WO2019119918A1 - 无线监测系统 - Google Patents

无线监测系统 Download PDF

Info

Publication number
WO2019119918A1
WO2019119918A1 PCT/CN2018/108056 CN2018108056W WO2019119918A1 WO 2019119918 A1 WO2019119918 A1 WO 2019119918A1 CN 2018108056 W CN2018108056 W CN 2018108056W WO 2019119918 A1 WO2019119918 A1 WO 2019119918A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
operational amplifier
circuit
unit
output
Prior art date
Application number
PCT/CN2018/108056
Other languages
English (en)
French (fr)
Inventor
王伟正
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2019119918A1 publication Critical patent/WO2019119918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the utility model relates to the technical field of traffic, in particular to a wireless monitoring system.
  • the overhaul work of high-voltage equipment for rail vehicles is mainly to monitor whether the high-voltage equipment is working normally.
  • the vehicle fails it needs to monitor the data of the high-voltage equipment of the vehicle, and diagnose the fault according to the real-time data of the high-voltage equipment, and make pre-judgment treatment.
  • the high-voltage equipment is debugged, it is also necessary to monitor the data of the high-voltage equipment, and perform reasonable debugging on the high-voltage equipment according to the monitored data.
  • the data on the high-voltage equipment of the rail vehicle is usually transmitted through the train bus, and the data transmitted is mainly information such as voltage, current and temperature in the high-voltage equipment.
  • the high-voltage equipment and the terminal to be monitored are connected by a cable, and the voltage, current and temperature information of the high-voltage equipment to be monitored are transmitted to the terminal, and the fault data of the high-voltage equipment is diagnosed or the equipment is debugged by analyzing the data displayed by the terminal.
  • the utility model provides a wireless monitoring system, which is used for solving the problem that the connection of the communication cable is required for the monitoring of the high voltage device in the prior art.
  • the utility model provides a wireless monitoring system for monitoring data of a train high voltage device, comprising: a control unit, a wireless communication unit, a power supply unit and at least one signal acquisition unit;
  • the power supply unit is electrically connected to the control unit, the signal acquisition unit and the wireless communication unit, respectively, for supplying power to the control unit, the wireless communication unit and the signal acquisition unit;
  • the input end of the signal acquisition unit is at least two, and is respectively connected to different positions of the high voltage device of the train.
  • the output end of the signal acquisition unit is connected with the input end of the control unit, and is used for collecting the signal of the high voltage device of the train, and transmitting the signal to the signal.
  • the control unit ;
  • the output of the control unit is connected to the wireless communication unit for converting the received signal into a digital signal and transmitting the digital signal to the wireless communication unit;
  • the wireless communication unit is configured to wirelessly transmit the digital signal to the terminal device.
  • the wireless communication unit includes a wireless processor and a first clock circuit, the first clock circuit includes a 16 MHz crystal oscillator;
  • the wireless processor is connected to the above 16 MHz crystal through a pin.
  • the signal acquisition unit comprises an AC acquisition unit, a DC acquisition unit, and a temperature acquisition unit.
  • the AC acquisition unit includes at least one AC signal acquisition resistor, an AC signal amplification circuit, a signal rectifier circuit, a comparator, and a first voltage follower circuit;
  • the AC signal amplifying circuit comprises a first co-directional amplifying circuit and a reverse amplifying circuit which are sequentially connected in series, and the first co-directional amplifying circuit is used for amplifying an alternating current signal of the train high-voltage device, and the first reverse amplifying circuit is used for high-voltage of the train
  • the AC signal of the device is amplified in two steps;
  • the input end of the signal rectifying circuit and the comparator are connected in parallel at the output end of the AC signal amplifying circuit, the output end of the comparator is connected to the input end of the control unit, and the output end of the signal rectifying circuit is connected to the input end of the voltage follower circuit. .
  • the first in-phase amplifying circuit includes a first operational amplifier, and the non-inverting input ends of the first operational amplifier are respectively connected to one end of the AC signal collecting resistor and the ground, and the reverse input end of the first operational amplifier and the AC signal collecting resistor are The other end is connected and connected to the output of the first operational amplifier;
  • the inverting amplifier includes a second operational amplifier, a non-inverting input of the second operational amplifier is grounded, an inverting input of the second operational amplifier is coupled to an output of the first operational amplifier, and a second operational amplifier The output is connected.
  • the signal rectifying circuit includes a third operational amplifier, a first diode, a fourth operational amplifier, and a second diode;
  • the non-inverting input terminal of the third operational amplifier is connected to the output end of the inverting amplifying circuit, the output end of the third operational amplifier is connected to the anode of the first diode, and the inverting input terminal of the third operational amplifier is the first two Cathode connection of the pole tube;
  • the non-inverting input terminal of the fourth operational amplifier is grounded, the output end of the fourth operational amplifier is connected to the anode of the second diode, and the inverting input end of the fourth operational amplifier is respectively connected to the output end of the inverting amplifying circuit and a cathode connection of two diodes;
  • the cathode of the first diode is connected to the cathode of the second diode and then connected to the first voltage follower circuit.
  • the DC acquisition unit includes at least one DC signal acquisition resistor, at least one DC signal amplification circuit, and at least one second voltage follower circuit;
  • the DC signal amplifying circuit comprises a fifth operational amplifier, wherein the non-inverting input terminals of the fifth operational amplifier are respectively connected to one end of the DC signal collecting resistor and the ground, and the inverting input end of the fifth operational amplifier is connected to the other end of the DC signal collecting resistor, and The output of the fifth operational amplifier is connected;
  • the output of the fifth operational amplifier is coupled to the input of the second voltage follower circuit, and the output of the second voltage follower is coupled to the input of the control unit.
  • control unit includes a second clock circuit for providing a clock source to the central processor of the control unit.
  • control circuit further includes a reset circuit for ensuring that the device can perform normal initialization.
  • the temperature acquisition unit comprises a temperature sensitive resistor.
  • the utility model provides a wireless monitoring system for monitoring data of a train high voltage device, comprising a control unit, a wireless communication unit, a power supply unit and at least one signal acquisition unit, wherein the power supply unit is respectively connected with the control unit, the signal acquisition unit and the wireless communication unit. It is used for power supply, and the control unit is respectively connected with the signal acquisition unit and the wireless communication unit.
  • the signal acquisition unit transmits the collected data of the high-voltage equipment of the train to the control unit, and the control unit pairs the data. After processing, it is transmitted to the external terminal device through the wireless communication unit.
  • the wireless monitoring system of the present application has a wireless communication unit, so that the system does not need to route data as in the prior art, and the data can be transmitted through the cable, saving time and labor, and when the vehicle is in operation, the vehicle is located in the vehicle.
  • External terminals can also receive data wirelessly.
  • FIG. 1 is a schematic structural view of a wireless monitoring system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a wireless communication unit provided by the present invention.
  • FIG. 3 is a circuit diagram of a wireless communication unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wireless monitoring system according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural view of an AC collection unit provided by the present invention.
  • FIG. 6 is a circuit diagram of an AC signal acquisition circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a DC acquisition unit provided by the present invention.
  • FIG. 8 is a circuit diagram of a DC signal acquisition circuit according to an embodiment of the present invention.
  • Figure 9 is a circuit diagram of a control unit provided by an embodiment of the present invention.
  • FIG. 10 is a circuit diagram of a temperature acquisition circuit according to an embodiment of the present invention.
  • FIG. 11 is a circuit diagram of a power supply unit according to an embodiment of the present invention.
  • the wireless monitoring system includes: a control unit 3, a wireless communication unit 4, a power supply unit 1, and at least one signal acquisition unit 2 .
  • the power supply unit 1 is electrically connected to the control unit 3, the signal acquisition unit 2 and the wireless communication unit 4, respectively, and the power supply unit 1 is used to supply power to the control unit 3, the wireless communication unit 4 and the signal acquisition unit 2, so that the entire system can be powered on. normal work.
  • the power supply unit 1 can select any type of battery as the power source, and output the voltage required by the control unit 3, the wireless communication unit 4, and the signal acquisition unit 2 through the circuit design inside the power supply unit.
  • the input end of the signal acquisition unit 2 is at least two, and is respectively connected to different positions of the high-voltage equipment of the train for collecting similar signals of different positions of the high-voltage equipment of the train, or for collecting different signals of the high-voltage equipment of the train, for example,
  • the signal acquisition unit 2 can collect one or more kinds of signals such as AC voltage, DC voltage, current and temperature during operation of different positions of the high voltage equipment of the train, or can also collect AC voltage and DC voltage at the same position of the high voltage equipment of the train.
  • One or more of signals such as current and temperature.
  • the signal acquisition unit 2 can be connected to different sensors through the power line and the signal line, thereby realizing the collection of different signals of the train high voltage device.
  • the output end of the signal acquisition unit 2 is connected to the input end of the control unit 3, thereby transmitting the collected signal to the control unit 3.
  • the control unit 3 is a core unit of the whole system, and the output of the control unit 3 is connected to the wireless communication unit 4.
  • the control unit 3 can perform corresponding processing on the signal transmitted by the received signal acquisition unit 2, for example, the received After the signal is converted into a digital signal, after the signal is processed, the control unit 3 can control the output of the signal, and send the processed digital signal to the wireless communication unit 4, thereby implementing the output of the digital signal.
  • the control unit 3 and the wireless communication unit 4 can be communicatively connected through a Serial Peripheral Interface (SPI) for implementing the receiving and transmitting data of the control unit 3.
  • SPI Serial Peripheral Interface
  • the wireless communication unit 4 is an output unit of the entire system, and the digital signal sent by the control unit 3 can be wirelessly transmitted to the terminal device to realize monitoring of the high-voltage equipment of the train.
  • the wireless monitoring system for monitoring data of a train high voltage device includes a control unit, a wireless communication unit, a power supply unit and at least one signal acquisition unit, and the power supply unit is respectively connected with the control unit, the signal acquisition unit and the wireless communication unit. It is used for power supply, and the control unit is respectively connected with the signal acquisition unit and the wireless communication unit.
  • the signal acquisition unit transmits the collected data of the high-voltage equipment of the train to the control unit, and the control unit pairs the data. After processing, it is transmitted to the external terminal device through the wireless communication unit.
  • the wireless monitoring system of the embodiment has a wireless communication unit, so that the system does not need to route data as in the prior art, and the data can be transmitted through the cable, saving time and labor, and when the vehicle is in the running state, Terminals outside the vehicle can also receive data wirelessly.
  • the wireless communication unit 4 includes a wireless processor 41 and a first clock circuit 42.
  • the wireless processor 41 is a core processor of the wireless communication unit 4 for controlling the normal operation of the wireless communication unit 4 and the normal output of digital signals.
  • the wireless processor 41 may select the NRF2401 chip, and form the wireless communication unit 4 by connecting circuits to the pins of the chip.
  • the first clock circuit 42 includes a 16 MHz crystal oscillator, and a clock circuit is provided to the wireless communication unit 4 through a 16 MHz crystal oscillator for controlling the operating clock of the wireless communication unit 4. Further, the 16 MHz crystal oscillator and the wireless processor 41 are connected to the pins of the chip of the wireless processor 41 through the pins of the 16 MHz crystal oscillator.
  • the wireless communication unit in this embodiment includes a wireless processor 41 and a first clock circuit. 42.
  • the circuit formed by the wireless processor 41 is the lower half circuit of FIG. 3, the wireless processor 41 selects the NRF2401 chip, the 13 pin of the NRF2401 chip is connected to one end of the capacitor C17, and the other end of the capacitor C17 is connected to an inductor, and the inductor is another. One end is grounded and connected to a capacitor C22; the 14-pin of the NRF2401 chip is grounded; the node formed by connecting the 15-pin to the 16-pin is connected to one end of the capacitor C19 and one end of the resistor R8, and the other end of the capacitor C19 is grounded. The other end of the resistor R8 is connected to a voltage of 3.3V.
  • the 16-pin is also connected to one end of a capacitor C18, the other end of the capacitor C18 is grounded, the 17-pin is grounded, and the 18-pin is connected to one end of the capacitor C20 and one end of the capacitor C19.
  • the other end of the capacitor C20 is grounded; the 19 pin is connected to one end of the capacitor C21, and the other end of the capacitor C21 is grounded.
  • the first clock circuit 42 includes a 16 MHz crystal oscillator, and a clock circuit is provided to the wireless communication unit 4 through a 16 MHz crystal oscillator for controlling the operating clock of the wireless communication unit 4.
  • the 16 MHz crystal oscillator Y2 and the wireless processor 41 are connected to the pins of the NRF2401 chip through the pins of the 16 MHz crystal oscillator Y2.
  • the 1 pin of Y2 is connected to the 10 pin of the NRF2401 chip and the end of the capacitor C15, the other end of the capacitor C15 is grounded; the 2 pin of the Y2 is grounded; the 3 pin of the Y2 is connected to the 9 pin of the NRF2401 chip and the capacitor C16 At one end, the other end of capacitor C16 is grounded; the 4 pin of Y2 is grounded.
  • the digital signal processed by the control unit can be wirelessly output to the terminal device through the wireless communication unit, thereby realizing wireless transmission of system data, and, due to the signal acquisition unit, the control unit, and the wireless
  • the cooperation of the communication unit makes the real-time performance of the data transmission relatively high, and the data can be output to the terminal device in a short time, which solves the problem that the data needs to be longer when the high-speed device data is monitored by the train bus in the prior art. It will be issued within a certain period of time, and the problem of real-time monitoring of data cannot be realized.
  • the signal collecting unit 2 includes an AC collecting unit 21, a DC collecting unit 22, and a temperature collecting unit 23.
  • the most common monitoring data includes AC signal and DC signal.
  • the AC signal includes AC voltage value and current value.
  • the DC signal includes DC voltage value and current value. It is judged by collecting AC signal and DC signal. The current working state of the high voltage device can be determined. At the same time, during the running of the train, the high-voltage equipment is in working state, its own temperature will rise, and the higher temperature has a greater impact on the normal operation of the equipment, so it is also necessary to continuously monitor the temperature of the high-voltage equipment.
  • the signal acquisition unit 2 of the wireless monitoring system provided in this embodiment includes an AC acquisition unit 21, a DC acquisition unit 22, and a temperature acquisition unit 23, which are used for data acquisition of an AC signal, a DC signal, and a high voltage device temperature on a high voltage device.
  • the signal collection unit 2 may further include an acquisition unit of other types of signals, such as a line abnormality signal, etc., which can perform signal collection by the signal acquisition unit 2 in the present application, and transmit the signal to a processing function.
  • the control unit 3 finally outputs the signal data through the wireless communication module 4 for use by the equipment monitoring and maintenance personnel.
  • the wireless detection system of the present application can also be applied to other charged high voltage devices other than train high voltage devices.
  • FIG. 5 is a schematic structural diagram of an AC collection unit according to the present invention.
  • the AC acquisition unit 21 includes at least one AC signal acquisition resistor 211, an AC signal amplification circuit 212, a signal rectifier circuit 213, a comparator 215, and a A voltage follower circuit 214.
  • the AC signal collecting resistor 211 is connected to the high voltage device to be monitored, and is used for collecting data of the high voltage device to be monitored.
  • the AC signal collecting resistor 211 is at least one, or may be a plurality of resistors connected in parallel, and connected through multiple resistors in parallel. However, the need to achieve a variety of resistance values.
  • the alternating current signal collecting resistor 211 is formed by selecting three resistors in parallel, and the signals of different alternating voltages and currents of the high voltage device can be collected.
  • the AC signal amplifying circuit 212 includes a first non-directional amplifying circuit 2121 and an inverse amplifying circuit 2122 which are sequentially connected in series, and the first non-directional amplifying circuit 2121 is used for amplifying an AC signal of the train high-voltage device, and the inverse amplifying circuit 2122 is used for The AC signal of the train high voltage equipment is amplified in two steps.
  • the first in-phase amplifying circuit 2121 and the inverting amplifying circuit 2122 By the cooperation of the first in-phase amplifying circuit 2121 and the inverting amplifying circuit 2122, multi-stage amplification of the entire AC signal can be realized.
  • the non-inverting input terminal and/or the inverting input terminal of the first in-phase amplifying circuit 2121 and the inverting amplifying circuit 2122 are connected with an amplification ratio for adjusting the first in-phase amplifying circuit 2121 and the inverting amplifying circuit 2122.
  • the resistor R and the resistor R cooperate with the AC signal collecting resistor 211. By adjusting the resistance of the resistor R and the AC signal collecting resistor 211, the amplification ratio of the first in-phase amplifying circuit 2121 and the inverting amplifying circuit 2122 can be adjusted. .
  • the input end of the signal rectifying circuit 213 and the comparator 215 are connected in parallel to the output end of the AC signal amplifying circuit 212.
  • the output end of the comparator 212 is connected to the input end of the control unit 3, and the output end of the signal rectifying circuit 213 and the first voltage are connected.
  • the input of the follower circuit 214 is connected.
  • the first in-phase amplifier circuit includes a first operational amplifier U23A, and an inverting amplifier circuit.
  • a second operational amplifier U23B is included.
  • the signal rectifier circuit includes a third operational amplifier U25A, a first diode VD7, a fourth operational amplifier U25B, and a second diode VD8.
  • the AC signal acquisition resistor in this embodiment is three parallel resistors R101, R102, and R103. One end of the three resistors is connected to the AC 15V power supply and the non-inverting input terminal of the first operational amplifier U23A, and one end of the three resistors.
  • a resistor R105 for adjusting the amplification ratio of the first operational amplifier U23A and the voltage dividing function is further connected to the non-inverting input terminal of the first operational amplifier U23A; the other ends of the three resistors are respectively grounded and connected to the inverting input terminal of the U23A, A resistor R104 for adjusting the amplification ratio of U23A and the function of dividing the voltage is also connected between the other end of the three resistors and the inverting input terminal of U23A. Further, the non-inverting input terminal of the U23A is grounded, the inverting input end is connected to the output end, and a resistor R106 and a capacitor C101 are further connected in parallel between the inverting input end and the output end.
  • the U23A in this embodiment may select one of the LM2904 series operational amplifiers, such as the LM2904AVQDRG4.
  • the non-inverting input terminal of the second operational amplifier U23B is grounded, the inverting input terminal is connected to the output end of the first operational amplifier U23A, and the resistor R107 for limiting current is connected between the inverting input terminal of U23B and the output end of U23A.
  • the other end of the R109 is connected to the output end of the R109, and the other end of the R109 is connected to the output end of the U23B.
  • a capacitor C105 is also connected between the inverting input end and the output end of the U23B.
  • the non-inverting input of the third operational amplifier U25A is connected to the output of the second operational amplifier U23B, the output of the U25A is connected to the anode of the first diode VD7, and the inverting input of the U25A is connected to the cathode of the first diode VD7.
  • an adjustment resistor R226 is further connected between the inverting input terminal of the U25A and the cathode of the first diode VD7.
  • the non-inverting input of the fourth operational amplifier U25B is grounded, the output of U25B is connected to the anode of the second diode VD8, and the inverting input of U25B is respectively connected to the output of the second operational amplifier U23B and the second diode VD8.
  • the cathode is connected, and an adjustment resistor R229 is further connected between the inverting input terminal of the U25B and the cathode of the second diode VD8.
  • the first diode VD7 is connected to the cathode of the second diode VD8 and then connected to a voltage of -15V and a first voltage follower circuit.
  • the comparator includes an operational amplifier U22B, the inverting input terminal of the U22B is grounded, the non-inverting input terminal is connected to the output end of the second operational amplifier U23B, and the output terminal is respectively connected to one end of the resistor R245, the anode of the diode VD10, and one end of the capacitor C91; The other end is connected to a 5V power supply, the cathode of the diode VD10 is connected to the pin of the control unit, and the other end of the capacitor C91 is grounded.
  • the non-inverting input terminal of the first voltage follower circuit U9A is connected to the cathodes of the first diode VD7 and the second diode VD8, and the inverting input terminal of the U9A is connected to the output terminal, and the inverting input terminal and the output terminal are further connected.
  • a resistor R121 is connected, and the output end of the U9A is connected to the pin of the control unit for transmitting the collected AC signal to the control unit.
  • the first voltage follower circuit can isolate the AC signal acquisition circuit so that the front and back circuits do not affect each other.
  • FIG. 7 is a schematic structural diagram of a DC acquisition unit according to an embodiment of the present invention.
  • the DC acquisition unit includes at least one DC signal acquisition resistor 221, at least one DC signal amplification circuit 222, and at least one second voltage follower circuit. 223.
  • one end of the DC signal collecting resistor 221 is connected to the high voltage device to be monitored, and is used for collecting data of the high voltage device to be monitored, wherein the DC signal collecting resistor 221 is at least one, or a plurality of resistors may be connected in parallel.
  • the DC signal collecting resistor 221 is formed by selecting two resistors in parallel, and the signals of different DC voltages and currents of the high voltage device can be collected.
  • the output end of the DC signal acquisition resistor 221 is connected to the input end of the DC signal amplifying circuit 222, the output end of the DC signal amplifying circuit 222 is connected to the input end of the second voltage follower circuit 223, and the output and control of the second voltage follower circuit 223 are controlled.
  • the inputs of the unit are connected.
  • FIG. 8 is a circuit diagram of a DC signal acquisition circuit according to an embodiment of the present invention.
  • the embodiment adopts a multi-stage amplification circuit, and the DC signal amplification circuit includes an operational amplifier.
  • U11A and U12A, U11A form a first DC signal amplifying circuit
  • U12A forms a second DC signal amplifying circuit
  • each DC signal amplifying circuit is connected in series with a second voltage follower circuit.
  • the DC signal acquisition resistor in this embodiment is two parallel resistors R201 and R202. One end of the two resistors is connected to the DC 15V power supply and the non-inverting input terminal of the operational amplifier U11A, and one end of the two resistors is in phase with the U11A.
  • a resistor R204 for adjusting the amplification ratio of the U11A and the partial voltage is also connected between the input terminals; the other ends of the two resistors are respectively grounded and connected to the inverting input terminal of the U11A, and the other ends of the two resistors are inverted from the U11A.
  • a resistor R203 for adjusting the amplification ratio of U11A and functioning as a partial pressure is also connected between the input terminals.
  • U11A in this embodiment may select one of the LM2904 series operational amplifiers, such as LM2904AVQDRG4.
  • the non-inverting input terminal of the second voltage follower circuit U11B is connected to the output end of the U11A, and the voltage dividing resistors R206, R207 and R208 are connected between the non-inverting input terminal of the U11B and the output end of the U11A, and the non-inverting input terminals of the R208 and U11B are connected. Connected to one end of capacitor C55, the other end of C55 is grounded; capacitor C204 is connected between the inverting input terminals of R206 and U11B, and the inverting input of U11B is connected to the output of U11B.
  • the second voltage follower circuit formed by U11B can isolate the DC signal acquisition circuit so that the front and rear circuits do not affect each other.
  • the operational amplifier U12A forms another DC signal amplifying circuit. Specifically, the non-inverting input terminal of U12A is connected to the output end of U11B, and the inverting input terminals of U12A are respectively grounded and connected to the output end of U12A, and the inverting input terminal of U12A is A resistor R210 and a capacitor C207 are connected in parallel between the output terminals of the U12A.
  • U12A in this embodiment also selects one of the LM2904 series operational amplifiers, such as LM2904AVQDRG4.
  • the non-inverting input terminal of the voltage follower circuit U7B connected in series with the operational amplifier U12A is connected to the output terminal of the U12A
  • the inverting input terminal of the U7B is connected to the output terminal
  • the resistor R216, U7B is also connected between the inverting input terminal and the output terminal of the U7B.
  • a resistor R214 and R215 are connected between the non-inverting input and the inverting input
  • a capacitor C209 is connected in parallel with R213 and R214.
  • the output of the U12A is connected to the pin of the control unit for transmitting the collected DC signal to the control unit.
  • the control unit is the core unit of the whole system, and can perform corresponding processing on the signal transmitted by the received signal acquisition unit, and after processing the signal, can control the output of the signal, and send the processed signal to the wireless communication.
  • the unit which in turn implements the output of the signal.
  • the control unit further includes a second clock circuit for providing a clock source to the central processor of the control unit.
  • FIG. 9 is a circuit diagram of a control unit according to an embodiment of the present invention. Referring to FIG. 9, the central processing unit of the control unit uses a chip U6. Alternatively, the U6 may be one of the STM32 series chips. The example uses the STM32F103C8T6 chip.
  • the 1 pin of the U6 is connected to the 3.3V power supply; the 5 pin is connected to one end of the resistor R5, the other end of the R5 is connected to the 6 pin of the U6; the 8 pin of the U6 is grounded, and the 9 pin is connected to the 3.3V power supply; U6's 20-pin is connected to one end of resistor R7, the other end of R7 is grounded; U6's 23-pin is grounded, 24-pin is connected to 3.3V power supply; U6's 35-pin is grounded, 36-pin is connected to 3.3V power supply; U6's 44 The pin is connected to one end of the resistor R4, and the other end of the R4 is grounded; the 47 pin of the U6 is grounded, and the 48 pin is connected to the 3.3V power supply.
  • the rightmost circuit is the second clock circuit
  • the Y1 chip of the second clock circuit is a 16 MHz crystal oscillator
  • Y1 and U6 are connected through the pin of Y1 and the pin of U6.
  • the 1 pin of Y1 is connected to the 5 pin of U6 and the end of capacitor C13, the other end of capacitor C13 is grounded; the 2 pin of Y1 is grounded; the 3 pin of Y1 and the 6 pin of U6 and capacitor C14 Connected at one end, the other end of capacitor C14 is grounded; the 4 pin of Y1 is grounded.
  • the circuit in the middle of the lower half of FIG. 9 is an exemplary filter circuit diagram.
  • the capacitance in the filter circuit is distributed at each interface position of the control unit circuit to ensure the stability of the chip and prevent signal interference.
  • the leftmost circuit in the lower half of Figure 9 is the reset circuit, which is used to ensure that the device can complete normal initialization. Specifically, one end of the resistor R3 is connected to a 3.3V power supply, and the other end of the R3 is connected to the 7 pin of the U6, one pin of the RST1 switch, and one end of the capacitor C8. The other end of the C8 is grounded, and the other end of the RST1 switch is also grounded.
  • one pin of the NRF2401 chip of the wireless communication unit is connected with the 12 pin of the U6, and the two pins of the NRF2401 chip and the U6 are connected.
  • 13 pin connection 3 pin of NRF2401 chip is connected with 15 pin of U6, 4 pin of NRF2401 chip is connected with 14 pin of U6, 5 pin of NRF2401 chip is connected with 15 pin of U6, NRF2401 chip
  • the 6 pins are connected to the 11 pins of the U6.
  • the output of the first voltage follower circuit in the AC signal acquisition circuit is connected to the 18 pin of U6, and the output of the comparator is connected to the 2 pin of U6.
  • the output of the DC signal acquisition circuit is connected to the 19 pin of U6.
  • FIG. 10 is a circuit diagram of a temperature collecting circuit according to an embodiment of the present invention.
  • the temperature collecting unit includes a temperature sensing resistor PT100 for collecting a temperature signal. Specifically, the 1 pin of the PT100 in the temperature collecting circuit is grounded, the 2 pin is connected to one end of the adjustable resistor VR2, the 3 pin is connected to the cathode of the Zener diode TL431, and the anode of the TL431 is grounded.
  • the temperature collecting unit further includes an operational amplifier U301A, the non-inverting input terminal of the U301A is connected to one end of the resistor R307 and one end of the R304, the other end of the R307 is grounded, and the other end of the R304 is respectively connected with the 3-pin R302 and R303 of the PT100, R302.
  • FIG 11 is a circuit diagram of a power supply unit according to an embodiment of the present invention.
  • the power supply unit uses four batteries as power sources.
  • the power supply units provided in this embodiment can provide +15V, -15V, and 5V, respectively. And a voltage output of 3.3V, these different voltages can meet the power requirements of the wireless monitoring system in any of the above embodiments of the present application.
  • the circuit of the wireless monitoring system provided by any of the above embodiments of the present application can be integrated on a circuit board, and the overall product is small in size, easy to carry and operate, and can be conveniently and to be repaired when performing high-voltage equipment maintenance of the vehicle. High-voltage equipment connection for data monitoring saves time and effort.
  • the product of the wireless monitoring system of the present application can have a buckle for fixing the product, and the wireless monitoring system of the present application can be fixed to the outside of the high-voltage equipment box for convenient monitoring.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本实用新型提供一种无线监测系统,用于监测列车高压设备的数据,包括:控制单元、无线通信单元、供电单元和至少一个信号采集单元;所述供电单元用于为所述控制单元,所述无线通信单元以及所述信号采集单元供电;所述信号采集单元用于将采集到的列车高压设备的信号发送给所述控制单元;所述控制单元用于将接收到的所述信号转换为数字信号,并将所述数字信号发送至所述无线通信单元;所述无线通信单元用于通过无线方式将所述数字信号发送至终端设备。本申请的无线监测系统无需通过通信线缆对外传输数据,监测过程省时省力,并且当车辆处于运行状态时,位于车辆设备外部的终端也可以通过无线的方式接收设备内部监测的数据。

Description

无线监测系统 技术领域
本实用新型涉及交通技术领域,尤其涉及一种无线监测系统。
背景技术
随着轨道交通行业的快速发展,轨道车辆越来越多,随之而来轨道车辆高压设备的检修工作也越来越繁重。轨道车辆高压设备的检修工作主要是监测高压设备是否正常工作,当车辆发生故障时需要监测车辆高压设备的数据,根据高压设备的实时数据对车辆进行故障诊断,作出预判性的处理。另外在高压设备调试时也需要监测高压设备的数据,根据监测的数据对高压设备进行合理调试。
目前,对于轨道车辆高压设备上的数据通常是通过列车总线进行传输,传输的数据主要是高压设备内电压、电流和温度等信息。通过线缆连接待监测高压设备与终端,将待监测高压设备的电压、电流和温度等信息传输给终端,通过对终端显示的数据进行分析实现对高压设备的故障诊断或者设备调试。
但是,采用现有技术的方法,在对高压设备进行监测时,需要连接通信线缆,并合理布线,并且当车辆处于运行状态时,位于车辆外侧的终端则不能实现对高压设备的监测。
实用新型内容
本实用新型提供一种无线监测系统,用于解决现有技术中需要连接通信线缆进行高压设备监测的问题。
本实用新型提供一种无线监测系统,用于监测列车高压设备的数据,包括:控制单元、无线通信单元、供电单元和至少一个信号采集单元;
供电单元分别与控制单元、信号采集单元和无线通信单元电连接,用于为控制单元,无线通信单元以及信号采集单元供电;
信号采集单元的输入端为至少两个,且分别和列车高压设备的不同位置连接,信号采集单元的输出端和控制单元的输入端连接,用于采集列车 高压设备的信号,并将信号发送给所述控制单元;
控制单元的输出端和无线通信单元连接,用于将接收到的信号转换为数字信号,并将数字信号发送至无线通信单元;
无线通信单元用于通过无线方式将数字信号发送至终端设备。
可选地,无线通信单元包括无线处理器和第一时钟电路,该第一时钟电路包括16MHz晶振;
无线处理器与上述16MHz晶振通过管脚连接。
可选地,信号采集单元包括交流采集单元、直流采集单元和温度采集单元。
进一步地,交流采集单元包括至少一个交流信号采集电阻、交流信号放大电路、信号整流电路、比较器和第一电压跟随电路;
上述交流信号放大电路包括依次串联的第一同向放大电路和反向放大电路,第一同向放大电路用于对列车高压设备的交流信号进行放大,第一反向放大电路用于对列车高压设备的交流信号进行二级放大;
上述信号整流电路的输入端和上述比较器并联连接在交流信号放大电路的输出端上,比较器的输出端和控制单元的输入端连接,信号整流电路的输出端与电压跟随电路的输入端连接。
进一步地,上述第一同相放大电路包括第一运算放大器,第一运算放大器的同相输入端分别连接交流信号采集电阻的一端和接地,第一运算放大器的反向输入端与交流信号采集电阻的另一端连接,以及与第一运算放大器的输出端连接;
上述反相放大器包括第二运算放大器,该第二运算放大器的同相输入端接地,该第二运算放大器的反相输入端与上述第一运算放大器的输出端连接,以及与该第二运算放大器的输出端连接。
进一步地,上述信号整流电路包括第三运算放大器、第一二极管、第四运算放大器和第二二极管;
上述第三运算放大器的同相输入端与上述反相放大电路的输出端连接,上述第三运算放大器输出端与第一二极管的阳极连接,第三运算放大器的反相输入端与第一二极管的阴极连接;
上述第四运算放大器的同相输入端接地,上述第四运算放大器的输出 端与第二二极管的阳极连接,上述第四运算放大器的反相输入端分别与反相放大电路的输出端和第二二极管的阴极连接;
上述第一二极管的阴极与上述第二二极管的阴极连接后再分别与第一电压跟随电路连接。
可选地,上述直流采集单元包括至少一个直流信号采集电阻、至少一个直流信号放大电路和至少一个第二电压跟随电路;
直流信号放大电路包括第五运算放大器,第五运算放大器的同相输入端分别连接直流信号采集电阻的一端和接地,第五运算放大器的反向输入端与直流信号采集电阻的另一端连接,以及与第五运算放大器的输出端连接;
第五运算放大器的输出端与第二电压跟随电路的输入端连接,第二电压跟随电路的输出端与控制单元的输入端连接。
可选地,控制单元包括用于为控制单元的中央处理器提供时钟源的第二时钟电路。
可选地,控制电路还包括复位电路,用于保证设备能够完成正常初始化。
可选地,温度采集单元包括温感电阻。
本实用新型提供的用于监测列车高压设备数据的无线监测系统,包括控制单元、无线通信单元、供电单元和至少一个信号采集单元,供电单元分别与控制单元、信号采集单元和无线通信单元连接,用于对其进行供电,控制单元分别与信号采集单元和无线通信单元连接,当需要采集列车高压设备数据时,信号采集单元将采集到的列车高压设备的数据传输给控制单元,控制单元对数据进行处理后再通过无线通信单元传输给外部终端设备。本申请的无线监测系统由于具有了无线通信单元,使得系统对外传输数据无需如现有技术中需要布线,通过线缆才能将数据传出,省时省力,并且当车辆处于运行状态时,位于车辆外部的终端也可以通过无线的方式接收数据。
附图说明
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相 似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1为本实用新型所提供的实施例一的无线监测系统的结构示意图;
图2为本实用新型所提供的无线通信单元的结构示意图;
图3为本实用新型一具体实施例所提供的无线通信单元的电路图;
图4为本实用新型所提供的实施例二的无线监测系统的结构示意图;
图5为本实用新型所提供的交流采集单元的结构示意图;
图6为本实用新型一具体实施例所提供的交流信号采集电路的电路图;
图7为本实用新型所提供的直流采集单元的结构示意图;
图8为本实用新型一具体实施例所提供的直流信号采集电路的电路图;
图9为本实用新型一具体实施例所提供的控制单元的电路图;
图10为本实用新型一具体实施例所提供的温度采集电路的电路图;
图11为本实用新型一具体实施例所提供的供电单元的电路图。
具体实施方式
下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所以其他实施例,都属于本实用新型保护的范围。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。此外,说明书中的“第一”、“第二”仅是为了区分描述所指示的技术特征,而不能理解为指示或暗示相对重要性或描述特定的顺序,应该理解这样使用的数据在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方 法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体的实施例对本实用新型的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本实用新型所提供的实施例一的无线监测系统的结构示意图,请参照图1,该无线监测系统包括:控制单元3、无线通信单元4、供电单元1和至少一个信号采集单元2。
供电单元1分别与控制单元3、信号采集单元2和无线通信单元4电连接,供电单元1用于为控制单元3,无线通信单元4以及信号采集单元2供电,使整个系统可以在上电时正常工作。可选地,供电单元1可以选择任意型号的电池作为电源,通过供电单元内部的电路设计,输出控制单元3,无线通信单元4以及信号采集单元2所需的电压。
信号采集单元2的输入端为至少两个,且分别和列车高压设备的不同位置连接,用于采集列车高压设备不同位置的同类信号,或者用于采集列车高压设备的不同信号,举例来说,信号采集单元2可以采集列车高压设备不同位置的交流电压、直流电压、电流和运行时的温度等信号中的一种或者多种,或者还可以采集列车高压设备的同一位置的交流电压、直流电压、电流和温度等信号中的一种或者多种。可选地,信号采集单元2可以与不同的传感器通过电源线和信号线进行连接,进而实现对列车高压设备的不同信号的采集。
进一步地,信号采集单元2的输出端和控制单元3的输入端连接,进而实现将采集到的信号发送给控制单元3。
控制单元3为整个系统的核心单元,控制单元3的输出端和无线通信单元4连接,控制单元3可以实现对接收到的信号采集单元2传输的信号进行相应的处理,例如可以将接收到的信号转换为数字信号,对信号进行处理之后,控制单元3可以控制信号的输出,将处理后得到的数字信号发送至无线通信单元4,进而实现数字信号的输出。可选地,控制单元3和无线通信单元4可以通过串行外设接口(Serial Peripheral Interface, 简称SPI)进行通信连接,用于实现控制单元3的接收和发送数据。
无线通信单元4为整个系统的输出单元,可以通过无线方式将控制单元3发送的数字信号发送至终端设备,实现对列车高压设备的监测。
本实施例提供的用于监测列车高压设备数据的无线监测系统,包括控制单元、无线通信单元、供电单元和至少一个信号采集单元,供电单元分别与控制单元、信号采集单元和无线通信单元连接,用于对其进行供电,控制单元分别与信号采集单元和无线通信单元连接,当需要采集列车高压设备数据时,信号采集单元将采集到的列车高压设备的数据传输给控制单元,控制单元对数据进行处理后再通过无线通信单元传输给外部终端设备。本实施例的无线监测系统由于具有了无线通信单元,使得系统对外传输数据无需如现有技术中需要布线,通过线缆才能将数据传出,省时省力,并且当车辆处于运行状态时,位于车辆外部的终端也可以通过无线的方式接收数据。
图2为本实用新型所提供的无线通信单元的结构示意图,请参照图2,在上述实施例的基础上,无线通信单元4包括无线处理器41和第一时钟电路42。
无线处理器41为无线通信单元4的核心处理器,用于控制无线通信单元4的正常运行以及对数字信号的正常输出。可选地,在本实用新型的一实施例中,无线处理器41可以选择NRF2401芯片,通过对芯片的各管脚连接电路,形成上述无线通信单元4。
第一时钟电路42包括16MHz晶振,通过16MHz晶振为无线通信单元4提供时钟电路,用于控制无线通信单元4的工作时钟。并且,16MHz晶振与无线处理器41通过16MHz晶振的管脚与无线处理器41的芯片的管脚连接。
图3为本实用新型一具体实施例所提供的无线通信单元的电路图,请参照图3,在上述实施例的基础上,本实施例中的无线通信单元包括无线处理器41和第一时钟电路42。
其中,无线处理器41形成的电路为图3中下半部分电路,无线处理器41选择NRF2401芯片,NRF2401芯片的13管脚连接电容C17的一端,电容C17的另一端连接一电感,电感的另一端分别接地和连接一电容C22; NRF2401芯片的14管脚接地;15管脚与16管脚连接后形成的结点与分别与电容C19的一端和电阻R8的一端连接,电容C19的另一端接地,电阻R8的另一端接3.3V电压,另外,16管脚还连接一电容C18的一端,电容C18的另一端接地;17管脚接地;18管脚连接电容C20的一端和电容C19的一端,电容C20的另一端接地;19管脚连接电容C21的一端,电容C21的另一端接地。
第一时钟电路42包括16MHz晶振,通过16MHz晶振为无线通信单元4提供时钟电路,用于控制无线通信单元4的工作时钟。请继续参照图3,本实施例中16MHz晶振Y2与无线处理器41通过16MHz晶振Y2的管脚与NRF2401芯片的管脚连接。具体地,Y2的1管脚连接NRF2401芯片的10管脚和电容C15的一端,电容C15的另一端接地;Y2的2管脚接地;Y2的3管脚连接NRF2401芯片的9管脚和电容C16的一端,电容C16的另一端接地;Y2的4管脚接地。
本实施例提供的无线监测系统,通过无线通信单元可以将控制单元处理得到的数字信号以无线的方式输出给终端设备,实现了系统数据的无线传输,并且,由于信号采集单元、控制单元和无线通信单元的配合,使得数据传输的实时性相对较高,数据在较短的时间内即可输出给终端设备,解决了现有技术中采用列车总线进行高压设备数据监测时,数据需要在较长的一定周期内才会发出,不能实现数据的实时监测的问题。
图4为本实用新型所提供的实施例二的无线监测系统的结构示意图,请参照图4,信号采集单元2包括交流采集单元21、直流采集单元22和温度采集单元23。
在列车的高压设备上,最常见的监测数据包括交流信号和直流信号,交流信号包括交流电压值和电流值,直流信号包括直流电压值和电流值,通过对交流信号和直流信号的采集判断,可以确定高压设备当前的工作状态。同时,在列车运行过程中,高压设备处于工作状态,自身的温度会升高,较高的温度对于设备的正常工作有较大的影响,因此也需要不断地监测高压设备的温度。本实施例提供的无线监测系统的信号采集单元2包括交流采集单元21、直流采集单元22和温度采集单元23,正是为了实现对于高压设备上交流信号、直流信号和高压设备温度的数据采集。可选地, 信号采集单元2还可以包括其他类型信号的采集单元,例如线路异常信号等,其均可以通过本申请中的信号采集单元2进行信号的采集,并将信号传输给具有处理功能的控制单元3,最终通过无线通信模块4将信号数据输出,以供设备监测和检修人员使用。并且,通过调整对不同类型信号的采集,本申请的无线检测系统也可以应用于除列车高压设备之外的其他带电高压设备。
图5为本实用新型所提供的交流采集单元的结构示意图,请参照图5,交流采集单元21包括至少一个交流信号采集电阻211、交流信号放大电路212、信号整流电路213、比较器215和第一电压跟随电路214。
交流信号采集电阻211的一端与待监测高压设备连接,用于采集待监测高压设备的数据,交流信号采集电阻211为至少一个,也可以为多个电阻并联的形式,通过多个电阻的并联,可是实现多种阻值的需要。优选地,选择3个电阻并联的方式形成交流信号采集电阻211,可以实现对高压设备不同交流电压和电流等信号的采集。
交流信号放大电路212包括依次串联的第一同向放大电路2121和反向放大电路2122,第一同向放大电路2121用于对列车高压设备的交流信号进行放大,反向放大电路2122用于对列车高压设备的交流信号进行二级放大。通过第一同相放大电路2121与反相放大电路2122的配合,能够实现对交流信号整体的多级放大。可选地,第一同相放大电路2121与反相放大电路2122的同相输入端和/或反相输入端均连接有用于调节第一同相放大电路2121与反相放大电路2122的放大比例的电阻R,且电阻R与交流信号采集电阻211配合,通过对电阻R与交流信号采集电阻211的阻值调节,可以实现对第一同相放大电路2121与反相放大电路2122的放大比例进行调节。
信号整流电路213的输入端和比较器215并联连接在交流信号放大电路212的输出端上,比较器212的输出端和控制单元3的输入端连接,信号整流电路213的输出端与第一电压跟随电路214的输入端连接。
图6为本实用新型一具体实施例所提供的交流信号采集电路的电路图,请参照图6,在上述实施例的基础上,第一同相放大电路包括第一运算放大器U23A,反相放大电路包括第二运算放大器U23B,信号整流电路 包括第三运算放大器U25A、第一二极管VD7、第四运算放大器U25B和第二二极管VD8。
具体地,本实施例中的交流信号采集电阻为三个并联的电阻R101、R102、R103,三个电阻的一端连接交流15V电源和第一运算放大器U23A的同相输入端,且三个电阻的一端与第一运算放大器U23A的同相输入端之间还连接有用于调节第一运算放大器U23A放大比例以及起分压作用的电阻R105;三个电阻的另一端分别接地和连接U23A的反相输入端,且三个电阻的另一端与U23A的反相输入端之间也连接有用于调节U23A放大比例以及起分压作用的电阻R104。进一步地,U23A的同相输入端接地,反相输入端与输出端连接,且反相输入端与输出端之间还并联连接有一电阻R106和一电容C101。可选地,本实施例中的U23A可以选择LM2904系列运算放大器中的一种,例如LM2904AVQDRG4。
第二运算放大器U23B的同相输入端接地,反相输入端与第一运算放大器U23A的输出端连接,且U23B的反相输入端与U23A的输出端之间连接有用于起限流作用的电阻R107和R108,R107和R108与U23B的反相输入端之间连接电容C102的一端,C102的另一端接地;C102的一端与U23B的反相输入端之间连接有电阻R110;C102的一端与R110之间与顿足R109的一端连接,R109的另一端与U23B的输出端连接,U23B的反相输入端与输出端之间还连接一电容C105。通过上述电路元件之间的连接,实现了U23B的反相输入端与输出端的连接。
第三运算放大器U25A的同相输入端与第二运算放大器U23B的输出端连接,U25A输出端与第一二极管VD7的阳极连接,U25A的反相输入端与第一二极管VD7的阴极连接,且U25A的反相输入端与第一二极管VD7的阴极之间还连接有调节电阻R226。第四运算放大器U25B的同相输入端接地,U25B的输出端与第二二极管VD8的阳极连接,U25B的反相输入端分别与第二运算放大器U23B的输出端和第二二极管VD8的阴极连接,且U25B的反相输入端与第二二极管VD8的阴极之间还连接有调节电阻R229。第一二极管VD7与第二二极管VD8的阴极连接后再分别接-15V电压以及第一电压跟随电路。
比较器包括运算放大器U22B,U22B的反相输入端接地,同相输入端 与第二运算放大器U23B的输出端连接,输出端分别接电阻R245的一端、二极管VD10的阳极和电容C91的一端;R245的另一端接5V电源,二极管VD10的阴极与控制单元的管脚连接,电容C91的另一端接地。
第一电压跟随电路U9A的同相输入端与第一二极管VD7和第二二极管VD8的阴极连接,U9A的反相输入端与输出端连接,且反相输入端与输出端之间还连接一电阻R121,U9A的输出端与控制单元的管脚连接,用于实现将采集到的交流信号传输给控制单元。第一电压跟随电路能够对交流信号采集电路进行隔离,使前后电路之间互不影响。
图7为本实用新型实施例所提供的直流采集单元的结构示意图,请参照图7,直流采集单元包括至少一个直流信号采集电阻221、至少一个直流信号放大电路222和至少一个第二电压跟随电路223。
具体地,直流信号采集电阻221的一端与待监测高压设备连接,用于采集待监测高压设备的数据,其中直流信号采集电阻221为至少一个,也可以为多个电阻并联的形式。优选地,选择两个电阻并联的方式形成直流信号采集电阻221,可以实现对高压设备不同直流电压和电流等信号的采集。
直流信号采集电阻221的输出端与直流信号放大电路222的输入端连接,直流信号放大电路222的输出端与第二电压跟随电路223的输入端连接,第二电压跟随电路223的输出端与控制单元的输入端连接。
图8为本实用新型一具体实施例所提供的直流信号采集电路的电路图,请参照图8,在上述实施例的基础上,本实施例采用多级放大的电路,直流信号放大电路包括运算放大器U11A和U12A,U11A形成第一直流信号放大电路,U12A形成第二直流信号放大电路,每个直流信号放大电路串联一第二电压跟随电路。
具体地,本实施例中的直流信号采集电阻为两个并联的电阻R201和R202,两个电阻的一端连接直流15V电源和运算放大器U11A的同相输入端,且两个电阻的一端与U11A的同相输入端之间还连接有用于调节U11A放大比例以及起分压作用的电阻R204;两个电阻的另一端分别接地和连接U11A的反相输入端,且两个电阻的另一端与U11A的反相输入端之间也连接有用于调节U11A放大比例以及起分压作用的电阻R203。进一步地,U11A 的同相输入端接地,反相输入端与输出端连接,且反相输入端与输出端之间还并联连接一电阻R205和一电容C203。可选地,本实施例中的U11A可以选择LM2904系列运算放大器中的一种,例如LM2904AVQDRG4。
第二电压跟随电路U11B的同相输入端与U11A的输出端连接,且U11B的同相输入端与U11A的输出端之间还连接有分压电阻R206、R207和R208,R208与U11B的同相输入端之间与电容C55的一端连接,C55的另一端接地;R206与U11B的反相输入端之间连接电容C204,且U11B的反相输入端与U11B的输出端连接。U11B形成的第二电压跟随电路能够对直流信号采集电路进行隔离,使前后电路之间互不影响。
运算放大器U12A形成另一直流信号放大电路,具体地,U12A的同相输入端与U11B的输出端连接,U12A的反相输入端分别接地和与U12A的输出端连接,且U12A的反相输入端与U12A的输出端之间并联连接有电阻R210和电容C207。可选地,本实施例中的U12A也选择LM2904系列运算放大器中的一种,例如LM2904AVQDRG4。
与运算放大器U12A串联的电压跟随电路U7B的同相输入端与U12A的输出端连接,U7B的反相输入端与输出端连接,且U7B的反相输入端与输出端之间还连接电阻R216,U7B的同相输入端与反相输入端之间连接有电阻R214和R215,以及与R213和R214并联的电容C209。U12A的输出端与控制单元的管脚连接,用于实现将采集到的直流信号传输给控制单元。
控制单元为整个系统的核心单元,可以实现对接收到的信号采集单元传输的信号进行相应的处理,以及在对信号进行处理之后,可以控制信号的输出,将处理后得到的信号发送至无线通信单元,进而实现信号的输出。另外,控制单元还包括用于为控制单元的中央处理器提供时钟源的第二时钟电路。图9为本实用新型一具体实施例所提供的控制单元的电路图,请参照图9,控制单元的中央处理器采用芯片U6,可选地,U6可以为STM32系列芯片中的一种,本实施例采用STM32F103C8T6芯片。具体地,U6的1管脚接3.3V电源;5管脚连接在电阻R5的一端,R5的另一端与U6的6管脚连接;U6的8管脚接地,9管脚接3.3V电源;U6的20管脚接电阻R7的一端,R7的另一端接地;U6的23管脚接地,24管脚接3.3V电源;U6的35管脚接地,36管脚接3.3V电源;U6的44管脚接电阻R4的一端, R4的另一端接地;U6的47管脚接地,48管脚接3.3V电源。
请继续参照图9中的下半部分的三个电路图,最右边电路为第二时钟电路,第二时钟电路的Y1芯片为16MHz晶振,Y1与U6通过Y1的管脚和U6的管脚连接。具体地,Y1的1管脚与U6的5管脚和电容C13的一端连接,电容C13的另一端接地;Y1的2管脚接地;Y1的3管脚与U6的6管脚和电容C14的一端连接,电容C14的另一端接地;Y1的4管脚接地。
图9中的下半部分中间的电路为示例性的滤波电路图,滤波电路中的电容分布在控制单元电路的各接口位置,保证芯片的稳定,可以防止信号被干扰。
图9中的下半部分最左边电路为复位电路,用于保证设备能够完成正常初始化。具体地,电阻R3一端接3.3V电源,R3另一端连接U6的7管脚、RST1开关的一个管脚和电容C8的一端,C8的另一端接地,RST1开关的另一端也接地。
请同时参照图3、图6、图8与图9,在本实用新型一实施例中,无线通信单元的NRF2401芯片的1管脚与U6的12管脚连接,NRF2401芯片的2管脚与U6的13管脚连接,NRF2401芯片的3管脚与U6的15管脚连接,NRF2401芯片的4管脚与U6的14管脚连接,NRF2401芯片的5管脚与U6的15管脚连接,NRF2401芯片的6管脚与U6的11管脚连接。交流信号采集电路中的第一电压跟随电路的输出端与U6的18管脚连接,比较器的输出端与U6的2管脚连接。直流信号采集电路的输出端与U6的19管脚连接。
图10为本实用新型一具体实施例所提供的温度采集电路的电路图,请参照图10,温度采集单元包括温感电阻PT100,用来采集温度信号。具体地,温度采集电路中的PT100的1管脚接地,2管脚连接可调电阻VR2的一端,3管脚连接一稳压二极管TL431的阴极,TL431的阳极接地。另外,温度采集单元还包括运算放大器U301A,U301A的同相输入端与电阻R307的一端和R304的一端连接,R307的另一端接地,R304的另一端分别与PT100的3管脚R302、R303连接,R302与R303并联后与TL431的阴极连接;U301A的反相输入端与输出端通过电阻R306连接,U301A的反相输入端还与VR2的另一端通过电阻R305连接;U301A的输出端接R308的一 端,R308的另一端与稳压二极管1N4733的阴极和电容C302的一端连接,1N4733的阳极和C302的另一端连接后接地。请同时参照图9和图10,温度采集电路的输出端与U6的17管脚连接。
图11为本实用新型一具体实施例所提供的供电单元的电路图,请参照图11,供电单元采用4节电池作为电源,本实施例提供的供电单元,分别可以提供+15V、-15V、5V和3.3V的电压输出,这些不同的电压可以满足本申请上述任一实施例中的无线监测系统的电源需求。
本申请上述任一实施例所提供的无线监测系统的电路均可集成在一块电路板上,整体产品的体积较小,便于携带和操作,在进行车辆高压设备检修时,可以方便的与待检修高压设备连接,进行数据监测,省时省力。并且,本申请的无线监测系统做成的产品可具有一卡扣,用于产品的固定,可以实现将本申请的无线监测系统固定在高压设备箱体的外部,方便进行监测。
最后应该说明的是:本领域技术人员在考虑说明书及实践这里公开的实用新型后,将容易想到本申请的其它实施方案。本实用新型旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。

Claims (10)

  1. 一种无线监测系统,用于监测列车高压设备的数据,其特征在于,包括:控制单元、无线通信单元、供电单元和至少一个信号采集单元;
    所述供电单元分别与所述控制单元、所述信号采集单元和所述无线通信单元电连接,用于为所述控制单元,所述无线通信单元以及所述信号采集单元供电;
    所述信号采集单元的输入端为至少两个,且分别和所述列车高压设备的不同位置连接,所述信号采集单元的输出端和所述控制单元的输入端连接,用于采集所述列车高压设备的信号,并将所述信号发送给所述控制单元;
    所述控制单元的输出端和所述无线通信单元连接,用于将接收到的所述信号转换为数字信号,并将所述数字信号发送至所述无线通信单元;
    所述无线通信单元用于通过无线方式将所述数字信号发送至终端设备。
  2. 根据权利要求1所述的监测系统,其特征在于,所述无线通信单元包括无线处理器和第一时钟电路,所述第一时钟电路包括16MHz晶振;
    所述无线处理器与所述16MHz晶振通过管脚连接。
  3. 根据权利要求1所述的监测系统,其特征在于,所述信号采集单元包括交流采集单元、直流采集单元和温度采集单元。
  4. 根据权利要求3所述的监测系统,其特征在于,所述交流采集单元包括至少一个交流信号采集电阻、交流信号放大电路、信号整流电路、比较器和第一电压跟随电路;
    所述交流信号放大电路包括依次串联的第一同向放大电路和反向放大电路,所述第一同向放大电路用于对所述列车高压设备的交流信号进行放大,所述反向放大电路用于对所述列车高压设备的交流信号进行二级放大;
    所述信号整流电路的输入端和所述比较器并联连接在所述交流信号放大电路的输出端上,所述比较器的输出端和所述控制单元的输入端连接,所述信号整流电路的输出端与所述电压跟随电路的输入端连接。
  5. 根据权利要求4所述的监测系统,其特征在于,所述第一同相放大电路包括第一运算放大器,所述第一运算放大器的同相输入端分别连接所述交流信号采集电阻的一端和接地,所述第一运算放大器的反向输入端与所述交流信号采集电阻的另一端连接,以及与所述第一运算放大器的输出端连接;
    所述反相放大电路包括第二运算放大器,所述第二运算放大器的同相输入端接地,所述第二运算放大器的反相输入端与所述第一运算放大器的输出端连接,以及与所述第二运算放大器的输出端连接。
  6. 根据权利要求5所述的监测系统,其特征在于,所述信号整流电路包括第三运算放大器、第一二极管、第四运算放大器和第二二极管;
    所述第三运算放大器的同相输入端与所述第二运算放大器的输出端连接,所述第三运算放大器的输出端与所述第一二极管的阳极连接,所述第三运算放大器的反相输入端与所述第一二极管的阴极连接;
    所述第四运算放大器的同相输入端接地,所述第四运算放大器的输出端与所述第二二极管的阳极连接,所述第四运算放大器的反相输入端分别与所述第二运算放大器的输出端和所述第二二极管的阴极连接;
    所述第一二极管的阴极与所述第二二极管的阴极连接后再分别与所述第一电压跟随电路连接。
  7. 根据权利要求3所述的监测系统,其特征在于,所述直流采集单元包括至少一个直流信号采集电阻、至少一个直流信号放大电路和至少一个第二电压跟随电路;
    所述直流信号放大电路包括第五运算放大器,所述第五运算放大器的同相输入端分别连接所述直流信号采集电阻的一端和接地,所述第五运算放大器的反向输入端与所述直流信号采集电阻的另一端连接,以及与所述第五运算放大器的输出端连接;
    所述第五运算放大器的输出端与所述第二电压跟随电路的输入端连接,所述第二电压跟随电路的输出端与所述控制单元的输入端连接。
  8. 根据权利要求1-7任一项所述的监测系统,其特征在于,所述控制单元包括用于为所述控制单元的中央处理器提供时钟源的第二时钟电路。
  9. 根据权利要求1-7任一项所述的监测系统,其特征在于,所述控制电路还包括复位电路,用于保证设备能够完成正常初始化。
  10. 根据权利要求3所述的监测系统,其特征在于,所述温度采集单元包括温感电阻。
PCT/CN2018/108056 2017-12-19 2018-09-27 无线监测系统 WO2019119918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721781357.3 2017-12-19
CN201721781357.3U CN207570597U (zh) 2017-12-19 2017-12-19 无线监测系统

Publications (1)

Publication Number Publication Date
WO2019119918A1 true WO2019119918A1 (zh) 2019-06-27

Family

ID=62685487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108056 WO2019119918A1 (zh) 2017-12-19 2018-09-27 无线监测系统

Country Status (2)

Country Link
CN (1) CN207570597U (zh)
WO (1) WO2019119918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521219A (zh) * 2020-04-28 2020-08-11 中车长春轨道客车股份有限公司 一种轨道列车空调出风温度及湿度检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207570597U (zh) * 2017-12-19 2018-07-03 中车大连电力牵引研发中心有限公司 无线监测系统
CN113009383A (zh) * 2019-12-03 2021-06-22 中车唐山机车车辆有限公司 监测系统、城轨列车、监测方法及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2879202Y (zh) * 2006-01-24 2007-03-14 福建凯捷利电机(集团)有限公司 电力测量仪表
CN102608452A (zh) * 2012-02-24 2012-07-25 安徽建筑工业学院 高速列车设备状态及电能质量监测系统与方法
CN203178334U (zh) * 2013-03-06 2013-09-04 尤宣来 在线式交流电流及低阻测量的万用表
CN107102579A (zh) * 2017-01-04 2017-08-29 霍金龙 基于无线通信的火车远程监控平台及其应用方法
CN207570597U (zh) * 2017-12-19 2018-07-03 中车大连电力牵引研发中心有限公司 无线监测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2879202Y (zh) * 2006-01-24 2007-03-14 福建凯捷利电机(集团)有限公司 电力测量仪表
CN102608452A (zh) * 2012-02-24 2012-07-25 安徽建筑工业学院 高速列车设备状态及电能质量监测系统与方法
CN203178334U (zh) * 2013-03-06 2013-09-04 尤宣来 在线式交流电流及低阻测量的万用表
CN107102579A (zh) * 2017-01-04 2017-08-29 霍金龙 基于无线通信的火车远程监控平台及其应用方法
CN207570597U (zh) * 2017-12-19 2018-07-03 中车大连电力牵引研发中心有限公司 无线监测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521219A (zh) * 2020-04-28 2020-08-11 中车长春轨道客车股份有限公司 一种轨道列车空调出风温度及湿度检测系统

Also Published As

Publication number Publication date
CN207570597U (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2019119918A1 (zh) 无线监测系统
JP6264131B2 (ja) 太陽光発電用監視システム及びその通信方法
CN203564234U (zh) 基于usb传输的心电信号采集装置
CN107766200A (zh) 一种i2c总线监控系统及监控方法
CN203466837U (zh) 一种网络摄像机的供电装置
CN111175601A (zh) 模块化功能测试系统
CN111628908A (zh) 一种trdp协议数据采集分析装置及方法
CN110007636A (zh) 一种基于电网的物联网终端实时采集设备
CN207264545U (zh) 组合式电气火灾监控探测器
CN215880426U (zh) 焊接过程质量监测及控制终端及焊接监测系统
CN203502510U (zh) 一种配电馈线终端自动检测装置
CN109542706A (zh) 一种连接器检测方法、装置、设备及系统
CN108646103A (zh) 基于小车开关的自动核相系统及装置
CN113199167A (zh) 焊接过程质量监测及控制终端及焊接监测系统
CN209387796U (zh) 基于巡检机器人的特高频检测系统
CN112994247A (zh) 一种10kV中压线路的分支识别系统及方法
CN107543982A (zh) 面向低压用户的非侵入故障识别装置
CN204989305U (zh) 一种直流信号监测仪
CN105281972B (zh) 1553b总线的对比采集结构及对比采集方法
CN204788459U (zh) 一种风机振动监测系统
CN221612956U (zh) 一种牵引供电系统在线监测装置
CN203134101U (zh) 一种物联网通用数据采集器
CN209946677U (zh) 用于可编辑控制器的采集装置
CN216133125U (zh) 一种双通道检测直流系统窜入交流的装置
CN218351580U (zh) 基于PowerBus总线的电池包装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892153

Country of ref document: EP

Kind code of ref document: A1