WO2019119316A1 - 一种复合材料物理聚焦式换能器及其制造方法 - Google Patents

一种复合材料物理聚焦式换能器及其制造方法 Download PDF

Info

Publication number
WO2019119316A1
WO2019119316A1 PCT/CN2017/117560 CN2017117560W WO2019119316A1 WO 2019119316 A1 WO2019119316 A1 WO 2019119316A1 CN 2017117560 W CN2017117560 W CN 2017117560W WO 2019119316 A1 WO2019119316 A1 WO 2019119316A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
composite material
composite
transducer
piezoelectric ceramic
Prior art date
Application number
PCT/CN2017/117560
Other languages
English (en)
French (fr)
Inventor
郑海荣
黄继卿
李永川
郭瑞彪
张利宁
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2017/117560 priority Critical patent/WO2019119316A1/zh
Publication of WO2019119316A1 publication Critical patent/WO2019119316A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the invention belongs to the field of focused ultrasound technology, and in particular relates to a composite material physical focus transducer and a manufacturing method thereof.
  • the piezoelectric ceramic itself is an arc-shaped physical focus transducer.
  • the disadvantages are: large volume, heavy weight, thick wire, wearing on the head of the mouse seriously affects the motor's motor behavior, and the transducer does not affect the mouse's motor behavior during the stimulation process, therefore, in the energy
  • the size and volume of the transducer should be as small as possible.
  • the second is that the composite material is pressed into a curved reflector by a special clamp. It is difficult to press-form when the bending radius is small, especially for low-frequency transducers. In the case of 0.5MHz, the height of the ceramic column is about 2.3mm. Such 1-3 composite materials should be pressed into a small curvature with a bending radius of 5mm. Surfaces are very difficult and can easily fracture.
  • the technical solution of the present invention is: a composite physical focus transducer comprising a housing and a plurality of composite material transducing units, the front end of the housing being provided with a plurality of through holes, each of the composite materials being transducible The unit is inserted into the through hole, and the axes of the plurality of composite material transducing units are directed to the same point, and the composite material transducing unit is connected with the electrode lead.
  • the axes of the plurality of through holes are directed to the same point.
  • the front end of the housing is provided in a curved shape or a curved surface combined with a plane, and the curved surface is a spherical surface or a curved surface.
  • the through hole has a circular cross section
  • the composite material transducing unit has a polygonal cross section and is inscribed in the through hole; or the through hole and the composite material transducing unit The cross section is round.
  • the front end of the housing has a spherical portion
  • the through hole includes a focusing through hole disposed in the spherical portion, and an axis of the focusing through hole is directed to a center of the ball corresponding to the spherical portion, and The distance of the front end of the composite material transducing unit in the focusing through hole from the center of the sphere is equal.
  • the composite material transducing unit comprises a piezoelectric ceramic block and a decoupling material
  • the piezoelectric ceramic block has a polygonal shape and is inscribed in the through hole
  • the decoupling material is filled in the through hole
  • the electrodes are connected with leads.
  • the housing is packaged with a back cover, and the back cover is provided with a cable for connecting the electrode leads.
  • the present invention also provides a method of manufacturing a composite physical focus transducer, comprising the steps of: preparing a housing having a plurality of through holes at the front end;
  • the electrode of the composite material transducing unit is connected to the electrode lead.
  • manufacturing the composite material transducing unit at the through hole comprises the following steps:
  • the piezoelectric ceramic and the decoupling material are polished to a smooth to form a composite material
  • An electrode is disposed on a surface of the composite material to form a composite material transducing unit.
  • the housing is packaged.
  • the composite material physical focus transducer and the manufacturing method thereof provide the composite material transducing unit without pressing molding, thereby avoiding the situation that the small transducer is easily fractured during pressing, the shell and the composite material
  • the size of the transducer unit can be designed to be small, satisfying the requirements of light weight, small size, small focus focus, and head-mountable requirements in the case of energy equivalent, and can be applied to ultrasonic stimulation in mouse behavior research, transducer It does not affect the motor behavior of the mouse during the stimulation process, which is conducive to ensuring the scientific research.
  • FIG. 1 is a schematic perspective view of a composite physical focus transducer according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a composite physical focus transducer according to an embodiment of the present invention
  • FIG. 3 is a perspective view of a front cover of a composite material physical focus transducer according to an embodiment of the present invention
  • FIG. 4 is a plan view showing a front cover of a composite material physical focus transducer according to an embodiment of the present invention
  • FIG. 5 is a schematic plan view of a piezoelectric ceramic in a method for fabricating a composite material physical focus transducer according to an embodiment of the present invention.
  • left, right, upper, lower, and the like orientations in the embodiments of the present invention are merely relative concepts or referenced to the normal use state of the product, and should not be considered as limiting. .
  • a composite material physical focus transducer provided by an embodiment of the present invention includes a housing 1 and a plurality of composite material transducing units 2, and a front end of the housing 1 is provided with a plurality of passages.
  • each composite material transducing unit 2 is inserted in the through hole 101, and the axes of the plurality of composite material transducing units 2 are directed to the same point, and the composite material transducing unit 2 is connected with electrode leads, and the composite materials are directly
  • the central axis of the transducer unit 2 is directed at the same point to form a physical focus transducer, and each composite material transducing unit 2 does not need to be press-formed, thereby avoiding the case where the small transducer is easily fractured during pressing, the housing 1.
  • the size of the composite transducer unit 2 can be designed to be small, and it can meet the requirements of light weight, small volume, small focus focus and head-wearing in the case of energy equivalent, and can be applied to the study of mouse stimulation by ultrasonic stimulation. In the process of the transducer, the transducer does not affect the movement behavior of the mouse, which is beneficial to ensure the scientific research.
  • the axes of the plurality of through holes 101 are directed to the same point, and only the composite material transducing unit 2 is directly inserted into the corresponding through holes 101, so that the axes of the plurality of composite material transducing units 2 are directed to At the same point, no complicated adjustments or debugging work is required.
  • the front end of the housing 1 is provided in a curved shape or a curved surface combined with a plane, and the curved surface is a spherical surface or a curved surface.
  • the shape of the front end of the casing 1 can be set according to actual conditions.
  • the through hole 101 has a circular cross section, that is, the through hole 101 is a cylindrical through hole.
  • the composite material transducing unit 2 has a polygonal cross section and is inscribed in the through hole 101; or, the through hole 101 and the composite material transducing unit 2 have a circular cross section.
  • the housing 1 may include a housing 13, a front cover 11 (ie, a front end of the housing 1 referred to throughout the embodiment), and a rear cover 12, and the front cover 11 and the rear cover 12 are respectively coupled to the front and rear of the housing 13 end.
  • the through hole 101 may be disposed in the front cover 11.
  • the front cover 11 may be integrally formed or attached to the front end of the outer casing 13.
  • the outer casing 13 may have a cylindrical shape with both ends open.
  • the front cover 11 can be replaceably connected to the outer casing 13 by a step limit, a thread structure, a card structure, a locking member (such as a screw), a small gap fit, and the like. In this way, different sizes of the front cover 11 can be selected according to actual conditions.
  • the front end (front cover 11) of the casing 1 has a spherical portion which is divided into a concave spherical surface.
  • the through hole 101 includes a focusing through hole disposed at the spherical portion, the axis of the focusing through hole is directed to the center of the sphere corresponding to the spherical portion, and the distance of the front end of the composite material transducing unit 2 in the focusing through hole from the center of the sphere is equal.
  • the focusing through holes may be provided with at least one turn, and each of the focusing through holes may be evenly distributed with respect to the center of the front end of the casing 1.
  • At least the same circle of focusing through holes may be located on the same spherical surface.
  • all the through holes 101 are directed to the same spherical center.
  • the front end of the casing 1 is not only spherical, but also can be formed into an irregular arc shape or a curved plane to form different focal points, or a multi-point focusing type. Transducer.
  • the composite material transducing unit 2 includes a piezoelectric ceramic block (ceramic column) and a decoupling material.
  • the piezoelectric ceramic block has a polygonal shape and is inscribed in the through hole 101, and the decoupling material is filled inside the through hole 101 and pressed.
  • Between the outer sides of the electric ceramic block, and the decoupling material and the piezoelectric ceramic block are provided with electrodes on both sides, and the electrodes are connected with leads.
  • the electrodes may be formed on both sides of the decoupling material and the piezoelectric ceramic block by sputtering or the like. The electrodes on both sides of each set of composite transducer unit 2 can be individually leaded.
  • the housing 1 is packaged with a back cover 12 that is threaded with a cable for connecting the electrode leads.
  • the housing 1 may have a suitable shape such as a cylindrical shape.
  • the height of the ceramic post may be greater than 2 mm (eg, 2.3 mm), the bend radius of the ceramic post may be less than or equal to 5 mm, and the frequency of the transducer may be as low as 0.5 MHz or less.
  • the parameters of the ceramic column and the parameters of the transducer can be set according to actual conditions.
  • the embodiment of the invention further provides a manufacturing method of a composite physical focus transducer, which can be used for manufacturing the above-mentioned composite physical focus transducer, comprising the following steps: preparing a front end having a plurality of through holes 101 and a through hole 101 The axis of the housing 1 pointing at the same point;
  • the composite material transducing unit 2 is fabricated at the through hole 101 and the axes of the plurality of composite material transducing units 2 are directed at the same point, or the prepared composite material transducing unit 2 is inserted into the through hole 101 and a plurality of composites are formed.
  • the axis of the material transducing unit 2 is directed to the same point;
  • the electrode leads of the composite material transducing unit 2 are connected to the electrode lead.
  • Each composite material transducing unit 2 does not need to be press-formed, and the small transducer is easily fractured during pressing.
  • the size of the casing 1 and the composite material transducing unit 2 can be designed to be small, in the case of energy equivalent. It meets the requirements of light weight, small size, small focus focus and head-wearing. It can be applied to the study of mouse behavior in ultrasonic stimulation. The transducer does not affect the motor behavior of the mouse during the stimulation process, which is conducive to the scientific research. get on.
  • manufacturing the composite material transducing unit 2 at the through hole 101 includes the following steps:
  • the piezoelectric ceramic (piezoelectric ceramic column 21) is inserted into the through hole 101; the piezoelectric ceramic may have a rectangular cross section, and the piezoelectric ceramic may be inscribed in the circular through hole 101, and the positioning effect is good;
  • the piezoelectric ceramic and the decoupling material are polished to a smooth composite material, and the piezoelectric ceramic and the decoupling material are polished to a smooth transition with the front end of the casing 1, and the front end of the piezoelectric ceramic and the decoupling material can be Correspondingly spherical or curved or planar;
  • An electrode transducing unit 2 is formed by disposing an electrode (which can be formed by sputtering) on the surface of the composite material.
  • the case 1 is packaged and the back cover 12 is attached.
  • various parameters can be adjusted as needed, for example, the diameter of the model, the diameter of the through hole 101, the curvature of the model, etc., and the diameter of the through hole 101 should be adjusted correspondingly to select a suitable ceramic column, which can be directly prepared.
  • the composite material physical focus transducer and the manufacturing method thereof are provided by the embodiments of the present invention, and the composite material transducing unit 2 does not need to be press-formed, thereby avoiding the situation that the small transducer is easily fractured during pressing, and the housing 1.
  • the size of the composite transducer unit 2 can be designed to be small, and it can meet the requirements of light weight, small volume, small focus focus and head-wearing in the case of energy equivalent, and can be applied to the study of mouse stimulation by ultrasonic stimulation. In the process of the transducer, the transducer does not affect the movement behavior of the mouse, which is beneficial to ensure the scientific research.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种复合材料物理聚焦式换能器及其制造方法,涉及聚焦超声技术领域。所述换能器包括壳体(1)和多个复合材料换能单元(2),壳体的前端设置有多个通孔(102),各复合材料换能单元(2)插设于通孔(102)内,且多个复合材料换能单元(2)的轴线指向于同一点,所述复合材料换能单元(2)连接有电极引线。各复合材料换能单元无需压制成型,避免了小型换能器在压制时容易压裂的情况,在能量等同的情况下满足质量轻、体积小、聚焦焦点小、可头戴式的要求,可以应用于超声刺激对小鼠行为研究中,换能器在刺激过程中不会影响小鼠运动行为,利于保证研究的科学进行。

Description

一种复合材料物理聚焦式换能器及其制造方法 技术领域
本发明属于聚焦超声技术领域,尤其涉及一种复合材料物理聚焦式换能器及其制造方法。
背景技术
现有的聚焦超声探头主要有两种。一是压电陶瓷本身就是弧形的物理聚焦换能器。其缺点在于:体积大,重量重,导线粗,戴在小鼠头上严重影响小鼠的运动行为,而换能器在刺激过程中以不会影响小鼠运动行为为佳,因此,在能量够大的情况下换能器的质量、体积应该要越小越好。二是复合材料通过特殊夹具压制成弧面状形成的聚焦换能器。在弯曲半径小的时候难易压制成型,尤其是低频换能器,在0.5MHz的情况下,陶瓷柱高度在2.3mm左右,这样的1-3复合材料要压制成弯曲半径为5mm的小弧度曲面是非常困难的,很容易就会压裂。
技术问题
本发明的目的在于克服上述现有技术的不足,提供了一种复合材料物理聚焦式换能器及其制造方法,其避免了复合材料被压裂。
技术解决方案
本发明的技术方案是:一种复合材料物理聚焦式换能器,包括壳体和多个复合材料换能单元,所述壳体的前端设置有多个通孔,各所述复合材料换能单元插设于所述通孔内,且多个所述复合材料换能单元的轴线指向于同一点,所述复合材料换能单元连接有电极引线。
可选地,多个所述通孔的轴线指向于同一点。
可选地,所述壳体的前端设置为曲面状或曲面与平面结合的形状,所述曲面为球面或弧面。
可选地,所述通孔的横断面呈圆形,所述复合材料换能单元的横断面呈多边形且内接于所述通孔;或者,所述通孔和所述复合材料换能单元的横断面均呈圆形。
可选地,所述壳体的前端具有球面部分,所述通孔包括设置于所述球面部分的聚焦通孔,所述聚焦通孔的轴线指向于所述球面部分对应的球心,且所述聚焦通孔中的所述复合材料换能单元前端距离所述球心的距离相等。
可选地,所述复合材料换能单元包括压电陶瓷块和去耦合材料,所述压电陶瓷块呈多边形状且内接于所述通孔,所述去耦合材料填充于所述通孔内侧与所述压电陶瓷块外侧之间,且所述去耦合材料和压电陶瓷块的两面均设置有电极,所述电极连接有引线。
可选地,所述壳体封装有后盖,所述后盖穿设有用于连接所述电极引线的线缆。
本发明还提供了一种复合材料物理聚焦式换能器的制造方法,包括以下步骤:制备前端具有多个通孔的壳体;
在所述通孔处制造复合材料换能单元并使多个所述复合材料换能单元的轴线指向于同一点,或者,将制备的复合材料换能单元插入所述通孔中并使多个所述复合材料换能单元的轴线指向于同一点;
于所述复合材料换能单元的电极连接电极引线。
可选地,在所述通孔处制造复合材料换能单元包括以下步骤:
制备压电陶瓷;
将所述压电陶瓷插入所述通孔中;
在所述通孔的内侧与所述压电陶瓷的外侧之间填充去耦合材料;
待所述去耦合材料固化后,将所述压电陶瓷和所述去耦合材料打磨至光滑形成复合材料;
在所述复合材料的表面设置电极,形成复合材料换能单元。
可选地,在所述电极的表面连接电极引线后,对所述壳体进行封装。
有益效果
本发明所提供的一种复合材料物理聚焦式换能器及其制造方法,各复合材料换能单元无需压制成型,避免了小型换能器在压制时容易压裂的情况,壳体、复合材料换能单元的尺寸可以设计为较小,在能量等同的情况下满足质量轻、体积小、聚焦焦点小、可头戴式的要求,可以应用于超声刺激对小鼠行为研究中,换能器在刺激过程中不会影响小鼠运动行为,利于保证研究的科学进行。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种复合材料物理聚焦式换能器的立体装配示意图;
图2是本发明实施例提供的一种复合材料物理聚焦式换能器的立体装配示意图;
图3是本发明实施例提供的一种复合材料物理聚焦式换能器中前盖的立体示意图;
图4是本发明实施例提供的一种复合材料物理聚焦式换能器中前盖的平面示意图;
图5是本发明实施例提供的一种复合材料物理聚焦式换能器制备方法中压电陶瓷的平面示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
还需要说明的是,本发明实施例中的左、右、上、下等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。
如图1至图4所示,本发明实施例提供的一种复合材料物理聚焦式换能器,包括壳体1和多个复合材料换能单元2,壳体1的前端设置有多个通孔101,各复合材料换能单元2插设于通孔101内,且多个复合材料换能单元2的轴线指向于同一点,复合材料换能单元2连接有电极引线,直接将各复合材料换能单元2的中轴线指向于同一点,以形成物理聚焦式换能器,且各复合材料换能单元2无需压制成型,避免了小型换能器在压制时容易压裂的情况,壳体1、复合材料换能单元2的尺寸可以设计为较小,在能量等同的情况下满足质量轻、体积小、聚焦焦点小、可头戴式的要求,可以应用于超声刺激对小鼠行为研究中,换能器在刺激过程中不会影响小鼠运动行为,利于保证研究的科学进行。
本实施例中,多个通孔101的轴线指向于同一点,只需将复合材料换能单元2直接插入相应的通孔101中,即可实现多个复合材料换能单元2的轴线指向于同一点,无需复杂的调整、调试工作。
可选地,壳体1的前端设置为曲面状或曲面与平面结合的形状,曲面为球面或弧面。壳体1的前端形状可以根据实际情况设定。
可选地,通孔101的横断面呈圆形,即通孔101为圆柱通孔。复合材料换能单元2的横断面呈多边形且内接于通孔101;或者,通孔101和复合材料换能单元2的横断面均呈圆形。
可选地,壳体1可以包括外壳13、前盖11(即本实施全中所指的壳体1的前端)和后盖12,前盖11和后盖12分别连接于外壳13的前后两端。通孔101可以设置于前盖11。前盖11可以一体成型或连接于外壳13的前端。外壳13可以呈两端开口的圆筒状。具体应用中,前盖11可以通过台阶限位、螺纹结构、旋卡结构、锁紧件(例如螺丝)、小间隙配合等方式可更换式连接于外壳13。这样,可以根据实际情况选用不同规格的前盖11。
可选地,壳体1的前端(前盖11)具有球面部分,球面部分为内凹球面。通孔101包括设置于球面部分的聚焦通孔,聚焦通孔的轴线指向于球面部分对应的球心,且聚焦通孔中的复合材料换能单元2前端距离球心的距离相等。具体应用中,聚焦通孔可以设置有至少一圈,每圈聚焦通孔可以相对壳体1的前端中心周向均布。至少同一圈聚焦通孔可位于同一球面,本实施例中,所有通孔101均指向于同一球心。当然,具体应用中,壳体1的前端不仅仅是球面状,还可以根据需要做成不规则弧度形状,或者弧面平面相结合的形状,以此来制备出不同焦点,或者多点聚焦型换能器。
可选地,复合材料换能单元2包括压电陶瓷块(陶瓷柱)和去耦合材料,压电陶瓷块呈多边形状且内接于通孔101,去耦合材料填充于通孔101内侧与压电陶瓷块外侧之间,且去耦合材料和压电陶瓷块的两面均设置有电极,电极连接有引线。电极可以通过溅射等方式形成于去耦合材料和压电陶瓷块的两面。每一组复合材料换能单元2两面的电极可以分别引线。
可选地,壳体1封装有后盖12,后盖12穿设有用于连接电极引线的线缆。壳体1可以呈圆柱状等合适形状。
可选地,陶瓷柱的高度可大于2mm(例如2.3 mm),陶瓷柱的弯曲半径可以小于或等于5mm,换能器的频率可以低至0.5MHz或以下。当然,可以理解地,陶瓷柱的参数及换能器的参数可以根据实际情况设定。
本发明实施例还提供了一种复合材料物理聚焦式换能器的制造方法,可用于制造上述复合材料物理聚焦式换能器,包括以下步骤:制备前端具有多个通孔101且通孔101的轴线指向于同一点的壳体1;
在通孔101处制造复合材料换能单元2并使多个复合材料换能单元2的轴线指向于同一点,或者,将制备的复合材料换能单元2插入通孔101中并使多个复合材料换能单元2的轴线指向于同一点;
于复合材料换能单元2的电极连接电极引线。各复合材料换能单元2无需压制成型,避免了小型换能器在压制时容易压裂的情况,壳体1、复合材料换能单元2的尺寸可以设计为较小,在能量等同的情况下满足质量轻、体积小、聚焦焦点小、可头戴式的要求,可以应用于超声刺激对小鼠行为研究中,换能器在刺激过程中不会影响小鼠运动行为,利于保证研究的科学进行。
可选地,在通孔101处制造复合材料换能单元2包括以下步骤:
制备压电陶瓷(如图5中的压电陶瓷柱21);
将压电陶瓷(压电陶瓷柱21)插入通孔101中;压电陶瓷的横断面可以呈矩形,压电陶瓷可以内接于圆形的通孔101中,定位效果佳;
在通孔101的内侧与压电陶瓷的外侧之间填充去耦合材料;
待去耦合材料固化后,将压电陶瓷和去耦合材料打磨至光滑形成复合材料,将压电陶瓷和去耦合材料打磨至与壳体1前端平滑过渡,压电陶瓷和去耦合材料的前端可以相应地呈球面或弧面或平面状;
在复合材料的表面设置电极(可通过溅射形成),形成复合材料换能单元2。
可选地,在电极的表面连接电极引线后,对壳体1进行封装并连接后盖12。
通过上述制造方法,可根据需要对各种参数进行调节,例如对模型直径、通孔101直径、模型弧度等均可调节,通孔101直径调节后应该对应的选用合适的陶瓷柱,可以直接制备出任意弧度、体积更小、频率更低的复合材料超声换能器。
本发明实施例所提供的一种复合材料物理聚焦式换能器及其制造方法,各复合材料换能单元2无需压制成型,避免了小型换能器在压制时容易压裂的情况,壳体1、复合材料换能单元2的尺寸可以设计为较小,在能量等同的情况下满足质量轻、体积小、聚焦焦点小、可头戴式的要求,可以应用于超声刺激对小鼠行为研究中,换能器在刺激过程中不会影响小鼠运动行为,利于保证研究的科学进行。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合材料物理聚焦式换能器,其特征在于,包括壳体和多个复合材料换能单元,所述壳体的前端设置有多个通孔,各所述复合材料换能单元插设于所述通孔内,且多个所述复合材料换能单元的轴线指向于同一点,所述复合材料换能单元连接有电极引线。
  2. 如权利要求1所述的一种复合材料物理聚焦式换能器,其特征在于,多个所述通孔的轴线指向于同一点。
  3. 如权利要求1所述的一种复合材料物理聚焦式换能器,其特征在于,所述壳体的前端设置为曲面状或曲面与平面结合的形状,所述曲面为球面或弧面。
  4. 如权利要求1所述的一种复合材料物理聚焦式换能器,其特征在于,所述通孔的横断面呈圆形,所述复合材料换能单元的横断面呈多边形且内接于所述通孔;或者,所述通孔和所述复合材料换能单元的横断面均呈圆形。
  5. 如权利要求1所述的一种复合材料物理聚焦式换能器,其特征在于,所述壳体的前端具有球面部分,所述通孔包括设置于所述球面部分的聚焦通孔,所述聚焦通孔的轴线指向于所述球面部分对应的球心,且所述聚焦通孔中的所述复合材料换能单元前端距离所述球心的距离相等。
  6. 如权利要求1所述的一种复合材料物理聚焦式换能器,其特征在于,所述复合材料换能单元包括压电陶瓷块和去耦合材料,所述压电陶瓷块呈多边形状且内接于所述通孔,所述去耦合材料填充于所述通孔内侧与所述压电陶瓷块外侧之间,且所述去耦合材料和压电陶瓷块的两面均设置有电极,所述电极连接有引线。
  7. 如权利要求1所述的一种复合材料物理聚焦式换能器,其特征在于,所述壳体封装有后盖,所述后盖穿设有用于连接所述电极引线的线缆。
  8. 一种复合材料物理聚焦式换能器的制造方法,其特征在于,包括以下步骤:制备前端具有多个通孔的壳体;
    在所述通孔处制造复合材料换能单元并使多个所述复合材料换能单元的轴线指向于同一点,或者,将制备的复合材料换能单元插入所述通孔中并使多个所述复合材料换能单元的轴线指向于同一点;
    于所述复合材料换能单元的电极连接电极引线。
  9. 如权利要求8所述的一种复合材料物理聚焦式换能器的制造方法,其特征在于,
    在所述通孔处制造复合材料换能单元包括以下步骤:
    制备压电陶瓷;
    将所述压电陶瓷插入所述通孔中;
    在所述通孔的内侧与所述压电陶瓷的外侧之间填充去耦合材料;
    待所述去耦合材料固化后,将所述压电陶瓷和所述去耦合材料打磨至光滑形成复合材料;
    在所述复合材料的表面设置电极,形成复合材料换能单元。
  10. 如权利要求8所述的一种复合材料物理聚焦式换能器的制造方法,其特征在于,
    在所述电极的表面连接电极引线后,对所述壳体进行封装。
PCT/CN2017/117560 2017-12-20 2017-12-20 一种复合材料物理聚焦式换能器及其制造方法 WO2019119316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117560 WO2019119316A1 (zh) 2017-12-20 2017-12-20 一种复合材料物理聚焦式换能器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117560 WO2019119316A1 (zh) 2017-12-20 2017-12-20 一种复合材料物理聚焦式换能器及其制造方法

Publications (1)

Publication Number Publication Date
WO2019119316A1 true WO2019119316A1 (zh) 2019-06-27

Family

ID=66992881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117560 WO2019119316A1 (zh) 2017-12-20 2017-12-20 一种复合材料物理聚焦式换能器及其制造方法

Country Status (1)

Country Link
WO (1) WO2019119316A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307300A1 (fr) * 1987-09-07 1989-03-15 Technomed International S.A. Dispositif piézoélectrique à ondes négatives réduites, et utilisation de ce dispositif pour la lithotritie extra corporelle ou pour la destruction de tissus particuliers
EP0368418A1 (fr) * 1988-11-10 1990-05-16 Laboratoires D'electronique Philips Dispositif de focalisation tridimensionnelle d'un faisceau ultrasonore
CN1686582A (zh) * 2005-05-19 2005-10-26 上海交通大学 自聚焦阵列超声换能器
CN1743026A (zh) * 2005-09-26 2006-03-08 西安交通大学 上百阵元复合材料球面相控阵高强度聚焦超声治疗系统
CN102594278A (zh) * 2011-01-05 2012-07-18 香港理工大学 一种复合压电振子及其制备方法
CN106622924A (zh) * 2016-12-29 2017-05-10 中国科学院深圳先进技术研究院 一种压电复合材料的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0307300A1 (fr) * 1987-09-07 1989-03-15 Technomed International S.A. Dispositif piézoélectrique à ondes négatives réduites, et utilisation de ce dispositif pour la lithotritie extra corporelle ou pour la destruction de tissus particuliers
EP0368418A1 (fr) * 1988-11-10 1990-05-16 Laboratoires D'electronique Philips Dispositif de focalisation tridimensionnelle d'un faisceau ultrasonore
CN1686582A (zh) * 2005-05-19 2005-10-26 上海交通大学 自聚焦阵列超声换能器
CN1743026A (zh) * 2005-09-26 2006-03-08 西安交通大学 上百阵元复合材料球面相控阵高强度聚焦超声治疗系统
CN102594278A (zh) * 2011-01-05 2012-07-18 香港理工大学 一种复合压电振子及其制备方法
CN106622924A (zh) * 2016-12-29 2017-05-10 中国科学院深圳先进技术研究院 一种压电复合材料的制作方法

Similar Documents

Publication Publication Date Title
CN104853304A (zh) 一种硅胶振膜、受话器模组和加工硅胶振膜的方法
US20200310002A1 (en) Planar lens and manufacturing method for planar lens
CN103246020B (zh) 一种光纤准直器及其制作方法
CN110191405B (zh) 双频大尺寸压电复合材料球形换能器及其制备方法
CN106111510B (zh) 一种全接线式二维平面阵超声换能器及其制造方法
WO2019119316A1 (zh) 一种复合材料物理聚焦式换能器及其制造方法
CN106823165A (zh) 一种带立体成像探头的单曲面条状功率超声装置
WO2008011759A1 (fr) Transducteur à focalisation d'ultrasons par réglage de phase, fondé sur une lentille sphérique
US20100171395A1 (en) Curved ultrasonic array transducers
CN115007430B (zh) 球面超声换能器的制作方法及超声换能器
CN208911313U (zh) 超声换能器
CN102457248B (zh) 压电陶瓷片振荡子及其制作方法
CN115105738A (zh) 一种可用于浅皮下透皮给药的小型换能器及其制作方法
CN215781066U (zh) 一种用于美容的超声波换能器
CN209328634U (zh) 高稳定的中功率电阻器
CN109939914A (zh) 一种复合材料物理聚焦式换能器及其制造方法
CN211964899U (zh) 压缩声焦域轴向长度的透镜式多频聚焦超声换能器、换能系统
WO2021111668A1 (ja) 振動装置及び撮像装置
CN112207013A (zh) 一种用于超声理疗的超声探头
CN215424748U (zh) 一种可更换透镜的医用超声波声头
WO2019119188A1 (zh) 一种磁兼容脑部超声刺激装置及其制造方法
CN203259687U (zh) 一种光纤准直器
CN208339942U (zh) 一种矩形阵列分布式功率超声装置
CN102397837A (zh) 一种小型超声波换能器的制造方法
US20110092861A1 (en) Electroacoustic transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17935653

Country of ref document: EP

Kind code of ref document: A1