WO2019119787A1 - 一种可见光透明的辐射致冷多层膜 - Google Patents

一种可见光透明的辐射致冷多层膜 Download PDF

Info

Publication number
WO2019119787A1
WO2019119787A1 PCT/CN2018/095780 CN2018095780W WO2019119787A1 WO 2019119787 A1 WO2019119787 A1 WO 2019119787A1 CN 2018095780 W CN2018095780 W CN 2018095780W WO 2019119787 A1 WO2019119787 A1 WO 2019119787A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
multilayer film
layer
film
cooling
Prior art date
Application number
PCT/CN2018/095780
Other languages
English (en)
French (fr)
Inventor
罗先刚
马晓亮
蒲明博
李雄
郭迎辉
Original Assignee
中国科学院光电技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电技术研究所 filed Critical 中国科学院光电技术研究所
Priority to US16/621,892 priority Critical patent/US11754352B2/en
Priority to EP18890786.9A priority patent/EP3628484B1/en
Publication of WO2019119787A1 publication Critical patent/WO2019119787A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/16Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying an electrostatic field to the body of the heat-exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent

Definitions

  • the invention relates to the technical field of radiation refrigeration, in particular to a visible light transparent radiation-cooling multilayer film.
  • the radiation cooling technology utilizes the huge temperature difference between the earth and the deep space of the universe, so that the heat of the ground radiates into the universe in the form of infrared electromagnetic waves, thereby achieving the purpose of cooling.
  • This technology is a passive, cooling-free method that requires no refrigerant, so it has great application prospects.
  • the invention provides a visible light transparent radiation-cooling multilayer film, adopting a new film layer arrangement manner to at least partially solve the above technical problems.
  • a visible light transparent radiation-cooling multilayer film comprising: an N-layer film comprising alternating first and second film layers;
  • the first film layer and the second film layer are different visible light transparent materials, and the dielectric constants of the two materials are different in the infrared band, and a resonant cavity is formed between the first film layer and the second film layer.
  • the N-layer film has a different thickness.
  • the first film layer is an indium tin oxide layer
  • the second film layer is a photoresist film layer
  • the value of N ranges from N ⁇ 3.
  • the thickness d1 of each layer of the first film layer ranges from 0.1 ⁇ m ⁇ d1 ⁇ 1 ⁇ m.
  • the thickness d2 of each layer of the second film layer ranges from 1 ⁇ m ⁇ d2 ⁇ 3 ⁇ m.
  • the photoresist film layer uses a positive gel or a negative gel.
  • the refractive index n1 of the photoresist in the visible light band ranges from 1.3 ⁇ n1 ⁇ 1.8.
  • the refractive index n2 of the indium tin oxide in the visible light ranges from 1.7 ⁇ n2 ⁇ 2.1.
  • the material having high transmittance of visible light is alternately arranged to form a multilayer film structure capable of realizing radiation cooling, and has the advantages of simple structure, convenient processing, good refrigeration effect, high visible light transmittance and low cost.
  • 01 material is a photoresist
  • 02 material is indium tin oxide
  • Example 2 is a graph showing the thickness and material composition of each layer of the multilayer film in Example 1 of the present invention.
  • FIG 3 is a material parameter of an indium tin oxide and a photoresist used in the simulation in the first embodiment of the present invention; wherein (a) is a parameter of indium tin oxide, and (b) is a parameter of the photoresist.
  • Figure 5 is a graph showing the transmittance of a multilayer film in the visible light band of the present invention.
  • the invention provides a visible light transparent radiation-cooling multilayer film, which adopts a new film layer arrangement manner, so that the multilayer film has extremely high visible light transmittance while achieving radiation cooling.
  • a visible light transparent radiation cooled multilayer film is provided.
  • the technical solution adopted in this embodiment is: a visible light transparent radiation-cooling multilayer film comprising N-layer films having different thicknesses, and the N-layer films having different thicknesses are alternately arranged indium oxide. Tin (ITO) and photoresist film layers.
  • ITO Tin
  • photoresist film layers By using the difference in dielectric constant between the two materials, a resonant cavity is formed between the material layers, and the resonant cavity enhances the electric field in the region, so that the radiance of the entire structure can be greatly improved.
  • N the value range of N is N ⁇ 3.
  • the thickness d1 of each layer of the indium tin oxide layer ranges from 0.1 ⁇ m ⁇ d1 ⁇ 1 ⁇ m; the thickness d2 of each layer of the photoresist layer ranges from 1 ⁇ m ⁇ d2 ⁇ 3 ⁇ m.
  • the photoresist is a positive glue or a negative glue.
  • the refractive index n1 of the photoresist in the visible light band ranges from 1.3 ⁇ n1 ⁇ 1.8; and the refractive index n2 of the indium tin oxide in the visible light band ranges from 1.7 ⁇ n2 ⁇ 2.1.
  • the visible light transparent radiation-cooling multilayer film is composed of indium tin oxide 02 and a photoresist film layer 01 having different thicknesses of N layers alternately arranged.
  • radiation cooling means that objects on the ground emit their own energy through electromagnetic waves into the deep space of the universe through thermal radiation, thereby achieving the cooling of the object.
  • gases such as water vapor, carbon dioxide and ozone in the atmosphere absorb specific wavelengths.
  • the frequency range in which the atmospheric transmittance is high is called the "atmospheric window”, and radiation cooling can be achieved only when the object radiates at a frequency within the atmospheric window.
  • the band of 8-14 ⁇ m is generally concerned, because the wavelength of black body radiation at normal temperature is mainly concentrated in this segment. Therefore, the multilayer film is required to have an extremely high emissivity at 8-14 ⁇ m when designing a radiation-cooled multilayer film.
  • Figure 2 shows the thickness and material composition of each layer of the multilayer film; by designing the thickness of the different material layers, the radiance of the multilayer film can be greatly enhanced compared to the original material, thereby achieving radiation-induced Cold purpose.
  • the photoresist in this embodiment is a commercial photoresist NR5-8000.
  • the material parameters of the indium tin oxide and the photoresist used in the simulation are shown in FIG. 3, and the parameters are experimentally measured parameters, wherein 3(a) is a parameter of indium tin oxide, and FIG. 3(b) is a parameter of the photoresist.
  • the emissivity of the multilayer film in the infrared band was simulated, and the propagation direction of the incident field was from -z to +z.
  • the absorption rate of the multilayer film at different angles was obtained by electromagnetic simulation software, as shown in FIG. According to Kirchhoff's law of thermal radiation, the absorption rate of an object in thermal equilibrium is equal to its radiance, so the emissivity obtained by simulation is considered to be the radiance of the multilayer film at thermal equilibrium.
  • the multilayer film has an emissivity of greater than 90% in the infrared range of 8-14 ⁇ m.
  • the transmittance of the multilayer film in the visible light band was simulated by simulation software, as shown in FIG.
  • the multilayer film has a high transparency in the visible light band, and the average transmittance of the multilayer film in the visible light band is calculated to be 87%.
  • the cooling power of the multilayer film was simulated based on the results described above.
  • T is the ambient temperature
  • I BB is the black body radiation formula, and the specific expression is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明提出了一种可见光透明的辐射致冷多层膜,包括交替排布的厚度不同的N层膜;该可见光透明的辐射致冷多层膜采用了一种新的膜层排布方式,使得该多层膜在实现辐射致冷的同时具有极高的可见光透过率。其中,所述多层膜由两种具有可见光高透过率的材料组成。利用这两种材料介电常数的差异,在材料层之间形成谐振腔,该谐振腔增强了所在区域内的电场强度,从而可以使得整个结构的辐射率相比于原体材料得到大幅度的提升。本发明具有结构简单,加工方便,制冷效果好,可见光透过率高,成本低等有益效果。

Description

一种可见光透明的辐射致冷多层膜 技术领域
本发明涉及辐射致冷的技术领域,特别涉及一种可见光透明的辐射致冷多层膜。
背景技术
随着经济的发展和社会的进步,空调能耗占社会总能耗的比例越来越大。这不仅消耗了大量的能源并且在空调工作过程中排放的氟氯化合物会对臭氧层产生不可逆转的破坏。因此,寻找一种能替代或减少空调使用的新型低能耗、无污染的致冷技术迫在眉睫。辐射致冷技术利用了地球和宇宙深空之间的巨大温差,使地面的热量以红外电磁波的形式辐射到宇宙中,从而实现降温的目的。该技术是一种被动的、不需要制冷剂的降温方式,因此具有巨大的应用前景。
国内外从上世纪60年代开始对辐射致冷的原理、选材以及相关实验装置展开研究,已经在原理及应用上取得了一些进展。比如Biggs和Michell建立了一种用特质聚四氟乙烯板为屋顶的房子,在环境温度为10℃时,室内的温度为5℃,其有效的致冷功率为22W/m 2。Erell和Ezion等研制了基于太阳能热板的房顶水池致冷系统,分析了辐射致冷的应用前景。到目前为止,此类研究主要是研究材料在红外波段的辐射特性,而忽视了材料在其他波段如可见光的性质。事实上,在很多实际应用中,辐射致冷材料都是以涂层的形式覆盖在原有的结构上,特别是当用于建筑物降温以及汽车、飞机等运输工具降温时,涂层在可见光的透明度就尤为重要。
发明内容
(一)要解决的技术问题
本发明提供了一种可见光透明的辐射致冷多层膜,采用了一种新的膜层排布方式,以至少部分解决以上所提出的技术问题。
(二)技术方案
根据本发明的一个方面,提供了一种可见光透明的辐射致冷多层膜,其特征在于,包括N层膜,所述N层膜包括交替排布的第一膜层与第二 膜层;
其中,所述第一膜层与第二膜层为不同的可见光透明材料,并且两种材料介电常数在红外波段存在差异,所述第一膜层与第二膜层之间形成谐振腔。
在本发明一些实施例中,所述N层膜的厚度不同。
在本发明一些实施例中,所述第一膜层为氧化铟锡层,所述第二膜层为光刻胶膜层。
在本发明一些实施例中,所述N的取值范围为N≥3。
在本发明一些实施例中,所述第一膜层每层厚度d1的取值范围为0.1μm≤d1≤1μm。
在本发明一些实施例中,所述第二膜层每层厚度d2的取值范围为1μm≤d2≤3μm。
在本发明一些实施例中,所述光刻胶膜层采用正性胶或负性胶。
在本发明一些实施例中,所述光刻胶在可见光波段的折射率n1的取值范围为1.3≤n1≤1.8。
在本发明一些实施例中,所述氧化铟锡在可见光波段的折射率n2的取值范围为1.7≤n2≤2.1。
(三)有益效果
从上述技术方案可以看出,本发明可见光透明的辐射致冷多层膜至少具有以下有益效果:
采用具有可见光高透过率的材料交替排布形成能够实现辐射致冷的多层膜结构,具有结构简单,加工方便,制冷效果好,可见光透过率高,成本低等优势。
附图说明
图1为本发明的结构示意图;图中01材料为光刻胶,02材料为氧化铟锡。
图2为本发明实施例1中所述多层膜每层的厚度以及材料组成。
图3为本发明实施例1中仿真所使用氧化铟锡和光刻胶在红外波段的材料参数;其中,(a)为氧化铟锡的参数,(b)为光刻胶的参数。
图4为本发明实施例1中所述多层膜在不同角度下的吸收率。
图5为本发明中多层膜在可见光波段的透过率。
具体实施方式
本发明提供了一种可见光透明的辐射致冷多层膜,采用了一种新的膜层排布方式,使得该多层膜在实现辐射致冷的同时具有极高的可见光透过率。
在本发明的第一个示例性实施例中,提供了一种可见光透明的辐射致冷多层膜。为了达到上述目的,本实施例所采用的技术方案为:一种可见光透明的辐射致冷多层膜,包括厚度不同的N层膜,所述厚度不同的N层膜为交替排布的氧化铟锡(ITO)和光刻胶膜层。利用这两种材料介电常数的差异,在材料层之间形成谐振腔,这种谐振腔增强了区域内的电场,从而可以使得整个结构的辐射率得到大幅度的提升。
其中,所述N的取值范围为N≥3。
其中,所述氧化铟锡层每层厚度d1的取值范围为0.1μm≤d1≤1μm;所述光刻胶层每层厚度d2的取值范围为1μm≤d2≤3μm。
其中,所述光刻胶为正性胶或负性胶。
其中,所述光刻胶在可见光波段的折射率n1的取值范围为1.3≤n1≤1.8;所述氧化铟锡在可见光波段的折射率n2的取值范围为1.7≤n2≤2.1。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本发明的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本发明满足适用的法律要求。
如图1所示,该可见光透明的辐射致冷多层膜,由N层交替排布的厚度不同的氧化铟锡02和光刻胶膜层01组成。
为了深入理解可见光透明的辐射致冷多层膜的设计原理,下面将结合辐射致冷的原理以及具体实施例来介绍本发明。
首先,辐射致冷是指地面上的物体通过热辐射的形式将自身的能量通过电磁波发射到宇宙深空中,从而实现物体的降温。事实上不是所有频率 的电磁波都能从地球辐射出去,这是因为地球被大气层所包围,而大气层中的水蒸气、二氧化碳和臭氧等气体对特定波长存在吸收。大气层透过率高的频率范围被称为“大气窗口”,只有物体辐射在大气窗口内的频率时,才能实现辐射致冷。在几个大气窗口中,一般关注8-14μm这个波段,这是因为常温下的黑体辐射波长主要集中在这一段。因此,设计辐射致冷多层膜时需要该多层膜在8-14μm有极高的辐射率。
实施例
本实施例设计了N=4的可见光透明的辐射致冷多层膜。图2给出了该多层膜每层的厚度以及材料组成;通过设计不同材料层的厚度,可以使所述多层膜的辐射率相比于原有材料得到极大地增强,从而实现辐射致冷的目的。本实施例中的光刻胶为商用光刻胶NR5-8000,仿真中所使用氧化铟锡和光刻胶在红外波段的材料参数如图3所示,该参数为实验测得参数,其中图3(a)为氧化铟锡的参数,图3(b)为光刻胶的参数。
首先,对该多层膜在红外波段的辐射率进行了仿真,入射场的传播方向从-z指向+z。通过电磁仿真软件得到了所述多层膜在不同角度下的吸收率,如图4所示。根据基尔霍夫热辐射定律,在热平衡状态下物体的吸收率等于其辐射率,因此认为仿真得到的吸收率即为该多层膜在热平衡时的辐射率。从图4中可以看出,所述多层膜在红外波段8-14μm范围内的辐射率大于90%。
为了说明该多层膜在可见光波段的透明度,利用仿真软件对所述多层膜在可见光波段下的透过率进行了仿真,如图5所示。仿真中光刻胶的折射率取值为n1=1.6,氧化铟锡的折射率取值为n2=1.8。由图5可知,所述多层膜在可见光波段有很高的透明度,经过计算所述多层膜在可见光波段的平均透过率为87%。
进一步的,为了说明所述多层膜的致冷效果,基于上面所述的结果对所述多层膜的致冷功率进行了仿真。定义所述多层膜的致冷功率为P=P1-P2,其中P1为所述多层膜向外辐射的功率,P2为所述多层膜吸收外界环境的功率。P1和P2分别满足公式:
Figure PCTCN2018095780-appb-000001
Figure PCTCN2018095780-appb-000002
其中,λ 1=8μm,λ 2=14μm,T为环境温度;I BB为黑体辐射公式,其具体的表达式为:
Figure PCTCN2018095780-appb-000003
其中,h=6.626×10 -34,Js为普朗克常数,c=2.998×10 8m/s为真空中的光速,k B=1.38×10 -23J/K为玻尔兹曼常数,λ为对应波长。∫dΩ为对球面的积分,在实际情况下为对半球的积分,
Figure PCTCN2018095780-appb-000004
ε atm(λ,θ)=1-t(λ) 1/cosθ为外部环境对所述多层膜的辐射率,t(λ)为大气窗口在不同波长下的透过率。表1给出了在不同环境温度下所述多层膜的单位面积致冷功率。
表1 不同环境温度下所述多层膜的单位面积制冷功率
环境温度(K) 单位面积制冷功率(W/m 2)
263 72.44
273 87.47
283 104.27
300 137.16
通过理论计算可以看出,所述多层膜具有优良的辐射致冷特性。
以上设计过程、实施例及仿真结果很好地验证了本发明。
至此,已经结合附图对本发明实施例进行了详细描述。需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换。
还需要说明的是,实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。贯穿附图,相同的元素由相同或相近的附图标记来表示。在可能 导致对本发明的理解造成混淆时,将省略常规结构或构造。
并且图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。另外,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
除非有所知名为相反之意,本说明书及所附权利要求中的数值参数是近似值,能够根据通过本发明的内容所得的所需特性改变。具体而言,所有使用于说明书及权利要求中表示组成的含量、反应条件等等的数字,应理解为在所有情况中是受到「约」的用语所修饰。一般情况下,其表达的含义是指包含由特定数量在一些实施例中±10%的变化、在一些实施例中±5%的变化、在一些实施例中±1%的变化、在一些实施例中±0.5%的变化。
再者,单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。
类似地,应当理解,为了精简本发明并帮助理解各个公开方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,公开方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种可见光透明的辐射致冷多层膜,其特征在于,包括N层膜,所述N层膜包括交替排布的第一膜层与第二膜层;
    其中,所述第一膜层与第二膜层为不同的可见光透明材料,并且两种材料介电常数在红外波段存在差异,所述第一膜层与第二膜层之间形成谐振腔。
  2. 根据权利要求1所述的一种可见光透明的辐射致冷多层膜,其中,所述N层膜的材料层厚度不同。
  3. 根据权利要求2所述的一种可见光透明的辐射致冷多层膜,其中,所述第一膜层为氧化铟锡层,所述第二膜层为光刻胶膜层。
  4. 根据权利要求3所述的一种可见光透明的辐射致冷多层膜,其中,所述N的取值范围为N≥3。
  5. 根据权利要求2或3所述的一种可见光透明的辐射致冷多层膜,其中:
    所述第一膜层每层厚度d1的取值范围为0.1μm≤d1≤1μm。
  6. 根据权利要求2或3所述的一种可见光透明的辐射致冷多层膜,其中:
    所述第二膜层每层厚度d2的取值范围为1μm≤d2≤3μm。
  7. 根据权利要求3所述的一种可见光透明的辐射致冷多层膜,其中:所述光刻胶膜层采用正性胶或负性胶。
  8. 根据权利要求3所述的一种可见光透明的辐射致冷多层膜,其中:
    所述光刻胶在可见光波段的折射率n1的取值范围为1.3≤n1≤1.8。
  9. 根据权利要求3所述的一种可见光透明的辐射致冷多层膜,其中:
    所述氧化铟锡在可见光波段的折射率n2的取值范围为1.7≤n2≤2.1。
PCT/CN2018/095780 2017-12-18 2018-07-16 一种可见光透明的辐射致冷多层膜 WO2019119787A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/621,892 US11754352B2 (en) 2017-12-18 2018-07-16 Visible light-transparent and radiative-cooling multilayer film
EP18890786.9A EP3628484B1 (en) 2017-12-18 2018-07-16 Multilayer radiation cooling film transparent to visible light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711361964.9A CN108099299B (zh) 2017-12-18 2017-12-18 一种可见光透明的辐射致冷多层膜
CN201711361964.9 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019119787A1 true WO2019119787A1 (zh) 2019-06-27

Family

ID=62209747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095780 WO2019119787A1 (zh) 2017-12-18 2018-07-16 一种可见光透明的辐射致冷多层膜

Country Status (4)

Country Link
US (1) US11754352B2 (zh)
EP (1) EP3628484B1 (zh)
CN (1) CN108099299B (zh)
WO (1) WO2019119787A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108099299B (zh) * 2017-12-18 2020-05-01 中国科学院光电技术研究所 一种可见光透明的辐射致冷多层膜
CN109341137A (zh) * 2018-10-24 2019-02-15 苏州融睿纳米复材科技有限公司 基于光子晶体的被动制冷结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408806B (zh) * 2011-11-03 2013-10-23 浙江大学 大气窗口区域高发射的透明隔热涂料及其制备方法
WO2015005526A1 (ko) * 2013-07-09 2015-01-15 주식회사 노루페인트 내 오염성을 갖는 에너지 절감형 유리 코팅 조성물 및 이를 적용한 에너지 절감형 유리 구조물
CN204749422U (zh) * 2015-02-04 2015-11-11 同济大学 一种基于光子晶体禁带原理的玻璃窗制冷贴膜
CN105957912A (zh) * 2016-07-01 2016-09-21 中国科学技术大学 一种多功能的光谱选择性封装材料
CN205900562U (zh) * 2016-07-01 2017-01-18 中国科学技术大学 一种多功能的光谱选择性封装材料
CN108099299A (zh) * 2017-12-18 2018-06-01 中国科学院光电技术研究所 一种可见光透明的辐射致冷多层膜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049419A (en) * 1998-01-13 2000-04-11 3M Innovative Properties Co Multilayer infrared reflecting optical body
CN2660413Y (zh) * 2003-11-04 2004-12-01 黄军华 一种金属的半导体制冷片
US7602108B2 (en) * 2005-05-26 2009-10-13 Eastman Chemical Company Micro-coextruded film modified with piezoelectric layers
CN102316619A (zh) * 2011-08-08 2012-01-11 芜湖日昇昌新光源科技有限公司 大面积电致节能冷光膜制造方法
EP3311094A4 (en) * 2015-06-18 2019-04-10 The Trustees of Columbia University in the City of New York SYSTEMS AND METHOD FOR RADIATION COOLING AND HEATING
CN105348892B (zh) * 2015-11-27 2017-08-11 上海交通大学 一种辐射制冷双层纳米涂层及其制备方法
US20170297750A1 (en) * 2016-04-19 2017-10-19 Palo Alto Research Center Incorporated Radiative Cooling Panels For Spacecraft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408806B (zh) * 2011-11-03 2013-10-23 浙江大学 大气窗口区域高发射的透明隔热涂料及其制备方法
WO2015005526A1 (ko) * 2013-07-09 2015-01-15 주식회사 노루페인트 내 오염성을 갖는 에너지 절감형 유리 코팅 조성물 및 이를 적용한 에너지 절감형 유리 구조물
CN204749422U (zh) * 2015-02-04 2015-11-11 同济大学 一种基于光子晶体禁带原理的玻璃窗制冷贴膜
CN105957912A (zh) * 2016-07-01 2016-09-21 中国科学技术大学 一种多功能的光谱选择性封装材料
CN205900562U (zh) * 2016-07-01 2017-01-18 中国科学技术大学 一种多功能的光谱选择性封装材料
CN108099299A (zh) * 2017-12-18 2018-06-01 中国科学院光电技术研究所 一种可见光透明的辐射致冷多层膜

Also Published As

Publication number Publication date
CN108099299A (zh) 2018-06-01
EP3628484A4 (en) 2021-02-24
CN108099299B (zh) 2020-05-01
US20210003354A1 (en) 2021-01-07
EP3628484C0 (en) 2024-03-27
US11754352B2 (en) 2023-09-12
EP3628484B1 (en) 2024-03-27
EP3628484A1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
Zhao et al. Radiative cooling: A review of fundamentals, materials, applications, and prospects
Jeong et al. Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate
Tso et al. A field investigation of passive radiative cooling under Hong Kong’s climate
Zhang et al. Cover shields for sub-ambient radiative cooling: A literature review
Fan et al. Yttria-stabilized zirconia coating for passive daytime radiative cooling in humid environment
WO2019119787A1 (zh) 一种可见光透明的辐射致冷多层膜
Kim et al. Optical and thermal filtering nanoporous materials for sub-ambient radiative cooling
Dai et al. Radiative cooling with multilayered periodic grating under sunlight
Yin et al. Switchable kirigami structures as window envelopes for energy-efficient buildings
Mandal et al. Radiative cooling and thermoregulation in the earth's glow
Yao et al. Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Yang et al. Passive all-day freshwater harvesting through a transparent radiative cooling film
JP2015007359A (ja) 複合断熱パネル
Yin et al. Realization of efficient radiative cooling in thermal emitter with inorganic metamaterials
Guo et al. Dynamic thermal radiation regulation for thermal management
Li et al. Integration of daytime radiative cooling and solar heating
Li et al. Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving
Gu et al. A comprehensive review of high-transmittance low-conductivity material-assisted radiant cooling air conditioning: Materials, mechanisms, and application perspectives
Zhao et al. Considerations of passive radiative cooling
CN111690382B (zh) 一种透射式辐射制冷无机材料
Alimohammadian et al. Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating
Ming et al. A generalized solar and thermal management strategy for daytime radiative cooling
Ghosh et al. Simultaneous subambient daytime radiative cooling and photovoltaic power generation from the same area
Yang et al. Enhanced radiative cooling with Janus optical properties for low-temperature space cooling
Zhao et al. Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO2/SiO2/Si3N4 micron particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018890786

Country of ref document: EP

Effective date: 20191223

NENP Non-entry into the national phase

Ref country code: DE