WO2019119385A1 - 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法 - Google Patents

一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法 Download PDF

Info

Publication number
WO2019119385A1
WO2019119385A1 PCT/CN2017/117860 CN2017117860W WO2019119385A1 WO 2019119385 A1 WO2019119385 A1 WO 2019119385A1 CN 2017117860 W CN2017117860 W CN 2017117860W WO 2019119385 A1 WO2019119385 A1 WO 2019119385A1
Authority
WO
WIPO (PCT)
Prior art keywords
grate
control
incinerator
steam flow
pressure
Prior art date
Application number
PCT/CN2017/117860
Other languages
English (en)
French (fr)
Inventor
魏强
刘小娟
邹全意
薛宪民
钟日钢
冉从华
王友明
陈联宏
Original Assignee
深圳市能源环保有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市能源环保有限公司 filed Critical 深圳市能源环保有限公司
Priority to PCT/CN2017/117860 priority Critical patent/WO2019119385A1/zh
Publication of WO2019119385A1 publication Critical patent/WO2019119385A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Definitions

  • the invention relates to the technical field of control of municipal solid waste incinerators, in particular to a control method for tilting multi-stage reciprocating stochastic waste incinerators.
  • the boiler load is regulated by the steam flow regulation mode.
  • the air supply volume of the boiler can only be adjusted according to the PID calculation value of the steam flow, and the adjustment means is single; the propulsion speed of the feed grate needs to be manually set, according to the steam.
  • the deviation of the flow is subject to simple deviation adjustment; the combustion grate is controlled by a preset action cycle (sliding speed, tumbling frequency), and because of the inability to adapt to changes in the calorific value of the refuse and the continuous fluctuation of the boiler, a large amount of manual intervention is required;
  • the damper flap needs to be manually set to ensure the air supply balance; in the traditional process, the adjustment of the secondary fan is automatically adjusted according to the oxygen amount at the boiler outlet, and the oxygen amount fluctuates greatly.
  • the waste incineration power generation industry has been developing for decades, but the incinerator automatic control system, as the core technology in the field of waste incineration power generation, is far more difficult than coal-fired and gas-fired boilers.
  • the incinerator is not uniformly distributed, the fan speed regulation is often manually adjusted, and the load fluctuation during operation is large;
  • the feeding furnace row adjustment mode is single, the feeding speed of the feeding grate needs manual setting by the operating personnel; 3.
  • the burning grate speed and the operating frequency are completely adjusted manually according to the experience of the garbage incineration power generating operation personnel, and the operation modes are diversified;
  • the air supply is unbalanced, and there is no reliable monitoring means for the air supply on both sides. 5.
  • the speed of the secondary fan is simply adjusted by the oxygen output of the boiler outlet, and the fluctuation range of the oxygen amount is large. 6. Due to the diversified operation of the operating personnel, the load is difficult to stabilize. Adjustment, did not form a standard automatic control system for incinerators.
  • the present invention provides a control method for a tilting multi-stage reciprocating stochastic waste incinerator, the control method comprising: distributing a primary air volume based on a steam flow rate, a drum pressure, and a drying section grate temperature; Control of the continuous movement of the feed grate based on the differential pressure of the incinerator; control of the continuous movement of the incinerator based on the calorific value of the refuse and the flow of steam, and control of the movement of the incinerator by steam drum interlock; The discharge temperature controls the amount of air supplied on both sides; and the distribution of the secondary air volume based on the boiler outlet oxygen amount and CO (carbon monoxide); and the present invention also proposes a system for implementing the above control method.
  • the invention provides a control method for tilting a multi-stage reciprocating stochastic waste incinerator, which comprises: a steam flow rate, a steam drum pressure and a drying section grate temperature for a primary air volume Distributing; controlling the continuous movement of the feeding furnace row based on the differential pressure of the incinerator; controlling the sliding grate of the incinerator based on the calorific value of the garbage and the steam flow, and controlling the turning grate by the steam drum interlocking; The distribution of the secondary air volume based on the oxygen content of the boiler outlet, the CO (carbon monoxide) content, and the air supply volume on both sides based on the grate temperature;
  • the distribution of primary air volume based on steam flow, drum pressure and drying section grate temperature including: steam flow or drum pressure to reflect boiler real-time load, steam flow control loop, steam drum pressure control loop can be independently used as primary air volume
  • the main controller controls the dry air and the gasification wind volume through the PID controller.
  • the dry air volume is controlled by the drying section grate temperature control loop, and the output value of the dry air volume is corrected by the PID controller.
  • the control of the continuous movement of the feed grate based on the differential pressure of the incinerator comprises: real-time measurement according to the pressure of the lower air chamber of the incinerator, combined with the amount of air blown under the grate and the actual pressure of the grate, and is calculated on the grate The layer pressure difference.
  • the differential pressure control circuit of the material layer adopts a PID controller to adjust the movement of the feed grate in real time.
  • the calculation calculates the calorific value of the garbage and provides the optimal sliding speed of the incinerator.
  • the movement frequency of the grate is controlled by the steam flow and the steam drum pressure grading interlock.
  • the control of the secondary air volume based on the oxygen amount and the CO (carbon monoxide) content includes: the oxygen amount control loop adopts a PID controller to adjust the frequency conversion opening degree of the secondary fan in real time; the chimney is arranged with a real-time measuring facility of CO (carbon monoxide) content, Interlocking to adjust the opening degree of the secondary fan according to the concentration of CO (carbon monoxide),
  • the temperature of the grate is accurately measured by a temperature measuring device installed under each fixed grate, and the opening degree of the damper on both sides is changed according to the temperature deviation of the grate on the left and right sides of the gasification section, and when gasification is performed When the left and right layers of the section are unevenly eccentric, the deviation of the damper on both sides can also be changed to correct the deviation in time.
  • the present invention also provides a system for implementing the above control method, characterized in that
  • the distribution of primary air volume based on steam flow, drum pressure and drying section grate temperature including: steam flow control loop, drum pressure control loop, PID controller, drying section grate temperature control loop, steam flow or drum pressure It is used to reflect the real-time load of the boiler.
  • the steam flow control loop and the drum pressure control loop can be used as the main controller of the primary air volume.
  • the PID controller controls the dry air and gasification wind volume.
  • the drying section grate temperature control is utilized. The loop compensates the dry air volume slightly, and the output value of the dry air volume is corrected by the PID controller.
  • the control of the continuous movement of the feed grate based on the differential pressure of the incinerator including the differential pressure control loop of the PID controller, and the arrangement of multiple sets of furnace pressure measuring devices at the outlet of the incinerator, in each section of the furnace
  • the row is equipped with a wind pressure measuring device corresponding to the lower air chamber of the grate, a temperature measuring device is installed under each fixed grate, and a multi-point balanced air volume measuring device is arranged on the left and right side of the drying section, and the wind is discharged according to the incinerator.
  • the real-time measured value of the chamber pressure combined with the amount of air blown under the grate and the actual pressure of the furnace, is used to calculate the differential pressure of the layer on the grate.
  • the differential pressure control circuit of the material layer uses a PID controller to adjust the movement of the feed grate in real time.
  • the distribution of secondary air volume based on boiler outlet oxygen and CO (carbon monoxide) content including: PID controller, CO (carbon monoxide) real-time measurement facility, oxygen control loop using PID controller, real-time adjustment of secondary fan variable frequency opening;
  • the chimney is equipped with a CO (carbon monoxide) real-time measuring facility, and the secondary fan opening is adjusted according to the concentration of CO (carbon monoxide).
  • the control of the sliding grate of the incinerator based on the calorific value of the waste and the steam flow, and the control of the tumbler grate by the drum pressure interlock including: the sliding speed of the incinerator grate is based on the steam flow PID control circuit, and the PV value of the steam flow is a section The average value of the steam flow in the time; the calorific value of the waste is calculated by calculating the heat load of the boiler, and the optimal sliding speed of the incinerator is provided, and the frequency of the grate turning is controlled by the steam flow and the steam drum pressure grading interlocking.
  • the air supply volume on both sides is controlled based on the temperature of the grate, including: a temperature measuring device installed under each fixed grate, and the temperature of the grate is accurately measured by the temperature measuring device, according to the grate of the left and right sides of the gasification section
  • the temperature deviation changes the opening setting value of the damper on both sides, and when the left and right layers of the gasification section are unevenly eccentric, the deviation of the damper on both sides can also be changed in time to correct the deviation.
  • the invention has the advantages that the automatic incineration control method and the control system for the inclined multi-stage reciprocating incinerator can reduce the working intensity of the operator and continuously strengthen the standardization and refined management of the garbage power plant. Ensure that the unit can operate safely, efficiently, environmentally and stably for long periods of time.
  • FIG. 1 to 7 are control schematic diagrams of an embodiment of a control method and system for a tilting multi-stage reciprocating stochastic waste incinerator according to the present invention. among them:
  • Figure 1 is a schematic view of the structure of an incinerator.
  • Figure 2 is a control diagram for primary air volume distribution based on steam flow, drum pressure and drying section grate temperature.
  • Figure 3 is a control diagram for continuous movement of the feed grate based on the differential pressure of the layer.
  • Figure 4 is a control diagram of the sliding grate of the incinerator based on the steam flow rate.
  • Figure 5 is a control diagram of the incinerator turning the grate based on the steam flow rate and the drum pressure.
  • Fig. 6 is a control chart based on the amount of oxygen and CO (carbon monoxide) on the amount of secondary air.
  • Fig. 7 is an explanatory diagram of control symbols.
  • 1 to 7 are control schematic diagrams of an embodiment of a control method and system for a tilting multi-stage reciprocating stochastic waste incinerator according to the present invention.
  • FIG. 1 is a schematic view of the structure of an incinerator.
  • the figure shows that the incinerator grate consists of the feed grate unit 2 and the common incinerator unit 1.1, 1.2, 1.3, 1.4, 1.5 from top to bottom.
  • the grate unit 1.1 is composed of a sliding grate piece 1.1A, a turning grate piece 1.1B, and a fixed grate piece 1.1C.
  • the feed grate unit 2 feeds the garbage into the ordinary incinerator row, and moves the garbage to the lower tap opening in the combustion process by sliding the grate and turning the grate.
  • the ordinary incinerator grate units 1.1 and 1.2 are drying sections
  • the ordinary incinerator grate units 1.3 and 1.4 are gasification sections
  • the ordinary incinerator grate unit 1.5 is a cooling section.
  • a dry air system is arranged below the drying section
  • a gasification wind system is arranged below the gasification section
  • a cooling air system is arranged in the cooling section.
  • the total amount of dry wind, gasification wind and cooling air is equal to primary wind, dry wind and gas.
  • Both the wind and the cooling air are derived from the primary wind turbine tube, and the wind required by the incinerator is sent to the drying grate, the gasification grate, and the cooling chamber below the cooling grate through the corresponding variable frequency fan.
  • a secondary air blower 3.2 is also arranged at the exit of the furnace, and the secondary air is taken from the secondary wind main pipe of the boiler, and the secondary air is sent to the exit of the furnace through the variable frequency fan to promote secondary combustion of the smoke mixture.
  • the invention relates to a control method for inclined multi-stage reciprocating stochastic waste incinerator, which comprises: distributing the primary air volume based on steam flow rate, steam drum pressure and drying section grate temperature; and differential pressure of the material layer based on the incinerator Controlling the continuous movement of the feed grate; based on the control of the waste calorific value and the steam flow incinerator sliding grate, and controlling the turning grate by the drum pressure interlock; based on the boiler outlet oxygen content, CO (carbon monoxide) content
  • CO carbon monoxide
  • the distribution of primary air volume based on steam flow, drum pressure and drying section grate temperature including: steam flow or drum pressure to reflect boiler real-time load, steam flow control loop, steam drum pressure control loop can be independently used as primary air volume
  • the main controller controls the dry air and the gasification wind volume through the PID controller.
  • the dry air volume is controlled by the drying section grate temperature control loop, and the output value of the dry air volume is corrected by the PID controller.
  • Control of the continuous movement of the feed grate based on the differential pressure of the incinerator including: based on the real-time measurement of the pressure of the blast chamber in the incinerator, combined with the amount of air supplied under the grate and the actual pressure of the grate, the grate is calculated The layer pressure difference.
  • the differential pressure control circuit of the material layer adopts a PID controller to adjust the movement of the feed grate in real time.
  • the steam flow PV (the measured value of the steam flow) is the average value of the steam flow over a period of time.
  • the calorific value of the waste is calculated by calculating the heat load of the boiler, and the optimal sliding speed of the incinerator is provided, and the frequency of the grate turning is controlled by the steam flow and the steam drum pressure grading interlock.
  • the control of the secondary air volume based on the oxygen amount and the CO (carbon monoxide) content includes: the oxygen amount control loop adopts a PID controller to adjust the frequency conversion opening degree of the secondary fan in real time; the chimney is arranged with a real-time measuring facility of CO (carbon monoxide) content, Interlocking to adjust the opening degree of the secondary fan according to the concentration of CO (carbon monoxide),
  • the air supply volume on both sides is controlled based on the grate temperature, including a temperature measuring device installed under each fixed grate to accurately measure the grate temperature.
  • a temperature measuring device installed under each fixed grate to accurately measure the grate temperature.
  • the opening degree setting values of the dampers on both sides are changed; and when the left and right layers of the gasification section are unevenly eccentric, the damper of both sides can also be changed. Open the degree to correct the deviation in time.
  • FIG. 2 is a control diagram for primary air volume distribution based on steam flow, drum pressure and drying section grate temperature.
  • the figure shows that the distribution of primary air volume based on steam flow, drum pressure and drying section grate temperature, including: steam flow control loop, drum pressure control loop, PID controller steam flow or drum pressure to reflect boiler real-time
  • the load, the steam flow control loop and the drum pressure control loop can be independently used as the primary controller of the primary air volume, and the opening degree of the dry wind and the gasification wind frequency converter is controlled by the PID controller, thereby changing the dry air and the gasification wind volume;
  • the temperature measuring device installed under each fixed grate is arranged, and the grate temperature control circuit of the drying section is set, and the drying air volume is slightly compensated by the drying section grate temperature control loop, and the output value of the dry air volume is corrected by the PID controller. .
  • the control system calculates the total wind volume required for combustion according to the steam flow set value, and then converts the total air volume into the frequency conversion opening of the drying fan and the gasification fan (0-100%). ); where 0 means the fan stops running and 100% means the fan runs at full speed.
  • the calculation of the PID controller will reduce the frequency conversion opening of the gasification and drying fan, thereby reducing the total amount of primary air required for combustion, reducing the combustion conditions, and making the boiler steam flow tend to Near set value.
  • the calculation of the PID controller will increase the frequency conversion opening of the gasification and drying fan, thereby increasing the total amount of primary air required for combustion, improving the combustion conditions, and making the boiler steam flow. Approach the set value.
  • the control system calculates the total air volume required for combustion according to the set value of the steam drum, and then converts the total air volume into the frequency conversion opening of the drying fan and the gasification fan (0-100). %), 0 means the fan stops running, and 100% means the fan runs at full speed.
  • the calculation of the PID controller will reduce the frequency conversion opening of the gasification and drying fan, thereby reducing the total amount of primary air required for combustion, reducing the combustion conditions and making the boiler steam.
  • the package pressure approaches the set value.
  • the calculation of the PID controller will increase the frequency conversion opening of the gasification and drying fan, thereby increasing the total amount of primary air required for combustion, improving the combustion conditions, and making the boiler The drum pressure approaches the set value.
  • the drying section temperature control loop is used for the compensation of the dry air volume.
  • the PID control circuit will increase the compensation amount of the dry air volume, thereby improving the frequency conversion of the drying fan. Degree helps to further dry the fuel.
  • the drying section temperature control loop will reduce the compensation amount of the dry air volume, thereby reducing the frequency conversion opening of the drying fan, which helps to save energy consumption.
  • Control the air supply volume on both sides based on the temperature of the grate including the temperature measuring device installed under each fixed grate to accurately measure the grate temperature; change the damper on both sides according to the temperature deviation of the grate on the left and right sides of the gasification section
  • the opening degree setting value, and when the left and right material layers of the gasification section are unevenly biased, the deviation of the side damper can also be changed in time to correct the deviation.
  • the control system When the temperature of the left grate on the left side of the gasification section exceeds the temperature of the right grate and reaches a preset value, the control system will reduce the opening of the damper of the left gasification section.
  • the control system When the left grate temperature of the gasification section is lower than the right grate temperature and reaches a preset value, the control system will reduce the opening of the right gasification section damper.
  • Figure 3 is a control diagram for continuous movement of the feed grate based on the differential pressure of the layer.
  • the figure shows that the control of the continuous movement of the feed grate based on the differential pressure of the incinerator, including the PID controller, also includes a plurality of sets of furnace pressure measuring devices arranged at the exit of the incinerator, corresponding to the grate in each section of the grate a wind pressure measuring device is arranged in the lower air chamber, a temperature measuring device is installed below each fixed grate, and a multi-point balanced air volume measuring device is arranged on the left and right side of the drying section, and the wind chamber pressure is passed through the wind pressure.
  • the measuring device performs the measurement, and the air supply volume of the left and right side air chambers below the grate is measured by the multi-point balanced air volume measuring device, and the air volume is measured according to the real-time measured value of the pressure of the air chamber below the incinerator.
  • the size, the drying section grate temperature and the actual furnace pressure are used to calculate the differential pressure of the material layer on the grate.
  • the differential pressure control circuit of the material layer uses a PID controller to adjust the movement of the feed grate in real time.
  • the feeding grate After the operator inputs the feeding grate automatically, the feeding grate will continuously run according to the differential pressure of the material layer and the control speed is between 0-100%, where 0 means the lowest running speed and 100% means the maximum running of the grate. speed.
  • the operation of the PID controller will reduce the running speed of the feed grate accordingly, thereby reducing the propelling speed of the fuel and making the spreading of the fuel on the grate more uniform.
  • the operation of the PID controller will increase the running speed of the feed grate accordingly, thereby increasing the propelling speed of the fuel and making the spreading of the fuel on the grate more uniform.
  • Figure 4 is a control diagram of the incinerator sliding grate based on the steam flow rate
  • Figure 5 is a control diagram of the incinerator turning the grate based on the steam flow rate and the drum pressure.
  • the figure shows that based on the control of the waste calorific value and the steam flow incinerator sliding grate, the steam flow control loop and the drum pressure control loop can be used independently as the main controller of the tumbling grate and pass the steam flow or the drum pressure.
  • Interlocking control of the tumbling grate including: steam flow PV (steam flow measured value) using the average value of steam flow over a period of time, calculating the calorific value of the waste through the calculation of the boiler thermal load, and providing optimal incineration
  • the sliding speed of the grate is controlled by the steam flow rate and the steam drum pressure grading interlock to control the frequency of the grate turning.
  • the PID control system calculates the total sliding speed of the grate (0-4.5mm/s) required for combustion according to the steam flow setting value, 0mm/s means stop sliding, 4.5mm/s It means that the sliding grate runs at full speed, and then converts the total speed into the drying speed corresponding to the sliding section of the drying section, the gasification section and the cooling section.
  • the calculation of the PID controller will increase the total sliding speed accordingly, so that the fuel advancement speed on the grate will be accelerated to meet the fuel demand for combustion, and the boiler steam flow will be closer to the set. Value.
  • the calculation of the PID controller will reduce the total sliding speed accordingly, so that the propulsion speed of the fuel on the grate is slowed down, the fuel demand for combustion is satisfied, and the steam flow rate of the boiler is increased. Near set value.
  • the operating frequency of the flipping grate will be operated according to the manual setting value of the operator.
  • the manual setting chopping frequency is 4, the flipping grate will be flipped once every preset time. After the 4th turning is completed, the sliding grate is operated, and after the sliding grate is finished, the next turning cycle is started, and the periodic operation is performed.
  • the operating frequency of the flip grate will be interlocked according to the set value of the steam drum pressure.
  • Fig. 6 is a control chart based on the amount of oxygen and CO (carbon monoxide) on the amount of secondary air.
  • the figure shows the distribution of secondary air volume based on boiler outlet oxygen and CO (carbon monoxide), including: PID controller, real-time oxygen measurement facility, CO (carbon monoxide) real-time measurement facility, and oxygen control loop using PID control.
  • PID controller real-time oxygen measurement facility
  • CO carbon monoxide
  • oxygen control loop using PID control oxygen control loop using PID control.
  • the real-time adjustment of the secondary fan variable frequency opening; the chimney is equipped with a CO (carbon monoxide) real-time measuring facility, and the secondary fan opening is adjusted according to the CO (carbon monoxide) concentration interlock.
  • the PID control system calculates the total amount of secondary air required for combustion according to the set value of the oxygen value of the boiler outlet, and then converts the total amount of the secondary air into the opening degree accepted by the inverter. Signal (0-100%), where 0 means the fan stops running and 100% means the fan runs at full speed.
  • the calculation of the PID controller will reduce the frequency conversion opening of the secondary fan accordingly, thereby reducing the total amount of secondary air required for combustion, and making the oxygen output of the boiler tend to stable.
  • the calculation of the PID controller will increase the frequency conversion opening of the secondary fan accordingly, thereby increasing the total amount of secondary air required for combustion, so that the oxygen output of the boiler tends to stable.
  • the CO (carbon monoxide) interlocking control loop is used for the opening of the interlocking secondary fan to ensure that the emission index is qualified.
  • the secondary fan variable frequency opening will be greatly increased to the maximum value to enhance the secondary combustion of the flue.
  • the secondary fan variable frequency opening degree is restored to the output value of the PID controller to ensure stable combustion of the combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

为解决现有垃圾焚烧发电系统自动化程度低,垃圾焚烧过程中出现料层分布不均、火焰中心偏斜,造成锅炉负荷的波动,影响排放指标的稳定,很难形成一套标准的焚烧炉自动控制体系的问题,提供一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法,包括:基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配;基于焚烧炉的料层差压对给料炉排连续运动的控制;基于垃圾热值和蒸汽流量对焚烧炉排连续运动的控制,并通过汽包压力联锁控制焚烧炉排的运动;基于炉排温度控制两侧送风量;以及基于锅炉出口氧量、CO(一氧化碳)控制二次风量的分配。

Description

一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法 技术领域
本发明涉及城市生活垃圾焚烧炉控制技术领域,特别是涉及一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法。
背景技术
随着城市化进程加快和物质消费的日趋现代化,城市生活垃圾急剧变化,大多数城市垃圾特性差异、热值变化较大,使现有垃圾处理设备适应不了垃圾特性的变化。
传统垃圾焚烧工艺中,锅炉负荷的调节采用蒸汽流量调节模式,锅炉的送风量只能根据蒸汽流量的PID计算值进行调节,调节手段单一;给料炉排的推进速度需要手动设置,根据蒸汽流量的偏差进行简单的偏差调节;燃烧炉排通过预设的动作周期(滑动速度、翻动频率)进行控制,由于不能适应垃圾热值的变化和锅炉的连续波动,需要大量的手动干预;当锅炉送风采用风门挡板调节时,风门挡板需要手动设置以确保送风平衡;传统工艺中,二次风机的调节仅根据锅炉出口的氧量进行自动调节,氧量波动较大。垃圾焚烧发电行业发展至今已有几十年,但焚烧炉自动控制系统作为垃圾焚烧发电领域的核心技术,难度远远大于燃煤、燃气锅炉,是国内外垃圾焚烧发电行业的技术难点和瓶颈,制约行业控制系统标准化体系的建立。特别是传统倾斜多级往复顺推焚烧炉在运行中,频繁出现料层分布不均、火焰中心偏斜,造成锅炉负荷的波动,一定程度上影响排放指标的稳定。造成焚烧状况不稳定的情况,主要在于锅炉负荷难以依靠自动控制技术进行稳定调节,主要体现在:①、焚烧炉配风不均匀,风机的转速调节往往手动调整,运行中负荷波动大;②、给料炉排调整模式单一,给料炉排的推进速度需要运行人员手动设置;③、燃烧炉排速度和动作频率完全依靠垃圾焚烧发电运行人员的经验手动调整,操作方式多样化;④、炉排下送风不均衡,两侧送风量没有可靠监视手段;⑤、二次风机转速单纯通过锅炉出口氧量调节,氧量的波动范围大;⑥、由于运行人员操作多样化,负荷难以稳定调整,未形成一套标准的焚烧炉自动控制体系。
发明内容
为解决上述问题,本发明提供一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法,所述控制方法包括:基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配;基于焚烧炉的料层差压对给料炉排连续运动的控制;基于垃圾热值和蒸汽流量对焚烧炉排连续运动的控制,并通过汽包压力联锁控制焚烧炉排的运动;基于炉排温度控制两侧送风量;以及基于锅炉出口氧量、CO(一氧化碳)控制二次风量的分配;并且,本发明还提出一种用于实施上述控制方法的系统。
本发明解决技术问题所提供方案是,一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法,其特征是,包括:基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配;基于焚烧炉的料层差压对给料炉排连续运动的控制;基于垃圾热值和蒸汽流量对焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制;基于锅炉出口氧量、CO(一氧化碳)含量对二次风量的分配,以及基于炉排温度控制两侧送风量;
基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配,包括:蒸汽流量或汽包压力用来反映锅炉实时负荷,蒸汽流量控制回路、汽包压力控制回路均可独立作为一次风量的主控制器,通过PID控制器控制干燥风、气化风风量;同时,利用干燥段炉排温度控制回路对干燥风量进行小幅补偿,通过PID控制器修正干燥风量的输出值,
基于焚烧炉的料层差压对给料炉排连续运动的控制,包括:根据焚烧炉排下风室压力的实时测量值,结合炉排下送风量的大小和炉膛实际压力,折算出炉排上的料层差压。料层差压控制回路采用PID控制器,实时调节给料炉排的运动,
基于垃圾热值和蒸汽流量对焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制,包括:蒸汽流量PV值采用一段时间内蒸汽流量的平均值,通过锅炉热负荷的计算反算出垃圾的热值,并提供最优的焚烧炉排滑动速度,同时通过蒸汽流量、汽包压力分级联锁控制炉排翻动的运动频率,
基于所述氧量和CO(一氧化碳)含对二次风量的控制,包括:氧量控制回路采用PID控制器,实时调节二次风机变频开度;烟囱布置有CO(一氧化碳)含量实时测量设施,根据CO(一氧化碳)的浓度联锁调节二次风机开度,
还通过在每一段固定炉排下方安装的温度测量装置,准确测量炉排温度,根据气化段左右两侧炉排的温度偏差,改变两侧风门的开度设定值,并且,当气化段左、右料层不均发生偏料时,也可以通过改变两侧风门的开度来及时进行纠偏。
本发明还提出一种用于实施上述控制方法的系统,其特征是,
基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配,包括:蒸汽流量控制回路、汽包压力控制回路、PID控制器、干燥段炉排温度控制回路,蒸汽流量或汽包压力用来反映锅炉实时负荷,蒸汽流量控制回路、汽包压力控制回路均可独立作为一次风量的主控制器,通过PID控制器控制干燥风、气化风风量,同时,利用干燥段炉排温度控制回路对干燥风量进行小幅补偿,通过PID控制器修正干燥风量的输出值,
基于焚烧炉的料层差压对给料炉排连续运动的控制,包括由PID控制器的料层差压控制回路,还包括在焚烧炉出口布置有多组炉膛压力测量装置,在每一段炉排对应炉排下方风室设置风压测量装置、在每一段固定炉排下方安装温度测量装置、在干燥段左、右侧一次风母管设置多点平衡式风量测量装置,根据焚烧炉排下风室压力的实时测量值,结合炉排下送风量的大小和炉膛实际压力,折算出炉排上的料层差压,料层差压控制回路采用PID控制器,实时调节给料炉排的运动,
基于锅炉出口氧量、CO(一氧化碳)含量对二次风量的分配,包括:PID控制器、CO(一氧化碳)实时测量设施,氧量控制回路采用PID控制器,实时调节二次风机变频开度;烟囱布置有CO(一氧化碳)实时测量设施,根据CO(一氧化碳)的浓度联锁调节二次风机开度,
基于垃圾热值和蒸汽流量对焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制,包括:焚 烧炉排滑动速度基于蒸汽流量PID控制回路,蒸汽流量PV值采用一段时间内蒸汽流量的平均值;通过锅炉热负荷的计算反算出垃圾的热值,并提供最优的焚烧炉排滑动速度,同时通过蒸汽流量、汽包压力分级联锁控制炉排翻动的频率,
基于炉排温度控制两侧送风量,包括:在每一段固定炉排下方安装的温度测量装置,通过所述温度测量装置准确测量炉排温度,根据气化段左、右两侧炉排的温度偏差,改变两侧风门的开度设定值,并且,当气化段左、右料层不均发生偏料时,也可以通过改变两侧风门的开度来及时进行纠偏。
本发明的有益效果:本发明提出一种用于倾斜多级往复顺推焚烧炉的全自动焚烧控制方法和控制系统,能够减轻操作人员的工作强度,不断加强垃圾发电厂标准化、精细化管理,确保机组能够长周期安全高效、环保稳定地运行。
附图说明
图1-图7为本发明提出的一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法及系统一个实施例的控制原理图。其中:
图1为焚烧炉结构示意图。
图2为基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量分配的控制图。
图3为基于料层差压对给料炉排连续运动的控制图。
图4为基于蒸汽流量对焚烧炉滑动炉排的控制图。
图5为基于蒸汽流量及汽包压力对焚烧炉翻动炉排的控制图。
图6为基于所述氧量和CO(一氧化碳)对二次风量的控制图。
图7为控制符号说明图。
图中:
1.1、1.2、1.3、1.4、1.5炉排单元;
1.1A滑动炉排、1.1B翻动炉排、1.1C固定炉排;
2给料炉排;
3.1A干燥段风机、3.1B气化段风机、3.1C冷却段风机,3.2二次风风机;
4给料溜槽;
5.1竖直烟道,5.2水平烟道;
6出渣斗。
具体实施方式:
图1-图7为本发明提出的一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法及系统一个实施例的控制原理图。
图1为焚烧炉结构示意图。图中显示,焚烧炉炉排由上往下由给料炉排单元2和普通焚烧炉排单元1.1、 1.2、1.3、1.4、1.5组成。以普通焚烧炉排单元1.1为例,炉排单元1.1由滑动炉排片1.1A、翻动炉排片1.1B、固定炉排片1.1C构成。给料炉排单元2将垃圾送入普通焚烧炉排,通过滑动炉排和翻动炉排的运动,使垃圾在燃烧过程中逐步向下方出渣口移动。其中,普通焚烧炉排单元1.1、1.2为干燥段,普通焚烧炉排单元1.3、1.4为气化段,普通焚烧炉排单元1.5为冷却段。在干燥段下方设置有干燥风系统,在气化段下方设置有气化风系统,在冷却段设置有冷却风系统,干燥风、气化风、冷却风总量等于一次风,干燥风、气化风和冷却风均来源于一次风母管,再通过对应的变频风机分别将焚烧炉所需的风送往干燥炉排、气化炉排、冷却炉排下方的风室中。在炉膛出口还设置有二次风风机3.2,二次风取自锅炉二次风母管,通过变频风机将二次风送往炉膛出口,促进烟气混合物的二次燃烧。
一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法,其特征是,包括:基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配;基于焚烧炉的料层差压控制给料炉排连续运动的控制;基于垃圾热值和蒸汽流量焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制;基于锅炉出口氧量、CO(一氧化碳)含量对二次风量的分配,以及基于炉排温度控制两侧送风量。
基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配,包括:蒸汽流量或汽包压力用来反映锅炉实时负荷,蒸汽流量控制回路、汽包压力控制回路均可独立作为一次风量的主控制器,通过PID控制器控制干燥风、气化风风量;同时,利用干燥段炉排温度控制回路对干燥风量进行小幅补偿,通过PID控制器修正干燥风量的输出值,
基于焚烧炉的料层差压控制给料炉排连续运动的控制,包括:根据焚烧炉排下风室压力的实时测量值,结合炉排下送风量的大小和炉膛实际压力,折算出炉排上的料层差压。料层差压控制回路采用PID控制器,实时调节给料炉排的运动,
基于垃圾热值和蒸汽流量焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制,包括:蒸汽流量PV(蒸汽流量实测值)值采用一段时间内蒸汽流量的平均值,通过锅炉热负荷的计算反算出垃圾的热值,并提供最优的焚烧炉排滑动速度,同时通过蒸汽流量、汽包压力分级联锁控制炉排翻动的频率。
基于所述氧量和CO(一氧化碳)含对二次风量的控制,包括:氧量控制回路采用PID控制器,实时调节二次风机变频开度;烟囱布置有CO(一氧化碳)含量实时测量设施,根据CO(一氧化碳)的浓度联锁调节二次风机开度,
基于炉排温度控制两侧送风量,包括,在每一段固定炉排下方安装的温度测量装置,准确测量炉排温度。根据气化段左右两侧炉排的温度偏差,改变两侧风门的开度设定值;并且,当气化段左、右料层不均发生偏料时,也可以通过改变两侧风门的开度来及时进行纠偏。
图2为基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量分配的控制图。图中显示,基于蒸汽流量、汽包压力和干燥段炉排温度控制一次风量的分配,包括:蒸汽流量控制回路、汽包压力控制回路、PID控制器蒸汽流量或汽包压力用来反映锅炉实时负荷,蒸汽流量控制回路、汽包压力控制回路均可独立作为一次 风量的主控制器,通过PID控制器控制干燥风、气化风变频器的开度,从而改变干燥风、气化风风量;同时,在每一段固定炉排下方安装的温度测量装置、并设置干燥段炉排温度控制回路,利用干燥段炉排温度控制回路对干燥风量进行小幅补偿,通过PID控制器修正干燥风量的输出值。
当操作人员远方选择蒸汽流量控制回路时,控制系统根据蒸汽流量设定值计算出燃烧需要的一次风总风量,再将总风量转换成干燥风机、气化风机的变频开度(0-100%);其中,0表示风机停止运行,100%表示风机满速运行。
当蒸汽流量超过设定值时,通过PID控制器的运算,会降低气化、干燥风机的变频开度,从而使燃烧所需的一次风总量降低,降低燃烧工况,使锅炉蒸汽流量趋近设定值。
当蒸汽流量低于设定值时,通过PID控制器的运算,会增加气化、干燥风机的变频开度,从而使燃烧所需的一次风总量增加,提高燃烧工况,使锅炉蒸汽流量趋近设定值。
当操作人员远方选择汽包压力控制回路时,控制系统根据汽包设定值计算出燃烧需要的一次风总风量,再将总风量转换成干燥风机、气化风机的变频开度(0-100%),0表示风机停止运行,100%表示风机满速运行。
当汽包压力超过设定值时,通过PID控制器的运算,会相应降低气化、干燥风机的变频开度,从而使燃烧所需的一次风总量降低,降低燃烧工况,使锅炉汽包压力趋近设定值。
当汽包压力低于设定值时,通过PID控制器的运算,会相应增加气化、干燥风机的变频开度,从而使燃烧所需的一次风总量增加,提高燃烧工况,使锅炉汽包压力趋近设定值。
干燥段温度控制回路用于干燥风量的补偿,当控制系统检测出干燥段炉排温度低于操作人员的设定值时,PID控制回路将增加干燥风量的补偿量,从而提高干燥风机的变频开度,有助于燃料的进一步干燥。
当控制系统检测出干燥段炉排温度超过操作人员的设定值时,干燥段温度控制回路将降低干燥风量的补偿量,从而减小干燥风机的变频开度,有助于节省能源的消耗。
基于炉排温度控制两侧送风量,包括,在每一段固定炉排下方安装的温度测量装置,准确测量炉排温度;根据气化段左右两侧炉排的温度偏差,改变两侧风门的开度设定值,并且,当气化段左、右料层不均发生偏料时,也可以通过改变两侧风门的开度来及时进行纠偏。
当气化段左侧炉排温度超过右侧炉排温度并达到预设值时,控制系统将会降低左侧气化段风门的开度。
当气化段左侧炉排温度低于右侧炉排温度并达到预设值时,控制系统将会降低右侧气化段风门的开度。
图3为基于料层差压对给料炉排连续运动的控制图。图中显示,基于焚烧炉的料层差压控制给料炉排连续运动的控制,包括PID控制器,还包括在焚烧炉出口布置有多组炉膛压力测量装置,在每一段炉排对应炉排下方风室设置风压测量装置、在每一段固定炉排下方安装温度测量装置、在干燥段左、右侧一次风母管设置多点平衡式风量测量装置,风室压力是通过所述风压测量装置进行测量,炉排下方左右侧风室的送风量是通过所述多点平衡式风量测量装置进行测量,根据焚烧炉排下方风室压力的实时测量值,结合炉排下方送风 量的大小、干燥段炉排温度和炉膛实际压力,折算出炉排上的料层差压,料层差压控制回路采用PID控制器,实时调节给料炉排的运动。
操作人员远方投入给料炉排自动控制后,给料炉排将根据料层差压连续运行并控制速度在0-100%之间,其中0表示运行速度最低,100%表示炉排最大的行进速度。
当料层差压超过设定值时,通过PID控制器的运算,会相应降低给料炉排的运行速度,从而使燃料的推进速度降低,使燃料在炉排上的铺料更加均匀。
当料层差压低于设定值时,通过PID控制器的运算,会相应增加给料炉排的运行速度,从而使燃料的推进速度增加,使燃料在炉排上的铺料更加均匀。
图4为基于蒸汽流量对焚烧炉滑动炉排的控制图、图5为基于蒸汽流量和汽包压力对焚烧炉翻动炉排的控制图。图中显示,基于垃圾热值和蒸汽流量焚烧炉滑动炉排的控制,蒸汽流量控制回路、汽包压力控制回路均可独立作为翻动炉排的主控制器,并通过蒸汽流量、或者汽包压力联锁对翻动炉排的控制,包括:蒸汽流量PV(蒸汽流量实测值)值采用一段时间内蒸汽流量的平均值,通过锅炉热负荷的计算反算出垃圾的热值,并提供最优的焚烧炉排滑动速度,同时通过蒸汽流量、汽包压力分级联锁控制炉排翻动的频率。
操作人员远方投入滑动炉排自动控制后,PID控制系统根据蒸汽流量设定值计算出燃烧需要的炉排滑动总速度(0-4.5mm/s),0mm/s表示停止滑动,4.5mm/s表示滑动炉排全速运行运行,再将总速度转换成干燥段、气化段、冷却段滑动炉排对应的行进速度。
当蒸汽流量超过设定值时,通过PID控制器的运算,会相应增加滑动总速度,从而使燃料在炉排上的推进速度加快,满足燃烧所需要的燃料需求,使锅炉蒸汽流量趋近设定值。
当蒸汽流量低于设定值时,通过PID控制器的运算,会相应降低滑动总速度,从而使燃料在炉排上的推进速度减慢,满足燃烧所需要的燃料需求,使锅炉蒸汽流量趋近设定值。
操作人员远方未投入翻动炉排连锁控制时,翻动炉排的动作频率将按照操作人员的手动设定值运行,当手动设定翻动频率为4时,翻动炉排每隔预设时间翻动一次,4次翻动完毕后进行滑动炉排动作,滑动炉排动作结束后再开始下一个翻动周期,进行周期性动作。
操作人员远方投入翻动炉排连锁控制后,翻动炉排的动作频率将根据汽包压力的设定值进行联锁控制。
当汽包压力超过高值1时,减少气化段炉排翻动次数;当汽包压力超过高值2时,停止气化段炉排翻动;当汽包压力超过高值3时,停止所有翻动炉排(干燥、气化、冷却)动作。
当汽包压力低于低值1时,增加气化段炉排翻动次数;当汽包压力低于低值2时,增加干燥段炉排翻动;当汽包压力低于低值3时,增加所有翻动炉排(干燥、气化、冷却)动作次数。
图6为基于所述氧量和CO(一氧化碳)对二次风量的控制图。图中显示,基于锅炉出口氧量和CO(一氧化碳)量对二次风量的分配,包括:PID控制器、氧量实时测量设施、CO(一氧化碳)量实时测量设施,氧量控制回路采用PID控制器,实时调节二次风机变频开度;烟囱布置有CO(一氧化碳)实时测量设施, 根据CO(一氧化碳)的浓度联锁调节二次风机开度。
操作人员远方投入二次风机自动连锁控制后,PID控制系统根据锅炉出口氧量的设定值计算出燃烧需要的二次风总量,再将二次风总量转换成变频器接受的开度信号(0-100%),其中,0表示风机停止运行,100%表示风机满速运行。
当锅炉出口氧量高于设定值时,通过PID控制器的运算,会相应降低二次风机的变频开度,从而使燃烧所需的二次风总量降低,使锅炉出口氧量趋于稳定。
当锅炉出口氧量低于设定值时,通过PID控制器的运算,会相应增加二次风机的变频开度,从而使燃烧所需的二次风总量增加,使锅炉出口氧量趋于稳定。
CO(一氧化碳)连锁控制回路,用于连锁二次风机的开度,保证排放指标合格。
当CO浓度大于20mg/m 3时,二次风机变频开度将大幅增加至最大值,加强烟道的二次燃烧。
当CO浓度小于10mg/m 3时,二次风机变频开度恢复到PID控制器的输出值,确保燃烧稳定燃烧。

Claims (1)

  1. 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法,其特征是,包括:基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配;基于焚烧炉的料层差压对给料炉排连续运动的控制;基于垃圾热值和蒸汽流量对焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制;基于锅炉出口氧量、CO(一氧化碳)含量对二次风量的分配,以及基于炉排温度控制两侧送风量;
    基于蒸汽流量、汽包压力和干燥段炉排温度对一次风量的分配,包括:蒸汽流量或汽包压力用来反映锅炉实时负荷,蒸汽流量控制回路、汽包压力控制回路均可独立作为一次风量的主控制器,通过PID控制器控制干燥风、气化风风量;同时,利用干燥段炉排温度控制回路对干燥风量进行小幅补偿,通过PID控制器修正干燥风量的输出值,
    基于焚烧炉的料层差压对给料炉排连续运动的控制,包括:根据焚烧炉排下风室压力的实时测量值,结合炉排下送风量的大小和炉膛实际压力,折算出炉排上的料层差压,
    基于垃圾热值和蒸汽流量对焚烧炉滑动炉排的控制,并通过汽包压力联锁对翻动炉排的控制,包括:蒸汽流量PV值采用一段时间内蒸汽流量的平均值,通过锅炉热负荷的计算反算出垃圾的热值,并提供最优的焚烧炉排滑动速度,同时通过蒸汽流量、汽包压力分级联锁控制炉排翻动的运动频率,
    基于所述氧量和CO(一氧化碳)含对二次风量的控制,包括:氧量控制回路采用PID控制器,实时调节二次风机变频开度;烟囱布置有CO(一氧化碳)含量实时测量设施,根据CO(一氧化碳)的浓度联锁调节二次风机开度,
    还通过在每一段固定炉排下方安装的温度测量装置,准确测量炉排温度,根据气化段左右两侧炉排的温度偏差,改变两侧风门的开度设定值,并且,当气化段左、右料层不均发生偏料时,也可以通过改变两侧风门的开度来及时进行纠偏。
PCT/CN2017/117860 2017-12-21 2017-12-21 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法 WO2019119385A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117860 WO2019119385A1 (zh) 2017-12-21 2017-12-21 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117860 WO2019119385A1 (zh) 2017-12-21 2017-12-21 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法

Publications (1)

Publication Number Publication Date
WO2019119385A1 true WO2019119385A1 (zh) 2019-06-27

Family

ID=66994358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117860 WO2019119385A1 (zh) 2017-12-21 2017-12-21 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法

Country Status (1)

Country Link
WO (1) WO2019119385A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230293A (en) * 1991-02-22 1993-07-27 Von Roll Ag Method and apparatus for controlling a refuse incineration plant
CN102235676A (zh) * 2010-04-30 2011-11-09 光大环保科技发展(北京)有限公司 机械炉排焚烧炉燃烧控制系统及控制方法
CN102927573A (zh) * 2012-11-28 2013-02-13 上海康恒环境工程有限公司 一种生活垃圾焚烧炉自动燃烧控制系统
CN104154545A (zh) * 2014-07-28 2014-11-19 光大环保技术装备(常州)有限公司 用于焚烧炉的自动燃烧控制方法和自动燃烧控制系统
CN106096297A (zh) * 2016-06-21 2016-11-09 光大环保技术研究院(深圳)有限公司 一种测算焚烧炉炉排底部一次风流量的方法
CN106838931A (zh) * 2017-02-24 2017-06-13 杭州和利时自动化有限公司 一种倾斜往复逆推式垃圾焚烧炉的控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230293A (en) * 1991-02-22 1993-07-27 Von Roll Ag Method and apparatus for controlling a refuse incineration plant
CN102235676A (zh) * 2010-04-30 2011-11-09 光大环保科技发展(北京)有限公司 机械炉排焚烧炉燃烧控制系统及控制方法
CN102927573A (zh) * 2012-11-28 2013-02-13 上海康恒环境工程有限公司 一种生活垃圾焚烧炉自动燃烧控制系统
CN104154545A (zh) * 2014-07-28 2014-11-19 光大环保技术装备(常州)有限公司 用于焚烧炉的自动燃烧控制方法和自动燃烧控制系统
CN106096297A (zh) * 2016-06-21 2016-11-09 光大环保技术研究院(深圳)有限公司 一种测算焚烧炉炉排底部一次风流量的方法
CN106838931A (zh) * 2017-02-24 2017-06-13 杭州和利时自动化有限公司 一种倾斜往复逆推式垃圾焚烧炉的控制系统

Similar Documents

Publication Publication Date Title
CN105387458B (zh) 一种降低燃烧设备氮氧化物排放的系统及方法
CN107906536A (zh) 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法
CN109084324B (zh) 生物质锅炉的燃烧风量控制系统及控制方法
CN101329582A (zh) 循环流化床锅炉燃烧优化与诊断方法
CN103438463B (zh) 一种分段式炉排垃圾焚烧炉自助燃烧控制方法
CN205191552U (zh) 一种降低燃烧设备氮氧化物排放的系统
CN101551103A (zh) 一种循环流化床锅炉燃烧自动控制系统
CN1208576C (zh) 垃圾焚烧炉焚烧过程的控制方法
CN103900092B (zh) 城市生活垃圾焚烧炉自动燃烧控制系统
CN103557535A (zh) 一种电站锅炉炉膛温度场的平衡控制方法
CN106838931A (zh) 一种倾斜往复逆推式垃圾焚烧炉的控制系统
CN106556014B (zh) 一种基于温度场测量技术的焚烧炉燃烧控制方法
CN207907254U (zh) 一种用于倾斜多级往复顺推垃圾焚烧炉的控制系统
CN112212322B (zh) 热力循环流化床锅炉优化燃烧的智能控制方法
CN113464950A (zh) 一种基于烟气再循环多层布风的生活垃圾焚烧系统
CN203273907U (zh) 一种大型生活垃圾焚烧炉的燃烧空气系统
CN105509035A (zh) 一种确定对冲燃烧进风量的方法、装置及自动控制系统
CN206398729U (zh) 一种生活垃圾焚烧炉一次风独立布风流量联锁控制系统
WO2019119385A1 (zh) 一种用于倾斜多级往复顺推垃圾焚烧炉的控制方法
CN111981470A (zh) 对冲墙式/拱式燃烧锅炉燃烧系统智能优化调整系统与方法
CN112240552A (zh) 一种垃圾焚烧发电项目全自动运行的实施方法
CN105114960B (zh) 一种垃圾焚烧炉炉膛压力控制的方法
CN115371055A (zh) 一种垃圾焚烧的自动控制方法及系统
CN201443779U (zh) 锅炉自动化节能控制系统
CN110500595B (zh) 一种适用于马丁炉垃圾焚烧配风的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935209

Country of ref document: EP

Kind code of ref document: A1