WO2019119933A1 - 含铁污水回灌采煤破坏地层的保/净水方法 - Google Patents

含铁污水回灌采煤破坏地层的保/净水方法 Download PDF

Info

Publication number
WO2019119933A1
WO2019119933A1 PCT/CN2018/109545 CN2018109545W WO2019119933A1 WO 2019119933 A1 WO2019119933 A1 WO 2019119933A1 CN 2018109545 W CN2018109545 W CN 2018109545W WO 2019119933 A1 WO2019119933 A1 WO 2019119933A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
iron
mining
aquifer
drilling
Prior art date
Application number
PCT/CN2018/109545
Other languages
English (en)
French (fr)
Inventor
鞠金峰
李全生
许家林
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2019125487A priority Critical patent/RU2730276C1/ru
Priority to CA3049835A priority patent/CA3049835C/en
Publication of WO2019119933A1 publication Critical patent/WO2019119933A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the invention relates to a method for protecting and purifying water resources, in particular to a water purification/purification method suitable for reclaiming coal stratum damaged by iron-containing sewage in the field of stratum aquifer restoration and water resources protection in coal mining areas.
  • the mature iron removal method is to uniformly transport the iron-containing sewage to the sewage treatment plant, and through the process of aeration, oxidation reaction, precipitation filtration and the like by artificially adding the chemical agent, the iron component in the sewage is caused to form Fe by chemical reaction. OH) 3 and flocculation and precipitation, and finally complete the iron removal of sewage.
  • the Fe(OH) 3 flocculated sediment formed by the iron removal can effectively block the mining fracture.
  • the water leakage channel of the aquifer in the formation can be effectively isolated, and the iron-containing sewage can be effectively removed by iron removal, thereby achieving the purpose of water-saving coal mining and natural purification of the coal mine. Therefore, it is necessary to carry out the special design of the water/water purification method for the coal-bearing wastewater reclaimed coal mining damage stratum based on the development range and distribution characteristics of the mining overburden hydraulic fracture.
  • the present invention provides a method for protecting/purifying water from a coal-bearing wastewater reclaimed coal mining damage formation, which comprises iron-containing sewage and oxygen-containing water/weak alkali water through ground drilling. Recharged into the aquifer damaged by coal mining, the Fe(OH) 3 flocculated sediment formed by the oxidation reaction of iron components in the iron-containing sewage is used to block the mining fissure, thereby isolating the water loss channel of the aquifer in the formation, and is effective The iron component of iron-containing sewage is reduced, and finally the groundwater resource protection in the coal mine area and the iron-removing effect of the iron-containing sewage are achieved.
  • a method for retaining/purifying water in a stratum of coal-bearing wastewater reclaimed coal mining according to the development characteristics and distribution range of the water-conducting fissures of the overlying strata, respectively, the surface of the mining area and the central surface corresponding to the surface of the iron-containing sewage recharge drilling
  • the Fe(OH) 3 flocculated sediment formed by the oxidation reaction of the iron component in the iron-containing sewage with the oxygen-containing water/weak alkali water is used to effectively block the mining crack.
  • the generated Fe(OH) 3 floc can gradually precipitate and form an iron active filter membrane in a certain range near the final hole of the recharged borehole, and play a catalytic role in the oxidation reaction of iron (or ferrous) ions, effectively ensuring iron removal. effect.
  • the iron component is tested for the influx of water; if the iron component is still exceeding the standard, the underground water is transported through the pipeline to the relatively high ground, and the borehole is used to rebuild the borehole.
  • the oxidation reaction and iron removal are continued in the reclaimed aquifer; if the underground iron content of the underground water does not exceed the standard, it is directly transported to other mining areas or ground reuse.
  • the coal mining area where the stratum aquifer is damaged by mining is judged. If there is an aquifer in the height range of the water-conducting fissure zone, the corresponding water-conducting fissure zone has already communicated with the aquifer, and the corresponding re-drilling hole needs to be arranged; if there is no aquifer in the height range of the water-conducting fissure zone, no construction is needed. Drill holes.
  • the height of the water-conducting fracture zone can be detected by a field measurement method according to a drilling and rinsing fluid loss method, or a theoretical calculation method such as a “predicted method of the height of a water-conducting fracture zone based on a key layer position”.
  • a field measurement method according to a drilling and rinsing fluid loss method
  • a theoretical calculation method such as a “predicted method of the height of a water-conducting fracture zone based on a key layer position”.
  • the iron-containing sewage recirculation drilling hole is arranged near the outer side of the mining area boundary and in the center of the mining area, and the drilling hole arranged near the outer side of the mining area boundary should be located outside the lateral development boundary of the water guiding fracture zone, and the distance is taken.
  • the area boundary should reach 30-40m.
  • the oxygen-containing water/weak alkali water recirculation drilling hole is arranged near the inner side of the boundary of the mining area, and is 10-20 m away from the mining boundary.
  • the iron-containing sewage recirculation drilling hole and the oxygen-containing water/weak alkali water recirculation drilling hole may be arranged in groups along the strike or inclination interval of 1000 m.
  • the construction method of the surface iron-containing sewage recirculation drilling hole and the oxygen-containing water/weak alkali water recirculation drilling hole is: opening the hole with a diameter of 120-140 mm during the drilling construction, and drilling into the guided water
  • the fracture zone communicates a certain depth below the top interface of the aquifer, and the distance between the borehole terminal and the aquifer top interface communicating with the water-conducting fracture zone shall not be less than 0.3-0.5 of the aquifer thickness communicated by the water-conducting fracture zone. Times.
  • the casing hole is used within 10m below the top surface of the aquifer that communicates with the water-conducting fracture zone, and the hole in the aquifer that communicates with the water-conducting fracture zone uses the flower tube protection hole. After the drilling is applied, the closed cover is covered on the opening, and the water supply pipe is connected to the closed cover.
  • iron component in the drainage of the goaf still exceeds the relevant national standards, it will be transported to the relatively high position of the mining area by pipeline, and re-recharged to the guide by re-injecting the borehole in the nearby roadway. In the aquifer that communicates with the water fissure zone, iron removal purification is performed again.
  • iron composition in the goaf drainage is lower than the relevant national standards, it will be directly transported to other underground mining areas or ground reuse by pipeline.
  • the position of the final hole of the recirculation drilling hole of the underground construction shall be about 5 m above the bottom interface of the aquifer communicated by the water guiding fracture zone, and the horizontal distance of the final hole position from the mining boundary is 10-20 m, and is in mining.
  • the casing is protected by a casing in the unfaulted fracture zone, and the flower tube is used in the range of the water guiding fracture zone.
  • the invention is based on the development regularity and distribution characteristics of the hydraulic fractures of the overlying strata, and fully utilizes the Fe(OH) 3 flocculation sediment formed by the oxidation reaction of the iron component in the iron-containing sewage to block the water-conducting fissure, thereby isolating the water content of the formation.
  • the water leakage channel of the layer effectively reduces the iron composition of the iron-containing sewage, realizes the in-situ protection of the formation aquifer in the coal mine area and the iron removal purification effect of the iron-containing sewage, which can protect and efficiently utilize the coal mining water resources in the mining area. Providing protection, the method of use is reliable and practical. Compared with the prior art, the present invention has the following advantages:
  • Figure 1 is a plan view of a refilling drilling arrangement of the present invention
  • Figure 2 is a cross-sectional view of the refilling drilling arrangement A-A of the present invention.
  • Figure 3 is a cross-sectional view of the refilling drilling arrangement B-B of the present invention.
  • Figure 4 is a cross-sectional view of the recirculation borehole of the present invention.
  • Figure 5 is a schematic view showing the development height of the columnar and water-conducting fracture zone of the Z301 working face of a coal mine 22301 in the actual application process of the present invention
  • Figure 6 is a plan view of the recirculation drilling arrangement of a 22301 working face of a coal mine in the actual application process of the present invention.
  • 1 means iron-containing sewage recharge drilling
  • 2 means oxygen-containing water/weak alkali water recirculation drilling
  • 3 means underground construction re-drilling
  • 4 means casing
  • 5 means flower tube
  • 6 means Fe(OH 3 active filter.
  • the method for maintaining/purifying water in the stratum of the coal-bearing wastewater reclaimed coal mining according to the present invention is based on the development characteristics and distribution range of the water-conducting fractures of the strata, respectively, at the boundary of the mining area.
  • the central part of the surface of the construction of iron-containing sewage recirculation drilling 1 and oxygen-containing water / weak alkaline water recharge drilling 2 the use of iron in the iron-containing sewage and oxygen-containing water / weak alkali water oxidation reaction of Fe (OH) 3 flocculation of sediment, effective sealing of mining cracks.
  • the generated Fe(OH) 3 floc can gradually precipitate into the iron active filter membrane 6 in a certain range near the final hole of the recharged borehole, and play a catalytic role in the oxidation reaction of iron (or ferrous) ions, effectively ensuring the removal. Iron effect.
  • the iron component is tested for the influx of water; if the iron component is still exceeding the standard, the underground water is transported through the pipeline to the relatively high ground, and the underground drilling is used to reclaim the drill.
  • the hole 3 is re-recharged into the aquifer communicating with the water-conducting fracture zone to continue the oxidation reaction and iron removal purification; and if the underground water-filled iron component does not exceed the standard, it is directly transported to other mining areas or ground reuse. Specifically, the following steps are included:
  • the coal mining area where the stratum aquifer is damaged by mining is judged. If there is an aquifer in the height range of the water-conducting fissure zone, the corresponding water-conducting fissure zone has already communicated with the aquifer, and the corresponding re-drilling hole needs to be arranged; if there is no aquifer in the height range of the water-conducting fissure zone, no construction is needed. Drill holes.
  • the height of the water-conducting fracture zone can be detected by the on-site measurement method according to the drilling and rinsing fluid leakage method, or the theoretical calculation method such as the "predicting method of the height of the water-conducting fracture zone based on the key layer position" can be used.
  • the iron-containing sewage recirculation drilling hole is arranged near the outer side of the mining area boundary and in the center of the mining area, and the drilling hole arranged near the outer side of the mining area boundary should be located outside the lateral development boundary of the water guiding fracture zone, and the boundary of the mining area should be It reaches 30-40m.
  • the oxygen-containing water/weak alkali water recirculation drilling hole is arranged near the inner side of the boundary of the mining area, and is 10-20 m away from the mining boundary.
  • the iron-containing sewage recharge drilling hole and the oxygen-containing water/weak alkali water recirculation drilling hole may be arranged in groups along the strike or inclination interval of 1000m.
  • the construction method of the surface iron-containing sewage recirculation drilling hole and the oxygen-containing water/weak alkali water re-drilling hole is as follows: when drilling, the hole is opened with a diameter of 120-140 mm, and the drilling is required to communicate with the water-conducting fracture zone.
  • the depth of the aquifer top interface is a certain depth, and the distance between the borehole end hole and the water-conducting fracture zone is not less than 0.3-0.5 times the thickness of the aquifer.
  • Casing 4 is used in the 10m below the top surface of the aquifer that communicates with the surface of the water-conducting fissure zone.
  • the borehole in the aquifer that communicates with the water-conducting fissure zone uses the flower tube 5 to protect the hole. After the drilling is applied, the closed cover is covered on the opening, and the water supply pipe is connected to the closed cover.
  • iron component in the drainage of the goaf still exceeds the relevant national standards, it will be transported to the relatively high position of the mining area by pipeline, and re-recharged to the guide by re-injecting the borehole in the nearby roadway. In the aquifer that communicates with the water fissure zone, iron removal purification is performed again.
  • iron composition in the goaf drainage is lower than the relevant national standards, it will be directly transported to other underground mining areas or ground reuse by pipeline.
  • the final hole position of the recirculation drilling hole of the underground construction shall be about 5 m above the bottom interface of the aquifer communicated by the water guiding fracture zone, and the horizontal distance of the final hole position from the mining boundary is 10-20 m, and is located inside the mining boundary.
  • the casing is protected by a casing in the unfaulted fracture zone, and the flower tube is used in the range of the water guiding fracture zone.
  • the figure shows the development height of the Z1 borehole column and the water-conducting fracture zone in the mining area during the actual application of the 22301 working face of a coal mine. It can be seen from the figure that the overburden guide caused by the mining of 22301 working face The water fissure zone has communicated with the formation aquifer. Therefore, it is necessary to carry out ground drilling and recharge of iron-containing sewage and oxygen-containing/weak alkali water in the mining area of the working face.
  • the arrangement of the recirculation drilling is carried out at intervals of 1000m along the direction of the mining direction on both sides of the working face, and at the same time
  • the corresponding working face of the two groups of recirculating boreholes is also arranged with iron-containing sewage recharged boreholes in the middle.
  • the depth of the final hole of the recharged hole is 60m, which has entered the aquifer of 41.54m (0.3-0.5 times of the thickness of the aquifer).
  • the invention is based on the development regularity and distribution characteristics of the hydraulic fractures of the overlying strata, and fully utilizes the Fe(OH) 3 flocculation sediment formed by the oxidation reaction of the iron component in the iron-containing sewage to block the water-conducting fissure, thereby isolating the water content of the formation.
  • the water leakage channel of the layer effectively reduces the iron composition of the iron-containing sewage, realizes the in-situ protection of the formation aquifer in the coal mine area and the iron removal purification effect of the iron-containing sewage, which can protect and efficiently utilize the coal mining water resources in the mining area. Provide protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

公开了一种含铁污水回灌采煤破坏地层的保/净水方法。该方法分别在采区边界和中部对应地表施工含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔,利用含铁污水中铁质成分与含氧水/弱碱水氧化反应生成的Fe(OH) 3絮凝沉淀物,对采动裂隙进行有效封堵。生成的Fe(OH) 3絮凝物能在回灌钻孔终孔附近一定范围内逐步沉淀形成铁质活性滤膜,对铁或亚铁离子的氧化反应起到催化剂作用,有效保证除铁效果。在井下采空区地势低洼处对涌出水资源进行铁质成分测试;若铁质成分仍然超标,则将井下涌水通过管路输送至地势相对较高处,利用井下仰斜施工钻孔重新回灌至地层含水层中继续进行氧化反应和除铁;而若井下涌水铁质成分未超标,则直接输送至其它采区或地面复用。

Description

含铁污水回灌采煤破坏地层的保/净水方法 技术领域
本发明涉及一种水资源保护与净化方法,尤其是一种适用于煤矿区地层含水层修复与水资源保护领域中的含铁污水回灌采煤破坏地层的保/净水方法。
背景技术
煤炭地下开采将引起上覆岩层的移动与破坏,从而在覆岩中形成采动裂隙;覆岩采动裂隙产生既为区域水资源流失提供了通道,同时也成为矿区生态环境损伤的地质根源。因此,如何控制采动覆岩导水裂隙的发育、封闭地下含水层水资源的漏失通道,从而改善和保护煤矿区的生态环境,是目前大多数煤矿区面临的重大技术难题。
另一方面,煤矿区及其周边城镇居民的日常生活和工业生产会产生大量的污水,这些污水中通常会含有超标的铁质成分,除铁成为这些污水人工净化处理的必要工序。已有成熟的除铁做法是将含铁污水统一输送至污水处理厂,通过人工添加药剂经由曝气、氧化反应、沉淀过滤等流程,促使污水中的铁质成分因化学反应作用而形成Fe(OH) 3并絮凝沉淀,最终完成污水的除铁。
受此启发,若能将上述含铁污水的除铁过程转移至采动破坏岩体的裂隙中,则除铁形成的Fe(OH) 3絮凝沉淀物将能对采动裂隙进行有效封堵,如此既可有效隔绝地层含水层的水漏失通道,又能对含铁污水进行有效的除铁净化,达到煤矿区保水采煤和污水自然净化的目的。因此,有必要基于采动覆岩导水裂隙的发育范围和分布特征,开展含铁污水回灌采煤破坏地层的保/净水方法的专门设计。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种含铁污水回灌采煤破坏地层的保/净水方法,通过地面钻孔将含铁污水和含氧水/弱碱水回灌至采煤破坏的地层含水层中,利用含铁污水中铁质成分氧化反应生成的Fe(OH) 3絮凝沉淀物对采动裂隙进行封堵,从而隔绝地层含水层水漏失通道,并有效削减含铁污水的铁质成分,最终达到煤矿区地下水资源保护与含铁污水的除铁净化作用。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种含铁污水回灌采煤破坏地层的保/净水方法,根据采动覆岩导水裂隙的发育特征和分布范围,分别在采区边界和中部对应地表施工含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔,利用含铁污水中铁质成分与含氧水/弱碱水氧化反应生成的Fe(OH) 3絮凝 沉淀物,对采动裂隙进行有效封堵。生成的Fe(OH) 3絮凝物能在回灌钻孔终孔附近一定范围内逐步沉淀形成铁质活性滤膜,对铁(或亚铁)离子的氧化反应起到催化剂作用,有效保证除铁效果。同时,在井下采空区地势低洼处对涌出水资源进行铁质成分测试;若铁质成分仍然超标,则将井下涌水通过管路输送至地势相对较高处,利用井下仰斜施工钻孔重新回灌至地层含水层中继续进行氧化反应和除铁;而若井下涌水铁质成分未超标,则直接输送至其它采区或地面复用。
具体包括以下步骤:
a.根据覆岩导水裂隙带高度和地质钻孔柱状判断地层含水层受采动破坏的采煤区域。若导水裂隙带高度范围内存在含水层,则对应区域导水裂隙带已沟通含水层,需要布置相应的回灌钻孔;若导水裂隙带高度范围内不存在含水层,则无需施工回灌钻孔。
优选的:所述导水裂隙带高度可根据钻孔冲洗液漏失量法等现场实测方法进行工程探测,也可利用“基于关键层位置的导水裂隙带高度的预计方法”等理论计算方法进行判断。
b.在导水裂隙带沟通地层含水层的采区对应地表进行含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔的施工。
优选的:所述含铁污水回灌钻孔布置于采区边界外侧附近和采区中央,布置于采区边界外侧附近的钻孔应位于导水裂隙带侧向发育边界之外,其距离采区边界应达到30-40m。
优选的:所述含氧水/弱碱水回灌钻孔布置于采区边界内侧附近,距离开采边界10-20m。
优选的:当所述采区的走向和倾向尺寸超过1000m时,可沿走向或倾向间隔1000m成组布置含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔
优选的:所述地表含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔的施工方法为:钻孔施工时以120-140mm的直径开孔,需钻进至受导水裂隙带沟通的含水层顶界面以下一定深度,钻孔终孔与所述导水裂隙带沟通的含水层顶界面之间的距离应不低于导水裂隙带沟通的含水层厚度的0.3-0.5倍。地表至所述导水裂隙带沟通的含水层顶界面以下10m范围内采用套管护孔,导水裂隙带沟通的含水层内钻孔采用花管护孔。钻孔施工后,在孔口上覆盖封闭盖板,所述封闭盖板上连接有输水管路。
c.在井下采空区对应地势低洼处布置排水管路,并对采空区排水进行铁质成分测 试,根据采空区排水中的铁质成分含量考虑是否重新回灌或直接复用。其步骤如下:
若采空区排水中的铁质成分仍然超过国家相关标准,则利用管路将其输送至采区地势相对较高处,通过在附近巷道向上施工回灌钻孔,将其重新回灌至导水裂隙带沟通的含水层中,再次进行除铁净化。
若采空区排水中的铁质成分已低于国家相关标准,则利用管路直接输送至井下其它采区或地面复用。
优选的:所述井下施工的回灌钻孔其终孔位置应达到受导水裂隙带沟通的含水层底界面以上5m左右,终孔位置距离开采边界的水平距离为10-20m,且处于开采边界内侧。钻孔在未受采动裂隙破坏段采用套管护孔,在进入导水裂隙带范围内采用花管护孔。
本发明基于采动覆岩导水裂隙的发育规律和分布特征,充分利用含铁污水中铁质成分氧化反应生成的Fe(OH) 3絮凝沉淀物对导水裂隙进行封堵,既隔绝了地层含水层的水漏失通道,又有效削减了含铁污水的铁质成分,实现了煤矿区地层含水层的原位保护与含铁污水的除铁净化作用,可为矿区煤炭开采水资源保护与高效利用等提供保障,其使用方法可靠,实用性强。与现有技术相比于,本发明具有以下优点:
(1)采用含铁污水净化除铁过程中的沉淀物对覆岩导水裂隙进行封堵,不但科学可靠、工程量低,而且还能有效减小含水层水漏失程度、低成本净化含铁污水;
(2)能够适应不同开采条件下含铁污水回灌采煤破坏地层的保水与净水方法的确定,可为我国高含铁污水及水资源匮乏矿区的煤炭开采与水资源保护的协调发展提供保障,其实施方法简单,实用性强。
附图说明
图1是本发明的回灌钻孔布置平面图;
图2是本发明的回灌钻孔布置A-A剖面图;
图3是本发明的回灌钻孔布置B-B剖面图;
图4是本发明的回灌钻孔剖面图;
图5是本发明实际应用过程中某煤矿22301工作面Z1钻孔柱状及导水裂隙带发育高度示意图;
图6是本发明实际应用过程中某煤矿22301工作面回灌钻孔布置平面图。
其中,1表示含铁污水回灌钻孔,2表示含氧水/弱碱水回灌钻孔,3表示井下施工回灌钻孔,4表示套管,5表示花管,6表示Fe(OH) 3活性滤膜。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1~图4所示,本发明的一种含铁污水回灌采煤破坏地层的保/净水方法,根据采动覆岩导水裂隙的发育特征和分布范围,分别在采区边界和中部对应地表施工含铁污水回灌钻孔1和含氧水/弱碱水回灌钻孔2,利用含铁污水中铁质成分与含氧水/弱碱水氧化反应生成的Fe(OH) 3絮凝沉淀物,对采动裂隙进行有效封堵。生成的Fe(OH) 3絮凝物能在回灌钻孔终孔附近一定范围内逐步沉淀形成铁质活性滤膜6,对铁(或亚铁)离子的氧化反应起到催化剂作用,有效保证除铁效果。同时,在井下采空区地势低洼处对涌出水资源进行铁质成分测试;若铁质成分仍然超标,则将井下涌水通过管路输送至地势相对较高处,利用井下仰斜施工回灌钻孔3重新回灌至导水裂隙带沟通的含水层中继续进行氧化反应和除铁净化;而若井下涌水铁质成分未超标,则直接输送至其它采区或地面复用。具体包括以下步骤:
a.根据覆岩导水裂隙带高度和地质钻孔柱状判断地层含水层受采动破坏的采煤区域。若导水裂隙带高度范围内存在含水层,则对应区域导水裂隙带已沟通含水层,需要布置相应的回灌钻孔;若导水裂隙带高度范围内不存在含水层,则无需施工回灌钻孔。
所述导水裂隙带高度可根据钻孔冲洗液漏失量法等现场实测方法进行工程探测,也可利用“基于关键层位置的导水裂隙带高度的预计方法”等理论计算方法进行判断。
b.在导水裂隙带沟通含水层的采区对应地表进行含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔的施工。
所述含铁污水回灌钻孔布置于采区边界外侧附近和采区中央,布置于采区边界外侧附近的钻孔应位于导水裂隙带侧向发育边界之外,其距离采区边界应达到30-40m。
所述含氧水/弱碱水回灌钻孔布置于采区边界内侧附近,距离开采边界10-20m。
所述采区的走向和倾向尺寸超过1000m时,可沿走向或倾向间隔1000m成组布置含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔
所述地表含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔的施工方法为:钻孔施工时以120-140mm的直径开孔,需钻进至受导水裂隙带沟通的含水层顶界面以下一定深度,钻孔终孔与导水裂隙带沟通的含水层顶界面之间的距离应不低于该含水层厚度的 0.3-0.5倍。地表至导水裂隙带沟通的含水层顶界面以下10m范围内采用套管4护孔,导水裂隙带沟通的含水层内钻孔采用花管5护孔。钻孔施工后,在孔口上覆盖封闭盖板,所述封闭盖板上连接有输水管路。
c.在井下采空区对应地势低洼处布置排水管路,并对采空区排水进行铁质成分测试,根据采空区排水中的铁质成分含量考虑是否重新回灌或直接复用。其步骤如下:
若采空区排水中的铁质成分仍然超过国家相关标准,则利用管路将其输送至采区地势相对较高处,通过在附近巷道向上施工回灌钻孔,将其重新回灌至导水裂隙带沟通的含水层中,再次进行除铁净化。
若采空区排水中的铁质成分已低于国家相关标准,则利用管路直接输送至井下其它采区或地面复用。
所述井下施工的回灌钻孔其终孔位置应达到受导水裂隙带沟通的含水层底界面以上5m左右,终孔位置距离开采边界的水平距离为10-20m,且处于开采边界内侧。钻孔在未受采动裂隙破坏段采用套管护孔,在进入导水裂隙带范围内采用花管护孔。
如图5所示,图中为某煤矿22301工作面实际应用过程中开采区域的Z1钻孔柱状和导水裂隙带发育高度示意图,从图中可以看出,22301工作面开采引起的覆岩导水裂隙带已沟通地层含水层。因此,需要在该工作面开采区域实施地面钻孔回灌含铁污水和含氧水/弱碱水。
如图6所示,考虑到22301工作面走向推进长度较长(已达4000m左右),因此,在工作面两侧开采边界附近沿走向推进方向间隔1000m进行了回灌钻孔的布置,同时在两组回灌钻孔之间对应工作面倾向中部也分别布置了含铁污水回灌钻孔。根据Z1钻孔揭露的岩层赋存情况,回灌钻孔终孔深度60m,已进入含水层41.54m(达到了含水层厚度的0.3-0.5倍)。
本发明基于采动覆岩导水裂隙的发育规律和分布特征,充分利用含铁污水中铁质成分氧化反应生成的Fe(OH) 3絮凝沉淀物对导水裂隙进行封堵,既隔绝了地层含水层的水漏失通道,又有效削减了含铁污水的铁质成分,实现了煤矿区地层含水层的原位保护与含铁污水的除铁净化作用,可为矿区煤炭开采水资源保护与高效利用等提供保障。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:具体包括以下步骤:
    a.根据覆岩导水裂隙带高度和地质钻孔柱状判断地层含水层受采动破坏的采煤区域;
    b.在导水裂隙带沟通地层含水层的开采区域对应地表进行含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔的施工,将含铁污水和含氧水/弱碱水回灌至导水裂隙带沟通地层含水层中,含铁污水中的铁质成分与含氧水/弱碱水氧化反应生成Fe(OH) 3絮凝沉淀物,封堵采动裂隙,阻隔含水层的水漏失通道,削减含铁污水的铁质成分;
    c.在井下采空区对应地势低洼处布置排水管路,并对采空区排水进行铁质成分测试,根据采空区排水中的铁质成分含量考虑是否重新回灌或直接复用。
  2. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:步骤a中,若导水裂隙带高度范围内存在含水层,则对应区域导水裂隙带已沟通含水层,需要布置相应的含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔;若导水裂隙带高度范围内不存在含水层,则无需施工回灌钻孔;
    所述导水裂隙带高度通过包括钻孔冲洗液漏失量法在内的现场实测方法进行工程探测,或利用包括基于关键层位置的导水裂隙带高度的预计方法在内的理论计算方法进行判断。
  3. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:步骤b中,所述含铁污水回灌钻孔布置于采区边界外侧位置和采区中央,其中布置于采区边界外侧的钻孔位于导水裂隙带侧向发育边界之外,距离采区边界30-40m。
  4. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:步骤b中,所述含氧水/弱碱水回灌钻孔布置于采区边界内侧位置,距离开采边界10-20m,分别沿走向或倾向上设置。
  5. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:所述含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔沿采区走向和倾向方向的中轴面对称设置。
  6. 根据权利要求1或5所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:所述导水裂隙带沟通地层含水层的开采区域的走向或倾向尺寸大于1000m时,沿走向或倾向间隔1000m布置所述含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔。
  7. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:步骤b中,所述地表含铁污水回灌钻孔和含氧水/弱碱水回灌钻孔的施工方法为:钻孔施工时以120-140mm的直径开孔,钻进至受采动破坏的所述导水裂隙带沟通的含水层的顶界面以下,钻孔终孔与所述导水裂隙带沟通的含水层的顶界面之间的距离不低于所述导水裂隙带沟通的含水层的厚度的0.3-0.5倍。
  8. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:地表至所述导水裂隙带沟通的含水层的顶界面以下10m范围内采用套管护孔,所述导水裂隙带沟通的含水层内的钻孔采用花管护孔;钻孔施工后,在孔口上覆盖封闭盖板,所述封闭盖板上连接有输水管路。
  9. 根据权利要求1所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:步骤c中,在井下采空区地势低洼处对涌出水资源进行铁质成分测试,
    若铁质成分超标,则将井下涌水通过管路输送至地势相对较高处,利用井下仰斜施工回灌钻孔重新回灌至导水裂隙带沟通的含水层中继续进行氧化反应和除铁净化;
    若井下涌水铁质成分未超标,则直接输送至其它采区或地面复用。
  10. 根据权利要求9所述的含铁污水回灌采煤破坏地层的保/净水方法,其特征在于:所述井下仰斜施工回灌钻孔的终孔位置达到所述导水裂隙带沟通的含水层底界面以上5-10m,终孔位置距离开采边界的水平距离为10-20m,且处于开采边界内侧;所述回灌钻孔在未受采动裂隙破坏段采用套管护孔,在进入导水裂隙带范围内采用花管护孔。
PCT/CN2018/109545 2017-12-18 2018-10-10 含铁污水回灌采煤破坏地层的保/净水方法 WO2019119933A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2019125487A RU2730276C1 (ru) 2017-12-18 2018-10-10 Способ защиты/очистки воды посредством повторного заполнения пласта, разрушенного добычей угля, железосодержащей отработанной водой
CA3049835A CA3049835C (en) 2017-12-18 2018-10-10 Method for protecting/purifying water by recharging iron-containing sewage into stratum destroyed by coal mining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711361327.1A CN108104766B (zh) 2017-12-18 2017-12-18 含铁污水回灌采煤破坏地层的保/净水方法
CN201711361327.1 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019119933A1 true WO2019119933A1 (zh) 2019-06-27

Family

ID=62216564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109545 WO2019119933A1 (zh) 2017-12-18 2018-10-10 含铁污水回灌采煤破坏地层的保/净水方法

Country Status (4)

Country Link
CN (1) CN108104766B (zh)
CA (1) CA3049835C (zh)
RU (1) RU2730276C1 (zh)
WO (1) WO2019119933A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338897A (zh) * 2021-07-06 2021-09-03 中国十七冶集团有限公司 一种采空区勘测钻检一体化设备安装及使用方法
CN114837608A (zh) * 2022-05-31 2022-08-02 中国矿业大学 多段分级注浆再造采动覆岩隔水层方法
CN116446880A (zh) * 2023-04-04 2023-07-18 中煤科工开采研究院有限公司 绿色开采方法、装置、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108104766B (zh) * 2017-12-18 2019-05-07 中国矿业大学 含铁污水回灌采煤破坏地层的保/净水方法
CN109209291B (zh) * 2018-11-08 2020-03-27 中国矿业大学 地下水化学特征人工改性促进含水层修复的保水方法
CN112830531B (zh) * 2021-01-04 2022-02-25 吉林大学 一种废弃矿井酸性水污染源头治理方法
CN114837739A (zh) * 2022-01-24 2022-08-02 中国矿业大学(北京) 一种煤-水-热协同共采与水害热害治理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864208A (en) * 1972-04-11 1975-02-04 Watase Kinichi Geothermal-nuclear waste disposal and conversion system
US20080205995A1 (en) * 2004-11-09 2008-08-28 Carlo Canteri Method For Saturating Cavities Present in a Mass of Soil or In a Body in General
CN102606205A (zh) * 2011-11-29 2012-07-25 新奥气化采煤有限公司 地下采空区的原位处理方法
CN203890158U (zh) * 2014-05-16 2014-10-22 山西清泽环境科技有限公司 一种矿井污水过滤处理及回用装置
CN106673250A (zh) * 2015-11-06 2017-05-17 哈尔滨市永恒鑫科技开发有限公司 一种矿产开采过程中的废污水处理方法
CN107044289A (zh) * 2017-06-22 2017-08-15 中国矿业大学 一种钻孔注浆封堵覆岩导水裂隙主通道的水害防治方法
CN108104814A (zh) * 2017-12-18 2018-06-01 中国矿业大学 高含铁地下含水层受采煤破坏的人工促进修复方法
CN108104766A (zh) * 2017-12-18 2018-06-01 中国矿业大学 含铁污水回灌采煤破坏地层的保/净水方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU678189A1 (ru) * 1978-05-04 1979-08-05 Специальное Конструкторско-Технологическое Бюро Института Геотехнической Механики Ан Украинской Сср Способ разработки месторождений полезных ископаемых
CN101519966B (zh) * 2009-04-03 2011-06-01 赵平 煤矸石山生态环境综合治理方法
CA2709152C (en) * 2009-07-08 2018-04-03 Chad Allen Randal Recycling and treatment process for produced and used flowback fracturing water
CN102865081B (zh) * 2012-04-28 2015-07-15 中国神华能源股份有限公司 一种保水开采方法
WO2013159749A1 (zh) * 2012-04-28 2013-10-31 中国神华能源股份有限公司 一种矿井地下水的分布式存储及利用方法
CN105422170B (zh) * 2015-11-02 2018-10-23 安徽理工大学 一种建筑基础下中深采空区注浆加固处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864208A (en) * 1972-04-11 1975-02-04 Watase Kinichi Geothermal-nuclear waste disposal and conversion system
US20080205995A1 (en) * 2004-11-09 2008-08-28 Carlo Canteri Method For Saturating Cavities Present in a Mass of Soil or In a Body in General
CN102606205A (zh) * 2011-11-29 2012-07-25 新奥气化采煤有限公司 地下采空区的原位处理方法
CN203890158U (zh) * 2014-05-16 2014-10-22 山西清泽环境科技有限公司 一种矿井污水过滤处理及回用装置
CN106673250A (zh) * 2015-11-06 2017-05-17 哈尔滨市永恒鑫科技开发有限公司 一种矿产开采过程中的废污水处理方法
CN107044289A (zh) * 2017-06-22 2017-08-15 中国矿业大学 一种钻孔注浆封堵覆岩导水裂隙主通道的水害防治方法
CN108104814A (zh) * 2017-12-18 2018-06-01 中国矿业大学 高含铁地下含水层受采煤破坏的人工促进修复方法
CN108104766A (zh) * 2017-12-18 2018-06-01 中国矿业大学 含铁污水回灌采煤破坏地层的保/净水方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338897A (zh) * 2021-07-06 2021-09-03 中国十七冶集团有限公司 一种采空区勘测钻检一体化设备安装及使用方法
CN113338897B (zh) * 2021-07-06 2024-03-15 中国十七冶集团有限公司 一种采空区勘测钻检一体化设备安装及使用方法
CN114837608A (zh) * 2022-05-31 2022-08-02 中国矿业大学 多段分级注浆再造采动覆岩隔水层方法
CN114837608B (zh) * 2022-05-31 2022-12-23 中国矿业大学 多段分级注浆再造采动覆岩隔水层方法
CN116446880A (zh) * 2023-04-04 2023-07-18 中煤科工开采研究院有限公司 绿色开采方法、装置、电子设备及存储介质
CN116446880B (zh) * 2023-04-04 2023-12-01 中煤科工开采研究院有限公司 绿色开采方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN108104766B (zh) 2019-05-07
CN108104766A (zh) 2018-06-01
RU2730276C1 (ru) 2020-08-21
CA3049835A1 (en) 2019-06-27
CA3049835C (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2019119933A1 (zh) 含铁污水回灌采煤破坏地层的保/净水方法
CN102003140B (zh) 一种水平定向钻管道穿越反循环钻进方法及专用钻头
CN103967507B (zh) 一种适于富水矿山井下开采堵水用的帷幕注浆工艺
CN108104814B (zh) 高含铁地下含水层受采煤破坏的人工促进修复方法
CN104594327B (zh) 一种基坑工程降水保泉回灌一体化装置
CN101975087B (zh) 矿井水综合处理利用技术
CN102493831B (zh) 地面压裂井下水平钻孔抽放煤层气方法
CN108590717B (zh) 化学软化碳酸盐岩促进采动裂隙自修复的保水方法
CN112593853A (zh) 一种煤矿矸石充填与减水开采的施工方法
CN104727795A (zh) 低透性软煤层极薄分层水射流开采增透方法
CN110683683A (zh) 一种废弃矿井废水污染防治方法
CN110067597A (zh) 一种矿井俯角负压探放老空区积水的方法
CN216614348U (zh) 一种废弃硫铁矿区酸性地下水修复系统
CN107152309A (zh) 一种煤层为主含水层的高水高排水害防治方法
CN117985891A (zh) 一种废弃硫铁矿山平硐酸性废水源头治理系统及方法
ZHANG et al. Technology of groundwater reservoir construction in goafs of shallow coalfields
CN204435350U (zh) 一种基坑工程降水保泉回灌一体化装置
CN114738011A (zh) 一种矿井老突水点封堵方法
CN114483188A (zh) 一种利用枯竭油层回注处置高矿化度矿井水的方法
CN109209291B (zh) 地下水化学特征人工改性促进含水层修复的保水方法
CN113461080A (zh) 岩溶矿区煤矿井下利用陷落柱净化水资源系统及方法
RU2478793C1 (ru) Способ защиты от обводнения глубоких рудников и шахт с помощью восстающих многозабойных дренажных скважин
CN206376807U (zh) 漏水钻孔止水骨料滤截装置
RU2465405C2 (ru) Способ осушения бортов карьеров с помощью систем комбинированных дренажных устройств
Burrell et al. The influence of minewater recovery on surface gas and water discharges in the Yorkshire Coalfield

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3049835

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890403

Country of ref document: EP

Kind code of ref document: A1