WO2019117698A2 - CEPA MUTANTE DE PARACOCCUS DENITRIFICANS (PdΔζ) CON ACTIVIDAD DESNITRIFICANTE INCREMENTADA, Y MÉTODO ESPECTROFOTOMÉTRICO PARA MEDIR EN TIEMPO REAL LA ACTIVIDAD DESNITRIFICANTE - Google Patents

CEPA MUTANTE DE PARACOCCUS DENITRIFICANS (PdΔζ) CON ACTIVIDAD DESNITRIFICANTE INCREMENTADA, Y MÉTODO ESPECTROFOTOMÉTRICO PARA MEDIR EN TIEMPO REAL LA ACTIVIDAD DESNITRIFICANTE Download PDF

Info

Publication number
WO2019117698A2
WO2019117698A2 PCT/MX2018/000144 MX2018000144W WO2019117698A2 WO 2019117698 A2 WO2019117698 A2 WO 2019117698A2 MX 2018000144 W MX2018000144 W MX 2018000144W WO 2019117698 A2 WO2019117698 A2 WO 2019117698A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrate
activity
paracoccus
nadh
denitrifying
Prior art date
Application number
PCT/MX2018/000144
Other languages
English (en)
French (fr)
Other versions
WO2019117698A3 (es
Inventor
José de Jesús GARCÍA TREJO
Miguel Ángel Carlos CEVALLOS GAOS
Francisco Guillermo MENDOZA HOFFMAN
Original Assignee
Universidad Nacional Autónoma de México
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional Autónoma de México filed Critical Universidad Nacional Autónoma de México
Publication of WO2019117698A2 publication Critical patent/WO2019117698A2/es
Publication of WO2019117698A3 publication Critical patent/WO2019117698A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites

Definitions

  • the present invention is related to the techniques and principles applied in biochemistry and molecular biology for the study and development of processes that are carried out in living beings at the molecular level and that allow the protection of the environment, and more specifically, it is related to a mutant strain of Paracoccus denitr ⁇ f ⁇ cans ( ⁇ d ⁇ ) with increased denitrifying activity, as well as being related to a spectrophotometric method to measure in real time said denitrifying activity.
  • Paracoccus denitrif ⁇ cans is a bacterium whose natural habitat is the soil, but also usually lives in fresh water. Previously it was known as "Micrococcus denitrif ⁇ cans" because it was initially isolated from the soil and was described as a “microscopic coconut” bacterium with the ability to carry out the denitrification reaction, from nitrate to molecular nitrogen:
  • Paracoccus denitrif ⁇ cans (Davis, 1969) with the purpose of differentiating it from other species of nearby bacteria, but which did not have the respiratory metabolic and denitrifying characteristics of this species. Since then, this species is the best characterized biochemically, metabolically and genetically in its respiratory and denitrifying metabolism.
  • the denitrifying chain of Paracoccus denitrif ⁇ cans is complete, since, as shown above in the reaction, it can transform the nitrates to molecular nitrogen, which Escherichia coli can not do, since the denitrifying chain of E. coli is partial and it only transforms the nitrates into nitrites, but the latter converts them to ammonium (NH 4 ), which is not convenient for bioremediation applications, that is why Paracoccus has a great denitrifying advantage over other bacteria such as E. coli. In nature, the biological function of P.
  • den and other denitrifying bacteria is key in the natural cycle of nitrogen, that is, maintaining stable levels of atmospheric nitrogen from nitrates and nitrites from soil and water. Because its metabolism and biological function is harmless, P. den is not a pathogenic bacterium and is distributed throughout the entire biosphere, and it can be grown in liquid or solid culture in the laboratory without any risk to health. Thanks to these benefits, P. den has been used for applications of nitrate and nitrite removal, mainly in processes of decontamination of treated water, which has been carried out by means of biofilters that are applied in water treatment plants, which contain, among other bacterial species, P. denitrif ⁇ cans.
  • An example of the above, are bacterial consortium systems containing, for example, in addition to P.
  • This respiratory chain is called disimilatoria, since the nitrate of nitrates and nitrites is not incorporated into the metabolites of the bacteria, but is eliminated in the form of N2. Therefore, this velocity of the denitrifying chain of Paracoccus is likely to be increased if the activity and / or expression of the enzymes responsible for denitrification are increased, of which, the The main ones are two nitrate reductases called Nar and Nap, where the first of these two enzymes is membranal and is capable of pumping protons through the membrane, while the second enzyme is periplasmic, in addition to a nitrous oxide reductase and a nitric oxide-reductase (Nicholls, 2013).
  • P. den contains the classical respiratory chain that consumes electrons from NADH (Nicotinamide Adenine Dinucleotide + Hydrogen) or succinate from the Krebs cycle, and these oxidizable substrates normally donate their electrons to oxygen under aerobic conditions through of the four classic respiratory complexes present in Paracoccus, which are very similar to mitochondrial respiratory complexes and transfer the electrons from NADH to O 2 in the following sequence: NADH Cl CoQ Clll Cito CIV O 2 (Nicholls, 2013).
  • the respiratory complexes I, III and IV pump protons through the membrane and maintain the proton electrochemical gradient which energizes the membrane and the cell for the generation of ATP (adenosine triphosphate) from the ATP synthase (complex V) .
  • this pumping of protons feeds the secondary transporters that allow the bacterial cell to feed (introduce nutrients such as sugars or amino acids) and eliminate ions or waste compounds.
  • This gradient of protons is vital for the cell and if this decreases, for example, by anoxia, the cell tries to regenerate it by means of the reverse function of ATP synthase, that is, it uses it as H + -F 1 F 0 - ATPase or primary proton pump.
  • NADH Cl In conditions of anaerobiosis, the classical respiratory chain of Paracoccus functions partially and since it can not donate electrons to oxygen in the absence of oxygen, electrons from NADH or succinate are transferred to the denitrifying chain in the following sequence: NADH Cl, CoQ , NO 3 (or Clll), NO 2 , NO, N 2 O, N 2 . That is, the electrons of NADH are used to reduce nitrate to nitrogen molecular.
  • This denitrifying chain is capable of pumping protons to the periplasmic space to maintain the electrochemical proton gradient, but its operation is less efficient than the main chain for pumping protons, since it lacks the proton pump of the IV complex or cytochrome Oxidase which is the that in aerobiosis donates the electrons to oxygen to form water.
  • bacteria tend to use ATP synthase in its reverse function as a primary proton pump; therefore, in Paracoccus the same thing tends to happen, but this bacterium has the peculiarity that it has a very low activity, literally null of F 1 F or -ATPase, that is, that its ATP synthase is practically unidirectional since it synthesizes ATP at high speeds, but does not hydrolyze it (Pacheco-Moises et al., 2002; Pérez and Ferguson, 1990). Dr. Jose J.
  • Garc ⁇ a Trejo who is one of the inventors of the present invention, discovered that the unidirectional functioning of Paracoccus ATP synthase is due in large part to the presence of a new natural inhibitor that called zeta subunit ( ⁇ ) (de la Rosa-Morales, 2005, Morales-Rios et al., 2010). Said subunit ⁇ was discovered by Dr. Garc ⁇ a Trejo when first purifying the F 1 F or -ATP synthase of this bacterium, which was reported as a subunit of the ATP synthase of this bacterium in the thesis of Master of Science of the QFB Mar ⁇ a Fernanda de la Rosa Morales (de la Rosa-Morales, 2005).
  • this subunit weighed approximately 11 kDa and migrated electrophoretically in a manner similar to the mitochondrial ATP synthase inhibitor protein called IF 1 (de la Rosa-Morales, 2005).
  • IF 1 mitochondrial ATP synthase inhibitor protein
  • N-terminal the sequence of the amino terminal end of the protein (N-terminal) was obtained, which was aligned with the mitochondrial IF 1 and it was found that there was a certain similarity between the N-terminal ends of both proteins (de la Rosa-Morales , 2005; Zarco-Zavala et al., 2014); therefore, it was proposed that this protein should have an inhibitory function of the reverse activity of ATP synthase (F 1 -ATPase and F 1 F or -ATPase) similar to that of mitochondrial IF 1 (de la Rosa-Morales, 2005 ).
  • Figure 1 of the accompanying drawings shows the ⁇ subunit attached to its inhibitory site within the structure of the F 1 -ATPase of Paracoccus denitrif ⁇ cans (PdF 1 -ATPase) showing how the N-terminal inhibitory domain is inserted.
  • in red
  • stator ⁇ / ⁇ - in blue
  • Figure 1A shows the side view of the F 1 -ATPase of Paracoccus denitrif ⁇ cans with the subunits a (cyan), ⁇ (blue), ⁇ (orange), and ⁇ (yellow) in representation of slats; also, it shows how the rotation of the rotor ( ⁇ / ⁇ ) occurs against the hands of the clock driven by the hydrolysis of the ATP.
  • Figure 1B shows the binding site of the sub subunit (red / orange) and how the N-terminal domain of ⁇ (red) is inserted into a catalytic rotor / stator interface (ODP / PDP / Y), this blocks the rotation of the ⁇ / ⁇ subunits of the rotor, and this stops the activity of F 1 -ATPase of the enzyme.
  • the globular domain containing the C-terminal end of ⁇ is shown in orange and protrudes out of the PdF 1 -ATPase, therefore, ⁇ inhibits the activity of PdF 1 -ATPase by blocking the rotation of ⁇ , in this case the rotating ⁇ subunit is shown in green to differentiate it from ⁇ .
  • the structure of the enzyme and the binding site of ⁇ correspond to the modeling by homology, structural alignment and "docking" of the PdF 1 -ATPase by Garc ⁇ a-Trejo et al., 2016.
  • the F 1 F or -ATP synthase functions as such and therefore catalyzes the synthesis of ATP from ADP and Pi, in a manner coupled to the flow of protons through the F-channel or according to the proton electrochemical gradient. established by the respiratory or photosynthetic chain.
  • the enzyme is controlled in such a way that the reverse reaction of hydrolysis of ATP (F 1 F or -ATPase) is inhibited with these inhibitory proteins such as IF1 in mitochondria.
  • the canonical inhibitor is the subunit ⁇ , which is an integral subunit of the Rotary rotor of the enzyme and coupling the flow of protons through the F channel or the synthesis of ATP in F 1 , so that the primary function of ⁇ is to couple F 1 and F o , and a secondary function is that of inhibiting the hydrolysis of ATP (Garcia-Trejo and Morales-R ⁇ os, 2008).
  • is not as strong an inhibitor as mitochondrial IF 1 , then in bacteria the F1F0-ATP synthase can function bi-directionally, that is, when there is a high proton gradient the enzyme functions as F1F0-ATP synthase consuming the proton flux of the electrochemical gradient of the intermembranal space.
  • ATP synthase can reverse its operation and then consume part of the cellular ATP to function as primary proton pump and thus maintain the gradient of protons of the periplasmic space. This allows bacteria to exchange nutrients and waste products with the environment for the survival of these microorganisms (Garcia-Trejo, 2012).
  • biofilters that are used in the bioremediation of contaminated waters contain a mixture of bacteria, and among them, the Paracoccus species, predominate in the bacterial population of these biofilters (Li et al., 2017), in where one of its objectives, as has been mentioned, is the removal of NO 3 and NO 2 .
  • the speed and efficiency of these biofilters are limited by the very denitrifying speed of these Paracoccus strains.
  • Chinese Patent No. CN 102465104 (B) refers to aerobic Paracoccus denitr ⁇ f ⁇ cans and its application.
  • a bacterial strain provided in the invention is Paracoccus denitri fi ncans DN-3CGMCC No. 3658, which can carry out aerobic denitrification using nitrate under both aerobic and oxygen limited conditions, and can also perform denitrification-heterotrophic aerobic nitrification the use of ammonia-N, and a total rate of nitrogen removal in the mentioned occasions is greater than 90%.
  • the strain of Paracoccus denitriofan provided in the invention has stable hereditary characteristics, is applicable to the treatment of a variety of waste waters containing nitrogen and produces a good nitrogen removal effect.
  • the classic discontinuous method is based on the reduction of salicylic acid by nitrate, and the targets are usually high due to the basal absorption of saliclcle in acid medium, in addition to which a standard curve of calibration is needed in each determination, and the reaction volumes are large (10 to 20 ml per reaction tube) in a very acidic medium, which makes it a risky method with a lot of background noise (Cataldo, 1975).
  • the existing continuous method is based on the oxidation of NADH, but as it has been used to measure nitrate reductase asymiative activity, the preparations used are cellular extracts that usually have NADH dehydrogenase activities too high that are of the same magnitude or even greater than the signal of the nitrate reductase activity to be measured, such that a very high basal slope has to be subtracted from the total activity of NADH dehydrogenase (Gates et al., 2011).
  • the present invention is related to a mutant strain of Paracoccus denitrif ⁇ cans that has a higher denitrifying activity or metabolism, providing higher rates of consumption of NO3 and NO2 with the use of a lower amount of bacterial biomass for the effective removal of said nitrogenous compounds that are residual contaminants in treated water and in some foods, where this greater denitrifying activity is obtained by completely removing the subunit gene ⁇ as an inhibitor of F 1 F or -ATPase, being carried out the denitrification by Paracoccus denitrif ⁇ cans under anaerobic conditions.
  • the removal of the de subunit gene is carried out by means of molecular biology techniques and "knock-out" mutagenesis, which increases the electrochemical gradient and, therefore, increases the exchange of nutrients by secondary transporters, in addition to The metabolism of the bacteria in anaerobic conditions, including the denitrifying metabolism, is generally increased.
  • the removal of the subunit gene ⁇ in the mutant strain is activates the H + -F 1 F O -ATPase, which is now capable of pumping protons into the perplasmic space and promoting the secondary transport of nutrients and ions.
  • Said genetic removal of the subunit ⁇ as an inhibitor of F 1 F or -ATPase increases at twice the denitrifying activity compared to the same activity of the wild strain.
  • the mutant strain of Paracoccus denitr ⁇ f ⁇ cans was designated as ⁇ d ⁇ , since it is a "knock-out" of subunit ⁇ and was constructed from the wild strain Pd1222.
  • the mutation is stable and total, that is, it is a genetic construction on the chromosomal DNA of the bacterium that also confers resistance to an antibiotic (kanamycin).
  • the mutant strain of the present invention can be used in nitrate and nitrite removal processes both for bioremediation or in the food industry.
  • (d) calculate the nitrate-reductase activity: the specific nitrate-reductase activity calculations are made taking into account the linear region of the decay slope of NADH against time, which are obtained as a specific activity (mmol / l). minXmg) as described above in the phase of calculations of nitrate-reductase activity, where said calculations are made by means of the molar extinction coefficient of NADH at a wavelength of 340 nm (6.22 in mM) and according to the slope of the linear region of the absorbance decay at 340 nm (A 340 ) in a light passage of the 1 cm reaction cell:
  • a further object of the present invention is to provide the mutant strain of Paracoccus denitrificans with increased denitrifying activity that allows a lower amount of bacterial biomass to be used for the effective removal of nitrogen compounds (NO 3 and NO 2 ) which are residual contaminants in treated waters and in some foods.
  • Another object of the present invention is to provide a spectrophotometric method that allows to measure in real time the denitrifying activity of the mutant strain of Paracoccus denitrificans of the present invention.
  • a further object of the present invention is to provide the spectrophotometric method that does not require added coupling enzymes, unlike other coupled spectrophotometric methods, making it a very economical method, since the same endogenous NADH dehydrogenase is used as a coupling enzyme.
  • Still another object of the present invention is to provide the spectrophotometric method that can be applied to membranes of Paracoccus denitrificans and in membranes other denitrifying bacteria, for example, Escherichia coli, Pseudomonas tsutzeri, among others, including all denitrifying bacteria containing complex I or NADH endogenous dehydrogenase.
  • Figure 1 shows the inhibitory binding site of the subunit ⁇ in the F 1 -ATPase of Paracoccus denitrif ⁇ cans.
  • Figure 1A shows the side view of the F 1 -ATPase of Paracoccus denitrif ⁇ cans with the subunits a (cyan), ⁇ (blue), ⁇ (orange), and ⁇ (yellow) representing ribbons.
  • Figure 1B shows the binding site of the sub subunit (red / orange) and how the N-terminal domain of ⁇ (red) is inserted into a catalytic rotor / stator interface ( ⁇ DP / ⁇ DP / ⁇ ), this blocks the rotation of the ⁇ / ⁇ subunits of the rotor, and this stops the activity of F 1 -ATPase of the enzyme.
  • Figure 2 is a graphical representation showing the effect of the removal of subunit ⁇ on the activity of H + -F 1 F or -ATPase and the denitrification carried out by Paracoccus denitr ⁇ f ⁇ cans under anaerobic conditions.
  • Figure 2A shows a wild strain of P. den (PdWT) that can denitrify, but can not pump protons by H + -F 1 F or -ATPase given the presence of the inhibitory subunit ⁇ , which also inhibits the secondary transport of nutrients and ions and therefore the metabolism and anaerobic growth of the bacteria.
  • PdWT P. den
  • Figure 3 is a graphic representation of the construction of the ⁇ d ⁇ mutant strain of the present invention.
  • Figure 4 is a graph showing the activity of nitrate reductase in wild and mutant strains of Paracoccus denitr ⁇ f ⁇ cans under anaerobic conditions.
  • Figure 5 is a graph showing the rate of growth and consumption of nitrate (NO3) by the wild and mutant strains of Paracoccus denitr ⁇ f ⁇ cans.
  • Figure 6 shows photographs of two different flasks showing the growth of the wild and mutant strains of Paracoccus denitr ⁇ f ⁇ cans in anaerobiosis and in the presence of NO 3 -. More specifically, the left bottle contains the wild type strain (PdWT), while the right bottle contains the mutant strain ⁇ d ⁇ ( ⁇ ). A) side view; B) top view; C) bottom view.
  • Figure 7 is a flow chart illustrating the different steps of the spectrophotometric method for measuring the denitrifying activity of the ⁇ d ⁇ mutant strain, designed in accordance with a further aspect of the present invention.
  • Figure 8 is a graph showing where the slope of absorption decay can be calculated at 340 nm in the linear region of the graph.
  • the present invention in accordance with a particularly preferred embodiment of the present invention, describes and claims a mutant strain of the bacterium Paracoccus denitrificans, which, as the name implies, has a denitrifying metabolism with which it removes nitrates and nitrites from their environment to convert them into molecular nitrogen (N 2 ).
  • the mutation is stable and total, that is, it is a construction on the chromosomal DNA of the bacterium that also confers resistance to an antibiotic, preferably kanamycin, which gives it an additional advantage of resistance and selection over other wild strains of Paracoccus.
  • the tendency to decrease the expression of the subunit ⁇ under denitrifying conditions suggests that the total removal of said subunit ⁇ through molecular biology by generating a null mutant in the subunit gene ⁇ may favor the denitrifying metabolism of Paracoccus , since the ablation of the subunit gene ⁇ should increase even more the activity of F 1 F or -ATPase coupled to the pumping of protons in order to increase in a higher proportion the formation of the electrochemical gradient in denitrifying conditions. Therefore, the genetic removal of the subunit ⁇ by increasing the electrochemical gradient and, therefore, increasing the exchange of nutrients by secondary transporters should generally increase the metabolism of the bacteria in anaerobic conditions, including the denitrifying metabolism, as illustrated in Figure 2 of the accompanying drawings.
  • Figure 2 shows the effect of the removal of the subunit ⁇ on the activity of H + -F 1 F or -ATPase and the denitrification carried out by Paracoccus denitrificans under anaerobic conditions.
  • Paracoccus denitrificans uses nitrates (NO3) and nitrites (NO2) as an electron acceptor to form molecular nitrogen (N2), and in parallel pumps protons into the periplasmic space.
  • NO3 nitrates
  • NO2 nitrites
  • Figure 2A shows a wild strain of Paracoccus denitrificans (PdWT) that can denitrify, but can not pump protons by H + -F 1 F or -ATPase given the presence of the inhibitory subunit, the which also inhibits the secondary transport of nutrients and ions and therefore the metabolism and anaerobic growth of the bacteria.
  • PdWT Paracoccus denitrificans
  • Figure 2B it is shown that by removing the subunit ⁇ in the mutant strain that is the subject of the present invention ( ⁇ d ⁇ ), (as in Figure 2A), it is activated at H + -F 1 F or -ATPase , which is now capable of pumping protons into the periplasmic space and promoting the secondary transport of nutrients and ions.
  • the mutant strain increases metabolism and growth in anaerobic conditions with respect to the wild strain, and also increases the activity of the denitrifying chain, which also pumps protons to the periplasmic space, to counteract the activity of H + -F 1 F or -ATPase and therefore favor the activity of F1F0-ATP synthase (see red arrows).
  • the removal of ⁇ should therefore increase the rate of denitrification of Paracoccus and the growth of the bacteria, in the presence of NO 3 .
  • the figure corresponds to a modification of the original published by Garcia-Trejo et al. 2012
  • Paracoccus must increase the rate of denitrification to increase the pumping of protons by the chain denitrifying, which is less than the proton pump of the oxygenic canonical respiratory chain present in Paracoccus (Nicholls, 2013).
  • the removal of the subunit ⁇ should increase the rate of denitrification to compensate for the loss of cellular ATP by increasing its hydrolysis, increase the pumping of protons to try to reverse the H + -F 1 F or activated -ATPase so that it tends to function as F 1 F or -ATP synthase and maintain a better cellular bioenergetics.
  • the consumption speed of nitrate catalyzed by the membrane nitrate reductase of Paracoccus denitrif ⁇ cans by means of its naturally coupled reaction to the consumption of NADH under anaerobic conditions.
  • this reaction electrons from NADH are transferred to nitrate to form nitrite.
  • a nearly double increase in the denitrifying activity of membrane nitrate reductase was consistently found. This implies that the genetic removal of the subunit ⁇ as an inhibitor of F 1 F or -ATPase effectively increases twice the denitrifying activity compared to the same activity of the wild strain (Pd1222).
  • the gene of the natural PdF 1 F or -ATPase inhibitor called sub subunit was completely removed.
  • the bacterium developed a greater denitrifying activity, this to compensate for the increase in the activity of PdF 1 F or -ATPase and thus favor the flow of its metabolism towards the synthesis of cellular ATP.
  • mutant strain of the present invention was called ⁇ d ⁇ since it is a "knock-out" of subunit ⁇ and was constructed from the wild strain Pd1222. This increase in denitrifying activity of the bacteria is significant and can be applied in nitrate and nitrite removal processes for both bioremediation, or failing that in the food industry.
  • the construction strategy is summarized in the ablation of the de subunit gene by the insertion of a kanamycin resistance cassette, this was achieved by means of recombinant DNA technology by means of a suicide plasmid, which contained the resistance cassette ai antibiotic and which was inserted by conjugation in the parental strain of Paracoccus denitrif ⁇ cans called Pd1222.
  • the suicide plasmid can not be replicated in Paracoccus, such that only strains that efficiently recombined the cassette of the suicide plasmid with the chromosomal DNA of P. denitrif ⁇ cans were selected as positive colonies that grew in the presence of kanamycin.
  • the cassette with resistance was designed in the middle of fragments flanking the cassette with DNA segments identical to fragments of approximately 1kpb upstream and downstream of the wild-type gene of the subunit ⁇ of Paracoccus denitrif ⁇ cans. Thanks to these fragments, since the strain of Pd1222 is of high frequency of conjugation and recombination, it was possible to obtain positive colonies that by homologous recombination acquired the resistance cassette and exchanged it for the gene of ⁇ in the suicide plasmid, which named pFMMCJG- ⁇ , given that the construction was carried out by the Francisco Francisco Hoffmann QFB (FM), in the laboratory of Dr.
  • FIG. 3 A diagram of the construction of this mutant can be seen in figure 3 of the accompanying drawings, in such a way that to remove the gene from the subunit ⁇ of Paracoccus denitrif ⁇ cans, genetic recombination of this gene was promoted with a resistance cassette.
  • this cassette was flanked with sequences of approximately 1kpb upstream and downstream of the wild-type gene of Paracoccus denitrif ⁇ cans containing restriction sites (Xbal), which, by homologous recombination, exchanged this kanamycin resistance cassette (Km r ) by the wild-type gene of the subunit ⁇ in the chromosomal AON of Paracoccus; the wild-type de gene is lost, since the plasmid is suicidal and can not replicate in these bacteria.
  • Xbal restriction sites
  • One of the most important novelties of the present invention is that it is the first time that a clearly different phenotype is observed between the wild strain and an ablation mutant of a natural inhibitor of ATP synthase.
  • similar mutants had been made in animal or human models, by removing another natural inhibitor of the enzyme, which is called the Inhibitor protein of the mitochondrial F 1 -ATPase or IF 1 .
  • the knockout of this gene (IF 1 ) has not shown significant changes in the physiology of mutant organisms from yeast to human cells (Lu et al., 2001, Nakamura et al., 2013).
  • the ⁇ d ⁇ mutant strain of the present invention is the first to show an important phenotypic and metabolic difference compared to its wild counterpart, so it is then a result of great impact and novelty in the field of ATP synthase. and in applied microbiology.
  • the ⁇ d ⁇ mutant strain of the present invention has direct application in water decontamination processes, since in the biofilters where they are removed treated water pollutants, some of them contain a mixture of bacteria that include the species Paracoccus denitrificans.
  • European Nitrosomonas is included for the removal of ammonia and ammonium by nitrification to form nitrate, followed by denitrification carried out by Paracoccus to form N 2 .
  • techniques for improving the efficiency and stability of the mixture of bacteria in different matrices have been implemented to improve the nitrifying efficiency of Nitrosomonas and de-nitrifying of Paracoccus (Uemoto and Saiki, 2000a, b).
  • mutant strain ⁇ d ⁇ of the present invention contains all the enzymes necessary for the removal of nitrates and nitrites up to the production of molecular nitrogen (N 2 ), which allows to eliminate the accumulation of intermediates that can also be toxic such as nitrous oxide and nitric oxide, and this is an additional advantage to the other denitrifying species.
  • N 2 molecular nitrogen
  • the most direct application of this invention is to integrate it into biofilters that are used to remove nitrates and nitrite contaminants in wastewater and drinking water.
  • nitrates and nitrites polluting wastewater or drinking water as described above.
  • nitrates and nitrites are usually contaminants not only of water but also in some foods.
  • whey that is used for supplements or food supplements rich in proiein often contains high undesirable levels of nitrates and nitrites.
  • the use of the bacterium Paracoccus denitrificans has been reported in nitrate and nitrite removal processes of these food supplements with positive results (Tippkotter et al., 2010).
  • the denitrification rate of the ⁇ d ⁇ mutant strain is substantially higher than that of the bacterium Paracoccus denitrificans; however, the methods known in the state of the art for measuring said rate of denitrification have certain disadvantages, which have been discussed in the background section of the present invention.
  • a spectrophotometric method was designed to measure the activity of the nitrate reductase dissimilator of membranes Paracoccus denitrificans by continuous method in real time.
  • spectrophotometric method comprises the steps of: a) generating anaerobiosis by respiratory consumption of oxygen, for which, an anaerobiosis cell is filled with 1 ml of a reaction buffer that preferably consists of pH 7.5 adjusted with 20 mM MES and sucrose 250 mM (as osmotic support for the membranes), then approximately 300 pg of inverted membranes of the bacteria, preferably Paracoccus denitrificans concentrated to 40-50 mg of protein per ml, are added from 10 to 20 mM (from a stock of 500-600 mM) of succinate, and incubated while the cell is well sealed for 15
  • anaerobiosis is generated in total anaerobic cells, which is achieved by filling the cells to the maximum volume ⁇ 1ml, practically without leaving space between the cell cover and the volume of reaction, and also it consumes all the oxygen in the reaction medium when activating the aerobic respiration of the membranes of Paracoccus denitrif ⁇ cans with a high concentration of succinate so that the aerobic respiratory chain consumes all the oxygen of the total volume of the cell reaction, the above is achieved by incubation of the cells at a temperature between 30 ° C and 45 ° C, preferably at 37 ° C for 15 minutes in the presence of high concentrations of succinate (10 to 20 mM) for aerobic respiration to run out of the oxygen present; b) confirm anaerobiosis by baseline; once all the oxygen has been consumed, 10
  • nitrate-reductase activity calculates the nitrate-reductase activity: the specific nitrate-reductase activity calculations are made taking into account the linear region of the decay slope of NADH against time, which are obtained as a specific activity (mmol / minXmg ) as described above in the calculation phase of nitrate reductase activity, where said calculations are made by means of the molar extinction coefficient of NADH at
  • FIG 7 of the accompanying drawings there is shown a flow diagram in which the steps of the spectrophotometric method of the present invention are established. The method is quick since the reaction is carried out in a time of between 20 and 30 minutes, as long as both the buffer and the reaction mixture are ready.
  • Figure 8 of the accompanying drawings is shown a graph where the slope of absorption decay can be calculated at 340 nm in the linear region of the graph. It is observed that in the initial minutes of the reaction ( ⁇ in the first 100 seconds) the basal oxidation of NADH is practically zero (horizontal line at an absorbance of approximately 1.5).
  • FIG. 9 of the accompanying drawings the nitrate-reductase reaction is shown in real time.
  • the time course of the absorbance change to 340 is shown nm, with two experiments in duplicate of nitrate-reductase velocity measured in anaerobic cells as shown in the box on the right.
  • NADH was added to cells previously incubated at 37 ° C for 15 minutes in the presence of 20 m of sucoinate prior to the addition of 20 mM of malonate to consume all the oxygen inside the cell. It is shown that the basal has a practically null slope (almost horizontal) and this must be subtracted from the more linear phase of the slope (in this case between 150 and 300 seconds approximately).
  • sodium nitrate was added to start the nitrate reductase reaction under totally anaerobic conditions. In the box one of these anaerobic cells filled with 1 ml of reaction volume is shown.
  • the spectrophotometric method of the present invention has several advantages over the discontinuous and continuous methods found in the state of the art, namely:
  • NADH dehydrogenase from the endogenous respiratory complex I of the bacteria is sufficient to use it as a coupling enzyme
  • denitrifying bacteria such as Escherichia coli, Pseudomonas tsutzeri, among others, can be applied to membranes of Paracoccus denitrificans and in membranes, including all denitrifying bacteria that contain endogenous complex I or NADH dehydrogenase;
  • the most determining experiment is to be able to measure the consumption of NO 3 - in the culture medium of both the wild strain (PdWT) and the mutant strain ( ⁇ d ⁇ ) under anaerobic conditions, and in parallel measure the curves of growth of both strains to be able to correlate the growth rate with the consumption of NO3 'in the culture medium.
  • Figure 5 of the accompanying drawings shows the rate of growth and consumption of nitrate (NO3) by the wild and mutant strains of Paracoccus denitr ⁇ f ⁇ cans.
  • IF1 a natural inhibitor of mitochondrial ATP synthase, is not essential for the normal growth and breeding of mice. Biosci Rep 33.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La presente invención se refiere a una cepa mutante de Paracoccus denitrificans que presenta una mayor actividad o metabolismo desnitrificante, proporcionándole mayores velocidades de consumo de NO3 y NO2 con el uso de una menor cantidad de biomasa bacteriana para la remoción efectiva de dichos compuestos nitrogenados que son contaminantes residuales en aguas tratadas y en algunos alimentos, donde dicha mayor actividad desnitrificante se obtiene removiendo totalmente el gen de la subunidad ζ como inhibidor de la F1FO-ATPasa, llevándose a cabo la desnitrificación por Paracoccus denitrificans en condiciones anaeróbicas.

Description

CEPA MUTA TE DE PARACOCCUS DENITRIFICANS (ΡdΔζ) CON ACTIVIDAD DESNITRIFICANTE INCREMENTADA, Y METODO ESPECTROFOTOMÉTRICO PARA MEDIR EN TIEMPO REAL LA ACTIVIDAD DESNITRIFICANTE
CAMPO DE LA INVENCIÓN
La presente invención está relacionada con las técnicas y principios aplicados en la bioquímica y ia biología molecular para el estudio y desarrollo de procesos que se llevan a cabo en los seres vivos a nivel molecular y que permitan la protección del medio ambiente, y más específicamente, está relacionada con una cepa muíante de Paracoccus denitrífícans (ΡdΔζ) con actividad desnitrificante incrementada, así como también está relacionada con un método espectrofotométrico para medir en tiempo real dicha actividad desnitrificante.
ANTECEDENTES DE LA INVENCIÓN
La contaminación de aguas y alimentos por nitratos y nitritos es un problema ecológico actual, ya que la presencia de éstos y su ingesta humana en exceso pueden ocasionar la modificación de la hemoglobina con la consecuente pérdida de oxi- hemoglobina, y por lo tanto, una disminución del transporte de oxígeno sanguíneo, siendo éste un problema de salud llamado "metahemoglobinemia" (Met-Hb) que se caracteriza por un nivel anormalmente alto de metahemoglobina en la sangre, el cual es más frecuente en bebés menores a 6 meses. Además, se han encontrado recientemente correlaciones significativas entre la ingesta de nitratos y nitritos y la formación de nitrosaminas que pueden favorecer la generación de cáncer gástrico (Cervantes-Carrillo, 2000; Song et al., 2015).
De acuerdo con lo anterior, se hace necesario mejorar las técnicas de remoción de nitratos y nitritos de aguas y alimentos por métodos biológicos, los cuales involucran biofiltros y lodos conteniendo bacterias desnitrificantes (Cervantes-Carrillo, 2000).
Paracoccus denitrifícans (P. den) es una bacteria cuyo hábitat natural es el suelo, pero también suele vivir en agua dulce. Anteriormente se le conocía como "Micrococcus denitrifícans" debido a que inicialmente se aisló del suelo y se describió como una bacteria en forma de "coco microscópico" con la capacidad de llevar a cabo la reacción de desnitrificación, desde nitrato hasta nitrógeno molecular:
Figure imgf000004_0001
De la anterior se puede ver que el nitrato (NO3-) se reduce a nitrito (NO2-), éste a su vez se reduce a óxido nítrico (NO), para luego reducirse a óxido nitroso (N2O) y finalmente a nitrógeno molecular (N2). En el año de 1969, se le cambió el nombre de Micrococcus denitrifícans a
Paracoccus denitrifícans (Davis, 1969) con el objeto de diferenciarla de otras especies de bacterias cercanas, pero que no tenían las características metabólicas respiratorias y desnitrificantes de esta especie. Desde entonces, esta especie es la mejor caracterizada bioquímica, metabólica y genéticamente en su metabolismo respiratorio y desnitrificante.
La cadena desnitrificante de Paracoccus denitrifícans es completa, puesto que, como se mostró arriba en la reacción, puede transformar los nitratos a nitrógeno molecular, lo cual no lo puede hacer por ejemplo Escherichia coli ya que la cadena desnitrificante de E. coli es parcial y solamente transforma los nitratos en nitritos, pero estos últimos los convierte en amonio (NH4), lo cual no es conveniente para aplicaciones de biorremediación, es por ello que Paracoccus tiene una gran ventaja desnitrificante sobre otras bacterias como E. coli. En la naturaleza, la función biológica de P. den y otras bacterias desnitrificantes es clave en el ciclo natural del nitrógeno, esto es, mantener estables los niveles de nitrógeno atmosférico a partir de nitratos y nitritos provenientes del suelo y del agua. Debido a que su metabolismo y función biológica es inocua, P. den no es una bacteria patógena y se encuentra distribuida a lo largo de toda la biósfera, y se puede crecer en cultivo líquido o sólido en el laboratorio sin ningún riesgo para la salud. Gracias a estos beneficios, P. den se ha aprovechado para aplicaciones de remoción de nitratos y nitritos, principalmente en procesos de descontaminación de aguas tratadas, lo cual se ha llevado a cabo por medio de biofiltros que se aplican en plantas de tratamiento de aguas, las cuales contienen, entre otras especies bacterianas, P. denitrifícans. Un ejemplo de lo anterior, son sistemas de consorcios bacterianos que contienen, por ejemplo, además de P. den, otras especies como NOrosomonas europea, en donde ésta última especie es capaz de transformar el amoniaco (NH3 +) y el amonio (NH4) en nitratos; por lo que, el nitrato producido por N. europea es consumido por P. den para producir nitrógeno molecular (N2). Recientemente se han diseñado varios prototipos de este tipo de consorcios bacterianos que permiten remover simultáneamente amoniaco, amonio, nitratos y nitritos de aguas contaminadas (Uemoto and Saiki, 2000a, b). Las cepas silvestres de P. den mantienen una actividad basal desnitrificante que está limitada por la velocidad del flujo de transporte de electrones en esta cadena respiratoria alterna que se expresa mejor en condiciones de anoxia o de concentración limitada de oxígeno. Esta cadena respiratoria se llama disimilatoria, ya que el nitrógeno de los nitratos y nitritos no se incorpora a los metabolitos de la bacteria, sino que se elimina en forma de N2. Por lo tanto, esta velocidad de la cadena desnitrificante de Paracoccus es susceptible de verse incrementada si se aumenta la actividad y/o la expresión de las enzimas responsables de la desnitrificación, de las cuales, las principales son dos nitrato-reductasas denominadas Nar y Nap, en donde la primera de dichas dos enzimas es membranal y es capaz de bombear protones a través de la membrana, mientras que la segunda enzima es periplásmica, además de una óxido nitroso-reductasa y una óxido nítrico-reductasa (Nicholls, 2013).
Además de la cadena desnitrificante, P. den contiene la clásica cadena respiratoria que consume electrones del NADH (Nicotinamida Adenina Dinucleótido + Hidrógeno) o del succinato provenientes del ciclo de Krebs, y éstos sustratos oxidables donan sus electrones normalmente al oxígeno en condiciones aerobias por medio de los cuatro complejos respiratorios clásicos presentes en Paracoccus, los cuales son muy parecidos a los complejos respiratorios mitocondriales y transfieren los electrones del NADH al O2 en la siguiente secuencia: NADH Cl CoQ Clll Cito CIV O2 (Nicholls, 2013). Los complejos respiratorios I, III y IV bombean protones a través de la membrana y mantienen el gradiente electroquímico de protones el cual energiza a la membrana y a la célula para la generación de ATP (Adenosina trifosfato) a partir de la ATP sintasa (complejo V). En la célula bacteriana este bombeo de protones alimenta a los transportadores secundarios que permiten a la célula bacteriana alimentarse (introducir nutrientes como azúcares o aminoácidos) y eliminar iones o compuestos de desecho. Este gradiente de protones es vital para la célula y si éste disminuye, por ejemplo, por anoxia, la célula trata de regenerarlo por medio de la función reversa de la ATP sintasa, es decir, la usa como H+-F1F0-ATPasa o bomba primaria de protones.
En condiciones de anaerobiosis, la cadena clásica respiratoria de Paracoccus funciona parcialmente y dado que no puede donar electrones al oxígeno en ausencia de éste, los electrones provenientes del NADH o del succinato se transfieren a la cadena desnitrificante en la siguiente secuencia: NADH Cl, CoQ, NO3 (ó Clll), NO2, NO, N2O, N2. Es decir, que los electrones del NADH se usan para reducir el nitrato a nitrógeno molecular. Esta cadena desnitrificante es capaz de bombear protones hacia el espacio periplásmico para mantener el gradiente electroquímico de protones, pero su funcionamiento es menos eficiente que la cadena principal para bombear protones, ya que carece del bombeo de protones del complejo IV o citocromo Oxidasa que es la que en aerobiosis dona los electrones al oxígeno para formar agua.
En resumen, en condiciones desnitrificantes la formación del gradiente de protones es menor por la ausencia del bombeo de protones del complejo IV. De hecho, se ha estimado que el bombeo de protones por la cadena respiratoria oxigénica canónica es de 10Η+/2e-, mientras que en la cadena desnitrificante esta estequiometría es de aproximadamente 6-8H+/2e-. Además de que la formación de N2 a partir de NO2- consume varios de estos protones en el espacio periplásmico (Nicholls, 2013), de tal manera que la cadena desnitrificante no es eficiente para formar el gradiente de protones transmembranal como lo es la cadena respiratoria oxigénica canónica.
Debido a que en estas condiciones anaerobias la formación del gradiente electroquímico es deficiente, como se mencionó anteriormente, las bacterias tienden a utilizar a la ATP sintasa en su función reversa como bomba primaria de protones; por lo tanto, en Paracoccus tiende a ocurrir lo mismo, pero esta bacteria tiene la peculiaridad de que cuenta con una actividad muy baja, literalmente nula de F1Fo-ATPasa, es decir, que su ATP sintasa es prácticamente unidireccional dado que sintetiza ATP a altas velocidades, pero no lo hidroliza (Pacheco-Moises et al., 2002; Pérez and Ferguson, 1990). El Dr. José J. García Trejo, quien es uno de los inventores de la presente invención, descubrió que el funcionamiento unidireccional de la ATP sintasa de Paracoccus se debe en gran medida a la presencia de un nuevo inhibidor natural que denominó subunidad zeta (ζ) (de la Rosa-Morales, 2005; Morales-Rios et al., 2010). Dicha subunidad ζ fue descubierta por el Dr. García Trejo al purificar por primera vez a la F1Fo-ATP sintasa de esta bacteria, la cual se reportó como una subunidad de la ATP sintasa de esta bacteria en la tesis de Maestría en Ciencias de la QFB María Fernanda de la Rosa Morales (de la Rosa-Morales, 2005). En ese tiempo, se encontró que esta subunidad pesaba aproximadamente 11 kDa y migraba electroforéticamente de manera similar a la proteína inhibidora de la ATP sintasa mitocondríal denominada IF1 (de la Rosa-Morales, 2005). Asimismo, se obtuvo la secuencia del extremo amino terminal de la proteína (N-terminal), el cual se alineó con la IF1 mitocondríal y se encontró que había cierta similitud entre los extremos N-terminales de ambas proteínas (de la Rosa-Morales, 2005; Zarco-Zavala et al., 2014); por lo que se propuso que esta proteína debía tener una función inhibitoria de la actividad reversa de la ATP sintasa (F1-ATPasa y F1Fo-ATPasa) similar a la de la IF1 mitocondríal (de la Rosa-Morales, 2005). Esta hipótesis se corroboró posteriormente con subsecuentes estudios bioquímicos y de biología molecular realizados en el laboratorio del Dr. García-Trejo de la Facultad de Química de la UNAM, en donde se encontró que, efectivamente, esta proteína funciona como un inhibidor de las actividades de la F1-ATPasa y de la F1Fo-ATPasa aisladas de esta bacteria (Morales- Ríos et al., 2010; Zarco-Zavala et al., 2014). Posteriormente, además de demostrar la función inhibitoria de esta proteína, se describió su mecanismo de acción, ya que se hipotetizó que el dominio N-terminal inhibitorio de ia subunidad ζ podría mimetizar al dominio inhibitorio de la iF1 en la F1- ATPasa mitocondríal y entonces funcionar como inhibidor de la F1Fo-ATPasa de Paracoccus denitrífícans (Garcia-Trejo et al., 2016; Zarco-Zavala et al., 2014). Los experimentos funcionales demostraron claramente que la subunidad ζ funciona como un inhibidor de la actividad reversa de F1-ATPasa y de F1Fo-ATPasa, con afinidad similar y en el mismo sitio de unión comparada con el inhibidor mitocondríal IF1 (Garcia-Trejo et al., 2016).
En la figura 1 de los dibujos que se acompañan se muestra a la subunidad ζ unida en su sitio inhibitorio dentro de la estructura de la F1-ATPasa de Paracoccus denitrifícans (PdF1-ATPasa) mostrando como se inserta el dominio inhibitorio N-terminal de ζ (en rojo) dentro de la interfaz rotor (γ-ε en ~ en color verde)/estator (α/β - en color azul). En la figura 1A se muestra la vista lateral de la F1-ATPasa de Paracoccus denitrifícans con las subunidades a(cyan), β (azul), γ (naranja), y ε (amarillo) en representación de listones; asimismo, se muestra cómo ocurre el giro del rotor (γ/ε) en contra de las manecillas del reloj impulsado por la hidrólisis del ATP. En la figura 1B se muestra el sitio de unión de la subunidad ζ (rojo/naranja) y cómo se inserta el dominio N-terminal de ζ (rojo) en una interfaz catalítica rotor/estator (ODP/PDP/Y), esto bloquea el giro de las subunidades γ/ε del rotor, y esto detiene la actividad de F1-ATPasa de la enzima. El dominio globular conteniendo el extremo C-terminal de ζ se muestra en color naranja y protruye hacia fuera de la PdF1-ATPasa, por lo tanto, ζ inhibe la actividad de PdF1-ATPasa al bloquear la rotación de γ, en este caso se muestra la subunidad γ giratoria en verde para diferenciarla de ζ. La estructura de la enzima y el sitio de unión de ζ corresponden al modelado por homología, alineamiento estructural y "docking" de la PdF1 -ATPasa de García-Trejo et al., 2016.
En mitocondrias y cioroplastos, la F1Fo-ATP sintasa funciona como tal y por tanto cataliza la síntesis del ATP a partir de ADP y Pi, de manera acoplada al flujo de protones por el canal Fo de acuerdo al gradiente electroquímico de protones establecido por la cadena respiratoria o fotosintética. En estos organelos, la enzima está controlada de tal manera que la reacción reversa de hidrólisis del ATP (F1Fo-ATPasa) se inhibe con estas proteínas inhibidoras como la IF1 en mitocondrias. En bacterias ocurre lo mismo, pero en este caso el inhibidor canónico es la subunidad ε, la cual es una subunidad integral del rotor giratorio de la enzima y acopla el flujo de protones por el canal Fo a la síntesis del ATP en la F1, de tal modo que la función primordial de ε es la de acoplar F1 y Fo, y una función secundaria es la de inhibir la hidrólisis de la ATP (Garcia-Trejo and Morales-Ríos, 2008). Por esta razón, ε no es un inhibidor tan fuerte como la IF1 mitocondrial, luego entonces en bacterias la F1F0-ATP sintasa puede funcionar de manera bidireccional, es decir, cuando hay un gradiente de protones alto la enzima funciona como F1F0-ATP sintasa consumiendo el flujo de protones del gradiente electroquímico del espacio intermembranal. Sin embargo, en condiciones de anoxia o anaerobiosis, y en ausencia de otro aceptar de electrones o una cadena respiratoria alterna eficiente, el bombeo de protones de la cadena respiratoria se inhibe a falta de oxígeno, y es en estas condiciones, cuando el funcionamiento de la ATP sintasa bacteriana se revierte para favorecer que la enzima funcione como bomba primaria de protones (H+-F1Fo-ATPasa) para que así esta, enzima re-establezca el gradiente de protones del espacio periplásmico que la cadena respiratoria no puede generar. Por lo tanto, sobre todo en condiciones de anaerobiosis, es no sólo permisible, sino que además es necesario y primordial que la ATP sintasa pueda revertir su funcionamiento y entonces consuma parte del ATP celular para funcionar como bomba primaria de protones y así mantener el gradiente de protones del espacb periplásmico. Lo anterior permite a las bacterias intercambiar nutrientes y productos de desecho con el entorno para la sobrevivencia de estos microorganismos (Garcia-Trejo, 2012).
En resumen, en condiciones de anoxia o anaerobiosis es necesario favorecer la actividad de H+-F1Fo-ATPasa para mantener el gradiente de protones y la viabilidad de las bacterias. Un diagrama del flujo metabólico desnitrificante asociado a la actividad de la ATP sintasa se muestra en la figura 2 de los dibujos que se acompañan.
Se llevaron a cabo estudios de los niveles de expresión de la ATP sintasa in vivo. encontrándose que la expresión de la subunidad ζ se regula de tal modo que disminuye en condiciones de desnitrificación en anaerobiosis, relativo a su expresión en condiciones aerobias (Morales-Ríos, E. Tesis Doctoral, 2011). Esto indica que en condiciones de anaerobiosis desnitrificante la bacteria disminuye la expresión de la subunidad ζ para abatir el efecto inhibitorio de este nuevo inhibidor y así aumentar la actividad de F1F0- ATPasa acoplada al bombeo de protones, esto para restaurar la formación del gradiente de protones que se ve disminuido en condiciones desnitrificantes anaerobias.
En el estado del arte se encuentran diversos artículos y patentes relacionadas con Paracoccus denitrifícans, tal es el caso de artículos que muestran el uso activo de Paracoccus denitrifícans en biofiltros o geles que permiten la remoción tanto de nitratos y nitritos por medio de P. den, así como la inicial remoción de amoniaco y amonio por nitrificación realizada por otra especie bacteriana como lo es Nitrosomonas europea (Uemoto and Saiki, 1996). Cuando se utilizan ambas bacterias en el mismo biofiltro o gel, se obtiene la remoción secuencial de NH y NH3 por Nitrosomonas para formar NO3- y NO2-, seguido de la desnitrificación de éstos últimos realizada por Paracoccus para formar N2.
Hoy en día, algunos de los biofiltros que se utilizan en la biorremediación de aguas contaminadas contienen una mezcla de bacterias, y entre ellas, las especies de Paracoccus, predominan en la población bacteriana de estos biofiltros (Li et al., 2017), en donde uno de sus objetivos, como se ha venido mencionando, es la remoción de NO3 y NO2. Sin embargo, la velocidad y eficiencia de estos biofiltros se ven limitadas por la propia velocidad desnitrificante de estas cepas de Paracoccus.
Se han implementado técnicas de mejoramiento de la eficiencia y estabilidad de la mezcla de bacterias en diferentes matrices que permitan mejorar la eficiencia nitrificante de Nitrosomonas y desnitrificante de Paracoccus (Uemoto and Saiki, 2000a, b).
Por otro lado, la Patente China No. CN 102465104 (B) se refiere a Paracoccus denitrífícans aeróbicos y su aplicación. Una cepa bacteriana proporcionada en la invención es Paracoccus denitrífícans DN-3CGMCC No. 3658, la cual puede llevar a cabo la desnitrificación aeróbica utilizando nitrato bajo condiciones tanto aeróbicas como de oxígeno limitado, y también puede llevar a cabo la desnitrificación nitríficación-aeróbica heterotrófica medíante el uso de amoníaco-N, y una tasa total de eliminación de nitrógeno en las ocasiones mencionadas es mayor al 90%. La cepa de Paracoccus denitrífícans proporcionada en la invención tiene características hereditarias estables, es aplicable al tratamiento de una variedad de aguas residuales que contienen nitrógeno y produce un buen efecto de eliminación de nitrógeno.
Por otro lado, en el estado del arte se encuentran algunos métodos discontinuos (Cataldo, 1975) o continuos (Gates et al., 2011) para medir la cantidad de nitrato residual o la velocidad de consumo de nitratos por vía disimilatoria, respectivamente. Sin embargo, estos métodos presentan ciertas desventajas, tales como: i) el primero es lento y muy laborioso, con muchas fuentes de error por ser discontinuo; y, ii) ambos métodos tienen una señal de fondo muy alta que genera mucha incertidumbre y error en los cálculos de velocidad de consumo de nitrato.
Adicionalmente, el método clásico discontinuo se basa en la reducción del ácido salicílico por nitrato, y los blancos suelen ser altos debido a la absorción basal del salicflico en medio ácido, además de que se necesita hacer una curva estándar de calibración en cada determinación, y los volúmenes de reacción son grandes (10 a 20 mi por tubo de reacción) en medio muy ácido, por lo que lo hace un método riesgoso y con mucho ruido de fondo (Cataldo, 1975). El método continuo existente se basa en la oxidación del NADH, pero como se ha usado para medir actividad asimiiatoria de la nitrato reductasa, las preparaciones usadas son extractos celulares que suelen tener actividades de NADH deshidrogenase inespecfficas demasiado altas que son de la misma magnitud o incluso mayores que la señal de la actividad de nitrato reductasa que se desea medir, de tal modo que se tiene que restar una pendiente basal muy alta a la actividad total de NADH deshidrogenasa (Gates et al., 2011).
En ambos métodos (continuo y discontinuo) la incertidumbre inherente a ellos incorpora errores de determinación que pueden ser de entre 20 y 30%, o mayores.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención está relacionada con una cepa mutante de Paracoccus denitrifícans que presenta una mayor actividad o metabolismo desnitrificante, proporcionándole mayores velocidades de consumo de NO3 y NO2 con el uso de una menor cantidad de biomasa bacteriana para la remoción efectiva de dichos compuestos nitrogenados que son contaminantes residuales en aguas tratadas y en algunos alimentos, donde dicha mayor actividad desnitrificante se obtiene removiendo totalmente el gen de la subunidad ζ como inhibidor de la F1Fo-ATPasa, llevándose a cabo la desnitrificación por Paracoccus denitrifícans en condiciones anaeróbicas. La remoción del gen de la subunidad ζ se lleva a cabo por medio de técnicas de biología molecular y mutagénesis "knock-out", lo cual incrementa el gradiente electroquímico y, por lo tanto, incrementa el intercambio de nutrientes por transportadores secundarios, además de que se incrementa de maneral general el metabolismo de la bacteria en condiciones anaerobias, incluyendo el metabolismo desnitrificante.
Adicionalmente, la remoción del gen de la subunidad ζ en la cepa mutante se activa a la H+-F1FO-ATPasa, la cual es ahora capaz de bombear protones hacia el espacio períplásmico y promover el transporte secundario de nutrientes e iones. Dicha remoción genética de la subunidad ζ como inhibidor de la F1Fo-ATPasa incrementa at doble la actividad desnitrificante comparada con la misma actividad de la cepa silvestre. La cepa mutante de Paracoccus denitrífícans fue denominada como ΡdΔζ, ya que es un "knock-out" de la subunidad ζ y se construyó a partir de la cepa silvestre Pd1222.
La mutación es estable y total, es decir, es una construcción genética sobre el ADN cromosómico de la bacteria que además le confiere resistencia a un antibiótico (kanamicina).
La cepa mutante de la presente invención puede ser utilizada en procesos de remoción de nitratos y nitritos tanto para biorremediación, o bien, en la industria alimentaría.
En un aspecto adicional de la presente invención, se provee un método espectrofotométrico para medir la actividad desnitrificante de la cepa mutante Paracoccus denitrífícans de la reivindicación 1 , caracterizado porque comprende las etapas de: (a) generar anaerobiosis por consumo respiratorio del oxígeno, para lo cual, una celda de anaerobiosis se llena con 1 mi de un amortiguador de reacción, posteriormente se añaden aproximadamente 300 g de membranas invertidas de las bacterias concentradas a 40-50 mg de proteína por mi, y se agregan de 10 a 20 mM (de un stock de 500-600 mM) de succinato, la celda se sella bien y se incuba por espacio de 15 minutos a una temperatura de entre 30°C y 45°C, al término de dicho tiempo se agregan 10 mM de malonato (de un stock de 4M); (b) confirmar la anaerobiosis por línea basal; una vez que se ha consumido todo el oxígeno, se añaden 10 mM de un inhibidor de la succinato-deshidrogenasa para detener la respiración por el complejo II respiratorio, posteriormente se añaden 0.3 mM de NADH (de un stock de NADH 300 mM) cuya oxidación se va a acoplar directamente a la reducción de un nitrato (el cual se añade en la siguiente etapa) por medio del consumo del NADH por el complejo I respiratorio o NADH deshidrogenase; después de añadir el NADH y antes de añadir el nitrato en la siguiente etapa, se debe obtener una línea basal horizontal con un valor de absorbencia de entre 1.0 y 1.5 para que dicha absorbancia caiga dentro de los valores válidos para aplicar la ley de Lambert y Beer en cuanto a la proporcionalidad de la absorción del NADH y la concentración del mismo;
(c) llevar a cabo la reacción de nitrato-reductasa anaerobia: una vez detenida la oxidación del succinato con malonato, se añaden 5 mM (de un stock de 1 M) del nitrato que se selecciona del grupo que comprende nitrato de sodio, nitrato de magnesio, nitrato de potasio, para arrancar la reacción de nitrato-reductasa y se sigue de manera continua el curso temporal del consumo de NADH por la reducción del nitrato; y,
(d) calcular la actividad de nitrato-reductasa: se hacen ios cálculos de actividad específica de la nitrato-reductasa tomando en cuenta la región lineal de la pendiente de decaimiento del NADH contra el tiempo, los cuales se obtienen como actividad específica (mmol/minXmg) como se describe arriba en la fase de cálculos de actividad de nitrato- reductasa, donde dichos cálculos se realizan por medio del coeficiente de extinción molar del NADH a una longitud de onda de 340 nm (6.22 en mM) y de acuerdo a la pendiente de la región lineal del decaimiento de la absorbancia a 340 nm (A340) en un paso de luz de la celda de reacción de 1 cm:
Nitrato reductasa (mmol/minXmg): dA340/dt=(dA340X1ml)/(6.22x1 cmXmg.pt.) OBJETOS DE LA INVENCIÓN
Teniendo en cuenta las limitaciones del estado del arte, es un objetivo de la presente invención proveer una cepa muíante de Paracoccus denitrificans (ΡdΔζ con una actividad desnitrificante sustancialmente mayor que le permite mayores velocidades de consumo de nitrato (NO3) y nitrito (NO2), convirtiéndolos en nitrógeno molecular (N2).
Un objeto más de la presente invención es proveer la cepa mutante de Paracoccus denitrificans con actividad desnitrificante incrementada que permite emplear una menor cantidad de biomasa bacteriana para la remoción efectiva de los compuestos nitrogenados (NO3 y NO2) que son contaminantes residuales en aguas tratadas y en algunos alimentos.
Otro objeto de la presente invención es proveer un método espectrofotomótrico que permita medir en tiempo real la actividad desnitrificante de la cepa mutante de Paracoccus denitrificans de la presente invención.
Un objeto adicional de la presente invención es proveer e método espectrofotométrico que no requiera enzimas acoplantes añadidas, a diferencia de otros métodos espectrofotométricos acoplados, haciéndolo un método muy económico, ya que la misma NADH deshidrogenase endógena se usa como enzima acoplante.
Sigue siendo un objeto más de la presente invención proveer el método espectrofotométrico que puede ser aplicado a membranas de Paracoccus denitrificans y en membranas otras bacterias desnitrificantes, por ejemplo, Escherichia coli, Pseudomonas tsutzeri, entre otras, incluyendo todas las bacterias desnitrificantes que contengan complejo I o NADH deshidrogenase endógena. Es todavía más otro objeto de la presente invención proveer el método espectrofotométrico en el cual la actividad es estable y lineal, la señal basal o consumo de NADH endógeno inespecffico (ruido) es casi nulo, <10% de la actividad enzimática de nitrato reductasa que es la señal que se quiere medir, lo anterior hace que la diferencia entre señal y ruido basal sea muy grande (mayor de 10 veces en magnitud), y por lo tanto la incertidumbre del método produce un error experimental <10%, haciéndolo un método muy preciso y confiable sin riesgo a subestimar o sobre estimar valores de actividad de nitrato reductasa disimilatoria. Estos y otros objetos, particularidades y ventajas de la cepa mutante de
Paracoccus denitrifícans con actividad desnitrificante incrementada, así como del método espectrofotométrico para medir en tiempo real la actividad desnitrificante de la presente solicitud de patente serán evidentes para un técnico en la materia a partir de la descripción detallada de ciertas modalidades y de las figuras que se acompañan, así como de las reivindicaciones anexas.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, la invención misma, tanto por su organización, así como por su método de operación, conjuntamente con otros objetos y ventajas de la misma, se comprenderán mejor en la siguiente descripción detallada de las modalidades de la presente invención, cuando se lea en relación con los dibujos que se acompañan, en los cuales: La figura 1 muestra el sitio de unión inhibitorio de la subunidad ζ en la F1-ATPasa de Paracoccus denitrifícans. La figura 1A muestra la vista lateral de la F1-ATPasa de Paracoccus denitrifícans con las subunidades a(cyan), β (azul), γ (naranja), y ε (amarillo) en representación de listones. La figura 1B muestra el sitio de unión de la subunidad ζ (rojo/naranja) y cómo se inserta el dominio N-terminal de ζ (rojo) en una interfaz catalítica rotor/estator (αDPDP/γ), esto bloquea el giro de las subunidades γ/ε del rotor, y esto detiene la actividad de F1-ATPasa de la enzima.
La figura 2 es una representación gráfica que muestra el efecto de la remoción de la subunidad ζ en la actividad de la H+-F1Fo-ATPasa y la desnitrificación llevada a cabo por Paracoccus denitrífícans en condiciones anaeróbicas. En la figura 2A se muestra una cepa silvestre de P. den (PdWT) que puede desnitrificar, pero no puede bombear protones por la H+-F1Fo-ATPasa dada la presencia de la subunidad ζ inhibitoria, la cual también inhibe el transporte secundario de nutrientes e iones y por tanto el metabolismo y crecimiento anaerobio de la bacteria. En la figura 2B se muestra que al remover la subunidad ζ en la cepa muíante (ΡdΔζ) de la presente invención (como se muestra en la figura 1A), se activa a la H+-F1F0-ATPasa, la cual es ahora capaz de bombear protones hacia el espacio periplásmico y promover el transporte secundario de nutrientes e iones.
La figura 3 es una representación gráfica de la construcción de la cepa mutante ΡdΔζ de la presente invención. La figura 4 es un gráfico que muestra la actividad de nitrato-reductasa en cepas silvestre y mutante de Paracoccus denitrífícans en condiciones anaeróbicas.
La figura 5 es un gráfico que muestra la velocidad de crecimiento y consumo de nitrato (NO3 ) por las cepas silvestre y mutante de Paracoccus denitrífícans.
La figura 6 muestra fotografías de dos diferentes frascos en los que se aprecia el crecimiento de las cepas silvestre y mutante de Paracoccus denitrífícans en anaerobiosis y en presencia de NO3-. De manera más específica, el frasco izquierdo contiene la cepa silvestre (PdWT), mientras que el frasco derecho contiene la cepa mutante ΡdΔζ (Δζ). A) vista lateral; B) vista superior; C) vista inferior. La figura 7 es un diagrama de flujo que ilustra las diferentes etapas del método espectrofotomótrico para medir la actividad desnitrificante de la cepa mutante ΡdΔζ, diseñado de conformidad con un aspecto adicional de la presente invención.
La figura 8 es un gráfico que muestra donde se puede calcular la pendiente de decaimiento de absorción a 340 nm en la región lineal de la gráfica.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En virtud de las limitaciones y desventajas del estado del arte, la presente invención, de conformidad con una modalidad particularmente preferida de la presente invención, describe y reclama una cepa mutante de la bacteria Paracoccus denitrificans, la cual, como su nombre lo dice, tiene un metabolismo desnitrificante con lo cual remueve nitratos y nitritos de su entorno para convertirlos en nitrógeno molecular (N2).
El haber obtenido una cepa con mayor actividad desnitrificante es una gran ventaja, ya que permite mayores velocidades de consumo de NO3 y NO2 con el uso de una menor cantidad de biomasa bacteriana para la remoción efectiva de dichos compuestos nitrogenados que son contaminantes residuales en aguas tratadas y en algunos alimentos. Además de lo anterior, la mutación es estable y total, es decir, es una construcción sobre el ADN cromosómico de la bacteria que además le confiere una resistencia a un antibiótico, preferiblemente kanamicina, lo cual le da una ventaja adicional de resistencia y selección sobre otras cepas silvestres de Paracoccus. La tendencia a disminuir la expresión de la subunidad ζ en condiciones desnitrificantes hace suponer que la remoción total de dicha subunidad ζ a través de la biología molecular mediante la generación de una muíante nula en el gen de la subunidad ζ puede favorecer el metabolismo desnitrificante de Paracoccus, ya que la ablación del gen de la subunidad ζ debe de incrementar aun más la actividad de F1Fo-ATPasa acoplada al bombeo de protones para asf incrementar en mayor proporción la formación del gradiente electroquímico en condiciones desnitrificantes. Por lo tanto, la remoción genética de la subunidad ζ al incrementar el gradiente electroquímico y, por lo tanto, incrementar el intercambio de nutrientes por transportadores secundarios debe de incrementar de maneral general el metabolismo de la bacteria en condiciones anaerobias, incluyendo el metabolismo desnitrificante, tal como se ilustra en la figura 2 de los dibujos que se acompañan.
En dicha figura 2 se muestra el efecto de la remoción de la subunidad ζ en la actividad de la H+-F1Fo-ATPasa y la desnitrificación llevada a cabo por Paracoccus denitrificans en condiciones anaeróbicas. En ausencia de oxígeno, Paracoccus denitrificans utiliza como aceptor de electrones a los nitratos (NO3) y nitritos (NO2) para formar nitrógeno molecular (N2), y en paralelo bombea protones hacia el espacio periplásmico. De manera más específica, en la figura 2A se muestra una cepa silvestre de Paracoccus denitrificans (PdWT) que puede desnitrificar, pero no puede bombear protones por la H+-F1Fo-ATPasa dada la presencia de la subunidad ζ inhibitoria, la cual también inhibe el transporte secundario de nutrientes e iones y por tanto el metabolismo y crecimiento anaerobio de la bacteria. Asimismo, en la figura 2B se muestra que al remover la subunidad ζ en la cepa muíante que es motivo de la presente invención (ΡdΔζ), (como en la figura 2A), se activa a la H+-F1Fo-ATPasa, la cual es ahora capaz de bombear protones hacia el espacio periplásmico y promover el transporte secundario de nutrientes e iones. Por tanto, la cepa mutante incrementa el metabolismo y el crecimiento en condiciones anaerobias respecto a la cepa silvestre, y además incrementa la actividad de la cadena desnitrificante, la cual también bombea protones hacia el espacio periplásmico, para contrarrestar la actividad de H+-F1Fo-ATPasa y por tanto favorecer la actividad de F1F0-ATP sintasa (ver flechas rojas). En anaerobiosis, la remoción de ζ debe por tanto incrementar la velocidad de desnitrificación de Paracoccus y el crecimiento de la bacteria, en presencia de NO3. La figura corresponde a una modificación de la original publicada por Garcia-Trejo et al. 2012.
Para corroborar la hipótesis anterior se realizó una construcción genética para eliminar el gen de la subunidad zeta (ζ) de Paracoccus denitrífícans, la cual fue llevado a cabo por medio de técnicas de biología molecular y mutagénesis "knock-out". Una vez corroborado que se había eliminado la presencia del gen de zeta y de la proteína en la cepa, se denominó a la cepa mutante de la presente invención como " ΡdΔζ", teniendo en mente que la cepa parental a partir de la cual se hizo la construcción se denomina Pd1222. Una de las ventajas de esta cepa es que al carecer de la proteína inhibidora ζ se pierde su efecto inhibitorio en la H+-F1Fo-ATPasa y esto le permite formar un mejor gradiente de protones. Esto conlleva un mayor consumo del ATP celular, por lo que para tratar de compensar dicho mayor consumo del ATP celular por la H+-F1Fo-ATPasa, Paracoccus debe aumentar la velocidad de desnitrificación para aumentar el bombeo de protones por la cadena desnitrificante, el cual es menor al bombeo de protones de la cadena respiratoria canónica oxigénica presente en Paracoccus (Nicholls, 2013). La remoción de la subunidad ζ debe aumentar la velocidad de desnitrificación para compensar la pérdida del ATP celular al aumentar su hidrólisis, aumentar el bombeo de protones para así tratar de revertir a la H+-F1Fo-ATPasa activada para que tienda a funcionar como F1Fo-ATP sintasa y se mantenga una mejor bioenergética celular.
Para confirmar lo descrito anteriormente, se midió la velocidad de consumo de nitrato catalizada por la nitrato-reductasa membranal de Paracoccus denitrifícans por medio de su reacción naturalmente acoplada al consumo de NADH en condiciones anaerobias. Como se mencionó arriba, en esta reacción, los electrones provenientes del NADH se transfieren al nitrato para formar nitrito. Cuando se midió esta actividad se encontró de manera consistente un incremento prácticamente del doble en la actividad desnitrificante de nitrato reductasa membranal. Esto implica que la remoción genética de la subunidad ζ como inhibidor de la F1Fo-ATPasa incrementa efectivamente al doble la actividad desnitrificante comparada con la misma actividad de la cepa silvestre (Pd1222). Este resultado probablemente se debe a que la cepa mutante al tener aumentada la actividad de F1Fo-ATPasa consume más ATP celular, y para compensar esta mayor hidrólisis del ATP, la cadena respiratoria desnitrificante se expresa en mayor proporción o se activa cinéticamente, y por lo tanto, la actividad de la nitrato reductasa acoplada al bombeo de protones transmembranal aumenta para revertir la actividad de F1Fo-ATPasa y favorecer el flujo de protones por la ATP sintasa en el sentido de la síntesis del ATP, al inducir la formación de un gradiente de protones mayor.
En resumen, en la cepa mutante de Paracoccus denitrifícans que se describe en la presente invención, se removió por completo el gen del inhibidor natural de la PdF1Fo- ATPasa denominado subunidad ζ. En respuesta a esta mutación, la bacteria desarrolló una mayor actividad desnitrificante, esto para compensar el aumento en la actividad de la PdF1Fo-ATPasa y así favorecer el flujo de su metabolismo hacia la síntesis del ATP celular.
Como ya se mencionó párrafos arriba, la cepa mutante de la presente invención se denominó ΡdΔζ dado que es un "knock-out" de la subunidad ζ y se construyó a partir de la cepa silvestre Pd1222. Este aumento en la actividad desnitrificante de la bacteria es significativo y puede aplicarse en procesos de remoción de nitratos y nitritos tanto para biorremediación, o en su defecto en la industria alimentaria.
La estrategia de construcción se resume en la ablación del gen de la subunidad ζ por la inserción de un cassette de resistencia a kanamicina, esto se logró por medio de tecnología de ADN recombinante por medio de un plásmido suicida, el cual contenía el cassette de resistencia ai antibiótico y el cual se insertó por conjugación en la cepa parental de Paracoccus denitrifícans llamada Pd1222. El plásmido suicida no se puede replicar en Paracoccus, de tal modo que solamente las cepas que recombinaron eficientemente el cassette del plásmido suicida con el ADN cromosómico de P. denitrifícans se seleccionaron como colonias positivas que crecieron en presencia de kanamicina. Por ser recombinación homóloga, el cassette con resistencia se diseñó en medio de fragmentos que flanquearan el cassette con segmentos de ADN idénticos a fragmentos de aproximadamente 1kpb río arriba y río abajo del gen silvestre de la subunidad ζ de Paracoccus denitrifícans. Gracias a estos fragmentos, y a que la cepa de Pd1222 es de alta frecuencia de conjugación y recombinación, se pudieron obtener colonias positivas que por recombinación homóloga adquirieron el cassette de resistencia y lo intercambiaron por el gen de ζ en el plásmido suicida, el cual se denominó pFMMCJG-Δζ, dado que la construcción la realizó el QFB Francisco Mendoza Hoffmann (FM), en el laboratorio del Dr. Miguel Ángel Cevallos Gaos ( C) y dentro del proyecto de la subunidad ζ de Paracoccus denitrifícans del laboratorio del Dr. José de Jesús García Trejo (JG), siendo dichas personas los inventores de la cepa mutante ΡdΔζ de la presente invención.
Un diagrama de la construcción de esta mutante se puede ver en la figura 3 de los dibujos que se acompañan, de tal modo que para remover el gen de la subunidad ζ de Paracoccus denitrifícans se promovió la recombinación genética de este gen con un cassette de resistencia a kanamicina (Kmr) insertado en el plásmido suicida denominado pFMMCJG-Δζ, este cassette se flanqueó con secuencias de aproximadamente 1kpb río arriba y río abajo del gen silvestre de ζ de Paracoccus denitrifícans conteniendo sitios de restricción (Xbal), las cuales, por recombinación homóloga intercambiaron este cassette de resistencia a kanamicina (Kmr) por el gen silvestre de la subunidad ζ en el AON cromosómico de Paracoccus; el gen silvestre de ζ se pierde, dado que el plásmido es suicida y no se puede replicar en estas bacterias. De esta manera, sólo las bacterias que recombinaron adecuadamente el plásmido suicida y que adquirieron el cassette de resistencia por recombinación homóloga crecen de forma selectiva como colonias en cajas de Petri conteniendo kanamicina. La secuenciación del plásmido y del ADN cromosómico de la cepa ΡdΔζ, confirmaron la ausencia del gen de ζ y la presencia del cassette Kmr en la cepa muíante Pd- .
Una de las novedades más importantes de la presente invención es que es la primera vez que se observa un fenotipo claramente diferente entre la cepa silvestre y una muíante de ablación de un inhibidor natural de la ATP sintasa. Anteriormente se habían hecho mutantes similares en modelos animales o humanos, al remover otro inhibidor natural de la enzima que se denomina la proteína Inhibidora de la F1-ATPasa mitocondrial o IF1. El knockout de este gen (IF1) no ha mostrado cambios significativos en la fisiología de los organismos mutantes desde levaduras hasta células humanas (Lu et al., 2001; Nakamura et al., 2013). Por lo tanto, la cepa muíante ΡdΔζ de la presente invención es la primera que muestra una diferencia fenotípica y metabólica importante comparada con su contraparte silvestre, por lo que se trata entonces de un resultado de gran impacto y novedad en el campo de la ATP sintasa y en el de la microbiología aplicada. De conformidad con la velocidad sustancialmente incrementada aumentada de la cepa mutante ΡdΔζ de la presente invención, la misma tiene aplicación directa en procesos de descontaminación de aguas, ya que en los biofiltros donde se remueven contaminantes de aguas tratadas, algunos de ellos contienen una mezcla de bacterias que incluyen a la especie Paracoccus denitrificans. Dentro de estos biofiltros, se incluye por ejemplo Nitrosomonas europea para la remoción de amoniaco y amonio por nitrificación para formar nitrato, seguido de la desnitrificación realizada por Paracoccus para formar N2. Como se mencionó anteriormente, se han implementado técnicas de mejoramiento de la eficiencia y estabilidad de la mezcla de bacterias en diferentes matrices que permitan mejorar la eficiencia nitrificante de Nitrosomonas y desnitrificante de Paracoccus (Uemoto and Saiki, 2000a, b). La remoción de nitratos y nitritos es una etapa importante en la descontaminación de aguas, y se ha aplicado tanto a la desnitrificación de aguas residuales como a la de aguas potables (Mohseni-Bandpi et al., 2013); por lo tanto, el uso de esta muíante puede extenderse no sólo a la remoción de nitratos y nitritos de aguas residuales sino también a la preparación de agua potable.
Otra de las ventajas de la cepa muíante ΡdΔζ de la presente invención es que en su cadena desnitrificante contiene todas las enzimas necesarias para la remoción de nitratos y nitritos hasta la producción de nitrógeno molecular (N2), lo cual permite eliminar la acumulación de los intermediarios que también pueden ser tóxicos como son el óxido nitroso y el óxido nítrico, y esto es una ventaja adicional a las otras especies desnitrificantes. En resumen, la aplicación más directa de esta invención es la de integrarla a los biofiltros que se utilizan para remover nitratos y nitritos contaminantes en aguas residuales y potables.
La aplicación directa de esta mulante es la remoción de nitratos y nitritos contaminantes de aguas residuales o aguas potables como se ha descrito anteriormente. Sin embargo, los nitratos y nitritos suelen ser contaminantes no sólo del agua sino también en algunos alimentos. Por ejemplo, el suero de leche que se utiliza para los complementos o suplementos alimenticios ricos en proíeína, es frecuente que contenga altos niveles indeseables de nitratos y nitritos. En este caso, se ha reportado el uso de la bacteria Paracoccus denitrificans en procesos de remoción de nitratos y nitritos de estos suplementos alimenticios con resultados positivos (Tippkotter et al., 2010). A lo largo de la presente invención se ha venido mencionado que la velocidad de desnitrificación de la cepa mutante ΡdΔζ es sustancialmente mayor que la de la bacteria Paracoccus denitrificans; sin embargo, los métodos conocidos en el estado del arte para medir dicha velocidad de desnitrificación presentan ciertas desventajas, las cuales han sido discutidas en el apartado de los antecedentes de la presente invención.
En razón de lo anterior, en un aspecto adicional de la presente invención, se diseñó un método espectrofotométríco para medir la actividad de la nitrato-reductasa disimilatoría de membranas Paracoccus denitrificans por método continuo en tiempo real. Esta medición se basa en el acoplamiento directo de la oxidación del NADH por el complejo I de la cadena respiratoria clásica de Paracoccus denitrificans, con la reducción de nitrato a nitrito por la nitrato-reductasa disimilatoría en las membranas invertidas de esta u otras bacterias desnitrificantes, donde dicho método espectrofotométríco comprende las etapas de: a) generar anaerobiosis por consumo respiratorio del oxfgeno, para lo cual, una celda de anaerobiosis se llena con 1 mi de un amortiguador de reacción que preferiblemente consiste en pH 7.5 ajustado con MES 20 mM y sacarosa 250 mM (como soporte osmótico para las membranas), posteriormente se añaden aproximadamente 300 pg de membranas invertidas de las bacterias, preferiblemente Paracoccus denitrificans concentradas a 40-50 mg de proteína por mi, se agregan de 10 a 20 mM (de un stock de 500-600 mM) de succinato, y se incuba estando bien sellada la celda por espacio de 15 minutos a una temperatura de entre 30°C y 45°C, preferiblemente a 37°C, al término de dicho tiempo se agregan 10 mM de malonato (de un stock de 4M). Antes de comenzar la reacción de desnitrificación se genera una anaerobiosis total celdas de anaerobiosis, la cual se logra al llenar las celdas hasta el máximo volumen≈ 1ml, prácticamente sin dejar espacio entre la tapa de la celda y el volumen de reacción, y además se hace consumir todo el oxígeno del medio de reacción al activar la respiración aerobia de las membranas de Paracoccus denitrifícans con una alta concentración de succinato para que la cadena respiratoria aerobia consuma todo el oxígeno del volumen total de reacción de la celda, lo anterior se logra por incubación de las celdas a una temperatura de entre 30°C y 45°C, preferiblemente a 37°C durante 15 minutos en presencia de altas concentraciones de succinato (10 a 20 mM) para que la respiración aerobia se acabe el oxígeno presente; b) confirmar la anaerobiosis por línea basal; una vez que se ha consumido todo el oxígeno, se añaden 10 mM de un inhibidor de la succinato-deshidrogenasa, preferiblemente malonato para detener la respiración por el complejo II respiratorio, posteriormente se añaden 0.3 mM de NADH (de un stock de NADH 300 mM) cuya oxidación se va a acoplar directamente a la reducción de un nitrato (el cual se añade en la siguiente etapa) por medio del consumo del NADH por el complejo I respiratorio o NADH deshidrogenase; después de añadir el NADH y antes de añadir el nitrato en la siguiente etapa, se debe obtener una línea basal horizontal con un valor de absorbencia de entre 1.0 y 1.5 para que dicha absorbencia caiga dentro de los valores válidos para aplicar la ley de Lambed y Beer en cuanto a la proporcionalidad de la absorción del NADH y la concentración del mismo. Ei observar una línea basal lo más aproximado a la horizontal confirma las condiciones anaerobiosis y que no hay la presencia de NADH deshidrogenases alternas que interfieran con la actividad y que no estén acopladas a la nitrato- reductasa, la pendiente basal debe restarse posteriormente a la pendiente de consumo de NADH para obtener la velocidad de nitrato reductasa neta; c) llevar a cabo la reacción de nitrato-reductasa anaerobia: una vez detenida la oxidación del succinato con malonato, se añaden 5 mM (de un stock de 1M) del nitrato que se selecciona del grupo que comprende nitrato de sodio, nitrato de magnesio, nitrato de potasio, preferiblemente nitrato de sodio para arrancar la reacción de nitrato-reductasa y se sigue de manera continua el curso temporal del consumo de NADH por la reducción del nitrato. Una vez que se observe una línea basal prácticamente horizontal en la señal de absorbencia a 340 nm, se arranca la reacción de nitrato-reductasa acoplada directamente a la oxidación del NADH por el complejo I respiratorio, ya que la reacción se realiza en completa anaerobiosis, cada mol de NADH consumido corresponde a la reducción de una mol de nitrato convertido en nitrito conforme a la siguiente reacción:
Figure imgf000028_0001
d) calcular la actividad de nitrato-reductasa: se hacen los cálculos de actividad específica de la nitrato-reductasa tomando en cuenta la reglón lineal de la pendiente de decaimiento del NADH contra el tiempo, los cuales se obtienen como actividad específica (mmol/minXmg) como se describe arriba en la fase de cálculos de actividad de nitratoreductasa, donde dichos cálculos se realizan por medio del coeficiente de extinción molar del NADH a una longitud de onda de 340 nm (6.22 en mM) y de acuerdo a la pendiente de la región lineal del decaimiento de la absorbancia a 340 nm (A340) en un paso de luz de la celda de reacción de 1 cm:
Nitrato reductasa (mmol/minXmg): dA dt=(dA340X1ml)/(6.22x1 cmXmg.pt.) Para concretar el cálculo, se debe calcular la derivada de la absorbancia a 340 mm (dA340/dt), la cual es la pendiente de la región lineal de la gráfica del curso temporal del cambio absorbancia. Para obtener la actividad específica de la nitrato-reductasa debe medir la concentración de proteína de las membranas de la bacteria en este caso Paracoccus denitríficans para insertarla en la ecuación como la cantidad de proteína exacta en miligramos que se agregaron a la celda de reacción (mg.pt.) El resultado es la actividad específica de la preparación de membranas en nmoles de nitrato reducido por minuto por miligramo de proteína.
En la figura 7 de los dibujos que se acompañan se muestra un diagrama de flujo en el cual se establecen las etapas del método espectrofotométrico de la presente invención. El método es rápido dado que la reacción se lleva a cabo en un tiempo de entre 20 y 30 minutos, siempre y cuando ya se tengan listos tanto el amortiguador como la mezcla de reacción. En la figura 8 de los dibujos que se acompañan se muestra una gráfica donde se puede calcular la pendiente de decaimiento de absorción a 340 nm en la región lineal de la gráfica. Se observa que en los minutos iniciales de la reacción (≈ en los primeros 100 segundos) la oxidación basal del NADH es prácticamente cero (línea horizontal en una absorbancia de aproximadamente 1.5).
En la figura 9 de los dibujos que se acompañan se muestra la reacción de nitrato- reductasa en tiempo real. Se muestra el curso temporal del cambio de absorbancia a 340 nm, con dos experimentos por duplicado de la velocidad de nitrato-reductasa medida en celdas de anaerobiosis como las que se muestran en el recuadro de la derecha. Al to se agregó NADH a celdas previamente incubadas a 37°C por 15 minutos en presencia de 20 m de sucoinato previo a la adición de 20 mM de malonato para consumir todo el oxígeno dentro de la celda. Se muestra que la basal tiene una pendiente prácticamente nula (casi horizontal) y ésta debe restarse a la fase más lineal de la pendiente (en este caso entre 150 y 300 segundos aproximadamente). Aproximadamente a los 130 segundos se añadió nitrato de sodio para arrancar la reacción de nitrato reductasa en condiciones totalmente anaeróbicas. En el recuadro se muestra una de estas celdas de anaerobiosis llenas con 1 mi de volumen de reacción.
El método espectrofotométríco de la presente invención tiene varías ventajas respecto a los métodos discontinuos y continuos encontrados en el estado de la técnica, a saber:
✓ Es en "tiempo real" la lectura de la actividad es inmediata;
✓ La actividad de NADH deshidrogenase del complejo I respiratorio endógeno de la bacteria es suficiente para usarla como enzima acoplante;
✓ En virtud de que no requiere enzimas acoplantes añadidas, a diferencia de otros métodos espectrofotométricos acoplados, es un método muy económico, pues la misma NADH deshidrogenase endógena se usa como enzima acopiante;
✓ Se puede aplicar a membranas de Paracoccus denitrificans y en membranas otras bacterias desnitrificantes, por ejemplo, Escheríchia coll, Pseudomonas tsutzeri, entre otras, incluyendo todas las bacterias desnitrificantes que contengan complejo I o NADH deshidrogenase endógena;
✓ La actividad es estable y lineal, la señal basal o consumo de NADH endógeno inespecífico (ruido) es casi nulo, <10% de la actividad enzimática de nitrato reductasa que es la señal que se quiere medir. Esto hace que la diferencia entre señal y mido basal sea muy grande (mayor de 10 veces en magnitud), y por lo tanto la incertidumbre del método produce un error experimental <10%, haciéndolo un método muy preciso y confiable sin riesgo a subestimar o sobre estimar valores de actividad de nitrato reductasa disimilatoria.
La presente invención será mejor entendida a partir del siguiente ejemplo, el cual se presenta únicamente con fines ilustrativos y no pretende limitar el alcance de la presente invención, sino más bien permitir una comprensión cabal de las modalidades de dicha presente invención:
Ejemplo
Para demostrar la mayor actividad desnitrificante de la cepa mutante de Paracoccus denitrificans, comparada con la silvestre, se midió la actividad de nitrato reductasa disimilatoria membranal (Nar). Esta enzima se encuentra en la membrana plasmática interna de P. den y se puede determinar su actividad específica en membranas invertidas de la bacteria denominadas Partículas Sub-Bacterianas (PSB). Estas partículas se obtienen por sonicación y centrifugación diferencial y se estandarizó el método espectrofotométrico para medir la actividad de nitrato reductasa en condiciones anaeróbicas acoplado a la oxidación de NADH y reducción de NO3- para formar NO2-, El método se basa en medir el consumo de NADH en celdas de anaerobiosis donde se ha removido completamente el oxígeno, y de esta manera los electrones se dirigen exclusivamente a la reducción de nitrato a nitrito Se crecieron tanto la
Figure imgf000031_0001
cepa silvestre como la cepa mutante en condiciones de aerobiosis en medio LB, y posteriormente se prepararon membranas invertidas (PSB) por sonicación y a estas membranas se les midió su actividad desnitrificante en celdas espectrofotométrícas de anaerobiosis en ausencia total de oxígeno. La velocidad de consumo de NADH se mide espectrofotométrícamente a 340 nm, y es directamente proporcional a la actividad de nitrato reductasa en estas condiciones de anaerobiosis. Se llevaron de 3 a 4 experimentos, los cuales mostraron claramente que la velocidad de nitrato reductasa de la mutante (ΡdΔζ) es incrementada en casi el doble comparada con la misma actividad medida en la cepa silvestre (PdWT), tal como se ilustra en la figura 4 de los dibujos que se acompañan.
Este experimento demuestra que la actividad desnitrificante de Paracoccus denitrificans se incrementa en la mutante PdΔζ, al menos en la primera reacción desnitrificante que es la actividad de nitrato reductasa membranal (Nar) reduciendo el NO3- a NO2-. Cabe mencionar que durante este experimento se calibró cuidadosamente la concentración de proteína de las membranas invertidas (PSB) tanto de la cepa silvestre (PdWT) como de la cepa mutante (ΡdΔζ), para realizar los ensayos de actividad exactamente con la misma cantidad y concentración de protefna en las celdas espectrofotométricas de anaerobiosis tanto para las membranas silvestres (PdWT) como para las membranas mutantes (ΡdΔζ) y así evitar errores en los cálculos de actividades específicas de nitrato reductasa (μmol/minXmg). Finalmente, aunque este resultado demuestra la mayor actividad de nitrato reductasa de las membranas de la mutante Δζ de Paracoccus denitrificans (ΡdΔζ), se trata solamente de una medida indirecta de la primera etapa de la desnitrificación disimilatoria, es decir la reducción de nitrato a nitrito (NO3-□ NO2), es decir que faltaría poder demostrar que toda ia cadena desnitrificante de Paracoccus denitrificans resulte aumentada in vivo en respuesta a la mutación Δζ de Paracoccus denitrificans. Para ello, el experimento más determinante es el de poder medir el consumo de NO3- en el medio de cultivo tanto de la cepa silvestre (PdWT) como de la cepa mutante (ΡdΔζ) en condiciones de anaerobiosis, y en paralelo medir las curvas de crecimiento de ambas cepas para poder correlacionar la velocidad de crecimiento con el consumo de NO3' en el medio de cultivo. En la figura 5 de los dibujos que se acompañan se muestra la velocidad de crecimiento y consumo de nitrato (NO3 ) por las cepas silvestre y muíante de Paracoccus denitrífícans. Se crecieron inóculos idénticos de las cepas silvestre PdWT (●- ) y mutante ΡdΔζ (●-●) en frascos sellados de anaerobíosis (por burbujeo de N2 y CO2) conteniendo medio LB con Nitrato de Sodio (5 m ). Se midió el crecimiento de las cepas por cambio de absorbencia a 600 nm (círculos), y el consumo de nitrato (NO3-), por método analítico con ácido salicflico de la cepa silvestre PdWT, y mutante ΡdΔζ
Figure imgf000033_0001
(▼-▼). Se gráfica el porcentaje de crecimiento y el de la concentración inicial de nitrato, el 100% del crecimiento corresponde a una absorbencia de 2.0, y el porciento de la concentración inicial de nitrato [NO3] corresponde a una concentración inicial de 5mM inicial al tiempo cero (t=0).
En la figura 6 de los dibujos que se acompañan se ilustra el crecimiento de las cepas silvestre y mutante de Paracoccus denitrífícans en anaerobiosis y en presencia de NO3-. Cepa silvestre (PdWT) frasco Izquierdo; cepa mutante ΡdΔζ (Δζ), frasco derecho. Se observa mayor turbidez y por tanto mayor crecimiento de la cepa mutante, asi como mayor burbujeo proveniente de la liberación de nitrógeno molecular (N2), por la mayor desnitrificación de la mutante. A) Vista lateral; B) Vista superior; C) Vista inferior. Aun cuando en la anterior descripción se ha hecho referencia a ciertas modalidades de la cepa mutante de Paracoccus denitrífícans (ΡdΔζ) con actividad desnitrificante incrementada, así como con el método espectrofotométríco para medir en tiempo real la actividad desnitrificante de la presente invención, debe hacerse hincapié en que son posibles numerosas modificaciones a dichas modalidades, pero sin apartarse del verdadero alcance de la invención, de tal modo que las características de la presente invención descritas en ciertas modalidades de la invención, mostradas en las figuras y reclamadas en las reivindicaciones, pueden ser usadas individualmente o en cualquier combinación arbitraria para la realización de dicha presente invención, así como de diferentes modalidades que no hayan sido aquí descritas. Por consiguiente, debe entenderse que las modalidades de la presente invención son únicamente ilustrativas y no pretenden limitar el alcance de la presente invención, excepto por lo establecido tanto en el estado de la técnica como en las reivindicaciones anexas.
Referencias bibliográficas:
Cervantes-Carrillo, F., Pérez, J., Gómez, J. (2000). Avances en la eliminación biológica del nitrógeno de las aguas residuales. Revista Latinoamericana de Microbiología 42, 73- 82.
Davis, D.H., DoudorofT, M., Stanier, R.Y., and Mandel, M. (1969). Proposal to reject the genus hydrogenomonas: taxonomic implications. International Journal of Systematic Bacteríology 19, 375-390.
de la Rosa-Morales, F. (2005). "Composición de subunidades y Mecanismo de Regulación de la FIFoATP sintasa de Paracoccus denitrificans". In Posgrado en Ciencias Biológicas (Biología Experimental), Facultad de Ciencias (Dirección General de Bibliotecas: Universidad Nacional Autónoma de México (U.N.A.M.)), pp. 75.
Garcia-Trejo, J.J., and Morales-Rios, E. (2008). Regulation of the F1 F0-ATP synthase rotan/ nanomotor in its monomeric-bacterial and dimeric-mitochondrial forms. J Biol Phys 34, 197-212.
Garcia-Trejo, J.J., Zarco-Zavaia, M., Mendoza-Hoffmann, F., Hernandez-Luna, E., Ortega, R., and Mendoza-Hernández, G. (2016). The Inhibitory Mechanism of the zeta Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related alpha- Proteobactería. J Biol Chem 291, 538-546.
Garcia-Trejo, J.J., Zarco-Zavala, M., and Morales-Rios, E. (2012). Estructura y mecanismo de la nueva subunidad inhibitoria ζ del nanomotor F1FO-ATP sintasa de las a-proteobacterias en Paracoccus denitrificans. Mensaje Bioquímico 37, 106-126.
Li, P., Wang, Y., Zuo, J., Wang, R., Zhao, J., and Du, Y. (2017). Nitrogen Removal and N20 Accumulation during Hydrogenotrophic Denitrification: Influence of Environmental Factors and Microbial Community Characteristics. Environ Sci Technol 51, 870-879.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275. Lu, Y.M., Miyazawa, K., Yamaguchi, K., Nowaki, K., Iwatsuki, H., Wakamatsu, Y., Ichikawa, N., and Hashimoto, T. (2001). Deletion of mitochondríal ATPase inhibitor in the yeast Saccharomyces cerevisiae decreased cellular and mitochondríal ATP levéis under non-nutritional condítions and induced a respiration-defícient cell-type. J Biochem 130, 873-878.
Mendoza-Hoffmann, F., Pérez-Oseguera, A., Cevallos, M.A., Zarco-Zavala, M., Ortega, R., Peña-Segura, C, Espinoza-Simón, E., Uribe-Carvajal, S., and García-Trejo, J.J. (2017). The biological role of the ζ subunit as unidirectional inhibitor of the F1 FO-ATPase of Paracoccus denitrificans.
Mohseni-Bandpi, A., Elliott, D.J., and Zazouli, M.A. (2013). Biological nitrate removai processes from drinking water supply-a review. J Environ Health Sel Eng 11, 35.
Morales-Ríos, E., de la Rosa-Morales, F., Mendoza-Hernández, G., Rodriguez-Zavala, J.S., Celis, H., Zarco-Zavala, M., and Garcia-Trejo, J.J. (2010). A novel 11-kDa inhibitory subunit in the F1 FO ATP synthase of Paracoccus denitrificans and related alpha- proteobactería. FASEB J 24, 599-608.
Nakamura, J., Fujikawa, M., and Yoshida, M. (2013). IF1 , a natural inhibitor of mitochondríal ATP synthase, is not essential for the normal growth and breeding of mice. Biosci Rep 33.
Nicholls, D.G., and Ferguson, S.J. (2013). Bioenergetics 4, 4 edn (Europe: Academic Press).
Pacheco-Moisés, F., Minauro-Sanmiguel, F., Bravo, C, and García, J.J. (2002). Sulfite inhibits the F1 F0-ATP synthase and activates the F1F0-ATPase of Paracoccus denitrificans. J Bioenerg Biomembr 34, 269-278.
Pérez, JA, and Ferguson, S.J. (1990). Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1- ATPase. Biochemistry 29, 10503-10518. Song, P., Wu, L, and Guan, W. (2015). Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cáncer: A Meta-Analysis. Nutrients 7, 9872-9895.
Tippkotter, N., Roikaew, W., Ulber, R., Hoffmann, A., Denzler, H.J., and Buchholz, H. (2010). Paracoccus denitrificans for the effluent recycling during continuous denitrification of liquid food. Biotechnol Prog 26, 756-762.
Uemoto, H., and Saiki, H. (1996). Nitrogen removal by tubular gel containing Nitrosomonas europaea and Paracoccus denitrificans. Appi Environ Microbiol 62, 4224- 4228.
Uemoto, H., and Saiki, H. (2000a). Distribution of Nitrosomonas europaea and Paracoccus denitrificans immobilized in tubular polymeric gel for nitrogen removal. Appl Environ Microbiol 66, 816-819.
Uemoto, H., and Saiki, H. (2000b). Nitrogen removal reactor using packed gel envelopes containing Nitrosomonas europaea and Paracoccus denitrificans. Biotechnol Bioeng 67, 80-86.
Zarco-Zavala, M., Morales-Rios, E., Mendoza-Hernández, G., Ramirez-Silva, L, Perez- Hemandez, G., and Garcia-Trejo, J.J. (2014). The zeta subunit of the F1 FO-ATP synthase of alpha-proteobacteria controls rotation of the nanomotor with a different structure. FASEB J 28, 2146-2157.

Claims

NOVEDAD DE LA INVENCIÓN REIVINDICACIONES
1. - Una cepa muíante de Paracoccus denitrifícans, caracterizada porque carece del gen de la subunidad ζ como inhibidor de la F1Fo-ATPasa y presenta una mayor actividad o metabolismo desnitrificante.
2. - La cepa muíante de Paracoccus denitrifícans de conformidad con la reivindicación 1, caracterizada además porque la cepa muíante se construye a partir de la cepa silvestre Pd1222.
3. - La cepa mutante de Paracoccus denitrifícans de conformidad con la reivindicación 1, caracterizada porque presenta mayores velocidades de consumo de NO3 y NO2 con el uso de una menor cantidad de biomasa bacteriana.
4. - La cepa mutante de Paracoccus denitrifícans de conformidad con la reivindicación 1, caracterizada porque la remoción del gen de la subunidad ζ se lleva a cabo por medio de técnicas de biología molecular y mutagénesis "knock-out", incrementando el gradiente electroquímico y, por lo tanto, incrementa el intercambio de nutrientes por transportadores secundarios, además de que se incrementa el metabolismo de la bacteria en condiciones anaerobias, incluyendo el metabolismo desnitrificante.
5. - La cepa mutante de Paracoccus denitrifícans de conformidad con la reivindicación 4, caracterizada además porque la remoción del gen de la subunidad ζ en la cepa mutante se activa a la H+-F1Fo-ATPasa, la cual es ahora capaz de bombear protones hacia el espacio periplásmico y promover el transporte secundario de nutrientes e iones.
6. - La cepa muíante de Paracoccus denitrificans de conformidad con la reivindicación 4, caracterizada además porque la remoción genética de ia subunidad ζ como inhibidor de la F1Fo-ATPasa incrementa al doble la actividad desnitrificante comparada con la misma actividad de la cepa silvestre.
7. - La cepa mutante de Paracoccus denitrificans de conformidad con las reivindicaciones anteriores, caracterizada además porque la mutación es estable y total, es decir, es una construcción genética sobre el ADN cromosómico de la bacteria que le confiere resistencia a kanamicina.
8. - Uso de la cepa mutante de Paracoccus denitrificans como la que se reclama en la reivindicación 1 en procesos de remoción de nitratos y nitritos tanto para biorrernediación, o bien, en la industria alimentaria; además, su uso puede extenderse no sólo a la remoción de nitratos y nitritos de aguas residuales sino también a la preparación de agua potable.
9. - Un método espectrofotométrico para medir la actividad desnitrificante de la cepa mutante Paracoccus denitrificans de la reivindicación 1, caracterizado porque comprende las etapas de:
(a) generar anaerobiosis por consumo respiratorio del oxígeno, para lo cual, una celda de anaerobiosis se llena con 1 mi de un amortiguador de reacción, posteriormente se añaden aproximadamente 300 μg de membranas invertidas de las bacterias concentradas a 40-50 mg de protefna por mi, y se agregan de 10 a 20 mM (de un stock de 500-600 mM) de succinato, la celda se sella bien y se incuba por espacio de 15 minutos a una temperatura de entre 30°C y 45°C, al término de dicho tiempo se agregan 10 mM de malonato (de un stock de 4M);
(b) confirmar la anaerobiosis por línea basal; una vez que se ha consumido todo el oxígeno, se añaden 10 mM de un inhibidor de la succinato-deshidrogenasa para detener la respiración por el complejo II respiratorio, posteriormente se añaden 0.3 mM de NADH (de un stock de NADH 300 mM) cuya oxidación se va a acoplar directamente a la reducción de un nitrato (el cual se añade en la siguiente etapa) por medio del consumo del NADH por el complejo I respiratorio o NADH deshidrogenasa; después de añadir el NADH y antes de añadir el nitrato en la siguiente etapa, se debe obtener una línea basal horizontal con un valor de absorbencia de entre 1.0 y 1.5 para que dicha absorbencia caiga dentro de los valores válidos para aplicar la ley de Lambert y Beer en cuanto a la proporcionalidad de la absorción dei NADH y la concentración del mismo;
(c) llevar a cabo la reacción de nitrato-reductasa anaerobia: una vez detenida la oxidación del succinato con malonato, se añaden 5 mM (de un stock de 1M) del nitrato que se selecciona del grupo que comprende nitrato de sodio, nitrato de magnesio, nitrato de potasio, para arrancar la reacción de nitrato-reductasa y se sigue de manera continua el curso temporal del consumo de NADH por la reducción del nitrato; y,
(d) calcular la actividad de nitrato-reductasa: se hacen los cálculos de actividad específica de la nitrato-reductasa tomando en cuenta la región lineal de la pendiente de decaimiento del NADH contra el tiempo, los cuales se obtienen como actividad específica (mmol/minXmg) como se describe arriba en la fase de cálculos de actividad de nitrato- reductasa, donde dichos cálculos se realizan por medio del coeficiente de extinción molar del NADH a una longitud de onda de 340 nm (6.22 en mM) y de acuerdo a la pendiente de la región lineal del decaimiento de la absorbencia a 340 nm (A3 0) en un paso de luz de la celda de reacción de 1 cm:
Nitrato reductasa (mmol/minXmg): dA340 dt=(dA340X1ml)/(6.22x1 cmXmg.pt.)
10. - El método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (a) el amortiguador de reacción preferiblemente consiste en pH 7.5 ajustado con MES 20 mM y sacarosa 250 mM (como soporte osmótico para las membranas).
11. - El método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (a) las bacterias son Paracoccus denitrifícans.
12. - El método espectrofotométrico de conformidad con la reivindicación 10, caracterizado además porque antes de comenzar la reacción de desnitrificación se genera una anaerobiosis total celdas de anaerobiosis, la cual se logra al llenar las celdas hasta el máximo volumen≈ 1ml, prácticamente sin dejar espacio entre la tapa de la celda y el volumen de reacción, y además se hace consumir todo el oxígeno del medio de reacción al activar la respiración aerobia de las membranas de Paracoccus denitrifícans con una alta concentración de succinato para que la cadena respiratoria aerobia consuma todo el oxigeno del volumen total de reacción de la celda.
13. - El método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (b) el inhibidor de la succinato-deshidrogenasa es malonato.
14. - El método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (b) el hecho de observar una Ifnea basal lo más aproximado a la horizontal confirma las condiciones anaerobiosis y que no hay presencia de NADH deshidrogenases alternas que interfieran con la actividad y que no estén acopladas a la nitrato-reductasa, la pendiente basal debe restarse posteriormente a la pendiente de consumo de NADH para obtener la velocidad de nitrato reductasa neta.
15. - Ei método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (c) el nitrato es nitrato de sodio.
16. - El método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (c) cuando se observe una línea basal prácticamente horizontal en la señal de absorbencia a 340 nm, se arranca la reacción de nitrato-reductasa acoplada directamente a la oxidación del NADH por el complejo I respiratorio, ya que la reacción se realiza en completa anaerobiosis, cada mol de NADH consumido corresponde a la reducción de una mol de nitrato convertido en nitrito conforme a la siguiente reacción:
Figure imgf000042_0001
17. - El método espectrofotométrico de conformidad con la reivindicación 9, caracterizado además porque en la etapa (d) para concretar el cálculo, se debe calcular la derivada de la absorbencia a 340 mm (dA340/dt), la cual es la pendiente de la región lineal de la gráfica del curso temporal del cambio absorbencia, de tal manera que para obtener la actividad específica de la nitrato-reductasa se debe medir la concentración de proteína de las membranas de la bacteria en este caso Paracoccus denitrificans para insertarla en la ecuación como la cantidad de proteína exacta en miligramos que se agregaron a la celda de reacción (mg.pt.), el resultado es la actividad específica de la preparación de membranas en nmoles de nitrato reducido por minuto por miligramo de proteína.
18. - El método espectrofotométrico de conformidad con las reivindicaciones 9 a 17, caracterizado además porque el método mide en tiempo real la actividad o metabolismo desnitrificante.
PCT/MX2018/000144 2017-12-15 2018-12-13 CEPA MUTANTE DE PARACOCCUS DENITRIFICANS (PdΔζ) CON ACTIVIDAD DESNITRIFICANTE INCREMENTADA, Y MÉTODO ESPECTROFOTOMÉTRICO PARA MEDIR EN TIEMPO REAL LA ACTIVIDAD DESNITRIFICANTE WO2019117698A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2017016448A MX2017016448A (es) 2017-12-15 2017-12-15 Cepa mutante de paracoccus denitrificans (pd??) con actividad desnitrificante incrementada, y metodo espectrofotometrico para medir en tiempo real la actividad desnitrificante.
MXMX/A/2017/016448 2017-12-15

Publications (2)

Publication Number Publication Date
WO2019117698A2 true WO2019117698A2 (es) 2019-06-20
WO2019117698A3 WO2019117698A3 (es) 2019-08-08

Family

ID=66819020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2018/000144 WO2019117698A2 (es) 2017-12-15 2018-12-13 CEPA MUTANTE DE PARACOCCUS DENITRIFICANS (PdΔζ) CON ACTIVIDAD DESNITRIFICANTE INCREMENTADA, Y MÉTODO ESPECTROFOTOMÉTRICO PARA MEDIR EN TIEMPO REAL LA ACTIVIDAD DESNITRIFICANTE

Country Status (2)

Country Link
MX (1) MX2017016448A (es)
WO (1) WO2019117698A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292789A (zh) * 2021-12-31 2022-04-08 青岛蔚蓝赛德生物科技有限公司 一种具有反硝化和除磷功能的副球菌及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292789A (zh) * 2021-12-31 2022-04-08 青岛蔚蓝赛德生物科技有限公司 一种具有反硝化和除磷功能的副球菌及其应用

Also Published As

Publication number Publication date
WO2019117698A3 (es) 2019-08-08
MX2017016448A (es) 2019-06-17

Similar Documents

Publication Publication Date Title
Vergara et al. Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment
Kotsyurbenko et al. Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain
Ohmura et al. Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans
Ward et al. Nitrification
Tzing et al. Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium
Rowe et al. Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli
John et al. The bioenergetics of Paracoccus denitrificans
Poock et al. Respiratory detoxification of nitric oxide by the cytochromec nitrite reductase of Escherichia coli
Kendall et al. Hemerythrins in the microaerophilic bacterium C ampylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage
Valentine Bacterial ferredoxin
Phelan et al. A Growth advantage for microcystin production by Microcystis PCC7806 under high light 1
Weerakoon et al. The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology
Carlsen et al. Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath)
Vine et al. Unresolved sources, sinks, and pathways for the recovery of enteric bacteria from nitrosative stress
Kwiatkowski et al. Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4. 3
Dimroth et al. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH: quinone oxidoreductase of Klebsiella pneumoniae
McGrath et al. Intracellular accumulation of polyphosphate by the yeast Candida humicola G-1 in response to acid pH
Ferenci Carbon monoxide-stimulated respiration in methane-utilizing bacteria
Yamazaki et al. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT
De Luca et al. Cloning, characterization and anion inhibition studies of a new γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis
Zhilina et al. Fuchsiella ferrireducens sp. nov., a novel haloalkaliphilic, lithoautotrophic homoacetogen capable of iron reduction, and emendation of the description of the genus Fuchsiella
Kirakosyan et al. Redox sensing by Escherichia coli: effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth
WO2019117698A2 (es) CEPA MUTANTE DE PARACOCCUS DENITRIFICANS (PdΔζ) CON ACTIVIDAD DESNITRIFICANTE INCREMENTADA, Y MÉTODO ESPECTROFOTOMÉTRICO PARA MEDIR EN TIEMPO REAL LA ACTIVIDAD DESNITRIFICANTE
Hayaishi My life with tryptophan—never a dull moment
El Alaoui et al. In vivo regulation of glutamine synthetase activity in the marine chlorophyll b-containing cyanobacterium Prochlorococcus sp. strain PCC 9511 (Oxyphotobacteria)

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889355

Country of ref document: EP

Kind code of ref document: A2