WO2019119238A1 - 基于无人机的数据交互方法、地面控制端、服务器及系统 - Google Patents

基于无人机的数据交互方法、地面控制端、服务器及系统 Download PDF

Info

Publication number
WO2019119238A1
WO2019119238A1 PCT/CN2017/117034 CN2017117034W WO2019119238A1 WO 2019119238 A1 WO2019119238 A1 WO 2019119238A1 CN 2017117034 W CN2017117034 W CN 2017117034W WO 2019119238 A1 WO2019119238 A1 WO 2019119238A1
Authority
WO
WIPO (PCT)
Prior art keywords
random number
server
ground control
control end
drone
Prior art date
Application number
PCT/CN2017/117034
Other languages
English (en)
French (fr)
Inventor
周毅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/117034 priority Critical patent/WO2019119238A1/zh
Priority to CN201780025869.3A priority patent/CN109075967B/zh
Publication of WO2019119238A1 publication Critical patent/WO2019119238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0435Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply symmetric encryption, i.e. same key used for encryption and decryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0815Network architectures or network communication protocols for network security for authentication of entities providing single-sign-on or federations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0618Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
    • H04L9/0631Substitution permutation network [SPN], i.e. cipher composed of a number of stages or rounds each involving linear and nonlinear transformations, e.g. AES algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/0643Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/14Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using a plurality of keys or algorithms

Definitions

  • the invention relates to a drone technology, in particular to a data interaction method based on a drone, a ground control terminal, a server and a system.
  • drones are being applied in more and more fields.
  • the emergence of agricultural drones the labor force in the field of agricultural production has been further liberated.
  • Today's agricultural drones can perform pesticide and fertilizer spraying in the agricultural field, and can monitor farmland information and disaster surveys.
  • the drone application Application, referred to as APP
  • APP application
  • the terminal and the background server exchange data collected by the unmanned aerial vehicle through the plaintext, and the data is vulnerable to third-party attacks, thereby risking theft, tampering, and the like.
  • the invention provides a data interaction method based on a drone, a ground control terminal, a server and a system, which are used to solve the problem that the data in the prior art is easily attacked by a third party.
  • the present invention provides a data interaction method based on a drone, wherein the drone is controlled by a ground control terminal, and the method includes:
  • the ground control end generates a symmetric key according to the first random number and the second random number, wherein the first random number is generated by the ground control end, and the second random number is generated by a server;
  • the ground control end encrypts the drone data by using the symmetric key to obtain the encrypted drone data, and the ground control end sends the encrypted drone data to the server or the drone; or,
  • the ground control terminal receives the encrypted data sent by the drone or the server, and decrypts the received data using the symmetric key.
  • the present invention provides a data interaction method based on a drone, the drone being controlled by a ground control terminal, the method comprising:
  • the server generates a symmetric key according to the first random number and the second random number, wherein the first random number is generated by the ground control end, and the second random number is generated by the server;
  • the server receives the drone data encrypted by the ground control end by using the symmetric key, and decrypts the drone data encrypted by the symmetric key by using the symmetric key to obtain the drone data; or,
  • the server encrypts the data by the symmetric key and sends the encrypted data to the drone or the ground control terminal.
  • the present invention provides a data interaction method based on a drone, including:
  • the ground control end and the server respectively generate a symmetric key according to the first random number and the second random number, wherein the first random number is generated by the ground control end, and the second random number is generated by a server;
  • the ground control end encrypts the drone data by using the symmetric key to obtain the encrypted drone data, and the ground control end sends the encrypted drone data to the server or the drone; or,
  • the server encrypts the drone data by using the symmetric key to obtain the encrypted drone data, and the server sends the encrypted drone data to the ground control end.
  • the present invention provides a ground control terminal, including: a memory, a processor, and a display;
  • the memory is configured to store instructions
  • the processor is configured to invoke an instruction in the memory to perform the following method:
  • Generating a symmetric key according to the first random number and the second random number wherein the first random number is generated by the ground control end, the second random number is generated by a server; and the symmetric key is used to encrypt the unmanned key Computer data, the encrypted drone data is obtained, the ground control end sends the encrypted drone data to the server or the drone; or, after receiving the encrypted transmission by the drone or the server Data, using the symmetric key to decrypt the received data.
  • the present invention provides a server, including: a memory and a processor;
  • the memory is configured to store instructions
  • the processor is configured to invoke an instruction in the memory to perform the following method:
  • the present invention provides a data interaction system based on a drone, including: a drone, a ground control terminal, and a server;
  • the ground control end is used to control the drone
  • the ground control end is the ground control end according to the fourth aspect; the server is the server described in the fifth aspect.
  • the ground control terminal, the server and the system provided by the invention the ground control end and the server generate a symmetric key according to the first random number and the second random number, and then the ground control end and the drone And during the data interaction between servers, the symmetric key is used for encryption to ensure the security of the data transmission process and reduce the possibility of data being attacked by a third party.
  • FIG. 1 is a schematic structural diagram of a data interaction system based on a drone provided by the present invention
  • FIG. 2 is a schematic flowchart of a data interaction method based on a drone according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a data interaction method based on a drone according to another embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a data interaction method based on a drone according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a data interaction device based on a drone according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a data interaction device based on a drone according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a data interaction system based on a drone provided by the present invention. As shown in FIG. 1, the system includes: a drone 01, a ground control terminal 02, and a server 03.
  • the ground control end may include at least one of the following: head-mounted display glasses (VR glasses, VR helmets, etc.), mobile phones, remote controls (such as remote controls with display screens), smart bracelets, and tablet computers.
  • a remote controller with a display screen is taken as an example to describe data interaction between the ground control terminal 02 and the server 03 and the drone 01.
  • the remote controller with display provided in this embodiment is provided with a user interface.
  • the user can control the drone through the user interface, and the remote controller determines the control information input by the user according to the operation of the user interface.
  • control information may include at least one of the following: spray flow control information, spray direction control information, flight speed control information, flight altitude control information, nozzle control information, and route spacing control. Information, security distance control information, etc.
  • spray flow control information spray direction control information
  • flight speed control information flight speed control information
  • flight altitude control information flight altitude control information
  • nozzle control information flight altitude control information
  • route spacing control Information, security distance control information, etc.
  • the invention is not limited thereto.
  • the drone 01 performs a related operation under the control of the ground control terminal 02, and feeds back relevant data in the job to the ground control terminal 02.
  • the ground control terminal 02 transmits the data to the server 03, or the ground control terminal 02 transmits the processed data to the server 03.
  • the invention provides a data interaction method based on a drone to ensure more secure interaction data between the drone 01, the ground control terminal 02 and the server 03.
  • FIG. 2 is a schematic flowchart of a data interaction method based on a drone according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • the ground control end generates a symmetric key according to the first random number and the second random number.
  • the first random number is generated by the ground control end, and the second random number is generated by the server.
  • the first random number and the second random number may be a number, or may be a sequence, such as a 16-bit sequence or a 64-bit sequence, which is not limited in the present invention.
  • the minimum length and the maximum length of the first random number and the second random number may be specified, for example, the minimum length is 32 bits, the maximum length is 64 bits, less than the minimum length, or greater than the maximum length. All are determined to be connection failures, and new random numbers can be regenerated.
  • the ground control end and the server generate a random number. After the interaction, the ground control end generates a symmetric key according to the first random number and the second random number, and is used in subsequent data interaction.
  • the symmetric key that is, the sender and the receiver, use the same key to encrypt and decrypt.
  • S202 or 203 is performed.
  • the ground control end encrypts the drone data by using the symmetric key, obtains the encrypted drone data, and sends the encrypted drone data to the server or the drone.
  • the ground control terminal receives the encrypted data sent by the drone or the server, and uses the symmetric key to decrypt the received data.
  • ground control end and the server obtain the first random number and the second random number, and then obtain a symmetric key according to a preset algorithm, and encrypt the data to be sent.
  • the ground control terminal may also send the first random number and the second random number to the drone, and the drone generates a symmetric key by itself.
  • the ground console sends a symmetric key directly to the drone. This application is not limited.
  • the ground control end generates a symmetric key according to the first random number and the second random number, and then uses a symmetric key to encrypt data during the data interaction between the ground control terminal, the drone, and the server to ensure data transmission.
  • the security of the process reduces the possibility of data being attacked by a third party.
  • FIG. 3 is a schematic flowchart of a data interaction method based on a drone according to another embodiment of the present invention. As shown in FIG. 3, corresponding to the method shown in FIG. 2, the method includes:
  • the server generates a symmetric key according to the first random number and the second random number.
  • the first random number is generated by the ground control end, and the second random number is generated by the server.
  • the server receives the drone data encrypted by the ground control end by using the symmetric key, and decrypts the drone data encrypted by the symmetric key by using the symmetric key to obtain the UAV data.
  • the server encrypts data by using the symmetric key, and sends the encrypted data to the drone or the ground control end.
  • the server generates a symmetric key according to the first random number and the second random number, and then uses a symmetric key to encrypt the data interaction process between the ground control terminal, the drone, and the server to ensure data transmission.
  • Security reducing the possibility of data being attacked by third parties.
  • the ground control end before the ground control end generates the symmetric key according to the first random number and the second random number, the ground control end generates a first random number, and encrypts the first random number by using a public key to obtain the encrypted first The random number is further sent to the server by the encrypted first random number. After the server decrypts the private key to obtain the first random number, the second random number is generated and sent to the ground control terminal.
  • the public key and the private key are a pair of asymmetric keys, and the server can generate a pair of private and public keys and send the public key to the ground control terminal.
  • the ground control terminal and the server exchange random numbers through asymmetric keys, which further ensures the security of data interaction.
  • the application before the ground control terminal controls the drone operation, in the networked state, the application is first registered by the application program (APP) corresponding to the drone.
  • APP application program
  • the ground control terminal sends the login information to the server, where the login information may include information such as an account number and a password corresponding to the drone.
  • the first random number may be packaged in the login information corresponding to the account and password corresponding to the drone, or the first random number may be separately sent, which is not limited in the application.
  • the server After receiving the login information, the server verifies the login information. After the server verifies that the login information is passed, the server generates a second random number.
  • the server sends the login success response information to the ground control terminal, and the server may carry the second random number in the login success response information.
  • the second random number may also be sent to the ground control terminal separately, which is not limited in this application.
  • the server may further send a public key to the ground control end, so that the ground control end encrypts the first random number by using the public key.
  • the login failure response information is sent to the ground control terminal, and the process ends.
  • the login failure may be an account or password error, such as an account, a password does not match, an account does not exist, or other abnormal conditions may be determined as a login failure, for example, the login is too frequent in a short period of time, and the user is not in the area. Open the current system and so on.
  • the invention is not specifically limited.
  • the ground control terminal generates a symmetric key according to the first random number and the second random number
  • the ground control end generates a symmetric algorithm according to the first random number and the second random number. Symmetric key.
  • the preset encryption algorithm may be a secure hash algorithm (SHA512). Assuming that the first random number R1 and the second random number R2 are both 64-bit sequences, R1 and R2 are successively spliced into a 128-bit sequence, and then the 128-bit sequence is used as an input of a secure hash algorithm to obtain a symmetric density. key.
  • the secure hash algorithm outputs a sequence of 64 bits as a symmetric key.
  • the encryption can also be performed with a symmetric encryption algorithm.
  • the encryption is performed in conjunction with an Advanced Encryption Standard (AES) algorithm.
  • AES Advanced Encryption Standard
  • the server generates a symmetric key according to the first random number and the second random number, and may also use a preset encryption algorithm for the server to generate a symmetric key according to the first random number and the second random number.
  • the ground control terminal may send an algorithm selection list to the server, and the server selects a preset encryption algorithm in the algorithm selection list. For example, choose the SHA512 algorithm.
  • the ground control end sends an algorithm notification message to the server, where the algorithm notification message is used to indicate multiple alternative encryption algorithms, that is, the encryption algorithm list may be adopted, and the identifiers of the multiple candidate encryption algorithms are carried.
  • the server selects a preset encryption algorithm from a plurality of candidate encryption algorithms, and the server sends an algorithm determination message to the ground control end, where the algorithm determines that the message is used to indicate the preset encryption algorithm. For example, the algorithm determines that the message carries an identifier of a preset encryption algorithm.
  • the algorithm determining message and the second random number may be packaged and sent together.
  • the algorithm can also be sent separately to determine the message.
  • the ground control terminal can also send a list of symmetric encryption algorithms to the server, and the server selects a symmetric encryption algorithm. For example, choose the AES algorithm.
  • the ground control terminal is notified of the selected symmetric encryption algorithm.
  • FIG. 4 is a schematic flowchart of a data exchange method based on a drone according to another embodiment of the present invention.
  • the entire data encryption process may include:
  • the ground control end generates a first random number, and encrypts the first random number by using a public key.
  • the ground control end sends the encrypted first random number to the server.
  • the server decrypts the encrypted first random number by using a private key corresponding to the public key to obtain a first random number.
  • the server generates a second random number.
  • the server sends a second random number to the ground control terminal.
  • the server encrypts the second random number by using an asymmetric key
  • the ground control end decrypts the second random number by using a corresponding asymmetric key
  • the ground control end/server generates a symmetric key according to the first random number and the second random number.
  • the symmetric key is used for encryption to ensure the security of the data transmission process and reduce the possibility of data being attacked by a third party.
  • FIG. 5 is a schematic structural diagram of a data interaction device based on a drone according to an embodiment of the present invention, where the device may be integrated into the ground control end.
  • the ground control terminal 500 can include a memory 501, a processor 502, and a display 503, where:
  • the memory 501 is configured to store an instruction.
  • the processor 502 is configured to invoke an instruction in the memory 501 to perform the following method:
  • Generating a symmetric key according to the first random number and the second random number wherein the first random number is generated by the ground control end, the second random number is generated by a server; and the symmetric key is used to encrypt the unmanned key Computer data, the encrypted drone data is obtained, the ground control end sends the encrypted drone data to the server or the drone; or, after receiving the encrypted transmission by the drone or the server Data, using the symmetric key to decrypt the received data.
  • the display 503 is configured to display various data information and provide an operation interface and the like for the user.
  • the processor 502 is configured to generate a first random number, and encrypt the first random number by using a public key to obtain the encrypted first random number; and send the encrypted first to a server. a random number; receiving a second random number sent by the server.
  • the processor 502 is further configured to send login information to the server.
  • the processor 502 is specifically configured to receive the second random number that is sent by the server after verifying the login information.
  • the processor 502 is specifically configured to generate a symmetric key according to the first random number and the second random number by using a preset encryption algorithm.
  • the processor 502 is further configured to send, to the server, an algorithm notification message, where the algorithm notification message is used to indicate multiple candidate encryption algorithms, and receive an algorithm determining message sent by the server, where the algorithm determines the message. And the preset encryption algorithm used to instruct the server to select according to the multiple candidate encryption algorithms.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a data interaction device based on a drone according to another embodiment of the present invention, where the device may be integrated into the foregoing server.
  • the server 600 includes a memory 601 and a processor 602, wherein:
  • the memory 601 is configured to store an instruction.
  • the processor 602 is configured to invoke an instruction in the memory 601 to perform the following method:
  • the processor 602 is further configured to receive the first random number encrypted by the public key sent by the ground control terminal, and decrypt the public key by using a private key corresponding to the public key. a random number; generating a second random number and transmitting the second random number to the ground control terminal.
  • the processor 602 is further configured to receive login information sent by the ground control terminal.
  • the processor 602 is specifically configured to generate the second random number after verifying that the login information is passed.
  • the processor 602 is specifically configured to generate a symmetric key according to the first random number and the second random number by using a preset encryption algorithm.
  • the processor 602 is further configured to receive an algorithm notification message sent by the ground control end, where the algorithm notification message is used to indicate multiple candidate encryption algorithms, and the selected ones are selected from the multiple candidate encryption algorithms. Presetting an encryption algorithm; sending an algorithm determining message to the ground control end, where the algorithm determining message is used to indicate the preset encryption algorithm.
  • the device is used to perform the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种基于无人机的数据交互方法、地面控制端、服务器及系统,该方法包括:地面控制端根据第一随机数和第二随机数生成对称密钥,采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,接收所述无人机或服务器发送的加密后的数据,使用所述对称密钥解密接收到的数据。保证数据传输过程的安全性,降低数据被第三方攻击的可能。

Description

基于无人机的数据交互方法、地面控制端、服务器及系统 技术领域
本发明涉及无人机技术,尤其涉及一种基于无人机的数据交互方法、地面控制端、服务器及系统。
背景技术
随着无人机技术的不断发展,无人机在越来越多的领域被应用。其中,农业无人机的出现,农业生产领域的劳动力得到了进一步地解放。
如今的农业无人机,可以在农业领域执行农药、化肥喷洒,可以监测农田信息、灾害勘察等。农业无人机的使用过程中,终端上安装的无人机应用程序(Application,简称APP)会与后台服务器交互无人机采集的数据。
现有技术中,终端和后台服务器通过明文交互无人机采集的数据,这些数据容易遭受第三方攻击,从而存在被盗取、篡改等风险。
发明内容
本发明提供一种基于无人机的数据交互方法、地面控制端、服务器及系统,用于解决现有技术中数据容易被第三方攻击的问题。
第一方面,本发明提供一种基于无人机的数据交互方法,所述无人机由地面控制端控制,所述方法包括:
所述地面控制端根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;
所述地面控制端采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,
所述地面控制端接收所述无人机或服务器发送的加密后的数据,使用所述对称密钥解密接收到的数据。
第二方面,本发明提供一种基于无人机的数据交互方法,所述无人机 由地面控制端控制,所述方法包括:
服务器根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由所述服务器生成;
所述服务器接收所述地面控制端采用所述对称密钥加密的无人机数据,并采用所述对称密钥解密所述对称密钥加密的无人机数据,得到所述无人机数据;或者,
所述服务器通过所述对称密钥加密数据,并将加密后的数据发送给所述无人机或地面控制端。
第三方面,本发明提供一种基于无人机的数据交互方法,包括:
地面控制端、服务器均根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;
所述地面控制端采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,
所述服务器采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述服务器向所述地面控制端发送所述加密后的无人机数据。
第四方面,本发明提供一种地面控制端,包括:存储器、处理器和显示器;
所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令,执行下述方法:
根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,接收所述无人机或服务器发送的加密后的数据,使用所述对称密钥解密接收到的数据。
第五方面,本发明提供一种服务器,包括:存储器和处理器;
所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令,执行下述方法:
根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数 由所述地面控制端生成、所述第二随机数由服务器生成;接收所述地面控制端采用所述对称密钥加密的无人机数据,并采用所述对称密钥解密所述对称密钥加密的无人机数据,得到所述无人机数据;或者,通过所述对称密钥加密数据,并将加密后的数据发送给所述无人机或地面控制端。
第六方面,本发明提供一种基于无人机的数据交互系统,包括:无人机、地面控制端、服务器;
所述地面控制端用于控制所述无人机;
所述地面控制端为第四方面所述的地面控制端;所述服务器为第五方面所述的服务器。
本发明提供的基于无人机的数据交互方法、地面控制端、服务器及系统中,地面控制端、服务器根据第一随机数和第二随机数生成对称密钥,进而地面控制端、无人机以及服务器之间数据交互过程中,采用对称密钥进行加密,保证数据传输过程的安全性,降低数据被第三方攻击的可能。
附图说明
图1为本发明提供的一种基于无人机的数据交互系统架构示意图;
图2为本发明一实施例提供的基于无人机的数据交互方法流程示意图;
图3为本发明另一实施例提供的基于无人机的数据交互方法流程示意图;
图4为本发明另一实施例提供的基于无人机的数据交互方法流程示意图;
图5为本发明一实施例提供的基于无人机的数据交互装置结构示意图;
图6为本发明另一实施例提供的基于无人机的数据交互装置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本发明提供的一种基于无人机的数据交互系统架构示意图。如图1所示,该系统包括:无人机01、地面控制端02以及服务器03。
其中,地面控制端可以包括如下至少一种:头戴式显示眼镜(VR眼镜、VR头盔等)、手机、遥控器(如带显示屏的遥控器)、智能手环、平板电脑。本实施例以带显示屏的遥控器为例,说明地面控制端02与服务器03、无人机01之间的数据交互。
不同于现有的带显示屏的遥控器,本实施例提供的带显示屏的遥控器提供有用户界面。用户可通过该用户界面对无人机进行控制,遥控器根据用户对该用户界面的操作,确定用户输入的控制信息。
以上述无人机为农业无人机为例,该控制信息可以包括如下至少一种:喷洒流量控制信息,喷洒方向控制信息,飞行速度控制信息,飞行高度控制信息,喷头控制信息,航线间距控制信息,安全距离控制信息等。但本发明不以此为限。
无人机01在地面控制端02的控制下执行相关作业,并将作业中相关数据反馈到地面控制端02。地面控制端02将这些数据传输到服务器03,或者地面控制端02将处理后的数据传输到服务器03。
本发明提供一种基于无人机的数据交互方法,来保障无人机01、地面控制端02以及服务器03之间更安全的交互数据。
图2为本发明一实施例提供的基于无人机的数据交互方法流程示意图,如图2所示,该方法包括:
S201、地面控制端根据第一随机数和第二随机数生成对称密钥。其中,第一随机数由地面控制端生成,第二随机数由服务器生成。
第一随机数和第二随机数可以是一个数字,也可以是一段序列,例如16位的序列、或者64位的序列,本发明不作限制。
可选地,处于安全的考虑,可以规定该第一随机数和第二随机数的最小长度、最大长度,例如:最小长度为32位,最大长度为64位,小于最小长度或大于最大长度,均确定为连接失败,可以重新再生成新的随机数。
地面控制端和服务器生成随机数,交互后由地面控制端根据第一随机数和第二随机数生成对称密钥,在后续数据交互中使用。
需要说明的是,对称密钥即发送方和接收方使用同样的密钥加密和解密。
具体地,执行S202或203。
S202、地面控制端采用该对称密钥加密无人机数据,得到加密后的无人机数据,向服务器或无人机发送该加密后的无人机数据。
S203、地面控制端接收无人机或服务器发送的加密后的数据,使用该对称密钥解密接收到的数据。
需要说明的是,地面控制端、服务器都获取第一随机数和第二随机数,然后按照预设算法得到对称密钥,对要发送的数据进行加密。
地面控制端也可以向无人机发送第一随机数和第二随机数,无人机自己生成对称密钥。或者,地面控制端直接向无人机发送对称密钥。本申请不作限制。
本实施例中,地面控制端根据第一随机数和第二随机数生成对称密钥,进而地面控制端、无人机以及服务器之间数据交互过程中,采用对称密钥进行加密,保证数据传输过程的安全性,降低数据被第三方攻击的可能。
图3为本发明另一实施例提供的基于无人机的数据交互方法流程示意图,如图3所示,与图2所示的方法相对应,该方法包括:
S301、服务器根据第一随机数和第二随机数生成对称密钥。其中,第一随机数由地面控制端生成,第二随机数由服务器生成。
进而执行S302或S303。
S302、服务器接收地面控制端采用所述对称密钥加密的无人机数据,并采用所述对称密钥解密所述对称密钥加密的无人机数据,得到所述无人 机数据。
S303、服务器通过所述对称密钥加密数据,并将加密后的数据发送给所述无人机或地面控制端。
本实施例中,服务器根据第一随机数和第二随机数生成对称密钥,进而地面控制端、无人机以及服务器之间数据交互过程中,采用对称密钥进行加密,保证数据传输过程的安全性,降低数据被第三方攻击的可能。
一实施例中,地面控制端根据第一随机数和第二随机数生成对称密钥之前,地面控制端生成第一随机数,并采用公钥加密该第一随机数,得到加密后的第一随机数,进而向服务器发送所述加密后的第一随机数。服务器通过私钥解密得到第一随机数后,生成第二随机数,并发送给地面控制端。
公钥和私钥为一对非对称密钥,服务器可以生成一对私钥和公钥,将公钥发送给地面控制端。
本实施例中,地面控制端和服务器之间通过非对称密钥交互随机数,更进一步地保障了数据交互的安全性。
具体实现时,地面控制端控制无人机作业前,在连网状态下,先通过无人机对应的应用程序(APP)进行登录。
具体地,地面控制端向所述服务器发送登录信息,该登录信息可以包括无人机对应的账号、密码等信息。
可选地,第一随机数可以和无人机对应的账号、密码打包在登录信息中,也可以单独发送第一随机数,本申请不作限制。
服务器收到登录信息后,先对登录信息进行验证,服务器在验证登录信息通过后,会生成第二随机数。
相应地,服务器向地面控制端发送登录成功响应信息,服务器可以在登录成功响应信息中携带上述第二随机数。也可以单独向地面控制端发送第二随机数,本申请不作限制。
另外,一种实施例中,服务器还可以在验证登录信息通过后,向地面控制端发送公钥,以便地面控制端采用该公钥加密第一随机数。
需要说明的是,如果服务器验证登录信息失败,则向地面控制端发送登录失败响应信息,流程结束。具体地,登录失败可能是账号或密码错误, 例如账号、密码不匹配,账号不存在等;也可能是其他异常情况被判断为登录失败,例如:短时间内登录过于频繁、未对用户所在区域开放当前系统等。本发明不作具体限定。
更进一步地,上述地面控制端根据第一随机数和第二随机数生成对称密钥,可以是,地面控制端采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
需要说明的是,该预设加密算法可以是安全散列算法(SHA512)。假设第一随机数R1和第二随机数R2均为64位的序列,将R1和R2前后连续拼接为128位的序列,然后将这128位的序列作为安全散列算法的输入,得到对称密钥。可选地,安全散列算法输出64位的序列作为对称密钥。
进一步地,在对无人机数据加密时,还可以配合对称加密算法进行加密。可选地,配合高级加密标准(Advanced Encryption Standard,简称AES)算法进行加密。
类似地,服务器根据第一随机数和第二随机数生成对称密钥,也可以为服务器采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
一种实现方式中,地面控制端可以向服务器发送一个算法选择列表,服务器在算法选择列表中选择预设加密算法。例如选择SHA512算法。
具体地,地面控制端向服务器发送算法通知消息,该算法通知消息用于指示多个备选加密算法,即可以采用加密算法列表,携带多个备选加密算法的标识。服务器从多个备选加密算法中选择预设加密算法,进而服务器向地面控制端发送算法确定消息,该算法确定消息用于指示该预设加密算法。例如算法确定消息中携带预设加密算法的标识。
可选地,服务器向地面控制端发送第二随机数时,可以将算法确定消息和第二随机数打包在一起发送。在此不作限制,也可以单独发送算法确定消息。
类似地,地面控制端也可以向服务器发送对称加密算法的列表,由服务器选择对称加密算法。例如选择AES算法。
服务器选择完成后,向地面控制端通知选择的对称加密算法。
图4为本发明另一实施例提供的基于无人机的数据交互方法流程示意图,在上述实施例的基础上,整个数据加密过程可以包括:
S401、地面控制端生成第一随机数,并采用公钥加密第一随机数。
S402、地面控制端向服务器发送加密后的第一随机数。
S403、服务器采用上述公钥对应的私钥解密上述加密后的第一随机数,得到第一随机数。
S404、服务器生成第二随机数。
S405、服务器向地面控制端发送第二随机数。
可选地,服务器采用非对称密钥加密第二随机数,地面控制端采用对应的非对称密钥解密获取第二随机数。
S406、地面控制端/服务器根据第一随机数和第二随机数生成对称密钥。
进而参见前述实施例,地面控制端、无人机以及服务器之间数据交互过程中,采用对称密钥进行加密,保证数据传输过程的安全性,降低数据被第三方攻击的可能。
图5为本发明一实施例提供的基于无人机的数据交互装置结构示意图,该装置可以集成于前述地面控制端。如图5所示,该地面控制端500可以包括:存储器501、处理器502和显示器503,其中:
存储器501,用于存储指令。处理器502用于调用所述存储器501中的指令,执行下述方法:
根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,接收所述无人机或服务器发送的加密后的数据,使用所述对称密钥解密接收到的数据。
显示器503,用于显示各种数据信息,并为用户提供操作界面等。
一实施例中,处理器502,用于生成第一随机数,并采用公钥加密所述第一随机数,得到加密后的所述第一随机数;向服务器发送所述加密后的第一随机数;接收所述服务器发送的第二随机数。
可选地,处理器502,还用于向所述服务器发送登录信息。
相应地,处理器502,具体用于接收所述服务器在验证通过所述登录信息后发送的所述第二随机数。
又一实施例中,处理器502,具体用于采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
可选地,处理器502,还用于向所述服务器发送算法通知消息,所述算法通知消息用于指示多个备选加密算法;接收所述服务器发送的算法确定消息,所述算法确定消息用于指示所述服务器根据所述多个备选加密算法选择的所述预设加密算法。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
图6为本发明另一实施例提供的基于无人机的数据交互装置结构示意图,该装置可以集成于前述服务器。如图6所示,该服务器600包括:存储器601和处理器602,其中:
存储器601,用于存储指令。
处理器602,用于调用存储器601中的指令,执行下述方法:
根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;接收所述地面控制端采用所述对称密钥加密的无人机数据,并采用所述对称密钥解密所述对称密钥加密的无人机数据,得到所述无人机数据;或者,通过所述对称密钥加密数据,并将加密后的数据发送给所述无人机或地面控制端。
可选地,处理器602,还用于接收所述地面控制端发送的公钥加密后的所述第一随机数;采用所述公钥对应的私钥,解密所述公钥加密后的第一随机数;生成第二随机数,并向所述地面控制端发送所述第二随机数。
一种实施例中,处理器602,还用于接收所述地面控制端发送的登录信息。
相应地,处理器602,具体用于在验证所述登录信息通过后,生成所述第二随机数。
又一实施例中,处理器602,具体用于采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
可选地,处理器602,还用于接收所述地面控制端发送的算法通知消息,所述算法通知消息用于指示多个备选加密算法;从所述多个备选加密算法选择所述预设加密算法;向所述地面控制端发送算法确定消息,所述算法确定消息用于指示所述预设加密算法。
该装置用于执行前述方法实施例,其实现原理和技术效果类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种基于无人机的数据交互方法,其特征在于,所述无人机由地面控制端控制,所述方法包括:
    所述地面控制端根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;
    所述地面控制端采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,
    所述地面控制端接收所述无人机或服务器发送的加密后的数据,使用所述对称密钥解密接收到的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述地面控制端根据第一随机数和第二随机数生成对称密钥之前,还包括:
    所述地面控制端生成第一随机数,并采用公钥加密所述第一随机数,得到加密后的所述第一随机数;
    所述地面控制端向服务器发送所述加密后的第一随机数;
    所述地面控制端接收所述服务器发送的第二随机数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述地面控制端向所述服务器发送登录信息;
    相应地,所述地面控制端接收所述服务器发送的第二随机数,包括:
    所述地面控制端接收所述服务器在验证通过所述登录信息后发送的所述第二随机数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述地面控制端根据第一随机数和第二随机数生成对称密钥,包括:
    所述地面控制端采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
  5. 根据权利要求4所述的方法,其特征在于,所述地面控制端采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥之前,还包括:
    所述地面控制端向所述服务器发送算法通知消息,所述算法通知消息用于指示多个备选加密算法;
    所述地面控制端接收所述服务器发送的算法确定消息,所述算法确定消息用于指示所述服务器根据所述多个备选加密算法选择的所述预设加密算法。
  6. 一种基于无人机的数据交互方法,其特征在于,所述无人机由地面控制端控制,所述方法包括:
    服务器根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由所述服务器生成;
    所述服务器接收所述地面控制端采用所述对称密钥加密的无人机数据,并采用所述对称密钥解密所述对称密钥加密的无人机数据,得到所述无人机数据;或者,
    所述服务器通过所述对称密钥加密数据,并将加密后的数据发送给所述无人机或地面控制端。
  7. 根据权利要求6所述的方法,其特征在于,所述服务器根据第一随机数和第二随机数生成对称密钥之前,还包括:
    所述服务器接收所述地面控制端发送的公钥加密后的所述第一随机数;
    所述服务器采用所述公钥对应的私钥,解密所述公钥加密后的第一随机数;
    所述服务器生成第二随机数,并向所述地面控制端发送所述第二随机数。
  8. 根据权利要求7所述的方法,其特征在于,所述服务器生成第二随机数之前,还包括:
    所述服务器接收所述地面控制端发送的登录信息;
    相应地,所述服务器生成第二随机数,包括:
    所述服务器在验证所述登录信息通过后,生成所述第二随机数。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,所述服务器根据第一随机数和第二随机数生成对称密钥,包括:
    所述服务器采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
  10. 根据权利要求9所述的方法,其特征在于,所述服务器采用预设 加密算法,根据所述第一随机数和所述第二随机数生成对称密钥之前,还包括:
    所述服务器接收所述地面控制端发送的算法通知消息,所述算法通知消息用于指示多个备选加密算法;
    所述服务器从所述多个备选加密算法选择所述预设加密算法;
    所述服务器向所述地面控制端发送算法确定消息,所述算法确定消息用于指示所述预设加密算法。
  11. 一种基于无人机的数据交互方法,其特征在于,包括:
    地面控制端、服务器均根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;
    所述地面控制端采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,
    所述服务器采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述服务器向所述地面控制端发送所述加密后的无人机数据。
  12. 根据权利要求11所述的方法,其特征在于,所述地面控制端、服务器均根据第一随机数和第二随机数生成对称密钥之前,还包括:
    所述地面控制端生成第一随机数,并采用公钥加密所述第一随机数,得到加密后的所述第一随机数;
    所述地面控制端向服务器发送所述加密后的第一随机数;
    所述服务器采用所述公钥对应的私钥,解密所述公钥加密后的第一随机数;
    所述服务器生成第二随机数,并向所述地面控制端发送所述第二随机数。
  13. 根据权利要求12所述的方法,其特征在于,所述服务器生成第二随机数之前,还包括:
    所述地面控制端向所述服务器发送登录信息;
    相应地,所述服务器生成第二随机数,包括:
    所述服务器在验证所述登录信息通过后,生成所述第二随机数。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述地面控制端、服务器均根据第一随机数和第二随机数生成对称密钥,包括:
    所述地面控制端、服务器均采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
  15. 根据权利要求14所述的方法,其特征在于,所述地面控制端、服务器均采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥之前,还包括:
    所述地面控制端向所述服务器发送算法通知消息,所述算法通知消息用于指示多个备选加密算法;
    所述服务器从所述多个备选加密算法选择所述预设加密算法;
    所述服务器向所述地面控制端发送算法确定消息,所述算法确定消息用于指示所述预设加密算法。
  16. 一种地面控制端,其特征在于,包括:存储器、处理器和显示器;
    所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令,执行下述方法:
    根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;采用所述对称密钥加密无人机数据,得到加密后的无人机数据,所述地面控制端向所述服务器或无人机发送所述加密后的无人机数据;或者,接收所述无人机或服务器发送的加密后的数据,使用所述对称密钥解密接收到的数据。
  17. 根据权利要求16所述的地面控制端,其特征在于,所述处理器,用于生成第一随机数,并采用公钥加密所述第一随机数,得到加密后的所述第一随机数;向服务器发送所述加密后的第一随机数;接收所述服务器发送的第二随机数。
  18. 根据权利要求17所述的地面控制端,其特征在于,所述处理器,还用于向所述服务器发送登录信息;
    相应地,所述处理器,具体用于接收所述服务器在验证通过所述登录信息后发送的所述第二随机数。
  19. 根据权利要求16-18任一项所述的地面控制端,其特征在于,所述处理器,具体用于采用预设加密算法,根据所述第一随机数和所述第二 随机数生成对称密钥。
  20. 根据权利要求19所述的地面控制端,其特征在于,所述处理器,还用于向所述服务器发送算法通知消息,所述算法通知消息用于指示多个备选加密算法;接收所述服务器发送的算法确定消息,所述算法确定消息用于指示所述服务器根据所述多个备选加密算法选择的所述预设加密算法。
  21. 一种服务器,其特征在于,包括:存储器和处理器;
    所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令,执行下述方法:
    根据第一随机数和第二随机数生成对称密钥,其中,所述第一随机数由所述地面控制端生成、所述第二随机数由服务器生成;接收所述地面控制端采用所述对称密钥加密的无人机数据,并采用所述对称密钥解密所述对称密钥加密的无人机数据,得到所述无人机数据;或者,通过所述对称密钥加密数据,并将加密后的数据发送给所述无人机或地面控制端。
  22. 根据权利要求21所述的服务器,其特征在于,所述处理器,还用于接收所述地面控制端发送的公钥加密后的所述第一随机数;采用所述公钥对应的私钥,解密所述公钥加密后的第一随机数;生成第二随机数,并向所述地面控制端发送所述第二随机数。
  23. 根据权利要求22所述的服务器,其特征在于,所述处理器,还用于接收所述地面控制端发送的登录信息;
    相应地,所述处理器,具体用于在验证所述登录信息通过后,生成所述第二随机数。
  24. 根据权利要求21-23任一项所述的服务器,其特征在于,所述处理器,具体用于采用预设加密算法,根据所述第一随机数和所述第二随机数生成对称密钥。
  25. 根据权利要求24所述的服务器,其特征在于,所述处理器,还用于接收所述地面控制端发送的算法通知消息,所述算法通知消息用于指示多个备选加密算法;从所述多个备选加密算法选择所述预设加密算法;向所述地面控制端发送算法确定消息,所述算法确定消息用于指示所述预设加密算法。
  26. 一种基于无人机的数据交互系统,其特征在于,包括:无人机、地面控制端、服务器;
    所述地面控制端用于控制所述无人机;
    所述地面控制端为如权利要求16-20任一项所述的地面控制端;所述服务器为权利要求21-25任一项所述的服务器。
PCT/CN2017/117034 2017-12-18 2017-12-18 基于无人机的数据交互方法、地面控制端、服务器及系统 WO2019119238A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/117034 WO2019119238A1 (zh) 2017-12-18 2017-12-18 基于无人机的数据交互方法、地面控制端、服务器及系统
CN201780025869.3A CN109075967B (zh) 2017-12-18 2017-12-18 基于无人机的数据交互方法、地面控制端、服务器及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117034 WO2019119238A1 (zh) 2017-12-18 2017-12-18 基于无人机的数据交互方法、地面控制端、服务器及系统

Publications (1)

Publication Number Publication Date
WO2019119238A1 true WO2019119238A1 (zh) 2019-06-27

Family

ID=64822080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117034 WO2019119238A1 (zh) 2017-12-18 2017-12-18 基于无人机的数据交互方法、地面控制端、服务器及系统

Country Status (2)

Country Link
CN (1) CN109075967B (zh)
WO (1) WO2019119238A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239483A (zh) * 2019-05-07 2019-09-17 山东工商学院 车辆控制方法、系统及计算机可读存储介质
GB2591250A (en) * 2020-01-22 2021-07-28 Bae Systems Plc Artificial intelligence

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906037A (zh) * 2021-03-26 2021-06-04 北京三快在线科技有限公司 一种通信加密系统、方法及装置
CN113709245A (zh) * 2021-08-27 2021-11-26 浙江浙燃能源有限公司 一种基于区块链的工业物联网数据处理方法和相关设备
CN113891312B (zh) * 2021-09-27 2024-06-18 深圳市道通智能航空技术股份有限公司 无人机数据加密传输方法、装置、设备及存储介质
CN114726628A (zh) * 2022-04-11 2022-07-08 广东电网有限责任公司佛山供电局 无人机巡检系统及其加密方法和无人机、地面终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202694592U (zh) * 2012-07-25 2013-01-23 湖南中航天幕科技有限公司 民用无人机综合管理网络平台
CN104994112A (zh) * 2015-07-23 2015-10-21 陈昊 一种无人机与地面站通信数据链加密的方法
CN105429759A (zh) * 2015-11-05 2016-03-23 天津津航计算技术研究所 用于无人机机载数据记录仪数据加密的密钥管理方法
US20160300495A1 (en) * 2014-05-20 2016-10-13 Verizon Patent And Licensing Inc. Secure communications with unmanned aerial vehicles
CN107426153A (zh) * 2017-04-13 2017-12-01 北京福瑞航行科技有限公司 一种基于app控制端的无人机远程网络认证机制及认证方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202694592U (zh) * 2012-07-25 2013-01-23 湖南中航天幕科技有限公司 民用无人机综合管理网络平台
US20160300495A1 (en) * 2014-05-20 2016-10-13 Verizon Patent And Licensing Inc. Secure communications with unmanned aerial vehicles
CN104994112A (zh) * 2015-07-23 2015-10-21 陈昊 一种无人机与地面站通信数据链加密的方法
CN105429759A (zh) * 2015-11-05 2016-03-23 天津津航计算技术研究所 用于无人机机载数据记录仪数据加密的密钥管理方法
CN107426153A (zh) * 2017-04-13 2017-12-01 北京福瑞航行科技有限公司 一种基于app控制端的无人机远程网络认证机制及认证方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239483A (zh) * 2019-05-07 2019-09-17 山东工商学院 车辆控制方法、系统及计算机可读存储介质
GB2591250A (en) * 2020-01-22 2021-07-28 Bae Systems Plc Artificial intelligence

Also Published As

Publication number Publication date
CN109075967A (zh) 2018-12-21
CN109075967B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
US11316677B2 (en) Quantum key distribution node apparatus and method for quantum key distribution thereof
WO2019119238A1 (zh) 基于无人机的数据交互方法、地面控制端、服务器及系统
EP3742696B1 (en) Identity management method, equipment, communication network, and storage medium
US10061914B2 (en) Account recovery protocol
US11101999B2 (en) Two-way handshake for key establishment for secure communications
JP7086327B2 (ja) アプリケーション間でユーザ情報を安全に転送すること
EP3075096B1 (en) Method and system for encrypted communications
US10541814B2 (en) End-to-end encryption during a secure communication session
US11502816B2 (en) Generating new encryption keys during a secure communication session
US10601590B1 (en) Secure secrets in hardware security module for use by protected function in trusted execution environment
US10778432B2 (en) End-to-end encryption during a secure communication session
KR20160058491A (ko) 사용자 기기의 식별자에 기반하여 서비스를 제공하는 방법 및 장치
US20190394029A1 (en) Authenticating Secure Channel Establishment Messages Based on Shared-Secret
KR20210045676A (ko) 차량용 통신 시스템 및 그를 위한 보안 통신 방법
CN110138772A (zh) 一种通信方法、装置、系统、设备和存储介质
WO2018176312A1 (zh) 配对方法、设备、机器可读存储介质以及系统
EP3811583B1 (en) Secure systems and methods for resolving audio device identity using remote application
CN105959648B (zh) 一种加密方法、装置及视频监控系统
CN106162537A (zh) 一种安全认证连接的方法、无线通信设备及终端
US11652640B2 (en) Systems and methods for out-of-band authenticity verification of mobile applications
WO2019237502A1 (zh) 一种采用分节传输的智能家居动态加密通讯方法及系统
US11716367B2 (en) Apparatus for monitoring multicast group
CN110690967B (zh) 一种不依赖于服务端安全的即时通信密钥确立方法
WO2020133085A1 (zh) 信息传输方法、存储介质、信息传输系统及无人飞行器
JP5835162B2 (ja) 暗号通信システム及び暗号通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935150

Country of ref document: EP

Kind code of ref document: A1