WO2019083211A1 - Superabsorbent polymer preparation method - Google Patents

Superabsorbent polymer preparation method

Info

Publication number
WO2019083211A1
WO2019083211A1 PCT/KR2018/012127 KR2018012127W WO2019083211A1 WO 2019083211 A1 WO2019083211 A1 WO 2019083211A1 KR 2018012127 W KR2018012127 W KR 2018012127W WO 2019083211 A1 WO2019083211 A1 WO 2019083211A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
monomer
particle diameter
polymer particles
resin
Prior art date
Application number
PCT/KR2018/012127
Other languages
French (fr)
Korean (ko)
Other versions
WO2019083211A9 (en
Inventor
김무곤
이상기
남혜미
이창훈
김태윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180121994A external-priority patent/KR102566942B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/474,850 priority Critical patent/US11407848B2/en
Priority to EP18871353.1A priority patent/EP3546503B1/en
Priority to CN201880012410.4A priority patent/CN110312755B/en
Priority to JP2019529927A priority patent/JP6806903B2/en
Publication of WO2019083211A1 publication Critical patent/WO2019083211A1/en
Publication of WO2019083211A9 publication Critical patent/WO2019083211A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules

Definitions

  • the present invention provides a method for producing a superabsorbent resin which enables production of a superabsorbent resin capable of exhibiting an excellent absorption rate including a uniform porous structure through a simple and economical process.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times its own weight.
  • SAM super absorbent polymer
  • Such a superabsorbent resin has started to be put into practical use as a sanitary article, and nowadays, in addition to sanitary articles such as diapers for children, there are currently used soil repair agents for horticultural use, index materials for civil engineering and construction, sheets for seedling growing, freshness- And it is widely used as a material for fomentation and the like.
  • a method for producing a water-soluble ethylenically unsaturated monomer comprising crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acid groups in the presence of an internal crosslinking agent to form a hydrogel polymer comprising a first crosslinked polymer;
  • a method for producing a superabsorbent resin in which foam polymerization is carried out in the presence of polymer particles having an average particle diameter of 10 to 200 zm obtained in the classification step and an anionic surfactant.
  • foam polymerization is carried out in the presence of polymer particles having an average particle diameter of 10 to 200 zm obtained in the classification step and an anionic surfactant.
  • the fine powder obtained in the classification step that is, the synthetic resin particle having a particle diameter of 10 to 200 is used as a kind of foaming agent in the crosslinking polymerization for producing a superabsorbent resin
  • the active agent is used as a foam and a tablet. It has been confirmed that as the foaming polymerization proceeds by using such a fine powder and an anionic surface active agent, homogeneous pores are formed in the base resin powder and the superabsorbent resin obtained through the crosslinking polymerization and the subsequent steps, which are uniform in the particle diameter of the fine powder.
  • the superabsorbent resin having a uniform porous structure is produced as compared with the prior art using the blowing agent or the like, the superabsorbent resin can exhibit a higher absorption rate and further, The disadvantages of the conventional techniques such that the absorption rate is made nonuniform may be solved, and the superabsorbent resin particles may exhibit a uniformly uniform absorption rate as a whole.
  • the manufacturing process of the superabsorbent resin particularly, the fine powder generally obtained in the classifying process, and the general anionic surfactant can be used without expensive additive such as capping foaming agent, Absorbing resin in which the structure is stably introduced, the process cost of the entire superabsorbent resin can be largely lowered, and a superabsorbent resin having an excellent absorption rate can be obtained through a simplified process.
  • the production method of one embodiment and the superabsorbent resin obtained thereby will be described in more detail. .
  • the first crosslinked polymer The constituent water-soluble ethylenically unsaturated monomers may be any monomers conventionally used in the production of superabsorbent resins.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by the following Formula 1:
  • Ri is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.
  • the monomer may be at least one member selected from the group consisting of (meth) acrylic acid, and monovalent (alkali) metal salts, bivalent metal salts, ammonium pseudo and organic amine salts of these acids.
  • (meth) acrylic acid and / or a salt thereof is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a highly water-absorbent resin having improved water absorption.
  • Examples of the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2- methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (Meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypoly (meth) acrylate, (N, N) -dimethylaminoethyl (meth) acrylate, (N, N) -dimethylaminopropyl (meth) acrylamide, and the like can be used.
  • the water-soluble ethylenically unsaturated monomer may have an acidic group and at least a part of the acidic group may be neutralized.
  • the monomer is partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like.
  • the neutralization degree of the monomer may be 55 to 95 mol%, or 60 to 80 mol%, or 65 to 75 mol%.
  • the degree of neutralization may vary depending on the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may precipitate and polymerization may not proceed smoothly. On the other hand, if the degree of neutralization is too low, It can exhibit properties similar to elastic rubber which is difficult to handle.
  • the internal crosslinking agent and the polymer particles (fine powder) having an average particle diameter of 10 to 150 / dish obtained in the classifying process to be described later and 10 to 200 / rni, and the anionic surfactant,
  • the water-soluble ethylenically unsaturated monomer is as described above. Further, the above monomer composition, the concentration of the water-soluble ethylenically unsaturated monomer may be appropriately adjusted in consideration of the polymerization time and banung conditions, preferably from 20 to 90 parts by weight 0 /., Or 40 to 65 weight 0 /. Day . Such a concentration range may be advantageous for controlling the grinding efficiency at the time of pulverization of a polymer described below, while eliminating the need to remove the unpaired monomer after polymerization by utilizing the gel effect phenomenon occurring in the polymerization reaction of a high concentration aqueous solution. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be lowered.
  • the concentration of the monomer is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be lowered upon pulverization of the polymer gel, and the physical properties of the superabsorbent resin may be deteriorated.
  • the internal crosslinking agent any compound can be used as long as it allows the introduction of crosslinking in the polymerization of the water-soluble ethylenically unsaturated monomer.
  • the internal cross-linking agent is selected from the group consisting of N, N'-methylenebisacrylamide, trimethylol propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) (Meth) acrylate, butylene diol di (meth) acrylate, butylene diol di (meth) acrylate, diethylene glycol di (meth) acrylate, ) Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri , Pentaerythritol is reacted with
  • Such an internal cross-linking agent may be added at a concentration of about 0.001 to 1% by weight based on the monomer composition. That is, when the concentration of the internal cross-linking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened. On the contrary, when the concentration of the internal cross-linking agent is too high, the absorption power of the resin is lowered, which may be undesirable as an absorber.
  • the polymer particles having a particle size of 150 may be contained in an amount of 0.1 to 5 parts by weight, or 0.5 to 3 parts by weight, or 0.7 to 2.5 parts by weight, based on 100 parts by weight of the monomer.
  • the superabsorbent resin can be removed.
  • the anionic surfactant may include sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, dioctyl sodium sulfosuccinate, perfluorooctanesulfonate, perfluorobutane At least one selected from the group consisting of sulfonates, alkyl-aryl ether phosphates, alkyl ether phosphates, sodium missesulfate and carboxylate salts may be used. In addition, various anionic surfactants may be used.
  • Such anionic surfactant enables the porous structure to be better formed through the foaming polymerization using the fine powder, and stabilizes such a porous structure.
  • the superabsorbent resin can exhibit a higher absorption rate.
  • Such anionic surfactant may be used in an amount of 0.002 to 0.05 parts by weight based on 100 parts by weight of the monomer and 0.005 to 0.02 parts by weight of black. This makes it possible to obtain a superabsorbent resin in which a uniform porous structure is suitably introduced to exhibit a further improved absorption rate while suppressing deterioration of other physical properties.
  • the monomer composition for example, a monomer aqueous solution may contain the above-mentioned monomer, internal cross-linking agent, polymer particles having a particle diameter of 10 to 200 and anionic
  • the surfactant may further comprise at least one additive selected from the group consisting of a polyvalent metal salt, a photo initiator, a thermal initiator, and a polyalkylene glycol-based polymer.
  • Such additives can be used to further improve the liquid permeability of the superabsorbent resin (such as polyvalent metal salt or polyalkylene glycol-based polymer), or to improve the physical properties of the superabsorbent resin by facilitating crosslinking polymerization.
  • the superabsorbent resin such as polyvalent metal salt or polyalkylene glycol-based polymer
  • the above-mentioned additives may be used in an amount of 2000 ppmw or less, 0 to 2000 ppmw, black silver or 10 to 1000 ppmw, black silver or 50 to 500 ppmw, based on 100 parts by weight of the monomer, depending on their respective roles. As a result, properties such as liquid permeability or absorption performance of the superabsorbent resin can be further improved.
  • polyethylene glycol, polypropylene glycol, and the like can be used as the polyalkylene glycol-based polymer.
  • any polymerization initiator generally used in the production of a superabsorbent resin may be used.
  • a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction,
  • An initiator may be used together to produce a superabsorbent resin having a better absorption rate and various physical properties.
  • the thermal (polymerization) initiator at least one compound selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • the persulfate-based initiator and sodium sulfate sodium persulfate; Na2S 2 0 8
  • potassium persulfate Pot persulfate
  • ammonium persulfate Ammonium persulfate; (NH 4) 2 S 2 0 8 ).
  • Azo-based initiators include 2,2-azobis (2-amidinopropane) dihydrochloride, 2,2-azobis- (N, N-dimethylene isobutyramidine dihydrochloride, 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride,
  • photo polymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, At least one compound selected from the group consisting of benzyl dimethyl ketal, acyl phosphine and alpha-aminoketone may be used.
  • acylphosphine a commonly used lucyrin TPO, i.e., 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used .
  • a variety of photopolymerization initiators are disclosed in Reinhold Schwalm, "UV Coatings: Basics, Recent Developments and New Applications," at page 15, page 15.
  • Such an initiator may be added in an amount of 500 ppmw or less based on 100 parts by weight of the monomer. That is, if the concentration of the polymerization initiator is too low, the polymerization rate may be slowed and the remaining monomer may be extracted in the final product in a large amount, which is not preferable. Conversely, if the concentration of the polymerization initiator is higher than the above range, the chain of the polymer forming the network becomes shorter, and the physical properties of the resin may be lowered, such that the content of the water-soluble component becomes higher and the pressure absorption capacity becomes lower.
  • the monomer composition may further contain additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • Such a monomer composition may be prepared in the form of a solution in which a raw material such as the above-mentioned monomer is dissolved in a solvent.
  • usable solvents may be used without limitation of the constitution as long as they can dissolve the above-mentioned raw materials.
  • the solvent examples include water, ethane, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether Acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, Diethylene glycol monomethyl ether, diethylene glycol ethyl ether, diene, xylene, butyrolactone, carbide, methylsalosolve acetate, N, N-dimethylacetamide, or a mixture thereof have.
  • the monomer composition having the above-mentioned form of an aqueous solution or the like can be controlled so that the initial temperature has a temperature of 30 to 60 ° C, and light energy or heat energy is applied thereto to form a crosslinking polymerization.
  • Formation of hydrogel polymer through cross-linking polymerization of such monomer composition can be performed by a conventional polymerization method, and the process is not particularly limited.
  • the polymerization method is divided into thermal polymerization and photopolymerization depending on the type of polymerization energy source.
  • the polymerization may proceed in a reactor having a stirring axis such as a kneader, It is possible to proceed in a semi-woven machine provided with a movable conveyor belt.
  • the monomer composition may be introduced into a semipermeable vessel such as a kneader equipped with a stirring shaft .
  • the hydrogel polymer can be obtained by supplying hot air thereto or by heat-polymerizing the monolith.
  • the hydrogel polymer discharged to the reactor outlet according to the shape of the stirring shaft provided in the semi-cylindrical tower can be obtained as particles of several millimeters to several centimeters.
  • the resulting hydrogel polymer can be obtained in various forms depending on the concentration and the injection rate of the monomer composition to be injected, and a hydrogel polymer having a particle diameter of 2 to 50 mm (weight average) can be obtained.
  • a hydrogel polymer in the form of a sheet can be obtained.
  • the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected. In order to ensure the uniformity of the entire sheet and to secure the production rate, the thickness of the sheet is usually adjusted to 0.5 to 5 cm desirable.
  • the water content of the hydrogel polymer obtained in the same method may be 40 to 80 parts by weight 0 /.
  • &quot moisture content " refers to the amount of moisture occupied by the total functional gel polymer weight, Quot; means the value obtained by subtracting the weight of the polymer in the state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then keeping it at 180 ° C, and the total drying time is set to 20 minutes including 5 minutes of the temperature raising step, and water content is measured.
  • the hydrogel polymer may be dried and pulverized. Prior to such drying, the step of first pulverizing the hydrous gel polymer to produce a hydrous gel polymer having a small average particle diameter may be carried out first.
  • the hydrogel polymer can be pulverized to 1.0 mm to 2.0 mm.
  • the pulverizer to be used in the coarse pulverization is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a cutter mill, a disc mill, a shred crusher, a crusher, a chopper and a disc cutter. But it is not limited to the example described above.
  • the coarse pulverization can be performed in a plurality of cycles according to the particle size.
  • the hydrogel polymer may be subjected to first crude pulverization with an average particle size of about 10 mm, second crude pulverization with an average particle diameter of about 5 mm, and then third-stage pulverization with the above-mentioned particle size.
  • the hydrogel polymer can be dried.
  • This drying temperature may be between 50 and 250 ° C. If the drying temperature is lower than 50 ° C, the drying time becomes excessively long and the physical properties of the ultrafine water-absorbent resin to be finally formed may deteriorate. If the drying temperature exceeds 250 ° C, There is a possibility that the physical properties of the superabsorbent resin finally formed are lowered. More preferably, the drying can be carried out at a temperature of 150 to 200 ° C, more preferably at a temperature of 160 to 190 ° C. On the other hand, the drying time may be 20 minutes to 15 hours in consideration of process efficiency and the like, but is not limited thereto.
  • the drying step can be selected and used without limitation of its constitution.
  • the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like.
  • the increased water content of the polymer after such drying phase can be from 0.05 to 10 parts by weight 0 /.
  • the polymer powder obtained after the pulverization step may have a particle diameter of 150 to 850.
  • the pulverizer used for crushing with such a particle diameter is specifically a ball mill, a pin mill, a hammer mill, a screw mill, a roll mill, A disc mill, a jog mill, or the like may be used, but the present invention is not limited to the above examples.
  • a separate process of classifying the polymer powder obtained after pulverization according to the particle size may be performed.
  • the pulverized polymer can be classified into polymer particles having a particle size of at least 10-150 / m, polymer particles having a particle size of 150-200, and polymer particles having a particle size of 200-850 have. Part of the polymer particles having a particle size of 10 to 150 / m and all of the polymer particles having a particle size of 150 to 200 are selected and the fine particles containing them are subjected to the cross- Recycle it, and use it as a kind of foaming agent. As described above, it is possible to provide a superabsorbent resin having a uniform porous structure and an improved and yet uniform absorption rate.
  • the remaining polymer particles other than these fine particles for example, the remainder of the polymer particles having a particle diameter of 150-200 / m, and all of the polymer particles having a particle diameter of 200-850, To form a base resin powder.
  • the base resin powder having such a particle diameter that is, a particle diameter of 150 to 50 nm, can be produced through a surface cross-linking reaction step described later.
  • the step of cross-linking the surface of the base resin powder may include a step of cross-linking the surface of the base resin powder by heat treatment of the base resin powder in the presence of a surface cross- Resin can be produced.
  • the kind of the surface cross-linking agent contained in the surface cross-linking liquid is not particularly limited.
  • the surface cross-linking agent may be selected from ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, But are not limited to, ethylene carbonate, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propanediol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerin, butanediol, heptanediol, Propane, pentaerythritol, sorbic acid, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride and iron chloride.
  • the content of the surface cross-linking agent may be appropriately adjusted according to the type thereof, the conditions of the reaction, and preferably 0.001 to 5 parts by weight based on 100 parts by weight of the base resin powder. If the content of the surface cross-linking agent is too low, surface cross-linking may not be properly introduced, and the physical properties of the final superabsorbent resin may be deteriorated. On the contrary, if the surface cross-linking agent is used in an excessive amount, absorption of the superabsorbent resin may be lowered due to excessive surface cross-linking reaction, which is not preferable.
  • the surface cross-linking solution may be water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methylene chloride, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, Butylolactone, carboxy, methylcellosolve acetate, and N, N-dimethylacetamide.
  • the solvent may be included in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the base resin.
  • the surface cross-linking solution may further include a thickener. If the surface of the base resin powder is further crosslinked in the presence of the thickening agent, deterioration of physical properties can be minimized even after the pulverization.
  • a thickening agent at least one selected from a polysaccharide and a hydroxy-containing polymer may be used.
  • the polysaccharide may be a gum-based thickener, a salicylose-based thickener, or the like.
  • Specific examples of the gum series thickener include xanthan gum, arabic gum, karaya gum, tragacanth gum, ghatti gum, guar gum, guar gum, locust bean gum, and psyllium seed gum.
  • Examples of the cellulose-based thickener include hydroxypropyl methylcellulose, carboxymethyl cellulose, Cellulose, methyl salicylose,. Hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, Ethylcellulose, and methylhydroxypropylcellulose, and the like.
  • specific examples of the hydroxy-containing polymer include polyethylene glycol and polyvinyl alcohol.
  • the surface cross-linking may be carried out at a temperature of 100 to 250 ° C, and may be continuously performed after the drying and crushing step which proceeds at a relatively high temperature. At this time.
  • the surface cross-linking reaction may be carried out for 1 to 120 minutes, or 1 to 100 minutes, or 10 to 60 minutes. That is, the surface cross-linking reaction may be carried out in order to prevent the degradation of the physical properties of the polymer particles during the excessive migration while inducing the minimum surface cross-linking reaction.
  • the superabsorbent resin prepared as described above can have a bulk density of 0.55 to 0.65 g / ml, or 0.57 to 0.64 g / ml, as a uniform porous structure is introduced.
  • the absorption rate measured according to the Vortex measurement method may be 30 to 53 seconds, or 33 to 50 seconds, or 35 to 48 seconds.
  • the absorption rate refers to the time for which the vortex of the liquid disappears due to rapid absorption when the superabsorbent resin is added to the physiological saline solution and stirred. This means a rapid absorption capacity of the superabsorbent resin.
  • the concrete measurement method thereof will be further specified in the following examples.
  • the superabsorbent resin has a centrifugal separation capacity (CRC) of 28 to 35 g / g or 30 to 33 g / g measured according to the EDANA method WSP 241.3 and a pore volume of 0.9 psi measured according to EDANA method WSP 242.3 And a pressure absorption capacity (AUL) of 16 to 23 g / g, or 17 to 20 g / g.
  • CRC centrifugal separation capacity
  • AUL pressure absorption capacity
  • the superabsorbent resin has an average particle diameter of 300 to 600. Also preferably includes a super-absorbent resin and the particle diameter of the water-absorbent resin is 300 to 600 m according to the invention to 45 to 85 parts by weight 0 /. Further, preferably, a superabsorbent resin having a particle size of 300 or less in the superabsorbent resin
  • 15 comprises by weight 0 /. Above.
  • the fountain solution prepared in Step 1 was poured into a Vat-shaped tray (15 cm x 15 cm wide) equipped with a light irradiation device on the top and a square polymerizer whose interior was preheated to 8 C C. Thereafter, the mixed solution was irradiated with light. It was confirmed that the gel was formed from the surface after about 20 seconds from the light irradiation point, and it was confirmed that polymerization reaction occurred simultaneously with foaming after about 30 seconds from the light irradiation point. Then, continue the polymerization for an additional 2 minutes. And the polymerized sheet was taken out and cut into a size of 3 cm x 3 cm. Then, the cut sheet was made into a crump by chopping using a meat chopper. The average particle size of the crump produced was 1.5 mm.
  • Step 3 the crump prepared in the above step 2 was dried in an oven capable of controlling the airflow in the up and down directions.
  • the hot air of 18CTC was allowed to flow upward from below for 15 minutes and then flow downward from above for 15 minutes to make the crump uniform so that the water content of the dried powder was less than about 2% Lt; / RTI >
  • the dried powder was pulverized by a pulverizer and classified to obtain a base resin having a size of 150 to 850 IM.
  • the remaining polymer particles of the base resin powder having a particle diameter of 10 to 150 / were used by recycling to the above-mentioned step 1.
  • Step 3 Of the polymer particles of the base resin powder having a particle size of 10 to 150 ⁇ ) obtained in Step 3 described below was added to the aqueous monomer solution. 5 g (170 ppmw) of sodium dodecylsulfate solution (D-1 solution) diluted with water to 2% was prepared as a surfactant. Further, 30 g of a sodium persulfate solution (D-2 solution) diluted with water to 4% was prepared. When the temperature of the fusing solution was cooled to about 45 ° C, D-1 and D-2 solutions previously prepared were injected into the fusing solution and fused.
  • D-1 solution sodium dodecylsulfate solution
  • D-2 solution sodium persulfate solution
  • a superabsorbent resin was prepared in the same manner as in Example 1 except that sodium dodecylsulfate solution (D-1 solution) was not used in step 1. Comparative Example 3
  • step 1 a superabsorbent resin was prepared in the same manner as in Example 2, except that sodium dodecylsulfate solution (D-1 solution) was not used.
  • D-1 solution sodium dodecylsulfate solution
  • the absorption rate (black vortex time) was determined by adding 2 g of superabsorbent resin to 50 ml_ of physiological saline at 23 ° C to 24 ° C and changing the magnetic bar (diameter 8 mm, length 31.8 mm) to 600 rpm And the time until the disappearance of the vortex by stirring was calculated in seconds.
  • the pressure absorption capacity of 9 psi of each resin was measured according to EDANA method WSP 242.3.
  • a 400 mesh wire mesh made of stainless steel was attached to the bottom of a cylindrical plastic having an inner diameter of 25 mm.
  • the piston capable of uniformly spreading the water absorbent resin W 0 (g) (0.16 g) on the wire net under uniform temperature and humidity of 50% and uniformly applying a load of 0.9 psi thereon is slightly smaller than the outer diameter of 25 mm.
  • the inner wall of the cylinder is free from cracks and the up and down movement is prevented from being disturbed.
  • the weight W 3 (g) of the device was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight W 4 (g) was measured.
  • the pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following equation.
  • AUL (g / g) [ W 4 (g) - W 3 (g)] / W 0 (g) shows the measurement results are shown below in Table 1 as described above.

Abstract

The present invention provides a superabsorbent polymer preparation method enabling, through a simple and economical process, preparation of a superabsorbent polymer capable of exhibiting and excellent absorption rate by comprising a uniform porous structure. The superabsorbent polymer preparation method comprises the steps of: forming a hydrogel polymer comprising a first crosslinked polymer by performing crosslinking polymerization on a water-soluble ethylenically unsaturated monomer having acidic groups of which at least a part are neutralized, in the presence of an internal crosslinking agent; drying and pulverizing the hydrogel polymer; forming a base resin powder having a diameter of 150-850 μm by classifying the pulverized polymer into polymer particles having a diameter of at least 10-150 μm, polymer particles having a diameter of 150-200 μm and polymer particles having a diameter of 200-850 μm; and surface crosslinking the base resin powder, wherein, in the crosslinking polymerization step, foaming polymerization is carried out in the presence of an anionic surfactant and the polymer particles having a diameter of 10-200 μm, which is obtained in the classification step.

Description

【발명의 명칭】  Title of the Invention
고흡수성 수지의 제조 방법  Method for producing superabsorbent resin
【기술분야】  TECHNICAL FIELD
관련 출원 (들)과의 상호 인용  Cross-reference with related application (s)
본 출원은 2017년 10월 27일자 한국 특허 출원 제 10-2017-01451504호 및 2018년 10월 12일자 한국 특허 출원 제 10-2018-0121994호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2017-01451504 filed on October 27, 2017, and Korean Patent Application No. 10-2018-0121994 filed on October 12, 2018, The entire contents of which are incorporated herein by reference.
본 발명은 간단하고 경제적인 공정을 통해, 균일한 다공 구조를 포함하여 우수한 흡수 속도를 나타낼 수 있는 고흡수성 수지의 제조를 가능케 하는 고흡수성 수지의 제조 방법을 제공하는 것이다.  The present invention provides a method for producing a superabsorbent resin which enables production of a superabsorbent resin capable of exhibiting an excellent absorption rate including a uniform porous structure through a simple and economical process.
【배경기술】  BACKGROUND ART [0002]
고흡수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명평하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생 용품 외에 원예용 토양 보수제, 토목, 건축용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times its own weight. As a result, it is possible to develop a super absorbent polymer (SAM), an absorbent gel Material). Such a superabsorbent resin has started to be put into practical use as a sanitary article, and nowadays, in addition to sanitary articles such as diapers for children, there are currently used soil repair agents for horticultural use, index materials for civil engineering and construction, sheets for seedling growing, freshness- And it is widely used as a material for fomentation and the like.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재 내에서, 상기 고흡수성 수지는 필프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며 , 그 일환으로서 필프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 펄프리스 (pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다.  In the most cases, such superabsorbent resins are widely used in sanitary materials such as diapers and sanitary napkins. In such sanitary materials, it is general that the superabsorbent resin is contained in a state spread in the fill. In recent years, efforts have been made to provide sanitary materials such as diapers having a thinner thickness. As a part thereof, there has been proposed a so-called pulpless diaper or the like in which the content of the fill is reduced and further pulp is not used at all Development is progressing actively.
이와 같이, 펄프의 함량이 감소되거나, 펄프가사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되며, 이러한 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능 및 흡수 속도를 나타낼 필요가 있다. As such, in the case of sanitary materials in which the pulp content is reduced or pulp is not used, relatively high superabsorbent resins are contained in a high proportion, and these superabsorbent resin particles are inevitably contained in multiple layers in the sanitary ware. Thus, the entire superabsorbent resin particles contained in the multilayer are more efficiently mixed with liquid such as urine In order to absorb it, it is necessary that the superabsorbent resin basically exhibits high absorption performance and absorption speed.
이에 따라, 최근 들어서는 보다 향상된 흡수 속도를 나타내는 고흡수성 수지를 제조 및 제공하고자 하는 시도가 계속적으로 이루어지고 있다. 이와 같이, 높은 흡수 속도를 나타내는 고흡수성 수지를 제조하기 위해서는, 발포 등을 통해 다공성 구조를 포함하는 고흡수성 수지를 제조할 필요가 있으며, 이전에는 이러한 다공성 구조의 도입을 위해 대표적으로 중합시에 발포제 및 /또는 계면 활성제를 적용하는 방법을 사용하여 왔다.  Accordingly, in recent years, attempts have been made to manufacture and provide a superabsorbent resin exhibiting a higher absorption rate. In order to produce a superabsorbent resin exhibiting a high absorption rate as described above, it is necessary to prepare a superabsorbent resin containing a porous structure through foaming or the like. In order to introduce such a porous structure, And / or methods of applying surfactants have been used.
그러나, 이전에 사용되던 발포제 및 /또는 계면 활성제를 사용하여 중합을 통해 고흡수성 수지를 제조하는 경우, 균일한 다공 구조가 도입되기 어려워 흡수 속도가 층분치 못하게 되거나, 입자 별로 흡수 속도가 매우 불균일하게 되는 등의 단점이 있었다.  However, when a superabsorbent resin is produced by polymerization using a previously used blowing agent and / or surfactant, it is difficult to introduce a uniform porous structure, so that the absorption rate may not be uniformed, and the absorption rate may be very uneven And the like.
이로 인해, 최근에는 캡슐형 발포제와 같은 특수한 첨가제를 적용하는 방법이 시도된 바 있으나, 이렇나 캡술형 발포제 등은 고흡수성 수지 자체의 단가에 비해 매우 고가이므로, 전체적인 공정의 경제성이 떨어지고 이를 적용한 공정 역시 상대적으로 복잡하게 되는 등의 단점이 있었다.  In recent years, a method of applying a special additive such as a capsule type foaming agent has been attempted. However, since the capillary type foaming agent and the like are very expensive compared to the unit cost of the superabsorbent resin itself, the economical efficiency of the whole process is low, There is a disadvantage that it becomes relatively complicated.
【발명의 상세한 설명】  DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
이에 본 발명은 특수한 첨가제를 사용하지 않는 간단하고 경제적인 공정을 통해, 균일한 다공 구조를 포함하여 우수한 흡수 속도를 나타낼 수 있는 고흡수성 수지의 제조를 가능케 하는 고흡수성 수지의 제조 방법을 제공하는 것이다.  Accordingly, it is an object of the present invention to provide a method for producing a superabsorbent resin capable of producing a superabsorbent resin capable of exhibiting an excellent absorption rate including a uniform porous structure through a simple and economical process without using a special additive .
【기술적 해결 방법】  [Technical Solution]
이에 발명의 일 구현예에 따르면, 내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를형성하는 단계;  According to one embodiment of the present invention, there is provided a method for producing a water-soluble ethylenically unsaturated monomer, comprising crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acid groups in the presence of an internal crosslinking agent to form a hydrogel polymer comprising a first crosslinked polymer;
상기 함수겔 중합체를 건조 및 분쇄하는 단계;  Drying and pulverizing the hydrogel polymer;
상기 분쇄된 중합체를 적어도 10 내지 의 입경을 갖는 중합체 입자ᅳ Contacting the ground polymer with a polymer particle having a particle size of at least 10 < RTI ID = 0.0 >
150 내지 200卿의 입경을 갖는 중합체 입자, 및 200 내지 850 의 입경을 갖는 중합체 입자로 분급하여 150 내지 850 의 입경을 갖는 베이스 수지 분말을 형성하는 단계 ; 및 Polymer particles having a particle diameter of from 150 to 200 L and polymer particles having a particle diameter of from 200 to 850 to obtain a base resin having a particle diameter of 150 to 850 Forming a powder; And
상기 베이스 수지 분말을 표면 가교하는 단계를 포함하고,  And surface crosslinking the base resin powder,
상기 가교 중합 단계에서는, 상기 분급 단계에서 얻어진 10 내지 200 zm의 입경을 갖는 중합체 입자 및 음이온성 계면 활성제의 존재 하에 발포 중합을 진행하는 고흡수성 수지의 제조 방법이 제공된다. 이하, 발명의 구현예에 따른 고흡수성 수지의 제조 방법을 구체적으로 설명하기로 한다/  In the cross-linking polymerization step, a method for producing a superabsorbent resin is provided in which foam polymerization is carried out in the presence of polymer particles having an average particle diameter of 10 to 200 zm obtained in the classification step and an anionic surfactant. Hereinafter, a method for producing a superabsorbent resin according to an embodiment of the present invention will be described in detail.
상술한 일 구현예의 제조 방법에서는, 분급 단계에서 얻어진 미분, 즉, 10 내지 200 의 입경을 갖는 증합체 입자를 고흡수성 수지의 제조를 위한 가교 중합시에 일종의 발포제로서 사용하며, 이와 함께 음이온성 계면 활성제를 일종의 발포 인;정제로 사용한다. 이러한 미분 및 음이은성 계면 활성제를 사용해 발포 중합을 진행함에 따라, 가교 중합 및 후속 공정을 통해 얻어진 베이스 수지 분말 및 고흡수성 수지 내에 상기 미분의 입경에 대웅하는 균일한 기공들이 안정적으로 형성됨이 확인되었다.  In the production method of the embodiment described above, the fine powder obtained in the classification step, that is, the synthetic resin particle having a particle diameter of 10 to 200 is used as a kind of foaming agent in the crosslinking polymerization for producing a superabsorbent resin, The active agent is used as a foam and a tablet. It has been confirmed that as the foaming polymerization proceeds by using such a fine powder and an anionic surface active agent, homogeneous pores are formed in the base resin powder and the superabsorbent resin obtained through the crosslinking polymerization and the subsequent steps, which are uniform in the particle diameter of the fine powder.
이와 같이, 일 구현예의 방법에 따르면, 발포제 등을 사용한 종래 기술에 비해, 균일한 다공성 구조를 갖는 고흡수성 수지가 제조됨에 따라, 고흡수성 수지가 보다 향상된 흡수 속도를 나타낼 수 있으며, 더 나아가, 입자 별로 흡수 속도가 불균일하게 되는 등의 종래 기술의 단점이 해결되고, 고흡수성 수지 입자들이 전체적으로 균일한 흡수 속도를 나타낼 수 있다.  As described above, according to the method of one embodiment, as the superabsorbent resin having a uniform porous structure is produced as compared with the prior art using the blowing agent or the like, the superabsorbent resin can exhibit a higher absorption rate and further, The disadvantages of the conventional techniques such that the absorption rate is made nonuniform may be solved, and the superabsorbent resin particles may exhibit a uniformly uniform absorption rate as a whole.
또한, 일 구현예의 방법에서는, 캡술형 발포제와 같은 고가의 첨가제나, 별도의 공정 적용 없이, 고흡수성 수지의 제조 과정, 특히 분급 과정에서 일반적으로 얻어지는 미분과, 일반적인 음이온성 계면 활성제를 사용하여 다공성 구조가 안정적으로 도입된 고흡수성 수지를 얻음에 따라, 전체적인 고흡수성 수지의 공정 단가를 크게 낮출 수 있고, 단순화된 공정을 통해 우수한흡수 속도를 갖는 고흡수성 수지를 얻을 수 있게 된다. 이하, 일 구현예의 제조 방법과, 이를 통해 얻어지는 고흡수성 수지에 대해 보다구체적으로 설명하기로 한다. .  In addition, in the method of one embodiment, the manufacturing process of the superabsorbent resin, particularly, the fine powder generally obtained in the classifying process, and the general anionic surfactant can be used without expensive additive such as capping foaming agent, Absorbing resin in which the structure is stably introduced, the process cost of the entire superabsorbent resin can be largely lowered, and a superabsorbent resin having an excellent absorption rate can be obtained through a simplified process. Hereinafter, the production method of one embodiment and the superabsorbent resin obtained thereby will be described in more detail. .
먼저 , 상기 일 구현예의 제조 방법에서 , 상기 제 1 가교 중합체를 구성하는 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다: First, in the manufacturing method of this embodiment, the first crosslinked polymer The constituent water-soluble ethylenically unsaturated monomers may be any monomers conventionally used in the production of superabsorbent resins. As a non-limiting example, the water-soluble ethylenically unsaturated monomer may be a compound represented by the following Formula 1:
[화학식 1]  [Chemical Formula 1]
RrCOOM1 RrCOOM 1
상기 화학식 1에서,  In Formula 1,
Ri는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,  Ri is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
M1는 수소원자, 1가또는 2가 금속, 암모늄기 또는 유기 아민염이다. 바람직하게는, 상기 단량체는 (메트)아크릴산, 및 이들 산의 1가 (알칼리) 금속염, 2가 금속염, 암모늄쉼 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화 단량체로 (메트)아크릴산 및 /또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2- 메타아크릴로일에탄술폰산, 2- (메트)아크릴로일프로판술폰산 또는 2- (메타)아크릴아미드 -2-메틸 프로판 술폰산, (메트)아크릴아미드, N- 치환 (메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메특시폴리에틸렌글리콜 (메트)아크릴레이트, 폴리에틸렌 글리콜 (메트)아크릴레이트, (Ν,Ν)-디메틸아미노에틸 (메트)아크릴레이트, (Ν,Ν)- 디메틸아미노프로필 (메트)아크릴아미드 등이 사용될 수 있다. M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the monomer may be at least one member selected from the group consisting of (meth) acrylic acid, and monovalent (alkali) metal salts, bivalent metal salts, ammonium pseudo and organic amine salts of these acids. When (meth) acrylic acid and / or a salt thereof is used as the water-soluble ethylenically unsaturated monomer, it is advantageous to obtain a highly water-absorbent resin having improved water absorption. Examples of the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2- methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (Meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypoly (meth) acrylate, (N, N) -dimethylaminoethyl (meth) acrylate, (N, N) -dimethylaminopropyl (meth) acrylamide, and the like can be used.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.  Here, the water-soluble ethylenically unsaturated monomer may have an acidic group and at least a part of the acidic group may be neutralized. Preferably, the monomer is partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like.
이때, 상기 단량체의 중화도는 55 내지 95 몰 %, 또는 60 내지 80 몰 %, 또는 65 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 일 구현예의 방법 중 첫 번째 단계에서는, 내부 가교제 및 후술하는 분급 과정에서 얻어지는 10 내지 200/rni, 혹은 10 내지 150/皿의 입경을 갖는 중합체 입자 (미분) 및 음이온성 계면 활성제 등과 함께, 상술한 바와 같은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 포함하는 단량체 조성물을 가교 중합할 수 있다. At this time, the neutralization degree of the monomer may be 55 to 95 mol%, or 60 to 80 mol%, or 65 to 75 mol%. The degree of neutralization may vary depending on the final physical properties. However, if the degree of neutralization is too high, the neutralized monomer may precipitate and polymerization may not proceed smoothly. On the other hand, if the degree of neutralization is too low, It can exhibit properties similar to elastic rubber which is difficult to handle. In a first step of the method of the embodiment, the internal crosslinking agent and the polymer particles (fine powder) having an average particle diameter of 10 to 150 / dish obtained in the classifying process to be described later and 10 to 200 / rni, and the anionic surfactant, A monomer composition comprising a water-soluble ethylenically unsaturated monomer having at least partly neutralized acidic groups such as a < RTI ID = 0.0 >
이때 상기 수용성 에틸렌계 불포화 단량체는 앞서 설명한 바와 같다. 또한, 상기 단량체 조성물 중 상기 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반웅 조건 등을 고려하여 적절히 조절될 수 있으며, 바람직하게는 20 내지 90 중량0 /。, 또는 40 내지 65 중량 0/。일 수 있다. 이러한 농도 범위는 고농도 수용액의 중합 반웅에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반웅 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮아질 수 있다. 반대로, 상기 단량체의 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄시 분쇄 효율이 떨어지는 등 공정상 문제가 생길 수 있고, 고흡수성 수지의 물성이 저하될 수 있다. The water-soluble ethylenically unsaturated monomer is as described above. Further, the above monomer composition, the concentration of the water-soluble ethylenically unsaturated monomer may be appropriately adjusted in consideration of the polymerization time and banung conditions, preferably from 20 to 90 parts by weight 0 /., Or 40 to 65 weight 0 /. Day . Such a concentration range may be advantageous for controlling the grinding efficiency at the time of pulverization of a polymer described below, while eliminating the need to remove the unpaired monomer after polymerization by utilizing the gel effect phenomenon occurring in the polymerization reaction of a high concentration aqueous solution. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be lowered. On the other hand, if the concentration of the monomer is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be lowered upon pulverization of the polymer gel, and the physical properties of the superabsorbent resin may be deteriorated.
또한, 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 내부 가교제는 Ν,Ν'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리 (메트)아크릴레이트, 에틸렌글리콜 다이 (메트)아크릴레이트, 폴리에틸렌글리콜 (메트)아크릴레이트, 프로필렌글리콜 다이 (메트)아크릴레이트, 폴리프로필렌글리콜 (메트)아크릴레이트, 부탄다이올다이 (메트)아크릴레이트, 부틸렌글리콜다이 (메트)아크릴레이트, 다이에틸렌글리콜 다이 (메트)아크릴레이트, 핵산다이올다이 (메트)아크릴레이트, 트리에틸렌글리콜 다이 (메트)아크릴레이트, 트리프로필렌글리콜 다이 (메트)아크릴레이트, 테트라에틸렌글리콜 다이 (메트)아크릴레이트, 다이펜타에리스리를 펜타아크릴레이트, 글리세린 트리 (메트)아크릴레이트, 펜타에리스를 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다. As the internal crosslinking agent, any compound can be used as long as it allows the introduction of crosslinking in the polymerization of the water-soluble ethylenically unsaturated monomer. By way of non-limiting example, the internal cross-linking agent is selected from the group consisting of N, N'-methylenebisacrylamide, trimethylol propane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) (Meth) acrylate, butylene diol di (meth) acrylate, butylene diol di (meth) acrylate, diethylene glycol di (meth) acrylate, ) Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri , Pentaerythritol is reacted with tetraacrylate, triarylamine, ethylene glycol diglycidyl LE, but are propylene glycol, glycerin, or a multi-functional crosslinking agent such as ethylene carbonate may be used in combination than alone, or two, limited to no.
이러한 내부 가교제는 상기 단량체 조성물에 대하여 약 0.001 내지 1 중량%의 농도로 첨가될 수 있다. 즉, 상기 내부 가교제의 농도가 지나치게 낮을 경우 수지의 흡수 속도가 낮아지고 겔 강도가 약해질 수 있어 바람직하지 않다. 반대로, 상기 내부 가교제의 농도가지나치게 높을 경우 수지의 흡수력이 낮아져 흡수체로서는 바람직하지 않게 될 수 있다.  Such an internal cross-linking agent may be added at a concentration of about 0.001 to 1% by weight based on the monomer composition. That is, when the concentration of the internal cross-linking agent is too low, the absorption rate of the resin may be lowered and the gel strength may be weakened. On the contrary, when the concentration of the internal cross-linking agent is too high, the absorption power of the resin is lowered, which may be undesirable as an absorber.
또한, 상기 가교 중합 단계에서, 상기 10 내지 흑은 10 내지 Further, in the crosslinking polymerization step,
150 의 입경을 갖는 중합체 입자는 상기 단량체의 100 중량부를 기준으로, 0.1 내지 5 중량부, 혹은 0.5 내지 3 중량부, 혹은 0.7 내지 2.5 중량부의 함량으로 포함될 수 있다. 이로서, 베이스 수지 분말 및 고흡수성 수지 내에 상기 중합체 입자, 즉, 미분의 입경에 대웅하는 균일한 다공성 구조가 도입될 수 있으면서도, 가교 중합이 적절히 진행되어 우수한 물성과 함께, 균일하면서도 향상된 흡수 속도를 나타내는 고흡수성 수지가먿어질 수 있다. 추가로, 상기 가교 중합 단계에서, 상기 음이온성 계면 활성제로는 소디움 도데실 설페이트, 암모늄 라우릴 설페이트, 소디움 라우레스 설페이트, 디옥틸 소디움 술포숙시네이트, 퍼플루오로옥탄 술포네이트, 퍼플루오로부탄 술포네이트, 알킬 -아릴 에테르 포스페이트, 알킬 에테르 포스페이트, 소디움 미레스 설페이트 및 카르복실레이트염으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으며, 이외에도 다양한 음이온성 계면 활성제를 사용할 수 있다. 이러한 음이온성 계면 활성제는 상기 미분을 적용한 발포 중합을 통해 다공성 구조가 보다 잘 형성될 수 있게 하고, 이러한 다공성 구조를 안정화할 수 있다. 따라서, 이러한 음이온성 계면 활성제의 추가 사용에 의해, 고흡수성 수지가 보다 향상된 흡수 속도를 나타낼 수 있다. The polymer particles having a particle size of 150 may be contained in an amount of 0.1 to 5 parts by weight, or 0.5 to 3 parts by weight, or 0.7 to 2.5 parts by weight, based on 100 parts by weight of the monomer. Thus, it is possible to introduce a homogeneous porous structure in the base resin powder and the superabsorbent resin to cross the particle diameters of the polymer particles, that is, the fine powder, while satisfactorily proceeding the crosslinking polymerization and exhibiting a uniform and improved absorption rate The superabsorbent resin can be removed. Further, in the crosslinking polymerization step, the anionic surfactant may include sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, dioctyl sodium sulfosuccinate, perfluorooctanesulfonate, perfluorobutane At least one selected from the group consisting of sulfonates, alkyl-aryl ether phosphates, alkyl ether phosphates, sodium missesulfate and carboxylate salts may be used. In addition, various anionic surfactants may be used. Such anionic surfactant enables the porous structure to be better formed through the foaming polymerization using the fine powder, and stabilizes such a porous structure. Thus, by the further use of such anionic surfactant, the superabsorbent resin can exhibit a higher absorption rate.
이러한 음이온성 계면 활성제는 상기 단량체의 100 중량부를 기준으로, 0.002 내지 0.05 중량부, 흑은 0.005 내지 0.02 중량부의 함량으로 사용될 수 있다. 이로서, 균일한 다공성 구조가 적절히 도입되어 더욱 향상된 흡수 속도를 나타낼 수 있으면서도, 다른 물성의 저하가 억제된 고흡수성 수지가 얻어질 수 있다.  Such anionic surfactant may be used in an amount of 0.002 to 0.05 parts by weight based on 100 parts by weight of the monomer and 0.005 to 0.02 parts by weight of black. This makes it possible to obtain a superabsorbent resin in which a uniform porous structure is suitably introduced to exhibit a further improved absorption rate while suppressing deterioration of other physical properties.
한편, 상기 단량체 조성물, 예를 들어, 단량체 수용액은 상술한 단량체, 내부 가교제, 상기 10 내지 200 의 입경을 갖는 중합체 입자 및 음이온성 계면 활성제 외에도, 다가 금속염, 광개시게, 열개시제 및 폴리알킬렌글리콜계 고분자로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다. On the other hand, the monomer composition, for example, a monomer aqueous solution may contain the above-mentioned monomer, internal cross-linking agent, polymer particles having a particle diameter of 10 to 200 and anionic In addition to the surfactant, it may further comprise at least one additive selected from the group consisting of a polyvalent metal salt, a photo initiator, a thermal initiator, and a polyalkylene glycol-based polymer.
이러한 첨가제는 고흡수성 수지의 통액성 등을 추가로 향상시키거나 (다가 금속염 또는 폴리알킬렌글리콜계 고분자 등), 혹은 가교 중합을 원활히 하여 고흡수성 수지의 물성을 보다 향상시키기 위해 사용할 수 있다.  Such additives can be used to further improve the liquid permeability of the superabsorbent resin (such as polyvalent metal salt or polyalkylene glycol-based polymer), or to improve the physical properties of the superabsorbent resin by facilitating crosslinking polymerization.
상술한 첨가제는 각각의 역할에 따라, 상기 단량체의 100 중량부에 대해, 2000ppmw 이하, 혹은 0 내지 2000ppmw, 흑은 혹은 10 내지 l OOOppmw, 흑은 혹은 50 내지 500ppmw의 함량으로 사용될 수 있다. 이로서, 고흡수성 수지의 통액성 또는 흡수 성능 등의 물성을 추가 향상시킬 수 있다.  The above-mentioned additives may be used in an amount of 2000 ppmw or less, 0 to 2000 ppmw, black silver or 10 to 1000 ppmw, black silver or 50 to 500 ppmw, based on 100 parts by weight of the monomer, depending on their respective roles. As a result, properties such as liquid permeability or absorption performance of the superabsorbent resin can be further improved.
상술한 첨가제 중, 상기 폴리알킬렌글리콜계 고분자로는, 폴리에틸렌글리콜 또는 폴리프로필렌글리콜 등을 사용할 수 있다.  Among the additives described above, polyethylene glycol, polypropylene glycol, and the like can be used as the polyalkylene glycol-based polymer.
추가로, 상기 광 (중합) 개시제 및 /또는 열 (중합) 개시제로는, 고흡수성 수지의 제조에 일반적으로 사용되는 중합 개시제가 모두 사용할 수 있다. 특히, 광 중합 방법에 의하더라도, 자외선 조사 등에 의해 일정량의 열이 발생하고, 또한 발열 반웅인 중합 반웅의 진행에 따라 어느 정도의 열이 발생하므로, 광 (중합) 개시제 및 /또는 열 (중합) 개시제가 함께 사용되어 보다 우수한 흡수 속도 및 제반 물성을 갖는 고흡수성 수지가 제조될 수 있다.  Further, as the photo (polymerization) initiator and / or the heat (polymerization) initiator, any polymerization initiator generally used in the production of a superabsorbent resin may be used. Particularly, even in the case of the photopolymerization method, a certain amount of heat is generated by ultraviolet irradiation or the like, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, An initiator may be used together to produce a superabsorbent resin having a better absorption rate and various physical properties.
상기 열 (중합) 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 구체적으로, 과황산염계 개시제로는 과황산나트륨 (Sodium persulfate; Na2S208), 과황산칼륨 (Potassium persulfate; K2S208), 과황산암모늄 (Ammonium persulfate; (NH4)2S208) 등을 예로 들 수 있다. 또한, 아조 (Azo)계 개시제로는 2,2-아조비스 -(2- 아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2- 아조비스 -(Ν,Ν-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis- (N,N-dimethylene)isobutyramidine dihydrochloride), 2-As the thermal (polymerization) initiator, at least one compound selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used. Specifically, the persulfate-based initiator and sodium sulfate (Sodium persulfate; Na2S 2 0 8 ), potassium persulfate (Potassium persulfate; K 2 S 2 0 8), ammonium persulfate (Ammonium persulfate; (NH 4) 2 S 2 0 8 ). Azo-based initiators include 2,2-azobis (2-amidinopropane) dihydrochloride, 2,2-azobis- (N, N-dimethylene isobutyramidine dihydrochloride, 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride,
(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2-아조비스 [2- (2-이미다졸린 -2-일)프로판] 디하아드로클로라이드 (2,2-azobis[2-(2-imidazolin-2- yl)propane] dihydrochloride), 4,4-아조비스 -(4-시아노발레릭 산) (4,4-azobis-(4- cyanovaleric acid)) 등을 예로 들 수 있다. 보다 다양한 열 중합 개시제에 대해서는 Odian 저서인 "Principle of Polymerization(Wiley, 1981년)"의 203 페이지에 개시되어 있으며, 이를 참조할 수 있다. (Carbamoyl azo) isobutylonitrile), 2,2-azobis [2- (2-imidazolin-2-yl) propane] diazodochloride (2,2-azobis (2-imidazolin-2-yl) propane dihydrochloride, 4,4-azobis- (4-cyanovaleric acid) cyanovaleric acid)) and the like. A wide variety of thermal polymerization initiators are described in the Odian book, " Principle of Polymerization (Wiley, 1981), " page 203, which is incorporated herein by reference.
또, 상기 광 (중합) 개시제로는, 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 (α- aminoketone)으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다. 그 중 아실포스핀의 구체 예로서, 상용하는 lucirin TPO, 즉, 2,4,6- 트리메틸 -벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)가 사용될 수 있다. 보다 다양한 광 중합 개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application (曰 sevier 2007년)"의 1 15 페이지에 개시되어 있으며, 이를 참조할 수 있다.  Examples of the photo polymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, At least one compound selected from the group consisting of benzyl dimethyl ketal, acyl phosphine and alpha-aminoketone may be used. As a specific example of the acylphosphine, a commonly used lucyrin TPO, i.e., 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used . A variety of photopolymerization initiators are disclosed in Reinhold Schwalm, "UV Coatings: Basics, Recent Developments and New Applications," at page 15, page 15.
이러한 개시제는 상기 단량체 100 중량부에 대해, 500ppmw 이하의 함량으로 첨가될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 상기 범위 보다 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.  Such an initiator may be added in an amount of 500 ppmw or less based on 100 parts by weight of the monomer. That is, if the concentration of the polymerization initiator is too low, the polymerization rate may be slowed and the remaining monomer may be extracted in the final product in a large amount, which is not preferable. Conversely, if the concentration of the polymerization initiator is higher than the above range, the chain of the polymer forming the network becomes shorter, and the physical properties of the resin may be lowered, such that the content of the water-soluble component becomes higher and the pressure absorption capacity becomes lower.
한편, 상술한 각 성분 외에도, 상기 단량체 조성물에는 필요에 따라 증점제, 가소제, 보존 안정제, 산화 방지제 등의 첨가제가 더 포함될 수 있다.  In addition to the above-mentioned components, the monomer composition may further contain additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
그리고, 이러한 단량체 조성물은 전술한 단량체 등의 원료 물질이 용매에 용해된 용액의 형태로 준비될 수 있다. 이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄을, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 ,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 자일렌, 부티로락톤, 카르비를, 메틸샐로솔브아세테이트, Ν,Ν-디메틸아세트아미드, 또는 이들의 흔합물 등이 사용될 수 있다. Such a monomer composition may be prepared in the form of a solution in which a raw material such as the above-mentioned monomer is dissolved in a solvent. At this time, usable solvents may be used without limitation of the constitution as long as they can dissolve the above-mentioned raw materials. Examples of the solvent include water, ethane, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether Acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, Diethylene glycol monomethyl ether, diethylene glycol ethyl ether, diene, xylene, butyrolactone, carbide, methylsalosolve acetate, N, N-dimethylacetamide, or a mixture thereof have.
그리고, 상술한 수용액 등의 형태를 갖는 단량체 조성물은 초기 온도가 30 내지 60 °C의 온도를 갖도록 제어될 수 있으며, 이에 대해 빛 에너지 또는 열 에너지가 가해져 가교 중합이 형성될 수 있다.  The monomer composition having the above-mentioned form of an aqueous solution or the like can be controlled so that the initial temperature has a temperature of 30 to 60 ° C, and light energy or heat energy is applied thereto to form a crosslinking polymerization.
이와 같은 단량체 조성물의 가교 중합을 통한 함수겔 중합체의 형성은 통상적인 중합 방법으로 수행될 수 있으며, 그 공정은 특별히 한정되지 않는다. 비제한적인 예로, 상기 중합 방법은 중합 에너지원의 종류에 따라 크게 열 중합과 광 중합으로 나뉘는데, 상기 열 중합을 진행하는 경우에는 니더 (kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광 중합을 진행하는 경우에는 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 진행될 수 있다. ' Formation of hydrogel polymer through cross-linking polymerization of such monomer composition can be performed by a conventional polymerization method, and the process is not particularly limited. As a non-limiting example, the polymerization method is divided into thermal polymerization and photopolymerization depending on the type of polymerization energy source. In the case of conducting the thermal polymerization, the polymerization may proceed in a reactor having a stirring axis such as a kneader, It is possible to proceed in a semi-woven machine provided with a movable conveyor belt. '
일 예로, 교반축이 구비된 니더와 같은 반웅기에 상기 단량체 조성물을 투입하고, . 여기에 열풍을 공급하거나 반웅기를 가열하여 열 중합함으로써 함수겔상 중합체를 얻을 수 있다. 이때, 반웅기에 구비된 교반축의 형태에 따라 반응기 배출구로 배출되는 함수겔상 중합체는 수 밀리미터 내지 수 센티미터의 입자로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔상 중합체는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양한 형태로 얻어질 수 있는데, 통상 (중량 평균) 입경이 2 내지 50 mm인 함수겔상 중합체가 얻어질 수 있다. For example, the monomer composition may be introduced into a semipermeable vessel such as a kneader equipped with a stirring shaft . The hydrogel polymer can be obtained by supplying hot air thereto or by heat-polymerizing the monolith. At this time, the hydrogel polymer discharged to the reactor outlet according to the shape of the stirring shaft provided in the semi-cylindrical tower can be obtained as particles of several millimeters to several centimeters. Specifically, the resulting hydrogel polymer can be obtained in various forms depending on the concentration and the injection rate of the monomer composition to be injected, and a hydrogel polymer having a particle diameter of 2 to 50 mm (weight average) can be obtained.
그리고, 다른 일 예로, 이동 가능한 컨베이어 벨트가 구비된 반웅기에서 상기 단량체 조성물에 대한 광 중합을 진행하는 경우에는 시트 형태의 함수겔상 중합체가 얻어질 수 있다. 이때 상기 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라질 수 있는데, 시트 전체가 고르게 중합될 수 있도록 하면서도 생산 속도 등을 확보하기 위하여, 통상적으로 0.5 내지 5 cm의 두께로 조절되는 것이 바람직하다.  And, as another example, in the case of carrying out photopolymerization of the monomer composition in a semi-woven machine equipped with a movable conveyor belt, a hydrogel polymer in the form of a sheet can be obtained. At this time, the thickness of the sheet may vary depending on the concentration and the injection rate of the monomer composition to be injected. In order to ensure the uniformity of the entire sheet and to secure the production rate, the thickness of the sheet is usually adjusted to 0.5 to 5 cm desirable.
이때 이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 40 내지 80 중량0 /。일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다. In this case usually the water content of the hydrogel polymer obtained in the same method may be 40 to 80 parts by weight 0 /. On the other hand, throughout the present specification, the term " moisture content " refers to the amount of moisture occupied by the total functional gel polymer weight, Quot; means the value obtained by subtracting the weight of the polymer in the state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating. At this time, the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then keeping it at 180 ° C, and the total drying time is set to 20 minutes including 5 minutes of the temperature raising step, and water content is measured.
한편, 상술한 방법으로 함수겔 중합체를 제조한 후에는, 상기 함수겔 중합체를 건조 및 분쇄하는 단계를 진행할 수 있다. 이러한 건조 전에는, 먼저, 상기 함수겔 중합체를 조분쇄하여 평균 입경이 작은 함수겔 중합체를 제조하는 단계를 먼저 진행할 수도 있다.  On the other hand, after the hydrogel polymer is prepared by the above-described method, the hydrogel polymer may be dried and pulverized. Prior to such drying, the step of first pulverizing the hydrous gel polymer to produce a hydrous gel polymer having a small average particle diameter may be carried out first.
이러한 조분쇄 단계에서는, 함수겔 중합체를 1.0 mm 내지 2.0 mm로 분쇄할 수 있다.  In this coarsely crushing step, the hydrogel polymer can be pulverized to 1.0 mm to 2.0 mm.
상기 조분쇄시 사용하는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer), 터보 커터 (Turbo cutter), 터보 글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill), 조각 파쇄기 (Shred crusher), 파쇄기 (Crusher), 초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.  The pulverizer to be used in the coarse pulverization is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a cutter mill, a disc mill, a shred crusher, a crusher, a chopper and a disc cutter. But it is not limited to the example described above.
또한, 조분쇄의 효율을 위하여 입경의 크기에 따라 조분쇄를 복수회로 수행할 수 있다. 예를 들어, 함수겔 중합체를 평균 입경 약 10 mm로 1차 조분쇄하고, 이를 다시 평균 입경 약 5 mm로 2차 조분쇄한 다음, 상술한 입경으로 3차조분쇄할 수 있다.  Further, for the efficiency of the coarse pulverization, the coarse pulverization can be performed in a plurality of cycles according to the particle size. For example, the hydrogel polymer may be subjected to first crude pulverization with an average particle size of about 10 mm, second crude pulverization with an average particle diameter of about 5 mm, and then third-stage pulverization with the above-mentioned particle size.
한편, 상기 선택적인 조분쇄 후에는, 상기 함수겔 중합체를 건조할 수 있다. 이러한 건조 온도는 50 내지 250 °C일 수 있다. 건조 온도가 50°C 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 보다 바람직하게 상기 건조는 150 내지 200 °C의 온도에서, 더욱 바람직하게는 160 내지 190°C의 온도에서 진행될 수 있다. 한편, 건조 시간은 공정 효율 등을 고려하여, 20분 내지 15시간동안 진행될 수 있으나, 이에 한정되지는 않는다. On the other hand, after the selective coarse grinding, the hydrogel polymer can be dried. This drying temperature may be between 50 and 250 ° C. If the drying temperature is lower than 50 ° C, the drying time becomes excessively long and the physical properties of the ultrafine water-absorbent resin to be finally formed may deteriorate. If the drying temperature exceeds 250 ° C, There is a possibility that the physical properties of the superabsorbent resin finally formed are lowered. More preferably, the drying can be carried out at a temperature of 150 to 200 ° C, more preferably at a temperature of 160 to 190 ° C. On the other hand, the drying time may be 20 minutes to 15 hours in consideration of process efficiency and the like, but is not limited thereto.
상기 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 증합체의 함수율은 0.05 내지 10 중량0 /。일 수 있다. As long as it is usually used as the drying step, it can be selected and used without limitation of its constitution. Specifically, the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like. The increased water content of the polymer after such drying phase, can be from 0.05 to 10 parts by weight 0 /.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 Then, the dried polymer obtained through such a drying step
(미)분쇄하는 단계를 수행한다. (Not shown).
분쇄 단계 후 얻어지는 중합체 분말은 입경이 150 내지 850 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 볼 밀 (ball mill), 핀 밀 (pin mill), 해머 밀 (hammer mill), 스크류 밀 (screw mill), 롤 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 한정되는 것은 아니다.  The polymer powder obtained after the pulverization step may have a particle diameter of 150 to 850. The pulverizer used for crushing with such a particle diameter is specifically a ball mill, a pin mill, a hammer mill, a screw mill, a roll mill, A disc mill, a jog mill, or the like may be used, but the present invention is not limited to the above examples.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다.  Further, in order to control the physical properties of the superabsorbent resin powder which is finally produced after the pulverization step, a separate process of classifying the polymer powder obtained after pulverization according to the particle size may be performed.
특히, 일 구현예의 방법에서는, 상기 분쇄된 중합체를 적어도 10 내지 150 /m의 입경을 갖는 중합체 입자, 150 내지 200 의 입경을 갖는 중합체 입자, 및 200 내지 850 의 입경을 갖는 중합체 입자로 분급할 수 있다. 이렇게 얻어진 입경별 중합체 입자 중, 10 내지 150/ m의 입경을 갖는 중합체 입자 전부와, 선택적으로 150 내지 200 의 입경을 갖는 중합체 입자 중 일부를 취하여, 이들을 포함하는 미분을 이미 상술한 가교 중합 과정으로 재순환시키고, 이를 일종의 발포제로 사용할 수 있다. 이로서, 균일한 다공성 구조 및 보다 향상되면서도 균일한 흡수속도를 갖는 고흡수성 수지가 제공될 수 있음은 이미 상술한 바와 같다.  In particular, in one embodiment, the pulverized polymer can be classified into polymer particles having a particle size of at least 10-150 / m, polymer particles having a particle size of 150-200, and polymer particles having a particle size of 200-850 have. Part of the polymer particles having a particle size of 10 to 150 / m and all of the polymer particles having a particle size of 150 to 200 are selected and the fine particles containing them are subjected to the cross- Recycle it, and use it as a kind of foaming agent. As described above, it is possible to provide a superabsorbent resin having a uniform porous structure and an improved and yet uniform absorption rate.
또한, 이들 미분을 제외한 나머지 중합체 입자, 예를 들어, 150 내지 200//m의 입경을 갖는 중합체 입자 중 잔부와, 200 내지 850 의 입경을 갖는 중합체 입자의 전부를 취하여, 150 내지 850/ 의 입경을 갖는 베이스 수지 분말을 형성할 수 있다.  Further, the remaining polymer particles other than these fine particles, for example, the remainder of the polymer particles having a particle diameter of 150-200 / m, and all of the polymer particles having a particle diameter of 200-850, To form a base resin powder.
이러한 분급 단계는 일반적인 고흡수성 수지의 분급 방법에 따라, 표준 체를 사용하여 진행할수 있다. According to the classifying method of general superabsorbent resin, You can proceed using a standard sieve.
이와 같은 입경, 즉, 150 내지 의 입경을 갖는 베이스 수지 분말에 대해 후술할 표면 가교 반응 단계를 거쳐 제품화할 수 있다.  The base resin powder having such a particle diameter, that is, a particle diameter of 150 to 50 nm, can be produced through a surface cross-linking reaction step described later.
한편, 상술한 분급까지를 진행한 후에는, 베이스 수지 분말의 표면을 가교하는 단계로서, 표면 가교제를 포함하는 표면 가교액의 존재 하에, 상기 베이스 수지 분말을 열처리하여 표면 가교를 수행함에 따라 고흡수성 수지를 제조할수 있다.  On the other hand, after proceeding to the above-described classification, the step of cross-linking the surface of the base resin powder may include a step of cross-linking the surface of the base resin powder by heat treatment of the base resin powder in the presence of a surface cross- Resin can be produced.
여기서, 상기 표면 가교액에 포함되는 표면 가교제의 종류는 특별히 제한되지 않는다. 비제한적인 예로, 상기 표면 가교제는 에틸렌글리콜 디글리시딜에테르, 폴리에틸렌글리콜 디글리시딜 에테르, 글리세를 폴리글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 폴리프로필렌 글리콜 디글리시딜 에테르, 에틸렌 카보네이트, 에틸렌글리콜, 다이에틸렌글리콜, 프로필렌글리콜, 트리에틸렌 글리콜, 테트라 에틸렌 글리콜, 프로판 다이올, 다이프로필렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리글리세린, 부탄다이올, 헵탄다이올, 핵산다이올 트리메틸를프로판, 펜타에리스리콜, 소르비를, 칼슘 수산화물, 마그네슘 수산화물, 알루미늄 수산화물, 철 수산화물, 칼슘 염화물, 마그네슴 염화물, 알루미늄 염화물, 및 철 염화물로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.  Here, the kind of the surface cross-linking agent contained in the surface cross-linking liquid is not particularly limited. As a non-limiting example, the surface cross-linking agent may be selected from ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, But are not limited to, ethylene carbonate, ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, tetraethylene glycol, propanediol, dipropylene glycol, polypropylene glycol, glycerin, polyglycerin, butanediol, heptanediol, Propane, pentaerythritol, sorbic acid, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, iron hydroxide, calcium chloride, magnesium chloride, aluminum chloride and iron chloride.
이때, 상기 표면 가교제의 함량은 이의 종류나 반웅 조건 등에 따라 적절히 조절될 수 있으며, 바람직하게는 상기 베이스 수지 분말 100 중량부에 대하여 0.001 내지 5 중량부로 조절될 수 있다. 상기 표면 가교제의 함량이 지나치게 낮아지면, 표면 가교가 제대로 도입되지 못해, 최종 고흡수성 수지의 물성이 저하될 수 있다. 반대로 상기 표면 가교제가 지나치게 많은 함량으로 사용되면 과도한 표면 가교 반웅으로 인해 고흡수성 수지의 흡수력이 오히려 낮아질 수 있어 바람직하지 않다.  At this time, the content of the surface cross-linking agent may be appropriately adjusted according to the type thereof, the conditions of the reaction, and preferably 0.001 to 5 parts by weight based on 100 parts by weight of the base resin powder. If the content of the surface cross-linking agent is too low, surface cross-linking may not be properly introduced, and the physical properties of the final superabsorbent resin may be deteriorated. On the contrary, if the surface cross-linking agent is used in an excessive amount, absorption of the superabsorbent resin may be lowered due to excessive surface cross-linking reaction, which is not preferable.
또한, 상기 표면 가교액은 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 ,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν,Ν-디메틸아세트아미드로 이루어진 군에서 선택된 1종 이상의 용매를 더 포함할 수 있다. 상기 용매는 상기 베이스 수지 100 중량부에 대하여 0.5 내지 10 중량부로 포함될 수 있다. The surface cross-linking solution may be water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Methylene chloride, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, Butylolactone, carboxy, methylcellosolve acetate, and N, N-dimethylacetamide. The solvent may be included in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the base resin.
또한, 상기 표면 가교액은 증점제를 추가로 포함할 수 있다. 이렇게 증점제 존재 하에 베이스 수지 분말의 표면을 추가로 가교하면 분쇄 후에도 물성 저하를 최소화할 수 있다. 구체적으로, 상기 증점제로는 다당류 및 히드록시 함유 고분자 중 선택된 1 종 이상이 사용될 수 있다. 상기 다당류로는 검 계열 증점제와 샐를로오스 계열 증점제 등이 사용될 수 있다. 상기 검 계열 증점제의 구체적인 예로는, 잔탄 검 (xanthan gum), 아라빅 ¾ (arabic gum), 카라야 검 (karaya gum), 트래거캔스 검 (tragacanth gum), 가티 검 (ghatti gum), 구아 검 (guar gum), 로커스트 빈 검 (locust bean gum) 및 사일리움 씨드 검 (psyllium seed gum) 등을 들 수 있고, 상기 셀를로오스 계열 증점제의 구체적인 예로는, 히드록시프로필메틸셀를로오스, 카르복시메틸셀롤로오스, 메틸샐를로오스,. 히드록시메틸셀를로오스, 히드록시에틸셀를로오스, 히드록시프로필셀를로오스, 히드록시에틸메틸셀를로오스, 히드록시메틸프로필셀를로오스, 히드록시에틸히드록시프로필셀를로오스, 에틸히드록시에틸셀를로오스 및 메틸히드록시프로필셀를로오스 등을 들 수 있다. 한편, 상기 히드록시 함유 고분자의 구체적인 예로는 폴리에틸렌글리콜 및 폴리비닐알코올 등을 들 수 있다.  Further, the surface cross-linking solution may further include a thickener. If the surface of the base resin powder is further crosslinked in the presence of the thickening agent, deterioration of physical properties can be minimized even after the pulverization. Specifically, as the thickening agent, at least one selected from a polysaccharide and a hydroxy-containing polymer may be used. The polysaccharide may be a gum-based thickener, a salicylose-based thickener, or the like. Specific examples of the gum series thickener include xanthan gum, arabic gum, karaya gum, tragacanth gum, ghatti gum, guar gum, guar gum, locust bean gum, and psyllium seed gum. Examples of the cellulose-based thickener include hydroxypropyl methylcellulose, carboxymethyl cellulose, Cellulose, methyl salicylose,. Hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose, Ethylcellulose, and methylhydroxypropylcellulose, and the like. On the other hand, specific examples of the hydroxy-containing polymer include polyethylene glycol and polyvinyl alcohol.
한편, 상기 표면 가교를 수행하기 위해서는, 상기 표면 가교액과 상기 베이스 수지를 반웅조에 넣고 흔합하는 방법, 상기 베이스 수지에 표면 가교 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 상기 베이스 수지와 표면 가교액을 연속적으로 공급하여 흔합하는 방법 등이 이용될 수 있다.  In order to perform the surface cross-linking, a method of mixing the surface cross-linking liquid and the base resin in a reaction vessel, a method of spraying a surface cross-linking solution onto the base resin, A method in which the liquid is continuously supplied and mixed, or the like can be used.
그리고, 상기 표면 가교는 100 내지 250°C의 온도 하에서 진행될 수 있으며, 비교적 고온으로 진행되는 상기 건조 및 분쇄 단계 이후에 연속적으로 이루어질 수 있다. 이때. 상기 표면 가교 반웅은 1 내지 120분, 또는 1 내지 100분, 또는 10 내지 60분 동안 진행될 수 있다. 즉, 최소 한도의 표면 가교 반웅을 유도하면서도 과도한 반웅시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여 전술한 표면 가교 반응의 조건으로 진행될 수 있다. 상술한 바와 같이 제조된 고흡수성 수지는, 균일한 다공성 구조가 도입됨에 따라, 벌크 밀도가 0.55 내지 0.65g/ml, 혹은 0.57 내지 0.64g/ml로 될 수 있다. Vortex 측정 방법에 따라 측정한 흡수 속도가 30초 내지 53초, 혹은 33초 내지 50초, 혹은 35초 내지 48초인 향상된 흡수 속도를 나타낼 수 있다. 상기 흡수 속도는 생리 식염수에 고흡수성 수지를 가하여 교반시켰을때, 빠른 흡수에 의해 액체의 소용돌이 (vortex)가 없어지는 시간을 의미하는 것으로서, 상기 고흡수성 수지의 빠른 흡수 능력을 의미한다. 이의 구체적인 측정 방법은, 이하 실시예에서 보다구체화한다. The surface cross-linking may be carried out at a temperature of 100 to 250 ° C, and may be continuously performed after the drying and crushing step which proceeds at a relatively high temperature. At this time. The surface cross-linking reaction may be carried out for 1 to 120 minutes, or 1 to 100 minutes, or 10 to 60 minutes. That is, the surface cross-linking reaction may be carried out in order to prevent the degradation of the physical properties of the polymer particles during the excessive migration while inducing the minimum surface cross-linking reaction. The superabsorbent resin prepared as described above can have a bulk density of 0.55 to 0.65 g / ml, or 0.57 to 0.64 g / ml, as a uniform porous structure is introduced. The absorption rate measured according to the Vortex measurement method may be 30 to 53 seconds, or 33 to 50 seconds, or 35 to 48 seconds. The absorption rate refers to the time for which the vortex of the liquid disappears due to rapid absorption when the superabsorbent resin is added to the physiological saline solution and stirred. This means a rapid absorption capacity of the superabsorbent resin. The concrete measurement method thereof will be further specified in the following examples.
또, 상기 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 28 내지 35 g/g, 혹은 30 내지 33 g/g 이고, EDANA법 WSP 242.3에 따라 측정한 0.9 psi의 가압 흡수능 (AUL)이 16 내지 23 g/g, 혹은 17 내지 20 g/g인 특성을 나타낼 수 있다. 이와 같이, 상기 고흡수성 수지는 상술한 바와 같은 향상된 흡수 속도를 나타내면서, 우수한 흡수능 /가압 흡수능을 유지할 수 있다.  The superabsorbent resin has a centrifugal separation capacity (CRC) of 28 to 35 g / g or 30 to 33 g / g measured according to the EDANA method WSP 241.3 and a pore volume of 0.9 psi measured according to EDANA method WSP 242.3 And a pressure absorption capacity (AUL) of 16 to 23 g / g, or 17 to 20 g / g. As described above, the superabsorbent resin exhibits an improved absorption rate as described above, and can maintain excellent absorption ability / pressure absorption ability.
또한 바람직하게는, 상기 고흡수성 수지는 평균 입경이 300 내지 600 이다. 또한 바람직하게는, 본 발명에 따른 상기 고흡수성 수지 중 입경이 300 내지 600 m인 고흡수성 수지를 45 내지 85 중량0 /。로 포함한다. 또한 바람직하게는, 상기 고흡수성 수지 중 입경이 300 이하인 고흡수성 수지를Also preferably, the superabsorbent resin has an average particle diameter of 300 to 600. Also preferably includes a super-absorbent resin and the particle diameter of the water-absorbent resin is 300 to 600 m according to the invention to 45 to 85 parts by weight 0 /. Further, preferably, a superabsorbent resin having a particle size of 300 or less in the superabsorbent resin
15 중량0 /。 이상 포함한다. 15 comprises by weight 0 /. Above.
【발명의 효과】  【Effects of the Invention】
상술한 바와 같이, 본 발명에 따르면, 캡슐형 발포제 등 특수한 첨가제를 사용하지 않는 간단하고 경제적인 공정을 통해, 균일한 다공 구조를 포함하여, 우수하면서도 전체적으로 균일한 흡수 속도를 나타낼 수 있는 고흡수성 수지의 제조가 가능해 진다  INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to provide a superabsorbent resin composition which has a uniform porous structure and exhibits a uniform and evenly absorbing rate as a whole through a simple and economical process that does not use a special additive such as a capsule- ≪ / RTI >
【발명의 실시를 위한 형태】  DETAILED DESCRIPTION OF THE INVENTION
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 실시예 1 (단계 1 ) Best Mode for Carrying Out the Invention Hereinafter, preferred embodiments are shown to facilitate understanding of the present invention. However, the following examples are intended to illustrate the present invention without limiting it thereto. Example 1 (Step 1)
아크릴산에 0.5%로 희석된 IRGACURE 819 개시제 9 g (단량체 조성물에 대하여 80 ppmw)과 아크릴산에 5%로 회석된 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=400) 40 g을 흔합한 용액 (A 용액)을 제조하였다.  (Solution A) in which 9 g of IRGACURE 819 initiator diluted to 0.5% in acrylic acid (80 ppmw for the monomer composition) and 40 g of polyethylene glycol diacrylate (PEGDA, Mw = 400) encapsulated in acrylic acid at 5% .
25°C로 미리 냉각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2L 용량의 유리 반웅기에, 아크릴산 490 g과 상기 A 용액을 주입하였다. 그리고, 상기 유리 반웅기에, 24% 가성소다 용액 850 g(C 용액)을 서서히 적가하여 흔합하였다. 중화열에 의하여 흔합액의 온도가 약 72°C까지 상승하는 것을 확인한 후, 흔합 용액이 넁각되기를 기다렸다. 이렇게 얻어진 흔합 용액에서 아크릴산의 증화 정도는 약 70몰 % 이었다. 후술하는 단계 3에서 얻어진 미분 (10 내지 150 의 입경을 갖는 베이스 수지 분말의 중합체 입자)의 5g (아크릴산 대비 1중량 %)을 상기 단량체 수용액에 가하였다. 또, 계면활성제로, 물에 2%로 회석된 소디움 도데실술페이트 (sodium dodecylsulfate) 용액 (D-1 용액) 5 g (170ppmw)을 제조하였다. 또한, 물에 4%로 희석된 과황산나트륨 용액 (D-2 용액) 30 g을 제조하였다. 그리고, 상기 흔합 용액의 은도가 약 45°C로 냉각되면, 상기 흔합 용액에 미리 준비한 D-1 및 D-2 용액을 주입하여 흔합하였다. 490 g of acrylic acid and the solution A were injected into a 2L capacity glass-sealed vessel surrounded by a jacket in which a heating medium precooled at 25 ° C was circulated. Then, 850 g of a 24% caustic soda solution (C solution) was gradually added dropwise to the above-described glass semi-frozen period. After confirming that the temperature of the common liquid was raised to about 72 ° C by the neutralizing heat, it waited until the fugitive solution was stirred. The degree of acidification of acrylic acid in the obtained solution was about 70 mol%. 5 g (1 wt% based on acrylic acid) of the fine powder (polymer particles of the base resin powder having a particle size of 10 to 150) obtained in the step 3 described later was added to the monomer aqueous solution. In addition, 5 g (170 ppmw) of a solution of sodium dodecylsulfate (D-1 solution), which was encapsulated in water at 2%, was prepared as a surfactant. Further, 30 g of a sodium persulfate solution (D-2 solution) diluted with water to 4% was prepared. Then, when the silver solution of the fused solution was cooled to about 45 ° C, D-1 and D-2 solutions previously prepared were injected into the fused solution and fused.
(단계 2)  (Step 2)
이어서, 상부에 광조사 장치가 장착되어 있고 내부가 8C C로 예열된 정방형 중합기 내에 설치된 Vat 형태의 트레이 (tray, 가로 15 cm χ 15 cm)에, 상기 단계 1에서 준비한 흔합 용액을 부었다. 이후, 상기 흔합 용액에 광을 조사하였다. 광 조사 시점부터 약 20초 후에 표면부터 겔이 형성되는 것을 확인하였고, 광 조사 시점부터 약 30초 후에 발포와 동시에 중합 반웅이 일어나는 것을 확인하였다. 이어, 추가로 2분 동안 중합 반웅을. 진행하고, 중합된 시트를 꺼내어 3 cm X 3 cm의 크기로 재단하였다. 그리고, 미트 쵸퍼 (meat chopper)를 이용하고 다지기 공정 (chopping)을 통하여 상기 재단된 시트를 가루 (crump)로 제조하였다. 제조된 가루 (crump)의 평균 입자 크기는 1.5 mm 이었다.  Subsequently, the fountain solution prepared in Step 1 was poured into a Vat-shaped tray (15 cm x 15 cm wide) equipped with a light irradiation device on the top and a square polymerizer whose interior was preheated to 8 C C. Thereafter, the mixed solution was irradiated with light. It was confirmed that the gel was formed from the surface after about 20 seconds from the light irradiation point, and it was confirmed that polymerization reaction occurred simultaneously with foaming after about 30 seconds from the light irradiation point. Then, continue the polymerization for an additional 2 minutes. And the polymerized sheet was taken out and cut into a size of 3 cm x 3 cm. Then, the cut sheet was made into a crump by chopping using a meat chopper. The average particle size of the crump produced was 1.5 mm.
(단계 3) 이어서, 상하로 풍량 조절이 가능한 오븐에서 상기 단계 2에서 제조한 가루 (crump)를 건조시켰다. 건조된 가루의 함수량이 약 2% 이하가 되도록, 18CTC의 핫 에어 (hot air)를 15분 동안 하방에서 상방으로 흐르게 하고, 다시 15분 동안 상방에서 하방으로 흐르게 하여 상기 가루 (crump)를 균일하게 건조시켰다. 건조된 가루를 분쇄기로 분쇄한 다음 분급하여 150 내지 850 IM 크기의 베이스 수지를 얻었다. 이를 얻고 남은 10 내지 150/ 의 입경을 갖는 베이스 수지 분말의 중합체 입자는 상술한 단계 1로 재순환시켜 사용하였다. (Step 3) Then, the crump prepared in the above step 2 was dried in an oven capable of controlling the airflow in the up and down directions. The hot air of 18CTC was allowed to flow upward from below for 15 minutes and then flow downward from above for 15 minutes to make the crump uniform so that the water content of the dried powder was less than about 2% Lt; / RTI > The dried powder was pulverized by a pulverizer and classified to obtain a base resin having a size of 150 to 850 IM. The remaining polymer particles of the base resin powder having a particle diameter of 10 to 150 / were used by recycling to the above-mentioned step 1.
(단계 4)  (Step 4)
이후, 상기 단계 3에서 제조한 베이스 수지 100 g에, 물 4 g, 에틸렌 카보네이트 1 g, 에어로실 200(Aerosil 200, Evonik 사) 0.1 g을 흔합한 가교제 용액과 흔합한 다음 190 °C에서 30분 동안 표면 가교 반웅을 시켰다. 그리고, 얻어진 생성물을 분쇄하고 시브 (sieve)를 이용하여 입경이 150 내지 850 ^인 표면 가교된 고흡수성 수지를 얻었다. 얻어진 고흡수성 수지에 에어로실 200 0.1 g을 건식으로 추가하여 건식 상태로 흔합하여 고흡수성 수지를 제조하였다. 실시예 2  Then, 4 g of water, 1 g of ethylene carbonate and 0.1 g of Aerosil 200 (Aerosil 200, Evonik) were mixed with 100 g of the base resin prepared in the above step 3, and then the mixture was kneaded at 190 ° C for 30 minutes While the surface bridging reaction was allowed. Then, the obtained product was pulverized and a superabsorbent resin having a surface cross-linked particle diameter of 150 to 850 를 was obtained by using a sieve. 0.1 g of Aerosil 200 was dry-added to the obtained superabsorbent resin and mixed in a dry state to prepare a superabsorbent resin. Example 2
(단계 1 )  (Step 1)
아크릴산에 0.5%로 희석된 IRGACURE 819 개시제 9 g (단량체 조성물에 대하여 80 ppmw)과 아크릴산에 5%로 희석된 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=400) 40 g을 흔합한 용액 (A 용액)을 제조하였다.  (Solution A) of 40 g of polyethylene glycol diacrylate (PEGDA, Mw = 400) diluted to 5% in acrylic acid with 9 g of an IRGACURE 819 initiator diluted to 0.5% in acrylic acid (80 ppmw with respect to the monomer composition) .
25 °C로 미리 냉각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2L 용량의 유리 반웅기에, 아크릴산 490 g과 상기 A 용액을 주입하였다. 그리고, 상기 유리 반웅기에, 24% 가성소다 용액 850 g(C 용액)을 서서히 적가하여 흔합하였다. 중화열에 의하여 흔합액의 은도가 약 72 °C까지 상승하는 것을 확인한 후, 흔합 용액이 냉각되기를 기다렸다. 이렇게 얻어진 흔합 용액에서 아크릴산의 중화 정도는 약 70몰% 이었다. 후술하는 단계 3에서 얻어진 미분 (10 내지 150βη의 입경을 갖는 베이스 수지 분말의 중합체 입자)의 15g (아크릴산 대비 3중량0 /。)을 상기 단량체 수용액에 가하였다. 또, 계면활성제로, 물에 2%로 희석된 소디움 도데실술페이트 (sodium dodecylsulfate) 용액 (D-1 용액) 5 g (170ppmw)을 제조하였다. 또한, 물에 4%로 회석된 과황산나트륨 용액 (D-2 용액) 30 g을 제조하였다. 그리고, 상기 흔합 용액의 온도가 약 45°C로 넁각되면, 상기 흔합 용액에 미리 준비한 D-1 및 D-2 용액을 주입하여 흔합하였다. . 490 g of acrylic acid and the solution A were injected into a 2L capacity glass-sealed vessel surrounded by a jacket in which a heating medium precooled at 25 ° C was circulated. Then, 850 g of a 24% caustic soda solution (C solution) was gradually added dropwise to the above-described glass semi-frozen period. After confirming that the silver of the common stock was elevated to about 72 ° C by the heat of neutralization, we waited for the stock solution to cool down. The degree of neutralization of acrylic acid in the obtained solution was about 70 mol%. It was added a fine powder 15g (acrylic acid from the third weight 0 /.) Of (10 to base polymer resin powder particles having a particle diameter of 150βη) obtained in step 3 to be described later in the aqueous monomer solution. As a surfactant, sodium dodecylsulfate solution (D-1) diluted with water to 2% 5 g (170 ppmw) was prepared. Further, 30 g of a sodium persulfate solution (D-2 solution), which was 4% in water, was prepared. Then, when the temperature of the fugitive solution was reduced to about 45 ° C, the previously prepared D-1 and D-2 solutions were injected into the fugitive solution and fused. .
이후, 단계 2 내지 4를 실시예 1과 동일한 방법으로 진행하여 고흡수성 수지를 제조하였다. 실시예 3  Thereafter, steps 2 to 4 were carried out in the same manner as in Example 1 to prepare a superabsorbent resin. Example 3
(단계 1 )  (Step 1)
아크릴산에 0.5%로 희석된 IRGACURE 819 개시제 9 g (단량체 조성물에 대하여 80 ppmw)과 아크릴산에 5%로 희석된 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=400) 40 g을 흔합한 용액 (A 용액)을 제조하였다.  (Solution A) of 40 g of polyethylene glycol diacrylate (PEGDA, Mw = 400) diluted to 5% in acrylic acid with 9 g of an IRGACURE 819 initiator diluted to 0.5% in acrylic acid (80 ppmw with respect to the monomer composition) .
25°C로 미리 냉각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2L 용량의 유리 반응기에, 아크릴산 490 g과 상기 A 용액을 주입하였다. 그리고, 상기 유리 반웅기에, 24% 가성소다 용액 850 g(C 용액)을 서서히 적가하여 흔합하였다. 중화열에 의하여 흔합액의 온도가 약 72 °C까지 상승하는 것을 확인한 후, 흔합 용액이 넁각되기를 기다렸다. 이렇게 얻어진 흔합 용액에서 아크릴산의 중화 정도는 약 70몰% 이었다. 후술하는 단계 3에서 얻어진 미분 (10 내지 150^의 입경을 갖는 베이스 수지 분말의 중합체 입자)의 25g (아크릴 산 대비 5중량0 /。)을 상기 단량체 수용액에 가하였다. 또, 계면활성제로, 물에 2%로 희석된 소디움 도데실술페이트 (sodium dodecylsulfate) 용액 (D-1 용액) 5 g (170ppmw)을 제조하였다. 또한, 물에 4%로 희석된 과황산나트륨 용액 (D-2 용액) 30 g을 제조하였다. 그리고 상기 흔합 용액의 온도가 약 45°C로 냉각되면, 상기 흔합 용액에 미리 준비한 D-1 및 D-2 용액을 주입하여 흔합하였다. 490 g of acrylic acid and the solution A were injected into a 2 L capacity glass reactor surrounded by a jacket in which a heating medium precooled at 25 ° C was circulated. Then, 850 g of a 24% caustic soda solution (C solution) was gradually added dropwise to the above-described glass semi-frozen period. After confirming that the temperature of the common liquid was raised to about 72 ° C by the neutralizing heat, it waited until the fugitive solution was stirred. The degree of neutralization of acrylic acid in the obtained solution was about 70 mol%. A fine powder 25g (acrylic acid over 5 parts by weight 0 /. Of the polymer particles of the base resin powder having a particle size of 10 to 150 ^) obtained in Step 3 described below was added to the aqueous monomer solution. 5 g (170 ppmw) of sodium dodecylsulfate solution (D-1 solution) diluted with water to 2% was prepared as a surfactant. Further, 30 g of a sodium persulfate solution (D-2 solution) diluted with water to 4% was prepared. When the temperature of the fusing solution was cooled to about 45 ° C, D-1 and D-2 solutions previously prepared were injected into the fusing solution and fused.
이후, 단계 2 내지 4를 실시예 1과 동일한 방법으로 진행하여 고흡수성 수자를 제조하였다. 비교예 1 (단계 1 ) Thereafter, steps 2 to 4 were carried out in the same manner as in Example 1 to prepare a superabsorbent polymer. Comparative Example 1 (Step 1)
아크릴산에 0.5%로 희석된 IRGACURE 819 개시제 9 g (단량체 조성물에 대하여 80 ppmw)과 아크릴산에 5%로 희석된 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=400) 40 g을 흔합한 용액 (A 용액)을 제조하였다.  (Solution A) of 40 g of polyethylene glycol diacrylate (PEGDA, Mw = 400) diluted to 5% in acrylic acid with 9 g of an IRGACURE 819 initiator diluted to 0.5% in acrylic acid (80 ppmw with respect to the monomer composition) .
25°C로 미리 넁각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2L 용량의 유리 반웅기에, 아크릴산 490 g과 상기 A 용액을 주입하였다. 그리고, 상기 유리 반웅기에, 24% 가성소다 용액 850 g(C 용액)을 서서히 적가하여 흔합하였다. 중화열에 의하여 흔합액의 온도가 약 72°C까지 상승하는 것을 확인한 후, 흔합 용액이 넁각되기를 기다렸다. 이렇게 얻어진 흔합 용액에서 아크릴산의 중화 정도는 약 70몰% 이었다. 계면활성제로, 물에 2%로 희석된 소디움 도데실술페이트 (sodium dodecylsulfate)용액 (D-1 용액) 5 g (170ppmw)을 제조하였다. 또한, 물에 4%로 희석된 과황산나트륨 용액 (D-2 용액) 30 g을 제조하였다. 그리고, 상기 흔합 용액의 온도가 약 45°C로 넁각되면, 상기 흔합 용액에 미리 준비한 D-1 및 D-2 용액을 주입하여 흔합하였다. 그리고 4중량0 /。 농도로 SBC 용액을 제조하여 약 6.25g (단량체 조성물에 대하여 500 ppm)을 상기 흔합 용액에 주입하여 흔합하였다 490 g of acrylic acid and the above solution A were injected into a 2L capacity glass semi-sealed vessel surrounded by a jacket circulating a heating medium preliminarily angled at 25 ° C. Then, 850 g of a 24% caustic soda solution (C solution) was gradually added dropwise to the above-described glass semi-frozen period. After confirming that the temperature of the common liquid was raised to about 72 ° C by the neutralizing heat, it waited until the fugitive solution was stirred. The degree of neutralization of acrylic acid in the obtained solution was about 70 mol%. 5 g (170 ppmw) of sodium dodecylsulfate solution (D-1 solution) diluted with water to 2% was prepared as a surfactant. Further, 30 g of a sodium persulfate solution (D-2 solution) diluted with water to 4% was prepared. Then, when the temperature of the fugitive solution was reduced to about 45 ° C, the previously prepared D-1 and D-2 solutions were injected into the fugitive solution and fused. And it was prepared by the SBC heunhap solution to 4 parts by weight 0 / concentration by injecting about 6.25g (500 ppm with respect to the monomer composition) in the solution heunhap
이후, 단계 2 내지 4를 실시예 1과 동일한 방법으로 진행하여 고흡수성 수지를 제조하였다. 비교예 2  Thereafter, steps 2 to 4 were carried out in the same manner as in Example 1 to prepare a superabsorbent resin. Comparative Example 2
단계 1에서, 소디움 도데실술페이트 (sodium dodecylsulfate) 용액 (D-1 용액)을 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 3  A superabsorbent resin was prepared in the same manner as in Example 1 except that sodium dodecylsulfate solution (D-1 solution) was not used in step 1. Comparative Example 3
단계 1에서, 소디움 도데실술페이트 (sodium dodecylsulfate) 용액 (D-1 용액)을 사용하지 않은 것을 제외하고는 실시예 2와 동일한 방법으로 고흡수성 수지를 제조하였다. 실험예: 고홉수성 수지의 물성 평가 In step 1, a superabsorbent resin was prepared in the same manner as in Example 2, except that sodium dodecylsulfate solution (D-1 solution) was not used. Experimental Example: Evaluation of Physical Properties of Gohubu Water Resin
상기 실시예 및 비교예에서 제조한 고흡수성 수지의 물성을 이하의 방법으로 평가하였으며, 그 결과를 표 1에 나타내었다. (1) 벌크밀도:  The physical properties of the superabsorbent resin prepared in the above Examples and Comparative Examples were evaluated by the following methods, and the results are shown in Table 1. (1) Bulk density:
고흡수성 수지 약 100g을 깔때기 형태의 벌크 밀도 측정기기에 넣고 100 ml 용기에 홀러내린 후 용기 내에 들어간 고흡수성 수지의 중량을 측정하였다. 벌크 밀도는 (고흡수성 수지 중량) /(용기 부피, 100ml)로 계산하였다. (단위: g/ml).  About 100 g of the superabsorbent resin was placed in a bulk density measuring instrument in the form of a funnel, and the weight of the superabsorbent resin contained in the vessel was measured. The bulk density was calculated as (superabsorbent resin weight) / (vessel volume, 100 ml). (Unit: g / ml).
(2) 흡수 속도 (Vortex time) (2) Vortex time
실시예 및 비교예의 고흡수성 수지의 흡수 속도는 국제특허 공개번호 거 M 987-003208호에 기재된 방법에 준하여 초 단위로 측정되었다.  The absorption rates of the superabsorbent resins of Examples and Comparative Examples were measured in seconds in accordance with the method described in International Patent Publication No. 987-003208.
구체적으로, 흡수 속도 (흑은 vortex time)는 23°C 내지 24°C의 50 ml_의 생리 식염수에 2g의 고흡수성 수지를 넣고, 마그네틱 바 (직경 8 mm, 길이 31.8 mm)를 600 rpm으로 교반하여 와류 (vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출되었다. Specifically, the absorption rate (black vortex time) was determined by adding 2 g of superabsorbent resin to 50 ml_ of physiological saline at 23 ° C to 24 ° C and changing the magnetic bar (diameter 8 mm, length 31.8 mm) to 600 rpm And the time until the disappearance of the vortex by stirring was calculated in seconds.
(3) 원심분리 보수능 (CRC: Centrifuge Retention Capacity) 각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.3에 따라 측정하였다. (3) Centrifuge Retention Capacity (CRC) The retention capacity of each resin under loadless capacity was measured according to EDANA WSP 241.3.
구체적으로, 실시예 및 비교예를 통해 각각 얻은 수지에서, #30-50의 체로 분급한 수지를 얻었다. 이러한 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한 후, 상은에서 생리식염수 (0.9 중량 %)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W!(g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다. [수학식 1] Specifically, in the resin obtained through each of the examples and comparative examples, a resin classified with a sieve of # 30-50 was obtained. This resin W 0 (g) (about 0.2 g) was uniformly put into an envelope made of a nonwoven fabric and sealed, and then immersed in physiological saline (0.9 wt%) in the upper atmosphere. After 30 minutes, water was drained from the envelope for 3 minutes under a condition of 250 G using a centrifuge, and the mass W 2 (g) of the envelope was measured. In addition, after the same operation was performed without using a resin, the mass W (g) at that time was measured. Using the obtained masses, CRC (g / g) was calculated according to the following equation. [Equation 1]
CRC (g/g) = {[W2(g) - W,(g)]/W0(g)} - 1 CRC (g / g) = {[W 2 (g) - W, (g)] / W 0 (g)
(4)가압흡수능 (AUL: Absorbency under Load) (4) Absorption under load (AUL)
각 수지의 으9 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다.  The pressure absorption capacity of 9 psi of each resin was measured according to EDANA method WSP 242.3.
먼저, 가합 흡수능 측정시에는, 상기 CRC 측정시의 수지 분급분을 사용하였다.  First, at the time of measuring the adsorption capacity, a resin classifier at the time of CRC measurement was used.
구체적으로, 내경 25 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 흡수성 수지 W0(g) (0.16 g)을 균일하게 살포하고, 그 위에 0.9 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 25 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. Specifically, a 400 mesh wire mesh made of stainless steel was attached to the bottom of a cylindrical plastic having an inner diameter of 25 mm. The piston capable of uniformly spreading the water absorbent resin W 0 (g) (0.16 g) on the wire net under uniform temperature and humidity of 50% and uniformly applying a load of 0.9 psi thereon is slightly smaller than the outer diameter of 25 mm The inner wall of the cylinder is free from cracks and the up and down movement is prevented from being disturbed. At this time, the weight W 3 (g) of the device was measured.
직경 150 mm의 페트로 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를 두고, 0.9 중량 % 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다. 얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능 (g/g)을 산출하였다. A glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon. The measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight W 4 (g) was measured. The pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following equation.
[수학식 2]  &Quot; (2) "
AUL(g/g) = [W4(g) - W3(g)]/W0(g) 상기와 같이 측정한 결과를 이하 표 1에 나타내었다. AUL (g / g) = [ W 4 (g) - W 3 (g)] / W 0 (g) shows the measurement results are shown below in Table 1 as described above.

Claims

【청구범위】 Claims:
【청구항 1】  [Claim 1]
내부 가교제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 제 1 가교 중합체를 포함하는 함수겔 중합체를 형성하는 단계;  Crosslinking a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups in the presence of an internal crosslinking agent to form a hydrogel polymer comprising the first crosslinked polymer;
상기 함수겔 중합체를 건조 및 분쇄하는 단계;  Drying and pulverizing the hydrogel polymer;
상기 분쇄된 중합체를 적어도 10 내지 150 의 입경을 갖는 중합체 입자, 150 내지 200βη의 입경을 갖는 중합체 입자, 및 200 내지 850 의 입경을 갖는 중합체 입자로 분급하여 150 내지 850/ 의 입경을 갖는 베이스 수지 분말을 형성하는 단계; 및  The pulverized polymer is classified into polymer particles having a particle diameter of at least 10 to 150, polymer particles having a particle diameter of 150 to 200 beta eta, and polymer particles having a particle diameter of 200 to 850 to obtain a base resin powder having a particle diameter of 150 to 850 / ; And
상기 베이스 수지 분말을 표면 가교하는 단계를 포함하고,  And surface crosslinking the base resin powder,
상기 가교 중합 단계에서는, 상기 분급 단계에서 얻어진 10 내지 200 의 입경을 갖는 중합체 입자 및 음이온성 계면 활성제의 존재 하에 발포 중합을 진행하는 고흡수성 수지의 제조 방법.  In the crosslinking polymerization step, the foaming polymerization is carried out in the presence of the polymer particles having a particle diameter of 10 to 200 and the anionic surfactant obtained in the classification step.
【청구항 2】 [Claim 2]
제 1 항에 있어서, 상기 단량체는 (메트)아트릴산이 일부 중화된 (메트)아크릴산 및 이의 알칼리 금속염을 포함하고, 55 내지 95 몰0 /。의 중화도를 갖는 고흡수성 수지의 제조 방법. Method, the monomers are (meth) art reel acid process for producing a superabsorbent resin having a degree of neutralization of the neutralized part of the (meth) acrylic acid and alkali metal salts include, and 55 to 95 mole 0 / thereof. The method of claim 1.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 상기 가교 중합 단계에서, 상기 10 내지 200 의 입경을 갖는 중합체 입자는 상기 단량체의 100 중량부를 기준으로, 0.1 내지 5 중량부로 사용되는 고흡수성 수지의 제조 방법.  The method according to claim 1, wherein in the crosslinking polymerization step, the polymer particles having a particle diameter of 10 to 200 are used in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the monomer.
【청구항 4】 Claim 4
제 1 항에 있어서, 상기 음이온성 계면 활성제는 소디움 도데실 설페이트, 암모늄 라우릴 설페이트, 소디움 라우레스 설페이트, 디옥틸 소디움 술포숙시네이트, 퍼플루오로옥탄 술포네이트, 퍼플루오로부탄 술포네이트, 알킬 -아릴 에테르 포스페이트, 알킬 에테르 포스페이트, 소디움 미레스 설페이트 및 카르복실레이트염으로 이루어진 군에서 선택된 1종 이상을 포함하는 고흡수성 수지의 제조 방법. The composition of claim 1 wherein the anionic surfactant is selected from the group consisting of sodium dodecyl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, dioctyl sodium sulfosuccinate, perfluorooctanesulfonate, perfluorobutanesulfonate, alkyl - aryl ether phosphates, alkyl ether phosphates, sodium misses Sulfates, and carboxylate salts of at least one member selected from the group consisting of water,
【청구항 5】 [Claim 5]
제 1 항에 있어서, 상기 가교 중합 단계에서, 상기 음이온성 계면 활성제는 상기 단량체의 100 중량부를 기준으로, 0.002 내지 0.05 중량부로 사용되는 고흡수성 수지의 제조 방법.  The method according to claim 1, wherein in the crosslinking polymerization step, the anionic surfactant is used in an amount of 0.002 to 0.05 part by weight based on 100 parts by weight of the monomer.
【청구항 6】 [Claim 6]
제 1 항에 있어서, 상기 가교 중합 단계에서, 상기 단량체, 내부 가교제, 상기 10 내지 200 의 입경을 갖는 중합체 입자 및 음이온성 계면 활성제가 포함된 단량체 수용액이 사용되며, 상기 수용액은 30 내지 60 °C의 온도를 갖는 고흡수성 수지의 제조 방법. The method of claim 1, wherein in the cross-linking polymerization step, the monomer, internal crosslinking agent, wherein the 10 to polymer particles having a particle diameter of 200 and an anionic monomer aqueous solution containing a surfactant is used, the aqueous solution is from 30 to 60 ° C By weight based on the total weight of the resin.
【청구항 7】 7.
제 6 항에 있어서, 상기 단량체 수용액은 다가 금속염, 광개시제, 열개시제 및 폴리알킬렌글리콜계 고분자로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함하는 고흡수성 수지의 제조 방법 .  The method according to claim 6, wherein the aqueous monomer solution further comprises at least one additive selected from the group consisting of a polyvalent metal salt, a photoinitiator, a thermal initiator, and a polyalkylene glycol-based polymer.
【청구항 8】 8.
제 7 항에 있어서, 상기 첨가제는 상기 단량체의 100 중량부에 대해, 2000ppmw 이하의 함량으로 사용되는 고흡수성 수지의 제조 방법.  8. The method according to claim 7, wherein the additive is used in an amount of 2000 ppmw or less based on 100 parts by weight of the monomer.
【청구항 9】 [Claim 9]
제 1 항에 있어서, 상기 고흡수성 수지는 벌크 밀도가 0.55 내지 The absorbent article as claimed in claim 1, wherein the superabsorbent resin has a bulk density of 0.55 -
0.65g/ml이고, Vortex 측정 방법에 따라 측정한 흡수 속도가 30초 내지 53초인 고흡수성 수지의 제조 방법. 0.65 g / ml, and the absorption rate measured according to the Vortex measurement method is 30 seconds to 53 seconds.
[청구항 10】 [Claim 10]
제 1 항에 있어서, 상기 고흡수성 수지는 EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능 (CRC)이 28 내지 35 g/g 이고, EDANA법 WSP 242.3에 따라 측정한 0.9 psi의 가압 흡수능 (AUL)이 16 내지 23 g/g인 고흡수성 '수지의 제조 방법. The method according to claim 1, wherein the superabsorbent resin is prepared according to EDANA method WSP 241.3 Centrifuge beam SAT (CRC) is 28 to 35 g / g and, EDANA Method pressure of 0.9 psi measured according to WSP 242.3 absorption capacity (AUL) is 16 to 23 g / g of super-absorbent "production method of the resin measured.
PCT/KR2018/012127 2017-10-27 2018-10-15 Superabsorbent polymer preparation method WO2019083211A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/474,850 US11407848B2 (en) 2017-10-27 2018-10-15 Method for preparing super absorbent polymer
EP18871353.1A EP3546503B1 (en) 2017-10-27 2018-10-15 Method for preparing super absorbent polymer
CN201880012410.4A CN110312755B (en) 2017-10-27 2018-10-15 Method for preparing super absorbent polymer
JP2019529927A JP6806903B2 (en) 2017-10-27 2018-10-15 Manufacturing method of highly water-absorbent resin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0141504 2017-10-27
KR20170141504 2017-10-27
KR1020180121994A KR102566942B1 (en) 2017-10-27 2018-10-12 Preparation method of super absorbent polymer
KR10-2018-0121994 2018-10-12

Publications (2)

Publication Number Publication Date
WO2019083211A1 true WO2019083211A1 (en) 2019-05-02
WO2019083211A9 WO2019083211A9 (en) 2019-08-15

Family

ID=66247859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012127 WO2019083211A1 (en) 2017-10-27 2018-10-15 Superabsorbent polymer preparation method

Country Status (1)

Country Link
WO (1) WO2019083211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811337A (en) * 2019-05-07 2021-12-17 金伯利-克拉克环球有限公司 Absorbent article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003208A1 (en) 1985-11-22 1987-06-04 Beghin-Say Sa Method for preparing a liquid absorbing composition
JP2005126474A (en) * 2003-10-21 2005-05-19 Dainippon Ink & Chem Inc Method for producing highly absorbing resin
KR20110087293A (en) * 2008-10-22 2011-08-02 에보닉 스톡하우젠, 엘엘씨 Process for production of superabsorbent polymer gel with superabsorbent polymer fines
KR20160127742A (en) * 2014-02-28 2016-11-04 가부시키가이샤 닛폰 쇼쿠바이 Poly(meth)acrylic acid (salt)-based particulate absorbent, and production method
KR20160144902A (en) * 2015-06-09 2016-12-19 주식회사 엘지화학 Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
KR20170057705A (en) * 2015-11-17 2017-05-25 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR20170100395A (en) * 2016-02-25 2017-09-04 주식회사 엘지화학 Super absorbent polymer and method for preparation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003208A1 (en) 1985-11-22 1987-06-04 Beghin-Say Sa Method for preparing a liquid absorbing composition
JP2005126474A (en) * 2003-10-21 2005-05-19 Dainippon Ink & Chem Inc Method for producing highly absorbing resin
KR20110087293A (en) * 2008-10-22 2011-08-02 에보닉 스톡하우젠, 엘엘씨 Process for production of superabsorbent polymer gel with superabsorbent polymer fines
KR20160127742A (en) * 2014-02-28 2016-11-04 가부시키가이샤 닛폰 쇼쿠바이 Poly(meth)acrylic acid (salt)-based particulate absorbent, and production method
KR20160144902A (en) * 2015-06-09 2016-12-19 주식회사 엘지화학 Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
KR20170057705A (en) * 2015-11-17 2017-05-25 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR20170100395A (en) * 2016-02-25 2017-09-04 주식회사 엘지화학 Super absorbent polymer and method for preparation thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Principle of Polymerization", 1981, WILEY, pages: 203
"UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3546503A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811337A (en) * 2019-05-07 2021-12-17 金伯利-克拉克环球有限公司 Absorbent article

Also Published As

Publication number Publication date
WO2019083211A9 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
KR102566942B1 (en) Preparation method of super absorbent polymer
CN108884234B (en) Superabsorbent polymer and method for making same
US10807067B2 (en) Method for producing super absorbent polymer and super absorbent polymer
US11633719B2 (en) Superabsorbent polymer composition and method for preparing the same
CN109071833A (en) Super absorbent polymer and method for producing it
JP7210082B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
CN108884235B (en) Superabsorbent polymer and method for making the same
JP6837141B2 (en) Highly water-absorbent resin and its manufacturing method
KR20180071852A (en) Method of preparation for super absorbent polymer
US10799851B2 (en) Method for producing super absorbent polymer and super absorbent polymer
US11613613B2 (en) Superabsorbent polymer composition and method for preparing the same
KR20180092661A (en) Super absorbent polymer and preparation method thereof
CN109312082A (en) Super absorbent polymer and method for manufacturing it
KR20180076272A (en) Super absorbent polymer and preparation method thereof
KR20180067941A (en) Super absorbent polymer and preparation method thereof
JP7191403B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
KR102316433B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR102620072B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
EP3722353A1 (en) Super absorbent polymer and preparation method therefor
JP6837137B2 (en) Highly water-absorbent resin and its manufacturing method
WO2019083211A1 (en) Superabsorbent polymer preparation method
CN109071831B (en) Method for producing superabsorbent polymers
KR20180071933A (en) Super absorbent polymer and preparation method for the same
KR102614036B1 (en) Preparation method of super absorbent polymer and super absorbent polymer prepared therefrom
KR20160137499A (en) Super absorbent polymer and preparation method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018871353

Country of ref document: EP

Effective date: 20190626

NENP Non-entry into the national phase

Ref country code: DE