the output of
  • the first weight setting unit 14a calculates the weight w 1 (reference strength) of the reliability of the first external sensor 11a based on the error index value calculated by the first error index value calculation unit 13a. Output.
  • self position estimate values r 2 to r n and weights w 2 to w n are obtained also for the second external sensor 11 b to the n-th external sensor 11 n.
  • the self position estimation generalization unit 15 estimates a final self position estimated value r ⁇ more emphasizing the large self position estimated value r with a large weight w, using a plurality of self position estimated values r and weights w. , To the control device 16 of the mobile unit 200.
  • the estimated r ⁇ in order to approximate the true self position r 0, by using this r ⁇ , the control device 16, it is possible to more stably control the moving object 200.
  • the mobile unit 200 is provided with a GPS receiver 21, a camera 22, a rider 23 and a wheel speed / steering angle sensor 24 as an external sensor 11 which measures its own position.
  • the rainfall sensor 25 which acquires rainfall as external information is also provided.
  • the self-position estimation unit 12 of the GPS sensor 21 receives radio waves from a plurality of GPS satellites (hereinafter referred to as "satellites") flying overhead, calculates the distance to each satellite, and estimates the self-position.
  • the self-position estimation unit 12 of the camera 22 captures an image of the surroundings, compares features (such as a signboard) in the image with a map, and estimates the self-position.
  • the self-position estimation unit 12 of the lidar 23 obtains the three-dimensional object shape of the periphery, compares the feature of the shape with the map as in the camera, and estimates the self-position.
  • the self-position estimation unit 12 of the wheel speed and steering angle sensor 24 obtains the rotational speed and direction of each wheel, integrates the distance and direction of travel of the moving body, and estimates the self position.
  • the error index value calculation unit 13 of the GPS sensor 21 calculates an error index value from the height, distance, and density of the surrounding obstacle. For example, it is estimated that the error in the self-position estimation by the GPS receiver 21 is larger as the number of obstacles at the position where the elevation angle is high as viewed from the GPS receiver 21 is larger.
  • the error index value calculation unit 13 of the camera 22 calculates an error index value from the degree of coincidence with the map. For example, it is estimated that the error in self-position estimation by the camera 22 is larger as the degree of coincidence between the landmark registered in the map, the type of the observed landmark, and the position is lower.
  • the error index value calculation unit 13 of the lidar 23 estimates that the lower the degree of coincidence of the observation result with the landmark on the map, the larger the error in self-position estimation by the lidar.
  • the error index value calculation unit 13 of the wheel speed and steering angle sensor 24 estimates that the error in self position estimation by the wheel speed and steering angle sensor is larger as the deviation of the observation result of each wheel is larger.
  • the weight setting unit corresponding to each external sensor assigns a weight w proportional to the reciprocal of each error index value to the self position estimation value r.
  • the self-position estimation generalization unit 15 calculates a weighted average using a plurality of self-position estimate values r and weights w to estimate a final self-position estimate value r ⁇ . This makes it possible to minimize the error of the self-position estimation result for the following reasons.
  • an error ⁇ i is generally included in the self-position estimation value r i based on the output of the i-th external sensor 11 i , and the following equation is established with the true self-position r 0 .
  • the minimum value of can be expressed by the following formula from the formula of additive geometric mean.
  • the stability of autonomous control can be improved by controlling the mobile unit 200 using the final self-position estimation value r ⁇ obtained by the self-position estimation generalization unit 15 of this embodiment.
  • the error index value of the GPS receiver 21 As a method of calculating the error index value of the GPS receiver 21, a simple method has been exemplified in which the error is estimated to increase as the number of obstacles increases at a position where the elevation angle is high as viewed from the GPS receiver 21.
  • a method of using the CN ratio indicating the magnitude of a signal (carrier) with respect to noise and the PN code information to be collated to estimate the distance to the satellite is used to calculate the error index value of the GPS receiver 21. explain.
  • the geometrical arrangement of each satellite can be evaluated by calculating and referring to the positional accuracy deterioration degree DOP (Dilution of Precision).
  • the DOP is an index calculated from the arrangement of each satellite, and indicates that the smaller the DOP is, the higher the self-position estimation accuracy is.
  • the distance estimation accuracy with each satellite can be evaluated based on the influence of the surrounding environment on radio waves.
  • the influence of the surrounding environment on the quality of the radio wave received by the GPS receiver 21 will be described with reference to FIGS.
  • FIG. 3 is a schematic view in which radio wave paths from satellites to the GPS receiver 21 when the GPS receiver 21 is located in a valley of a building are classified into four modes.
  • the radio wave path from satellite A is composed of only direct waves (solid line)
  • the radio wave path from satellite B is composed of multipaths of direct waves (solid line) and reflected waves (broken line)
  • the radio wave path from is constituted only by the reflected wave (broken line)
  • the radio wave path from the satellite D is constituted only by the diffracted wave (broken line).
  • These four satellites are representative examples of each aspect of the radio wave path, and in fact, the GPS receiver 21 also receives radio waves from many satellites other than the four satellites.
  • the radio wave from the satellite C which is a reflected wave and the radio wave from the satellite D which is a diffracted wave have a reduced CN ratio as a result of reflection and diffraction.
  • a lower limit value of CN ratio is provided, and by selecting only radio waves of quality exceeding this lower limit, satellites of low quality radio waves such as reflected waves and diffracted waves Can be excluded.
  • the satellite B to which both the direct wave and the reflected wave reach does not necessarily have a low CN ratio, and the radio wave quality can not be judged only by the CN ratio. Therefore, the quality of the radio wave is judged based on the correlation profile of the PN code.
  • FIG. 4A is a diagram for explaining the PN code correlation ⁇ (t) of the radio wave from the satellite A.
  • the vertical axis is the PN code correlation ⁇ (t), and the horizontal axis is the time t.
  • the correlation profile of the PN code has only one correlation peak (single peak).
  • single peaks are also observed in the case where only reflected waves or diffracted waves reach.
  • the satellite B in which a multipath occurs in which a reflected wave is also received in addition to the direct wave, as shown in FIG.
  • a correlation peak of the reflected wave is observed after a predetermined time has elapsed from the correlation peak of the direct wave Peak). Therefore, by checking whether the correlation profile of the PN code is unimodal or multimodal, it is possible to exclude satellites in which multipath is generated.
  • the GPS receiver 21 can extract satellites (satellite A) with high radio wave quality by selecting a signal with a sufficiently high CN ratio and a single peak of the delay profile of the PN signal. Then, by calculating DOPs of a plurality of satellites selected by this method, it is possible to estimate the self-position estimation accuracy by the GPS receiver 21.
  • FIG. 5 shows a process of selecting a satellite to be used by the GPS receiver 21 based on the CN ratio of radio waves of each satellite and information of PN code, etc., and calculating the self position estimated value r and the error index value from the radio waves of selected satellites. Is shown. Note that the processing of S51 to S57 is actually processing performed by any of the GPS receiver 21, the self position estimation unit 12, and the error index value calculation unit 13. However, for convenience of explanation, the GPS receiver 21 is used. It is displayed out of etc.
  • the GPS receiver 21 receives a radio wave of a satellite
  • the PN code correlation ((t) is acquired from the radio wave (S51). If the acquired PN code correlation ((t) is a single peak as shown in FIG. 4A, the satellite is selected as an available satellite (S52). On the other hand, if there are multiple peaks as shown in FIG. 4B, the satellite is not selected.
  • the CN ratio is acquired from the radio wave received by the GPS receiver 21 (S53). If the acquired CN ratio is equal to or greater than a predetermined value, the satellite is selected as an available satellite (S54). On the other hand, if it is less than the predetermined value, the satellite is not selected.
  • the position information of the satellite is acquired from the radio wave received by the GPS receiver 21 (S55). Also, based on the azimuth and elevation angle of the satellite relative to the vehicle identified from the position information of the satellite, the position of the surrounding obstacle is specified from the output of the camera 22, radar 23a, laser 23b, sonar 23c etc. Estimate the presence or absence of an obstacle or the blocking rate between Then, satellites not shielded by surrounding obstacles (hereinafter referred to as "visible satellites") or satellites having a shielding rate equal to or less than a predetermined value are selected as available satellites (S56). On the other hand, satellites shielded by surrounding obstacles are not selected.
  • the self-position estimation unit 12 can realize highly accurate self-position estimation by using only the information of the satellite selected in this way. Furthermore, after DOP is calculated based on the positional relationship of the plurality of selected satellites (S57), the error index value calculation unit 13 obtains the product of the DOP and the error index .sigma.R, and calculates the product by the GPS receiver 21 It is an error index value for position estimation. Note that ⁇ R is an error index that can be calculated from the PN code correlation ((t), and indicates an error in the distance to each satellite, which will be described later in detail.
  • the CN ratio is a predetermined value or more, and are not shielded by an obstacle for self-position estimation by the GPS system.
  • the number of satellites satisfying all these conditions is less than 4, and there is a period in which satellites with inferior radio wave quality can not but be used. Therefore, in the following, a self-position estimation method in the case of using a satellite with inferior radio wave quality will be described.
  • FIG. 6 is a list of the radio wave reception status of the GPS receiver and the correspondence of the satellite selection logic.
  • the satellite selection logic in the case where both PN code correlation and CN ratio can be referred to It indicates that "satellites are added until DOP falls below a predetermined value in descending order of CN ratio".
  • FIGS. 7 to 12 Note that which mode to use is successively changed according to the reception status of radio waves, and mode 1 is used at normal times, but any of mode 2 to mode 6 is appropriate according to radio wave conditions. Things are temporarily available.
  • FIG. 7 is a flowchart of a mode 1 satellite selection method that can be employed when PN code correlation and CN ratio can be referenced. The details of the process of this flowchart will be described below.
  • satellites transmitting high-quality radio waves are extracted from satellites in which the GPS receiver 21 receives radio waves (S1). Specifically, all satellites having a CN ratio equal to or greater than a predetermined value and having a PN code correlation ⁇ (t) of unimodality are extracted.
  • f which is the reciprocal of the error index value
  • the DOP of the satellite combination corresponding to this f is less than or equal to a predetermined value (S5). If it is less than or equal to the predetermined value, the self-position estimation accuracy only with the GPS signal from the currently selected satellite Is predicted to be sufficient, so that satellite combination and f are output (S6).
  • the predetermined value used in S5 (and S9 described later) is set by the user according to the accuracy required for self-position estimation, and a smaller value may be set if high accuracy is required.
  • the CN ratio is the next highest.
  • One satellite is selected, and .sigma.R and DOP in the satellite combination to which this satellite is added are calculated (S7).
  • f ′ is calculated using the new ⁇ R and DOP (S8), and it is checked whether the new DOP is less than or equal to a predetermined value (S9). If the new DOP is less than the specified value, it can be determined that DOP has improved, but f 'may be worse due to the addition of satellites, so check whether f' is greater than f ( S10).
  • FIG. 8 is a flowchart of a mode 2 satellite selection method that can be employed when PN code correlation can be referred to and the blocking rate of the satellite due to an obstacle can be estimated. In the following, the processing unique to mode 2 will be described, omitting the points common to mode 1.
  • S1a In mode 2, the processes of S1a, S3a, and S7a shown in FIG. That is, in S1a, all satellites in which the PN code correlation ⁇ (t) is unimodal and the blocking ratio is equal to or less than a predetermined value are extracted. In S3a, four satellites with the lowest shielding rate are selected, and ⁇ R and DOP are calculated based on these GPS signals. In S7a, when DOP is larger than a predetermined value, the satellite with the next lowest shielding ratio is added to calculate ⁇ R and DOP.
  • FIG. 9 is a flow chart of a mode 3 satellite selection method that can be employed when only PN code correlation can be referenced. In the following, details of processing specific to mode 3 will be described, omitting points common to mode 1.
  • the processes of S1 b, S3 b, and S7 b are different from those in mode 1. That is, in S1b, all satellites whose PN code correlation ⁇ (t) is unimodal and whose elevation angle is a predetermined value or more are extracted. In S3b, four satellites with the highest elevation angle are selected, and ⁇ R and DOP are calculated based on these GPS signals. In S7b, when DOP is larger than a predetermined value, the satellite with the next highest elevation angle is added to calculate ⁇ R and DOP.
  • FIG. 10 is a flowchart of a mode 4 satellite selection method that can be employed when only CN ratio can be referenced. In the following, details of the processing specific to mode 4 will be described, omitting points common to mode 1.
  • the process of S1c is different from that of mode 1. That is, in S1c, all satellites whose CN ratio is equal to or more than a predetermined value are extracted (S1c).
  • FIG. 11 is a flowchart of a satellite selection method of mode 5 that can be adopted when only the blocking rate of the satellite due to an obstacle can be estimated. In the following, details of processing specific to mode 5 will be described, omitting points common to mode 1.
  • the processes of S1 d, S3 a, and S7 a are different from those of mode 1. That is, in S1d, all satellites whose shielding ratio is less than or equal to a predetermined value are extracted. In S3a, four satellites with the lowest shielding rate are selected, and ⁇ R and DOP are calculated based on these GPS signals. In S7a, when DOP is larger than a predetermined value, the satellite with the next lowest shielding ratio is added to calculate ⁇ R and DOP.
  • FIG. 12 is a flowchart of a satellite selection method of mode 6 that can be adopted even when the PN code correlation and the CN ratio can not be referred to and the shielding factor of the satellite can not be estimated either.
  • details of processing specific to mode 6 will be described, omitting points common to mode 1.
  • the processes of S1 e, S3 b, and S7 b are different from those of mode 1. That is, in S1e, all satellites whose elevation angle is equal to or more than a predetermined value are extracted. In S3b, four satellites with the highest elevation angle are selected, and ⁇ R and DOP are calculated based on these GPS signals. In S7b, when DOP is larger than a predetermined value, the satellite with the next highest elevation angle is added to calculate ⁇ R and DOP.
  • FIG. 13 is a list of the reception status of the GPS receiver and the correspondence of the ⁇ R setting logic.
  • the row of mode A can refer to the PN code correlation and the CN ratio
  • the number of selected satellites 7 shows an outline of the policy of calculating ⁇ R when 4 is 4 (Yes in S5 of FIG. 7 for explaining mode 1).
  • FIG. 14 is a diagram outlining the magnitude relationship of ⁇ R 1 to ⁇ R 6 preset for mode A to mode K, in which the error is larger as it goes upward, and the error is smaller as it goes downward. It shows. That is, in the same figure, it is shown that ⁇ R 1 corresponding to mode A and mode B is the best, and ⁇ R 6 ()) corresponding to mode K is the worst.
  • ⁇ R n ′ is a value after the initial ⁇ R n is degraded due to the influence of the surrounding environment etc.
  • ⁇ R 1 ′ to ⁇ R 5 ′ in FIG. 14 indicate that ⁇ can be achieved due to the degradation of the environment.
  • Mode A is adopted in which the predetermined ⁇ R 1 is made ⁇ R as it is.
  • ⁇ Mode B> If PN code correlation and CN ratio can be referred to but DOP less than the specified value can not be calculated with only 4 satellites with the best CN ratio (if it is necessary to select 5 or more satellites) (No at S5 in Figure 7) ), to indicate that it is also used bad satellite relatively radio wave quality, employing a mode B to sigma] R of sigma] R 1 'subordinated to the default sigma] R 1. In this mode B, ⁇ R 1 ′ is calculated using FIG. 15A or FIG. 15B.
  • the vertical axis in FIG. 15A is ⁇ R, and the horizontal axis is the CN ratio average value.
  • ⁇ R 1 ′ approximates to the predetermined ⁇ R 1
  • the smaller the CN ratio average value the larger the ⁇ R 1 ′, and the CN ratio average value becomes a predetermined shielding occurrence.
  • the index value a numerical value used to determine whether the satellite is behind an obstacle, for example, 30 dB
  • ⁇ R 1 ′ indicates ⁇ .
  • FIG. 15B also corresponds to mode B, and the vertical axis represents ⁇ R and the horizontal axis represents ⁇ .
  • is expressed by equation 6.
  • ⁇ R 1 ′ can be calculated by using the relationship of FIG. 15A or FIG. 15B.
  • ⁇ Mode C> If PN code correlation can be referred to and DOP less than the predetermined value can be calculated only with the four satellites with the best shielding ratio (Yes in S5 in FIG. 8), only satellites with good radio quality can be used. A mode C is adopted in which a predetermined ⁇ R 2 proportional to the density of objects is taken as ⁇ R as it is.
  • ⁇ Mode D> If PN code correlation can be referred to but DOP less than the predetermined value can not be calculated with only the four satellites with the best shielding ratio (if it is necessary to select five or more satellites) (No at S5 in FIG.
  • ⁇ R 2 ′ is calculated using FIG. 16A or 16B. 16A is used when all the selected satellites are unimodal, and FIG. 16B is used when the selected satellites include multi-modal ones.
  • FIGS. 16A and 16B the vertical axis is ⁇ R, and the horizontal axis is (the number of correlation peaks / the number of satellites included in all the satellites).
  • FIG. 16A shows that the number of correlation peaks and ⁇ R 2 ′ are proportional when using only unimodal satellites.
  • FIG. 16B shows that when multi-peak satellites are used, ⁇ R 2 ′ rises sharply as the number of correlation peaks increases.
  • ⁇ R 2 ′ can be calculated by using the relationship of FIG. 16A or 16B.
  • ⁇ Mode E> If the CN ratio can be referred to and the DOP less than the predetermined value can be calculated only with the four satellites with the best CN ratio (Yes in S5 of FIG. 10), only the satellites with good radio quality can be used. 2 to a sigma] R 3 multiplied by (the height of the obstacle) / (distance to the obstacle) as it adopts the mode E to sigma] R. In the environment where reflection easily occurs, this ⁇ R 3 is estimated to have a larger error risk than ⁇ R 2 .
  • ⁇ Mode F> If the CN ratio can be referred to but the DOP less than the specified value can not be calculated with only the four satellites with the best CN ratio (if it is necessary to select more than five satellites) (No at S5 in FIG. 10), relative to indicate that it is also used bad satellite radio wave quality, adopts a mode F to sigma] R of sigma] R 3 'subordinated to the default sigma] R 3. In this mode F, ⁇ R 3 ′ is calculated using any of FIGS. 17A to 17C.
  • FIGS. 17A and 17B the vertical axis is ⁇ R, and the horizontal axis is the CN ratio average value.
  • Figure 17A if the CN ratio average value is large enough sigma] R 3 'is similar to sigma] R 3, sigma] R 3 if falls below a predetermined CN ratio good index' indicates a situation where a ⁇ .
  • FIG. 17B if the CN ratio average value is sufficiently large, ⁇ R 3 ′ approximates to ⁇ R 3 and ⁇ R 3 ′ gradually decreases between the predetermined CN ratio good index value and the shielding occurrence index value, and the predetermined shielding occurrence occurs. Below the index value, it is shown that ⁇ R 3 ′ becomes ⁇ .
  • the vertical axis is ⁇ R
  • the horizontal axis is ⁇ . Since ⁇ is the one described in equation 6, even in mode F, when the number of satellites hidden by an obstacle increases or when the average CN ratio of radio waves from satellites behind an obstacle deteriorates In this case, it is understood that ⁇ increases and ⁇ R 3 ′ also increases.
  • ⁇ R 3 ′ can be calculated by using any one of the relationships in FIGS. 17A to 17C.
  • ⁇ Mode G> When the PN code correlation and the CN ratio are not referable, and the number of selected satellites is four, and the shielding ratio of those satellites can be estimated, mode G is adopted in which a predetermined ⁇ R 4 is used as it is as ⁇ R. Note that ⁇ R 4 is set to a value larger than the above-mentioned ⁇ R 3 .
  • ⁇ Mode H> If the PN code correlation and CN ratio can not be referred to and the number of selected satellites is 5 or more, and the shielding ratio of those satellites can be estimated, it indicates that satellites with relatively poor radio quality are also used.
  • mode H is adopted in which ⁇ R 4 ′, which is subordinate to the predetermined ⁇ R 4 , is ⁇ R.
  • ⁇ R 4 ′ proportional to the number of potentially occluded satellites is calculated using FIG.
  • mode I is adopted in which a predetermined ⁇ R 5 is used as it is as ⁇ R. Note that ⁇ R 5 is set to a value larger than the above-mentioned ⁇ R 4 .
  • ⁇ Mode J> If the PN code correlation and CN ratio can not be referred to, and the number of selected satellites is 5 or more, and the shielding ratio of those satellites can not be estimated, it indicates that satellites with relatively poor radio quality are also used, A mode J is adopted in which ⁇ R is a ⁇ R 5 ′ that is subordinate to the default ⁇ R 5 . In this mode J, ⁇ R 5 ′ proportional to the number of potentially occluded satellites is calculated using FIG. ⁇ Mode K> Since the satellite radio wave can not be received during the cold start or warm start preparation time, mode K is adopted in which ⁇ R 6 substantially meaning ⁇ is used as it is as the error index ⁇ R.
  • ⁇ Self-position estimation method of this embodiment The error index value calculation unit 13 multiplies ⁇ R calculated in any of the above-mentioned modes A to K by the value of DOP calculated from the positional relationship of a plurality of satellites selected at that time, and the reciprocal thereof is calculated By calculating, the error index value f of self-position estimation by the GPS receiver 21 is calculated. Then, by using this error index value in the flowcharts of mode 1 to mode 6, the best satellite combination under each environment can be determined.
  • the estimation result of the error index value may be stored in the map together with the date and time information and may be used as reference information at the time of route selection in the next and subsequent traveling. By providing date and time information, the arrangement of all satellites at that time can be estimated from the satellite operation information.
  • the self-position estimation unit 12 calculates the self position estimation value r based on the radio waves from the satellites of the combination, and the self position estimation generalization unit 15 calculates the self position estimation value r and the error index value ⁇ R ⁇ DOP. Use to estimate the final self position estimate r ⁇ . That is, according to this embodiment, stable self-position estimation corresponding to environmental change of the GPS system can be easily continued.
  • the self-position estimation system of this embodiment is intended to be interlocked with a car navigation system provided in the mobile unit 200.
  • the target point arrival time is predicted from the current time and the average moving speed of the moving object 200
  • the satellite arrangement from the point of time to the predicted time is acquired, and based on the map held by the car navigation system, the number of satellites with high C / N ratio and PN signal delay profile with unimodality in each route. It estimates, C / N ratio is high, and the delay profile of PN signal starts autonomous movement so as to select a route with many satellites having unimodality, and provides guidance to the passenger.
  • route which can use an electromagnetic wave with a more favorable quality can be selected easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

The objective of the present invention is to provide a self-position estimation system for carrying out stable self-position estimation even under conditions in which the environment around external-environment sensors changes rapidly. To achieve this objective, this self-position estimation system for estimating its own position by referring to the output of a plurality of external-environment sensors is provided with: an error index value calculation unit for estimating error index values serving as indexes for the measurement errors of the external-environment sensors, a weight setting unit for setting weights for the external-environment sensors on the basis of the error index values, and a self-position estimation integration unit for estimating a final self-position by using the weights to obtain a weighted average of self-positions estimated on the basis of the output of the external-environment sensors.

Description

自己位置推定システムSelf-position estimation system
 本発明は、自己位置測定センサの出力に基づく自己位置推定結果を複数組合せて利用することで、より高精度な自己位置推定を行う自己位置推定システムに関するものである。 The present invention relates to a self-position estimation system that performs self-position estimation with higher accuracy by using a plurality of self-position estimation results based on the output of a self-position measurement sensor in combination.
 機械学習の発展と制御機器の処理能力の向上や、ビッグデータの利用範囲の拡大に伴い、これらを適用した自動運転車や自律移動ロボットへの期待が高まっている。自動運転車や自律移動ロボットが人の手を離れて安全に自律移動するには、安定した自己位置推定が不可欠である。特に、自動運転車では高い安全性が求められるため、複数種類の自己位置測定センサ(以下、単に「外界センサ」と称する)を搭載し、外界認識性能を高めて自己位置推定精度を向上させているが、各外界センサにはそれぞれ精度が落ちてしまう環境が存在するため、自己位置推定精度を安定させるには、複数の外界センサを環境に応じて適切に組合せて使用する必要がある。 With the development of machine learning, improvement of processing capability of control devices, and expansion of usage range of big data, expectations for autonomous vehicles and autonomous mobile robots to which these are applied are increasing. Stable self-positioning is essential for autonomous vehicles and autonomous mobile robots to move safely away from their hands. In particular, since high safety is required in an autonomous vehicle, a plurality of self-position measuring sensors (hereinafter simply referred to as "external sensors") are mounted to enhance external recognition performance and improve self-position estimation accuracy. However, since each external sensor has an environment in which the accuracy is lowered, it is necessary to use a plurality of external sensors appropriately combined according to the environment in order to stabilize the self-position estimation accuracy.
 例えば、特許文献1の要約書や図4には、「本発明による移動体位置測位装置は、衛星からの信号の観測データに基づいて瞬時測位方法により移動体の位置を測位する第1測位手段と、過去の移動体の位置の測位結果と、移動体の速度情報とを用いて、移動体の位置を測位する第2測位手段と、過去の前記第1又は第2測位手段の測位結果から得られる変数解を用いて、移動体の位置を測位する第3測位手段と、前記各測位手段のうち測位処理を実行する測位手段を選択する制御手段60とを備え、前記制御手段は、選択した測位手段の測位結果の信頼性が所定基準値より低い場合に、別の測位手段を選択して測位処理を実行させることを特徴とする。」との記載があり、位置推定に使用している外界センサの信頼度をセンサ出力の分散などから算出し、あるセンサの測位結果の信頼性が所定基準値より低い場合に、別のセンサに切り替える技術が開示されている。 For example, in the abstract of Patent Document 1 and FIG. 4, “the first positioning means for positioning the position of the mobile by the instantaneous positioning method based on the observation data of the signal from the satellite according to the present invention And second positioning means for positioning the position of the moving body using the positioning result of the position of the moving body in the past and the velocity information of the moving body, and the positioning result of the first or second positioning means in the past It comprises: third positioning means for positioning the position of a mobile using the obtained variable solution; and control means 60 for selecting positioning means for executing positioning processing among the positioning means, the control means selecting If the reliability of the positioning result of the determined positioning means is lower than a predetermined reference value, another positioning means is selected to execute the positioning process. " Reliability of the external sensor and the variance of the sensor output Calculated from, in the case the reliability of the positioning results of a sensor is lower than a predetermined reference value, techniques for switching to a different sensor is disclosed.
特開2008-128793号公報JP 2008-128793 A
 しかし、従来の技術では、センサの分散を基に使用センサを切り替えるため、周囲環境が短時間で変化した場合などには、リアルタイムのセンサ精度の変化に追従できない虞があり、自己位置推定が不安定になりかねない。 However, in the prior art, since the sensor used is switched based on the dispersion of the sensor, if the surrounding environment changes in a short time, etc., there is a possibility that the change in sensor accuracy in real time may not be followed. It may be stable.
 そこで、本発明では、外界センサの周囲環境が急変するような状況であっても、安定した自己位置推定を行う自己位置推定システムを提供することを目的とする。 Therefore, it is an object of the present invention to provide a self-position estimation system that performs stable self-position estimation even in a situation where the surrounding environment of an external sensor suddenly changes.
 この課題を解決するため、本発明の自己位置推定システムは、複数の外界センサの出力を参照して自己位置を推定するものであって、各外界センサの測定誤差の指標となる誤差指標値を各々推定する誤差指標値算出部と、各誤差指標値に基づいて、各外界センサの重みを設定する重み設定部と、各外界センサの出力に基づいて推定した自己位置に対し前記重みを用いて加重平均をとり最終的な自己位置を推定する自己位置推定統括部と、を具備するものとした。 In order to solve this problem, the self-position estimation system of the present invention estimates self-position with reference to the outputs of a plurality of external sensors, and an error index value serving as an index of measurement error of each external sensor Using the above weights for the error index value calculation unit to be estimated, the weight setting unit for setting the weight of each external sensor based on each error index value, and the self position estimated based on the output of each external sensor And a self-position estimation control unit for taking a weighted average and estimating a final self-position.
 また、複数のGPS衛星の電波を参照して自己位置を推定するものであって、前記GPS衛星の電波を受信するGPS受信機と、電波のCN比が所定値以上であるGPS衛星を選択する第一の衛星選択手段と、電波のPN符号相関が単峰性である衛星を選択する第二の衛星選択手段と、周囲障害物による遮蔽率が所定値以上の衛星を選択する第三の衛星選択手段と、選択された複数のGPS衛星の電波に基づいて自己位置を推定する自己位置推定部と、を具備し、前記衛星選択手段の出力の組合せに応じて、自己位置推定に用いるGPS衛星の組合せを異ならせるものとした。 Further, the present invention is intended to estimate a self position by referring to radio waves of a plurality of GPS satellites, and select a GPS receiver which receives the radio waves of the GPS satellites and a GPS satellite whose CN ratio of radio waves is a predetermined value or more. The first satellite selection means, the second satellite selection means for selecting satellites whose PN code correlation of radio waves is unimodal, and the third satellite for selecting satellites having a shielding rate by a surrounding obstacle of a predetermined value or more A GPS satellite comprising: selection means, and a self position estimation unit for estimating a self position based on radio waves of a plurality of selected GPS satellites, and used for self position estimation according to a combination of outputs of the satellite selection means The combination of
 本発明によれば、周囲環境が短時間で変化するような状況であっても、安定した自己位置推定を行う自己位置推定システムを提供することができる。 According to the present invention, it is possible to provide a self-position estimation system that performs stable self-position estimation even in a situation where the surrounding environment changes in a short time.
実施例1の自己位置推定システムの機能ブロック図。FIG. 1 is a functional block diagram of a self-position estimation system according to a first embodiment. 実施例1の自己位置推定装置を搭載した自動運転車の外界センサ配置の一例。7 shows an example of an external sensor arrangement of an autonomous vehicle equipped with the self-position estimation apparatus of the first embodiment. GPS衛星からGPS受信機までの電波経路の模式図。The schematic diagram of the electromagnetic wave path from a GPS Satellite to a GPS receiver. 衛星Aの電波から観測されるPN符号の相関を説明する図。FIG. 7 is a diagram for explaining the correlation of PN codes observed from radio waves of a satellite A. 衛星Bの電波から観測されるPN符号の相関を説明する図。The figure explaining the correlation of the PN code observed from the electric wave of satellite B. FIG. 実施例2の自己位置推定システムの機能ブロック図。FIG. 7 is a functional block diagram of a self-position estimation system according to a second embodiment. GPS受信機の受信状態に対応する衛星選択ロジックの一覧表。List of satellite selection logic corresponding to the reception status of the GPS receiver. モード1の衛星選択方法のフローチャート。The flowchart of the satellite selection method of mode 1. モード2の衛星選択方法のフローチャート。The flowchart of the satellite selection method of mode 2. モード3の衛星選択方法のフローチャート。The flowchart of the satellite selection method of mode 3. モード4の衛星選択方法のフローチャート。The flowchart of the satellite selection method of mode 4. モード5の衛星選択方法のフローチャート。Flow chart of satellite selection method of mode 5. モード6の衛星選択方法のフローチャート。Flow chart of the satellite selection method of mode 6. GPS受信機の受信状態に対応するσR設定ロジック一覧表。The σR setting logic list corresponding to the reception status of the GPS receiver. σR’~σR’の取りうる範囲を説明する図。The figure which illustrates the possible range of σR 1 ′ to σR 5 ′. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 1 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 1 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 2 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 2 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 3 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 3 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 3 '. σR’の値の設定方法を説明する図。diagram for explaining a method of setting the value of sigma] R 4 '. σR’の値の設定方法を説明する図。A figure explaining how to set a value of σR 5 '.
 以下、本発明の実施例について、図面を用いて説明する。なお、本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and various modifications and applications may be included within the scope of the technical concept of the present invention.
 図1、図2を用いて、自動運転車などの移動体200の自己位置を推定する、実施例1の自己位置推定システム100の詳細を説明する。 The details of the self-position estimation system 100 according to the first embodiment, which estimates the self-position of a mobile unit 200 such as an autonomous vehicle, will be described with reference to FIGS. 1 and 2.
 図1は、自己位置推定システム100の機能ブロック図である。ここに示すように、自己位置推定システム100は、自己位置を測定する外界センサ11(例えば、GPSセンサ、カメラ、ライダ、レーザ、輪速センサ)の他に、自己位置推定部12、誤差指標値算出部13、重み設定部14、自己位置推定統括部15、制御装置16を有している。ここでは、n個の外界センサ11(11a~11n)とそれに対応する自己位置推定部12(12a~12n)等を用いた構成を例示しているが、外界センサの種類や数は必要に応じて適切に選択すれば良い。なお、同図中、自己位置推定部12、誤差指標値算出部13、重み設定部14、自己位置推定統括部15で表現した各機能は、自己位置推定システム100が備える、ハードディスク等の補助記憶装置に記録されたプログラムを、半導体メモリ等の主記憶装置にロードし、これをCPU等の演算装置が実行することで実現されるものであるが、以下では、このような周知動作を適宜省略しながら説明する。 FIG. 1 is a functional block diagram of the self-position estimation system 100. As shown in FIG. As shown here, the self-position estimation system 100 includes a self-position estimation unit 12 and an error index value in addition to an external sensor 11 (for example, a GPS sensor, a camera, a rider, a laser, a wheel speed sensor) that measures the self position. The calculation unit 13, the weight setting unit 14, the self-position estimation generalization unit 15, and the control device 16 are included. Here, the configuration using n external sensors 11 (11a to 11n) and the corresponding self position estimation units 12 (12a to 12n) is exemplified, but the type and number of external sensors may be changed as necessary. And you should choose appropriately. In the same figure, each function expressed by the self position estimation unit 12, the error index value calculation unit 13, the weight setting unit 14, and the self position estimation generalization unit 15 is an auxiliary storage such as a hard disk provided in the self position estimation system 100. This is realized by loading a program recorded in the device into a main storage device such as a semiconductor memory and executing it by an arithmetic device such as a CPU. In the following, such a known operation is appropriately omitted. While explaining.
 この自己位置推定システム100における、外界センサ11の出力の処理方法を、第一の外界センサ11aがGPSセンサである例を用いて説明する。第一の外界センサ11aの出力であるGPS情報が第一の自己位置推定部12aに入力されると、第一の自己位置推定部12aはGPS情報を基に自己位置推定値rを推定する。この自己位置推定値rには、誤差σが含まれており真の自己位置rからはずれているが、誤差σが不明であるため、第一の自己位置推定部12aでは真の自己位置rを求めることができない。 A method of processing the output of the external sensor 11 in the self-position estimation system 100 will be described using an example in which the first external sensor 11a is a GPS sensor. When GPS information which is the output of the first external sensor 11a is input to the first self-position estimating unit 12a, the first self-position estimating unit 12a estimates the self-position estimation value r 1 based on the GPS information. . Although this estimated self-position value r 1 contains an error σ 1 and deviates from the true self-position r 0, since the error σ 1 is unknown, the first self-position estimation unit 12 a is true The self position r 0 can not be determined.
 一方、第一の外界センサ11aの出力であるGPS情報が第一の誤差指標値算出部13aに入力されると、第一の誤差指標値算出部13aはGPS情報を基に第一の外界センサ11aの誤差σの大きさの指標となる誤差指標値を算出する。なお、第一の外界センサ11aの誤差指標値を算出する際には、第一の外界センサ11aからのGPS情報に加え、他の外界センサ(図1の例では、第二の外界センサ11b)の出力を参酌しても良い。 On the other hand, when the GPS information which is the output of the first external sensor 11a is input to the first error index value calculator 13a, the first error index value calculator 13a generates the first external sensor based on the GPS information. An error index value that is an index of the magnitude of the error σ 1 of 11 a is calculated. When calculating the error index value of the first external sensor 11a, in addition to the GPS information from the first external sensor 11a, another external sensor (the second external sensor 11b in the example of FIG. 1) You may refer to the output of
 そして、第一の重み設定部14aでは、第一の誤差指標値算出部13aで算出された誤差指標値を基に、第一の外界センサ11aの信頼度の重みw(参照強度)を演算して出力する。 Then, the first weight setting unit 14a calculates the weight w 1 (reference strength) of the reliability of the first external sensor 11a based on the error index value calculated by the first error index value calculation unit 13a. Output.
 同様に、第二の外界センサ11bから第nの外界センサ11nについても、自己位置推定値r~r、重みw~wが求められる。そして、自己位置推定統括部15では、複数の自己位置推定値rと重みwを用いて、重みwの大きな自己位置推定値rをより重視した、最終的な自己位置推定値r^を推定し、移動体200の制御装置16に出力する。ここで推定したr^は、真の自己位置rに近似するため、このr^を用いることで、制御装置16は、移動体200をより安定して制御することが可能となる。 Similarly, self position estimate values r 2 to r n and weights w 2 to w n are obtained also for the second external sensor 11 b to the n-th external sensor 11 n. Then, the self position estimation generalization unit 15 estimates a final self position estimated value r ^ more emphasizing the large self position estimated value r with a large weight w, using a plurality of self position estimated values r and weights w. , To the control device 16 of the mobile unit 200. Here the estimated r ^, in order to approximate the true self position r 0, by using this r ^, the control device 16, it is possible to more stably control the moving object 200.
 次に、図2を用いて、移動体200が備える外界センサ11の詳細を説明する。ここに示すように、移動体200は、自己位置を測定する外界センサ11として、GPS受信機21、カメラ22、ライダ23、輪速・舵角センサ24を備えている。また、これらの自己位置測定の外界センサに加え、外界情報として降雨量を取得する降雨量センサ25も備えている。 Next, details of the external sensor 11 provided in the mobile unit 200 will be described using FIG. As shown here, the mobile unit 200 is provided with a GPS receiver 21, a camera 22, a rider 23 and a wheel speed / steering angle sensor 24 as an external sensor 11 which measures its own position. Moreover, in addition to the external sensor of these self-position measurements, the rainfall sensor 25 which acquires rainfall as external information is also provided.
 以下では、各外界センサの出力に基づく自己位置推定値と誤差指標値の算出方法を概説する。 Below, the calculation method of the self-position estimate and error index value based on the output of each external sensor is outlined.
 先ず、各外界センサの自己位置推定部12での自己位置推定値rの算出方法を説明する。GPSセンサ21の自己位置推定部12は、頭上を飛ぶ複数のGPS衛星(以下、「衛星」と称する)からの電波を受信し、各衛星との距離を求め、自己位置を推定する。カメラ22の自己位置推定部12は、周囲の映像を撮影し、映像内の特徴(看板など)を地図と照らし合わせて、自己位置を推定する。ライダ23の自己位置推定部12は、周辺の立体物形状を取得し、カメラと同様に形状の特徴を地図と照らし合わせ、自己位置を推定する。輪速・舵角センサ24の自己位置推定部12は、各車輪の回転速度と向きを取得し、移動体の進んだ距離と方向を積算して自己位置を推定する。 First, the method of calculating the self-position estimation value r i in the self-position estimating unit 12 of Kakugaikai sensor. The self-position estimation unit 12 of the GPS sensor 21 receives radio waves from a plurality of GPS satellites (hereinafter referred to as "satellites") flying overhead, calculates the distance to each satellite, and estimates the self-position. The self-position estimation unit 12 of the camera 22 captures an image of the surroundings, compares features (such as a signboard) in the image with a map, and estimates the self-position. The self-position estimation unit 12 of the lidar 23 obtains the three-dimensional object shape of the periphery, compares the feature of the shape with the map as in the camera, and estimates the self-position. The self-position estimation unit 12 of the wheel speed and steering angle sensor 24 obtains the rotational speed and direction of each wheel, integrates the distance and direction of travel of the moving body, and estimates the self position.
 次に、各外界センサの誤差指標値算出部13での誤差指標値の算出方法を説明する。GPSセンサ21の誤差指標値算出部13は、周囲障害物の高さ、距離、密度から誤差指標値を算出する。例えば、GPS受信機21から見て、仰角が高い位置に障害物が多いほど、GPS受信機21による自己位置推定における誤差が大きいと推定する。カメラ22の誤差指標値算出部13は、地図との一致度合いから誤差指標値を算出する。例えば、地図に登録されているランドマークと、観測されたランドマークの種類、位置の一致度が低いほど、カメラ22による自己位置推定における誤差が大きいと推定する。ライダ23の誤差指標値算出部13も、カメラと同様に、地図上のランドマークとの観測結果の一致度が低いほど、ライダによる自己位置推定における誤差が大きいと推定する。輪速・舵角センサ24の誤差指標値算出部13は、各車輪の観測結果のずれが大きいほど、輪速・舵角センサによる自己位置推定における誤差が大きいと推定する。 Next, a method of calculating the error index value in the error index value calculation unit 13 of each external sensor will be described. The error index value calculation unit 13 of the GPS sensor 21 calculates an error index value from the height, distance, and density of the surrounding obstacle. For example, it is estimated that the error in the self-position estimation by the GPS receiver 21 is larger as the number of obstacles at the position where the elevation angle is high as viewed from the GPS receiver 21 is larger. The error index value calculation unit 13 of the camera 22 calculates an error index value from the degree of coincidence with the map. For example, it is estimated that the error in self-position estimation by the camera 22 is larger as the degree of coincidence between the landmark registered in the map, the type of the observed landmark, and the position is lower. Similarly to the camera, the error index value calculation unit 13 of the lidar 23 estimates that the lower the degree of coincidence of the observation result with the landmark on the map, the larger the error in self-position estimation by the lidar. The error index value calculation unit 13 of the wheel speed and steering angle sensor 24 estimates that the error in self position estimation by the wheel speed and steering angle sensor is larger as the deviation of the observation result of each wheel is larger.
 続いて、自己位置推定統括部15での、最終的な自己位置推定値r^の算出方法について説明する。自己位置推定統括部15での処理に先立ち、各外界センサに対応する重み設定部では、自己位置推定値rに対し、それぞれの誤差指標値の逆数に比例する重みwを付与する。そして、自己位置推定統括部15では、複数の自己位置推定値rと重みwを用いて加重平均をとり、最終的な自己位置推定値r^を推定する。これにより、以下の理由から、自己位置推定結果の誤差を最小にすることができる。 Subsequently, a method of calculating the final self position estimated value r ^ in the self position estimation generalization unit 15 will be described. Prior to the processing by the self position estimation generalization unit 15, the weight setting unit corresponding to each external sensor assigns a weight w proportional to the reciprocal of each error index value to the self position estimation value r. Then, the self-position estimation generalization unit 15 calculates a weighted average using a plurality of self-position estimate values r and weights w to estimate a final self-position estimate value r ^. This makes it possible to minimize the error of the self-position estimation result for the following reasons.
 例えば、第iの外界センサ11iの出力に基づく自己位置推定値rには、一般的に誤差σが含まれており、真の自己位置rとの間には次の式が成立する。 For example, an error σ i is generally included in the self-position estimation value r i based on the output of the i-th external sensor 11 i , and the following equation is established with the true self-position r 0 .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 今、n個の外界センサを搭載しており、それぞれの出力に基づく自己位置推定値rに、確からしさを示す重みwをつけて、加重平均を取ることで最終的な自己位置推定値r^を次式で算出することを考える。 Now, n external sensors are mounted, and the weight w i indicating the likelihood is added to the self position estimate r i based on each output, and the final self position estimate is obtained by taking a weighted average Consider calculating r ^ by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Σw=nとなるようにwをとれば、最終的な誤差である Here, if w i is taken so that Σ w i = n, it is the final error
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 の最小値は、相加相乗平均の公式から次式で表すことができる。 The minimum value of can be expressed by the following formula from the formula of additive geometric mean.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この条件が成り立つのは、σ・w=σ・w= … =σ・wの場合であるので、 Since this condition holds true in the case of σ 1 · w 1 = σ 2 · w 2 = ... = σ n · w n
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 となる重みwを設定することで、最終的な自己位置推定値r^の誤差を最小にすることができる。 By setting the weight w i to be, it is possible to minimize the error of the final self-position estimate r ^.
 以上の演算を自己位置推定統括部15で随時実行することにより、周囲環境の急激な変化に伴い各外界センサの信頼性が急変した場合であっても、最終的な自己位置推定値r^を真の自己位置rに素早く近似させることができる。従って、本実施例の自己位置推定統括部15で求めた最終的な自己位置推定値r^を用いて移動体200を制御することで、自律制御の安定性を高めることができる。 Even if the reliability of each external sensor suddenly changes due to a rapid change of the surrounding environment, the final self estimated position value r ^ The true self position r 0 can be quickly approximated. Therefore, the stability of autonomous control can be improved by controlling the mobile unit 200 using the final self-position estimation value r ^ obtained by the self-position estimation generalization unit 15 of this embodiment.
 次に、図3から図19を用いて、主にGPS情報から自己位置を推定する、本発明の実施例2の自己位置推定システムを説明する。なお、実施例1との共通点は重複説明を省略する。 Next, the self-position estimation system according to the second embodiment of the present invention, which estimates self-position mainly from GPS information, will be described using FIG. 3 to FIG. The same points as in the first embodiment will not be repeatedly described.
 実施例1では、GPS受信機21の誤差指標値の算出方法として、GPS受信機21から見て仰角が高い位置に障害物が多いほど誤差が大きいと推定する単純な方法を例示したが、本実施例では、GPS受信機21の誤差指標値の算出に、ノイズに対する信号(キャリア)の大きさを示すCN比と、衛星までの距離を推定するために照合するPN符号の情報を用いる方法を説明する。 In the first embodiment, as a method of calculating the error index value of the GPS receiver 21, a simple method has been exemplified in which the error is estimated to increase as the number of obstacles increases at a position where the elevation angle is high as viewed from the GPS receiver 21. In the embodiment, a method of using the CN ratio indicating the magnitude of a signal (carrier) with respect to noise and the PN code information to be collated to estimate the distance to the satellite is used to calculate the error index value of the GPS receiver 21. explain.
 GPSシステムを用いて自己位置推定を行う場合、原理的に4以上の衛星からの電波を受信する必要がある。そして、自己位置推定精度は、各衛星の幾何学的な配置と、各衛星との距離推定精度の2つに影響されるため、条件の悪い衛星を除外することで、自己位置推定精度を改善できる。 When self-position estimation is performed using a GPS system, it is necessary to receive radio waves from four or more satellites in principle. Since the self-position estimation accuracy is affected by the geometric arrangement of each satellite and the distance estimation accuracy with each satellite, the self-position estimation accuracy is improved by excluding the bad satellites. it can.
 ここで、各衛星の幾何学的配置は、位置精度劣化度DOP(Dilution of Precision)を算出、参照することで評価できる。このDOPは、各衛星の配置から計算した指標であり、小さいほど自己位置推定精度が高いことを示している。 Here, the geometrical arrangement of each satellite can be evaluated by calculating and referring to the positional accuracy deterioration degree DOP (Dilution of Precision). The DOP is an index calculated from the arrangement of each satellite, and indicates that the smaller the DOP is, the higher the self-position estimation accuracy is.
 また、各衛星との距離推定精度は、周囲環境による電波への影響をもとに評価できる。周囲環境が、GPS受信機21の受信電波の品質に与える影響について、図3、4を用いて説明する。 Moreover, the distance estimation accuracy with each satellite can be evaluated based on the influence of the surrounding environment on radio waves. The influence of the surrounding environment on the quality of the radio wave received by the GPS receiver 21 will be described with reference to FIGS.
 図3は、GPS受信機21がビルの谷間に位置する場合の、衛星からGPS受信機21に至る電波経路を4態様に分類した模式図である。ここに示すように、衛星Aからの電波経路は直接波(実線)のみで構成され、衛星Bからの電波経路は直接波(実線)と反射波(破線)のマルチパスで構成され、衛星Cからの電波経路は反射波(破線)のみで構成され、衛星Dからの電波経路は回折波(破線)のみで構成されている。なお、これら4衛星は、電波経路の各態様の代表例であり、実際には、GPS受信機21は、4衛星以外の多数の衛星からも電波を受信している。 FIG. 3 is a schematic view in which radio wave paths from satellites to the GPS receiver 21 when the GPS receiver 21 is located in a valley of a building are classified into four modes. As shown here, the radio wave path from satellite A is composed of only direct waves (solid line), and the radio wave path from satellite B is composed of multipaths of direct waves (solid line) and reflected waves (broken line) The radio wave path from is constituted only by the reflected wave (broken line), and the radio wave path from the satellite D is constituted only by the diffracted wave (broken line). These four satellites are representative examples of each aspect of the radio wave path, and in fact, the GPS receiver 21 also receives radio waves from many satellites other than the four satellites.
 これらのうち、反射波である衛星Cからの電波と、回折波である衛星Dからの電波は、反射や回折の結果、CN比が低下している。このような衛星の利用を除外するため、CN比の下限値を設けておき、この下限値を超える品質の電波のみを選択することで、反射波や回折波のような低品質の電波の衛星を除外できる。 Among them, the radio wave from the satellite C which is a reflected wave and the radio wave from the satellite D which is a diffracted wave have a reduced CN ratio as a result of reflection and diffraction. In order to exclude the use of such satellites, a lower limit value of CN ratio is provided, and by selecting only radio waves of quality exceeding this lower limit, satellites of low quality radio waves such as reflected waves and diffracted waves Can be excluded.
 一方、直接波と反射波の両方が届く衛星Bは、必ずしもCN比が低い値をとらず、CN比のみで電波品質の良し悪しを判断することができない。そこで、PN符号の相関プロファイルに基づいて、電波品質の良し悪しを判断する。 On the other hand, the satellite B to which both the direct wave and the reflected wave reach does not necessarily have a low CN ratio, and the radio wave quality can not be judged only by the CN ratio. Therefore, the quality of the radio wave is judged based on the correlation profile of the PN code.
 図4Aは、衛星Aからの電波のPN符号相関Φ(t)を説明する図であり、縦軸がPN符号相関Φ(t)、横軸が時間tである。衛星Aのように、直接波のみ届く場合は、PN符号の相関プロファイルは、相関ピークが1点のみ(単峰)となる。衛星C、Dのように、反射波や回折波のみが届く場合も同様に単峰が観測される。一方、直接波に加え反射波も届くマルチパスが発生している衛星Bでは、図4Bに示すように、直接波の相関ピークから所定時間経過後に、反射波の相関ピークが観測される(多峰)。よって、PN符号の相関プロファイルが単峰性であるか多峰性であるかを確認することで、マルチパスが発生している衛星を除外できる。 FIG. 4A is a diagram for explaining the PN code correlation Φ (t) of the radio wave from the satellite A. The vertical axis is the PN code correlation Φ (t), and the horizontal axis is the time t. As in the case of the satellite A, when only direct waves are received, the correlation profile of the PN code has only one correlation peak (single peak). As in the satellites C and D, single peaks are also observed in the case where only reflected waves or diffracted waves reach. On the other hand, in the satellite B in which a multipath occurs in which a reflected wave is also received in addition to the direct wave, as shown in FIG. 4B, a correlation peak of the reflected wave is observed after a predetermined time has elapsed from the correlation peak of the direct wave Peak). Therefore, by checking whether the correlation profile of the PN code is unimodal or multimodal, it is possible to exclude satellites in which multipath is generated.
 このように、GPS受信機21では、CN比が十分高く、PN信号の遅延プロファイルが単峰である信号を選ぶことで、電波品質が良い衛星(衛星A)を抽出することができる。そしてこの方法で選択された複数の衛星のDOPを算出することで、GPS受信機21による自己位置推定精度を推定することができる。 As described above, the GPS receiver 21 can extract satellites (satellite A) with high radio wave quality by selecting a signal with a sufficiently high CN ratio and a single peak of the delay profile of the PN signal. Then, by calculating DOPs of a plurality of satellites selected by this method, it is possible to estimate the self-position estimation accuracy by the GPS receiver 21.
 次に、本実施例の衛星選択方法をより詳細に説明する。図5は、各衛星の電波のCN比とPN符号の情報等に基づいてGPS受信機21で利用する衛星を選択し、選択した衛星の電波から自己位置推定値rと誤差指標値を求める処理を示したものである。なお、S51~S57の処理は、実際には、GPS受信機21、自己位置推定部12、誤差指標値算出部13の何れかで実施される処理であるが、説明の便宜上、GPS受信機21等の外に表示している。また、GPS受信機21以外の外界センサによる自己位置推定の図示を省略しているため、重み設定部14の図示も省略しているが、GPS受信機21以外の外界センサによる自己位置推定を行う場合は、重み設定部14が必須であることは言うまでもない。 Next, the satellite selection method of this embodiment will be described in more detail. FIG. 5 shows a process of selecting a satellite to be used by the GPS receiver 21 based on the CN ratio of radio waves of each satellite and information of PN code, etc., and calculating the self position estimated value r and the error index value from the radio waves of selected satellites. Is shown. Note that the processing of S51 to S57 is actually processing performed by any of the GPS receiver 21, the self position estimation unit 12, and the error index value calculation unit 13. However, for convenience of explanation, the GPS receiver 21 is used. It is displayed out of etc. Further, since illustration of self position estimation by an external sensor other than the GPS receiver 21 is omitted, illustration of the weight setting unit 14 is also omitted, but self position estimation is performed by an external sensor other than the GPS receiver 21. It goes without saying that the weight setting unit 14 is essential in this case.
 まず、GPS受信機21がある衛星の電波を受信すると、その電波からPN符号相関Φ(t)が取得される(S51)。取得したPN符号相関Φ(t)が図4Aのような単峰であれば、その衛星を利用可能な衛星として選択する(S52)。他方、図4Bのような多峰であれば、その衛星は選択しない。 First, when the GPS receiver 21 receives a radio wave of a satellite, the PN code correlation ((t) is acquired from the radio wave (S51). If the acquired PN code correlation ((t) is a single peak as shown in FIG. 4A, the satellite is selected as an available satellite (S52). On the other hand, if there are multiple peaks as shown in FIG. 4B, the satellite is not selected.
 また、GPS受信機21が受信した電波からCN比が取得される(S53)。取得したCN比が所定値以上であれば、その衛星を利用可能な衛星として選択する(S54)。他方、所定値未満であれば、その衛星は選択しない。 Further, the CN ratio is acquired from the radio wave received by the GPS receiver 21 (S53). If the acquired CN ratio is equal to or greater than a predetermined value, the satellite is selected as an available satellite (S54). On the other hand, if it is less than the predetermined value, the satellite is not selected.
 さらに、GPS受信機21が受信した電波から衛星の位置情報を取得する(S55)。また、カメラ22、レーダ23a、レーザ23b、ソナー23c等の出力から周辺障害物の位置を特定し、衛星の位置情報から特定した自車に対する衛星の方位角、仰角を基に、自車・衛星間の障害物有無または遮蔽率を推定する。そして、周囲障害物に遮蔽されていない衛星(以下、「可視衛星」と称する)または遮蔽率が所定値以下の衛星を利用可能な衛星として選択する(S56)。他方、周囲障害物に遮蔽されている衛星は選択しない。 Further, the position information of the satellite is acquired from the radio wave received by the GPS receiver 21 (S55). Also, based on the azimuth and elevation angle of the satellite relative to the vehicle identified from the position information of the satellite, the position of the surrounding obstacle is specified from the output of the camera 22, radar 23a, laser 23b, sonar 23c etc. Estimate the presence or absence of an obstacle or the blocking rate between Then, satellites not shielded by surrounding obstacles (hereinafter referred to as "visible satellites") or satellites having a shielding rate equal to or less than a predetermined value are selected as available satellites (S56). On the other hand, satellites shielded by surrounding obstacles are not selected.
 以上で説明した、S52、S54、S56の処理により、CN比が所定値以上であり、PN符号の相関が単峰性を示し、さらに、周囲障害物に遮蔽されていない衛星を特定できる。そして、自己位置推定部12では、このように選択された衛星の情報のみを用いることで、精度の高い自己位置推定を実現できる。さらに、選択された複数の衛星の位置関係を基にDOPを算出した後(S57)、誤差指標値算出部13では、DOPと誤差指標σRの乗算値を求め、これをGPS受信機21による自己位置推定の誤差指標値とする。なお、σRは、PN符号相関Φ(t)から算出できる誤差指標であり、各衛星との距離の誤差を示すものであるが、詳細は後述する。 By the processes of S52, S54, and S56 described above, it is possible to specify a satellite whose CN ratio is equal to or more than a predetermined value, the correlation of the PN code exhibits unimodality, and satellites not shielded by surrounding obstacles. The self-position estimation unit 12 can realize highly accurate self-position estimation by using only the information of the satellite selected in this way. Furthermore, after DOP is calculated based on the positional relationship of the plurality of selected satellites (S57), the error index value calculation unit 13 obtains the product of the DOP and the error index .sigma.R, and calculates the product by the GPS receiver 21 It is an error index value for position estimation. Note that σR is an error index that can be calculated from the PN code correlation ((t), and indicates an error in the distance to each satellite, which will be described later in detail.
 ここで、GPSシステムによる自己位置推定には、電波が単峰性であり、CN比が所定値以上であり、障害物に遮蔽されていない衛星のみを用いることが望ましいが、移動体200の移動中には、これらの条件全てを満たす衛星数が4未満となり、電波品質の劣後する衛星を利用せざるを得ない期間もある。そこで、以下では、電波品質の劣後する衛星を利用する場合の自己位置推定方法も含めて説明する。 Here, it is desirable to use only the satellites whose radio waves are unimodal, the CN ratio is a predetermined value or more, and are not shielded by an obstacle for self-position estimation by the GPS system. In some cases, the number of satellites satisfying all these conditions is less than 4, and there is a period in which satellites with inferior radio wave quality can not but be used. Therefore, in the following, a self-position estimation method in the case of using a satellite with inferior radio wave quality will be described.
 図6は、GPS受信機の電波の受信状態と、衛星選択ロジックの対応の一覧表であり、例えば、モード1の行は、PN符号相関とCN比がともに参照可能な場合の衛星選択ロジックが「CN比の高い順にDOPが所定値以下となるまで衛星を追加」であることを示している。以下、各モードの衛星選択ロジックの詳細を、図7~12を用いて説明する。なお、何れのモードを利用するかは、電波の受信状態に応じて逐次変更され、正常時はモード1が利用されているが、電波状況に応じてはモード2~モード6の何れか適当なものを一時的に利用できるようになっている。
<モード1>
 図7は、PN符号相関とCN比が参照可能である場合に採用可能な、モード1の衛星選択方法のフローチャートである。以下、このフローチャートの処理の詳細を説明する。
FIG. 6 is a list of the radio wave reception status of the GPS receiver and the correspondence of the satellite selection logic. For example, in the mode 1 row, the satellite selection logic in the case where both PN code correlation and CN ratio can be referred to It indicates that "satellites are added until DOP falls below a predetermined value in descending order of CN ratio". Hereinafter, the details of the satellite selection logic of each mode will be described using FIGS. 7 to 12. Note that which mode to use is successively changed according to the reception status of radio waves, and mode 1 is used at normal times, but any of mode 2 to mode 6 is appropriate according to radio wave conditions. Things are temporarily available.
<Mode 1>
FIG. 7 is a flowchart of a mode 1 satellite selection method that can be employed when PN code correlation and CN ratio can be referenced. The details of the process of this flowchart will be described below.
 まず、GPS受信機21が電波を受信した衛星の中から、高品質な電波を送信している衛星を抽出する(S1)。具体的には、CN比が所定値以上であり、PN符号相関Φ(t)が単峰性である全ての衛星を抽出する。 First, satellites transmitting high-quality radio waves are extracted from satellites in which the GPS receiver 21 receives radio waves (S1). Specifically, all satellites having a CN ratio equal to or greater than a predetermined value and having a PN code correlation Φ (t) of unimodality are extracted.
 その後、抽出された衛星の数が所定値(4以上の任意の数)以上であるかを確認し(S2)、所定値以上であれば、CN比が最も良い4衛星を選択し、これらのGPS信号に基づいて、σRとDOPを算出する(S3)。なお、σRの算出方法は後述する。 Thereafter, it is confirmed whether the number of extracted satellites is equal to or more than a predetermined value (an arbitrary number of 4 or more) (S2). If it is equal to or more than the predetermined value, four satellites having the best CN ratio are selected. Based on the GPS signal, σR and DOP are calculated (S3). The method of calculating σ R will be described later.
 次に、算出したσRとDOPを用いて、誤差指標値の逆数であるfを求め、このfを算出したときの衛星組合せを記憶しておく(S4)。なお、誤差指標値は、σRとDOPの積であり、f=1/(σR・DOP)で表される。従って、σRやDOPが小さければ、fが大きくなり、他の外界センサで検出した自己位置情報を併用する場合、GPS受信機21が検出した自己位置情報の重みが大きくなる。 Next, using the calculated .sigma.R and DOP, f which is the reciprocal of the error index value is determined, and the satellite combination when this f is calculated is stored (S4). The error index value is the product of σR and DOP, and is expressed by f = 1 / (σR · DOP). Therefore, if .sigma.R or DOP is small, f will be large, and if self-position information detected by another external sensor is used together, the weight of the self-position information detected by the GPS receiver 21 will be large.
 そして、このfに対応する衛星組合せのDOPが所定値以下であるかを確認し(S5)、所定値以下であった場合は、現在選択している衛星からのGPS信号だけで自己位置推定精度が十分と予測されるため、その衛星組合せと、fを出力する(S6)。なお、S5(および後述するS9)で用いる所定値は、自己位置推定に必要な精度に応じてユーザが設定するものであり、高い精度が必要な場合はより小さな値を設定すれば良い。 Then, it is confirmed whether the DOP of the satellite combination corresponding to this f is less than or equal to a predetermined value (S5). If it is less than or equal to the predetermined value, the self-position estimation accuracy only with the GPS signal from the currently selected satellite Is predicted to be sufficient, so that satellite combination and f are output (S6). The predetermined value used in S5 (and S9 described later) is set by the user according to the accuracy required for self-position estimation, and a smaller value may be set if high accuracy is required.
 S5で、DOPが所定値より大きかったときは、現在選択している衛星からのGPS信号だけでは自己位置推定精度が不十分と予測されるため、未選択の衛星から、次にCN比の高い衛星を一つ選択し、この衛星を追加した衛星組合せでのσRとDOPを算出する(S7)。そして、新たなσRとDOPを用いて、f’を算出するとともに(S8)、新たなDOPが所定値以下かを確認する(S9)。新たなDOPが所定値以下であったときは、DOPが改善したと判断できるが、衛星の追加によってf’が悪化している可能性もあるため、f’がfより大きいかを確認し(S10)する。f’が大きい場合は、衛星の追加により自己位置推定精度が向上したと判断できるため、記憶している衛星組合せをf’に対応するものに更新するとともに、記憶しているfをより大きな値を持つf’に更新した後(S11)、上述のS6の処理を実行する。 If the DOP is greater than the predetermined value in S5, it is predicted that the self-position estimation accuracy is insufficient only with the GPS signal from the currently selected satellite, so from the unselected satellites, the CN ratio is the next highest. One satellite is selected, and .sigma.R and DOP in the satellite combination to which this satellite is added are calculated (S7). Then, f ′ is calculated using the new σR and DOP (S8), and it is checked whether the new DOP is less than or equal to a predetermined value (S9). If the new DOP is less than the specified value, it can be determined that DOP has improved, but f 'may be worse due to the addition of satellites, so check whether f' is greater than f ( S10). When f 'is large, it can be determined that the accuracy of self-position estimation has been improved by the addition of satellites, so the stored satellite combination is updated to one corresponding to f' and the stored f is a larger value. After updating to f ′ having (S11), the process of S6 described above is executed.
 S10で、f’がf未満であったときは、衛星を追加することでDOPは改善したものの、自己位置推定精度が悪化する状態であるため、衛星追加前のfに対応する衛星組合せを最善の衛星組合せとして出力する(S6)。 When f 'is less than f in S10, DOP is improved by adding satellites, but the self-position estimation accuracy is deteriorated, so the satellite combination corresponding to f before adding satellites is the best. Output as a satellite combination (S6).
 一方、S9でDOPが所定値より大きかった場合、衛星追加後もDOPが不十分と判断できるが、誤差指標値が改善している可能性もある。そこで、衛星追加後のf’が衛星追加前のfより大きくなっているかを判定する(S13)。f’がfより大きい場合は、衛星追加により誤差指標値が改善したと判断できるため、記憶している衛星組合せを衛星追加後のf’に対応するものに更新するとともに、f’を新たなfとして記憶した後(S14)、S7に戻る。これに対し、S13で、f’がf以下の場合は、衛星追加による誤差指標値の改善はなかったと判断できるため、記憶している衛星組合せ、fを更新することなく、S7に戻る。 On the other hand, when DOP is larger than the predetermined value in S9, it can be determined that DOP is insufficient even after satellite addition, but there is also a possibility that the error index value is improved. Therefore, it is determined whether f 'after satellite addition is larger than f before satellite addition (S13). If f 'is larger than f, it can be determined that the error index value has been improved by satellite addition, so that the stored satellite combination is updated to one corresponding to f' after satellite addition, and f 'is newly updated. After storing as f (S14), the process returns to S7. On the other hand, if f 'is equal to or less than f in S13, it can be determined that there is no improvement in the error index value due to satellite addition, so the process returns to S7 without updating the stored satellite combination f.
 S2で、抽出した衛星数が所定値(例えば、4)に達しなかった場合は、原理的にGPS受信機21による自己位置推定ができない状況などと考えられるため、「測定不可」を出力し(S15)、モード1での処理を終了する。 If the number of satellites extracted in S2 does not reach a predetermined value (for example, 4), it is considered that the GPS receiver 21 can not estimate its own position in principle, so “impossible to measure” is output ( S15) The process in mode 1 is ended.
 なお、図7では、S15で「測定不可」を出力しているが、S1の基準に満たない衛星を用いて、自己位置推定を実現することとしても良い。具体的には、S1の基準を満たさなかった衛星のなかから最もCN比の高い衛星、最も遮蔽率の低い衛星、最もDOPの小さくなる衛星、或いは、他の衛星から最も仰角が異なる衛星の何れかを順次追加することで、所望のDOPやfを確保できる衛星組合せを求め、その衛星組合せを用いて自己位置推定を実現しても良い。
<モード2>
 図8は、PN符号相関を参照でき、かつ、障害物による衛星の遮蔽率を推定できる場合に採用可能な、モード2の衛星選択方法のフローチャートである。以下では、モード1との共通点を省略して、モード2の特有の処理を説明する。
Although “impossible to measure” is output in S15 in FIG. 7, self-position estimation may be realized using a satellite that does not meet the reference of S1. Specifically, among the satellites that did not meet the S1 criteria, any satellite with the highest CN ratio, the satellite with the lowest shielding ratio, the satellite with the smallest DOP, or the satellite with the highest elevation angle from other satellites. By sequentially adding で き る, a satellite combination that can secure a desired DOP or f may be obtained, and self-position estimation may be realized using the satellite combination.
<Mode 2>
FIG. 8 is a flowchart of a mode 2 satellite selection method that can be employed when PN code correlation can be referred to and the blocking rate of the satellite due to an obstacle can be estimated. In the following, the processing unique to mode 2 will be described, omitting the points common to mode 1.
 モード2では、図8に示すS1a、S3a、S7aの処理が、モード1と相違する。すなわち、S1aでは、PN符号相関Φ(t)が単峰性であり、かつ、遮蔽率が所定値以下の衛星を全て抽出する。S3aでは、遮蔽率が最も低い4衛星を選択し、これらのGPS信号に基づいて、σRとDOPを算出する。S7aでは、DOPが所定値より大きかった場合に、次に遮蔽率の低い衛星を追加して、σRとDOPを算出する。 In mode 2, the processes of S1a, S3a, and S7a shown in FIG. That is, in S1a, all satellites in which the PN code correlation Φ (t) is unimodal and the blocking ratio is equal to or less than a predetermined value are extracted. In S3a, four satellites with the lowest shielding rate are selected, and σR and DOP are calculated based on these GPS signals. In S7a, when DOP is larger than a predetermined value, the satellite with the next lowest shielding ratio is added to calculate σR and DOP.
 モード2の衛星選択方法によれば、CN比を参照できない場合であっても、その条件下で選択しうる最善の衛星の組合せを求めることができる。
<モード3>
 図9は、PN符号相関のみを参照できる場合に採用可能な、モード3の衛星選択方法のフローチャートである。以下では、モード1との共通点を省略して、モード3の特有の処理の詳細を説明する。
According to the satellite selection method of mode 2, even if the CN ratio can not be referred to, it is possible to determine the best combination of satellites that can be selected under the conditions.
<Mode 3>
FIG. 9 is a flow chart of a mode 3 satellite selection method that can be employed when only PN code correlation can be referenced. In the following, details of processing specific to mode 3 will be described, omitting points common to mode 1.
 図9では、S1b、S3b、S7bの処理が、モード1と相違する。すなわち、S1bでは、PN符号相関Φ(t)が単峰性であり、かつ、仰角が所定値以上の衛星を全て抽出する。S3bでは、仰角が最も高い4衛星を選択し、これらのGPS信号に基づいて、σRとDOPを算出する。S7bでは、DOPが所定値より大きかった場合に、次に仰角が高い衛星を追加して、σRとDOPを算出する。 In FIG. 9, the processes of S1 b, S3 b, and S7 b are different from those in mode 1. That is, in S1b, all satellites whose PN code correlation Φ (t) is unimodal and whose elevation angle is a predetermined value or more are extracted. In S3b, four satellites with the highest elevation angle are selected, and σR and DOP are calculated based on these GPS signals. In S7b, when DOP is larger than a predetermined value, the satellite with the next highest elevation angle is added to calculate σR and DOP.
 モード3の衛星選択方法によれば、CN比を参照できず、衛星の遮蔽率も推定できない場合であっても、その条件下で選択しうる最善の衛星の組合せを求めることができる。
<モード4>
 図10は、CN比のみを参照できる場合に採用可能な、モード4の衛星選択方法のフローチャートである。以下では、モード1との共通点を省略して、モード4の特有の処理の詳細を説明する。
According to the satellite selection method of mode 3, even if the CN ratio can not be referred to and the shielding ratio of the satellite can not be estimated either, it is possible to determine the best combination of satellites that can be selected under the conditions.
<Mode 4>
FIG. 10 is a flowchart of a mode 4 satellite selection method that can be employed when only CN ratio can be referenced. In the following, details of the processing specific to mode 4 will be described, omitting points common to mode 1.
 図10では、S1cの処理がモード1と相違する。すなわち、S1cでは、CN比が所定値以上の衛星を全て抽出する(S1c)。 In FIG. 10, the process of S1c is different from that of mode 1. That is, in S1c, all satellites whose CN ratio is equal to or more than a predetermined value are extracted (S1c).
 モード4の衛星選択方法によれば、PN符号相関を参照できず、衛星の遮蔽率も推定できない場合であっても、その条件下で選択しうる最善の衛星の組合せを求めることができる。
<モード5>
 図11は、障害物による衛星の遮蔽率のみを推定できる場合に採用可能な、モード5の衛星選択方法のフローチャートである。以下では、モード1との共通点を省略して、モード5の特有の処理の詳細を説明する。
According to the satellite selection method of mode 4, even if the PN code correlation can not be referred to and the shielding factor of the satellite can not be estimated, the best combination of satellites that can be selected under the conditions can be determined.
<Mode 5>
FIG. 11 is a flowchart of a satellite selection method of mode 5 that can be adopted when only the blocking rate of the satellite due to an obstacle can be estimated. In the following, details of processing specific to mode 5 will be described, omitting points common to mode 1.
 図11では、S1d、S3a、S7aの処理が、モード1と相違する。すなわち、S1dでは、遮蔽率が所定値以下の衛星を全て抽出する。S3aでは、遮蔽率が最も低い4衛星を選択し、これらのGPS信号に基づいて、σRとDOPを算出する。S7aでは、DOPが所定値より大きかった場合に、次に遮蔽率の低い衛星を追加して、σRとDOPを算出する。 In FIG. 11, the processes of S1 d, S3 a, and S7 a are different from those of mode 1. That is, in S1d, all satellites whose shielding ratio is less than or equal to a predetermined value are extracted. In S3a, four satellites with the lowest shielding rate are selected, and σR and DOP are calculated based on these GPS signals. In S7a, when DOP is larger than a predetermined value, the satellite with the next lowest shielding ratio is added to calculate σR and DOP.
 モード5の衛星選択方法によれば、PN符号相関とCN比をともに参照できない場合であっても、その条件下で選択しうる最善の衛星の組合せを求めることができる。
<モード6>
 図12は、PN符号相関とCN比を参照できず、さらに、衛星の遮蔽率も推定できない場合であっても採用可能な、モード6の衛星選択方法のフローチャートである。以下では、モード1との共通点を省略して、モード6の特有の処理の詳細を説明する。
According to the satellite selection method of mode 5, even if PN code correlation and CN ratio can not be referred to together, it is possible to find the best combination of satellites that can be selected under the conditions.
<Mode 6>
FIG. 12 is a flowchart of a satellite selection method of mode 6 that can be adopted even when the PN code correlation and the CN ratio can not be referred to and the shielding factor of the satellite can not be estimated either. In the following, details of processing specific to mode 6 will be described, omitting points common to mode 1.
 図12では、S1e、S3b、S7bの処理が、モード1と相違する。すなわち、S1eでは、仰角が所定値以上の衛星を全て抽出する。S3bでは、仰角が最も高い4衛星を選択し、これらのGPS信号に基づいて、σRとDOPを算出する。S7bでは、DOPが所定値より大きかった場合に、次に仰角が高い衛星を追加して、σRとDOPを算出する。 In FIG. 12, the processes of S1 e, S3 b, and S7 b are different from those of mode 1. That is, in S1e, all satellites whose elevation angle is equal to or more than a predetermined value are extracted. In S3b, four satellites with the highest elevation angle are selected, and σR and DOP are calculated based on these GPS signals. In S7b, when DOP is larger than a predetermined value, the satellite with the next highest elevation angle is added to calculate σR and DOP.
 モード6の衛星選択方法によれば、PN符号相関とCN比をともに参照できず、衛星の遮蔽率も推定できない場合であっても、その条件下で選択しうる最善の衛星の組合せを求めることができる。
<σRの算出方法>
 次に、上述したモード1~モード6におけるσRの算出方法について、図13から図19を用いて説明する。
According to the satellite selection method of mode 6, even if the PN code correlation and the CN ratio can not both be referred to and the shielding factor of the satellite can not be estimated either, finding the best combination of satellites that can be selected under that condition Can.
<Method of calculating σ R>
Next, the method of calculating σ R in the above-described mode 1 to mode 6 will be described with reference to FIGS.
 図13は、GPS受信機の受信状態と、σR設定ロジックの対応の一覧表であり、例えば、モードAの行は、PN符号相関とCN比が参照可能であり、かつ、選択した衛星の数が4であった場合(モード1を説明する図7のS5でYes)の、σRの算出方針の概要を示している。 FIG. 13 is a list of the reception status of the GPS receiver and the correspondence of the σR setting logic. For example, the row of mode A can refer to the PN code correlation and the CN ratio, and the number of selected satellites 7 shows an outline of the policy of calculating σ R when 4 is 4 (Yes in S5 of FIG. 7 for explaining mode 1).
 また、図14は、モードA~モードKに対して予め設定したσR~σRの大小関係を概説する図であり、上方に行くほど誤差が大きく、下方に行くほど誤差が小さいという関係を示している。すなわち、同図では、モードA、モードBに対応するσRが最善であり、モードKに対応するσR(∞)が最悪であることを示している。なお、σR’は当初のσRが周囲環境などの影響により劣化した後の値であり、図14のσR’~σR’は環境の悪化により∞となりうることを示している。以下、図13の各モードでのσRの詳細を、図15~19を用いながら説明する。
<モードA>
 PN符号相関とCN比が参照可能であり、CN比最善の4衛星のみで所定値未満のDOPを算出できた場合は(図7のS5でYes)、電波品質の良い衛星のみを利用できるため、既定のσRをそのままσRとするモードAを採用する。
<モードB>
 PN符号相関とCN比が参照可能であるが、CN比最善の4衛星のみでは所定値未満のDOPを算出できない場合(5以上の衛星の選択が必要な場合)は(図7のS5でNo)、相対的に電波品質の悪い衛星も用いていることを示すため、既定のσRに劣後するσR’をσRとするモードBを採用する。このモードBでは、図15Aまたは図15Bを利用してσR’を算出する。
Further, FIG. 14 is a diagram outlining the magnitude relationship of σR 1 to σR 6 preset for mode A to mode K, in which the error is larger as it goes upward, and the error is smaller as it goes downward. It shows. That is, in the same figure, it is shown that σ R 1 corresponding to mode A and mode B is the best, and σ R 6 ()) corresponding to mode K is the worst. Note that σR n ′ is a value after the initial σR n is degraded due to the influence of the surrounding environment etc., and σR 1 ′ to σR 5 ′ in FIG. 14 indicate that ∞ can be achieved due to the degradation of the environment. Hereinafter, the details of σ R in each mode of FIG. 13 will be described with reference to FIGS.
<Mode A>
If PN code correlation and CN ratio can be referred to and DOP less than the specified value can be calculated only with the four satellites with the best CN ratio (Yes in S5 in FIG. 7), only satellites with good radio quality can be used. , Mode A is adopted in which the predetermined σ R 1 is made σ R as it is.
<Mode B>
If PN code correlation and CN ratio can be referred to but DOP less than the specified value can not be calculated with only 4 satellites with the best CN ratio (if it is necessary to select 5 or more satellites) (No at S5 in Figure 7) ), to indicate that it is also used bad satellite relatively radio wave quality, employing a mode B to sigma] R of sigma] R 1 'subordinated to the default sigma] R 1. In this mode B, σR 1 ′ is calculated using FIG. 15A or FIG. 15B.
 図15Aの縦軸はσR、横軸はCN比平均値を示している。同図は、CN比平均値が十分に大きければ、σR’は既定のσRに近似し、CN比平均値が小さくなるほど、σR’が大きくなり、CN比平均値が所定の遮蔽発生指標値(衛星が障害物の陰にいるかを判断する基準となる数値、例えば30dB)未満になると、σR’は∞となることを示している。 The vertical axis in FIG. 15A is σR, and the horizontal axis is the CN ratio average value. In the figure, if the CN ratio average value is sufficiently large, σR 1 ′ approximates to the predetermined σR 1 , and the smaller the CN ratio average value, the larger the σR 1 ′, and the CN ratio average value becomes a predetermined shielding occurrence. Below the index value (a numerical value used to determine whether the satellite is behind an obstacle, for example, 30 dB), σR 1 ′ indicates ∞.
 また、図15BもモードBに対応するものであり、縦軸はσR、横軸はξを示している。ここで、ξは数6で表される。 Further, FIG. 15B also corresponds to mode B, and the vertical axis represents σR and the horizontal axis represents ξ. Here, ξ is expressed by equation 6.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この式から明らかなように、障害物に隠れた衛星の数が増えた場合や、障害物の陰に隠れた衛星からの電波の平均CN比が悪化した場合には、ξが大きくなり、σR’も大きくなることが分かる。 As is clear from this equation, when the number of satellites hidden by the obstacle increases or when the average CN ratio of radio waves from the satellites behind the obstacle deteriorates, the ξ becomes large, and σ R It turns out that 1 'also becomes large.
 以上で説明したモードBでは、図15Aまたは図15Bの関係を利用することで、σR’を算出できる。
<モードC>
 PN符号相関が参照可能であり、遮蔽率最善の4衛星のみで所定値未満のDOPを算出できた場合は(図8のS5でYes)、電波品質の良い衛星のみを利用できるため、周辺障害物の密度に比例する既定のσRをそのままσRとするモードCを採用する。
<モードD>
 PN符号相関が参照可能であるが、遮蔽率最善の4衛星のみでは所定値未満のDOPを算出できない場合(5以上の衛星の選択が必要な場合)は(図8のS5でNo)、相対的に電波品質の悪い衛星も用いていることを示すため、既定のσRに劣後するσR’をσRとするモードDを採用する。このモードDでは、図16Aまたは図16Bを利用してσR’を算出する。なお、図16Aは、選択した全衛星が単峰性の場合に利用されるものであり、図16Bは、選択した衛星に多峰性のものが含まれる場合に利用されるものである。
In mode B described above, σR 1 ′ can be calculated by using the relationship of FIG. 15A or FIG. 15B.
<Mode C>
If PN code correlation can be referred to and DOP less than the predetermined value can be calculated only with the four satellites with the best shielding ratio (Yes in S5 in FIG. 8), only satellites with good radio quality can be used. A mode C is adopted in which a predetermined σ R 2 proportional to the density of objects is taken as σ R as it is.
<Mode D>
If PN code correlation can be referred to but DOP less than the predetermined value can not be calculated with only the four satellites with the best shielding ratio (if it is necessary to select five or more satellites) (No at S5 in FIG. 8), relative manner to indicate that it is also used bad satellite radio wave quality, employing the mode D to sigma] R of sigma] R 2 'subordinated to the default sigma] R 2. In this mode D, σR 2 ′ is calculated using FIG. 16A or 16B. 16A is used when all the selected satellites are unimodal, and FIG. 16B is used when the selected satellites include multi-modal ones.
 図16A、図16Bともに、縦軸はσR、横軸は(全衛星に含まれる相関ピーク数/衛星数)である。図16Aは、単峰性の衛星のみを使用する場合は、相関ピーク数とσR’が比例することを示している。一方、図16Bは、多峰性の衛星を使用する場合は、相関ピーク数が増えると、σR’が急激に上昇することを示している。 In both FIGS. 16A and 16B, the vertical axis is σR, and the horizontal axis is (the number of correlation peaks / the number of satellites included in all the satellites). FIG. 16A shows that the number of correlation peaks and σR 2 ′ are proportional when using only unimodal satellites. On the other hand, FIG. 16B shows that when multi-peak satellites are used, σ R 2 ′ rises sharply as the number of correlation peaks increases.
 以上で説明したモードDでは、図16Aまたは図16Bの関係を利用することで、σR’を算出できる。
<モードE>
 CN比が参照可能であり、CN比最善の4衛星のみで所定値未満のDOPを算出できた場合は(図10のS5でYes)、電波品質の良い衛星のみを利用できるため、前述のσRに(障害物の高さ)/(障害物までの距離)を乗算したσRをそのままσRとするモードEを採用する。なお、このσRは、反射が起こりやすい環境下ではσRより誤差リスクを大きめに見積もったものである。
<モードF>
 CN比が参照可能であるが、CN比最善の4衛星のみでは所定値未満のDOPを算出できない場合(5以上の衛星の選択が必要な場合)は(図10のS5でNo)、相対的に電波品質の悪い衛星も用いていることを示すため、既定のσRに劣後するσR’をσRとするモードFを採用する。このモードFでは、図17A~図17Cの何れかを利用してσR’を算出する。
In mode D described above, σR 2 ′ can be calculated by using the relationship of FIG. 16A or 16B.
<Mode E>
If the CN ratio can be referred to and the DOP less than the predetermined value can be calculated only with the four satellites with the best CN ratio (Yes in S5 of FIG. 10), only the satellites with good radio quality can be used. 2 to a sigma] R 3 multiplied by (the height of the obstacle) / (distance to the obstacle) as it adopts the mode E to sigma] R. In the environment where reflection easily occurs, this σ R 3 is estimated to have a larger error risk than σ R 2 .
<Mode F>
If the CN ratio can be referred to but the DOP less than the specified value can not be calculated with only the four satellites with the best CN ratio (if it is necessary to select more than five satellites) (No at S5 in FIG. 10), relative to indicate that it is also used bad satellite radio wave quality, adopts a mode F to sigma] R of sigma] R 3 'subordinated to the default sigma] R 3. In this mode F, σ R 3 ′ is calculated using any of FIGS. 17A to 17C.
 図17A、図17Bともに、縦軸はσR、横軸はCN比平均値である。図17Aは、CN比平均値が十分大きければσR’がσRに近似し、所定のCN比良好指標値を下回ればσR’が∞となる状況を示している。一方、図17Bは、CN比平均値が十分大きければσR’がσRに近似し、所定のCN比良好指標値と遮蔽発生指標値の間ではσR’が漸減し、所定の遮蔽発生指標値を下回ればσR’が∞となる状況を示している。 In both FIGS. 17A and 17B, the vertical axis is σR, and the horizontal axis is the CN ratio average value. Figure 17A, if the CN ratio average value is large enough sigma] R 3 'is similar to sigma] R 3, sigma] R 3 if falls below a predetermined CN ratio good index' indicates a situation where a ∞. On the other hand, in FIG. 17B, if the CN ratio average value is sufficiently large, σ R 3 ′ approximates to σ R 3 and σ R 3 ′ gradually decreases between the predetermined CN ratio good index value and the shielding occurrence index value, and the predetermined shielding occurrence occurs. Below the index value, it is shown that σ R 3 ′ becomes ∞.
 また、図17Cにおいて、縦軸はσR、横軸はξである。ξは数6で説明したものであるため、モードFにおいても、障害物に隠れた衛星の数が増えた場合や、障害物の陰に隠れた衛星からの電波の平均CN比が悪化した場合には、ξが大きくなり、σR’も大きくなることが分かる。 Further, in FIG. 17C, the vertical axis is σR, and the horizontal axis is ξ. Since ξ is the one described in equation 6, even in mode F, when the number of satellites hidden by an obstacle increases or when the average CN ratio of radio waves from satellites behind an obstacle deteriorates In this case, it is understood that ξ increases and σ R 3 ′ also increases.
 以上で説明したモードFでは、図17Aから図17Cの何れかの関係を利用することで、σR’を算出できる。
<モードG>
 PN符号相関とCN比が参照不可で、選択した衛星の数が4であり、それら衛星の遮蔽率が推定可能な場合は、所定のσRをそのままそのままσRとするモードGを採用する。なお、σRは、前述のσRよりも大きい値を設定したものである。
<モードH>
 PN符号相関とCN比が参照不可で、選択した衛星の数が5以上であり、それら衛星の遮蔽率が推定可能な場合は、相対的に電波品質の悪い衛星も用いていることを示すため、既定のσRに劣後するσR’をσRとするモードHを採用する。このモードHでは、図18を利用して遮蔽されている可能性のある衛星数に比例するσR’を算出する。
<モードI>
 PN符号相関とCN比が参照不可で、選択した衛星の数が4であり、それら衛星の遮蔽率が推定できない場合は、所定のσRをそのままそのままσRとするモードIを採用する。なお、σRは、前述のσRよりも大きい値を設定したものである。
<モードJ>
 PN符号相関とCN比が参照不可で、選択した衛星の数が5以上であり、それら衛星の遮蔽率が推定できない場合は、相対的に電波品質の悪い衛星も用いていることを示すため、既定のσRに劣後するσR’をσRとするモードJを採用する。このモードJでは、図19を利用して遮蔽されている可能性のある衛星数に比例するσR’を算出する。
<モードK>
 コールドスタートまたはウォームスタートの準備時間中は、衛星の電波をまだ受信できない状態であるため、実質的に∞を意味するσRをそのままそのまま誤差指標σRとするモードKを採用する。
<本実施例の自己位置推定方法>
 誤差指標値算出部13では、上述したモードA~モードKの何れかで算出したσRと、そのとき選択している複数の衛星の位置関係から算出したDOPの値とを掛け合わせ、その逆数を算出することで、GPS受信機21による自己位置推定の誤差指標値fを算出する。そして、この誤差指標値を、モード1~モード6のフローチャートに用いることで、各環境下での最善の衛星組合せを決定することができる。
In mode F described above, σR 3 ′ can be calculated by using any one of the relationships in FIGS. 17A to 17C.
<Mode G>
When the PN code correlation and the CN ratio are not referable, and the number of selected satellites is four, and the shielding ratio of those satellites can be estimated, mode G is adopted in which a predetermined σR 4 is used as it is as σR. Note that σ R 4 is set to a value larger than the above-mentioned σ R 3 .
<Mode H>
If the PN code correlation and CN ratio can not be referred to and the number of selected satellites is 5 or more, and the shielding ratio of those satellites can be estimated, it indicates that satellites with relatively poor radio quality are also used. In this case, mode H is adopted in which σ R 4 ′, which is subordinate to the predetermined σ R 4 , is σ R. In this mode H, σ R 4 ′ proportional to the number of potentially occluded satellites is calculated using FIG.
<Mode I>
When the PN code correlation and the CN ratio can not be referred to, the number of selected satellites is 4, and the shielding ratio of the satellites can not be estimated, mode I is adopted in which a predetermined σR 5 is used as it is as σR. Note that σ R 5 is set to a value larger than the above-mentioned σ R 4 .
<Mode J>
If the PN code correlation and CN ratio can not be referred to, and the number of selected satellites is 5 or more, and the shielding ratio of those satellites can not be estimated, it indicates that satellites with relatively poor radio quality are also used, A mode J is adopted in which σ R is a σ R 5 ′ that is subordinate to the default σ R 5 . In this mode J, σ R 5 ′ proportional to the number of potentially occluded satellites is calculated using FIG.
<Mode K>
Since the satellite radio wave can not be received during the cold start or warm start preparation time, mode K is adopted in which σR 6 substantially meaning ∞ is used as it is as the error index σ R.
<Self-position estimation method of this embodiment>
The error index value calculation unit 13 multiplies σR calculated in any of the above-mentioned modes A to K by the value of DOP calculated from the positional relationship of a plurality of satellites selected at that time, and the reciprocal thereof is calculated By calculating, the error index value f of self-position estimation by the GPS receiver 21 is calculated. Then, by using this error index value in the flowcharts of mode 1 to mode 6, the best satellite combination under each environment can be determined.
 なお、この誤差指標値の推定結果を、年月日と時刻の情報とともに地図に格納し、次回以降の走行において経路選択時の参考情報としても良い。年月日と時刻の情報をつけることで、そのときの全衛星の配置を衛星の運行情報から推定することができる。 The estimation result of the error index value may be stored in the map together with the date and time information and may be used as reference information at the time of route selection in the next and subsequent traveling. By providing date and time information, the arrangement of all satellites at that time can be estimated from the satellite operation information.
 以上で説明した、本実施例の自己位置推定システムによれば、GPS受信機21の周囲環境や各衛星から届く電波状態が急変した場合であっても、その状況に応じた誤差指標値σR・DOPを逐次算出し、それを参照して最適な衛星の組合せを逐次更新できる。そして、自己位置推定部12では、その組合せの衛星からの電波に基づいて、自己位置推定値rを算出し、自己位置推定統括部15では、自己位置推定値rと誤差指標値σR・DOPを用いて、最終的な自己位置推定値r^を推定する。すなわち、本実施例によれば、GPSシステムの環境変化に対応する安定した自己位置推定を容易に継続することできる。 According to the self-position estimation system of the present embodiment described above, even if the surrounding environment of the GPS receiver 21 or the radio wave condition reached from each satellite suddenly changes, the error index value σ R · · · according to the situation. The DOP can be calculated sequentially, and the optimum combination of satellites can be updated sequentially with reference to it. Then, the self position estimation unit 12 calculates the self position estimation value r based on the radio waves from the satellites of the combination, and the self position estimation generalization unit 15 calculates the self position estimation value r and the error index value σR · DOP. Use to estimate the final self position estimate r ^. That is, according to this embodiment, stable self-position estimation corresponding to environmental change of the GPS system can be easily continued.
 次に、本発明の実施例3の自己位置推定システムを説明する。なお、上述した実施例との共通点は重複説明を省略する。 Next, a self-position estimation system according to a third embodiment of the present invention will be described. The same points as the above-described embodiment will not be repeatedly described.
 本実施例の自己位置推定システムは、移動体200が備えるカーナビゲーションシステムとの連動を図ったものである。 The self-position estimation system of this embodiment is intended to be interlocked with a car navigation system provided in the mobile unit 200.
 すなわち、カーナビゲーションシステムが、到達目標位置までの経路を複数作成し、その中からひとつを選んで移動を行う場合、現在時刻と移動体200の平均移動速度から目標点到達時刻を予想し、現在から予想した時刻までの衛星配置を取得しておき、カーナビゲーションシステムが保持する地図を基に、各経路における、C/N比が高く、PN信号の遅延プロファイルが単峰性を有する衛星数を推定し、C/N比が高く、PN信号の遅延プロファイルが単峰性を有する衛星数が多い経路を選択するように自律移動を開始したり、搭乗者に案内を出す。 That is, when the car navigation system creates a plurality of routes to the destination position and selects one of them to move, the target point arrival time is predicted from the current time and the average moving speed of the moving object 200, The satellite arrangement from the point of time to the predicted time is acquired, and based on the map held by the car navigation system, the number of satellites with high C / N ratio and PN signal delay profile with unimodality in each route. It estimates, C / N ratio is high, and the delay profile of PN signal starts autonomous movement so as to select a route with many satellites having unimodality, and provides guidance to the passenger.
 このような本実施例によれば、より品質の良い電波を利用できる移動経路を容易に選択することができる。 According to such a present Example, the movement path | route which can use an electromagnetic wave with a more favorable quality can be selected easily.
100 自己位置推定システム、11、11a 外界センサ、12、12a 自己位置推定部、13、13a 誤差指標値算出部、14、14a 重み設定部、15 自己位置推定統括部、16 制御装置、200 移動体、21 GPS受信機、22 カメラ、23 ライダ、23a レーダ、23b レーザ、23c ソナー、24 輪速・舵角センサ、25 降雨量センサ、r 真の自己位置、r、r 自己位置推定値、r^ 最終的な自己位置推定値、w、w 重み、DOP 位置精度劣化度 Reference Signs List 100 self position estimation system 11, 11a external sensor 12, 12a self position estimation unit 13, 13a error index value calculation unit 14, 14a weight setting unit 15, self position estimation generalization unit 16, control device 200 mobile unit , 21 GPS receiver, 22 camera, 23 lidar, 23a radar, 23b laser, 23c sonar, 24 wheel speed and steering angle sensor, 25 rainfall sensor, r 0 true self position, r, r 1 self position estimate, r ^ final self position estimate w, w 1 weight, DOP position accuracy degradation

Claims (10)

  1.  複数の外界センサの出力を参照して自己位置を推定する自己位置推定システムであって、
     各外界センサの測定誤差の指標となる誤差指標値を各々推定する誤差指標値算出部と、
     各誤差指標値に基づいて、各外界センサの重みを設定する重み設定部と、
     各外界センサの出力に基づいて推定した自己位置に対し前記重みを用いて加重平均をとり最終的な自己位置を推定する自己位置推定統括部と、
     を具備することを特徴とする自己位置推定システム。
    A self-position estimation system for estimating self-position with reference to outputs of a plurality of external sensors, comprising:
    An error index value calculation unit that estimates an error index value that is an index of the measurement error of each external sensor;
    A weight setting unit that sets the weight of each external sensor based on each error index value;
    A self-position estimation generalization unit that takes a weighted average using the weights on self-positions estimated based on the output of each external sensor, and estimates a final self-position;
    A self-position estimation system comprising:
  2.  請求項1に記載の自己位置推定システムにおいて、
     前記重み設定部で設定する各外界センサの重みは、各誤差指標値の逆数に比例する値であることを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 1,
    The weight of each external sensor set by the weight setting unit is a value proportional to the reciprocal of each error index value.
  3.  複数のGPS衛星の電波を参照して自己位置を推定する自己位置推定システムであって、
     前記GPS衛星の電波を受信するGPS受信機と、
     電波のCN比が所定値以上であるGPS衛星を選択する第一の衛星選択手段と、
     電波のPN符号相関が単峰性である衛星を選択する第二の衛星選択手段と、
     周囲障害物による遮蔽率が所定値以下の衛星を選択する第三の衛星選択手段と、
     選択された複数のGPS衛星の電波に基づいて自己位置を推定する自己位置推定部と、
     を具備し、
     前記衛星選択手段の出力の組合せに応じて、自己位置推定に用いるGPS衛星の組合せを異ならせることを特徴とする自己位置推定システム。
    A self position estimation system for estimating self position by referring to radio waves of a plurality of GPS satellites,
    A GPS receiver for receiving radio waves of the GPS satellites;
    First satellite selection means for selecting a GPS satellite whose CN ratio of radio waves is equal to or greater than a predetermined value;
    Second satellite selection means for selecting a satellite whose PN code correlation of radio waves is unimodal;
    Third satellite selection means for selecting a satellite whose shielding rate due to surrounding obstacles is lower than a predetermined value;
    A self position estimation unit that estimates self position based on radio waves of a plurality of selected GPS satellites;
    Equipped with
    A self-position estimation system characterized in that a combination of GPS satellites used for self-position estimation is different according to a combination of outputs of the satellite selection means.
  4.  請求項3に記載の自己位置推定システムにおいて、
     電波のCN比が所定値以上であり、電波のPN符号相関が単峰性である衛星を4以上選択できる場合は、電波のCN比が最善の4つのGPS衛星を選択してDOPを算出し、
     算出したDOPが所定値を超える場合は、所定値以下になるまで、次に電波のCN比が高いGPS衛星を順次追加してDOPを算出し、
     前記所定値以下のDOPとなったときのGPS衛星の組合せを用いて自己位置を推定することを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 3,
    If the CN ratio of radio waves is equal to or greater than a predetermined value and it is possible to select four or more satellites with single-peak PN code correlation of radio waves, select four GPS satellites with the best CN ratio of radio waves and calculate DOP ,
    If the calculated DOP exceeds the predetermined value, then the GPS satellites with the next highest radio CN ratio are sequentially added until the DOP falls below the predetermined value to calculate DOP,
    A self-position estimation system characterized by estimating a self-position using a combination of GPS satellites when the DOP is less than the predetermined value.
  5.  請求項3に記載の自己位置推定システムにおいて、
     電波のCN比が所定値以上であり、前記遮蔽率が所定値以下である衛星を4以上選択できる場合は、前記遮蔽率が最善の4つのGPS衛星を選択してDOPを算出し、
     算出したDOPが所定値を超える場合は、DOPが所定値以下になるまで、次に遮蔽率が低いGPS衛星を順次追加してDOPを算出し、
     前記所定値以下のDOPとなったときのGPS衛星の組合せを用いて自己位置を推定することを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 3,
    When the CN ratio of radio waves is equal to or more than a predetermined value and four or more satellites having the shielding ratio equal to or less than the predetermined value can be selected, the four GPS satellites having the best shielding ratio are selected to calculate DOP.
    If the calculated DOP exceeds a predetermined value, GPS satellites with the next lowest shielding ratio are sequentially added to calculate the DOP until the DOP falls below the predetermined value.
    A self-position estimation system characterized by estimating a self-position using a combination of GPS satellites when the DOP is less than the predetermined value.
  6.  請求項3に記載の自己位置推定システムにおいて、
     電波のPN符号相関が単峰性である衛星を4以上選択できる場合は、仰角が最善の4つのGPS衛星を選択してDOPを算出し、
     算出したDOPが所定値を超える場合は、DOPが所定値以下になるまで、次に仰角が高いGPS衛星を順次追加してDOPを算出し、
     前記所定値以下のDOPとなったときのGPS衛星の組合せを用いて自己位置を推定することを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 3,
    If four or more satellites with single-peak PN code correlation of radio waves can be selected, DOP is calculated by selecting the four GPS satellites with the best elevation angle,
    If the calculated DOP exceeds a predetermined value, GPS satellites having a higher elevation angle are sequentially added to calculate the DOP until the DOP falls below the predetermined value.
    A self-position estimation system characterized by estimating a self-position using a combination of GPS satellites when the DOP is less than the predetermined value.
  7.  請求項3に記載の自己位置推定システムにおいて、
     電波のCN比が所定値以上である衛星を4以上選択できる場合は、電波のCN比が最善の4つのGPS衛星を選択してDOPを算出し、
     算出したDOPが所定値を超える場合は、所定値以下になるまで、次に電波のCN比が高いGPS衛星を順次追加してDOPを算出し、
     前記所定値以下のDOPとなったときのGPS衛星の組合せを用いて自己位置を推定することを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 3,
    When it is possible to select four or more satellites whose CN ratio of radio waves is a predetermined value or more, select four GPS satellites whose CN ratio of radio waves is the best and calculate DOP,
    If the calculated DOP exceeds the predetermined value, then the GPS satellites with the next highest radio CN ratio are sequentially added until the DOP falls below the predetermined value to calculate DOP,
    A self-position estimation system characterized by estimating a self-position using a combination of GPS satellites when the DOP is less than the predetermined value.
  8.  請求項3に記載の自己位置推定システムにおいて、
     前記遮蔽率が所定値以下である衛星を4以上選択できる場合は、前記遮蔽率が最善の4つのGPS衛星を選択してDOPを算出し、
     算出したDOPが所定値を超える場合は、DOPが所定値以下になるまで、次に遮蔽率が低いGPS衛星を順次追加してDOPを算出し、
     前記所定値以下のDOPとなったときのGPS衛星の組合せを用いて自己位置を推定することを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 3,
    When it is possible to select four or more satellites whose shielding ratio is equal to or less than a predetermined value, the four GPS satellites having the best shielding ratio are selected to calculate DOP,
    If the calculated DOP exceeds a predetermined value, GPS satellites with the next lowest shielding ratio are sequentially added to calculate the DOP until the DOP falls below the predetermined value.
    A self-position estimation system characterized by estimating a self-position using a combination of GPS satellites when the DOP is less than the predetermined value.
  9.  請求項3に記載の自己位置推定システムにおいて、
     仰角が最善の4つのGPS衛星を選択してDOPを算出し、
     算出したDOPが所定値を超える場合は、DOPが所定値以下になるまで、次に仰角が高いGPS衛星を順次追加してDOPを算出し、
     前記所定値以下のDOPとなったときのGPS衛星の組合せを用いて自己位置を推定することを特徴とする自己位置推定システム。
    In the self-position estimation system according to claim 3,
    Calculate the DOP by selecting the four GPS satellites with the best elevation angle,
    If the calculated DOP exceeds a predetermined value, GPS satellites having a higher elevation angle are sequentially added to calculate the DOP until the DOP falls below the predetermined value.
    A self-position estimation system characterized by estimating a self-position using a combination of GPS satellites when the DOP is less than the predetermined value.
  10.  請求項4から請求項9の何れか一項に記載の自己位置推定システムにおいて、
     前記GPS受信機の出力の重みは前記DOPの逆数に比例する値であることを特徴とする自己位置推定システム。
    The self-position estimation system according to any one of claims 4 to 9,
    The weight of the output of the GPS receiver is a value proportional to the reciprocal of the DOP.
PCT/JP2017/045664 2017-12-20 2017-12-20 Self-position estimation system WO2019123558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045664 WO2019123558A1 (en) 2017-12-20 2017-12-20 Self-position estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045664 WO2019123558A1 (en) 2017-12-20 2017-12-20 Self-position estimation system

Publications (1)

Publication Number Publication Date
WO2019123558A1 true WO2019123558A1 (en) 2019-06-27

Family

ID=66993216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045664 WO2019123558A1 (en) 2017-12-20 2017-12-20 Self-position estimation system

Country Status (1)

Country Link
WO (1) WO2019123558A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021070308A1 (en) * 2019-10-09 2021-04-15
WO2022107453A1 (en) * 2020-11-18 2022-05-27 日本電信電話株式会社 Satellite signal reception device, satellite signal processing method, and program
WO2023032277A1 (en) * 2021-09-01 2023-03-09 ソニーグループ株式会社 Position measurement device, position measurement method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271607A (en) * 1995-03-30 1996-10-18 Aisin Seiki Co Ltd Positioning apparatus of moving body
JPH10253739A (en) * 1997-03-14 1998-09-25 Japan Aviation Electron Ind Ltd Method and system for determining combination of satellite in gps receiver
WO2013047503A1 (en) * 2011-09-27 2013-04-04 三菱重工業株式会社 Location identification device, location identification method, and program
US20140159950A1 (en) * 2012-12-10 2014-06-12 Texas Instruments Incorporated Method, system, and apparatus for reducing inaccuracy in global navigation satellite system position and velocity solution
US20170074659A1 (en) * 2015-09-16 2017-03-16 Here Global B.V. Method and apparatus for providing a location data error map
JP2017116414A (en) * 2015-12-24 2017-06-29 株式会社デンソー Positioning device and positioning result using system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271607A (en) * 1995-03-30 1996-10-18 Aisin Seiki Co Ltd Positioning apparatus of moving body
JPH10253739A (en) * 1997-03-14 1998-09-25 Japan Aviation Electron Ind Ltd Method and system for determining combination of satellite in gps receiver
WO2013047503A1 (en) * 2011-09-27 2013-04-04 三菱重工業株式会社 Location identification device, location identification method, and program
US20140159950A1 (en) * 2012-12-10 2014-06-12 Texas Instruments Incorporated Method, system, and apparatus for reducing inaccuracy in global navigation satellite system position and velocity solution
US20170074659A1 (en) * 2015-09-16 2017-03-16 Here Global B.V. Method and apparatus for providing a location data error map
JP2017116414A (en) * 2015-12-24 2017-06-29 株式会社デンソー Positioning device and positioning result using system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021070308A1 (en) * 2019-10-09 2021-04-15
JP7324388B2 (en) 2019-10-09 2023-08-10 日本電信電話株式会社 Unmanned aerial vehicle and method of controlling unmanned aerial vehicle
WO2022107453A1 (en) * 2020-11-18 2022-05-27 日本電信電話株式会社 Satellite signal reception device, satellite signal processing method, and program
JP7485081B2 (en) 2020-11-18 2024-05-16 日本電信電話株式会社 Satellite signal receiving device, satellite signal processing method, and program
WO2023032277A1 (en) * 2021-09-01 2023-03-09 ソニーグループ株式会社 Position measurement device, position measurement method, and program

Similar Documents

Publication Publication Date Title
US20200216076A1 (en) Method for determining the location of an ego-vehicle
US20170023659A1 (en) Adaptive positioning system
US10289122B2 (en) Communication link accessibility aware navigation
US9767372B2 (en) Target detection apparatus and target detection method
US11555705B2 (en) Localization using dynamic landmarks
RU2720140C1 (en) Method for self-position estimation and self-position estimation device
CN109937341B (en) Method and device for estimating the position of a person
US20130116908A1 (en) Method and system for controlling relative position between vehicles using a mobile base station
KR20170071207A (en) Autonomous driving method and system for determing position of car graft on gps, uwb and v2x
WO2019123558A1 (en) Self-position estimation system
KR101803195B1 (en) Apparatus and method for adaptively controlling multi-sensor according to a running environment
EP2597485A2 (en) Rapid lidar image correlation for ground navigation
US20210278217A1 (en) Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium
CN113108791A (en) Navigation positioning method and navigation positioning equipment
WO2018168961A1 (en) Own-position estimating device
CN111788498A (en) Mobile body positioning system, method, and program
US20130082873A1 (en) Moving Information Determination Apparatus, a Receiver, and a Method Thereby
KR20210073281A (en) Method and apparatus for estimating motion information
EP3674664A1 (en) In-vehicle processing device
WO2016196717A2 (en) Mobile localization using sparse time-of-flight ranges and dead reckoning
KR20210034802A (en) Location measuring method using multi antenna and apparatus therefor
JP2016020812A (en) Positioning correction information supplying device and satellite positioning device
Pollard et al. Improved low cost GPS localization by using communicative vehicles
Tsogas et al. Using digital maps to enhance lane keeping support systems
TWI486614B (en) Location identification apparatus, location identification method, and program therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP