WO2019119722A1 - 确定风速的方法及装置 - Google Patents

确定风速的方法及装置 Download PDF

Info

Publication number
WO2019119722A1
WO2019119722A1 PCT/CN2018/087597 CN2018087597W WO2019119722A1 WO 2019119722 A1 WO2019119722 A1 WO 2019119722A1 CN 2018087597 W CN2018087597 W CN 2018087597W WO 2019119722 A1 WO2019119722 A1 WO 2019119722A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind speed
wind
downstream
region
wake
Prior art date
Application number
PCT/CN2018/087597
Other languages
English (en)
French (fr)
Inventor
卞凤娇
王斌
刘磊
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2019119722A1 publication Critical patent/WO2019119722A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft

Definitions

  • the present application relates to the field of wind power generation technologies, and in particular, to a method and apparatus for determining wind speed.
  • a method of determining a wind speed comprising: acquiring an incoming wind speed at any wind turbine in a wind farm; determining that the incoming flow is in any of the wind turbines Defining a projection area formed by a wake formed behind the impeller and a sweep plane of the impeller of the downstream wind turbine; determining a swept area formed by the impeller of the downstream wind turbine on the sweep plane; determining Determining the wind speed in the overlapping area between the projected area formed by the intersection of the wake and the sweeping plane and the swept area, and determining the wind speed in the overlapping area as the wind speed at the downstream wind turbine .
  • the apparatus for determining a wind speed comprising: a wind speed acquisition unit that acquires an incoming wind speed at any wind turbine in the wind farm; and a projection area determining unit that determines a projection area formed by intersecting a wake formed by an impeller of any one of the wind turbines with a sweep plane of an impeller of the downstream wind turbine; a sweeping area determining unit determining the downstream wind turbine a sweeping area formed by the impeller on the sweeping plane; a first wind speed determining unit determining an overlapping area between the projected area formed by the intersection of the wake and the sweeping plane and the swept area The wind speed in the middle, and the wind speed in the overlap region is determined as the wind speed at the downstream wind turbine.
  • a computer readable storage medium storing a computer program that, when executed by a processor, implements a method of determining wind speed as previously described.
  • a computer apparatus comprising: a processor; a memory storing a computer program that, when executed by the processor, implements determining a wind speed as previously described method.
  • the method and apparatus for determining wind speed provided by the present application can more accurately evaluate the wind speed of each wind turbine in the wind farm based on the wake effect, thereby evaluating the turbulence intensity and power generation of the wind farm and the wind farm. Pre-site or post-assessment provides a more reliable and accurate data basis.
  • FIG. 3 is a schematic view showing a wake flow formed behind an impeller of a wind power generator according to an exemplary embodiment of the present application
  • FIG. 4 is a schematic diagram showing a projection formed by a flow of a wake formed behind an impeller of a wind turbine and a sweep plane of an impeller of a downstream wind turbine according to an exemplary embodiment of the present application.
  • FIG. 1 is a flowchart illustrating a method of determining a wind speed according to an exemplary embodiment of the present application.
  • FIG. 2 is a structural block diagram showing an apparatus for determining a wind speed according to an exemplary embodiment of the present application. The implementation process of determining the wind speed will be described in detail below with reference to FIGS. 1 and 2.
  • the method for determining wind speed includes the following steps:
  • step 110 the incoming wind speed at any of the wind turbines in the wind farm may be obtained.
  • step 120 a projection area formed by the intersection of the wake formed by the incoming flow behind the impeller of either wind turbine and the sweep plane of the impeller of the downstream wind turbine may be determined.
  • step 140 the wind speed in the overlap region between the projected region formed by the intersection of the wake intersecting the sweep plane of the impeller of the downstream wind turbine and the sweep region of the impeller of the downstream wind turbine may be determined and will overlap
  • the wind speed in the area is determined as the wind speed at the downstream wind turbine.
  • the wake is divided into a plurality of wake regions such as a near field region, a far field region, and a mixed region according to the distance from the downstream wind power generator.
  • the wake can be divided according to the speed loss rate of the wake.
  • the wake may be divided according to whether the energy transfer of the wake has energy transfer with the external environment.
  • the wake of each of the divided wake regions has a different impact on the downstream wind turbine.
  • the near-field region is usually the wake region directly affected by the blade disturbance after the impeller sweep plane of the wind turbine
  • the far-field region is usually the externally affected wake region after the near-field region of the wind turbine.
  • the mixing area is usually a wake region where the wind turbine is blended with the external environment and is outside the far field region. Therefore, the influence of the wake region with different performance characteristics on the calculation of wind speed can be considered to model different wake regions, and then the wind speed corresponding to different wake regions can be calculated separately based on different wake models. Furthermore, the wind speed calculation results of different wake models are combined to obtain the final effective wind speed (ie, the effective wind speed of the downstream wind turbine under the influence of the wake).
  • the wake formed by the future flow of the impeller behind any of the wind turbines may be divided into a plurality of wake regions in step 120, and a sweep of each of the divided wake regions and the impeller of the downstream wind turbine is determined.
  • Each projection area formed by the intersection of the sweep planes, as shown in FIG. 4 later, the projection area Ak,1 , the far field area and the downstream formed by the near field region intersecting the sweep plane of the impeller of the downstream wind turbine The projection area A k, 2 formed by the intersection of the sweep planes of the impellers of the wind turbine and the projection area A k,3 formed by the intersection of the mixing area and the sweep plane of the impeller of the downstream wind turbine.
  • a wind speed in each overlap region between each projected region and a swept region of the impeller of the downstream wind turbine may be determined; and based on each overlap between each projected region and the swept region
  • the weights of the regions relative to the swept regions, respectively eg, including but not limited to, the area ratio between the overlap region and the swept region as the weight of the overlap region relative to the swept region
  • the wind speed in each of the overlapping regions between the swept regions is used to comprehensively determine the wind speed in the overlap region between the projected region and the swept region formed by the intersection of the wake intersecting the sweep plane of the impeller of the downstream wind turbine.
  • the wind speed at the downstream wind turbine can be corrected by further calculating the turbulence intensity at the downstream wind turbine to converge the calculation result of the wind speed at the downstream wind turbine, thereby further improving the wind speed assessment. accuracy.
  • wind speed acquisition unit 210 can be used to acquire wind speed at any of the wind farms; projection area determination unit 220 can be used to determine wake and downstream winds that are formed behind the impeller of any wind turbine a projection area formed by the intersection of the sweep planes of the impellers of the genset; the sweep area determining unit 230 may be configured to determine a sweep area formed by the impeller of the downstream wind turbine on the sweep plane of the impeller of the downstream wind turbine; The wind speed determining unit 240 may be configured to determine a wind speed in an overlapping area between the projected area and the swept area formed by the intersection of the wake intersecting the sweep plane of the impeller of the downstream wind turbine, and determine the wind speed in the overlapping area as the downstream Wind speed at the wind turbine.
  • the projection area determining unit 220 may further include a wake area dividing subunit (not shown) and a projection area determining subunit (not shown).
  • the wake region dividing subunit may be configured to divide the wake into a plurality of wake regions; the projection region determining subunit may be configured to determine that each of the divided wake regions intersects with a sweep plane of the impeller of the downstream wind turbine Each projection area, as shown in FIG.
  • the projection area A k,1 formed by the near field region intersecting the sweep plane of the impeller of the downstream wind turbine, the far field region and the impeller of the downstream wind turbine
  • the first wind speed determining unit 240 may further include a region wind speed determining subunit (not shown) and an equivalent wind speed determining subunit (not shown).
  • the regional wind speed determining subunit can be used to determine the wind speed in each overlapping area between each of the projected area and the swept area; the equivalent wind speed determining subunit can be used based on each between the projected area and the swept area
  • the overlap regions respectively have weights relative to the swept regions (eg, including but not limited to, the area ratio between the overlap region and the swept region as the weight of the overlap region relative to the swept region) and each projection
  • the wind speed in each overlapping area between the area and the swept area is comprehensively determined in the overlapping area between the projected area and the swept area formed by the intersection of the wake and the sweep plane of the impeller of the downstream wind turbine Wind speed.
  • the wind speed at the downstream wind turbine may be further corrected by calculating the turbulence intensity at the downstream wind turbine to converge the calculation result of the wind speed at the downstream wind turbine, thereby further improving the The accuracy of wind speed assessment.
  • the apparatus may further include: a turbulence intensity determining unit (not shown), a wind speed correcting unit (not shown), and a second wind speed determining unit (not shown).
  • the turbulence intensity determining unit is configured to determine the turbulence intensity at the downstream wind turbine according to the wind speed at the downstream wind turbine
  • the wind speed correction unit is configured to correct the wind speed at the downstream wind turbine based on the turbulence intensity at the downstream wind turbine Until the difference between the wind speed at the downstream wind turbine and the corrected wind speed of the downstream wind turbine is less than a predetermined threshold
  • the second wind speed determining unit is configured to determine the wind speed at the modified downstream wind turbine as the downstream wind turbine The speed of the wind.
  • FIG. 3 is a schematic diagram showing a wake flow formed behind an impeller of a wind power generator according to an exemplary embodiment of the present application.
  • 4 is a schematic diagram showing a projection formed by a flow of a wake formed behind an impeller of a wind turbine and a sweep plane of an impeller of a downstream wind turbine according to an exemplary embodiment of the present application.
  • the wake can be divided into a near field region (the darkest portion of the color as shown in Figure 3), a far field region (such as the slightly lighter portion shown in Figure 3), and a blending region (as shown in Figure 3).
  • the color is close to the white part) three wake areas.
  • each of the divided wake regions intersects with the sweep plane of the impeller of the downstream wind turbine turbine k .
  • the projection areas A k,1 , A k,2 and A k,3 all partially overlap the sweep area A k of the impeller of the downstream wind turbine turbine k (ie, the overlap area A overlap, k shown in FIG. 4) , 1 , A overlap, k, 2 and A overlap, k, 3 ).
  • U w,i,j is the wind speed corresponding to the different wake region j of the wind turbine tuziine i
  • a i is the axial induced factor (which can be obtained according to the wind speed table)
  • U i is the wind turbine The wind speed at turbine i
  • c w, i, j is the wake loss coefficient corresponding to the different wake region j.
  • D w,i,j is the width of the different wake region j of the wind turbine turkine i (the wake width D w,i,1 of the near-field region as shown in FIG. 3, the tail of the far-field region)
  • D i is the diameter of the impeller of the wind turbine tuziine i
  • m e,j is the different tail of the wind turbine tuziine i wake influence coefficient corresponding to the width of the flow area of j, k e, i of the wind turbine wake flow turbine expansion coefficient of i
  • X i is a wind turbine turbine unit site i abscissa
  • x is in the wake region any point of the abscissa
  • xX i from wind energy turbine unit site is arbitrary point i to point.
  • ⁇ rotate, offset i caused by the Coriolis force, a d, b d is the rotational offset coefficient linear equations
  • X i is a wind turbine turbine unit site i abscissa
  • x is wakes any point abscissa region
  • xX i from wind energy turbine unit site is arbitrary point i to point.
  • Y w, i of the wind turbine of the turbine wake offset i, Y i as ordinate turbine wind turbine machine of site i, ⁇ yaw, i caused by the yaw angle offset, ⁇ Rotate,i is the offset caused by Coriolis force.
  • the wind speed at the downstream wind turbine turbine k can be determined using the following formula (7):
  • Ratio of size wherein, U eff, k is the wind speed the wind turbine turbine k at the downstream, A k impeller downstream wind turbine turbine k of the swept area, A overlap, k, j and A k represents the wind turbine
  • the overlap area A overlap,k between the projection areas A k,1 , A k,2 and A k,3 of the different wake regions j of the turbine i and the sweep area A k of the impeller of the downstream wind turbine turbine k j is the area ratio between the swept area A k of the impeller of the downstream wind turbine turbine i .
  • a k is the axial induction factor of the downstream wind turbine turbine k (which can be obtained from the wind speed U i lookup table).
  • c w,i,j is the wake loss coefficient of the different wake region j in the wake of the wind turbine tuziine i at the downstream wind turbine turbine k
  • X i and X k are the wind turbine turkine i and the abscissa machine site downstream wind turbine generator of K
  • X i ⁇ X k represents a machine downstream from the site of the wind turbine generator K with respect to the direction of wind energy turbine unit site downstream of i.
  • additional turbulence intensity at the downstream wind turbine turbine k may also be determined based on the wind speed U eff,i at the wind turbine turbine i to use the determined additional turbulence intensity Correct the initial wake expansion coefficient of the wind turbine tuziine i :
  • T e,i is the wake expansion coefficient of the wind turbine tuziine i
  • T add,k is the additional turbulence intensity at the downstream wind turbine turbine k
  • T eff,k is the equivalent of the downstream wind turbine turbine k
  • the turbulence intensity, T ambient and T ref are the ambient turbulence intensity and the reference turbulence intensity, respectively
  • a and b are constants
  • C T,i is the thrust coefficient of the wind turbine turkine i (which can be obtained from the wind speed table).
  • the wind speed U eff,k at the downstream wind turbine turbine k is again calculated using the above formula (7), and will be calculated again.
  • Winds U eff downstream wind turbine at the turbine k, k k wind speed at the wind turbine turbine downstream previously calculated U eff, k is compared, when the difference between the two to meet the predetermined threshold value, recalculated Winds downstream wind turbine at the turbine k U eff, k determines the wind speed at the wind turbine downstream turbine k U eff, k; otherwise, the expansion coefficient calculation process is repeatedly performed in the wake of the front is continued iterative convergence . This process of iteratively calculating the wind speed U eff,k based on the effective turbulence intensity further improves the accuracy of the wind speed assessment.
  • the above implementation divides the wake of the wind turbine into three different wake regions, respectively considering its influence on the downstream wind turbine, and calculates the wind speed of the downstream wind turbine based on the calculation.
  • the method is more accurate for calculating the wind speed of each wind turbine in the wind farm, which provides more reliable and accurate data for the evaluation of the turbulence intensity and power generation of the wind farm and the preliminary site selection or post-evaluation of the wind farm. in accordance with.
  • a computer readable storage medium storing a computer program is also provided in accordance with an exemplary embodiment of the present invention.
  • the computer readable storage medium stores a computer program that, when executed by a processor, causes the processor to perform the method of determining the wind speed described above.
  • the computer readable recording medium is any data storage device that can store data read by a computer system. Examples of the computer readable recording medium include read only memory, random access memory, read-only optical disk, magnetic tape, floppy disk, optical data storage device, and carrier wave (such as data transmission via the Internet via a wired or wireless transmission path).
  • a computer device is also provided in accordance with an exemplary embodiment of the present invention.
  • the computer device includes a processor and a memory.
  • the memory is used to store computer programs.
  • the computer program is executed by a processor such that the processor executes a computer program for determining a wind speed as described above.
  • the above method according to the present application can be implemented in hardware, firmware, or as software or computer code that can be stored in a recording medium such as a CD ROM, a RAM, a floppy disk, a hard disk, or a magneto-optical disk, or can be downloaded through a network.
  • a recording medium such as a CD ROM, a RAM, a floppy disk, a hard disk, or a magneto-optical disk, or can be downloaded through a network.
  • the computer code originally stored in a remote recording medium or non-transitory machine readable medium and to be stored in a local recording medium, whereby the methods described herein can be stored using a general purpose computer, a dedicated processor, or programmable or dedicated Such software processing on a recording medium of hardware such as an ASIC or an FPGA.
  • a computer, processor, microprocessor controller or programmable hardware includes storage components (eg, RAM, ROM, flash memory, etc.) that can store or receive software or computer code, when the software or computer code is The processing methods described herein are implemented when the processor or hardware is accessed and executed. Moreover, when a general purpose computer accesses code for implementing the processing shown herein, the execution of the code converts the general purpose computer into a special purpose computer for performing the processing shown herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

一种确定风速的方法,包括:确定来流在风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域(120);确定该叶轮在扫掠平面上形成的扫掠区域(130);确定尾流与扫掠平面相交而形成的投影区域与扫掠区域之间的重叠区域中的风速,并将该风速确定为下游风力发电机组处的风速(140)。还公开了一种确定风速的装置。

Description

确定风速的方法及装置 技术领域
本申请涉及风力发电技术领域,尤其涉及一种确定风速的方法及装置。
背景技术
随着风力发电技术发展和陆上风电场资源越来越少,海上风电场的开发成为主流趋势。然而,由于海上环境湍流强度较低,风电场中的风力发电机组的布局空间受到限制,风力发电机组之间的流场的相互影响表现得尤为严重。这种风力发电机组之间的上下游相互影响的现象被称为尾流效应。尾流效应不仅对风力发电机组的叶片的气动性能影响显著,而且会直接导致风力发电机组的效率大幅度降低,同时使得风力发电机组的叶片产生疲劳效应,进而减少叶片使用寿命。
发明内容
本申请的目的在于提供一种确定风速的方法及装置。
据本申请的一方面,提供一种确定风速的方法,所述方法包括:获取风电场中的任一风力发电机组处的来流风速;确定由所述来流在所述任一风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域;确定所述下游风力发电机组的叶轮在所述扫掠平面上形成的扫掠区域;确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速,并将所述重叠区域中的风速确定为所述下游风力发电机组处的风速。
据本申请的另一方面,提供一种确定风速的所述装置,所述装置包括:风速获取单元,获取风电场中的任一风力发电机组处的来流风速;投影区域确定单元,确定由所述来流在所述任一风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域;扫掠区域确定单元,确定所述下游风力发电机组的叶轮在所述扫掠平面上形成的扫掠区 域;第一风速确定单元,确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速,并将所述重叠区域中的风速确定为所述下游风力发电机组处的风速。
据本申请的另一方面,提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序在被处理器执行时,实现如前面所述的确定风速的方法。
据本申请的另一方面,提供一种计算机设备,所述计算机设备包括:处理器;存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如前面所述的确定风速的方法。
本申请所提供的确定风速的方法及装置可基于尾流效应对风电场中的各个风力发电机组的风速进行更为精确地评估,从而为风电场的湍流强度和发电量的评估以及风电场的前期选址或后评估提供了更为可靠和准确的数据依据。
附图说明
通过下面结合附图进行的描述,本申请的上述和其他目的和特点将会变得更加清楚,其中:
图1是示出根据本申请的示例性实施例的确定风速的方法的流程图;
图2是示出根据本申请的示例性实施例的确定风速的装置的结构框图;
图3是示出根据本申请的示例性实施例的来流在风力发电机组的叶轮后面形成的尾流的示意图;
图4是示出根据本申请的示例性实施例的来流在风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影的示意图。
具体实施方式
以下,将参照附图来详细说明本申请的实施例。
图1是示出根据本申请的示例性实施例的确定风速的方法的流程图。图2是示出根据本申请的示例性实施例的确定风速的装置的结构框图。以下将参照图1和2来详细地描述确定风速的实施过程。
参照图1,所述确定风速的方法包括如下步骤:
在步骤110中,可获取风电场中的任一风力发电机组处的来流风速。
在步骤120中,可确定由来流在任一风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域。
在步骤130中,可确定下游风力发电机组的叶轮在下游风力发电机组的叶轮的扫掠平面上形成的扫掠区域。
在步骤140中,可确定由尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域与下游风力发电机组的叶轮的扫掠区域之间的重叠区域中的风速,并将重叠区域中的风速确定为下游风力发电机组处的风速。
在本申请实施例中,根据距离下游风力发电机组的远近,将尾流划分为近场区域、远场区域和混合区域等多个尾流区域。在一个示例中,可根据尾流的速度亏损速率来对尾流进行划分。在另一示例中,可根据尾流的能量传递是否与外部环境有能量传递来对尾流进行划分。
可以理解的是,划分的每个尾流区域的尾流对下游风力发电机组具有不同的影响。例如,近场区域通常为风力发电机组的叶轮扫掠平面后的直接受到叶片扰动影响的尾流区域,远场区域通常为风力发电机组的近场区域后的受外部影响较小的尾流区域,混合区域通常为风力发电机组与外部环境掺混作用较强的且处于远场区域之外的尾流区域。因此,可考虑具有不同表现特征的尾流区域给风速计算带来的影响来对不同的尾流区域进行建模,然后再基于不同的尾流模型来分别计算不同的尾流区域对应的风速,进而综合不同的尾流模型的风速计算结果来得到最终的有效风速(即,下游风力发电机组在尾流影响下的有效风速)。
在一个示例中,可在步骤120中将来流在任一风力发电机组的叶轮后面形成的尾流划分为多个尾流区域,并且确定划分的每个尾流区域与下游风力发电机组的叶轮的扫掠平面相交而形成的每个投影区域,如在后面图4中示出的,近场区域与下游风力发电机组的叶轮的扫掠平面相交形成的投影区域A k,1、远场区域与下游风力发电机组的叶轮的扫掠平面相交形成的投影区域A k,2以及混合区域与下游风力发电机组的叶轮的扫掠平面相交形成的投影区域A k,3
接下来,可在步骤140确定每个投影区域与下游风力发电机组的叶轮的 扫掠区域之间的每个重叠区域中的风速;并且基于每个投影区域与扫掠区域之间的每个重叠区域分别相对于扫掠区域所具有的权重(例如,包括但不限于将重叠区域与扫掠区域之间的面积比作为该重叠区域相对于扫掠区域所具有的权重)以及每个投影区域与扫掠区域之间的每个重叠区域中的风速,来综合确定由尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域与扫掠区域之间的重叠区域中的风速。
在此基础上,可通过进一步计算下游风力发电机组处的湍流强度来对下游风力发电机组处的风速进行修正,以使下游风力发电机组处的风速的计算结果收敛,从而进一步提高对风速评估的准确性。
在另一个示例中,还可根据步骤140确定的下游风力发电机组处的风速来进一步确定下游风力发电机组处的湍流强度;然后,基于下游风力发电机组处的湍流强度来修正下游风力发电机组处的风速,直到下游风力发电机组处的风速与修正的下游风力发电机组的风速之间的差小于预定阈值为止;最后,将修正的下游风力发电机组处的风速确定为下游风力发电机组处的风速。
应该理解,上述确定风速的示例可以单独实施,也可以组合实施以便实现对风速的确定。
参照图2,根据本申请的确定风速的装置可包括风速获取单元210、投影区域确定单元220、扫掠区域确定单元230和第一风速确定单元240。
在一个示例中,风速获取单元210可用于获取风电场中的任一风力发电机组处的风速;投影区域确定单元220可用于确定由来流在任一风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域;扫掠区域确定单元230可用于确定下游风力发电机组的叶轮在下游风力发电机组的叶轮的扫掠平面上形成的扫掠区域;第一风速确定单元240可用于确定由尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域与扫掠区域之间的重叠区域中的风速,并将重叠区域中的风速确定为下游风力发电机组处的风速。
如前所述,尾流可包括多个尾流区域,并且每个尾流区域的尾流对下游风力发电机组具有不同的影响。
因此,为了进一步提高对风速进行评估的准确性,在一个示例中,投影区域确定单元220还可进一步包括尾流区域划分子单元(未示出)和投影区 域确定子单元(未示出)。其中,尾流区域划分子单元可用于将尾流划分为多个尾流区域;投影区域确定子单元可用于确定划分的每个尾流区域与下游风力发电机组的叶轮的扫掠平面相交而形成的每个投影区域,如在后面图4中示出的,近场区域与下游风力发电机组的叶轮的扫掠平面相交形成的投影区域A k,1、远场区域与下游风力发电机组的叶轮的扫掠平面相交形成的投影区域A k,2以及混合区域与下游风力发电机组的叶轮的扫掠平面相交形成的投影区域A k,3
在该示例中,第一风速确定单元240可进一步包括区域风速确定子单元(未示出)和等效风速确定子单元(未示出)。其中,区域风速确定子单元可用于确定每个投影区域与扫掠区域之间的每个重叠区域中的风速;等效风速确定子单元可用于基于每个投影区域与扫掠区域之间的每个重叠区域分别相对于扫掠区域所具有的权重(例如,包括但不限于将重叠区域与扫掠区域之间的面积比作为该重叠区域相对于扫掠区域所具有的权重)以及每个投影区域与扫掠区域之间的每个重叠区域中的风速,来综合确定由尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域与扫掠区域之间的重叠区域中的风速。
此外,如前所述,也可进一步通过计算下游风力发电机组处的湍流强度来对下游风力发电机组处的风速进行修正,以使下游风力发电机组处的风速的计算结果收敛,从而进一步提高对风速评估的准确性。
在另一示例中,所述装置还可进一步包括:湍流强度确定单元(未示出)、风速修正单元(未示出)和第二风速确定单元(未示出)。其中,湍流强度确定单元用于根据下游风力发电机组处的风速来确定下游风力发电机组处的湍流强度;风速修正单元用于基于下游风力发电机组处的湍流强度来修正下游风力发电机组处的风速,直到下游风力发电机组处的风速与修正的下游风力发电机组的风速之间的差小于预定阈值为止;第二风速确定单元用于将修正的下游风力发电机组处的风速确定为下游风力发电机组处的风速。
图3是示出根据本申请的示例性实施例的来流在风力发电机组的叶轮后面形成的尾流的示意图。图4是示出根据本申请的示例性实施例的来流在风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影的示意图。
如图3所示,当来流(其风速为U i)吹向风力发电机组turbine i时,来流风在风力发电机组turbine i后面形成的如图中所示的长条状的尾流,该尾流可被划分为近场区域(如图3中所示的颜色最深的部分)、远场区域(如图3中所示的颜色略浅的部分)和混合区域(如图3中所示的颜色接近白色的部分)三个尾流区域。
如图4所示,划分的每个尾流区域(即,图3中示出的近场区域、远场区域和混合区域)与下游风力发电机组turbine k的叶轮的扫掠平面相交而形成的投影区域A k,1、A k,2和A k,3均与下游风力发电机组turbine k的叶轮的扫掠区域A k有部分重叠(即,图4中示出的重叠区域A overlap,k,1、A overlap,k,2和A overlap,k,3)。
以下将参照图3和4来进一步详细地描述确定风速的一个具体实施过程。首先可使用如下公式(1)来确定风力发电机组turbine i的不同的尾流区域j对应的(即,近场区域、远场区域和混合区域各自对应的)尾流亏损系数:
Figure PCTCN2018087597-appb-000001
其中,c w,i,j为风力发电机组turbine i的不同的尾流区域j对应的尾流亏损系数,D i为风力发电机组turbine i的叶轮的直径,k e,i为风力发电机组turbine i的初始尾流膨胀系数,X i为风力发电机组turbine i的机位点的横坐标,x为尾流区域中的任意一点的横坐标,x-X i为任意一点到风力发电机组turbine i的机位点的距离,m u,ji)为与风力发电机组turbine i的不同的尾流区域j的偏航角相关系数(其与偏航角γ i线性相关)。
接着,可基于由公式(1)获得的尾流亏损系数c w,i,j使用如下公式(2)和(3)来分别确定风力发电机组turbine i的不同的尾流区域j对应的风速以及风力发电机组turbine i的不同尾流区域j的宽度:
U w,i,j=U i(1-2a ic w,i,j) (2)
D w,i,j=max(D i+2k e,im e,j(x-X i),0) (3)
其中,U w,i,j为风力发电机组turbine i的不同尾流区域j对应的风速,a i是轴向诱导因子(其可根据风速查表来被获得),U i为风力发电机组turbine i处的风速,c w,i,j为不同的尾流区域j对应的尾流亏损系数。
其中,D w,i,j为风力发电机组turbine i的不同的尾流区域j的宽度(如图3 中示出的近场区域的尾流宽度D w,i,1、远场区域的尾流宽度D w,i,2以及混合区域的尾流宽度D w,i,3),D i为风力发电机组turbine i的叶轮的直径,m e,j为风力发电机组turbine i的不同的尾流区域j的对应的尾流宽度影响系数,k e,i为风力发电机组turbine i的尾流膨胀系数,X i为风力发电机组turbine i的机位点的横坐标,x为尾流区域中的任意一点的横坐标,x-X i为任意一点到风力发电机组turbine i的机位点的距离。
进一步地,可使用如下公式(4)、(5)和(6)来确定风力发电机组turbine i的尾流偏移(其主要由偏航角ξ i和科氏力(即,地球自转)所导致):
Figure PCTCN2018087597-appb-000002
Δ rotate,i=a d+b d(x-X i) (5)
Y w,i=Y iyaw,irotate,i (6)
其中,Δ yaw,i为由偏航角ξ i(x)引起的偏移量,ξ i(x)为尾流中心线夹角,X i为风力发电机组turbine i的机位点的横坐标,x为尾流区域中的任意一点的横坐标,x-X i为任意一点到风力发电机组turbine i的机位点的距离。
其中,Δ rotate,i为由科氏力引起的偏移量,a d、b d为旋转偏移线性方程系数,X i为风力发电机组turbine i的机位点的横坐标,x为尾流区域中的任意一点的横坐标,x-X i为任意一点到风力发电机组turbine i的机位点的距离。
其中,Y w,i为风力发电机组turbine i的尾流偏移,Y i为风力发电机组turbine i的机位点的纵坐标,Δ yaw,i为由偏航角引起的偏移量,Δ rotate,i为由科氏力引起的偏移量。
进一步地,可基于风力发电机组turbine i的尾流偏移、风力发电机组turbine i的不同尾流区域j的尾流宽度D w,i,j和下游风力发电机组turbine k的叶轮扫掠区域A k来确定风力发电机组turbine i的不同的尾流区域j与下游风力发电机组turbine i的叶轮的扫掠区域相交而形成的投影区域A k,1、A k,2和A k,3与下游风力发电机组turbine k的叶轮的扫掠区域A k之间的重叠区域A overlap,k,j,然后将风力发电机组turbine i的不同尾流区域j的投影区域A k,1、A k,2和A k,3与下游风力发电机组turbine k的叶轮的扫掠区域A k之间的重叠区域A overlap,k,j与下游风力发电机组turbine i的叶轮的扫掠区域A k之间的面积比作为风力发电机组turbine i的不同尾流区域j对应的风速U w,i,j的权重来综合确定出下游风力发电 机组turbine k处的风速。
具体地,可使用如下公式(7)来确定下游风力发电机组turbine k处的风速:
Figure PCTCN2018087597-appb-000003
其中,U eff,k为下游风力发电机组turbine k处的风速,A k为下游风力发电机组turbine k的叶轮的扫掠区域的大小,A overlap,k,j与A k的比值表示风力发电机组turbine i的不同尾流区域j的投影区域A k,1、A k,2和A k,3与下游风力发电机组turbine k的叶轮的扫掠区域A k之间的重叠区域A overlap,k,j与下游风力发电机组turbine i的叶轮的扫掠区域A k之间的面积比。a k为下游风力发电机组turbine k的轴向诱导因子(其可根据风速U i查表来被获得)。c w,i,j为风力发电机组turbine i的尾流中的不同的尾流区域j在下游风力发电机组turbine k处的尾流亏损系数,X i和X k分别为风力发电机组turbine i和下游风力发电机组turbine k的机位点的横坐标,X i<X k表示下游风力发电机组turbine k的机位点相对于风力发电机组turbine i的机位点的下游方向。
进一步地,为了确定出更为精确的风速值,还可基于风力发电机组turbine i处的风速U eff,i确定出下游风力发电机组turbine k处的附加湍流强度,以使用确定的附加湍流强度来修正风力发电机组turbine i的初始尾流膨胀系数:
Figure PCTCN2018087597-appb-000004
Figure PCTCN2018087597-appb-000005
Figure PCTCN2018087597-appb-000006
其中,k e,i为风力发电机组turbine i的尾流膨胀系数,T add,k为下游风力发电机组turbine k处的附加湍流强度,T eff,k为下游风力发电机组turbine k处的等效湍流强度,T ambient和T ref分别为环境湍流强度和参考湍流强度,a、b为常数,C T,i为风力发电机组turbine i的推力系数(其可根据风速查表来被获得)。
可基于上述公式(10)获得的风力发电机组turbine i的尾流膨胀系数k e,i,使用上述公式(7)再次计算下游风力发电机组turbine k处的风速U eff,k,并将再次计算的下游风力发电机组turbine k处的风速U eff,k与先前计算的下游风力发电机组turbine k处的风速U eff,k进行比较,当二者之间的差值满足预定阈值时,将再次计算的下游风力发电机组turbine k处的风速U eff,k确定为下游风力发电机组turbine k处的风速U eff,k;否则,将重复执行前面所述的尾流膨胀系数的计算过程继续进行迭代收敛。这种进一步基于有效湍流强度来对风速U eff,k进行迭代计算的过程可进一步提高风速评估的精确性。
由此可以看出,上述实施通过将风力发电机组的尾流分为三个不同的尾流区域,分别考虑其对下游风电机组的影响,并基于计算得到下游风力发电机组的风速。该方法对风电场中的各个风力发电机组的风速的计算更为精确,从而为风电场的湍流强度和发电量的评估以及风电场的前期选址或后评估提供了更为可靠和准确的数据依据。
根据本发明的示例性实施例还提供一种存储有计算机程序的计算机可读存储介质。该计算机可读存储介质存储有当被处理器执行时使得处理器执行上述确定风速的方法的计算机程序。该计算机可读记录介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读记录介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。
根据本发明的示例性实施例还提供一种计算机设备。该计算机设备包括处理器和存储器。存储器用于存储计算机程序。所述计算机程序被处理器执行使得处理器执行如上所述的确定风速的方法的计算机程序。
上述根据本申请的方法可在硬件、固件中实现,或者被实现为可存储在记录介质(诸如CD ROM、RAM、软盘、硬盘或磁光盘)中的软件或计算机代码,或者被实现通过网络下载的原始存储在远程记录介质或非暂时机器可读介质中并将被存储在本地记录介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件(诸如ASIC或FPGA)的记录介质上的这样的软件处理。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件(例如,RAM、ROM、闪存等),当所述软件或计算机代码被计算机、处 理器或硬件访问且执行时,实现在此描述的处理方法。此外,当通用计算机访问用于实现在此示出的处理的代码时,代码的执行将通用计算机转换为用于执行在此示出的处理的专用计算机。
尽管已参照优选实施例表示和描述了本申请,但本领域技术人员应该理解,在不脱离由权利要求限定的本申请的精神和范围的情况下,可以对这些实施例进行各种修改和变换。

Claims (12)

  1. 一种确定风速的方法,其特征在于,所述方法包括:
    获取风电场中的任一风力发电机组处的来流风速;
    确定由所述来流在所述任一风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域;
    确定所述下游风力发电机组的叶轮在所述扫掠平面上形成的扫掠区域;
    确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速,并将所述重叠区域中的风速确定为所述下游风力发电机组处的风速。
  2. 如权利要求1所述的方法,其特征在于,确定由所述尾流与所述扫掠平面相交而形成的投影区域的步骤包括:
    将所述尾流划分为多个尾流区域;
    确定划分的每个尾流区域与所述扫掠平面相交而形成的每个投影区域。
  3. 如权利要求2所述的方法,其特征在于,确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速的步骤包括:
    确定所述每个投影区域与所述扫掠区域之间的每个重叠区域中的风速;
    基于所述每个投影区域与所述扫掠区域之间的每个重叠区域分别相对于所述扫掠区域所具有的权重以及所述每个投影区域与所述扫掠区域之间的每个重叠区域中的风速,来确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速。
  4. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述下游风力发电机组处的风速,确定所述下游风力发电机组处的湍流强度;
    基于所述下游风力发电机组处的湍流强度,修正所述下游风力发电机组处的风速,直到所述下游风力发电机组处的风速与修正的所述下游风力发电机组的风速之间的差小于预定阈值为止;
    将修正的所述下游风力发电机组处的风速确定为所述下游风力发电机组处的风速。
  5. 权利要求1~4中的任意一项所述的方法,其特征在于,所述尾流包括近场区域、远场区域和混合区域中的至少一种。
  6. 一种确定风速的装置,其特征在于,所述装置包括:
    风速获取单元,获取风电场中的任一风力发电机组处的来流风速;
    投影区域确定单元,确定由所述来流在所述任一风力发电机组的叶轮后面形成的尾流与下游风力发电机组的叶轮的扫掠平面相交而形成的投影区域;
    扫掠区域确定单元,确定所述下游风力发电机组的叶轮在所述扫掠平面上形成的扫掠区域;
    第一风速确定单元,确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速,并将所述重叠区域中的风速确定为所述下游风力发电机组处的风速。
  7. 如权利要求6所述的装置,其特征在于,所述投影区域确定单元包括:
    尾流区域划分子单元,将所述尾流划分为多个尾流区域;
    投影区域确定子单元,确定划分的每个尾流区域与所述扫掠平面相交而形成的每个投影区域。
  8. 如权利要求7所述的装置,其特征在于,所述第一风速确定单元包括:
    区域风速确定子单元,确定所述每个投影区域与所述扫掠区域之间的每个重叠区域中的风速;
    等效风速确定子单元,基于所述每个投影区域与所述扫掠区域之间的每个重叠区域分别相对于所述扫掠区域所具有的权重以及所述每个投影区域与所述扫掠区域之间的每个重叠区域中的风速,来确定由所述尾流与所述扫掠平面相交而形成的投影区域与所述扫掠区域之间的重叠区域中的风速。
  9. 如权利要求6所述的装置,其特征在于,所述装置还包括:
    湍流强度确定单元,根据所述下游风力发电机组处的风速,确定所述下游风力发电机组处的湍流强度;
    风速修正单元,基于所述下游风力发电机组处的湍流强度,修正所述下游风力发电机组处的风速,直到所述下游风力发电机组处的风速与修正的所述下游风力发电机组的风速之间的差小于预定阈值为止;
    第二风速确定单元,将修正的所述下游风力发电机组处的风速输出为所述下游风力发电机组处的风速。
  10. 权利要求6~9中的任意一项所述的装置,其特征在于,所述尾流包括近场区域、远场区域和混合区域中的至少一种。
  11. 一种存储有计算机程序的计算机可读存储介质,其特征在于,当所述计算机程序在被处理器执行时实现如权利要求1-5中的任意一项所述的确定风速的方法。
  12. 一种计算机设备,其特征在于,所述计算机设备包括:
    处理器;
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1-5中的任意一项所述的确定风速的方法。
PCT/CN2018/087597 2017-12-21 2018-05-21 确定风速的方法及装置 WO2019119722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711392072.5A CN109946475B (zh) 2017-12-21 2017-12-21 确定风速的方法及装置
CN201711392072.5 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019119722A1 true WO2019119722A1 (zh) 2019-06-27

Family

ID=66992480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087597 WO2019119722A1 (zh) 2017-12-21 2018-05-21 确定风速的方法及装置

Country Status (2)

Country Link
CN (1) CN109946475B (zh)
WO (1) WO2019119722A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949363A (zh) * 2010-09-21 2011-01-19 山东科技大学 计及风电场输入风速和风向随机波动的风电机组分组方法
CN102142103A (zh) * 2011-04-15 2011-08-03 河海大学 一种基于实数编码遗传算法的风电场微观选址优化方法
CN103605912A (zh) * 2013-12-10 2014-02-26 武汉大学 一种风电场功率外特性建模方法
US20140327904A1 (en) * 2013-05-01 2014-11-06 Sandia Corporation Imaging Doppler Lidar for Wind Turbine Wake Profiling
CN105068148A (zh) * 2015-07-14 2015-11-18 北京金风科创风电设备有限公司 风电场阵风预测方法和系统
CN105335617A (zh) * 2015-11-05 2016-02-17 北京金风科创风电设备有限公司 风电场尾流效应评估方法及装置
CN105649878A (zh) * 2015-12-31 2016-06-08 北京金风科创风电设备有限公司 风力发电机组的风能捕获方法、装置和风力发电机组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852172A (zh) * 2010-03-09 2010-10-06 山东科技大学 一种考虑风电场内尾流影响的风电机组输入风速计算方法
CN103389388B (zh) * 2012-05-08 2015-08-19 华锐风电科技(集团)股份有限公司 风电场风速预测方法及其装置和功率预测方法及其系统
US9617975B2 (en) * 2012-08-06 2017-04-11 General Electric Company Wind turbine yaw control
CN103324863B (zh) * 2013-07-11 2016-06-15 北京金风科创风电设备有限公司 使用实测湍流强度修正风力发电机的测量功率曲线的方法
CN103886179B (zh) * 2014-02-25 2017-05-31 国家电网公司 一种基于尾流效应分群的风电场风机聚合方法
CN105354632B (zh) * 2015-10-26 2019-03-19 江苏省电力公司电力经济技术研究院 一种考虑尾流效应的风电场功率优化分配策略

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949363A (zh) * 2010-09-21 2011-01-19 山东科技大学 计及风电场输入风速和风向随机波动的风电机组分组方法
CN102142103A (zh) * 2011-04-15 2011-08-03 河海大学 一种基于实数编码遗传算法的风电场微观选址优化方法
US20140327904A1 (en) * 2013-05-01 2014-11-06 Sandia Corporation Imaging Doppler Lidar for Wind Turbine Wake Profiling
CN103605912A (zh) * 2013-12-10 2014-02-26 武汉大学 一种风电场功率外特性建模方法
CN105068148A (zh) * 2015-07-14 2015-11-18 北京金风科创风电设备有限公司 风电场阵风预测方法和系统
CN105335617A (zh) * 2015-11-05 2016-02-17 北京金风科创风电设备有限公司 风电场尾流效应评估方法及装置
CN105649878A (zh) * 2015-12-31 2016-06-08 北京金风科创风电设备有限公司 风力发电机组的风能捕获方法、装置和风力发电机组

Also Published As

Publication number Publication date
CN109946475A (zh) 2019-06-28
CN109946475B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
US10539116B2 (en) Systems and methods to correct induction for LIDAR-assisted wind turbine control
Krogstad et al. “Blind Test 3” calculations of the performance and wake development behind two in-line and offset model wind turbines
Johnson et al. Wind turbine performance in controlled conditions: BEM modeling and comparison with experimental results
US9822764B2 (en) System for automatic power estimation adjustment
CN108317040B (zh) 偏航对风矫正的方法、装置、介质、设备和风力发电机组
Diaz et al. Wind farm interference and terrain interaction simulation by means of an adaptive actuator disc
CN107832899A (zh) 风电场出力的优化方法、装置和实现装置
US10808681B2 (en) Twist correction factor for aerodynamic performance map used in wind turbine control
CN110414135B (zh) 一种用于海上漂浮式风机的尾流场数值优化设计方法
CN109960823A (zh) 风力发电机组的等效风速确定方法和设备
WO2019119722A1 (zh) 确定风速的方法及装置
Creech et al. Actuator volumes and hr‐adaptive methods for three‐dimensional simulation of wind turbine wakes and performance
Branlard et al. The blade element momentum (BEM) method
CN116484652B (zh) 基于叶根载荷的风电场中的尾流干扰检测方法
Sinnige et al. Aerodynamic and aeroacoustic performance of a propeller propulsion system with swirl-recovery vanes
Silva et al. Unsteady blade element-momentum method including returning wake effects
Kragh et al. Individual pitch control based on local and upstream inflow measurements
Bertelè et al. Brief communication: Wind inflow observation from load harmonics–wind tunnel validation of the rotationally symmetric formulation
Shen et al. Validation of the actuator line model for simulating flows past yawed wind turbine rotors
Wimshurst et al. Spanwise flow corrections for tidal turbines
Zahle et al. Evaluation of tower shadow effects on various wind turbine concepts
McKinnon et al. Wind turbine wake effect visualization and LiDAR measurement techniques
Troldborg et al. Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine
US20240200534A1 (en) Wind farm layout and yaw control method and electronic device
Faria Wind turbine noise: development of an airfoil turbulent inflow noise prediction method based on Amiets theory.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890250

Country of ref document: EP

Kind code of ref document: A1