WO2019117482A1 - Highly absorptive resin and method for producing same - Google Patents

Highly absorptive resin and method for producing same Download PDF

Info

Publication number
WO2019117482A1
WO2019117482A1 PCT/KR2018/013917 KR2018013917W WO2019117482A1 WO 2019117482 A1 WO2019117482 A1 WO 2019117482A1 KR 2018013917 W KR2018013917 W KR 2018013917W WO 2019117482 A1 WO2019117482 A1 WO 2019117482A1
Authority
WO
WIPO (PCT)
Prior art keywords
linking
superabsorbent resin
resin
meth
cross
Prior art date
Application number
PCT/KR2018/013917
Other languages
French (fr)
Korean (ko)
Inventor
이혜민
손정민
김연수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180139102A external-priority patent/KR102566440B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/475,940 priority Critical patent/US11406963B2/en
Priority to JP2019536818A priority patent/JP7433047B2/en
Priority to CN201880005698.2A priority patent/CN110167997B/en
Priority to BR112019014971-6A priority patent/BR112019014971B1/en
Priority to EP18884837.8A priority patent/EP3540001B1/en
Publication of WO2019117482A1 publication Critical patent/WO2019117482A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof

Definitions

  • the present invention relates to a superabsorbent resin and a method for producing the same.
  • the present invention relates to a superabsorbent resin which not only exhibits excellent basic absorption performance but also exhibits improved absorption rate and liquid permeability, and a method for producing the same.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing moisture from about 500 to 1,000 times the weight of lanzai, and each developer can use SAM (Super Absorbent Material), AGM
  • SAM Super Absorbent Material
  • AGM Super Absorbent Material
  • the superabsorbent resin In recent years, as the demand for a thin diaper increases, the content of the fibrous material such as pulp in the diaper tends to decrease, and the proportion of the super-absorbent resin tends to increase relatively. Therefore, there is a need for the superabsorbent resin to combine the performance of the fiber material of the diaper. For this purpose, the superabsorbent resin must have a high absorption capacity as well as a high absorption rate and liquid permeability. 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the superabsorbent resin in order for the superabsorbent resin to exhibit the above-mentioned high liquid-permeability, it is basically necessary that the superabsorbent resin be retained in its shape even after the superabsorbent resin particles are absorbed and swollen to retain the voids between the particles and the particles. This is because the pores between the particles act as a flow path to ensure excellent liquid permeability of the superabsorbent resin. For this reason, in order to provide a highly water-permeable resin exhibiting improved permeability and other excellent physical properties, it is necessary that such an aqueous resin be produced to exhibit a higher gel strength through surface 10 crosslinking or the like.
  • the superabsorbent resin In order for the superabsorbent resin to exhibit a higher absorption rate, it is necessary to exhibit a porous structure having a large surface area and having a large number of micropores formed therein.
  • a highly absorbent resin having such a porous structure or the like has been produced by applying a foaming agent or the like.
  • surface cross-linking is uneven in the surface cross-linking after the pulverization or in the mixing of additives for improving the physical properties, In many cases.
  • liquid tube 20 is 0 when the ina common lowering other properties such as the ability to absorb.
  • the present invention is to provide a superabsorbent resin which exhibits not only superior absorption properties but also improved absorption rate and liquid permeability, and a method for producing the same.
  • a base resin powder comprising a first crosslinked polymer of an unsaturated monomer
  • the first crosslinkable polymer is formed on the base resin powder and the first crosslinked polymer comprises a surface crosslinking polymer comprising a second crosslinked polymer additionally crosslinked via a surface crosslinking agent,
  • the superabsorbent resin comprises 10% or more of superabsorbent resin particles having an aspect ratio defined by a shortest diameter / longest diameter of each superabsorbent resin particle of less than 0.5,
  • the present invention also relates to a method for producing a water-soluble ethylenically unsaturated monomer, which comprises crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups in the presence of a blowing agent and an internal cross-linking agent to form a hydrous gel polymer comprising the first cross-linked polymer;
  • BEST MODE FOR CARRYING OUT THE INVENTION a superabsorbent resin according to a specific embodiment of the present invention and a method for producing the same will be described in detail.
  • Constant &quot refers to including any and all components (or components) without limitation, and can not be construed as excluding the addition of other components (or components).
  • the present invention relates to a process for preparing a water-soluble ethylenically unsaturated monomer having at least partly neutralized acidic groups, 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the first cross-linked polymer comprises a second cross-linked polymer that is further crosslinked via a surface cross-linking agent
  • the superabsorbent resin comprises 10% or more of superabsorbent resin particles having an aspect ratio defined by a shortest diameter / longest diameter of each superabsorbent resin particle of less than 0.5,
  • the superabsorbent resin of the embodiment can be produced so that the base resin powder and the superabsorbent resin particles after the pulverization have a relatively small aspect ratio as the foam polymerization is carried out using a foaming agent or the like in the polymerization process, .
  • the proportion of the superabsorbent resin particles having an aspect ratio defined by the shortest diameter / longest diameter of the superabsorbent resin particles is 10% or more, or 10% to 60% or 10% to 50% As shown in FIG.
  • the superabsorbent resin of this embodiment has a higher Absorption rate and the like.
  • the superabsorbent resin of this embodiment can exhibit improved permeability and pressure absorbing ability as well as excellent absorption rate.
  • the improved liquid permeability and the like exhibited by the superabsorbent resin of this embodiment can be defined by the above range.
  • the superabsorbent resin of one embodiment can exhibit improved absorption rate and liquid permeability together with excellent basic absorption performance, It can be suitably applied to sanitary materials such as diapers having a thin thickness.
  • the superabsorbent resin of one embodiment will be described in more detail.
  • the "superabsorbent resin” referred to in the present specification refers to a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups; And a superabsorbent resin formed on the base resin powder, wherein the first crosslinked polymer comprises a surface crosslinked layer containing a second crosslinked polymer which is further crosslinked via a surface crosslinking agent.
  • the water-soluble ethylenically unsaturated monomer may be any monomer conventionally used in the production of a superabsorbent resin.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by the following Formula 1:
  • the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts of these acids.
  • acrylic acid or its salt is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a highly water-absorbent resin having improved water absorption.
  • the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2 - acryloylethanesulfonic acid, 2 - methacryloylethanesulfonic acid, 2-
  • (Meth) acryloylpropanesulfonic acid or an anionic monomer of 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salt;
  • the water-soluble ethylenically unsaturated monomer may have an acidic group and at least a part of the acidic group may be neutralized.
  • the monomer is partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like Can be used.
  • the neutralization degree of the monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the degree of neutralization may vary depending on the final properties. However, if the neutralization degree is too high, the neutralized monomer may precipitate and polymerization may not be smoothly proceeded. On the other hand, if the neutralization degree is too low, It can exhibit properties similar to elastic rubber which is difficult to handle.
  • the 'first crosslinked polymer' means that the water-soluble ethylenically unsaturated monomer described above is cross-linked in the presence of an internal crosslinking agent, and the 'base resin powder,' means a substance containing such a first crosslinked polymer.
  • the 'second crosslinked polymer' refers to a substance in which the first crosslinked polymer is additionally crosslinked via a surface crosslinking agent, and is thus formed on the base resin powder 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the surface cross-linking agent will be described later.
  • Such an implementation example super-absorbent resin it is, such a base resin powder and the super-absorbent resin particles according to the load of the base resin powder obtained by firing the polymerization as described above may be provided so as to have a relatively small aspect ratio.
  • the superabsorbent resin of one embodiment includes a plurality of superabsorbent resin particles, and the superabsorbent resin particles are defined, for example, by the shortest diameter / longest diameter of the superabsorbent resin particles on the basis of the total number of these superabsorbent resin particles 10% to 80%, or 10% to 70%, 10% to 60%, or 10% to 50% by number of the superabsorbent resin particles having an aspect ratio of less than 0.5 .
  • the aspect ratio of the base resin powder and the superabsorbent resin particles can be determined by analyzing each particle with an electron microscope, for example, as shown in Fig. 1, to calculate the shortest diameter (3) and the longest diameter , Whereby the aspect ratio of each base resin powder and the superabsorbent resin particles can be calculated. From the aspect ratio data of each particle thus calculated, the number ratio of particles having the aspect ratio of less than 0.5 can be calculated. For reference, it is confirmed that the aspect ratio of the base resin powder and the superabsorbent resin particles are equal to each other.
  • the superabsorbent resin of one embodiment contains particles having a small aspect ratio at a certain level or more, many fine pores can be formed between the base resin powder and the superabsorbent resin particles.
  • a surface cross-linked layer is formed on such porous particles, moisture can be absorbed at a high rate at a high rate between these micropores, so that the superabsorbent resin of one embodiment can exhibit a faster absorption rate and absorption performance have.
  • the superabsorbent resin of one embodiment described above is excellent in basic absorption under pressure or no pressure drop, absorption rate, and liquid permeability, Absorption can be defined by physical properties such as the absorption speed of 81, 30 seconds, or surface tension.
  • the superabsorbent resin of one embodiment has a centrifugal separation capacity (01 (:) of 30 to 30 minutes for physiological saline (0.9 weight% aqueous sodium chloride solution)
  • the centrifugal separation capability (1 (:) range defines the excellent zero pressure drop absorption performance exhibited by the superabsorbent resin in one embodiment 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the centrifugal separation performance (1 (:) of the physiological saline solution can be calculated by the following equation 1 after absorption of the superabsorbent resin into physiological saline over 30 minutes:
  • ⁇ 1 is the weight measured after dehydrating the nonwoven fabric bag with no high water-based resin at room temperature for 30 minutes in physiological saline solution for 30 minutes, then centrifuging at 250 (3 minutes for 3 minutes,
  • ⁇ ⁇ 2 (poe is a weight that is set after the impregnation and then in physiological saline for 30 minutes using a centrifuge dewatering 3 minutes at 250 (the third non-woven fabric bag into the superabsorbent polymer at room temperature.
  • the superabsorbent resin according to one embodiment has a pressure absorption capacity (positive) of 1 to 21 hours in physiological saline (0.9 weight% aqueous solution of sodium chloride) 21.5 to .
  • This pressure absorption capacity! 1 ) range can define the excellent pressure-absorbing performance exhibited by the superabsorbent resin of one embodiment.
  • ⁇ ⁇ () (is) is the initial weight (is) of godop water-based resin
  • ⁇ ⁇ 3 (is) is the sum total of unit weight that can weight the gorop water-based resin.
  • ⁇ 4 is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing the physiological saline solution into the superabsorbent resin for 1 hour under a load (0.7 to 81 ).
  • the superabsorbent resin of one embodiment has the centrifugal separation ability (01 (:) Absorbing ability (AUP)
  • the superabsorbent resin can have an absorbency of 46 to 63 g / g, as defined by the following formula 1, or 60 g / g of 47:
  • CRC represents centrifugal separation capacity for 30 minutes against physiological saline (0.9 weight% aqueous sodium chloride solution) of the above superabsorbent resin, and represents the maintenance performance calculated as the above-mentioned formula 1,
  • the AUP is the pressure absorption capacity for 0.7 hours under physiological saline (0.9 weight% sodium chloride aqueous solution) of the above superabsorbent resin at 0.7 psi for 1 hour,
  • the superabsorbent resin of one embodiment exhibits excellent absorption performance such as basic absorbability and pressure-absorptive / retaining ability under pressure, and can be suitably used for various sanitary materials.
  • the superabsorbent resin of one embodiment has a flow-inducibility (SFC, l (r 7 cm 3 s / g) of 30 (l (T 7 cm 3 _s / g) of physiological saline (aqueous solution of sodium chloride of 0.5 wt% ) can be less than, or 35 (10 7 cm 3 s / g) or more, or 40 to 150 (10 W s / g) , or 42 to 130 (. 1 (T 7 cm 3, s / g).
  • SFC, l (r 7 cm 3 s / g) of 30 (l (T 7 cm 3 _s / g) of physiological saline (aqueous solution of sodium chloride of 0.5 wt% ) can be less than, or 35 (10 7 cm 3 s / g) or more, or 40 to 150 (10 W s / g) , or 42 to 130 (. 1 (T 7 cm 3, s / g).
  • the physiological saline flow inducibility can be measured and calculated according to methods well known to those skilled in the art, for example, the methods disclosed in columns 54 to 59 of U.S. Patent No. 5562646.
  • the superabsorbent resin includes a base resin powder that maintains a high gel strength, and surface crosslinking proceeds under specific conditions therefor, so that the superabsorbent resin uniformly includes a surface crosslinked layer having excellent strength, , Thereby exhibiting improved physiological saline flow conductivity (SFC) and excellent liquid permeability.
  • SFC physiological saline flow conductivity
  • the superabsorbent resin of one embodiment is manufactured / provided using a surface cross-linking liquid or the like having a low surface tension described later, the surface tension of the superabsorbent resin is 60 to 75 mN / m or 60 to 73 mN / m.
  • This surface tension may, for example, a surface tension meter at 23 ° C costume on ⁇ 2 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the high surface tension of the water-absorbent resin may be a beam SAT, pressure absorption capacity, whole liquid as is that can evaluate the leakage of urine (1 to 1: ⁇ ) of the diaper including the gotop aqueous resin with properties that are separated scale.
  • the surface tension refers to the surface tension measured by swelling the superabsorbent resin in the brine, and when the surface tension of the superabsorbent resin is low, there is a high possibility that the urine leaks from the diaper or the like manufactured using the same.
  • the superabsorbent resin of one embodiment it is possible to produce a high-quality sanitary article by reducing the possibility of leaking by having an appropriate range of surface tension while maintaining high liquid permeability.
  • the surface tension of the superabsorbent resin is excessively low, a phenomenon of urine leakage, that is, rewet, may be increased.
  • the surface tension is excessively high, the surface crosslinked layer may be unevenly formed, have.
  • the superabsorbent resin of the above-mentioned one embodiment is swelled under 0.3 pressure condition by physiological saline inflowed through the mesh 1111 of the lower part of the cylindrical cylinder of about 0.16 ⁇ , / 111111, or 1.7111111 / 111 to 3.0111111 / 1111, or 1.801111 / 111111 to 2.6111111 / 111111.
  • Such a 30 second absorption rate can be obtained by changing the height variation of the rheometer upper plate with the volume expansion of the superabsorbent resin Can be measured and calculated as a value divided by the absorption time (30 seconds).
  • the superabsorbent resin exhibits a high gel strength and hence excellent liquid permeability , the particle distribution during the production process is controlled and the porous structure is formed therein. Therefore, the superabsorbent resin has an excellent absorption rate defined by the above- . Therefore, the superabsorbent resin can be preferably used in sanitary materials having a reduced content of fibrous material such as pulp.
  • the first crosslinked polymer contained in the base resin powder is selected from the group consisting of trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di Acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butane diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • (Meth) acrylate triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri
  • a second internal crosslinking agent based on allyl (meth) acrylate the monomer may be a cross-linked polymer.
  • the superabsorbent resin of one embodiment can maintain a high gel strength even after proceeding with gel pulverization and pulverization, and accordingly, the liquid permeability and the pressure- Lt; / RTI >
  • the superabsorbent resin may include a cross-linked structure mediated by the above-mentioned plural kinds of surface cross-linking agents in the surface cross-linked layer.
  • the surface cross-linking solution containing the surface cross-linking agent and the liquid medium may further contain a surfactant, a predetermined polycarboxylic acid-based copolymer, a surfactant, or an aliphatic alcohol having 6 or more carbon atoms.
  • a surfactant a predetermined polycarboxylic acid-based copolymer, a surfactant, or an aliphatic alcohol having 6 or more carbon atoms.
  • the surface tension of the surface cross-linking liquid is achieved in a specific range relatively low by the use of the plural kinds of surface cross-linking agent and optionally the additional components contained in the surface cross-linking liquid, so that the high- Manufactured and supplied . have.
  • the superabsorbent resin of one embodiment described above may have a particle diameter of 150 to 850 II. More specifically, at least 95% by weight of the base resin powder and the superabsorbent resin including the base resin powder have a particle diameter of 150 to 850, and the fine powder having a particle diameter of less than 150_ may be less than 5% by weight. At this time, the particle size of the superabsorbent resin can be defined as the longest diameter of the superabsorbent resin particles already mentioned above.
  • the degree of foaming is increased by using a foaming agent or the like, 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • Such a preparation method comprises crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acid groups in the presence of a blowing agent, a surfactant and an internal cross-linking agent to form a hydrogel polymer comprising a first cross-linking polymer;
  • a surface cross-linking agent comprising a surface cross-linking agent and a liquid medium and having a surface tension of 30 to 50 11/111 at a temperature of 20 to 25 ⁇ .
  • the manufacturing method of another embodiment includes forming a hydrogel polymer by cross-linking polymerization.
  • a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator in the presence of an internal cross- Or photopolymerization to form a hydrogel polymer.
  • the water-soluble ethylenically unsaturated monomer contained in the adduct monomer composition is as described above.
  • the monomer composition may include a polymerization initiator generally used in the production of a superabsorbent resin.
  • a polymerization initiator generally used in the production of a superabsorbent resin.
  • a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method.
  • a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds, so that a thermal polymerization initiator can be further included.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyldimethyl Benzyl
  • acylphosphine Dimethyl Ketal, acyl phosphine, and alpha-aminoketone may be used.
  • acylphosphine a commercially available lucyrin TPO, i.e. 2,4,6-trimethyl-benzoyl-thiimethyl phosphine oxide, can be used. have.
  • a variety of photopolymerization initiators are disclosed in Reinhold Schwalm, UV Coatings: Basics, Recent Developments and New Application, Elsevier 2007, page 115, which is incorporated herein by reference.
  • the thermal polymerization initiator at least one compound selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • a persulfate-based initiator sodium persulfate (Na 2 S 208), potassium persulfate (K 2 S 2 O 8), ammonium persulfate (NH 4) 2 S 208 ) , And the like.
  • azo (Azo) based initiators include 2,2-azo bis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2 _ amidinopropane) dihydrochloride), 2, 2-azobis- (N, N-dimethylene isobutyramidine dihydrochloride, 2- (carbamoylazo) isobutylonitrile, 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride, 2, 2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2 -azobis [2- (2 -imidazolin_ 2- yl) propane] dihydrochloride, and 4,4-azobis- (4-cyanovaleric acid). More thermal polymerization initiators are described in the Odian book, " Principle of Polymerization (Wiley, 1981), " page 203, which is incorporated herein by reference.
  • the polymerization initiator may be added at a concentration of about 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may become slow and the monomer remaining in the final product may be extracted in a large amount. Conversely, when the concentration of the polymerization initiator is excessively high, The physical properties of the resin may be deteriorated such that the content of the component for the water content becomes high and the pressure absorption ability becomes low, which is not preferable.
  • the monomer composition contains a crosslinking agent ("internal crosslinking agent ") for improving the physical properties of the resin by polymerization of the water-soluble ethylenically unsaturated monomer.
  • internal crosslinking agent &quot for improving the physical properties of the resin by polymerization of the water-soluble ethylenically unsaturated monomer.
  • Surface cross-linking agent &quot for improving the physical properties of the resin by polymerization of the water-soluble ethylenically unsaturated monomer.
  • the internal cross-linking agent than previously described two species for example, polyol poly (meth) acrylate-based first internal crosslinking agent, and allyl (meth) acrylate-based second with an internal cross-linking agent Can be used to obtain a hydrogel polymer.
  • the first internal crosslinking agent may be selected from the group consisting of trimethylol propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) (Meth) acrylate, propylene glycol di (meth) acrylate, butane diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (Meth) acrylates such as ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate and pentaerythritol tetraacrylate At least one selected from the group consisting of Can be used, wherein the second internal cross-linking agent, allyl methacrylate or
  • the total content of the first and second internal crosslinking agents may be 0.01 to 2 parts by weight or 0.05 to 1.8 parts by weight based on 100 parts by weight of the monomer composition including the internal crosslinking agent and the monomer .
  • the first internal cross-linking agent and the second internal cross-linking agent may be used in a weight ratio of 1: 1 to 10: 1. In this way, while controlling the composition such as the kind and content range of the internal cross-linking agent, It is possible to more effectively obtain a superabsorbent resin that meets the physical properties of one embodiment. . However, if the content of the internal crosslinking agent is excessively large, the basic absorption performance of the superabsorbent resin may be deteriorated.
  • the above-mentioned monomer composition further includes a foaming agent.
  • a foaming agent In the presence of such a foaming agent, as the polymerization process proceeds to a foaming polymerization process, a large number of particles having a low aspect ratio can be formed, and base resin powder and superabsorbent resin particles having the above-mentioned particle distribution can be obtained.
  • the foaming agent foams during polymerization to form pores in the hydrogel polymer to form a large number of particles having a small aspect ratio and to increase the surface area.
  • the foaming agent include carbonates such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, Calcium carbonate, calcium bicarbonate, magnesium bicarbonate or magnesium carbonate can be used.
  • the blowing agent may be added at a concentration of about 0.01 to about 1.0 part by weight, or about 0.03 to about 0.7 part by weight, or about 0.05 to about 0.6 part by weight based on 100 parts by weight of the acrylic acid monomer.
  • the monomer composition may further include a foam stabilizer to optimize pore formation by the blowing agent.
  • a foam stabilizer serves to uniformly distribute bubbles in the entire region of the polymer while maintaining the shape of the bubbles formed by the foaming agent, thereby more effectively forming low aspect ratio particles and increasing the surface area of the polymer.
  • any component previously used as a foam stabilizer in the foaming polymerization of a superabsorbent resin may be used.
  • a cationic, anionic or nonionic surfactant may be used.
  • the bubble stabilizer may be added at a concentration of 0.001 part by weight to 0.1 part by weight based on 100 parts by weight of the carboxylic acid monomer.
  • the monomer composition may further contain additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • Such a monomer composition can be prepared in the form of a solution in which a raw material is dissolved in a solvent, such as the above-mentioned monomer, polymerization initiator, internal crosslinking agent, and the like.
  • usable solvents may be used without limitation of the constitution as long as they can dissolve the above-mentioned raw materials.
  • the solvent include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylenes, butyrolactone, carbitol, methyl cellosolve acetate, Methyl acetamide, or a mixture thereof may be used.
  • the formation of the hydrogel polymer through polymerization of the monomer composition can be carried out by a conventional polymerization method, and the process is not particularly limited.
  • the polymerization method is divided into thermal polymerization and photopolymerization depending on the type of polymerization energy source.
  • the polymerization may proceed in a reactor having a stirring axis such as a kneader, And may proceed in a reactor equipped with a movable conveyor belt when it is advanced.
  • the hydrogel polymer may be obtained by charging the monomer composition into a reactor such as a kneader equipped with a stirring shaft, supplying hot air thereto, or heating the reactor by heating.
  • a reactor such as a kneader equipped with a stirring shaft
  • the hydrogel polymer discharged to the reactor outlet depending on the shape of the stirring shaft provided in the reactor can be obtained as particles of several millimeters to several centimeters.
  • the obtained hydrogel polymer can be obtained in various forms depending on the concentration and the injection rate of the monomer composition to be injected, and usually a gel polymer having a particle diameter of 2 to 50 mm (weight average) can be obtained.
  • a hydrogel polymer in the form of a sheet can be obtained.
  • the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected. In general, the thickness of the sheet is adjusted to 0.5 to 10 cm in order to ensure uniform polymerization of the entire sheet, desirable.
  • the hydrogel polymer whose water content is controlled is gel-pulverized.
  • the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo / grinder, a rotary pulverizer selected from the group of pulverizing machines consisting of a cutter mill, a cutter mill, a disc mill, a shred crusher, a crusher, a chopper and a disc cutter. , But it is not limited to the above example.
  • the gelation of the hydrogel polymer may be performed such that the diameter of the hydrogel polymer is from 0.01 mm to 50 mm, or from 0.01 mm to 30 mm. That is, in order to increase the drying efficiency, Be pulverized into particles 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the hydrogel polymer is gel-pulverized with 0.01 or more particles .
  • hydrogel polymer may stick to the surface of the gel pulverizer.
  • steam, water, surfactants, anti-aggregation agents for example, Etc
  • Persulfate-based initiators, azo initiators, hydrogen peroxide, thermal polymerization initiator, an epoxy-based crosslinking agent, a diol Example 01) class of cross-linking agent, two functional groups, or three cross-linking agent of the first functional group containing a crosslinking agent, a hydroxyl group which is a functional group or more acrylate functional groups Etc. may be added to the hydrogel polymer.
  • the hydrogel polymer can be dried.
  • the drying may be performed at a temperature of 120 to 250 ° C, preferably 140 to 200 ° C, more preferably 150 to 200 ° C.
  • the drying temperature may be defined as the temperature of the heating medium supplied for drying or the temperature inside the drying reactor including the heating medium and the polymer in the drying process.
  • the drying temperature is preferably 1201 or more. If the drying temperature is higher than necessary, the surface of the hydrogel polymer is excessively dried, And the physical properties of the final resin may be deteriorated. To prevent this, the drying temperature is preferably 2501 or less.
  • the drying time in the drying step is not particularly limited, but may be adjusted to 20 to 90 minutes at the drying temperature in consideration of process efficiency and physical properties of the resin.
  • the drying can be performed using a conventional medium, for example, by supplying hot air to the pulverized hydrogel polymer, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like.
  • drying is preferably performed so that the dried polymer has a water content of 0.1 to 10% by weight. That is, when the water content of the dried polymer is less than 0.1% by weight, the increase in the manufacturing cost due to excessive drying and the increase Degradation may occur, and when the water content of the dried polymer is more than 10% by weight, it is undesirable because the dried polymer adheres in the subsequent process and may interfere with the transport path.
  • the dry polymer can be pulverized, whereby the particle size and surface area of the polymer can be adjusted to an appropriate range.
  • the pulverization can be carried out such that the particle diameter of the pulverized polymer is from 150 to 850.
  • the particle diameter at this time can also be defined as the maximum diameter of each polymer particle and is also the same hereinafter.
  • Examples of the pulverizer that can be used in this case include a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, a jog mill, Can be used.
  • the step of selectively classifying particles having a particle diameter of 150 to 850 in the polymer particles obtained through the above-mentioned pulverization step may be further performed.
  • the base resin powder after the base resin powder is produced through the above-described classification step, the base resin powder can be cross-linked by surface heat treatment to form the superabsorbent resin particles in the presence of the surface cross-linking agent.
  • the surface cross-linking induces a cross-linking reaction on the surface of the base resin powder in the presence of a surface cross-linking agent.
  • a surface modifying layer surface cross-linking layer
  • a surface cross-linking liquid containing a surface cross-linking agent and a liquid medium and having a surface tension of 25 to 50 mN / m or 30 to 47 mN / m at a temperature of 20 to 25C The surface cross-linking can proceed.
  • the surface crosslinking liquid having a relatively low surface tension proceeds uniformly despite the relatively nonuniform particle shape (including a large number of particles having a low aspect ratio), and excellent crosslinking and strength
  • the surface cross-linking layer can be uniformly formed, and the pressure absorption ability, liquid permeability, etc. with respect to the absorption ability of the superabsorbent resin can be further improved.
  • the surface tension is excessively low, the retention of sanitary articles may increase, and when a surface cross-linking liquid having a high surface tension is used, the surface cross-linking layer is formed unevenly 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the physical properties such as the pressure absorption ability and the liquid permeability as compared with the absorption ability can be lowered.
  • the surface cross-linking agent and surface cross-linking solution including the liquid medium is optionally a surfactant, to the polycarboxylic acid-based copolymer or the carbon atoms having a repeating unit represented by the formula (I) and formula (I) 6 or more aliphatic alcohol, and the like.
  • a surfactant to the polycarboxylic acid-based copolymer or the carbon atoms having a repeating unit represented by the formula (I) and formula (I) 6 or more aliphatic alcohol, and the like.
  • II 2 and II 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms
  • 110 is an oxyalkylene group having 2 to 4 carbon atoms
  • M 1 is hydrogen or a monovalent metal or a nonmetal ion
  • -000 - an alkyloxy group having 1 to 5 carbon atoms or an alkyldioxy group having 1 to 5 carbon atoms
  • III is an integer of 1 to 100, 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • I) is an integer of 1 to 150, and when I) is 2 or more, two or more repeating units - 110 - may be the same or different from each other.
  • a plurality of alkylene carbonates having 2 to 6 carbon atoms may be used as the surface cross-linking agent. More suitable examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, trimethylene carbonate, glycerol carbonate .
  • the content of the surface cross-linking agent may be appropriately controlled according to the type of cross-linking agent, reaction conditions, etc., and preferably 0.001 to 5 parts by weight based on 100 parts by weight of the base resin powder. If the content of the surface cross-linking agent is too low, the surface modification may not be performed properly, and the physical properties of the final resin may be deteriorated. On the contrary, when an excessive amount of surface cross-linking agent is used, the basic absorption ability of the resin may be deteriorated due to excessive surface cross-linking reaction, which is not preferable.
  • the surface cross-linking solution may further contain a surfactant.
  • the type of the surface active agent is not particularly limited, and the surface of the liquid medium contained in the cross- Considering the kind and the like, a suitable nonionic surfactant, anionic surfactant or cationic surfactant can be selected and used. This makes it possible to further control the surface tension of the surface cross-linking liquid to the above-mentioned range.
  • the surface cross-linking solution may further comprise a polycarboxylic acid-based copolymer having the repeating unit represented by the formula (I-k) and the repeating unit represented by the formula (I-1).
  • a polycarboxylic acid-based copolymer having the repeating unit represented by the formula (I-k) and the repeating unit represented by the formula (I-1).
  • Such a polycarboxylic acid-based copolymer is known from JP-A-1684649, and its production method and the like are obvious to those skilled in the art.
  • the surface tension of the surface cross-linking solution may be added to the control by the above-mentioned range .
  • the liquid medium in the surface cross-linking liquid may further contain an aliphatic alcohol having 6 or more carbon atoms together with a polar solvent such as water or alcohol.
  • the aliphatic alcohols having 6 or more carbon atoms may be exemplified by C6-C20 primary, secondary, or tertiary alcohols, preferably C6-C16 primary alcohols. More preferably at least one selected from the group consisting of stearyl alcohol, lauryl alcohol, and cetyl alcohol may be used, but the present invention is not limited thereto.
  • the content of the aliphatic alcohol having 6 or more carbon atoms is about 0.001 to about 2 parts by weight, or about 0.01 to about 1 part by weight, preferably about 0.01 to about 1 part by weight, based on 100 parts by weight of the pulverized polymer, i.e., By weight, more preferably about 0.05 to about 0.8 part by weight may be used.
  • the surface cross-linking liquid may further contain, as a liquid medium, water and / or a hydrophilic organic solvent (for example, an alcohol-based polar organic solvent such as methanol) together with the components described above.
  • the content of water and the hydrophilic organic solvent is preferably in the range of 100 parts by weight to 100 parts by weight for the purpose of inducing even dispersion of the surface cross-linking liquid and preventing the aggregation of the base resin powder and optimizing the surface penetration depth of the surface cross- It can be applied by adjusting the addition ratio.
  • the method of adding the above-mentioned surface cross-linking solution to the base resin powder is not particular limitation.
  • surface cross-linking solution as a base resin powder were placed in the reaction tank mix and a method of surface cross-linking aekreul injection in the base resin powder, mixed and continuously supplied to a base resin powder and the surface cross-linking solution in the mixer being continuously operated at Method or the like can be used.
  • the surface cross-linking solution is 140 ° for the addition of a base resin powder C to 200 ° C, or 5 minutes to 60 minutes from the reaction up to a temperature of 170 ° C to 195 ° C, or 10 minutes to 50 minutes, or 20 minutes to
  • the surface cross-linking reaction can proceed for 45 minutes. More specifically, the surface cross-linking step is carried out by raising the temperature to the reaction maximum temperature over a period of at least 10 minutes at an initial temperature of 20 ° C to 130 ° C, or 40 ° C to 120 ° C, or 10 minutes to 30 minutes, And the heat treatment may be performed by maintaining the maximum temperature for 5 minutes to 60 minutes.
  • a superabsorbent resin suitably satisfying the physical properties of one embodiment can be produced more effectively.
  • the temperature raising means for the surface cross-linking reaction is not particularly limited.
  • a heating medium can be supplied, or a heating source can be directly supplied and heated.
  • the type of heat medium that can be used steam, hot air, hot fluid, or the like may be used, but the present invention is not limited thereto.
  • the temperature of the heat medium to be supplied may be determined by considering means of heating medium, So that it can be appropriately selected .
  • a heat source to be directly supplied there may be mentioned a heating method using electricity or a heating method using gas, but the present invention is not limited to the above example.
  • the superabsorbent resin obtained according to the above-described production method maintains excellent absorption performance such as water retention capacity and pressure absorption capacity, satisfies more improved liquid permeability and absorption rate, and can satisfy all the physical properties of one embodiment, It is possible to use suitably used raw materials, especially ultra-thin sanitary materials with reduced pulp content.
  • the superabsorbent resin according to the present invention can exhibit improved absorption rate and liquid permeability while maintaining excellent absorption performance, and can be preferably applied to sanitary materials such as diapers having a thinner thickness.
  • Fig. 1 is an electron micrograph showing an aspect ratio of the superabsorbent resin particles and a method for measuring the aspect ratio of the superabsorbent resin of the embodiment.
  • a continuous production apparatus comprising a polymerization process, a hydrogel pulverization process, a drying process, a pulverization process, a classification process, a surface cross-linking process, a cooling process, a classification process and a transportation process connecting each process was used .
  • a pulverizer (10 < (Having a perforated plate including a plurality of holes having a diameter of 1 ) and pulverized under respective conditions.
  • the hydrogel pulverized in the downstairs step 2 was dried in a drier capable of airflow transfer up and down.
  • a hot air of 180 psi was flown downward for 15 minutes so that the water content of the dried powder was about 2% or less , And flowed from above to downward for another 15 minutes to uniformly dry the hydrogel.
  • the resin dried in step 3 was pulverized by a pulverizer and classified to obtain a base resin having a size of 150 to 850 M M.
  • the base resin powder mixed with the surface cross-linking liquid was put into the surface cross-linking reactor and the surface cross-linking reaction was carried out.
  • the base resin powder It was confirmed that the temperature was gradually increased from the initial temperature in the vicinity, and after 30 minutes, the maximum reaction temperature of 1901: was reached. After reaching the maximum reaction temperature, additional reaction was carried out for 15 minutes, and a sample of the finally prepared superabsorbent resin was taken. After the surface cross-linking step, the particles were classified into standard ASTM standard mesh to obtain diameters of 150 to 850 Was prepared.
  • the base resin and the superabsorbent resin obtained by the above method were analyzed by electron micrograph (see Fig. 1, etc.), and the aspect ratio ( 3 / non-ratio) of each base resin powder and superabsorbent resin particle was calculated. As a result of the measurement, the ratio of particles having an aspect ratio of less than 0.5 among the base resin powder and the superabsorbent resin particles was confirmed to be about 10% by number.
  • Example 2
  • a superabsorbent resin of Example 2 was prepared in the same manner as in Example 1, except that 0.15 parts by weight of sodium hydrogencarbonate was used as a foaming agent.
  • the base resin / superabsorbent resin obtained in this manner was analyzed by electron microscope to determine the percentage (number%) of particles having an aspect ratio of less than 0.5 in all the base resin powder and superabsorbent resin particles. As a result of the measurement, it was confirmed that the particle ratio of the base resin powder and the superabsorbent resin particles having an aspect ratio of less than 0.5 was about 33% by number.
  • a superabsorbent resin of Example 3 was prepared in the same manner as in Example 1, except that 0.2 part by weight of sodium hydrogencarbonate was used as a foaming agent.
  • the base resin / superabsorbent resin obtained by this method was analyzed by electron microscope to determine the percentage (number%) of particles having an aspect ratio of less than 0.5 in all the base resin powder and superabsorbent resin particles.
  • the base resin powder and the high- Among the resin particles the proportion of particles having an aspect ratio of less than 0.5 was confirmed to be about 45% by number.
  • Example 4 The subsequent surface cross-linking step proceeded in the same manner as in Example 1 to prepare a high absorption constant of Example 3 having a particle diameter of from 150 to 850.
  • Example 4
  • the superabsorbent resin of Example 4 was prepared in the same manner as in Example 3 except that 0.02 g of polyoxyethylenesorbitan monopalmitate was added as a lubricant in the surface cross-linking liquid in Step 5.
  • Example 5
  • step 5 the aqueous resin of Example 5 was prepared in the same manner as in Example 3, except that 0.3 g of mono stearyl alcohol was added as a lubricant in the surface cross-linking solution.
  • Example 6
  • Example 7 The procedure of Example 1 was repeated except for adding 0.1 g of the polycarboxylic acid-based copolymer obtained in Synthesis Example 1 of Patent No. 1684649 as a lubricant in the surface cross-linking solution in Step 5, Resin.
  • Example 7 The procedure of Example 1 was repeated except for adding 0.1 g of the polycarboxylic acid-based copolymer obtained in Synthesis Example 1 of Patent No. 1684649 as a lubricant in the surface cross-linking solution in Step 5, Resin.
  • Example 7 The procedure of Example 1 was repeated except for adding 0.1 g of the polycarboxylic acid-based copolymer obtained in Synthesis Example 1 of Patent No. 1684649 as a lubricant in the surface cross-linking solution in Step 5, Resin.
  • Example 7 The procedure of Example 1 was repeated except for adding 0.1 g of the polycarboxylic acid-based copolymer obtained in Synthesis Example 1 of Patent No. 1684649 as a lubricant in the
  • a superabsorbent resin of Example 7 was prepared in the same manner as in Example 3, except that 1 g of trimethylene carbonate in 1 g of surface crosslinking solution and 1 g of propylene carbonate in 4 g of the compound in Step 5 were used, . Comparative Example 1
  • the base resin of Comparative Example 1 was prepared in the same manner as in Example 1, except that sodium hydrogencarbonate was not used as a foaming agent in Step 1. 2019/117482 1 »(: 1 ⁇ ⁇ 2018/013917
  • the base resin thus obtained was analyzed by electron microscope to determine the percentage (number%) of particles having an aspect ratio of less than 0.5 in all of the base resin powder. As a result of the measurement, it was confirmed that the proportion of particles having an aspect ratio of less than 0.5 in the base resin powder was about 5% by number. Comparative Example 2
  • Ethylene carbonate. 1 is a base resin powder 100 parts by weight of manufacture to prepare a super-absorbent resin of hagoneun Comparative Example 1 For comparison with the same 3 ⁇ 4-up 2, except for using a surface cross-linked liquid 5 for mixing into the water 4 ⁇ .
  • the surface tension of this surface cross-linking solution is 51 1! / 111. & Lt; / RTI & gt ; Comparative Example 3
  • the centrifugal separation performance was measured according to EDANA WSP 241.3 of the European Disposables and Nonwovens Association (EDANA) standard.
  • the superabsorbent resin W 0 ( g, about 0.2 g) And sealed in a bag made of polyethylene terephthalate and then immersed in physiological saline solution of 0.9 wt% aqueous solution of sodium chloride at room temperature. After 30 minutes, the envelope was centrifuged and the water was drained at 250G for 3 minutes, after which the mass of the envelope, W 2 ( g), was determined. In addition, after the same operation was performed without using a high viscosity aqueous resin, the mass at that time was measured. Using each of the masses thus obtained, CRC (g / g) was calculated according to the following equation (1) to confirm the maintenance performance.
  • Absorbency under pressure was immediately applied to the superabsorbent resins of Examples and Comparative Examples according to the method of European Disposables and Nonwovens Association standard EDANA WSP 242.3.
  • a 400 mesh wire mesh made of stainless steel was attached to the bottom of a plastic cylinder having an inner diameter of 60 mm.
  • the resin W 0 ( g, 0.90 g) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was uniformly sprayed on a iron mesh under the conditions of a temperature of 23 ⁇ 2 ° C and a relative humidity of 45%
  • the piston which can uniformly apply a load of 4.83 kPa (0.7 psi) on it, is slightly smaller than the outer diameter of 60 mm, so there is no gap between the inner wall of the cylinder and the up and down movement is not disturbed.
  • the weight W 3 ( g) of the device was measured.
  • a glass filter having a diameter of 125 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm, and physiological saline composed of 0.90% by weight sodium chloride was made to have the same level as the upper surface of the glass filter.
  • the above measuring apparatus was put on a glass filter, and the liquid was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight w 4 ( g) immediately.
  • W 0 ( g) is the initial weight (g) of the water absorbent resin
  • W 3 ( g) is the sum of the weight of the top water-based resin and the weight of the device capable of applying a load to the high-water-
  • W 4 ( g) is the incorporation of the weight of the superabsorbent resin and the weight of the device capable of imparting a load to the superabsorbent resin after absorbing physiological saline into the superabsorbent resin for one hour under a load of 0.7 psi.
  • the 30 second absorption rate and porosity can be measured by swelling about 0.16 g of superabsorbent resin under physiological saline infused through the mesh under the cylindrical cylinder under 0.3 psi pressure. Measuring the height change of the rheometer top plate with the volume expansion of the superabsorbent resin in real time and instantaneously accelerating and decelerating the 30 second damping rate through the value of the top plate height at 30 seconds divided by the number of top times (30 seconds) Can be calculated.
  • the porosity is calculated by calculating the total volume (final absorption height * the area under the cylindrical cylinder) inside the cylinder when swelling of the superabsorbent resin is completed, and subtracting the physiological saline absorption of the superabsorbent resin measured by the water content meter from this value .
  • the surface tension of the surface cross-linking liquid was measured using a surface tension meter Kruss Kl / KlOO, in which the surface cross-linking liquid was pipetted and transferred to another clean cup.
  • the surface tension of the superabsorbent resin was adjusted to 150 g of physiological saline consisting of 0.9 wt% sodium chloride in a 250 mL beaker, followed by magnetic bar stirring. 1.0 g of the superabsorbent resin was added to the stirring solution and stirred for 3 minutes. Stirring was stopped, and the swollen superabsorbent resin was allowed to stand on the bottom for at least 15 minutes.
  • Examples 1 to 7 was found to have excellent tube-component refers to that meeting the predetermined particle size distribution, and defined as 35 (_10_ 7 11 3 3 / above.
  • the Examples 1 to 7 are absorbed It was confirmed that not only the basic absorption performance defined by the degree of penetration, but also the liquid permeability, the particle distribution was optimized, and the absorption rate defined by the 30 second absorption rate was also excellent.

Abstract

The present invention relates to: a highly absorptive resin that not only has an excellent basic absorption capacity, but also exhibits a further enhanced absorption rate and liquid permeability and the like; and a method for producing same. The highly absorptive resin includes: a base resin powder including a cross-linked polymer of aqueous ethylene-based unsaturated monomers that include acid groups, at least a portion of which are neutralized; and a surface cross-linked layer which is formed on the base resin powder and obtained by further cross-linking the base resin powder via a surface cross-linking agent, wherein the highly absorptive resin includes in round numbers at least 10% of highly absorptive resin particles having an aspect ratio, defined as the shortest diameter/the longest diameter of each of the highly absorptive resin particles, of less than 0.5, and the SFC satisfies a certain range.

Description

【발명의 명칭】  Title of the Invention
고흡수성 수지 및 이의 제조방법 【기술분야】  TECHNICAL FIELD The present invention relates to a superabsorbent resin and a method for producing the same.
관련출원 (들)과의 상호인용 본출원은 2017년 12월 15일자한국특허 출왼제 10-2017-0173553호및 CROSS-REFERENCE TO RELATED APPLICATION (S) The present application claims priority from Korean Patent Application No. 10-2017-0173553, filed December 15, 2017,
2018년 11월 13일자 한국특허 출원 제 10-2018-0139102호에 기초한우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 기본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 흡수속도 및 통액성 등을나타내는 고흡수성 수지 및 이의 제조 방법에 관한 것이다. Claims the benefit of priority based on Korean Patent Application No. 10-2018-0139102 dated November 13, 2018, all of which are incorporated herein by reference in their respective Korean patent applications. The present invention relates to a superabsorbent resin which not only exhibits excellent basic absorption performance but also exhibits improved absorption rate and liquid permeability, and a method for producing the same.
【배경기술】  BACKGROUND ART [0002]
고듭수성 수지 (Super Absorbent Polymer, SAP)란자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material)등 각기 다른 이름으로 명명하고 있다.상기와같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제,및찜질용등의 재료로널리사용되고있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing moisture from about 500 to 1,000 times the weight of lanzai, and each developer can use SAM (Super Absorbent Material), AGM The above-mentioned superabsorbent resin has been put into practical use as a sanitary article, and nowadays, in addition to sanitary articles such as diapers for children, there are now various kinds of sanitary articles such as soil restorers for gardening, index materials for civil engineering and construction, , A freshness-retaining agent in the field of food distribution, and a material for fomentation.
가장많은경우에,이러한고흡수성 수지는기저귀나생리대 등위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수능을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를잘유지하여 우수한통액성 (permeability)을나타낼필요가있다.  In most cases, such superabsorbent resins are widely used in the field of diapers and sanitary napkins. For this purpose, it is necessary to exhibit a high absorption capacity for moisture and the like, In addition, there is a need to exhibit excellent permeability by absorbing water to keep its shape even in the state of volume expansion (swelling).
최근에는얇은기저귀에 대한요구가높아짐에 따라,기저귀 내의 펄프 등 섬유재의 함량이 감소하고, 상대적으로 고흡수성 수지의 비율이 증가하는 경향이 있다. 따라서, 기저귀의 섬유재가 담당하던 성능을 고흡수성 수지가 겸비할 필요성이 있으며, 이를 위하여 고흡수성 수지의 높은 흡수능은 물론 높은흡수속도및 통액성을가져야한다.특히,기저귀가얇아질수록,기저귀의 2019/117482 1»(:1^1{2018/013917 In recent years, as the demand for a thin diaper increases, the content of the fibrous material such as pulp in the diaper tends to decrease, and the proportion of the super-absorbent resin tends to increase relatively. Therefore, there is a need for the superabsorbent resin to combine the performance of the fiber material of the diaper. For this purpose, the superabsorbent resin must have a high absorption capacity as well as a high absorption rate and liquid permeability. 2019/117482 1 »(: 1 ^ {2018/013917
사용자인아기의 움직임에 따라기저귀에서 소변이 셀우려가증가하기 때문에, 고흡수성 수지에 대한 높은 흡수속도 등에 대한 요구는 증가하고 있는 실정이다. There is an increasing demand for a high absorption rate and the like for a superabsorbent resin because the fear of urination increases in a diaper due to the movement of a baby as a user.
한편, 고흡수성 수지가 상술한 높은 통액성을 나타내기 위해서는, 5 기본적으로 상기 고흡수성 수지 입자가 수분을 흡수하여 팽윤된 후에도 그 형태를 유지하여 입자와 입자사이의 공극이 유지될 필요가 있다. 이는 입자 사이의 공극이 유로 역할을하여 고흡수성 수지의 우수한통액성을담보할수 있기 때문이다. 이 때문에, 보다 향상된 통액성 및 기타 우수한 물성을 나타내는 고롭수성 수지를 제공하기 위해서는, 이러한 고를수성 수지가 표면 10 가교등을통해보다높은겔강도를나타내도록제조될필요가있다. On the other hand, in order for the superabsorbent resin to exhibit the above-mentioned high liquid-permeability, it is basically necessary that the superabsorbent resin be retained in its shape even after the superabsorbent resin particles are absorbed and swollen to retain the voids between the particles and the particles. This is because the pores between the particles act as a flow path to ensure excellent liquid permeability of the superabsorbent resin. For this reason, in order to provide a highly water-permeable resin exhibiting improved permeability and other excellent physical properties, it is necessary that such an aqueous resin be produced to exhibit a higher gel strength through surface 10 crosslinking or the like.
또, 상기 고흡수성 수지가 보다 높은 흡수속도를 나타내기 위해서는, 넓은 표면적을 가지며, 내부에 다수의 미세 기공이 형성된 다공성 구조 등을 나타낼 필요가 있다. 이에 이전부터 발포제 등을 적용하여 이와 같은 다공성 구조 등을 갖는 고흡수성 수지가 제조된 바 있다. 그러나, 이러한 고흡수성 15 수지는 분쇄 후에 입자의 형태 등이 불균일해질 우려가 크기 때문에, 분쇄 후의 표면 가교시 또는물성 향상을위한 첨가제 등의 혼합시에,표면 가교가 불균일하게 이루어지거나, 첨가제의 도포가 불균일하게 이루어지는 경우가 많다. 그 결과, 다공성 구조 등을 형성해 고흡수성 수지의 높은 흡수 속도를 구현한 종래 기술에서는, 통액성0ᅵ나 흡수 성능 등의 다른 물성이 저하되는 20 경우가많았다. In order for the superabsorbent resin to exhibit a higher absorption rate, it is necessary to exhibit a porous structure having a large surface area and having a large number of micropores formed therein. A highly absorbent resin having such a porous structure or the like has been produced by applying a foaming agent or the like. However, since such a superabsorbent 15 resin is likely to become uneven in the shape of the particles after the pulverization, surface cross-linking is uneven in the surface cross-linking after the pulverization or in the mixing of additives for improving the physical properties, In many cases. As a result, and to form a porous structure such as the prior art implementation of the high absorption rate of a water-absorbent resin, liquid tube 20 is 0 when the ina common lowering other properties such as the ability to absorb.
이에 우수한 흡수 성능을 유지하면서도, 더욱 향상된 통액성 및 흡수속도를 동시에 나타내는 고흡수성 수지를 제공할수 있는 기술의 개발이 계속적으로요구되고있다.  Therefore, there is a continuing need to develop a technique capable of providing a superabsorbent resin exhibiting improved liquid permeability and absorption rate while maintaining excellent absorption performance.
【발명의 상세한설명】  DETAILED DESCRIPTION OF THE INVENTION
25 【기술적 과제】 25 【Technical Problems】
본 발명은 가본적인 흡수 성능이 우수할 뿐 아니라, 보다 향상된 흡수속도 및 통액성 등을 함께 나타내는 고흡수성 수지 및 이의 제조 방법을 제공하는것이다.  The present invention is to provide a superabsorbent resin which exhibits not only superior absorption properties but also improved absorption rate and liquid permeability, and a method for producing the same.
【기술적 해결방법】  [Technical Solution]
30 본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 2019/117482 1»(:1^1{2018/013917 30 The invention-based water-soluble ethylene having an acid group at least partially neutralized 2019/117482 1 »(: 1 ^ {2018/013917
불포화단량체의 제 1가교중합체를포함하는베이스수지 분말;및 A base resin powder comprising a first crosslinked polymer of an unsaturated monomer; and
상기 베이스수지 분말상에 형성되어 있고,상기 제 1 가교중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교증을포함하는고톱수성 수지로서,  Wherein the first crosslinkable polymer is formed on the base resin powder and the first crosslinked polymer comprises a surface crosslinking polymer comprising a second crosslinked polymer additionally crosslinked via a surface crosslinking agent,
상기 고흡수성 수지는각각의 고흡수성 수지 입자의 최단직경 /최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 10 개수% 이상으로포함하고,  Wherein the superabsorbent resin comprises 10% or more of superabsorbent resin particles having an aspect ratio defined by a shortest diameter / longest diameter of each superabsorbent resin particle of less than 0.5,
생리 식염수(0.685중량% 염화나트륨수용액)의 흐름유도성 灰〕; 10- 7011 3 )이 30(_10-7011 3_ )이상인고흡수성 수지를제공한다. Flow-induced ash of physiological saline (0.685 wt% aqueous sodium chloride solution); 10-70 11 3) to provide a super-absorbent resin having the 30 (_10- 70 11 3 _).
본 발명은 또한, 발포제 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교중합체를포함하는함수겔중합체를형성하는단계;  The present invention also relates to a method for producing a water-soluble ethylenically unsaturated monomer, which comprises crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups in the presence of a blowing agent and an internal cross-linking agent to form a hydrous gel polymer comprising the first cross-linked polymer;
상기 함수겔중합체를 겔분쇄,건조,분쇄 및 분급하여,각각의 베이스 수지 분말의 최단직경 /최장직경으로정의되는종횡비가 0.5미만인 베이스 수지 분말을 10개수%이상으로포함하는베이스수지틀형성하는단계;및 표면 가교제 및 액상 매질을포함하고, 20내지 251:의 온도에서 표면 장력이 30 내지 50 11^/111 인 표면 가교액의 존재 하에, 상기 베이스 수지를 열처리하여 표면 가교하는 단계를 포함하는 고흡수상 수지의 제조 방법을 제공한다. 이하,발명의 구체적인구현예에 따른고흡수성 수지 및 이의 제조방법 등에 대해 보다상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는것으로,이에 의해 발명의 권리 범위가한정되는것은아니며,발명의 권리 범위내에서 구현예에 대한다양한변형이 가능함은당업자에게자명하다. 추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함 또는Forming a base resin frame containing at least 10% by number of base resin powder having an aspect ratio of less than 0.5 defined by the shortest diameter / longest diameter of each base resin powder by gel-grinding, drying, crushing and classifying the above-mentioned hydrogel polymer; And surface crosslinking by heat treating the base resin in the presence of a surface crosslinking agent having a surface tension of 30 to 50 < 11 > / 111 at a temperature of 20 to 251 < A method for producing an absorbent resin is provided. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a superabsorbent resin according to a specific embodiment of the present invention and a method for producing the same will be described in detail. It is to be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Additionally, unless expressly stated otherwise throughout this specification, "comprising & quot ; or "
"함유”라 함은 어떤 구성요소(또는 구성 성분)를 별다른 제한없이 포함함을 지칭하며,다른구성요소(또는구성 성분)의 부가를제외하는것으로해석될수 없다. "Containing " refers to including any and all components (or components) without limitation, and can not be construed as excluding the addition of other components (or components).
발명의 일 구현예에 따르면,본발명은적어도 일부가중화된산성기를 갖는수용성 에틸렌계 불포화 단량체의 제 1 가교 중합체를 포함하는 베이스 2019/117482 1»(:1^1{2018/013917 According to one embodiment of the invention, the present invention relates to a process for preparing a water-soluble ethylenically unsaturated monomer having at least partly neutralized acidic groups, 2019/117482 1 »(: 1 ^ {2018/013917
수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면가교층을포함하는고흡수성 수지로서, Resin powder; And a surface cross-linked layer formed on the base resin powder, wherein the first cross-linked polymer comprises a second cross-linked polymer that is further crosslinked via a surface cross-linking agent,
상기 고흡수성 수지는각각의 고흡수성 수지 입자의 최단직경 /최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 10 개수% 이상으로포함하고,  Wherein the superabsorbent resin comprises 10% or more of superabsorbent resin particles having an aspect ratio defined by a shortest diameter / longest diameter of each superabsorbent resin particle of less than 0.5,
생리 식염수(0.685중량%염화나트륨수용액)의
Figure imgf000006_0001
10· 7«11 3_ )이 30(_10 111 3_ )이상인고흡수성 수지가제공된다.
A solution of physiological saline (0.685 wt% aqueous sodium chloride solution)
Figure imgf000006_0001
10 · 7 «_ 11 3) 30 (_10 _ 111 3) is provided with a super-absorbent resin or higher.
본 발명자들의 계속적인 실험 결과, 후술하는 제조 방법에 따라, 가교 중합시에 발포제등의 존재하에 종횡비가큰입자를일정 수준이상으로얻은 후, 표면 가교액의 표면 장력을 낮추어 이를 사용한 표면 가교 공정을 진행함에 따라, 기본적인 흡수능이 우수할 뿐 아니라, 통액성 및 흡수속도가 함께 향상된 고흡수성 수지가 제조 및 제공될 수 있음을 확인하고 발명을 완성하였다.  As a result of continuous experiments conducted by the present inventors, it has been found that, in accordance with the production method described later, the surface cross-linking process using the surface cross-linking solution obtained by lowering the surface tension of the surface cross-linking solution after obtaining particles having a high aspect ratio in the presence of a foaming agent, It has been confirmed that a superabsorbent resin having not only excellent basic absorption capacity but also improved liquid permeability and absorption rate can be produced and provided, and the present invention has been completed.
기본적으로 상기 일 구현예의 고흡수성 수지는 중합 과정에서 발포제 등을사용한발포중합을진행해 얻어짐에 따라,분쇄 후의 베이스수지 분말 및 고흡수성 수지 입자가상대적으로작은종횡비를갖도록제조될수 있으며, 넓은표면적을갖도록제조될수 있다. 예를들어,고흡수성 수지 입자의 최단 직경 /최장직경으로정의되는종횡비가 0.5미만인 고흡수성 수지 입자를 10 개수% 이상, 혹은 10 개수% 내지 60개수%, 혹은 10 개수% 내지 50개수%의 비율로포함하게 제공될수있다.  Basically, the superabsorbent resin of the embodiment can be produced so that the base resin powder and the superabsorbent resin particles after the pulverization have a relatively small aspect ratio as the foam polymerization is carried out using a foaming agent or the like in the polymerization process, . For example, the proportion of the superabsorbent resin particles having an aspect ratio defined by the shortest diameter / longest diameter of the superabsorbent resin particles is 10% or more, or 10% to 60% or 10% to 50% As shown in FIG.
이와 같이, 고흡수성 수지의 제조 과정에서, 베이스 수지 분말 및 고흡수성 수지 입자가 일정 수준 이상으로 종횡비가 작은 입자를 포함하게 얻어지고그표면적이 증가함에 따라,상기 일구현예의 고흡수성 수지는보다 높은흡수속도등을나타낼수있다.  Thus, in the course of manufacturing the superabsorbent resin, as the base resin powder and the superabsorbent resin particles are obtained containing particles having a small aspect ratio at a certain level or more, and the surface area thereof is increased, the superabsorbent resin of this embodiment has a higher Absorption rate and the like.
다만, 이와 같이 종횡비가 작은 입자가 일정 수준 이상으로 형성되는 경우, 입자의 형태 등이 불균일하여 이후의 표면 가교가 균일하게 진행되기 어려우며 그 결과 고흡수성 수지의 가압 흡수능 및 통액성 등을 함께 향상시키기 어렵게 된다. 이는 종횡비가 작은 입자들의 경우, 종횡비가 1에 가까운입자들에 비해표면가교가불균일하게 일어나기 때문이다. 2019/117482 1»(:1^1{2018/013917 However, when the particles having a small aspect ratio are formed at a level higher than a certain level, the shape of the particles and the like are uneven, and subsequent surface cross-linking is unlikely to proceed uniformly. As a result, the pressure absorption ability and the liquid permeability of the high- It becomes difficult. This is because, in the case of particles with small aspect ratios, the surface cross-linking occurs unevenly compared to particles having an aspect ratio of 1 or less. 2019/117482 1 »(: 1 ^ {2018/013917
그러나,본발명자들의 계속적인실험 결과,이하에 설명하는방법으로 비교적 낮은 표면 장력을 갖는 표면 가교액을 얻은 후, 이를 사용해 표면 가교를 진행함에 따라, 상기 종횡비가 작은 입자를 일정 수준 이상포함하는 베이스수지 분말상에도우수한표면 가교도 및 강도를 갖는표면 가교층을 균일하게 형성할수있음이 확인되었다.이는상기 표면가교액의 침투정도가 비교적 얕고균일하게 제어될수있기 때문으로예측된다. However, as a result of continuing experiments conducted by the inventors of the present invention, it has been found that a surface cross-linking liquid having a relatively low surface tension is obtained by the method described below, It was confirmed that the surface cross-linked layer having an excellent surface cross-linking degree and strength can be uniformly formed even on the resin powder phase because the degree of penetration of the surface cross-linking liquid is comparatively shallow and can be uniformly controlled.
따라서, 상기 일 구현예의 고흡수성 수지는 우수한 흡수 속도와 함께 보다 향상된 통액성 및 가압 흡수능 등을 나타낼 수 있다. 이와 같은 일 구현예의 고흡수성 수지가 나타내는 향상된 통액성 등은 상기 범위에 의해 정의될수있다.  Therefore, the superabsorbent resin of this embodiment can exhibit improved permeability and pressure absorbing ability as well as excellent absorption rate. The improved liquid permeability and the like exhibited by the superabsorbent resin of this embodiment can be defined by the above range.
그러므로, 일 구현예의 고흡수성 수지는 흡수 속도 및 통액성을 함께 향상시키기 어렵다는 기존의 상식과는 달리 기본적인 흡수 성능을 우수하게 유지할수 있으면서도,보다향상된 흡수속도및 통액성 등을함께 나타낼 수 있으며, 보다 얇은 두께를 갖는 기저귀 등 위생재에 바람직하게 적용될 수 있다. 이하, 일 구현예의 고흡수성 수지에 대해 보다구체적으로 설명하기로 한다.  Therefore, unlike the conventional common sense that it is difficult to improve the absorption rate and the liquid permeability simultaneously, the superabsorbent resin of one embodiment can exhibit improved absorption rate and liquid permeability together with excellent basic absorption performance, It can be suitably applied to sanitary materials such as diapers having a thin thickness. Hereinafter, the superabsorbent resin of one embodiment will be described in more detail.
또, 본 명세서에서 지칭하는 ‘고흡수성 수지’란, 적어도 일부가 중화된 산성기를갖는수용성 에틸렌계 불포화단량체의 제 1 가교중합체를포함하는 베이스 수지 분말; 및 상기 베이스 수지 분말 상에 형성되어 있고, 상기 제 1 가교 중합체가표면 가교제를 매개로추가가교된 제 2 가교중합체를 포함한 표면가교층을포함하는고흡수성 수지를의미한다.  The "superabsorbent resin" referred to in the present specification refers to a base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups; And a superabsorbent resin formed on the base resin powder, wherein the first crosslinked polymer comprises a surface crosslinked layer containing a second crosslinked polymer which is further crosslinked via a surface crosslinking agent.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로사용되는 임의의 단량체일 수 있다.비제한적인 예로,상기 수용성 에틸렌계불포화단량체는하기 화학식 1로표시되는화합물일수있다:  The water-soluble ethylenically unsaturated monomer may be any monomer conventionally used in the production of a superabsorbent resin. As a non-limiting example, the water-soluble ethylenically unsaturated monomer may be a compound represented by the following Formula 1:
[화학식 1]  [Chemical Formula 1]
山- 에  Mountain - on
상기 화학식 1에서,  In Formula 1,
는불포화결합을포함하는탄소수 2내지 5의 알킬그룹이고, 2019/117482 1»(:1^1{2018/013917 Is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond, 2019/117482 1 »(: 1 ^ {2018/013917
수소원자 , 1가또는 2가금속,암모늄기 또는유기 아민염이다. 적절하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가금속염,암모늄염 및유기 아민염으로이루어진군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화단량체로 아크릴산또는 그염을사용할경우흡수성이 향상된고흡수성 수지를얻을수있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2 - 아크릴로일에탄 술폰산, 2 -메타크릴로일에탄술폰산, 2 -A hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Suitably, the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts, and organic amine salts of these acids. When acrylic acid or its salt is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a highly water-absorbent resin having improved water absorption. Examples of the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2 - acryloylethanesulfonic acid, 2 - methacryloylethanesulfonic acid, 2-
(메트)아크릴로일프로판술폰산, 또는 2-(메트)아크릴아미드- 2 -메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, 1 치환(메트)아크릴레이트, 2 -히드록시에틸(메트)아크릴레이트, 2 - 히드록시프로필(메트)아크릴레이트, 메톡시폴리에틸렌글리콜(메트)아크릴레이트 또는폴리에틸렌글리콜(메트)아크릴레이트의 비이온계 친수성 함유단량체;및 (外씨-디메틸아미노에틸(메트)아크릴레이트 또는 (뱌비- 디메틸아미노프로필(메트)아크릴아미드의 아미노기 함유불포화단량체와그의 4급화물;로이루어진군에서 선택된 1종이상을사용할수있다. (Meth) acryloylpropanesulfonic acid, or an anionic monomer of 2- (meth) acrylamide-2-methylpropanesulfonic acid and its salt; (Meth) acrylate, methoxypolyethylene glycol (meth) acrylate or polyethylene glycol (meth) acrylate, methoxypoly (meth) acrylamide, monosubstituted (meth) acrylate, 2-hydroxyethyl (Meth) acrylate or an unsaturated monomer containing an amino group of (p-dimethylaminopropyl (meth) acrylamide and a quaternary compound thereof); and a nonaqueous hydrophilic monomer May be used.
여기서,상기 수용성 에틸렌계 불포화단량체는산성기를가지며,상기 산성기의 적어도 일부가 중화된 것일 수 있다、바람직하게는 상기 단량체를 수산화나트륨,수산화칼륨,수산화암모늄등과 같은 알칼리 물질로부분적으로 중화시킨것이사용될수있다.  Here, the water-soluble ethylenically unsaturated monomer may have an acidic group and at least a part of the acidic group may be neutralized. Preferably, the monomer is partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like Can be used.
이때,상기 단량체의 중화도는 40내지 95몰%,또는 40내지 80몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수성이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와같은성질을나타낼수있다.  At this time, the neutralization degree of the monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The degree of neutralization may vary depending on the final properties. However, if the neutralization degree is too high, the neutralized monomer may precipitate and polymerization may not be smoothly proceeded. On the other hand, if the neutralization degree is too low, It can exhibit properties similar to elastic rubber which is difficult to handle.
상기 ‘제 1 가교 중합체’란, 상술한 수용성 에틸렌계 불포화 단량체가 내부 가교제의 존재 하게 가교 중합된 것을 의미하고, 상기 ‘베이스 수지 분말,이란, 이러한 제 1 가교 중합체를 포함하는 물질을 의미한다. 또한, 상기 ‘제 2 가교 중합체,란, 상기 제 1 가교 중합체가 표면 가교제를 매개로 추가 가교된 물질을 의미하며, 이에 따라 상기 베이스 수지 분말 상에 형성되어 2019/117482 1»(:1^1{2018/013917 The 'first crosslinked polymer' means that the water-soluble ethylenically unsaturated monomer described above is cross-linked in the presence of an internal crosslinking agent, and the 'base resin powder,' means a substance containing such a first crosslinked polymer. The 'second crosslinked polymer' refers to a substance in which the first crosslinked polymer is additionally crosslinked via a surface crosslinking agent, and is thus formed on the base resin powder 2019/117482 1 »(: 1 ^ {2018/013917
있다.상기 표면가교제에 대해서는후술하기로한다. The surface cross-linking agent will be described later.
이러한 일 구현예의 고흡수성 수지는, 상술한 바와 같이, 발포 중합 등에 의해 상기 베이스수지 분말이 얻어짐에 따라, 이러한베이스수지 분말 및 고흡수성 수지 입자가 상대적으로 작은 종횡비를 갖도록 제공될 수 있다. 보다구체적으로, 일 구현예의 고흡수성 수지는 다수의 고흡수성 수지 입자를 포함하는데, 이들 고톱수성 수지 입자의 전체 개수를 기준으로, 예를 들어, 고흡수성 수지 입자의 최단 직경 / 최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 10 개수% 이상,혹은 10 개수%내지 80개수%, 혹은 10개수%내지 70개수%, 10개수%내지 60개수%,혹은 10개수%내지 50개수%의 비율로포함할수있다. Such an implementation example super-absorbent resin, it is, such a base resin powder and the super-absorbent resin particles according to the load of the base resin powder obtained by firing the polymerization as described above may be provided so as to have a relatively small aspect ratio. More specifically, the superabsorbent resin of one embodiment includes a plurality of superabsorbent resin particles, and the superabsorbent resin particles are defined, for example, by the shortest diameter / longest diameter of the superabsorbent resin particles on the basis of the total number of these superabsorbent resin particles 10% to 80%, or 10% to 70%, 10% to 60%, or 10% to 50% by number of the superabsorbent resin particles having an aspect ratio of less than 0.5 .
이때,상기 베이스수지 분말및 고흡수성 수지 입자의 종횡비는, 예를 들어,도 1에 도시된바와같이,각각의 입자를전자현미경으로분석하여 최단 직경⑶ 및 최장 직경(비를 각각 산출할 수 있으며, 이로부터 각 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비를 산출할 수 있다. 이렇게 산출된 각 입자의 종횡비 데이터로부터, 상기 종횡비가 0.5 미만인 입자의 개수 비율을 산출할수 있다. 참고로,베이스수지 분말및 고흡수성 수지 입자의 종횡비는 서로동등한것으로확인된다.  At this time, the aspect ratio of the base resin powder and the superabsorbent resin particles can be determined by analyzing each particle with an electron microscope, for example, as shown in Fig. 1, to calculate the shortest diameter ⑶ and the longest diameter , Whereby the aspect ratio of each base resin powder and the superabsorbent resin particles can be calculated. From the aspect ratio data of each particle thus calculated, the number ratio of particles having the aspect ratio of less than 0.5 can be calculated. For reference, it is confirmed that the aspect ratio of the base resin powder and the superabsorbent resin particles are equal to each other.
이와 같이, 일 구현예의 고흡수성 수지가 종횡비가 작은 입자를 일정 수준 이상으로포함함에 따라,상기 베이스수지 분말및 고흡수성 수지 입자 간에는 미세 기공이 다수 형성 ¾ 수 있다. 이러한 다공성 입자 상에 표면 가교층이 형성되는 경우, 이들 미세 기공 사이로 수분이 빠른 속도로 다량 흡수될 수 있으므로, 일 구현예의 고흡수성 수지가 보다 빠른 흡수 속도 및 흡수성능(보수능등)을나타낼수있다.  As described above, as the superabsorbent resin of one embodiment contains particles having a small aspect ratio at a certain level or more, many fine pores can be formed between the base resin powder and the superabsorbent resin particles. When a surface cross-linked layer is formed on such porous particles, moisture can be absorbed at a high rate at a high rate between these micropores, so that the superabsorbent resin of one embodiment can exhibit a faster absorption rate and absorption performance have.
한편, 상술한 일 구현예의 고흡수성 수지는, 기본적인 가압 하 또는 무가압하흡수성능,흡수속도및통액성이 우수하며,이는 0^,
Figure imgf000009_0001
흡수도, 81 , 30초흡수속도또는표면장력등의 물성에 의해 정의될수있다.
On the other hand, the superabsorbent resin of one embodiment described above is excellent in basic absorption under pressure or no pressure drop, absorption rate, and liquid permeability,
Figure imgf000009_0001
Absorption can be defined by physical properties such as the absorption speed of 81, 30 seconds, or surface tension.
구체적으로, 일 구현예의 고흡수성 수지는 생리 식염수(0.9 중량% 염화나트륨수용액)에 대한 30분 동안의 원심분리 보수능(01(:)이 25 내지 35
Figure imgf000009_0002
있다.이러한원심분리 보수능( 1(:)범위는 일 구현예의 고흡수성 수지가나타내는우수한무가압하흡수성능을정의할 2019/117482 1»(:1^1{2018/013917
Specifically, the superabsorbent resin of one embodiment has a centrifugal separation capacity (01 (:) of 30 to 30 minutes for physiological saline (0.9 weight% aqueous sodium chloride solution)
Figure imgf000009_0002
The centrifugal separation capability (1 (:) range defines the excellent zero pressure drop absorption performance exhibited by the superabsorbent resin in one embodiment 2019/117482 1 »(: 1 ^ {2018/013917
수있다. .
상기 생리 식염수에 대한 원심분리 보수능( 1(:)은 고흡수성 수지를 30분에 걸쳐 생리 식염수에 흡수시킨후,다음과같은계산식 1에 의해산출될 수있다:  The centrifugal separation performance (1 (:) of the physiological saline solution can be calculated by the following equation 1 after absorption of the superabsorbent resin into physiological saline over 30 minutes:
[계산식 1] [Equation 1]
표그 푀 {[\\,2( - 此) - 0( ]/\¼)( } {{\ \, 2 (- 此) - 0 (] / \ ¼) ()
상기 계산식 1에서,  In the above equation 1,
0( 는고흡수성 수지의 초기 무게( 이고, \ ¥ 0 (initial weight of neungo absorbent resin (and,
1(은)는 고톱수성 수지를 넣지 않은 부직포 봉투를 상온에서 생리 식염수에 30분 동안 함침한후, 원심분리기를사용하여 250(3로 3분간 탈수한 후에 측정한무게이고, \ 1 is the weight measured after dehydrating the nonwoven fabric bag with no high water-based resin at room temperature for 30 minutes in physiological saline solution for 30 minutes, then centrifuging at 250 (3 minutes for 3 minutes,
2(푀는 고흡수성 수지를 넣은부직포봉투를 상온에서 생리 식염수에 30분 동안 함침한 후, 원심분리기를 사용하여 250(3로 3분간 탈수한 후에 즉정한무게이다. \ ¥ 2 (poe is a weight that is set after the impregnation and then in physiological saline for 30 minutes using a centrifuge dewatering 3 minutes at 250 (the third non-woven fabric bag into the superabsorbent polymer at room temperature.
또한, 일 구현예에 따른 고흡수성 수지는 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 0. 하에서 1시간 동안의 가압 흡수능(사正)이 21 내지
Figure imgf000010_0001
21.5내지
Figure imgf000010_0002
수 있다. 이러한가압흡수능 !;!1) 범위는 일 구현예의 고흡수성 수지가 나타내는 우수한 가압 하 흡수 성능을 정의할수있다.
In addition, the superabsorbent resin according to one embodiment has a pressure absorption capacity (positive) of 1 to 21 hours in physiological saline (0.9 weight% aqueous solution of sodium chloride)
Figure imgf000010_0001
21.5 to
Figure imgf000010_0002
. This pressure absorption capacity! 1 ) range can define the excellent pressure-absorbing performance exhibited by the superabsorbent resin of one embodiment.
이러한 가압흡수능 !;!1)은 고흡수성 수지를 1 시간에 걸쳐 0.7
Figure imgf000010_0003
가압하에 생리 식염수에 흡수시킨후,하기 계산식 2에 따라산출될수있다:
This pressure absorption capacity! 1 ) was obtained by dissolving the superabsorbent resin in 0.7
Figure imgf000010_0003
Absorbed in physiological saline under pressure, and then calculated according to the following equation 2:
[계산식 2] [Equation 2]
사 =[ 4( - \ ( ]/ ) = [ 4 (- \ (] /)
상기 계산식 2에서,  In the above equation 2,
\¥()(은)는 고돕수성 수지의 초기 무게(은)이고, \¥3(은)는 고롭수성 수지의 무게.및 상기 고흡수성 수지에 하중을부여할수 있는장치 무게의 총합이고, \¥4( 는 하중(0.7 ?81) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨후에,고흡수성 수지의 무게 및상기 고흡수성 수지에 하중을부여할 수있는장치 무게의 총합이다. And \ ¥ () (is) is the initial weight (is) of godop water-based resin, \ ¥ 3 (is) is the sum total of unit weight that can weight the gorop water-based resin. And the high give it the load to the water-absorbent resin, \ 4 is the sum of the weight of the superabsorbent resin and the weight of the device capable of applying a load to the superabsorbent resin after absorbing the physiological saline solution into the superabsorbent resin for 1 hour under a load (0.7 to 81 ).
또, 일 구현예의 고흡수성 수지가상술한범위의 원심분리 보수능(01(:) 및 가압 흡수능 (AUP)을 나타냄에 따라, 상기 고흡수성 수지는 하기 식 1로 정의되는흡수도가 46내지 63g/g,혹은 47내자 60g/g으로될수있다: In addition, when the superabsorbent resin of one embodiment has the centrifugal separation ability (01 (:) Absorbing ability (AUP), the superabsorbent resin can have an absorbency of 46 to 63 g / g, as defined by the following formula 1, or 60 g / g of 47:
[식 1]  [Formula 1]
흡수도 = CRC + AUP  Absorption = CRC + AUP
상기 식 1에서,  In Equation (1)
CRC는 상기 고흡수성 수지의 생리 식염수 (0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능으로서, 상기 계산식 1과 같이 산출되는보수능을나타내며,  CRC represents centrifugal separation capacity for 30 minutes against physiological saline (0.9 weight% aqueous sodium chloride solution) of the above superabsorbent resin, and represents the maintenance performance calculated as the above-mentioned formula 1,
AUP는 상기 고흡수성 수지의 생리 식염수 (0.9 중량% 염화 나트륨 수용액)에 대한 0.7psi 하에서 1시간 동안의 가압 흡수능으로서, 상기 계산식 The AUP is the pressure absorption capacity for 0.7 hours under physiological saline (0.9 weight% sodium chloride aqueous solution) of the above superabsorbent resin at 0.7 psi for 1 hour,
2로산출되는가압흡수능을나타낸다. 2 < / RTI >
이에 따라, 일 구현예의 고흡수성 수지는 기본적인 흡수성 및 가압하 흡수 유지성 등의 흡수 성능이 우수하게 발현되어 각종 위생재에 적합하게 사용할수있다.  As a result, the superabsorbent resin of one embodiment exhibits excellent absorption performance such as basic absorbability and pressure-absorptive / retaining ability under pressure, and can be suitably used for various sanitary materials.
또, 일 구현예의 고흡수성 수지는 생리 식염수 (0. 5중량% 염화나트륨 수용액)의 흐름 유도성 (SFC, l(r7cm3.s/g)이 30(_l(T7cm3_s/g) 이상, 혹은 35( 10 7cm3 s/g) 이상, 혹은 40 내지 150( 10 W s/g), 혹은 42 내지 130(.1(T 7cm3,s/g)으로될수있다. In addition, the superabsorbent resin of one embodiment has a flow-inducibility (SFC, l (r 7 cm 3 s / g) of 30 (l (T 7 cm 3 _s / g) of physiological saline (aqueous solution of sodium chloride of 0.5 wt% ) can be less than, or 35 (10 7 cm 3 s / g) or more, or 40 to 150 (10 W s / g) , or 42 to 130 (. 1 (T 7 cm 3, s / g).
상기 생리 식염수흐름유도성 (SFC)은 이전부터 당업자에게 잘 알려진 방법, 예를 들어, 미국특허 등록번호 제 5562646호의 컬럼 54 내지 컬럼 59에 개시된방법에 따라측정 및산출할수있다.  The physiological saline flow inducibility (SFC) can be measured and calculated according to methods well known to those skilled in the art, for example, the methods disclosed in columns 54 to 59 of U.S. Patent No. 5562646.
상기 고흡수성 수지는 높은 겔 강도를 유지하는 베이스 수지 분말을 포함하고, 이에 대한 특정 조건 하에 표면 가교가 진행되어 우수한 강도를 갖는표면가교층을균일하게 포함함에 따라,전체적으로높은겔강도를가질 수 있으며, 이에 따라보다 향상된 생리 식염수 흐름 유도성 (SFC) 및 뛰어난 통액성을나타낼수있다.  The superabsorbent resin includes a base resin powder that maintains a high gel strength, and surface crosslinking proceeds under specific conditions therefor, so that the superabsorbent resin uniformly includes a surface crosslinked layer having excellent strength, , Thereby exhibiting improved physiological saline flow conductivity (SFC) and excellent liquid permeability.
또한, 일 구현예의 고흡수성 수지는 후술하는 낮은 표면 장력을 갖는 표면 가교액 등을사용해 제조/제공됨에 따라, 그자체로서, 표면 장력 (surface tension)이 60내지 75 mN/m,혹은 60내지 73 mN/m으로될수있다.  Further, since the superabsorbent resin of one embodiment is manufactured / provided using a surface cross-linking liquid or the like having a low surface tension described later, the surface tension of the superabsorbent resin is 60 to 75 mN / m or 60 to 73 mN / m.
이러한표면장력은,예를들어, 23土 2°C의상온에서 표면장력 측정기를 2019/117482 1»(:1^1{2018/013917 This surface tension may, for example, a surface tension meter at 23 ° C costume on土2 2019/117482 1 »(: 1 ^ {2018/013917
사용하여 측정할수있다.끼러한표면장력의 구체적인측정 방법은'후술하는 실시예에 기재되어 있다. A specific method of measuring such surface tension is described in the following Examples.
이러한 고흡수성 수지의 표면 장력은 보수능, 가압흡수능, 통액성 등과는구분되는물성으로상기 고톱수성 수지를포함하는 기저귀에서의 소변 누출(1해1대¥)을평가할수있는척도로될수있다.상기 표면장력은고흡수성 수지를 염수에 팽윤시키고, 해당 염수에 대해 측정한 표면 장력을 의미하며, 고흡수성 수지의 표면 장력이 낮을 경우 이를 포함하여 제조되는 기저귀 등에서 소변이 새는 현상이 발생할 가능성이 높다. 일 구현예의 고흡수성 수지에 따르면, 높은 통액성 등을 유지하면서도 적정한 범위의 표면 장력을 가짐으로써 누출발생가능성을줄여 고품질의 위생용품을생산할수있다. 상기 고흡수성 수지의 표면 장력이 지나치게 낮아지는경우,소변의 샘 현상,즉, rewet이 증가할수 있으며,표면 장력이 지나치게 높아지는경우에는, 표면가교층이 불균일하게 형성되어 통액성 등의 물성이 저하될수있다. The high surface tension of the water-absorbent resin may be a beam SAT, pressure absorption capacity, whole liquid as is that can evaluate the leakage of urine (1 to 1: ¥) of the diaper including the gotop aqueous resin with properties that are separated scale. The The surface tension refers to the surface tension measured by swelling the superabsorbent resin in the brine, and when the surface tension of the superabsorbent resin is low, there is a high possibility that the urine leaks from the diaper or the like manufactured using the same. According to the superabsorbent resin of one embodiment, it is possible to produce a high-quality sanitary article by reducing the possibility of leaking by having an appropriate range of surface tension while maintaining high liquid permeability. When the surface tension of the superabsorbent resin is excessively low, a phenomenon of urine leakage, that is, rewet, may be increased. When the surface tension is excessively high, the surface crosslinked layer may be unevenly formed, have.
한편,상술한일구현예의 고흡수성 수지는,약 0.16§의 고흡수성 수지가 원통형 실린더 하부의 메시(11^11)를 통해 유입된 생리 식염수에 의해 0.3 가압조건하에서 팽윤될때, 30초톱수속도가 1.5111111/111111이상,혹은 1.7111111/111 내지 3.0111111/11^11,혹은 1.801111/11^11내지 2.6111111/111111으로될수있다.이러한 30초 흡수속도는고흡수성 수지의 부피 팽창에 따른레오미터 상부플레이트의 높이 변화를흡수시간(30초)으로나눈값으로서 측정 및산출될수있다. On the other hand, when the superabsorbent resin of the above-mentioned one embodiment is swelled under 0.3 pressure condition by physiological saline inflowed through the mesh 1111 of the lower part of the cylindrical cylinder of about 0.16 § , / 111111, or 1.7111111 / 111 to 3.0111111 / 1111, or 1.801111 / 111111 to 2.6111111 / 111111. Such a 30 second absorption rate can be obtained by changing the height variation of the rheometer upper plate with the volume expansion of the superabsorbent resin Can be measured and calculated as a value divided by the absorption time (30 seconds).
상기 고흡수성 수지는 높은 겔 강도 및 이에 따른 뛰어난 통액성을 나타내면서도, 제조 과정 중의 입자 분포가 제어되어 내부에 다공성 구조를 가짐에 따라, 상술한 30초 흡수속도 범위로 정의되는 우수한 흡수속도를 동시에 나타낼 수 있다. 따라서, 상기 고흡수성 수지는 펄프 등 섬유재의 함량이 감소된위생재 내에 바람직하게사용될수있다. Since the superabsorbent resin exhibits a high gel strength and hence excellent liquid permeability , the particle distribution during the production process is controlled and the porous structure is formed therein. Therefore, the superabsorbent resin has an excellent absorption rate defined by the above- . Therefore, the superabsorbent resin can be preferably used in sanitary materials having a reduced content of fibrous material such as pulp.
한편,상술한일구현예의 고흡수성 수지에서,상기 베이스수지 분말에 포함된 제 1 가교 중합체는 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜 다이(메트)아크릴레이트, 프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜다이(메트)아크릴레이트,부탄다이올다이(메트)아크릴레이트, 부틸렌글리콜다이(메트)아크릴레이트,다이에틸렌글리콜다이(메트)아크릴레이트, 2019/117482 1»(:1^1{2018/013917 On the other hand, in the superabsorbent resin of one embodiment described above, the first crosslinked polymer contained in the base resin powder is selected from the group consisting of trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di Acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butane diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di 2019/117482 1 »(: 1 ^ {2018/013917
핵산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트 및 펜타에리스톨 테트라아크릴레이트로 이루어진 군에서 선택된 폴리올의 폴리(메트) 아크릴레이트계 제 1 내부 가교제; 및 알릴(메트)아크릴레이트계 제 2내부가교제의 존재 하에,상기 단량체가가교 중합된 고분자로 될 수 있다. 이들 2종 이상의 특정 내부 가교제의 적용에 의해,일구현예의 고흡수성 수지는겔분쇄 및 분쇄등을진행한후에도,높은 겔 강도를 유지할수 있고, 이에 따라, 더욱 우수한통액성 및 가압 하흡수 성능등을나타낼수있다. (Meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri A first poly (meth) acrylate based internal crosslinking agent of a polyol selected from the group consisting of poly (meth) acrylate and pentaerythritol tetraacrylate; And a second internal crosslinking agent based on allyl (meth) acrylate, the monomer may be a cross-linked polymer. By the application of these two or more kinds of specific internal crosslinking agents, the superabsorbent resin of one embodiment can maintain a high gel strength even after proceeding with gel pulverization and pulverization, and accordingly, the liquid permeability and the pressure- Lt; / RTI >
또한,상술한고흡수성 수지는, 이하에 더욱상세히 설명하겠지만,표면 가교시 서로다른탄소수를갖는탄소수 2내지 6의 알킬렌카보네이트의 2종 이상을 표면 가교제로서 사용할 수 있다. 이에 따라, 상기 고흡수성 수지는 상기 복수종의 표면가교제를매개로하는가교구조가표면가교층에 포함될 수있다.  Further, as described above in detail, two or more kinds of alkylene carbonates having 2 to 6 carbon atoms having different carbon numbers may be used as the surface cross-linking agent during surface cross-linking. Accordingly, the superabsorbent resin may include a cross-linked structure mediated by the above-mentioned plural kinds of surface cross-linking agents in the surface cross-linked layer.
그리고,이러한표면가교제 및 액상매질을포함한표면가교액은계면 활성제,소정의 폴리카르복실산계 공중합체, 계면활성제 또는탄소수 6 이상의 지방족 알코올 등을 더 포함할 수 있다. 이와 같이, 표면 가교제의 복수 종 사용, 그리고 선택적으로 표면 가교액에 포함되는 추가 성분에 의해, 표면 가교액의 표면 장력이 상대적으로 낮은 특정 범위로 달성되어 상술한 제반 물성을갖는고흡수성 수지가비로소제조및 제공될수 .있다. The surface cross-linking solution containing the surface cross-linking agent and the liquid medium may further contain a surfactant, a predetermined polycarboxylic acid-based copolymer, a surfactant, or an aliphatic alcohol having 6 or more carbon atoms. As described above, the surface tension of the surface cross-linking liquid is achieved in a specific range relatively low by the use of the plural kinds of surface cross-linking agent and optionally the additional components contained in the surface cross-linking liquid, so that the high- Manufactured and supplied . have.
한편,상술한 일 구현예의 고흡수성 수지는 150내지 850 II의 입경을 가질 수 있다. 보다 구체적으로, 상기 베이스 수지 분말 및 이를 포함한 고흡수성 수지의 적어도 95 중량% 이상이 150 내지 850 의 입경을 가지며, 150_미만의 입경을 갖는 미분이 5 중량%미만으로 될 수 있다. 이때,상기 고흡수성 수지의 입경은 이미 상술한 고흡수성 수지 입자의 최장 직경으로 정의될수있다.  On the other hand, the superabsorbent resin of one embodiment described above may have a particle diameter of 150 to 850 II. More specifically, at least 95% by weight of the base resin powder and the superabsorbent resin including the base resin powder have a particle diameter of 150 to 850, and the fine powder having a particle diameter of less than 150_ may be less than 5% by weight. At this time, the particle size of the superabsorbent resin can be defined as the longest diameter of the superabsorbent resin particles already mentioned above.
상술한 일 구현예의 제반물성을중족하는고듭수성 수지가제조될 수 있는기술적 원리는다음과같다.  The technical principle by which an aqueous resin capable of satisfying all the properties of the above-described embodiment can be produced is as follows.
먼저, 가교 중합시 발포제 등을 사용하여 발포 정도를 증가시키고, 2019/117482 1»(:1^1{2018/013917 First, in the crosslinking polymerization, the degree of foaming is increased by using a foaming agent or the like, 2019/117482 1 »(: 1 ^ {2018/013917
이로서 미세 기공이 다수 포함되고 표면적이 넓은 형태로 함수겔 중합체를 형성할 수 있다. 이러한 함수겔 중합체에 대해 겔 분쇄 및 그 이후의. 분쇄 등을진행하는경우,상기 함수겔중합체의 다공성 등으로인해 종횡비가작은 입자 형태로 깨질 개연성이 높아진다. 따라서, 종횡비가 낮은 입자의 비율이 높은베이스수지 분말이 제조될수있다. This makes it possible to form a hydrogel polymer in a form having a large number of micropores and a wide surface area. For this hydrogel polymer, gel pulverization and thereafter . When crushing or the like proceeds, the fragility of the fragile particles becomes high due to the porosity and the like of the hydrogel polymer. Therefore, a base resin powder having a high aspect ratio ratio can be produced.
다만, 종횡비가 낮은 입자들의 경우, 표면 가교액을 상대적으로 빠른 속도로 흡수함에 따라, 종횡비가 1에 가까운 입자들과는 표면 가교액의 침투 양상 및 표면 가교의 정도가 달라지게 된다. 이 때문에 불균일한 가교가 일어날 가능성이 높고, 이는 통액성 등의 저하를 초래할수 있다. 그러나, 본 발명자들의 계속적인 실험 결과, 표면 가교액의 표면 장력을 상대적으로 낮추는 경우,표면 가교액이 베이스수지 분말에 침투하는 깊이가상대적으로 낮아지므로, 표면 가교제가 전체 입자들에 대해 균일하게 침투/분포할 수 있으며, 그 결과 고흡수성 수지의 통액성 등이 향상되어 일 구현예의 제반 물성을충족하는고흡수성 수지가제조될수있다.  However, in the case of particles with low aspect ratio, as the surface cross-linking liquid is absorbed at a relatively high speed, the penetration pattern of the surface cross-linking liquid and the degree of surface cross-linking are different from the particles having an aspect ratio of 1 or less. Therefore, there is a high possibility that uneven cross-linking occurs, which may cause deterioration of liquid-permeability and the like. However, as a result of continuous experiments conducted by the inventors of the present invention, when the surface tension of the surface cross-linking liquid is relatively lowered, the depth of penetration of the surface cross-linking liquid into the base resin powder becomes relatively low, / So that the liquid permeability and the like of the superabsorbent resin can be improved, so that a superabsorbent resin can be produced which satisfies all the properties of one embodiment.
이러한 기술적 원리에 기초하여, 발명의 다른 구현예에 따른 고흡수성 수지의 제조방법이 제공된다.  Based on this technical principle, a method of manufacturing a superabsorbent resin according to another embodiment of the invention is provided.
이러한 제조 방법은 발포제, 계면활성제 및 내부 가교제의 존재 하에, 적어도 일부가중화된 산성기를 갖는수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1가교중합체를포함하는함수겔중합체를형성하는단계;  Such a preparation method comprises crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acid groups in the presence of a blowing agent, a surfactant and an internal cross-linking agent to form a hydrogel polymer comprising a first cross-linking polymer;
상기 함수겔중합체를 겔분쇄,건조,분쇄 및 분급하여,각각의 베이스 수지 분말의 최단직경 厂최장직경으로정의되는종횡비가 0.5미만인 베이스 수지 분말을 10개수%이상으로포함하는베이스수지를형성하는단계;및 표면 가교제 및 액상 매질을포함하고, 20내지 25ᅤ의 온도에서 표면 장력이 30 내지 50 11^/111인 표면 가교액의 존재 하에, 상기 베이스 수지를 열처리하여 표면가교하는단계를포함할수있다. 이하,각단계별로상기 제조방법을상세히 설명한다.  Forming a base resin containing at least 10% by number of base resin powder having an aspect ratio defined by a shortest diameter 최est longest diameter of each of the base resin powders by gel-grinding, drying, crushing and classifying the hydrogel polymer; And surface crosslinking by heat treating the base resin in the presence of a surface cross-linking agent comprising a surface cross-linking agent and a liquid medium and having a surface tension of 30 to 50 11/111 at a temperature of 20 to 25 있다 . Hereinafter, the manufacturing method will be described in detail for each step.
먼저, 다른 구현예의 제조 방법은 가교 중합에 의해 함수겔 중합체를 형성하는 단계를 포함한다. 구체적으로, 내부 가교제의 존재 하에 수용성 에틸렌계 불포화단량체 및 중합개시체를포함하는단량체 조성물을열 중합 또는광중합하여 함수겔중합체를형성하는단계이다. First, the manufacturing method of another embodiment includes forming a hydrogel polymer by cross-linking polymerization. Specifically, a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator in the presence of an internal cross- Or photopolymerization to form a hydrogel polymer.
상가단량체 조성물에 포함되는수용성 에틸렌계 불포화단량체는앞서 설명한바와같다.  The water-soluble ethylenically unsaturated monomer contained in the adduct monomer composition is as described above.
또한, 상기 단량체 조성물에는 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 포함될 수 있다. 비제한적인 예로, 상기 중합 개시제로는 중합 방법에 따라 열 중합 개시제 또는 광 중합 개시제 등이 사용될 수 있다. 다만, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로,열중합개시제가추가로포함될수있다.  In addition, the monomer composition may include a polymerization initiator generally used in the production of a superabsorbent resin. As a non-limiting example, as the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator may be used depending on the polymerization method. However, even with the photopolymerization method, a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds, so that a thermal polymerization initiator can be further included.
여기서, 상기 광 중합 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyldimethyl Benzyl
Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 (a- aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6- 트리메틸-벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-tiimethyl phosphine oxide)가사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)”의 115 페이지에 개시되어 있으며, 이를 참조할수 있다. Dimethyl Ketal, acyl phosphine, and alpha-aminoketone may be used. As an example of the acylphosphine, a commercially available lucyrin TPO, i.e. 2,4,6-trimethyl-benzoyl-thiimethyl phosphine oxide, can be used. have. A variety of photopolymerization initiators are disclosed in Reinhold Schwalm, UV Coatings: Basics, Recent Developments and New Application, Elsevier 2007, page 115, which is incorporated herein by reference.
그리고, 상기 열 중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208),과황산칼륨 (Potassium persulfate; K2S2O8), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등을 예로 들 수 있다. 또한, 아조 (Azo)계 개시제로는 2,2 -아조비스- (2 -아미디노프로판)이염산염 (2,2-azobis(2_ amidinopropane) dihydrochloride), 2, 2 -아조비스- (N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobiityramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2, 2 -아조비스[2- (2 -이미다졸린-2-일)프로판] 디하이드로클로라이드 (2,2-azobis[2-(2-imidazolin_2- yl)propane] dihydrochloride), 4, 4 -아조비스-(4 -시아노발레릭 산)(4,4-azobis-(4- cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 ” Principle of Polymerization(Wiley, 1981년)’’의 203 페이지에 개시되어 있으며,이를참조할수있다. As the thermal polymerization initiator, at least one compound selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used. Specific examples of the persulfate-based initiator include sodium persulfate (Na 2 S 208), potassium persulfate (K 2 S 2 O 8), ammonium persulfate (NH 4) 2 S 208 ) , And the like. Further, azo (Azo) based initiators include 2,2-azo bis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2 _ amidinopropane) dihydrochloride), 2, 2-azobis- (N, N-dimethylene isobutyramidine dihydrochloride, 2- (carbamoylazo) isobutylonitrile, 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride, 2, 2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2, 2 -azobis [2- (2 -imidazolin_ 2- yl) propane] dihydrochloride, and 4,4-azobis- (4-cyanovaleric acid). More thermal polymerization initiators are described in the Odian book, " Principle of Polymerization (Wiley, 1981), " page 203, which is incorporated herein by reference.
이러한 중합 개시제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합속도가느려질수 있고 최종 제품에 잔존모노머가다량으로 추출될수있어 바람직하지 않다.반대로,상기 중합개시제의 농도가지나치게 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다. The polymerization initiator may be added at a concentration of about 0.001 to 1% by weight relative to the monomer composition. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may become slow and the monomer remaining in the final product may be extracted in a large amount. Conversely, when the concentration of the polymerization initiator is excessively high, The physical properties of the resin may be deteriorated such that the content of the component for the water content becomes high and the pressure absorption ability becomes low, which is not preferable.
한편, 상기 단량체 조성물에는 상기 수용성 에틸렌계 불포화 단량체의 중합에 의한수지의 물성을향상시키기 위한가교제("내부가교제”)가포함된다. 상기 가교제는함수겔중합체를내부가교시키기 위한것으로서,후술할”표면 가교제”와별개로사용될수있다.  On the other hand, the monomer composition contains a crosslinking agent ("internal crosslinking agent ") for improving the physical properties of the resin by polymerization of the water-soluble ethylenically unsaturated monomer. Surface cross-linking agent ".
특히, 상기 다른 구현예의 제조 방법에서는, 이미 상술한 2종 이상의 내부 가교제, 예를 들어, 폴리올의 폴리(메트) 아크릴레이트계 제 1 내부 가교제 및 알릴(메트)아크릴레이트계 제 2 내부 가교제를 함께 사용하여, 함수겔중합체를얻을수있다. Specifically, the In other implementations the manufacturing method, the internal cross-linking agent than previously described two species, for example, polyol poly (meth) acrylate-based first internal crosslinking agent, and allyl (meth) acrylate-based second with an internal cross-linking agent Can be used to obtain a hydrogel polymer.
보다 구체적으로, 상기 제 1 내부 가교제로는, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜 다이(메트)아크릴레이트, 프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜 다이(메트)아크릴레이트, 부탄다이올다이(메트)아크릴레이트, 부틸렌글리콜다이(메트)아크릴레이트, 다이에틸렌글리콜 다이(메트)아크릴레이트, 핵산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트 및 펜타에리스톨 테트라아크릴레이트로 이루어진 군에서 선택된 1종 이상을 사용할 수 있고, 상기 제 2 내부 가교제로는, 알릴메타크릴레이트 또는 알릴아크릴레이트등을사용할수있다. More specifically, the first internal crosslinking agent may be selected from the group consisting of trimethylol propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) (Meth) acrylate, propylene glycol di (meth) acrylate, butane diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (Meth) acrylates such as ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri (meth) acrylate and pentaerythritol tetraacrylate At least one selected from the group consisting of Can be used, wherein the second internal cross-linking agent, allyl methacrylate or Allyl acrylate and the like can be used.
또한,상기 제 1 및 제 2내부가교제의 총함량은상기 내부가교제 및 단량체 등을포함하는단량체조성물의 100중량부에 대해 0.01 중량부내지 2 중량부, 혹은 0.05 내지 1.8 중량부의 함량으로 될 수 있다. 또한, 제 1 내부 가교제 :제 2내부가교제는 1 : 1내지 10 : 1의 중량비로사용될수있다.이와 같이 내부 가교제의 종류 및 함량 범위 등 조성을 조절하는 한편, 후술하는 함수겔 중합체의· 함수율을 제어함에 따라, 일 구현예의 물성을 중족하는 고흡수성 수지를 보다 효과적으로 얻을 수 있다. .다만, 상기 내부 가교제의 함량이 지나치게 커지면, 고흡수성 수지의 기본적인 흡수 성능이 저하될 수 있다.  The total content of the first and second internal crosslinking agents may be 0.01 to 2 parts by weight or 0.05 to 1.8 parts by weight based on 100 parts by weight of the monomer composition including the internal crosslinking agent and the monomer . The first internal cross-linking agent and the second internal cross-linking agent may be used in a weight ratio of 1: 1 to 10: 1. In this way, while controlling the composition such as the kind and content range of the internal cross-linking agent, It is possible to more effectively obtain a superabsorbent resin that meets the physical properties of one embodiment. . However, if the content of the internal crosslinking agent is excessively large, the basic absorption performance of the superabsorbent resin may be deteriorated.
한편, 상술한 단량체 조성물은 추가적으로 발포제를 더 포함한다. 이러한 발포제의 존재 하에, 상기 중합공정을 발포 중합 공정으로 진행함에 따라, 낮은 종횡비를 갖는 입자가 다수 형성될 수 있고, 이미 상술한 입자 분포를갖는베이스수지 분말및고흡수성 수지 입자가얻어질수있다.  On the other hand, the above-mentioned monomer composition further includes a foaming agent. In the presence of such a foaming agent, as the polymerization process proceeds to a foaming polymerization process, a large number of particles having a low aspect ratio can be formed, and base resin powder and superabsorbent resin particles having the above-mentioned particle distribution can be obtained.
상기 발포제는 중합시 발포가 일어나 함수겔 중합체 내 기공을 형성하여 작은종횡비의 입자를다수 형성하고,표면적을늘리는 역할을한다. 상기 발포제는탄산염을사용할수있으며,일례로소디움비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슘 비카보네이트 (potassium bicarbonate),포타슘카보네이트 (potassium carbonate),칼슘 비카보네이트 (calcium bicarbonate),칼슘카보네이트 (calcium bicarbonate),마그네슘 비카보네이트 (magnesiumbicarbonate) 또는 마그네슘 카보네이트 (magnesium carbonate)를사용할수있다. · 또한,상기 발포제는상기 아크릴산계 단량체 100중량부에 대하여 약 0.01 내지 약 1.0중량부,혹은 약 0.03내지 약 0.7중량부,혹은 약 0.05내지 약 0.6중량부의 농도로첨가될수있다.상기 발포제의 사용량이 1.0중량부를 초과할 경우에는 과다 발포로 인해 공정상 생산이 어려울 뿐 아니라, 과도한 기붕 형성으로 고흡수성 수지의 밀도가 작아져 유통과보관에 문제를 초래할 수 있다.또한,상기 0.01 중량부마만일 경우에는발포제로서의 역할이 미미할 수있다. 2019/117482 1»(:1^1{2018/013917 The foaming agent foams during polymerization to form pores in the hydrogel polymer to form a large number of particles having a small aspect ratio and to increase the surface area. Examples of the foaming agent include carbonates such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, Calcium carbonate, calcium bicarbonate, magnesium bicarbonate or magnesium carbonate can be used. The blowing agent may be added at a concentration of about 0.01 to about 1.0 part by weight, or about 0.03 to about 0.7 part by weight, or about 0.05 to about 0.6 part by weight based on 100 parts by weight of the acrylic acid monomer. If the amount is more than 1.0 part by weight, it is not only difficult to produce in the process due to excessive foaming, but also the density of the superabsorbent resin is reduced due to excessive roofing, which may cause problems in circulation and storage. May have a small role as a foaming agent. 2019/117482 1 »(: 1 ^ {2018/013917
그리고, 상기 단량체 조성물은 상기 발포제에 의한 기공 형성을 최적화하기 위해 기포 안정제를 더 포함할 수 있다. 이러한 기포 안정제는 발포제로 인하여 형성된 기포의 형태를 유지하면서 동시에 중합체 전 영역에 기포를 균일하게 분포시키는 역할을 하는 것으로, 낮은 종횡비의 입자의 형성을보다효과적으로하고,중합체의 표면적을늘리는역할을한다. 이러한 기포 안정제로는 이전부터 고흡수성 수지의 발포 중합시 기포 안정제로 사용되던 임의의 성분을 사용할 수 있으며, 예를 들어, 양이온성, 음이온성 또는비이온성 계면활성제등을사용할수있다. 상기 기포안정제는상기까크릴산계 단량체 100중량부에 대하여 0.001 중량부내지 0.1 중량부의 농도로 첨가될수 있다.상기 기포안정제의 농도가 지나치게 낮을 경우 기포를 안정화하는 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 농도가 지나치게 높을 경우. 고톱수수지의 표면장력이 낮아져 기저귀에서 수분
Figure imgf000018_0001
등이 발생할 수있다. 이 밖에도, 상기 단량체 조성물에는 필요에 따라증점제, 가소제, 보존 안정제,산화방지제등의 첨가제가더 포함될수있다.
And, the monomer composition may further include a foam stabilizer to optimize pore formation by the blowing agent. Such a foam stabilizer serves to uniformly distribute bubbles in the entire region of the polymer while maintaining the shape of the bubbles formed by the foaming agent, thereby more effectively forming low aspect ratio particles and increasing the surface area of the polymer. As the bubble stabilizer, any component previously used as a foam stabilizer in the foaming polymerization of a superabsorbent resin may be used. For example, a cationic, anionic or nonionic surfactant may be used. The bubble stabilizer may be added at a concentration of 0.001 part by weight to 0.1 part by weight based on 100 parts by weight of the carboxylic acid monomer. When the concentration of the foam stabilizer is excessively low, When the concentration is too high, on the contrary. The surface tension of the high-top resin is lowered and moisture in the diaper
Figure imgf000018_0001
Etc. may occur. In addition, the monomer composition may further contain additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
그리고, 이러한 단량체 조성물은 전술한 단량체, 중합 개시제, 내부 가교제등의-원료물질이 용매에-용해된용액의--형-태로준비될수있-다.  Such a monomer composition can be prepared in the form of a solution in which a raw material is dissolved in a solvent, such as the above-mentioned monomer, polymerization initiator, internal crosslinking agent, and the like.
이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그구성의 한정 없이 사용될수 있다. 예를들어,상기 용매로는물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4 -부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트,메틸에틸케톤,아세톤,메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일텐, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트,
Figure imgf000018_0002
메틸아세트아미드, 또는 이들의 혼합물 등 사용될수있다.
At this time, usable solvents may be used without limitation of the constitution as long as they can dissolve the above-mentioned raw materials. Examples of the solvent include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylenes, butyrolactone, carbitol, methyl cellosolve acetate,
Figure imgf000018_0002
Methyl acetamide, or a mixture thereof may be used.
그리고, 상기 단량체 조성물의 중합을 통한 함수겔 중합체의 형성은 통상적인중합방법으로수행될수있으며,그공정은특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더 (kneader)와 같은교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는경우에는이동가능한컨베이어 벨트가구비된반응기에서 진행될수 있다. The formation of the hydrogel polymer through polymerization of the monomer composition can be carried out by a conventional polymerization method, and the process is not particularly limited. As a non-limiting example, the polymerization method is divided into thermal polymerization and photopolymerization depending on the type of polymerization energy source. In the case of the thermal polymerization, the polymerization may proceed in a reactor having a stirring axis such as a kneader, And may proceed in a reactor equipped with a movable conveyor belt when it is advanced.
일 예로,교반축이 구비된 니더와같은반응기에 상기 단량체 조성물을 투입하고, 여기에 열풍을 공급하거나 반응기를 가열하여 열 중합함으로써 함수겔 중합체를 얻을수 있다. 이때, 반응기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔 중합체는 주입되는 단량체조성물의 농도및주입속도등에 따라다양한형태로얻어질수있는데, 통상 (중량평균)입경이 2내지 50 mm인함수겔중합체가얻어질수있다. 그리고,다른일 예로, 이동가능한컨베이어 벨트가구비된 반응기에서 상기 단량체 조성물에 대한광중합을진행하는경우에는시트 형태의 함수겔 중합체가얻어질수있다. 이때 상기 시트의 두께는주입되는단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 10 cm의 두께로조절되는것이 바람직하다.  For example, the hydrogel polymer may be obtained by charging the monomer composition into a reactor such as a kneader equipped with a stirring shaft, supplying hot air thereto, or heating the reactor by heating. At this time, the hydrogel polymer discharged to the reactor outlet depending on the shape of the stirring shaft provided in the reactor can be obtained as particles of several millimeters to several centimeters. Specifically, the obtained hydrogel polymer can be obtained in various forms depending on the concentration and the injection rate of the monomer composition to be injected, and usually a gel polymer having a particle diameter of 2 to 50 mm (weight average) can be obtained. And, as another example, in the case of carrying out photopolymerization of the monomer composition in a reactor equipped with a movable conveyor belt, a hydrogel polymer in the form of a sheet can be obtained. At this time, the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected. In general, the thickness of the sheet is adjusted to 0.5 to 10 cm in order to ensure uniform polymerization of the entire sheet, desirable.
한편, 상술한 가교 중합에 의해 함수겔 중합체를 형성한 후에는, 함수율이 제어된함수겔중합체를겔분쇄한다.  On the other hand, after the hydrogel polymer is formed by the crosslinking polymerization described above, the hydrogel polymer whose water content is controlled is gel-pulverized.
상기 겔 분쇄 단계에서, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo / grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crasher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는어느하나를포함할수 있으나,상술한예에 한정되지는 않는다.  In the gel pulverizing step, the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo / grinder, a rotary pulverizer selected from the group of pulverizing machines consisting of a cutter mill, a cutter mill, a disc mill, a shred crusher, a crusher, a chopper and a disc cutter. , But it is not limited to the above example.
상기 함수겔 중합체의 겔 분쇄는, 상기 함수겔 중합체의 입경이 0.01 mm내지 50 mm,혹은 0.01 mm내지 30mm가되도록수행될수있다.즉,건조 효율의 증대를 위하여 상기 함수겔 중합체는 50 mm이하의 입자로 분쇄되는 2019/117482 1»(:1^1{2018/013917 The gelation of the hydrogel polymer may be performed such that the diameter of the hydrogel polymer is from 0.01 mm to 50 mm, or from 0.01 mm to 30 mm. That is, in order to increase the drying efficiency, Be pulverized into particles 2019/117482 1 »(: 1 ^ {2018/013917
것이 바람직하다. 하지만, 과도한 분쇄시 입자간 응집 현상이 발생할 수 있으므로, 상기 함수겔 중합체는 0.01 _ 이상의 입자로 겔 분쇄되는 것이 바람직하다. . However, since excessive agglomeration may occur during pulverization, it is preferable that the hydrogel polymer is gel-pulverized with 0.01 or more particles .
또한, 상기 함수겔 중합체의 겔 분쇄는, 함수율이 상대적으로 낮은 상태에서 수행되기 때문에 겔 분쇄기의 표면에 함수겔 중합체가 들러붙는 현상이 나타날수 있다. 이러한현상을최소화하기 위하여,필요에 따라,스팀, 물, 계면활성제, 응집 방지제(예를 들어
Figure imgf000020_0001
등); 과황산염계 개시제, 아조계 개시제, 과산화수소, 열중합 개시제, 에폭시계 가교제, 디올예01)류 가교제, 2관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를포함하는 가교제,수산화기를포함하는 1 관능기의 가교제 등이 함수겔중합체에 첨가될 수있다.
In addition, since the gelation of the hydrogel polymer is performed at a relatively low water content, hydrogel polymer may stick to the surface of the gel pulverizer. In order to minimize this phenomenon, steam, water, surfactants, anti-aggregation agents (for example,
Figure imgf000020_0001
Etc); Persulfate-based initiators, azo initiators, hydrogen peroxide, thermal polymerization initiator, an epoxy-based crosslinking agent, a diol Example 01) class of cross-linking agent, two functional groups, or three cross-linking agent of the first functional group containing a crosslinking agent, a hydroxyl group which is a functional group or more acrylate functional groups Etc. may be added to the hydrogel polymer.
상술한 겔 분쇄 후에는, 함수겔 중합체를 건조시킬 수 있다. 상기 건조는 120내지 250 °0,바람직하게는 140내지 200 °0,보다바람직하게는 150 내지 200 의 온도 하에서 수행될 수 있다. 이때, 상기 건조 온도는 건조를 위해 공급되는 열 매체의 온도 또는 건조 공정에서 열 매체 및 중합체를 포함하는 건조반응기 내부의 온도로 정의될수 있다. 건조온도가낮아건조 시간이 길어질 경우 공정 효율성이 저하되므로, 이를 방지하기 위하여 건조 온도는 1201: 이상인 것이 바람직하다.또한,건조온도가필요 이상으로높을 경우 함수겔 중합체의 표면이 과하게 건조되어 후속 공정인 분쇄 단계에서 미분 발생이 많아질 수 있고, 최종 수지의 물성이 저하될 수 있는데, 이를 방지하기 위하여 건조온도는 2501: 이하인것이 바람직하다.  After the gel pulverization described above, the hydrogel polymer can be dried. The drying may be performed at a temperature of 120 to 250 ° C, preferably 140 to 200 ° C, more preferably 150 to 200 ° C. Here, the drying temperature may be defined as the temperature of the heating medium supplied for drying or the temperature inside the drying reactor including the heating medium and the polymer in the drying process. When the drying temperature is low and the drying time is long, the process efficiency is lowered. To prevent this, the drying temperature is preferably 1201 or more. If the drying temperature is higher than necessary, the surface of the hydrogel polymer is excessively dried, And the physical properties of the final resin may be deteriorated. To prevent this, the drying temperature is preferably 2501 or less.
이때,상기 건조단계에서의 건조시간은특별히 제한되지 않으나,공정 효율 및 수지의 물성 등을 고려하여, 상기 건조 온도 하에서 20분 내지 90분으로조절할수있다.  In this case, the drying time in the drying step is not particularly limited, but may be adjusted to 20 to 90 minutes at the drying temperature in consideration of process efficiency and physical properties of the resin.
상기 건조는 통상의 매체를 이용하여 이루어질 수 있는데, 예를 들어, 상기 분쇄된 함수겔 중합체에 대한 열풍 공급, 적외선 조사, 극초단파 조사, 또는자외선조사등의 방법을통해수행될수있다.  The drying can be performed using a conventional medium, for example, by supplying hot air to the pulverized hydrogel polymer, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like.
그리고,이러한건조는건조된중합체가 0.1 내지 10중량%의 함수율을 갖도록 수행되는 것이 바람직하다. 즉, 건조된 중합체의 함수율이 0.1 중량% 미만인 경우 과도한 건조로 인한 제조 원가의 상승 및 가교 중합체의 분해 (degradation)가 일어날수 있어 바람직하지 않다.그리고,건조된 중합체의 함수율이 10 중량%를 초과할 경우 후속 공정에서 건조된 중합체가부착되어 이송경로에 방해가될수있으므로바람직하지 않다. And, such drying is preferably performed so that the dried polymer has a water content of 0.1 to 10% by weight. That is, when the water content of the dried polymer is less than 0.1% by weight, the increase in the manufacturing cost due to excessive drying and the increase Degradation may occur, and when the water content of the dried polymer is more than 10% by weight, it is undesirable because the dried polymer adheres in the subsequent process and may interfere with the transport path.
상기 건조 후에는, 건조 중합체를 분쇄할 수 있고, 이로서 중합체의 입경 및 표면적이 적절한 범위로 조절될 수 있다. 상기 분쇄는, 분쇄된 중합체의 입경이 150내지 850 가되도록수행할수 있다.이때의 입경 역시 각중합체 입자의 최장직경으로정의될수있고,이하에서도동일하다.  After the drying, the dry polymer can be pulverized, whereby the particle size and surface area of the polymer can be adjusted to an appropriate range. The pulverization can be carried out such that the particle diameter of the pulverized polymer is from 150 to 850. The particle diameter at this time can also be defined as the maximum diameter of each polymer particle and is also the same hereinafter.
이때 사용할수 있는분쇄기로는핀 밀 (pin mill),해머 밀 (hammer mill), 스크류밀 (screw mill),롤밀 (roll mill),디스크밀 (disc mill),조그밀 (jog mill)등 통상의 것끼사용될수있다.  Examples of the pulverizer that can be used in this case include a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, a jog mill, Can be used.
또한, 최종 제품화되는고흡수성 수지의 물성을관리하기 위하여,상기 분쇄 단계를통해 얻어지는중합체 입자에서 150내지 850 의 입경을갖는 입자를선택적으로분급하는단계가더 수행될수있다.  Further, in order to control the physical properties of the superabsorbent resin to be finally produced, the step of selectively classifying particles having a particle diameter of 150 to 850 in the polymer particles obtained through the above-mentioned pulverization step may be further performed.
한편,상술한분급공정까지를거쳐 베이스수지 분말을제조한후에는, 표면 가교제의 존재 하에, 상기 베이스 수지 분말을 열처리하면서 표면 가교하여 고흡수성 수지 입자를 형성할 수 있다. 상기 표면 가교는 표면 가교제의 존재 하에 상기 베이스 수지 분말의 표면에 가교 반응을 유도하는 것으로, 이러한 표면 가교를 통해 상기 베이스 수지 분말의 표면에는 표면 개질층 (표면가교층)이 형성될수있다.  On the other hand, after the base resin powder is produced through the above-described classification step, the base resin powder can be cross-linked by surface heat treatment to form the superabsorbent resin particles in the presence of the surface cross-linking agent. The surface cross-linking induces a cross-linking reaction on the surface of the base resin powder in the presence of a surface cross-linking agent. Through such surface cross-linking, a surface modifying layer (surface cross-linking layer) can be formed on the surface of the base resin powder.
보다구체적으로,상술한다른구현예의 제조 방법에서는,표면 가교제 및 액상 매질을포함하고, 20내지 25 C의 온도에서 표면 장력이 25 내지 50 mN/m, 혹은 30 내지 47 mN/m인 표면 가교액을 사용하여 열처리하여 표면 가교를진행할수있다.  More specifically, in the production method of another embodiment described above, a surface cross-linking liquid containing a surface cross-linking agent and a liquid medium and having a surface tension of 25 to 50 mN / m or 30 to 47 mN / m at a temperature of 20 to 25C The surface cross-linking can proceed.
이와같이,상대적으로낮은표면 장력을갖는표면 가교액을사용함에 따라,상대적으로불균일한입자형태 (낮은종횡비를갖는입자다수포함)에도 불구하고,표면가교가균일하게진행되어,우수한가교도및강도를갖는표면 가교층이 균일하게 형성될 수 있으며, 고흡수성 수지의 흡수능 대비 가압흡수능과 통액성 등이 보다 향상될 수 있다. 다만, 상기 표면 장력이 지나치게낮아질 경우,위생용품의 리햇이 증가할수있으며,높은표면장력을 갖는 표면 가교액을 사용할 경우에는 표면 가교층이 불균일하게 형성되어 2019/117482 1»(:1^1{2018/013917 Thus, by using the surface crosslinking liquid having a relatively low surface tension, the surface crosslinking proceeds uniformly despite the relatively nonuniform particle shape (including a large number of particles having a low aspect ratio), and excellent crosslinking and strength The surface cross-linking layer can be uniformly formed, and the pressure absorption ability, liquid permeability, etc. with respect to the absorption ability of the superabsorbent resin can be further improved. However, when the surface tension is excessively low, the retention of sanitary articles may increase, and when a surface cross-linking liquid having a high surface tension is used, the surface cross-linking layer is formed unevenly 2019/117482 1 »(: 1 ^ {2018/013917
흡수능대비 가압흡수능과통액성 등의 물성이 저하될수있다. The physical properties such as the pressure absorption ability and the liquid permeability as compared with the absorption ability can be lowered.
이미 상술한 바와 같이, 이와 같은 특정 표면 장력을 갖는 표면 가교액을 얻기 위해서는,서로다른 탄소수를 갖는 탄소수 2내지 6의 알킬렌 카보네이트의 2종이상을표면가교제로서사용할수있다.  As described above, in order to obtain such a surface cross-linking liquid having a specific surface tension, two or more kinds of alkylene carbonates having 2 to 6 carbon atoms having different carbon numbers can be used as the surface cross-linking agent.
또, 상기 표면 장력을 보다 효과적으로 달성하기 위해, 상기 표면 가교제 및 액상 매질을 포함한 표면 가교액은 선택적으로 계면 활성제, 하기 화학식 1 와 화학식 1 로 표시되는 반복 단위를 갖는 폴리카르복실산계 공중합체 또는탄소수 6이상의 지방족 알코올등을더 포함할수 있다. 이와 같이,표면가교제의 복수종사용,그리고선택적으로표면가교액에 포함되는 추가 성분에 의해, 표면 가교액의 표면 장력이 상대적으로 낮은 특정 범위로 달성되어 상술한 제반 물성을 갖는 일 구현예의 고흡수성 수지가 제조될 수 있다: In order to accomplish the above-mentioned surface tension is more effective, the surface cross-linking agent and surface cross-linking solution including the liquid medium is optionally a surfactant, to the polycarboxylic acid-based copolymer or the carbon atoms having a repeating unit represented by the formula (I) and formula (I) 6 or more aliphatic alcohol, and the like. As described above, by the use of plural kinds of surface cross-linking agents and optionally the additional components contained in the surface cross-linking liquid, the surface tension of the surface cross-linking liquid is achieved in a relatively low specific range, Resins can be prepared:
[화학식 1-티  [Chemical Formula 1-T
Figure imgf000022_0001
Figure imgf000022_0001
상기 화학식 1-3및 1七에서, In Formulas 1-3 and 17,
, II2 및 II3는 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬 그룹이고, 110는탄소수 2내지 4의 옥시알킬렌그룹이고, M1은수소또는 1가 금속 또는 비금속 이온이고, 는 -000-, 탄소수 1 내지 5의 알킬옥시 그룹 또는탄소수 1내지 5의 알킬디옥시 그룹이고, III은 1내지 100의 정수이고 , 11은 2019/117482 1»(:1^1{2018/013917 , II 2 and II 3 are each independently hydrogen or an alkyl group having 1 to 6 carbon atoms, 110 is an oxyalkylene group having 2 to 4 carbon atoms, M 1 is hydrogen or a monovalent metal or a nonmetal ion, and -000 -, an alkyloxy group having 1 to 5 carbon atoms or an alkyldioxy group having 1 to 5 carbon atoms, III is an integer of 1 to 100, 2019/117482 1 »(: 1 ^ {2018/013917
1 내지 1000의 정수이고, I)는 1 내지 150의 정수이고,상기 I)가 2이상인 경우 둘이상반복되는 -110 -는서로동일하거나다를수있다. I) is an integer of 1 to 150, and when I) is 2 or more, two or more repeating units - 110 - may be the same or different from each other.
이러한표면 가교 공정에서,상기 표면 가교제로는 탄소수 2 내지 6의 알킬렌 카보네이트가 복수 종 사용될 수 있는데, 이의 보다 적절한 예로는, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 트리메틸렌 카보네이트,또는글리세롤카보네이트등을들수있다.  In such a surface cross-linking step, as the surface cross-linking agent, a plurality of alkylene carbonates having 2 to 6 carbon atoms may be used. More suitable examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, trimethylene carbonate, glycerol carbonate .
이때,상기 표면가교제의 함량은가교제의 종류나반응조건등에 따라 적절히 조절될 수 있으며, 바람직하게는상기 베이스수지 분말 100중량부에 대하여 0.001 내지 5 중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면,표면 개질이 제대로 이루어지지 못해,최종수지의 물성이 저하될 수 있다. 반대로 과량의 표면 가교제가 사용되면 과도한 표면 가교 반응으로 인해 수지의 기본적인 흡수능이 오히려 저하될 수 있어 바람직하지 않다. At this time, the content of the surface cross-linking agent may be appropriately controlled according to the type of cross-linking agent, reaction conditions, etc., and preferably 0.001 to 5 parts by weight based on 100 parts by weight of the base resin powder. If the content of the surface cross-linking agent is too low, the surface modification may not be performed properly, and the physical properties of the final resin may be deteriorated. On the contrary, when an excessive amount of surface cross-linking agent is used, the basic absorption ability of the resin may be deteriorated due to excessive surface cross-linking reaction, which is not preferable.
또한,상기 표면 가교액의 표면 장력 범위의 제어를 위해,상기 표면 가교액은계면활성제를더 포함할수도 있는데,이러한계면활성제의 종류는 특히 제한되지 않으며, 상기 표편 가교액에 포함되는 액상 매질의 종류 등을 고려하여,,비이온성 계면 활성제, 음이온성 계면 활성제 또는 양이온성 계면 활성제 중 적절한것을선택하여 사용할수 있다. 이로서 표면 가교액의 표면 장력을상술한범위로추가제어할수있다.  For controlling the surface tension range of the surface cross-linking solution, the surface cross-linking solution may further contain a surfactant. The type of the surface active agent is not particularly limited, and the surface of the liquid medium contained in the cross- Considering the kind and the like, a suitable nonionic surfactant, anionic surfactant or cationic surfactant can be selected and used. This makes it possible to further control the surface tension of the surface cross-linking liquid to the above-mentioned range.
그리고,다른예에서,상기 표면가교액은상기 화학식 1-크와화학식 1- 로표시되는반복단위를갖는폴리카르복실산계 공중합체를더 포함할수도 있다. 이러한 폴리카르복실산계 공중합체는 등록 특허 공보 제 1684649 호 등에 공지된것으로그제조방법 등은당업자에게자명하다.  In another example, the surface cross-linking solution may further comprise a polycarboxylic acid-based copolymer having the repeating unit represented by the formula (I-k) and the repeating unit represented by the formula (I-1). Such a polycarboxylic acid-based copolymer is known from JP-A-1684649, and its production method and the like are obvious to those skilled in the art.
이러한 폴리카르복실산계 공중합체를 상기 베이스 수지 분말 100 중량부에 대하여 0.001 내지 5 중량부의 함량으로 표면 가교액 중에 포함시킴에 따라,상기 표면가교액의 표면 장력을상술한범위로추가제어할 수있다. According to Sikkim those contained in the polycarboxylic acid type surface cross-linking solution of a copolymer in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the base resin powder, the surface tension of the surface cross-linking solution may be added to the control by the above-mentioned range .
부가하여, 상기 표면 가교액의 표면 장력을 제어하기 위한 또 다른 수단으로서, 상기 표면 가교액 중의 액상 매질에 물 또는 알코올 등의 극성 용매와함께,탄소수 6이상의 지방족알코올을더 포함시킬수도있다. 일 실시예에 따르면,상기 탄소수 6 이상의 지방족 알코올로 C6내지 C20의 1차, 2차,또는 3차알코올을예로들수 있으며,바람직하게는 C6내지 C16의 1차 알코올을 사용할 수 있다. 보다 바람직하게는 스테아릴 엘:코올 (stearyl alcohol), 라우릴 알코올 (lauryl alcohol), 및 세틸 알코올 (cetyl alcohol)로 이루어진 군으로부터 선택되는 1종 이상을사용할수 있으나, 이에 제한되는것은아니다. In addition, as another means for controlling the surface tension of the surface cross-linking liquid, the liquid medium in the surface cross-linking liquid may further contain an aliphatic alcohol having 6 or more carbon atoms together with a polar solvent such as water or alcohol. According to one embodiment, the aliphatic alcohols having 6 or more carbon atoms may be exemplified by C6-C20 primary, secondary, or tertiary alcohols, preferably C6-C16 primary alcohols. More preferably at least one selected from the group consisting of stearyl alcohol, lauryl alcohol, and cetyl alcohol may be used, but the present invention is not limited thereto.
상기 탄소수 6이상의 지방족알코올의 함량은상기 분쇄된중합체,즉, 베이스수지 분말 100중량부에 대해,약 0.001내지 약 2중량부,또는약 0.01 내지 약 1중량부,바람직하게는약 0.01 내지 약 1중량부,더욱바람직하게는 약 0.05내지 약 0.8중량부를사용할수있다. 한편, 상기 표면 가교액은 상술한 각 성분과 함께, 액상 매질로서 물 및/또는친수성 유기 용매 (예를들어,메탄올등의 알코올계 극성 유기 용매)를 더 포함할 수 있다. 이때, 물 및 친수성 유기 용매의 함량은 표면 가교액의 고른분산을유도하고베이스수지 분말의 뭉침 현상을방지함과동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한목적으로 베이스수지 분말 100 중량부에 대한첨가비율을조절하여 적용할수있다. 상술한 표면 가교액을 베이스수지 분말에 첨가하는 방법에 대해서도 그구성의 특별한한정은없다. 예를들어,표면가교액과,베이스수지 분말을 반응조에 넣고혼합하거나,베이스수지 분말에 표면 가교액를분사하는방법, 연속적으로 운전되는 믹서에 베이스 수지 분말과 표면 가교액을 연속적으로 공급하여 혼합하는방법 등을사용할수있다. The content of the aliphatic alcohol having 6 or more carbon atoms is about 0.001 to about 2 parts by weight, or about 0.01 to about 1 part by weight, preferably about 0.01 to about 1 part by weight, based on 100 parts by weight of the pulverized polymer, i.e., By weight, more preferably about 0.05 to about 0.8 part by weight may be used. On the other hand, the surface cross-linking liquid may further contain, as a liquid medium, water and / or a hydrophilic organic solvent (for example, an alcohol-based polar organic solvent such as methanol) together with the components described above. At this time, the content of water and the hydrophilic organic solvent is preferably in the range of 100 parts by weight to 100 parts by weight for the purpose of inducing even dispersion of the surface cross-linking liquid and preventing the aggregation of the base resin powder and optimizing the surface penetration depth of the surface cross- It can be applied by adjusting the addition ratio. There is no particular limitation on the method of adding the above-mentioned surface cross-linking solution to the base resin powder. For example, surface cross-linking solution as a base resin powder were placed in the reaction tank mix and a method of surface cross-linking aekreul injection in the base resin powder, mixed and continuously supplied to a base resin powder and the surface cross-linking solution in the mixer being continuously operated at Method or the like can be used.
상기 표면가교액이 첨가된베이스수지 분말에 대해 140°C 내지 200 °C, 혹은 170°C 내지 195°C의 반응최고온도에서 5분내지 60분,또는 10분내지 50분, 또는 20분 내지 45분 동안 표면 가교 반응을 진행할 수 있다. 보다 구체적으로는, 상기 표면 가교 단계는 20 °C 내지 130°C, 혹은 40 °C 내지 120°C의 초기 온도에서 10분 이상, 혹은 10분 내지 30분에 걸쳐 상기 반응 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 60분 동안 유지하여 열처리함으로서 진행될수있다. The surface cross-linking solution is 140 ° for the addition of a base resin powder C to 200 ° C, or 5 minutes to 60 minutes from the reaction up to a temperature of 170 ° C to 195 ° C, or 10 minutes to 50 minutes, or 20 minutes to The surface cross-linking reaction can proceed for 45 minutes. More specifically, the surface cross-linking step is carried out by raising the temperature to the reaction maximum temperature over a period of at least 10 minutes at an initial temperature of 20 ° C to 130 ° C, or 40 ° C to 120 ° C, or 10 minutes to 30 minutes, And the heat treatment may be performed by maintaining the maximum temperature for 5 minutes to 60 minutes.
이러한표면 가교공정 조건 (특히,승온조건 및 반응최고온도에서의 2019/117482 1»(:1^1{2018/013917 Such surface cross-linking process conditions (in particular, 2019/117482 1 »(: 1 ^ {2018/013917
반응 조건)의 충족에 의해 일 구현예의 물성을 적절히 충족하는 고흡수성 수지가더욱효과적으로제조될수있다. Reaction conditions), a superabsorbent resin suitably satisfying the physical properties of one embodiment can be produced more effectively.
표면 가교반응을위한승온수단은특별히 한정되지,않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는스팀, 열풍,뜨거운 기름과 같은 승은한유체 등을사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을들수있으나,상술한예에 한정되는것은아니다. The temperature raising means for the surface cross-linking reaction is not particularly limited. A heating medium can be supplied, or a heating source can be directly supplied and heated. At this time, as the type of heat medium that can be used, steam, hot air, hot fluid, or the like may be used, but the present invention is not limited thereto. The temperature of the heat medium to be supplied may be determined by considering means of heating medium, So that it can be appropriately selected . On the other hand , as a heat source to be directly supplied, there may be mentioned a heating method using electricity or a heating method using gas, but the present invention is not limited to the above example.
상술한제조방법에 따라수득된고흡수성 수지는보수능과가압흡수능 등의 흡수 성능이 우수하게 유지되며, 보다 향상된 통액성 및 흡수속도 등을 충족하여,일구현예의 제반물성을충족할수있으며,기저귀 등위생재,특히, 펄프의 함량이 감소된초박형 위생재등을적절하게사용될수있다.  The superabsorbent resin obtained according to the above-described production method maintains excellent absorption performance such as water retention capacity and pressure absorption capacity, satisfies more improved liquid permeability and absorption rate, and can satisfy all the physical properties of one embodiment, It is possible to use suitably used raw materials, especially ultra-thin sanitary materials with reduced pulp content.
【발명의 효과】  【Effects of the Invention】
본 발명에 따른 고흡수성 수지는, 기본적인 흡수 성능을 우수하게 유지할 수 있으면서도, 보다 향상된 흡수속도 및 통액성 등을 나타낼 수 있으며, 보다 얇은 두께를 갖는 기저귀 등 위생재에 바람직하게 적용될 수 있다.  The superabsorbent resin according to the present invention can exhibit improved absorption rate and liquid permeability while maintaining excellent absorption performance, and can be preferably applied to sanitary materials such as diapers having a thinner thickness.
【도면의 간단한설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1은일구현예의 고흡수성 수지에서,고흡수성 수지 입자의 종횡비 정의 및 이의 측정 방법의 일 예를나타내는전자현미경 사진이다.  Fig. 1 is an electron micrograph showing an aspect ratio of the superabsorbent resin particles and a method for measuring the aspect ratio of the superabsorbent resin of the embodiment.
【발명의 실시를위한형태】  DETAILED DESCRIPTION OF THE INVENTION
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로한정하는것은아니다. 실시예 1 Best Mode for Carrying Out the Invention Hereinafter, preferred embodiments are shown to facilitate understanding of the present invention. However, the practice of the following examples are not intended to limit the invention to these may make to illustrate the present invention. Example 1
고흡수성 수지의 제조장치로는중합공정,함수겔분쇄공정,건조공정, 분쇄공정, 분급공정, 표면 가교 공정, 냉각 공정, 분급 공정 및 각 공정을 연결하는수송공정으로구성되는연속제조장치를사용하였다. 2019/117482 1»(:1^1{2018/013917 As a production apparatus for a superabsorbent resin, a continuous production apparatus comprising a polymerization process, a hydrogel pulverization process, a drying process, a pulverization process, a classification process, a surface cross-linking process, a cooling process, a classification process and a transportation process connecting each process was used . 2019/117482 1 »(: 1 ^ {2018/013917
(단계 1) (Step 1)
아크릴산 100 중량부에 내부 가교제로 폴리에틸렌글리콜 다이아크릴레이트(중량평균분자량: 500 마신)와, 알릴메타크릴레이트를 혼합하여 0.4 중량부, 발포제로서 탄산수소나트륨의 0.1 중량부, 계면 활성제로서 로릴 황산 나트륨의 0.01 중량부 및 광개시제로 1¾¥ 2,4,6- 111 11}¾»61120>4)1)11051)1^116 0 (16 0.01 중량부를 혼합하여 단량체 용액을 제조하였다. 이어, 상기 단량체 용액을 정량 펌프로 연속 공급하면서, 동시에 24중량%수산화나트륨수용액 160중량부를연속적으로라인믹싱하여 단량체 수용액을 제조하였다. 또한, 4 중량% 과황산나트륨 수용액 6 중량부를 연속적으로라인 믹싱한후,양단에 둑을구비한평면상의 중합벨트를가지는 연속 중합기에 연속적으로 공급하였다. 그 후에 11\^를 조사하여 함수겔을 제조하였다. 0.4 parts by weight of polyethylene glycol diacrylate (weight average molecular weight: 500) and allyl methacrylate as an internal cross-linking agent were added to 100 parts by weight of acrylic acid, 0.1 part by weight of sodium hydrogencarbonate as a blowing agent, 0.01 parts by weight of 1¾ ¥ 2,4,6- 111 11} as photoinitiator ¾ »61120> 4) 1) 11051) 1 ^ 116 0 (16 0.01 prepare a monomer solution by mixing parts by weight. Subsequently, 160 parts by weight of a 24 wt% aqueous solution of sodium hydroxide was continuously mixed by line-mixing while continuously supplying the monomer solution by a metering pump to prepare a monomer aqueous solution. Further, 6 parts by weight of a 4 wt% aqueous solution of sodium persulfate was continuously mixed by line mixing, and then continuously fed to a continuous polymerization reactor having a planar polymerization belt provided with dams at both ends. The hydrogel was then prepared by irradiating it with 11.
(단계 2)  (Step 2)
상기 함수겔을 평균 크기가 약 300 _ 이하가 되도록 절단한후에, 분쇄기(101 !1의 직경을 갖는 복수의 구멍을 포함하는 다공판 구비함)에 투입하고각각의 조건으로분쇄하였다. After cutting the hydrogel to an average size of about 300 < 0 > or less, a pulverizer (10 < (Having a perforated plate including a plurality of holes having a diameter of 1 ) and pulverized under respective conditions.
(단계 3)  (Step 3)
이어서,상가단계 2에서 분쇄된함수겔을상하로풍량전이가가능한 건조기에서 건조시켰다.건조된가루의 함수량이 약 2%이하가되도록 180ᄃ의 핫에어 야 를 15분동안하방에서 상방으로흐르게 하고,다시 15분동안 상방에서 하방으로흐르게하여 상기 함수겔을균일하게 건조시켰다.  Then, the hydrogel pulverized in the downstairs step 2 was dried in a drier capable of airflow transfer up and down. A hot air of 180 psi was flown downward for 15 minutes so that the water content of the dried powder was about 2% or less , And flowed from above to downward for another 15 minutes to uniformly dry the hydrogel.
(단계 4)  (Step 4)
상기 단계 3에서 건조된 수지를 분쇄기로 분쇄한다음 분급하여 150 내지 850 ίM크기의 베이스수지를얻었다.  The resin dried in step 3 was pulverized by a pulverizer and classified to obtain a base resin having a size of 150 to 850 M M.
(단계 5)  (Step 5)
이후,에틸렌 카보네이트 1 §,프로필렌 카보네이트 의 1 을물 4 §에 넣고혼합하여 표면 가교액을 제조하였다. 이러한표면 가교액의 표면 장력은 4511^/111으로측정되었다. Then, the ethylene carbonate § 1, the surface cross-linking solution was placed and mixed in a 1 eulmul 4 § of propylene carbonate was prepared. The surface tension of this surface crosslinking solution was measured as 4511 ^ / 111.
상기 단계 4에서 제조된 베이스 수지 분말 100 용에 대해, 상기 표면 가교액 6 §을 분사하고 상온에서 교반하여 베이스 수지 분말 상에 표면 2019/117482 1»(:1^1{2018/013917 For the base resin powder 100 prepared in the step 4, 6 § of the surface cross-linking solution was sprayed and stirred at room temperature to form a surface 2019/117482 1 »(: 1 ^ {2018/013917
가교액이 고르게 분포하도록혼합하였다.이어서,표면가교액과혼합된베이스 수지 분말을표면가교반응기에 넣고표면가교반응을진행하였다. Then, the base resin powder mixed with the surface cross-linking liquid was put into the surface cross-linking reactor and the surface cross-linking reaction was carried out.
이러한표면가교반응기 내에서,베이스수지 분말은
Figure imgf000027_0001
근방의초기 온도에서 점진적으로 승온되는 것으로 확인되었고, 30분 경과 후에 1901:의 반응 최고 온도에 도달하도록 조작하였다. 이러한 반응 최고 온도에 도달한 이후에, 15분 동안 추가 반응시킨 후 최종 제조된 고흡수성 수지 샘플을 취하였다.상기 표면가교공정 후, ASTM규격의 표준망체로분급하여 150_ 내지 850쌘!의 입경을갖는실시예 1의 고흡수성 수지를제조하였다.
In such a surface cross-linking reactor, the base resin powder
Figure imgf000027_0001
It was confirmed that the temperature was gradually increased from the initial temperature in the vicinity, and after 30 minutes, the maximum reaction temperature of 1901: was reached. After reaching the maximum reaction temperature, additional reaction was carried out for 15 minutes, and a sample of the finally prepared superabsorbent resin was taken. After the surface cross-linking step, the particles were classified into standard ASTM standard mesh to obtain diameters of 150 to 850 Was prepared.
위 방법으로 얻어진 베이스 수지 및 고흡수성 수지를 전자 현미경 사진으로 분석하여(도 1 등 참조), 각 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비(3/비룰산출하였으며, 전체 베이스수지 분말 및 고흡수성 수지 입자중종횡비가 0.5미만인 입자비율(개수%:)을측정하였다.측정 결과,해당 베이스수지 분말및 고흡수성 수지 입자중,종횡비가 0.5미만인 입자비율은 약 10개수%인것으로확인되었다. 실시예 2 The base resin and the superabsorbent resin obtained by the above method were analyzed by electron micrograph (see Fig. 1, etc.), and the aspect ratio ( 3 / non-ratio) of each base resin powder and superabsorbent resin particle was calculated. As a result of the measurement, the ratio of particles having an aspect ratio of less than 0.5 among the base resin powder and the superabsorbent resin particles was confirmed to be about 10% by number. Example 2
발포제로서 탄산수소나트륨의 0.15 중량부로 사용한 것을 제외하고는 실시예 1과동일한방법으로실시예 2의 고흡수성 수지를 제조하였다. 이러한 방법으로얻어진베이스수지./고흡수성 수지를전자현미경 사진으로분석하여 전체 베이스수지 분말 및 고흡수성 수지 입자중종횡비가 0.5 미만인 입자 비율(개수%)을 측정하였다. 측정 결과, 해당 베이스 수지 분말 및 고흡수성 수지 입자 중, 종횡비가 0.5 미만인 입자 비율은 약 33 개수%인 것으로 확인되었다. 실시예 3  A superabsorbent resin of Example 2 was prepared in the same manner as in Example 1, except that 0.15 parts by weight of sodium hydrogencarbonate was used as a foaming agent. The base resin / superabsorbent resin obtained in this manner was analyzed by electron microscope to determine the percentage (number%) of particles having an aspect ratio of less than 0.5 in all the base resin powder and superabsorbent resin particles. As a result of the measurement, it was confirmed that the particle ratio of the base resin powder and the superabsorbent resin particles having an aspect ratio of less than 0.5 was about 33% by number. Example 3
발포제로서 탄산수소나트륨의 0.2 중량부로 사용한 것을 제외하고는 실시예 1과동일한방법으로실시예 3의 고흡수성 수지를 제조하였다. 이러한 방법으로얻어진 베이스수지/고흡수성 수지를전자현미경 사진으로분석하여 전체 베이스수지 분말 및 고흡수성 수지 입자중 종횡비가 0.5 미만인 입자 비율(개수%)을 측정하였다. 측정 결과, 해당 베이스 수지 분말 및 고흡수성 수지 입자 중, 종횡비가 0.5 미만인 입자 비율은 약 45 개수%인 것으로 확인되었다. A superabsorbent resin of Example 3 was prepared in the same manner as in Example 1, except that 0.2 part by weight of sodium hydrogencarbonate was used as a foaming agent. The base resin / superabsorbent resin obtained by this method was analyzed by electron microscope to determine the percentage (number%) of particles having an aspect ratio of less than 0.5 in all the base resin powder and superabsorbent resin particles. As a result of the measurement, the base resin powder and the high- Among the resin particles, the proportion of particles having an aspect ratio of less than 0.5 was confirmed to be about 45% by number.
이후의 표면 가교 공정은실시예 1과 동일하게 진행하여 150쌘!내지 850 _의 입경을갖는실시예 3의 고흡수상수지를제조하였다. 실시예 4  The subsequent surface cross-linking step proceeded in the same manner as in Example 1 to prepare a high absorption constant of Example 3 having a particle diameter of from 150 to 850. Example 4
단계 5에서 표면 가교액 중 윤활제로 Polyoxyethylenesorbitan monopalmitate 0.02g 주가한 것을 제외하고는 실시예 3과 동일한 방법으로 실시예 4의 고흡수성 수지를제조하였다. 실시예 5  The superabsorbent resin of Example 4 was prepared in the same manner as in Example 3 except that 0.02 g of polyoxyethylenesorbitan monopalmitate was added as a lubricant in the surface cross-linking liquid in Step 5. Example 5
단계 5에서 표면 가교액 중 윤활제로 지방족 알코올 (mono stearyl alcohol) 0.3g추가한것을제외하고는실시예 3과동일한방법으로실시예 5의 고듭수성 수지를제조하였다. 실시예 6  In step 5, the aqueous resin of Example 5 was prepared in the same manner as in Example 3, except that 0.3 g of mono stearyl alcohol was added as a lubricant in the surface cross-linking solution. Example 6
단계 5에서 표면 가교액 중 윤활제로 등록 특허 제 1684649 호의 제조예 1과동일 방법으로 얻은폴리카르복실산계 공중합체 O.lg추가한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 6의 고흡수성 수지를 제조하였다. 실시예 7  The procedure of Example 1 was repeated except for adding 0.1 g of the polycarboxylic acid-based copolymer obtained in Synthesis Example 1 of Patent No. 1684649 as a lubricant in the surface cross-linking solution in Step 5, Resin. Example 7
단계 5에서 표면가교액 중 트리메틸렌카보네이트 1 g, 프로필렌카보네이트 1 g을물 4 g에 넣고혼합한표면가교 을사용하는것을 제외하고는 실시예 3과 동일한 방법으로 실시예 7의 고흡수성 수지를 제조하였다. 비교예 1  A superabsorbent resin of Example 7 was prepared in the same manner as in Example 3, except that 1 g of trimethylene carbonate in 1 g of surface crosslinking solution and 1 g of propylene carbonate in 4 g of the compound in Step 5 were used, . Comparative Example 1
단계 1에서 발포제로서 탄산수소나트륨을 사용하지 않은 것을 제외하고는실시예 1과동일한방법으로비교예 1의 베이스수지를제조하였다. 2019/117482 1»(:1^1{2018/013917 The base resin of Comparative Example 1 was prepared in the same manner as in Example 1, except that sodium hydrogencarbonate was not used as a foaming agent in Step 1. 2019/117482 1 »(: 1 ^ {2018/013917
이러한 방법으로 얻어진 베이스 수지를 전자 현미경 사진으로 분석하여 전체 베이스 수지 분말 중 종횡비가 0.5 미만인 입자 비율(개수%)을 측정하였다. 측정 결과,해당베이스수지 분말중,종횡비가 0.5미만인 입자비율은 약 5 개수%인것으로확인되었다. 비교예 2 The base resin thus obtained was analyzed by electron microscope to determine the percentage (number%) of particles having an aspect ratio of less than 0.5 in all of the base resin powder. As a result of the measurement, it was confirmed that the proportion of particles having an aspect ratio of less than 0.5 in the base resin powder was about 5% by number. Comparative Example 2
제조된베이스수지 분말 100중량부에 에틸렌카보네이트 1은을물 4 §에 넣고혼합한표면가교액 5용을사용한것을제외하고는비교예 1과동일한 ¾업으로비교예 2의 고흡수성 수지를제조하였다. 이러한표면 가교액의 표면 장력은 51 1! /111으로측정되었다. 비교예 3 Ethylene carbonate. 1 is a base resin powder 100 parts by weight of manufacture to prepare a super-absorbent resin of hagoneun Comparative Example 1 For comparison with the same ¾-up 2, except for using a surface cross-linked liquid 5 for mixing into the water 4 §. The surface tension of this surface cross-linking solution is 51 1! / 111. ≪ / RTI > Comparative Example 3
제조된베이스수지 분말 100중량부에 에틸렌카보네이트 1은을물 4 §에 넣고혼합한표면가교액 5 §을사용한것을제외하고는실시예 1과동일한 방법으로비교예 3의 고흡수성 수지를제조하였다. 비교예 4 A superabsorbent resin in the same manner as in Comparative hagoneun Example 1, except for using a mixture of ethylene carbonate into a 1 is the water in the base 4 § 100 parts by weight of the resin powder produced surface cross-linking solution § 5 Example 3 was prepared. Comparative Example 4
제조된베이스수지 분말 100중량부에 에틸렌카보네이트 1 §을물 4 ¾페 넣고-· ¾합-한—표-면7·레 5_ §을-사용 _한 ¾_을젠 _외하프늘실시예 3과동일한 방법으로비교예 4의 고흡수성 수지를제조하였다. 비교예 5 To 100 parts by weight of a base resin powder prepared ethylene carbonate 1 ¾ § eulmul 4 into Fe-· ¾ sum-a-table-side 7· the lever 5_ § - used as a ¾_ _ _ euljen other half always Example 3 A superabsorbent resin of Comparative Example 4 was prepared in the same manner. Comparative Example 5
한국 공개 특허 공보 제 2015-0132035호의 제조예에 기재된 방법에 따라 함수겔 중합체의 제조 및 건조를 진행하였다. 이후, 위 한국 공개 특허 공보 제 2015-0132035호의 실시예 1에 기재된 방법에 따라, 베이스 수지를 제조하고표면가교를진행하여 비교예 5의 고흡수성 수지를제조하였다.  The preparation of the hydrogel polymer and drying were carried out according to the method described in the Production Example of Korean Laid-Open Patent Publication No. 2015-0132035. Thereafter, a base resin was prepared according to the method described in Example 1 of Korean Patent Laid-Open Publication No. 2015-0132035, and surface cross-linking proceeded to prepare a superabsorbent resin of Comparative Example 5. [
실험예 Experimental Example
실시예 및 비교예에서 제조한 각 고흡수성 수지의 물성, 그리고 제조 과정 중의 제반물성을다음의 방법으로측정 및평가하였다. The physical properties of each of the superabsorbent resins prepared in Examples and Comparative Examples, The physical properties during the process were measured and evaluated by the following methods.
(1) 베이스 수지 분말 및 고흡수성 수지 입자의 종횡비 및 입자 분포의측정 (1) Measurement of aspect ratio and particle distribution of base resin powder and superabsorbent resin particles
도 1과 같이 전자 현미경을 통해 각 분말/입자들의 최단 직경 (a) 및 최장직경 (비을산출하여 이로부터 각분말/입자들의 종횡비를측정하였고, 각 실시예/비교예에사 얻어진 전체 분말/입자들 중 종횡비가 0.5 미만인 분말/입자들의 개수비율 (개수%)을산출하였다. (2)원심분리보수능 (CRC, Centrifuge Retention Capacity)  As shown in FIG. 1, the shortest diameter (a) and the longest diameter (ratio) of each powder / particle were measured through an electron microscope, and the aspect ratios of the respective powders / particles were measured therefrom. (Number%) of powders / particles having an aspect ratio of less than 0.5 were calculated. (2) Centrifuge Retention Capacity (CRC)
유럽부직포산업협회 (European Disposables and Nonwovens Association, EDANA)규격 EDANA WSP 241.3에 따라무하중하흡수배율에 의한원심분리 보수능 (CRC)을측정하였다.고흡수성 수지 W0(g,약 0.2g)을부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상온에 0.9 중량%의 염화나트륨 수용액의 생리 식염수에 침수시켰다. 30분후에 봉투를원심 분리기를 이용하고 250G로 3분간물기를 뺀 후에 봉투의 질량 W2(g)을 즉정했다. 또한, 고톱수성 수지를 이용하지 않고동일한조작을 한후에 그때의 질량 을측정했다. 이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을확인하였다. The centrifugal separation performance (CRC) was measured according to EDANA WSP 241.3 of the European Disposables and Nonwovens Association (EDANA) standard. The superabsorbent resin W 0 ( g, about 0.2 g) And sealed in a bag made of polyethylene terephthalate and then immersed in physiological saline solution of 0.9 wt% aqueous solution of sodium chloride at room temperature. After 30 minutes, the envelope was centrifuged and the water was drained at 250G for 3 minutes, after which the mass of the envelope, W 2 ( g), was determined. In addition, after the same operation was performed without using a high viscosity aqueous resin, the mass at that time was measured. Using each of the masses thus obtained, CRC (g / g) was calculated according to the following equation (1) to confirm the maintenance performance.
[계산식 1]  [Equation 1]
CRC(g/g) = {[W2(g) - W!(g) - Wo(g)]AV0(g)} CRC (g / g) = {[W 2 (g) - W ! (g) - Wo (g) ] AV 0 (g)}
(3)가압롭수능 (Absorbing under Pressure, AUP) (3) Absorbing under pressure (AUP)
실시예 및 비교예의 고흡수성 수지에 대하여, 유럽부직포산업협회 (European Disposables and Nonwovens Association) 규격 EDANA WSP 242.3의 방법에 따라 가압 흡수능 (AUP: Absorbency under Pressure)을즉정하였다.  Absorbency under pressure (AUP) was immediately applied to the superabsorbent resins of Examples and Comparative Examples according to the method of European Disposables and Nonwovens Association standard EDANA WSP 242.3.
먼저, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을장착시켰다. 23±2°C의 온도및 45%의 상대 습도조건하에서 철망상에 실시예 1~6및 비교예 1~4으로얻어진수지 W0(g, 0.90 g)을균일하게살포하고 그위에 4.83 kPa(0.7 psi)의 하중을균일하게더 부여할수있는피스톤 (piston)은 외경이 60 mm보다약간작고원통의 내벽과틈이 없고,상하의 움직임이 방해 받지 않게하였다. 이때상기 장치의 중량 W3(g)을측정하였다. First, a 400 mesh wire mesh made of stainless steel was attached to the bottom of a plastic cylinder having an inner diameter of 60 mm. The resin W 0 ( g, 0.90 g) obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was uniformly sprayed on a iron mesh under the conditions of a temperature of 23 ± 2 ° C and a relative humidity of 45% The piston, which can uniformly apply a load of 4.83 kPa (0.7 psi) on it, is slightly smaller than the outer diameter of 60 mm, so there is no gap between the inner wall of the cylinder and the up and down movement is not disturbed. At this time, the weight W 3 ( g) of the device was measured.
직경 150 mm의 페트로 접시의 내측에 직경 125 mm로 두께 5 mm의 유리 필터를 두고, 0.90 중량% 염화 나트륨으로 구성된 생리 식염수를 유리 필터의 윗면과동일 레벨이 되도록하였다. 유리 필터 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. 1 시간 후 측정 장치를 들어올리고,그중량 w4(g)을즉정하였다. A glass filter having a diameter of 125 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm, and physiological saline composed of 0.90% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. The above measuring apparatus was put on a glass filter, and the liquid was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight w 4 ( g) immediately.
이렇게 얻어진각질량을이용하여 다음의 계산식 2에 따라 AUP(g/g)를 산출하여 가압흡수능을확인하였다.  Using each mass thus obtained, AUP (g / g) was calculated according to the following equation 2 to confirm the pressure absorption ability.
[계산식 2]  [Equation 2]
AUP(g/g) [W4(g) - W3(g)]/ W0(g) AUP (g / g) [W 4 (g) - W 3 (g)] / W 0 (g)
상기 계산식 2에서,  In the above equation 2,
W0(g)는고흡수성 수지의 초기무게 (g)이고, W 0 ( g) is the initial weight (g) of the water absorbent resin,
W3(g)는고톱수성 수지의 무게 및 상기 고톱수성 수지에 하중을부여할 수있는장치 무게의 총합이고, W 3 ( g) is the sum of the weight of the top water-based resin and the weight of the device capable of applying a load to the high-water-
W4(g)는 하중 (0.7 psi) 하에 1시간 동안 상기 고흡수성 수지에 생리 식염수를 흡수시킨 후에, 고흡수성 수지의 무게 및 상기 고흡수성 수지에 하중을부여할수있는장치 무게의충합이다. W 4 ( g) is the incorporation of the weight of the superabsorbent resin and the weight of the device capable of imparting a load to the superabsorbent resin after absorbing physiological saline into the superabsorbent resin for one hour under a load of 0.7 psi.
(4)생리식염수흐름유도성 (SFC; saline flow conductivity) (4) saline flow conductivity (SFC)
미국특허 등록번호 제 5562646호의 컬럼 54 내지 컬럼 59에 개시된 방법에 따라측정 및산출하였다. (5) 30초흡수속도  Was measured and calculated according to the method disclosed in columns 54 to 59 of U.S. Patent No. 5,562,646. (5) Absorption rate in 30 seconds
30초흡수속도및 공극율은 약 0.16g의 고흡수성 수지를원통형 실린더 하부의 mesh를 통해 유입된 생리 식염수에 의해 0.3psi 가압 조건 하에서 팽윤시키면서 측정할수 있다. 실시간으로고흡수성 수지의 부피 팽창에 따른 레오미터 상부 플레이트의 높이 변화를 측정하고, 30초에서의 상부 플레이트 높이를 톱수시간 (30초)로 나눈 값을 통해 상기 30초 돕수속도를 즉정 및 산출할 수 있다. 또한, 공극율은 상기 고흡수성 수지의 팽윤이 완료됐을 때 실린더 내부의 총 부피 (최종 흡수높이*원통형 실린더 하부면적)를 계산하고, 이 값에서 함수율 측정기로 측정된 고흡수성 수지의 생리 식염수 흡수량을 빼는방법으로산출할수있다. The 30 second absorption rate and porosity can be measured by swelling about 0.16 g of superabsorbent resin under physiological saline infused through the mesh under the cylindrical cylinder under 0.3 psi pressure. Measuring the height change of the rheometer top plate with the volume expansion of the superabsorbent resin in real time and instantaneously accelerating and decelerating the 30 second damping rate through the value of the top plate height at 30 seconds divided by the number of top times (30 seconds) Can be calculated. Further, the porosity is calculated by calculating the total volume (final absorption height * the area under the cylindrical cylinder) inside the cylinder when swelling of the superabsorbent resin is completed, and subtracting the physiological saline absorption of the superabsorbent resin measured by the water content meter from this value .
(6)표면가교액및고흡수성수지의표면장력 (6) Surface tension of surface cross-linking liquid and superabsorbent resin
모든 과정은 항온항습실(온도 23±0.5°C, 상대습도 45±0.5%)에서 진행하였다.  All procedures were carried out in a constant temperature chamber (temperature 23 ± 0.5 ° C, relative humidity 45 ± 0.5%).
먼저, 표면 가교액의 표면 장력은 이러한 표면 가교액을 피펫으로 주출하고 다른 깨끗한 컵으로 옮긴 투 표면 장력 즉정기(surface tensionmeter Kruss Kl l/KlOO)를이용하여 측정하였다.  First, the surface tension of the surface cross-linking liquid was measured using a surface tension meter Kruss Kl / KlOO, in which the surface cross-linking liquid was pipetted and transferred to another clean cup.
다음으로, 고흡수성 수지의 표면 장력은 0.9 중량% 염화나트륨으로 구성된 생리식염수 150g을 250mL 비이커에 담고 마그네틱 바로 교반하였다. 고흡수성 수지 l.Og을교반중인 용액에 넣어 3분간교반한후교반을멈추고 팽윤된고흡수성 수지가바닥에 가라앉도록 15분이상방치하였다.  Next, the surface tension of the superabsorbent resin was adjusted to 150 g of physiological saline consisting of 0.9 wt% sodium chloride in a 250 mL beaker, followed by magnetic bar stirring. 1.0 g of the superabsorbent resin was added to the stirring solution and stirred for 3 minutes. Stirring was stopped, and the swollen superabsorbent resin was allowed to stand on the bottom for at least 15 minutes.
그 후상층액(표면의 바로 밑 부분의 용액)을 피펫으로 추출하고 다른 깨끗한컵으로옮긴후표면장력 즉정기(surface tensionmeter Kruss K11/K100)를 이용하여 측정하였다. 위 방법으로 측정된 실시예 1 내지 7 및 비교예 1 내지 5의 각물성 값을하기 표 1에 정리하여 나타내었다.  After that, the supernatant (the solution immediately below the surface) was pipetted and transferred to another clean cup and measured using surface tension meter Krust K11 / K100. The physical properties of Examples 1 to 7 and Comparative Examples 1 to 5 measured by the above method are summarized in Table 1 below.
[표 1] [Table 1]
Figure imgf000032_0001
2019/117482 1»(:1^1{2018/013917
Figure imgf000032_0001
2019/117482 1 »(: 1 ^ {2018/013917
Figure imgf000033_0001
Figure imgf000033_0001
상기 표 1을 참고하면, 실시예 1 내지 7은 소정의 입자 분포를 충족하고, 35 (_10_7 11 3 3/ 이상으로 정의되는 우수한 통액성을 나타냄이 확인되었다. 이러한실시예 1 내지 7은흡수도등으로정의되는기본적인 흡수 성능이 우수할 뿐 아니라, 상기 통액성이 뛰어나면서도, 입자 분포가 최적화되어 30초 흡수 속도에 의해 정의되는 흡수속도 또한 뛰어난 것으로 확인되었다. Referring to Table 1, Examples 1 to 7 was found to have excellent tube-component refers to that meeting the predetermined particle size distribution, and defined as 35 (_10_ 7 11 3 3 / above. The Examples 1 to 7 are absorbed It was confirmed that not only the basic absorption performance defined by the degree of penetration, but also the liquid permeability, the particle distribution was optimized, and the absorption rate defined by the 30 second absorption rate was also excellent.
이에 비해,비교예 1 내지 5는실시예에 비해,통액성 또는흡수속도의 하나이상이 열악한것으로확인되었다.  On the other hand, in Comparative Examples 1 to 5, it was confirmed that one or more of the liquid permeability or the absorption rate was poor as compared with the room example.

Claims

2019/117482 1»(:1^1{2018/013917  2019/117482 1 »(: 1 ^ {2018/013917
【청구의 범위】 Claims:
【청구항 11  Claim 11
적어도일부가중화된산성기를갖는수용성 에틸렌계불포화단량체의 제 1가교중합체를포함하는베이스수지 분말;및  A base resin powder comprising a first crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least partly neutralized acidic groups; and
상기 베이스수지 분말상에 형성되어 있고,상기 제 1 가교중합체가 표면 가교제를 매개로 추가 가교된 제 2 가교 중합체를 포함하는 표면 가교층을포함하는고흡수성 수지로서,  A superabsorbent resin which is formed on the base resin powder and in which the first crosslinked polymer comprises a surface crosslinked layer comprising a second crosslinked polymer which is further crosslinked via a surface crosslinking agent,
상기 고흡수성 수지는각각의 고흡수성 수지 입자의 최단직경 /최장 직경으로 정의되는 종횡비가 0.5 미만인 고흡수성 수지 입자를 10 개수% 이상으로포함하고,  Wherein the superabsorbent resin comprises 10% or more of superabsorbent resin particles having an aspect ratio defined by a shortest diameter / longest diameter of each superabsorbent resin particle of less than 0.5,
생리 식염수(0.685중량% 염화나트륨수용액)의 흐름유도성 10- 7011 3·%)이 30(107011 3 5^)이상인고듭수성 수지. Inductive flow of physiological saline (0.685% aqueous solution of sodium chloride by weight) 10 70 11 · 3%) 30 (10 70 11 35 ^) godeup or more water-based resin.
【청구항 2] [Claim 2]
제 1 항에 있어서, 하기 식 1로 표시되는 흡수도가 46 내지 63 인 고톱수성 수지 :  The high water-soluble resin according to claim 1, which has an absorption degree of 46 to 63 represented by the following formula 1:
[식 1]  [Formula 1]
흡수도 = 犯 +사正  Absorption = crime +
상기 식 1에서,  In Equation (1)
比는 상기 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분동안의 원심분리 보수능을나타내며,  The ratio shows the centrifugal separation capacity for the physiological saline (0.9 wt% aqueous sodium chloride solution) of the superabsorbent resin for 30 minutes,
쇼1正는 상기 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 0. 하에서 1시간동안의 가압흡수능을나타낸다.  Show 1 shows the pressure absorbing capacity for 1 hour in physiological saline (0.9 wt% aqueous sodium chloride solution) of the above superabsorbent resin at 0.degree.
【청구항 3】 [Claim 3]
제 2항에 있어서,상기 1(:는 25내지 35 § 인고흡수성 수지. The method of claim 2, wherein the first (: 25 to 35 § ingot absorbing resin.
【청구항 4】 Claim 4
제 2항에 있어서,
Figure imgf000034_0001
고흡수성 수지.
3. The method of claim 2,
Figure imgf000034_0001
Highly absorbent resin.
【청구항 5】 [Claim 5]
제 1 항에 있어서, 0.3 psi의 가압 하 생리 식염수에 대한 30초 듭수속도가 1.5mm/min이상인고듭수성수지.  The aqueous resin according to claim 1, wherein the 30 sec recovery speed of the saline solution under pressure of 0.3 psi is 1.5 mm / min or more.
【청구항 6] [Claim 6]
제 1 항에 있어서, 표면 장력(surface tension)이 60 내지 75 mN/m 인 고흡수성 수지.  The superabsorbent resin according to claim 1, having a surface tension of 60 to 75 mN / m.
【청구항 7] [7]
제 1항에 있어서,상기 표면가교제는서로다른탄소수를갖는탄소수 The surface cross-linking agent according to claim 1, wherein the surface cross-linking agent has a number of carbon atoms having different carbon numbers
2내지 6의 알킬렌카보네이트의 2종이상을포함하는고돕수성 수지. 2 to 6 of an alkylene carbonate.
【청구항 8】 8.
제 1 항에 있어서, 상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2 -아크릴로일에탄 술폰산, 2 -메타크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산, 또는 2 - (메트)아크릴아미드- 2 -메틸 프로판 술폰산의 을이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2 - 히드록시에틸(메트)아크릴레이트, 2 -히드록시프로필(메트)아크릴레이트, 메톡시폴리에틸렌글리콜(메트)아크릴레이트 또는 폴리에틸렌 글리콜(메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)- 디메틸아미노에틸(메트)아크릴레이트 또는 (N,N)- 디메틸아미노프로필(메트)아크릴아미드의 아미노기 함유불포화단량체와그의 4급화물;로이루어진군에서 선택된 1종아상을포함하는고흡수성 수지.  The water-soluble ethylenically unsaturated monomer according to claim 1, wherein the water-soluble ethylenically unsaturated monomer is at least one selected from the group consisting of acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2- acryloylethanesulfonic acid, 2- methacryloylethanesulfonic acid, 2- (Meth) acryloylpropanesulfonic acid, or a cationic monomer of 2 - (meth) acrylamide-2-methylpropanesulfonic acid and its salt; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate or polyethylene glycol Non-ionic hydrophilic-containing monomer of (meth) acrylate; And an unsaturated monomer containing an amino group of (N, N) -dimethylaminoethyl (meth) acrylate or (N, N) -dimethylaminopropyl (meth) acrylamide and a quaternary product thereof. / RTI >
【청구항 9] 9]
발포제 및 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교 중합체를 포함하는함수겔중합체를형성하는단계;  Crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups in the presence of a blowing agent and an internal cross-linking agent to form a hydrogel polymer comprising the first cross-linking polymer;
상기 함수겔중합체를 겔분쇄,건조,분쇄 및 분급하여,각각의 베이스 수지 분말의 최단직경 /최장직경으로정의되는종횡비가 0.5미만인 베이스 수지 분말을 10개수%이상으로포함하는베이스수지를형성하는단계;및 표면 가교제 및 액상 매질을포함하고, 20내지 25°C의 온도에서 표면 장력이 25 내지 50 mN/m 인 표면 가교액의 존재 하에, 상기 베이스 수지를 열처리하여 표면가교하는단계를포함하는고흡수성 수지의 제조방법. The hydrogel polymer was gel-pulverized, dried, pulverized, and classified to obtain each base Further comprising: an aspect ratio, defined as the shortest diameter / the longest diameter of the resin powder to form a base resin containing 0.5 less than the base resin powder with at least 10% by number; and the surface cross-linking agent and comprises a liquid medium, and 20 to a temperature of 25 ° C In the presence of a surface cross-linking liquid having a surface tension of 25 to 50 mN / m, heat-treating the base resin to cross-link the surface.
【청구항 10】 Claim 10
제 9 항에 있어서, 상기 내부 가교제는 폴리올의 폴리 (메트) 아크릴레이트계 제 1 내부 가교제 및 알릴 (메트)아크릴레이트계 제 2 내부 가교제를포함하고,  [10] The method of claim 9, wherein the internal crosslinking agent comprises a poly (meth) acrylate-based first internal crosslinking agent and an allyl (meth) acrylate-based second internal crosslinking agent of a polyol,
상기 제 1 및 제 2 내부 가교제의 총 함량은 상기 내부 가교제 및 단량체를 포함하는 단량체 조성물의 100 중량부에 대해 0.01 중량부 내지 2 중량부의 함량으로되는고흡수성 수지의 제조방법.  Wherein the total content of the first and second internal cross-linking agents is 0.01 to 2 parts by weight based on 100 parts by weight of the monomer composition comprising the internal cross-linking agent and the monomer.
【청구항 11】 Claim 11
제 9 항에 있어서, 상기 발포제는 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate), 포타슘 비카보네이트 (potassium bicarbonate),포타슘카보네이트 (potassium carbonate),칼슘 비카보네이트 (calcium bicarbonate),칼슘카보네이트 (calcium bicarbonate),마그네슘 비카보네이트 (magnesiumbicarbonate) 및 마그네슘 카보네이트 (magnesium carbonate)로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조방법.  The method of claim 9, wherein the foaming agent is selected from the group consisting of sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium carbonate calcium carbonate, calcium bicarbonate, magnesium bicarbonate, and magnesium carbonate.
【청구항 12】 Claim 12
제 9항에 있어서,상기 표면가교제는서로다른탄소수를갖는탄소수 The surface cross-linking agent according to claim 9, wherein the surface cross-linking agent has a number of carbon atoms having different carbon numbers
2 내지 6의 알킬렌 카보네이트의 2종 이상을포함하는 고흡수성 수지의 제조 방법. 2 to 6 alkylene carbonates. ≪ RTI ID = 0.0 > 11. < / RTI >
【청구항 13】 Claim 13
제 12 항에 있어서, 상기 표면 가교액은 계면 활성제를 더 포함하는 2019/117482 1»(:1^1{2018/013917 13. The method of claim 12, wherein the surface cross-linking liquid further comprises a surfactant 2019/117482 1 »(: 1 ^ {2018/013917
고흡수성 수지의 제조방법. A method for producing a superabsorbent resin.
【청구항 14】 14.
제 12 항에 있어서,상기 표면 가교액은 하기 화학식 1 와 화학식 1- 로 표시되는 반복 단위를 갖는 폴리카르복실산계 공중합체를 더 포함하는 고흡수성 수지의 제조방법:  The method of producing a superabsorbent resin according to claim 12, wherein the surface cross-linking liquid further comprises a polycarboxylic acid-based copolymer having a repeating unit represented by the following formula (1)
[화학식 1-리  [Chemical Formula 1 -
[
Figure imgf000037_0001
Figure imgf000037_0001
상기 화학식 1ᅦ및 1 에서,  In the above formulas (1) and (1)
II1, ^ 및 는 각각 독립적으로 수소 또는 탄소수 1 내지 6의 알킬 그룹이고, 110는탄소수 2내지 4의 옥시알킬렌그룹이고, M1은수소또는 1가 금속 또는 비금속 이온이고, X는 -000-, 탄소수 1 내지 5의 알킬옥시 그룹 또는탄소수 1내지 5의 알킬디옥시 그룹이고, III은 1내지 100의 정수이고, 11은 1 내지 1000의 정수이고, 는 1 내지 150의 정수이고,상기 I)가 2이상인 경우 둘이상반복되는 -110 -는서로동일하거나다를수있다. II 1, and ^ are each independently hydrogen or an alkyl group having 1 to 6, 110 is an oxyalkylene group of a carbon number of 2 to 4, M 1 is hydrogen or a monovalent metal or non-metal ion, X is -000 -, an alkyloxy group having 1 to 5 carbon atoms or an alkyldioxy group having 1 to 5 carbon atoms, III is an integer of 1 to 100, 11 is an integer of 1 to 1000, and is an integer of 1 to 150, ) Is 2 or more, two or more repeating - 110 - may be the same or different from each other.
【청구항 15】 15.
제 12항에 있어서, 상기 표면 가교액의 액상 매질은탄소수 6 이상의 지방족알코올을더 포함하는고흡수성 수지의 제조방법. 2019/117482 1»(:1^1{2018/013917 The method of producing a superabsorbent resin according to claim 12, wherein the liquid medium of the surface cross-linking liquid further comprises an aliphatic alcohol having 6 or more carbon atoms. 2019/117482 1 »(: 1 ^ {2018/013917
【청구항 16】Claim 16
Figure imgf000038_0001
Figure imgf000038_0001
온도에서 10분 내지 30분에 걸쳐 140°0 내지 200 X:의 최고 온도로 승온하고, 상기 최고 온도를 5 분 내지 60분 동안 유지하여 열처리함으로서 진행되는 고흡수성 수지의 제조방법. Wherein the temperature is raised to a maximum temperature of 140 DEG C to 200 DEG C over a period of 10 minutes to 30 minutes at a temperature of from 0 to 200 DEG C, and the maximum temperature is maintained for 5 minutes to 60 minutes.
PCT/KR2018/013917 2017-12-15 2018-11-14 Highly absorptive resin and method for producing same WO2019117482A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/475,940 US11406963B2 (en) 2017-12-15 2018-11-14 Superabsorbent polymer and preparation method thereof
JP2019536818A JP7433047B2 (en) 2017-12-15 2018-11-14 Super absorbent resin and its manufacturing method
CN201880005698.2A CN110167997B (en) 2017-12-15 2018-11-14 Superabsorbent polymer and method of making the same
BR112019014971-6A BR112019014971B1 (en) 2017-12-15 2018-11-14 SUPERABSORBENT POLYMER AND METHOD FOR PREPARING THE SAME
EP18884837.8A EP3540001B1 (en) 2017-12-15 2018-11-14 Highly absorptive resin and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0173553 2017-12-15
KR20170173553 2017-12-15
KR10-2018-0139102 2018-11-13
KR1020180139102A KR102566440B1 (en) 2017-12-15 2018-11-13 Super absorbent polymer and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2019117482A1 true WO2019117482A1 (en) 2019-06-20

Family

ID=66819377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013917 WO2019117482A1 (en) 2017-12-15 2018-11-14 Highly absorptive resin and method for producing same

Country Status (1)

Country Link
WO (1) WO2019117482A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022517074A (en) * 2019-09-30 2022-03-04 エルジー・ケム・リミテッド Highly water-absorbent resin composition and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
KR20150132035A (en) 2014-05-16 2015-11-25 주식회사 엘지화학 Super absorbent polymer, and preparation method of the same
KR20160010516A (en) * 2013-05-15 2016-01-27 에보니크 데구사 게엠베하 Superabsorbent polymers with rapid absorption properties and process for producing same
KR20160063975A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR101684649B1 (en) 2014-06-13 2016-12-08 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR20160144611A (en) * 2015-06-09 2016-12-19 한화케미칼 주식회사 Super absorbent polymer and method for manufacturing the same
KR20170106156A (en) * 2016-03-11 2017-09-20 주식회사 엘지화학 Preparation method for super absorbent polymer, and super absorbent polymer
EP3540001A1 (en) 2017-12-15 2019-09-18 LG Chem, Ltd. Highly absorptive resin and method for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562646A (en) 1994-03-29 1996-10-08 The Proctor & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer having high porosity
KR20160010516A (en) * 2013-05-15 2016-01-27 에보니크 데구사 게엠베하 Superabsorbent polymers with rapid absorption properties and process for producing same
KR20150132035A (en) 2014-05-16 2015-11-25 주식회사 엘지화학 Super absorbent polymer, and preparation method of the same
KR101684649B1 (en) 2014-06-13 2016-12-08 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR20160063975A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR20160144611A (en) * 2015-06-09 2016-12-19 한화케미칼 주식회사 Super absorbent polymer and method for manufacturing the same
KR20170106156A (en) * 2016-03-11 2017-09-20 주식회사 엘지화학 Preparation method for super absorbent polymer, and super absorbent polymer
EP3540001A1 (en) 2017-12-15 2019-09-18 LG Chem, Ltd. Highly absorptive resin and method for producing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022517074A (en) * 2019-09-30 2022-03-04 エルジー・ケム・リミテッド Highly water-absorbent resin composition and its manufacturing method
JP7258401B2 (en) 2019-09-30 2023-04-17 エルジー・ケム・リミテッド SUPER ABSORBENT RESIN COMPOSITION AND METHOD FOR MANUFACTURING SAME

Similar Documents

Publication Publication Date Title
CN108779265B (en) Method for preparing super absorbent polymer
JP7433047B2 (en) Super absorbent resin and its manufacturing method
US9700873B2 (en) Method for preparing super absorbent polymer and super absorbent polymer prepared therefrom
CN109071833B (en) Superabsorbent polymer and method for producing the same
US11718694B2 (en) Super absorbent polymer and preparation method thereof
CN111433261B (en) Superabsorbent polymer composition and method of making the same
US20210197173A1 (en) Super Absorbent Polymer And Method For Producing Same
CN109923157B (en) Superabsorbent polymer and method of making the same
JP6837141B2 (en) Highly water-absorbent resin and its manufacturing method
KR101745679B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
CN109312082B (en) Superabsorbent polymer and method for making same
CN112204091B (en) Method for preparing super absorbent polymer
WO2019117482A1 (en) Highly absorptive resin and method for producing same
WO2019093670A1 (en) Super-absorbent polymer and preparation method therefor
WO2019083211A1 (en) Superabsorbent polymer preparation method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536818

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018884837

Country of ref document: EP

Effective date: 20190611

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014971

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112019014971

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190719

NENP Non-entry into the national phase

Ref country code: DE