WO2019117266A1 - Rubber composition and tire - Google Patents

Rubber composition and tire Download PDF

Info

Publication number
WO2019117266A1
WO2019117266A1 PCT/JP2018/045983 JP2018045983W WO2019117266A1 WO 2019117266 A1 WO2019117266 A1 WO 2019117266A1 JP 2018045983 W JP2018045983 W JP 2018045983W WO 2019117266 A1 WO2019117266 A1 WO 2019117266A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
rubber composition
mass
tire
rubber
Prior art date
Application number
PCT/JP2018/045983
Other languages
French (fr)
Japanese (ja)
Inventor
光彩 青木
孝典 辻
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2019559211A priority Critical patent/JPWO2019117266A1/en
Publication of WO2019117266A1 publication Critical patent/WO2019117266A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition and a tire.
  • wet performance braking performance on wet road surfaces
  • SBR styrene-butadiene copolymer rubber
  • silica styrene-butadiene copolymer rubber
  • NR natural rubber
  • Another object of the present invention is to provide a rubber composition capable of solving the above-mentioned problems of the prior art and achieving a high balance between the low loss property of a tire, the wear resistance and the dry handling property. Do. Another object of the present invention is to provide a tire in which the low loss property, the wear resistance and the dry handling property are highly balanced.
  • the gist configuration of the present invention for solving the above problems is as follows.
  • the rubber composition of the present invention comprises a rubber component (A), a styrene-alkylene block copolymer (B), silica (C) and a silane coupling agent (D),
  • the styrene / alkylene block copolymer (B) has a total content of styrene units of 30% by mass or more,
  • the silane coupling agent (D) is characterized by having a mercapto group.
  • the tire according to the present invention is characterized in that the above rubber composition is used for tread rubber.
  • the rubber composition which can make the low loss property of a tire, abrasion resistance, and dry handling property be highly balanced can be provided. Further, according to the present invention, it is possible to provide a tire in which low loss property, wear resistance and dry handling property are highly balanced.
  • the rubber composition of the present invention comprises a rubber component (A), a styrene-alkylene block copolymer (B), a silica (C) and a silane coupling agent (D), and the above-mentioned styrene-alkylene block co-polymer
  • the polymer (B) has a total content of styrene units of 30% by mass or more, and the silane coupling agent (D) has a mercapto group.
  • the rubber composition of the present invention can optionally contain a filler other than silica (C), a resin (E) and other components.
  • silane coupling agents having a mercapto group tend to deteriorate processability while having high activity.
  • the present inventors combined use of a styrene / alkylene block copolymer (B) containing a predetermined amount or more of styrene units with a silane coupling agent (D) having a mercapto group. It has been found that the above-mentioned deterioration can be suppressed and at the same time, low loss, dry handling and wear resistance of the tire can be made at a high level.
  • the styrene block in the styrene-alkylene block copolymer (B) acts like a filler in the vulcanized rubber composition.
  • an alkylene block is present between the polystyrene blocks, and the friction between the polystyrene blocks is reduced. Therefore, according to the rubber composition of the present invention, by applying to the tread rubber of a tire, it is possible to highly balance the low loss property of the tire, the wear resistance and the dry handling property.
  • the rubber component (A) is not particularly limited, and various rubbers can be used.
  • the rubber component (A) include natural rubber (NR), styrene-butadiene copolymer rubber (SBR), butadiene rubber (BR), acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR) And diene rubbers such as isoprene rubber (IR).
  • the rubber component (A) may be unmodified or modified.
  • the rubber component (A) may be used alone or in combination of two or more.
  • the rubber composition of the present invention preferably contains a natural rubber (A1) as the rubber component (A).
  • a natural rubber (A1) the low loss property of the tire can be further improved. 20 mass% or more is preferable, and, as for the content rate of the natural rubber (A1) in the said rubber component (A), 30 mass% or more is more preferable. If the content of the natural rubber (A1) in the rubber component (A) is 20% by mass or more, the low loss property of the tire can be further improved. Moreover, 60 mass% or less is preferable, and, as for the content rate of the natural rubber (A1) in a rubber component (A), 50 mass% or less is more preferable.
  • the rubber composition of the present invention preferably contains, as the rubber component (A), a rubber having a glass transition temperature (Tg) exceeding -50 ° C. (hereinafter, may be abbreviated as “high Tg rubber”). .
  • the high Tg rubber more preferably has a glass transition temperature (Tg) of ⁇ 45 ° C. or more and ⁇ 15 ° C. or less.
  • Tg rubber a rubber having a glass transition temperature (Tg) of ⁇ 50 ° C. or less may be abbreviated as “low Tg rubber”.
  • the low Tg rubber preferably has a glass transition temperature (Tg) of -150 ° C. or more and -50 ° C.
  • Tg glass transition temperature
  • a glass transition temperature is recorded in accordance with ISO 22768: 2006, while a temperature is raised in a predetermined temperature range, and a DSC curve is recorded to be a peak top (Inflection point) of the DSC differential curve.
  • the content of the high Tg rubber in the rubber component (A) is preferably 20 to 50% by mass, and more preferably 25 to 40% by mass.
  • the content of the high Tg rubber in the rubber component (A) is 20% by mass or more, the wet performance of the tire can be improved when it is applied to the tire.
  • the content of the high Tg rubber in the rubber component (A) is 50% by mass or less, the processability of the rubber composition is improved.
  • the modified conjugated diene-based polymer (A2) has a weight average molecular weight of 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, and a molecular weight of 200 ⁇ with respect to the total amount of the modified conjugated diene polymer (A2).
  • 10 4 or more 500 ⁇ 10 4 or less is modified conjugated diene polymer, comprising 0.25% by mass or more and 30% or less, shrinkage factor (g ') is less than 0.64.
  • shrinkage factor (g ') is less than 0.64.
  • branched polymers tend to be smaller in molecular size when compared to linear polymers having the same absolute molecular weight, and the shrinkage factors (g ′) are assumed to be identical. It is a measure of the ratio of the size occupied by the molecule to the linear polymer, which is an absolute molecular weight of That is, the shrinkage factor (g ') tends to decrease as the degree of branching of the polymer increases.
  • the intrinsic viscosity is used as an index of the molecular size
  • the shrinkage factor (g ') at each absolute molecular weight of the modified conjugated diene polymer is calculated, and the average value of the shrinkage factor (g') at an absolute molecular weight of 100 ⁇ 10 4 to 200 ⁇ 10 4 is calculated
  • a contraction factor (g ') of the modified conjugated diene polymer is calculated.
  • “branched” is formed by direct or indirect bonding of another polymer to one polymer.
  • the “degree of branching” is the number of polymers directly or indirectly bonded to each other for one branch. For example, the degree of branching is 5 when five conjugated diene polymer chains described later are linked to each other indirectly via a coupling residue described later.
  • the coupling residue is a constituent unit of a modified conjugated diene polymer which is bonded to a conjugated diene polymer chain, and for example, a conjugated diene polymer to be described later is reacted with a coupling agent.
  • a coupling agent Is a structural unit derived from a coupling agent.
  • the conjugated diene polymer chain is a constituent unit of a modified conjugated diene polymer, and is derived from, for example, a conjugated diene polymer which is produced by reacting a conjugated diene polymer described later with a coupling agent. It is a structural unit.
  • the contraction factor (g ′) is less than 0.64, preferably 0.63 or less, more preferably 0.60 or less, still more preferably 0.59 or less, still more preferably 0. It is less than .57.
  • the lower limit of the contraction factor (g ′) is not particularly limited, and may be below the detection limit, but is preferably 0.30 or more, more preferably 0.33 or more, and still more preferably 0. It is not less than .35 and more preferably not less than 0.45.
  • the processability of the rubber composition is improved by using the modified conjugated diene-based polymer (A2) in which the shrinkage factor (g ′) is in this range.
  • the contraction factor (g ′) tends to depend on the degree of branching, for example, the contraction factor (g ′) can be controlled using the degree of branching as an index. Specifically, when a modified conjugated diene polymer having a branching degree of 6 is used, the shrinkage factor (g ′) tends to be 0.59 or more and 0.63 or less, and the branching degree is 8 When a certain modified conjugated diene polymer is used, the shrinkage factor (g ′) tends to be 0.45 or more and 0.59 or less.
  • the modified conjugated diene-based polymer (A2) preferably has a branch and a degree of branching of 5 or more. Further, the modified conjugated diene polymer (A2) has one or more coupling residues and a conjugated diene polymer chain bonded to the coupling residues, and the above-mentioned branching is 1 It is more preferable to include a branch in which five or more of the conjugated diene-based polymer chains are connected to the coupling residue of Structure of a modified conjugated diene-based polymer such that the degree of branching is 5 or more, and the branch includes a branch in which 5 or more conjugated diene-based polymer chains are bonded to one coupling residue
  • the contraction factor (g ′) can be more reliably made less than 0.64 by specifying The number of conjugated diene-based polymer chains bound to one coupling residue can be confirmed from the value of shrinkage factor (g ').
  • the weight average molecular weight (Mw) of the modified conjugated diene polymer (A2) is 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, preferably 50 ⁇ 10 4 or more, and more preferably 64 ⁇ 10 4 or more. More preferably, it is 80 ⁇ 10 4 or more.
  • the weight average molecular weight is preferably 250 ⁇ 10 4 or less, more preferably 180 ⁇ 10 4 or less, and still more preferably 150 ⁇ 10 4 or less. If the weight average molecular weight is 20 ⁇ 10 4 or more, the low loss property and the wet performance of the tire can be more compatible. When the weight average molecular weight is 300 ⁇ 10 4 or less, the processability of the rubber composition is improved.
  • the modified conjugated diene polymer (A2) is a modified conjugated diene polymer having a molecular weight of 200 ⁇ 10 4 or more and 500 ⁇ 10 4 or less based on the total amount (100% by mass) of the modified conjugated diene polymer (Hereinafter, it is also called "a specific high molecular weight component.") 0.25 mass% or more and 30 mass% or less. If the content of the specific high molecular weight component is 0.25% by mass or more and 30% by mass or less, the low loss property and the wet performance of the tire can be more compatible.
  • the modified conjugated diene polymer (A2) preferably contains 1.0% by mass or more, more preferably 1.4% by mass or more, and still more preferably 1.75% by mass or more of a specific high molecular weight component. Even more preferably, it contains 2.0% by mass or more, particularly preferably 2.15% by mass or more, and most preferably 2.5% by mass or more. In addition, the modified conjugated diene polymer (A2) preferably contains 28% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less of the specific high molecular weight component, and still more preferably 18 mass% or less is included.
  • “molecular weight” is standard polystyrene conversion molecular weight obtained by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • the use amount of the organic monolithium compound described later as a polymerization initiator may be adjusted.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.6 or more and 3.0 or less. preferable. If the molecular weight distribution of the modified conjugated diene-based polymer (A2) is in this range, the processability of the rubber composition will be good.
  • the modified conjugated diene polymer (A2) has the following general formula (I):
  • D represents a conjugated diene-based polymer chain
  • R 1 , R 2 and R 3 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms
  • R 4 and R 7 each independently represent an alkyl group having 1 to 20 carbon atoms
  • R 5 , R 8 , and R 9 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 6 and R 10 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • m and x each independently represent 1 Represents an integer of to 3, x ⁇ m
  • p represents 1 or 2
  • y represents an integer of 1 to 3
  • z represents an integer of 1 or 2
  • z represents an integer of 1 or 2
  • A is a hydrocarbon group having 1 to 20 carbon atoms, or Represents an organic group having at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and having no active hydrogen preferable.
  • the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic and aromatic hydrocarbon groups.
  • the organic group having no active hydrogen include active hydrogens such as hydroxyl group (-OH), secondary amino group (> NH), primary amino group (-NH 2 ) and sulfhydryl group (-SH). And an organic group having no functional group.
  • A is preferably one represented by any one of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10
  • B 2 represents a single bond or a hydrocarbon group having a carbon number of 1 to 20
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a is an integer of 1 to 10
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10
  • B 5 represents a single bond or a hydrocarbon group having a carbon number of 1 ⁇ 20
  • a is an integer of 1 to 10, B 5 when there are a plurality, each independently ing.
  • examples of the hydrocarbon group having 1 to 20 carbon atoms include an alkylene group having 1 to 20 carbon atoms and the like.
  • A is represented by the general formula (II) or (III), and k represents 0. More preferably, in the general formula (I), A is represented by the general formula (II) or (III), k is 0, and in the general formula (II) or (III), a is , Represents an integer of 2 to 10. Even more preferably, in the general formula (I), A is represented by the general formula (II), k is 0, and in the general formula (II), a is an integer of 2 to 10 Show.
  • the method for producing the modified conjugated diene polymer (A2) is not particularly limited, but at least a conjugated diene compound is polymerized using an organic monolithium compound as a polymerization initiator to obtain a conjugated diene polymer. It is preferable to have a polymerization step and a reaction step of reacting a penta- or higher functional reactive compound (hereinafter, also referred to as “coupling agent”) with respect to the active terminal of the conjugated diene polymer. As the coupling agent, it is preferable to react a pentafunctional or higher reactive compound having a nitrogen atom and a silicon atom.
  • the modified conjugated diene polymer (A2) is a conjugated diene polymer represented by the following general formula (VI):
  • R 12 , R 13 and R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms
  • R 15 , R 16 , R 17 , R 18 and R 20 each independently represents an alkyl group having 1 to 20 carbon atoms
  • R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 21 has 1 to 20 carbon atoms
  • m is an integer of 1 to 3
  • p is 1 or 2
  • R 12 to R 22 , m and p are each independently independent of each other
  • i, j and k each independently represent an integer of 0 to 6, provided that (i + j + k) is an integer of 3 to 10
  • A is a hydrocarbon group having 1 to 20 carbon atoms Or at least one selected from the group
  • the modified conjugated diene-based polymer obtained by reacting the coupling agent represented by the general formula (VI) with the conjugated diene-based polymer is represented by, for example, the general formula (I).
  • A is preferably represented by any of the above general formulas (II) to (V).
  • A is one represented by any of the general formulas (II) to (V)
  • a modified conjugated diene polymer (A2) having more excellent performance can be obtained.
  • the coupling agent represented by the above general formula (VI) for example, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] Amine, tris (3-trimethoxysilylpropyl) amine, tris (3-triethoxysilylpropyl) amine, tris (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-) Silacyclopentane) propyl] -1,3-propanediamine, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis (3-triamine) Methoxysilylpropyl) -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-bisamin
  • the addition amount of the compound represented by the general formula (VI) as the coupling agent is adjusted so that the number of moles of the conjugated diene polymer to the number of moles of the coupling agent can be reacted at a desired stoichiometric ratio. Can tend to achieve the desired degree of branching.
  • the specific number of moles of the polymerization initiator is preferably 5.0 or more moles, more preferably 6.0 or more moles, with respect to the number of moles of the coupling agent.
  • the number of functional groups of the coupling agent ((m-1) ⁇ i + p ⁇ j + k) is preferably an integer of 5 to 10, more preferably 6 to 10 preferable.
  • the conjugated diene polymer is obtained by polymerizing at least a conjugated diene compound, and is obtained by copolymerizing both a conjugated diene compound and a vinyl-substituted aromatic compound, if necessary.
  • the conjugated diene compound is preferably a conjugated diene compound having 4 to 12 carbon atoms, and more preferably a conjugated diene compound having 4 to 8 carbon atoms.
  • conjugated diene compounds for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3 Hexadiene and 1,3-heptadiene.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability.
  • These conjugated diene compounds may be used alone or in combination of two or more.
  • a monovinyl aromatic compound is preferable.
  • the monovinyl aromatic compound include styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene and diphenylethylene.
  • styrene is preferable from the viewpoint of industrial availability.
  • These vinyl-substituted aromatic compounds may be used alone or in combination of two or more.
  • the organic monolithium compound is preferably an alkyllithium compound from the viewpoint of industrial availability and easiness of control of polymerization reaction.
  • a conjugated diene polymer having an alkyl group at the polymerization initiation end is obtained.
  • the alkyllithium compound include n-butyllithium, sec-butyllithium, tert-butyllithium and n-hexyllithium.
  • benzyllithium, phenyllithium, and stilbene lithium can be mentioned as an organic monolithium compound other than the alkyllithium compound.
  • n-butyllithium and sec-butyllithium are preferable from the viewpoint of industrial availability and easiness of control of the polymerization reaction.
  • These organic monolithium compounds may be used alone or in combination of two or more.
  • the amount of conjugated conjugated diene in the conjugated diene polymer or the modified conjugated diene polymer (A2) is not particularly limited, but is preferably 40% by mass to 100% by mass, and is 55% by mass to 80% by mass. It is more preferable that The amount of bound aromatic vinyl in the conjugated diene polymer or the modified conjugated diene polymer (A2) is not particularly limited, but is preferably 0% by mass or more and 60% by mass or less, and is 20% by mass or more It is more preferable that it is 45 mass% or less.
  • the amount of conjugated conjugated diene and the amount of conjugated aromatic vinyl is in the above range, the low loss property, the abrasion resistance, and the dry handling property are further highly balanced. It becomes possible.
  • the amount of bound aromatic vinyl can be measured by the ultraviolet absorption of a phenyl group, and the amount of bound conjugated diene can also be determined from this.
  • the amount of vinyl bond in the conjugated diene bond unit is not particularly limited, but it is preferably 10 mol% or more and 75 mol% or less, and 20 mol % Or more and 65 mol% or less is more preferable.
  • the rubber composition is applied to the tire as the amount of vinyl bond is in the above range, it is possible to further balance low loss, wear resistance, and dry handling with a high degree.
  • the modified conjugated diene polymer (A2) is a copolymer of butadiene and styrene
  • the method of Hampton [R. R. Hampton, Analytical Chemistry, 21, 923 (1949)] can be used to determine the amount of vinyl bonds (1, 2-bonds) in butadiene bonding units.
  • the molecular weight distribution (Mw / Mn) of the conjugated diene polymer is preferably 1.5 or more and 2.5 or less, or more. Preferably, it is set to 1.8 or more and 2.2 or less. Moreover, it is preferable that the modified conjugated diene polymer (A2) to be obtained is a polymer whose molecular weight curve by GPC has a peak detected.
  • the peak molecular weight (Mp 1 ) of the modified conjugated diene polymer (A2) by GPC is preferably 30 ⁇ 10 4 or more and 150 ⁇ 10 4 or less
  • the peak molecular weight (Mp 2 ) of the conjugated diene polymer is 20 ⁇ 10 4 or more and 80 ⁇ 10 4 or less
  • (Mp 1 / Mp 2) ⁇ 1.8 ⁇ 10-12 ⁇ (Mp 2 -120 ⁇ 10 4) 2 +2 Mp 2 is more preferably 20 ⁇ 10 4 or more and 80 ⁇ 10 4 or less
  • Mp 1 is more preferably 30 ⁇ 10 4 or more and 150 ⁇ 10 4 or less.
  • the modification ratio of the modified conjugated diene polymer (A2) is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more.
  • a modification rate is 30 mass% or more, when a rubber composition is applied to a tire, rolling resistance can be further reduced, improving the abrasion resistance of a tire.
  • the modification ratio can be measured by applying the characteristic that the modified basic polymer component is adsorbed to a GPC column using a modified conjugated diene polymer as a sample and a silica gel as a filler. .
  • adsorption to a silica-based column from the difference between a chromatogram obtained by measuring a sample solution containing a sample and a low molecular weight internal standard polystyrene with a polystyrene-based column and a chromatogram obtained by measuring the sample solution with a silica-based column
  • the amount can be measured to determine the rate of denaturation.
  • the rubber composition of the present invention comprises a styrene-alkylene block copolymer (B) having a total content of styrene units of 30% by mass or more.
  • the styrene-alkylene block copolymer (B) is a copolymer having a block derived from a styrenic monomer and an alkylene block, and in the present invention, it is distinguished from the rubber component (A) described above.
  • the total content of styrene units in the styrene-alkylene block copolymer (B) is the total content of blocks derived from styrenic monomers relative to the total mass of the styrene-alkylene block copolymer (B). is there.
  • a styrene alkylene block copolymer (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the modulus of elasticity of the tire does not sufficiently improve when the rubber composition is applied to the tire, and at least The dry handling properties of the tire can not be sufficiently improved.
  • the styrene / alkylene block copolymer (B) preferably has a total content of styrene units of 50% by mass or more.
  • the total content of styrene units in the styrene-alkylene block copolymer (B) is 50% by mass or more, the dry handling properties of the tire can be further improved.
  • the styrene-alkylene block copolymer (B) is not particularly limited, but the total content of styrene units is preferably 60% by mass or less.
  • the (total) content of the styrene unit of the styrene-alkylene block copolymer (B) and the (total) content of the alkylene unit described later are determined by an integral ratio of 1 H-NMR.
  • the styrene / alkylene block copolymer (B) preferably has a glass transition temperature (Tg) of ⁇ 30 ° C. or less.
  • Tg glass transition temperature
  • the styrene block of the styrene-alkylene block copolymer (B) has a unit derived from a styrenic monomer (polymerized styrenic monomer).
  • styrenic monomers include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyl toluene and the like. Among these, styrene is preferable as the styrene-based monomer.
  • the alkylene block of the said styrene-alkylene block copolymer (B) has an alkylene (divalent saturated hydrocarbon group) unit.
  • an alkylene unit for example, an alkylene group having 1 to 20 carbon atoms can be mentioned.
  • the alkylene unit may be a linear structure, a branched structure, or a combination thereof.
  • As the alkylene unit having a linear structure for example,-(CH 2 -CH 2 ) -unit (ethylene unit),-(CH 2 -CH 2 -CH 2 -CH 2 ) -unit (linear butylene unit), etc. It can be mentioned.
  • alkylene unit having a branched structure examples include, for example,-[CH 2 -CH (C 2 H 5 )]-unit (butylene unit),-[CH 2 -CH (CH 3 )]-unit (propylene unit), etc. Be Among these, it is preferable to have an — [CH 2 —CH (C 2 H 5 )] — unit as the alkylene unit.
  • the content of the alkylene unit in the above-mentioned styrene / alkylene block copolymer (B) may be suitably adjusted, but for example, it is 40 to 70% by mass with respect to the total mass of the styrene / alkylene block copolymer (B) Is preferred.
  • the alkylene block of the styrene-alkylene block copolymer (B) is-[CH 2 -CH (C 2 H 5 )]-unit (butylene unit),-(CH 2) 2 -CH 2) - and a unit (ethylene units),
  • the content of the butylene units preferably has a total weight less than 50 wt% with respect to the oxybutylene units and the ethylene units, 65 wt% It is more preferable that it is more than.
  • the total amount is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less.
  • the content is 50% by mass or more, the low loss property and the wear resistance can be further improved while further improving the dry handling property of the tire.
  • styrene / alkylene block copolymer (B) examples include styrene / ethylene butylene / styrene block copolymer (SEBS), styrene / ethylene propylene / styrene block copolymer (SEPS), styrene / ethylene / ethylene / styrene copolymer A polymer (SEEPS) etc. are mentioned, Among these, a styrene ethylene butylene styrene block copolymer is preferable.
  • SEEPS styrene ethylene butylene styrene block copolymer
  • the dry handling properties of the tire can be further improved.
  • the ethylene butylene block of the said styrene ethylene butylene styrene block copolymer is a block which has the ethylene unit and the butylene unit which were mentioned above.
  • the said styrene alkylene block copolymer (B) may contain the other structural units other than the said styrene block and an alkylene block.
  • other structural units for example, structural units having unsaturated bonds such as — [CH 2 —CH (CH (CH 2 )] — units and the like can be mentioned.
  • the synthesis method of the styrene / alkylene block copolymer (B) is not particularly limited, and known methods can be used.
  • a precursor copolymer is obtained by copolymerizing a styrene-based monomer such as styrene and a conjugated diene compound such as 1,3-butadiene or an olefin such as butene, and hydrogenating this precursor copolymer
  • a styrene-alkylene block copolymer (B) can be obtained.
  • SEBS styrene / ethylene butylene / styrene block copolymer
  • SBS styrene / ethylene butylene / styrene block copolymer
  • SEPS styrene / ethylene propylene / styrene block copolymer
  • SBS styrene isoprene styrene block copolymer
  • B styrene alkylene block copolymer
  • JSR DYNARON registered trademark
  • the blending amount of the styrene-alkylene block copolymer (B) in the rubber composition of the present invention is not particularly limited, and may be appropriately adjusted.
  • the blending amount of the styrene-alkylene block copolymer (B) is preferably in the range of 5 to 30 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the blending amount of the styrene-alkylene block copolymer (B) is 5 parts by mass or more with respect to 100 parts by mass of the rubber component (A), the elastic modulus of the tire to which the rubber composition is applied is further improved, The dry handling property of the tire can be further improved, and if it is 30 parts by mass or less, the low loss property of the tire can be further improved.
  • the blending amount of the styrene-alkylene block copolymer (B) is more preferably 10 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component (A). .
  • the rubber composition of the present invention contains silica (C).
  • the low loss property of the rubber composition can be improved.
  • the silica (C) preferably has a BET specific surface area of 40 to 350 m 2 / g.
  • the low loss property of the tire can be further improved.
  • the BET specific surface area of the silica (C) is more preferably 80 m 2 / g or more, still more preferably 220 m 2 / g or more, and 300 m 2 / g or less. it is more preferable, and more preferably not more than 270m 2 / g.
  • the BET specific surface area is measured in accordance with JIS K6430.
  • the silica (C) preferably has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area of 150 to 260 m 2 / g.
  • CTAB cetyltrimethylammonium bromide
  • the low loss property of the tire can be further improved.
  • the CTAB adsorption specific surface area of the silica (C) is more preferably 176 to 206 m 2 / g.
  • cetyltrimethylammonium bromide (CTAB) adsorption specific surface area is measured by the method described in the examples.
  • silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate and the like, and among these, wet silica is preferable. These silicas may be used alone or in combination of two or more.
  • 40 mass parts or more are preferable with respect to 100 mass parts of said rubber components (A), as for the compounding quantity of the said silica, 45 mass parts or more are more preferable, and 120 mass parts or less are preferable, and 70 mass parts or less are more preferable .
  • the compounding amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component (A)
  • tan ⁇ at around 60 ° C. of the rubber composition decreases, and the rolling resistance of the tire to which the rubber composition is applied
  • it is 120 parts by mass or less, the flexibility of the rubber composition is high, and by applying the rubber composition to the tread rubber of the tire, the deformation volume of the tread rubber becomes large, and the tire Wet performance can be improved.
  • the rubber composition of the present invention may contain a filler other than silica (C) (hereinafter simply referred to as "filler").
  • a filler other than silica (C) hereinafter simply referred to as "filler”
  • Such fillers include, for example, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide, magnesium oxide, titanium oxide, titanium Acid potassium, barium sulfate and the like. These fillers may be used alone or in combination of two or more.
  • the carbon black is not particularly limited, and examples thereof include carbon blacks such as high, middle or low structure SAF, ISAF, ISAF-HS, IISAF, N339, HAF, FEF, GPF, SRF grade and the like.
  • the compounding amount of the above-mentioned filler is not particularly limited and may be appropriately adjusted, and is, for example, 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A).
  • the compounding amount of the filler is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A) from the viewpoint of low loss and abrasion resistance.
  • the rubber composition of the present invention contains a silane coupling agent (D) having a mercapto group together with the silica (C) in order to improve the blending effect of the silica (C).
  • silane coupling agent for example, bis (3-triethoxysilylpropyl) tetrasulfide (for example, trade name “Si69” manufactured by Evonik Co., Ltd., etc.), bis (3-triethoxysilylpropyl) trisulfide, bis (3 -Triethoxysilylpropyl) disulfide (for example, trade name "Si75” manufactured by Evonik Co., Ltd.), bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2- Trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimeth
  • silane coupling agents (D) may be used alone or in combination of two or more.
  • the above-mentioned silane coupling agent (D) is 3-mercaptopropyltrimethoxysilane, and 3- [ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silyl]- It is preferably at least one selected from 1-propanethiol. In this case, the low loss property of the tire can be further improved.
  • the amount of the silane coupling agent (D) is preferably 1 part by mass or more, more preferably 4 parts by mass or more, based on 100 parts by mass of the silica (C), from the viewpoint of improving the dispersibility of the silica. Moreover, 20 mass parts or less are preferable, and 12 mass parts or less are more preferable.
  • the rubber composition of the present invention further, C 5 resins, C 5 -C 9 resins, C 9 resins, terpene resins, terpene - aromatics-based resin, rosin resin, dicyclopentadiene resin and alkylphenols It is preferable to include at least one resin (E) selected from the group consisting of a system resin. When the rubber composition contains a resin (E), the wet performance of the tire can be improved.
  • the compounding quantity of the said resin (E) has the preferable range of 5 mass parts or more and 40 mass parts or less with respect to 100 mass parts of said rubber components (A). When the compounding quantity of resin (E) is this range, the wet performance of a tire can be improved effectively. From the same viewpoint, the compounding amount of the resin (E) is more preferably 10 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
  • the C 5 resin refers to C 5 type synthetic petroleum resins and C 5 fraction, it means a resin obtained by polymerization using a Friedel-Crafts catalyst such as AlCl 3 or BF 3. Specifically, copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene and 1-pentene as main components, copolymers of 2-pentene and dicyclopentadiene, and 1,3-pentadiene as main components. Polymers and the like.
  • the C 5 -C 9 resin refers to a C 5 -C 9 synthetic petroleum resin and is obtained by polymerizing a C 5 -C 11 fraction using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3
  • a resin that For example, copolymers having styrene, vinyl toluene, ⁇ -methylstyrene, indene or the like as a main component can be mentioned.
  • a C 5 -C 9 based resin containing few components of C 9 or more is preferable because of its excellent compatibility with the rubber component.
  • a resin in which the proportion of the C 9 or more component in the C 5 -C 9 resin is less than 50% by mass is preferable, and the resin in which the proportion is 40% by mass or less is more preferable.
  • the C 9 -based resin refers to a C 9 -based synthetic petroleum resin, and means a resin obtained by polymerizing a C 9 fraction using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • copolymers having as main components indene, methyl indene, ⁇ -methyl styrene, vinyl toluene and the like can be mentioned.
  • the terpene resin can be obtained by blending turpentine oil obtained at the same time as obtaining rosin from pine tree trees or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts-type catalyst.
  • turpentine oil obtained at the same time as obtaining rosin from pine tree trees or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts-type catalyst.
  • ⁇ -pinene resin, ⁇ -pinene resin and the like can be mentioned.
  • the terpene-aromatic resin can be obtained by reacting terpenes with various phenols using a Friedel-Crafts type catalyst, or by further condensing with formaldehyde.
  • terpene-phenol resin and the like can be mentioned.
  • resins in which the phenol component in the terpene-phenol resin is less than 50% by mass are preferable, and resins having 40% by mass or less are more preferable.
  • the terpene as a raw material is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include monoterpene hydrocarbons such as ⁇ -pinene and limonene. Among these, those containing ⁇ -pinene are preferable, and ⁇ -pinene is more preferable.
  • the rosin-based resin is not particularly limited and may be appropriately selected according to the purpose.
  • natural resin rosins such as gum rosin, tall oil resin, wood rosin and the like contained in raw pine jani and tall oil; modified rosin; And modified rosin derivatives.
  • the modified rosin derivative is, for example, polymerized rosin, partially hydrogenated rosin thereof, glycerin ester rosin, partially hydrogenated rosin or fully hydrogenated rosin thereof, pentaerythritol ester rosin, partially hydrogenated rosin or partially hydrogenated rosin Etc.
  • the dicyclopentadiene resin can be obtained by polymerizing dicyclopentadiene using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 .
  • Specific examples of commercially available products of dicyclopentadiene resin include Quinton 1920 (manufactured by Nippon Zeon Co., Ltd.), Quinton 1105 (manufactured by Nippon Zeon Co., Ltd.), and Marcarets M-890A (manufactured by Maruzen Petrochemical Co., Ltd.).
  • alkyl phenol-type resin there is no restriction
  • unsaturated bonds in the molecule may be partially or completely hydrogenated.
  • the unsaturated bonds in the molecule of the resin (E) are partially or completely hydrogenated, the wet performance of the tire can be effectively improved.
  • a partially or completely hydrogenated C 5 resin, a partially or completely hydrogenated C 5 -C 9 resin, a partially or completely hydrogen Preferred is a C 9 -based resin added. In this case, the wet performance of the tire can be effectively improved.
  • the partially or completely hydrogenated resin commercially available products can be suitably used.
  • the hydrogenation may be carried out, for example, by using a resin having unsaturated bond in the molecule, a hydrogenation catalyst comprising nickel of organic carboxylic acid, cobalt of organic carboxylic acid, organic metal compound of groups 1 to 3; carbon, silica, diatomaceous earth, etc.
  • the hydrogenation can be carried out under a hydrogen pressure of 1 to 100 atm using a catalyst selected from nickel, platinum, palladium, ruthenium, rhodium metal catalyst, cobalt, nickel, rhodium, ruthenium complex and the like supported thereon.
  • the rubber composition of the present invention preferably contains a vulcanizing agent in addition to the components described above. Sulfur etc. are mentioned as this vulcanizing agent.
  • the amount of the vulcanizing agent is preferably in the range of 0.1 to 10 parts by mass as sulfur, and more preferably in the range of 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component (A). If the compounding amount of the vulcanizing agent is 0.1 parts by mass or more as sulfur content, the fracture strength, abrasion resistance and the like of the vulcanized rubber can be secured, and if it is 10 parts by mass or less, sufficient rubber elasticity can be obtained. Can be secured. In particular, the wet performance of the tire can be improved by setting the blending amount of the vulcanizing agent to 4 parts by mass or less as sulfur content.
  • the rubber composition of the present invention preferably contains a vulcanization accelerator in addition to the components described above.
  • the vulcanization accelerator is, for example, at least one selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea. Each of these may be used alone or in combination of two or more.
  • the guanidines are not particularly limited and can be appropriately selected according to the purpose.
  • 1,3-diphenylguanidine, 1,3-di-o-tolyl guanidine and 1-o-tolylbiguanide are preferable in view of high reactivity, and 1,3-diphenyl guanidine is more preferable.
  • the sulfenamides are not particularly limited and may be appropriately selected depending on the purpose.
  • N- distearyl-2-benzothiazolyl sulfenamide and the like are preferable in terms of high reactivity.
  • the thiazoles are not particularly limited and may be appropriately selected depending on the purpose.
  • Thiourea is a compound represented by NH 2 CSNH 2 .
  • Diethyl thiourea is a compound represented by C 2 H 5 NHCSNHC 2 H 5 .
  • the compounding amount of the vulcanization accelerator is not particularly limited and may be appropriately adjusted according to the purpose.
  • it is 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the effect of the vulcanization is easily obtained when the amount is 0.1 parts by mass or more, and the excessive progress of the vulcanization can be suppressed when the amount is 20 parts by mass or less.
  • the rubber composition of the present invention more preferably contains at least one selected from guanidines, thiazoles and thioureas.
  • the method for preparing the rubber composition of the present invention is not particularly limited, and components such as a rubber component, a styrene / alkylene block copolymer, and a filler may be kneaded using a known kneading method.
  • the rubber composition of the present invention comprises a rubber component (A), a styrene-alkylene block copolymer (B), silica (C), a silane coupling agent (D), a vulcanization accelerator, and a vulcanizing agent.
  • Kneading step A in which at least part or all of rubber component (A), styrene / alkylene block copolymer (B), silica (C), silane coupling agent (D) and vulcanization accelerator are kneaded
  • a method including the kneading step B in which the kneaded material obtained by the kneading in the kneading step A and the vulcanizing agent are kneaded.
  • the rubber component (A), the styrene / alkylene block copolymer (B), the silica (C), the silane coupling agent (D), a part or all of the vulcanization accelerator, and optionalally, fillers other than silica (C), resin (E) are kneaded.
  • a kneaded material (preliminary composition) is obtained by this kneading.
  • the kneaded material (preliminary composition) prepared in the kneading step A does not contain a vulcanizing agent.
  • the maximum temperature of the mixture is preferably 120 to 190 ° C., preferably 130 to 175 ° C., from the viewpoint of enhancing the activity of the coupling function of the silane coupling agent (D) more suitably. Is more preferable, and the temperature is preferably 140 to 170.degree.
  • the rubber component (A), the styrene-alkylene block copolymer (B), the silica (C), the silane coupling agent (D), and optionally, other than the silica (C) It is preferable to mix
  • the kneading step B is a step of kneading the obtained kneaded product (preliminary composition) and the vulcanizing agent after the kneading step A or the kneading step C described later.
  • the rubber composition can be prepared by this kneading.
  • a vulcanization accelerator may be further added.
  • the maximum temperature of the mixture is preferably 60 to 140 ° C., more preferably 80 to 120 ° C., and still more preferably 100 to 120 ° C.
  • the above method may further include a step (kneading step C) of further kneading between the kneading step A and the kneading step B, if necessary, the kneaded material (preliminary composition) prepared in the kneading step A. Good.
  • the kneading step C may be performed multiple times. However, in the kneading step C, no vulcanizing agent is added.
  • the maximum temperature of the mixture is preferably 120 to 190 ° C., more preferably 130 to 175 ° C., from the viewpoint of more suitably enhancing the activity of the coupling function of the silane coupling agent.
  • the temperature is 140 to 170 ° C.
  • the kneading apparatus used for the kneading is not particularly limited and may be appropriately selected according to the purpose.
  • a single-screw kneading extruder a multi-screw kneading extruder (continuous kneader); Banbury mixer, intermix Kneaders having a meshing or non-meshing type rotary rotor such as a kneader; rolls (batch-type kneading apparatus) and the like.
  • Various conditions such as the rotational speed of the rotor, the ram pressure, the kneading temperature, the type of the kneading apparatus, and the like in the kneading can be appropriately selected.
  • the rubber composition of the present invention can be used for various rubber products including tires.
  • the rubber composition of the present invention is suitable as a tread rubber of a tire.
  • the tire according to the present invention is characterized in that the above rubber composition is used for tread rubber.
  • the above rubber composition is used for the tread rubber, the dry handling property is excellent while achieving both the low loss property and the wear resistance.
  • the tire of this invention can be utilized as a tire for various vehicles, it is preferable as a tire for passenger cars.
  • the tire of the present invention may be obtained by molding and curing after molding using an unvulcanized rubber composition according to the type of tire to be applied, or by using a semi-vulcanized rubber which has undergone a pre-vulcanization process and the like. After molding, it may be obtained by further vulcanization.
  • the tire according to the present invention is preferably a pneumatic tire, and as a gas to be filled in the pneumatic tire, in addition to normal air having a controlled partial pressure of oxygen, an inert gas such as nitrogen, argon, or helium can be used. It can be used.
  • ⁇ Preparation of Modified Conjugated Diene-Based Polymer 1> Add a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene to a dry, nitrogen-replaced 800 mL pressure-resistant glass container so that 67.5 g of 1,3-butadiene and 7.5 g of styrene are obtained. 0.6 mmol of ditetrahydrofurylpropane is added, and 0.8 mmol of n-butyllithium is added, followed by polymerization at 50 ° C. for 1.5 hours.
  • ⁇ Preparation of Modified Conjugated Diene-Based Polymer 2> Add a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene to 70.2 g of 1,3-butadiene and 39.5 g of styrene in an 800 mL pressure-resistant glass container which has been dried and replaced with nitrogen. 0.6 mmol of ditetrahydrofurylpropane was added, and 0.8 mmol of n-butyllithium was added, followed by polymerization at 50 ° C. for 1.5 hours.
  • the internal volume is 10 L
  • the ratio (L / D) of the internal height (L) to the diameter (D) is 4.0
  • the inlet is at the bottom
  • the outlet is at the top
  • the tank reactor with stirrer is A tank-type pressure vessel having a stirrer and a jacket for temperature control was used as a polymerization reactor. 17.2 g / min of 1,3-butadiene, 10.5 g / min of styrene, and 145.3 g / min of n-hexane were mixed under the condition of water previously removed.
  • the temperature was controlled so that the temperature of the polymerization solution at the top of the reactor was 75 ° C.
  • a small amount of the polymer solution before addition of the coupling agent is withdrawn from the top outlet of the reactor, and after adding the antioxidant (BHT) to 0.2 g per 100 g of the polymer, the solvent is added It removed and measured various molecular weights.
  • BHT antioxidant
  • 0.0302 mmol / min of tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine diluted to 2.74 mmol / L as a coupling agent was added to the polymer solution flowing out from the outlet of the reactor.
  • the polymer solution to which the coupling agent was added was continuously added by passing through a static mixer at a rate of n-hexane solution (water containing 5.2 ppm), and the coupling reaction was carried out. At this time, the time until the coupling agent is added to the polymerization solution flowing out from the outlet of the reactor is 4.8 minutes and the temperature is 68 ° C., and the temperature in the polymerization step and the addition of the coupling agent are The difference from the temperature was 7 ° C.
  • Antioxidant (BHT) is continuously added at 0.055 g / min (n-hexane solution) to a concentration of 0.2 g per 100 g of the polymer to the polymer solution subjected to the coupling reaction to complete the coupling reaction. did.
  • the styrene-butadiene copolymer (conjugated diene polymer) obtained from the polymer solution before addition of the coupling agent was analyzed and found to have a weight average molecular weight (Mw) of 85.2 ⁇ 10 4 g / mol, and the molecular weight It was found that the ratio of 200 ⁇ 10 4 or more and 500 ⁇ 10 4 or less was 4.6%.
  • the “degree of branching” corresponding to the number of branches assumed from the number of functional groups of the coupling agent and the addition amount is 8 (can also be confirmed from the value of shrinkage factor)
  • the “number of SiOR residues” corresponding to a value obtained by subtracting the number of SiORs reduced by the reaction from the total number of SiORs contained in one ring agent molecule is 4.
  • Amount of bound styrene 100 mg of a sample was measured to 100 mL with chloroform and dissolved to obtain a measurement sample.
  • the amount of bound styrene (% by mass) relative to 100% by mass of the sample was measured by the amount of absorption of the ultraviolet absorption wavelength (around 254 nm) by the phenyl group of styrene (Spectrophotometer "UV-2450" manufactured by Shimadzu Corporation) .
  • Glass transition temperature (Tg) According to ISO 22768: 2006, using a differential scanning calorimeter “DSC3200S” manufactured by Mac Science, under the flow of helium 50 mL / min, record the DSC curve while raising the temperature from ⁇ 100 ° C. to 20 ° C./min. The peak point (Inflection point) of the DSC differential curve was taken as the glass transition temperature.
  • the neutralization reaction was carried out while maintaining the Na 2 O concentration in the reaction solution in the range of 0.005 to 0.035 mol / liter. During the reaction, the reaction solution became cloudy, and the viscosity increased at 45 minutes to form a gel-like solution. Furthermore, the addition was continued and the reaction was stopped in 100 minutes. The concentration of silica in the resulting solution was 60 g / liter. Subsequently, the same sulfuric acid as above was added until the pH of the solution reached 3, to obtain a siliceous slurry. The obtained silica slurry was filtered by a filter press and washed with water to obtain a wet cake. The wet cake was then dried as a slurry using an emulsifying apparatus with a spray dryer to obtain silica 1. The BET specific surface area and the CTAB adsorption specific surface area of the obtained silica 1 were measured by the following method.
  • the OT (sodium di-2-ethylhexylsulfosuccinate) solution is standardized, and the adsorption cross section per molecule of CE-TRAB on the silica surface is 0.35 nm 2 and the adsorption amount of CE-TRAB is based on the specific surface area (m 2 / g ) Was calculated.
  • the CTAB adsorption specific surface area of silica 1 was 180 m 2 / g.
  • Green Strength A tensile test was conducted on the unvulcanized rubber composition in accordance with JIS K 6251: 2010. Specifically, a sheet of a rubber composition having a thickness of 4.00 ⁇ 0.40 mm is punched into a ring shape (JIS-5 type) to prepare a sample, and a speed of 100 ⁇ 5 mm / min at a temperature of 40 ° C. The tensile strength of the unvulcanized rubber composition was measured, and the stress was measured until the time of breakage. Assuming that the tensile strength of Comparative Example 1 is 100, the green strength is indicated as an index. The larger the index value, the better the processability.
  • Viscosity of Unvulcanized Rubber Composition Mooney viscosity was measured at 130 ° C. using an L-shaped rotor in accordance with JIS K 6300-1: 2001.
  • the viscosity of the unvulcanized rubber composition of Comparative Example 1 was indexed as 100. The larger the index value, the better the processability.
  • Storage elastic modulus (E ') and loss tangent (tan ⁇ ) of vulcanized rubber A vulcanized rubber obtained by vulcanizing the rubber composition at 145 ° C. for 33 minutes, using a spectrometer manufactured by Uejima Mfg. Co., Ltd., under conditions of initial strain 2%, dynamic strain 1%, frequency 52 Hz, The storage elastic modulus (E ′) at 30 ° C. and tan ⁇ (loss tangent) at 0 ° C., 30 ° C. and 50 ° C. were measured.
  • the rubber composition which can make the low loss property of a tire, abrasion resistance, and dry handling property be highly balanced can be provided. Further, according to the present invention, it is possible to provide a tire in which low loss property, wear resistance and dry handling property are highly balanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Provided is a rubber composition which enables a tire to achieve a good balance among low loss tangent, wear resistance and dry handling properties. This rubber composition is characterized by containing (A) a rubber component, (B) a styrene-alkylene block copolymer, (C) a silica, and (D) a silane coupling agent. This rubber composition is also characterized in that: the styrene-alkylene block copolymer (B) has a total content of styrene units of 30% by mass or more; and the silane coupling agent (D) has a mercapto group.

Description

ゴム組成物及びタイヤRubber composition and tire
 本発明は、ゴム組成物及びタイヤに関する。 The present invention relates to a rubber composition and a tire.
 近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。これに対して、従来、タイヤの転がり抵抗を低減させる手法として、損失正接(tanδ)が低い(以下、「低ロス性に優れる」という。)ゴム組成物をタイヤに適用することが、一般的に行われている。 In recent years, the demand for reducing fuel consumption of automobiles has been increasing in connection with the movement of global carbon dioxide emission regulation accompanying the growing interest in environmental issues. In order to meet such demands, reduction in rolling resistance is also required for tire performance. On the other hand, conventionally, as a method for reducing the rolling resistance of a tire, it is general to apply a rubber composition having a low loss tangent (tan δ) (hereinafter referred to as “excellent low loss property”) to a tire It has been done.
 また、車両の安全性を向上させる見地から、湿潤路面での制動性能(以下、「ウェット性能」という。)を確保することも重要であり、タイヤの燃費性能を向上させると共にウェット性能を向上させることも求められている。これに対して、従来、スチレン-ブタジエン共重合体ゴム(SBR)と、シリカとを配合したゴム組成物を使用することで、ウェット性能と低ロス性とを両立したタイヤが主流であったが、近年、ゴム成分として主として天然ゴム(NR)を使用し、熱可塑性樹脂や軟化剤を従来よりも多量に配合したゴム組成物をタイヤに使用することで、ウェット性能と低ロス性とを更に向上させたタイヤが提案されている(下記特許文献1及び2)。 From the standpoint of improving vehicle safety, it is also important to ensure braking performance on wet road surfaces (hereinafter referred to as "wet performance"), which improves tire fuel efficiency and wet performance. It is also required. On the other hand, conventionally, a tire having both wet performance and low loss characteristics has been mainstream by using a rubber composition containing styrene-butadiene copolymer rubber (SBR) and silica. In recent years, by using a rubber composition mainly composed of natural rubber (NR) as a rubber component and containing a thermoplastic resin and a softening agent in a larger amount than in the past, the tire has further improved wet performance and low loss property. Improved tires have been proposed (Patent Documents 1 and 2 below).
国際公開第2015/079703号International Publication No. 2015/079703 国際公開第2017/077712号International Publication No. 2017/077712
 しかしながら、本発明者が検討したところ、ゴム成分として主として天然ゴムを使用し、熱可塑性樹脂や軟化剤を従来よりも多量に配合したゴム組成物をタイヤのトレッドゴムに使用すると、トレッドゴムの弾性率が低下してしまい、タイヤの乾燥路面での操縦安定性(以下、「ドライハンドリング性」という。)に改善の余地があることが分かった。また、上記のゴム組成物は、耐摩耗性の更なる向上も求められていた。 However, according to the investigation by the present inventor, when a rubber composition mainly using natural rubber as a rubber component and containing a thermoplastic resin and a softening agent in a larger amount than conventional is used for tread rubber of a tire, the elasticity of tread rubber is obtained. The rate decreased, and it was found that there is room for improvement in the handling stability of the tire on a dry road surface (hereinafter referred to as "dry handling property"). In addition, the above rubber composition is also required to further improve the wear resistance.
 そこで、本発明は、上記従来技術の問題を解決し、タイヤの低ロス性と、耐摩耗性と、ドライハンドリング性とを高度にバランスさせることが可能なゴム組成物を提供することを課題とする。
 また、本発明は、低ロス性と、耐摩耗性と、ドライハンドリング性とが高度にバランスしたタイヤを提供することを更なる課題とする。
Therefore, it is an object of the present invention to provide a rubber composition capable of solving the above-mentioned problems of the prior art and achieving a high balance between the low loss property of a tire, the wear resistance and the dry handling property. Do.
Another object of the present invention is to provide a tire in which the low loss property, the wear resistance and the dry handling property are highly balanced.
 上記課題を解決する本発明の要旨構成は、以下の通りである。 The gist configuration of the present invention for solving the above problems is as follows.
 本発明のゴム組成物は、ゴム成分(A)と、スチレン・アルキレンブロック共重合体(B)と、シリカ(C)と、シランカップリング剤(D)とを含み、
 前記スチレン・アルキレンブロック共重合体(B)は、スチレン単位の総含有量が30質量%以上であり、
 前記シランカップリング剤(D)は、メルカプト基を有する、ことを特徴とする。
The rubber composition of the present invention comprises a rubber component (A), a styrene-alkylene block copolymer (B), silica (C) and a silane coupling agent (D),
The styrene / alkylene block copolymer (B) has a total content of styrene units of 30% by mass or more,
The silane coupling agent (D) is characterized by having a mercapto group.
 本発明のタイヤは、上記のゴム組成物をトレッドゴムに用いたことを特徴とする。 The tire according to the present invention is characterized in that the above rubber composition is used for tread rubber.
 本発明によれば、タイヤの低ロス性と、耐摩耗性と、ドライハンドリング性とを高度にバランスさせることが可能なゴム組成物を提供することができる。
 また、本発明によれば、低ロス性と、耐摩耗性と、ドライハンドリング性とが高度にバランスしたタイヤを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the rubber composition which can make the low loss property of a tire, abrasion resistance, and dry handling property be highly balanced can be provided.
Further, according to the present invention, it is possible to provide a tire in which low loss property, wear resistance and dry handling property are highly balanced.
 以下に、本発明のゴム組成物及びタイヤを、その実施形態に基づき、詳細に例示説明する。 Below, the rubber composition and tire of the present invention are illustrated in detail based on the embodiment.
<ゴム組成物>
 本発明のゴム組成物は、ゴム成分(A)と、スチレン・アルキレンブロック共重合体(B)と、シリカ(C)と、シランカップリング剤(D)とを含み、上記スチレン・アルキレンブロック共重合体(B)は、スチレン単位の総含有量が30質量%以上であり、上記シランカップリング剤(D)は、メルカプト基を有する、ことを特徴とする。また、本発明のゴム組成物は、必要に応じ、シリカ(C)以外の充填剤、樹脂(E)、その他の成分を含むことができる。
<Rubber composition>
The rubber composition of the present invention comprises a rubber component (A), a styrene-alkylene block copolymer (B), a silica (C) and a silane coupling agent (D), and the above-mentioned styrene-alkylene block co-polymer The polymer (B) has a total content of styrene units of 30% by mass or more, and the silane coupling agent (D) has a mercapto group. Further, the rubber composition of the present invention can optionally contain a filler other than silica (C), a resin (E) and other components.
 一般に、メルカプト基を有するシランカップリング剤は、活性が高い一方で、加工性を悪化させる傾向にある。しかしながら、本発明者らは、鋭意検討の結果、メルカプト基を有するシランカップリング剤(D)とともに、所定量以上のスチレン単位を含有するスチレン・アルキレンブロック共重合体(B)を併用することにより、上記悪化を抑制するとともに、タイヤの低ロス性、ドライハンドリング性及び耐摩耗性を高いレベルで並立させることができることを見出した。なお、該効果は、理論に拘束されることを望むものではないが、スチレン・アルキレンブロック共重合体(B)中のスチレンブロックがゴム組成物の加硫物において充填剤のような働きをする一方、ポリスチレンブロック間にアルキレンブロックが存在し、ポリスチレンブロック同士の擦れあいが低減されることが一因であるものと推測される。
 そのため、本発明のゴム組成物によれば、タイヤのトレッドゴムに適用することで、タイヤの低ロス性と、耐摩耗性と、ドライハンドリング性とを高度にバランスさせることができる。
In general, silane coupling agents having a mercapto group tend to deteriorate processability while having high activity. However, as a result of intensive investigations, the present inventors combined use of a styrene / alkylene block copolymer (B) containing a predetermined amount or more of styrene units with a silane coupling agent (D) having a mercapto group. It has been found that the above-mentioned deterioration can be suppressed and at the same time, low loss, dry handling and wear resistance of the tire can be made at a high level. Although the effect is not desired to be bound by theory, the styrene block in the styrene-alkylene block copolymer (B) acts like a filler in the vulcanized rubber composition. On the other hand, it is presumed that an alkylene block is present between the polystyrene blocks, and the friction between the polystyrene blocks is reduced.
Therefore, according to the rubber composition of the present invention, by applying to the tread rubber of a tire, it is possible to highly balance the low loss property of the tire, the wear resistance and the dry handling property.
(ゴム成分(A))
 上記ゴム成分(A)としては、特に限定されず、種々のゴムを用いることができる。該ゴム成分(A)としては、例えば、天然ゴム(NR)、スチレン-ブタジエン共重合体ゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、クロロプレンゴム(CR)、イソプレンゴム(IR)等のジエン系ゴムが挙げられる。該ゴム成分(A)は、未変性でも、変性されていてもよい。ゴム成分(A)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Rubber component (A))
The rubber component (A) is not particularly limited, and various rubbers can be used. Examples of the rubber component (A) include natural rubber (NR), styrene-butadiene copolymer rubber (SBR), butadiene rubber (BR), acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR) And diene rubbers such as isoprene rubber (IR). The rubber component (A) may be unmodified or modified. The rubber component (A) may be used alone or in combination of two or more.
 本発明のゴム組成物は、上記ゴム成分(A)として、天然ゴム(A1)を含むことが好ましい。ゴム組成物が天然ゴム(A1)を含むことにより、タイヤの低ロス性を更に向上させることができる。
 上記ゴム成分(A)中における天然ゴム(A1)の含有率は、20質量%以上が好ましく、30質量%以上がより好ましい。ゴム成分(A)中における天然ゴム(A1)の含有率が20質量%以上であれば、タイヤの低ロス性を更に向上させることができる。また、ゴム成分(A)中における天然ゴム(A1)の含有率は、60質量%以下が好ましく、50質量%以下がより好ましい。
The rubber composition of the present invention preferably contains a natural rubber (A1) as the rubber component (A). When the rubber composition contains a natural rubber (A1), the low loss property of the tire can be further improved.
20 mass% or more is preferable, and, as for the content rate of the natural rubber (A1) in the said rubber component (A), 30 mass% or more is more preferable. If the content of the natural rubber (A1) in the rubber component (A) is 20% by mass or more, the low loss property of the tire can be further improved. Moreover, 60 mass% or less is preferable, and, as for the content rate of the natural rubber (A1) in a rubber component (A), 50 mass% or less is more preferable.
 本発明のゴム組成物は、上記ゴム成分(A)として、ガラス転移温度(Tg)が-50℃を超えるゴム(以下、「高Tgゴム」と略記することがある。)を含むことが好ましい。なお、該高Tgゴムは、ガラス転移温度(Tg)が-45℃以上-15℃以下であることがより好ましい。高Tgゴムを含むことで、タイヤの低ロス性を更に向上させることができる。
 また、本願では、ガラス転移温度(Tg)が-50℃以下のゴムを「低Tgゴム」と略記することがある。該低Tgゴムは、ガラス転移温度(Tg)が-150℃以上-50℃以下であることが好ましい。また、低TgゴムがSBRである場合、そのガラス転移温度(Tg)は、-80℃以上-52℃以下であることがより好ましい。
 なお、本明細書において、ガラス転移温度は、ISO 22768:2006に準拠して、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)とする。
The rubber composition of the present invention preferably contains, as the rubber component (A), a rubber having a glass transition temperature (Tg) exceeding -50 ° C. (hereinafter, may be abbreviated as “high Tg rubber”). . The high Tg rubber more preferably has a glass transition temperature (Tg) of −45 ° C. or more and −15 ° C. or less. By including high Tg rubber, the low loss property of the tire can be further improved.
In the present application, a rubber having a glass transition temperature (Tg) of −50 ° C. or less may be abbreviated as “low Tg rubber”. The low Tg rubber preferably has a glass transition temperature (Tg) of -150 ° C. or more and -50 ° C. or less. When the low Tg rubber is SBR, its glass transition temperature (Tg) is more preferably -80 ° C or more and -52 ° C or less.
In the present specification, a glass transition temperature is recorded in accordance with ISO 22768: 2006, while a temperature is raised in a predetermined temperature range, and a DSC curve is recorded to be a peak top (Inflection point) of the DSC differential curve.
 上記ゴム成分(A)中の、上記高Tgゴムの含有率は、20~50質量%が好ましく、25~40質量%がより好ましい。ゴム成分(A)中の高Tgゴムの含有率が20質量%以上の場合、タイヤに適用した際に、タイヤのウェット性能を向上させることができる。また、ゴム成分(A)中の高Tgゴムの含有率が50質量%以下の場合、ゴム組成物の加工性が向上する。 The content of the high Tg rubber in the rubber component (A) is preferably 20 to 50% by mass, and more preferably 25 to 40% by mass. When the content of the high Tg rubber in the rubber component (A) is 20% by mass or more, the wet performance of the tire can be improved when it is applied to the tire. When the content of the high Tg rubber in the rubber component (A) is 50% by mass or less, the processability of the rubber composition is improved.
 上記高Tgゴムとしては、以下の変性共役ジエン系重合体(A2)が好ましい。
 この変性共役ジエン系重合体(A2)は、重量平均分子量が20×104以上300×104以下であって、該変性共役ジエン系重合体(A2)の総量に対して、分子量が200×104以上500×104以下である変性共役ジエン系重合体を、0.25質量%以上30質量%以下含み、収縮因子(g’)が0.64未満である。ゴム組成物が該変性共役ジエン系重合体(A2)を含むことにより、タイヤの低ロス性を更に向上させることができる。
As the high Tg rubber, the following modified conjugated diene-based polymer (A2) is preferable.
The modified conjugated diene polymer (A2) has a weight average molecular weight of 20 × 10 4 or more and 300 × 10 4 or less, and a molecular weight of 200 × with respect to the total amount of the modified conjugated diene polymer (A2). 10 4 or more 500 × 10 4 or less is modified conjugated diene polymer, comprising 0.25% by mass or more and 30% or less, shrinkage factor (g ') is less than 0.64. When the rubber composition contains the modified conjugated diene polymer (A2), the low loss property of the tire can be further improved.
 一般に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にあり、上記収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。即ち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとして用いる。変性共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)を算出し、絶対分子量が100×104~200×104のときの収縮因子(g’)の平均値を、その変性共役ジエン系重合体の収縮因子(g’)とする。ここで、「分岐」とは、1つの重合体に対して、他の重合体が直接的又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接的又は間接的に互いに結合している重合体の数である。例えば、後述するカップリング残基を介して間接的に、後述の5つの共役ジエン系重合体鎖が互いに結合している場合には、分岐度は5である。なお、カップリング残基とは、共役ジエン系重合体鎖に結合される、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、カップリング剤由来の構造単位である。また、共役ジエン系重合体鎖は、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
 上記収縮因子(g’)は、0.64未満であり、好ましくは0.63以下であり、より好ましくは0.60以下であり、更に好ましくは0.59以下であり、より一層好ましくは0.57以下である。また、収縮因子(g’)の下限は特に限定されず、検出限界値以下であってもよいが、好ましくは0.30以上であり、より好ましくは0.33以上であり、更に好ましくは0.35以上であり、より一層好ましくは0.45以上である。収縮因子(g’)がこの範囲である変性共役ジエン系重合体(A2)を使用することで、ゴム組成物の加工性が向上する。
 なお、収縮因子(g’)は、分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。具体的には、分岐度が6である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.59以上0.63以下となる傾向にあり、分岐度が8である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.45以上0.59以下となる傾向にある。
In general, branched polymers tend to be smaller in molecular size when compared to linear polymers having the same absolute molecular weight, and the shrinkage factors (g ′) are assumed to be identical. It is a measure of the ratio of the size occupied by the molecule to the linear polymer, which is an absolute molecular weight of That is, the shrinkage factor (g ') tends to decrease as the degree of branching of the polymer increases. In the present embodiment, the intrinsic viscosity is used as an index of the molecular size, and the linear polymer is used according to the relational expression of intrinsic viscosity []] = − 3.883 M 0.771 . The shrinkage factor (g ') at each absolute molecular weight of the modified conjugated diene polymer is calculated, and the average value of the shrinkage factor (g') at an absolute molecular weight of 100 × 10 4 to 200 × 10 4 is calculated Let it be a contraction factor (g ') of the modified conjugated diene polymer. Here, “branched” is formed by direct or indirect bonding of another polymer to one polymer. Also, the “degree of branching” is the number of polymers directly or indirectly bonded to each other for one branch. For example, the degree of branching is 5 when five conjugated diene polymer chains described later are linked to each other indirectly via a coupling residue described later. The coupling residue is a constituent unit of a modified conjugated diene polymer which is bonded to a conjugated diene polymer chain, and for example, a conjugated diene polymer to be described later is reacted with a coupling agent. Is a structural unit derived from a coupling agent. The conjugated diene polymer chain is a constituent unit of a modified conjugated diene polymer, and is derived from, for example, a conjugated diene polymer which is produced by reacting a conjugated diene polymer described later with a coupling agent. It is a structural unit.
The contraction factor (g ′) is less than 0.64, preferably 0.63 or less, more preferably 0.60 or less, still more preferably 0.59 or less, still more preferably 0. It is less than .57. The lower limit of the contraction factor (g ′) is not particularly limited, and may be below the detection limit, but is preferably 0.30 or more, more preferably 0.33 or more, and still more preferably 0. It is not less than .35 and more preferably not less than 0.45. The processability of the rubber composition is improved by using the modified conjugated diene-based polymer (A2) in which the shrinkage factor (g ′) is in this range.
Since the contraction factor (g ′) tends to depend on the degree of branching, for example, the contraction factor (g ′) can be controlled using the degree of branching as an index. Specifically, when a modified conjugated diene polymer having a branching degree of 6 is used, the shrinkage factor (g ′) tends to be 0.59 or more and 0.63 or less, and the branching degree is 8 When a certain modified conjugated diene polymer is used, the shrinkage factor (g ′) tends to be 0.45 or more and 0.59 or less.
 上記変性共役ジエン系重合体(A2)は、分岐を有し、分岐度が5以上であることが好ましい。また、変性共役ジエン系重合体(A2)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、更に、上記分岐が、1の当該カップリング残基に対して5以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがより好ましい。分岐度が5以上であること、及び、分岐が、1のカップリング残基に対して5以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、より確実に収縮因子(g’)を0.64未満にすることができる。なお、1のカップリング残基に対して結合している共役ジエン系重合体鎖の数は、収縮因子(g’)の値から確認することができる。 The modified conjugated diene-based polymer (A2) preferably has a branch and a degree of branching of 5 or more. Further, the modified conjugated diene polymer (A2) has one or more coupling residues and a conjugated diene polymer chain bonded to the coupling residues, and the above-mentioned branching is 1 It is more preferable to include a branch in which five or more of the conjugated diene-based polymer chains are connected to the coupling residue of Structure of a modified conjugated diene-based polymer such that the degree of branching is 5 or more, and the branch includes a branch in which 5 or more conjugated diene-based polymer chains are bonded to one coupling residue The contraction factor (g ′) can be more reliably made less than 0.64 by specifying The number of conjugated diene-based polymer chains bound to one coupling residue can be confirmed from the value of shrinkage factor (g ').
 上記変性共役ジエン系重合体(A2)の重量平均分子量(Mw)は、20×104以上300×104以下であり、好ましくは50×104以上であり、より好ましくは64×104以上であり、更に好ましくは80×104以上である。また、上記重量平均分子量は、好ましくは250×104以下であり、より好ましくは180×104以下であり、更に好ましくは150×104以下である。重量平均分子量が20×104以上であれば、タイヤの低ロス性とウェット性能とをより高度に両立することができる。また、重量平均分子量が300×104以下であれば、ゴム組成物の加工性が向上する。 The weight average molecular weight (Mw) of the modified conjugated diene polymer (A2) is 20 × 10 4 or more and 300 × 10 4 or less, preferably 50 × 10 4 or more, and more preferably 64 × 10 4 or more. More preferably, it is 80 × 10 4 or more. The weight average molecular weight is preferably 250 × 10 4 or less, more preferably 180 × 10 4 or less, and still more preferably 150 × 10 4 or less. If the weight average molecular weight is 20 × 10 4 or more, the low loss property and the wet performance of the tire can be more compatible. When the weight average molecular weight is 300 × 10 4 or less, the processability of the rubber composition is improved.
 上記変性共役ジエン系重合体(A2)は、該変性共役ジエン系重合体の総量(100質量%)に対して、分子量が200×104以上500×104以下である変性共役ジエン系重合体(以下、「特定の高分子量成分」ともいう。)を、0.25質量%以上30質量%以下含む。該特定の高分子量成分の含有量が0.25質量%以上30質量%以下であれば、タイヤの低ロス性とウェット性能とをより高度に両立することができる。
 上記変性共役ジエン系重合体(A2)は、特定の高分子量成分を、好ましくは1.0質量%以上含み、より好ましくは1.4質量%以上含み、更に好ましくは1.75質量%以上含み、より一層好ましくは2.0質量%以上含み、特に好ましくは2.15質量%以上含み、最も好ましくは2.5質量%以上含む。また、変性共役ジエン系重合体(A2)は、特定の高分子量成分を、好ましくは28質量%以下含み、より好ましくは25質量%以下含み、更に好ましくは20質量%以下含み、より一層好ましくは18質量%以下含む。
 なお、本明細書において「分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって得られる、標準ポリスチレン換算分子量である。特定の高分子量成分の含有量がこのような範囲にある変性共役ジエン系重合体(A2)を得るためには、重合工程と反応工程とにおける反応条件を制御することが好ましい。例えば、重合工程においては、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよい。また、重合工程において、連続式、及び回分式のいずれの重合様式においても、滞留時間分布を有する方法を用いる、すなわち、成長反応の時間分布を広げるとよい。
The modified conjugated diene polymer (A2) is a modified conjugated diene polymer having a molecular weight of 200 × 10 4 or more and 500 × 10 4 or less based on the total amount (100% by mass) of the modified conjugated diene polymer (Hereinafter, it is also called "a specific high molecular weight component.") 0.25 mass% or more and 30 mass% or less. If the content of the specific high molecular weight component is 0.25% by mass or more and 30% by mass or less, the low loss property and the wet performance of the tire can be more compatible.
The modified conjugated diene polymer (A2) preferably contains 1.0% by mass or more, more preferably 1.4% by mass or more, and still more preferably 1.75% by mass or more of a specific high molecular weight component. Even more preferably, it contains 2.0% by mass or more, particularly preferably 2.15% by mass or more, and most preferably 2.5% by mass or more. In addition, the modified conjugated diene polymer (A2) preferably contains 28% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less of the specific high molecular weight component, and still more preferably 18 mass% or less is included.
In addition, in this specification, "molecular weight" is standard polystyrene conversion molecular weight obtained by GPC (gel permeation chromatography). In order to obtain the modified conjugated diene-based polymer (A2) in which the content of the specific high molecular weight component is in such a range, it is preferable to control the reaction conditions in the polymerization step and the reaction step. For example, in the polymerization step, the use amount of the organic monolithium compound described later as a polymerization initiator may be adjusted. In addition, in the polymerization step, in any of the continuous and batch polymerization methods, it is preferable to use a method having a residence time distribution, that is, to extend the time distribution of the growth reaction.
 上記変性共役ジエン系重合体(A2)においては、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布(Mw/Mn)が、1.6以上3.0以下が好ましい。変性共役ジエン系重合体(A2)の分子量分布がこの範囲であれば、ゴム組成物の加工性が良好となる。 In the modified conjugated diene polymer (A2), the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.6 or more and 3.0 or less. preferable. If the molecular weight distribution of the modified conjugated diene-based polymer (A2) is in this range, the processability of the rubber composition will be good.
 上記変性共役ジエン系重合体(A2)は、下記一般式(I):
Figure JPOXMLDOC01-appb-C000001
[上記一般式(I)中、Dは、共役ジエン系重合体鎖を示し、R1、R2及びR3は、それぞれ独立して単結合又は炭素数1~20のアルキレン基を示し、R4及びR7は、それぞれ独立して炭素数1~20のアルキル基を示し、R5、R8、及びR9は、それぞれ独立して水素原子又は炭素数1~20のアルキル基を示し、R6及びR10は、それぞれ独立して炭素数1~20のアルキレン基を示し、R11は、水素原子又は炭素数1~20のアルキル基を示し、m及びxは、それぞれ独立して1~3の整数を示し、x≦mであり、pは、1又は2を示し、yは、1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示し、それぞれ複数存在する場合のD、R1~R11、m、p、x、y、及びzは、それぞれ独立しており、同じであっても異なっていてもよく、iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、3~10の整数であり、((x×i)+(y×j)+(z×k))は、5~30の整数であり、Aは、炭素数1~20の、炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されるものであることが好ましい。この場合、タイヤに適用することで、タイヤのドライハンドリング性をより向上させることができる。
 なお、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。上記活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
The modified conjugated diene polymer (A2) has the following general formula (I):
Figure JPOXMLDOC01-appb-C000001
[In the general formula (I), D represents a conjugated diene-based polymer chain, R 1 , R 2 and R 3 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms, R 4 and R 7 each independently represent an alkyl group having 1 to 20 carbon atoms, R 5 , R 8 , and R 9 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R 6 and R 10 each independently represent an alkylene group having 1 to 20 carbon atoms, R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and m and x each independently represent 1 Represents an integer of to 3, x ≦ m, p represents 1 or 2, y represents an integer of 1 to 3, y ≦ (p + 1), z represents an integer of 1 or 2; And each of a plurality of D, R 1 to R 11 , m, p, x, y and z are independent of each other, and the same I may represent an integer of 0 to 6, j represents an integer of 0 to 6, k represents an integer of 0 to 6, and (i + j + k) represents 3 to 10). ((X × i) + (y × j) + (z × k)) is an integer of 5 to 30, and A is a hydrocarbon group having 1 to 20 carbon atoms, or Represents an organic group having at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and having no active hydrogen preferable. In this case, the dry handling property of the tire can be further improved by applying the tire to the tire.
The hydrocarbon group represented by A includes saturated, unsaturated, aliphatic and aromatic hydrocarbon groups. Examples of the organic group having no active hydrogen include active hydrogens such as hydroxyl group (-OH), secondary amino group (> NH), primary amino group (-NH 2 ) and sulfhydryl group (-SH). And an organic group having no functional group.
 ここで、上記一般式(I)において、Aは、下記一般式(II)~(V)のいずれかで表されるものであることが好ましい。この場合、タイヤに適用することで、タイヤの低ロス性と、耐摩耗性と、ドライハンドリング性とをより高度にバランスさせることができる。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(II)中、B1は、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示し、複数存在する場合のB1は、各々独立している。
 上記一般式(III)中、B2は、単結合又は炭素数1~20の炭化水素基を示し、B3は、炭素数1~20のアルキル基を示し、aは、1~10の整数を示し、それぞれ複数存在する場合のB2及びB3は、各々独立している。
 上記一般式(IV)中、B4は、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示し、複数存在する場合のB4は、各々独立している。
 上記一般式(V)中、B5は、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示し、複数存在する場合のB5は、各々独立している。
 なお、上記一般式(II)~(V)中のB1、B2、B4、B5に関して、炭素数1~20の炭化水素基としては、炭素数1~20のアルキレン基等が挙げられる。
Here, in the general formula (I), A is preferably one represented by any one of the following general formulas (II) to (V). In this case, by applying to a tire, it is possible to balance the low loss property of the tire, the wear resistance, and the dry handling property to a higher degree.
Figure JPOXMLDOC01-appb-C000002
In the above general formula (II), B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 1 to 10, and when there exist a plurality of B 1 s are each independently ing.
In the general formula (III), B 2 represents a single bond or a hydrocarbon group having a carbon number of 1 to 20, B 3 represents an alkyl group having 1 to 20 carbon atoms, a is an integer of 1 to 10 And B 2 and B 3 when there are a plurality of B 2 and B 3 are each independent.
In the above general formula (IV), B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 1 to 10, and when there are a plurality of B 4 s , each is independently ing.
In the general formula (V), B 5 represents a single bond or a hydrocarbon group having a carbon number of 1 ~ 20, a is an integer of 1 to 10, B 5 when there are a plurality, each independently ing.
As for B 1 , B 2 , B 4 and B 5 in the above general formulas (II) to (V), examples of the hydrocarbon group having 1 to 20 carbon atoms include an alkylene group having 1 to 20 carbon atoms and the like. Be
 また、好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示す。
 より好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示し、前記一般式(II)又は(III)において、aは、2~10の整数を示す。
 より一層好ましくは、前記一般式(I)において、Aは、前記一般式(II)で表され、kは、0を示し、前記一般式(II)において、aは、2~10の整数を示す。
In addition, preferably, in the general formula (I), A is represented by the general formula (II) or (III), and k represents 0.
More preferably, in the general formula (I), A is represented by the general formula (II) or (III), k is 0, and in the general formula (II) or (III), a is , Represents an integer of 2 to 10.
Even more preferably, in the general formula (I), A is represented by the general formula (II), k is 0, and in the general formula (II), a is an integer of 2 to 10 Show.
 上記変性共役ジエン系重合体(A2)の製造方法は、特に限定されるものではないが、有機モノリチウム化合物を重合開始剤として用い、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る重合工程と、該共役ジエン系重合体の活性末端に対して、5官能以上の反応性化合物(以下、「カップリング剤」ともいう。)を反応させる反応工程と、を有することが好ましい。カップリング剤としては、窒素原子とケイ素原子とを有する5官能以上の反応性化合物を反応させるのが好ましい。 The method for producing the modified conjugated diene polymer (A2) is not particularly limited, but at least a conjugated diene compound is polymerized using an organic monolithium compound as a polymerization initiator to obtain a conjugated diene polymer. It is preferable to have a polymerization step and a reaction step of reacting a penta- or higher functional reactive compound (hereinafter, also referred to as “coupling agent”) with respect to the active terminal of the conjugated diene polymer. As the coupling agent, it is preferable to react a pentafunctional or higher reactive compound having a nitrogen atom and a silicon atom.
 上記変性共役ジエン系重合体(A2)は、共役ジエン系重合体を、下記一般式(VI):
Figure JPOXMLDOC01-appb-C000003
[上記一般式(VI)中、R12、R13及びR14は、それぞれ独立して単結合又は炭素数1~20のアルキレン基を示し、R15、R16、R17、R18及びR20は、それぞれ独立して炭素数1~20のアルキル基を示し、R19及びR22は、それぞれ独立して炭素数1~20のアルキレン基を示し、R21は、炭素数1~20の、アルキル基又はトリアルキルシリル基を示し、mは、1~3の整数を示し、pは、1又は2を示し、R12~R22、m及びpは、複数存在する場合、それぞれ独立しており、i、j及びkは、それぞれ独立して0~6の整数を示し、但し、(i+j+k)は、3~10の整数であり、Aは、炭素数1~20の、炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、活性水素を有しない有機基を示す]で表されるカップリング剤と反応させてなることが好ましい。この場合、タイヤに適用することで、タイヤのドライハンドリング性を更に向上させることができる。
 なお、上記一般式(VI)で表されるカップリング剤と、共役ジエン系重合体とを反応させてなる変性共役ジエン系重合体は、例えば、上記一般式(I)で表される。
The modified conjugated diene polymer (A2) is a conjugated diene polymer represented by the following general formula (VI):
Figure JPOXMLDOC01-appb-C000003
[In the above general formula (VI), R 12 , R 13 and R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms, and R 15 , R 16 , R 17 , R 18 and R 20 each independently represents an alkyl group having 1 to 20 carbon atoms, R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms, and R 21 has 1 to 20 carbon atoms , An alkyl group or a trialkylsilyl group, m is an integer of 1 to 3, p is 1 or 2, and R 12 to R 22 , m and p are each independently independent of each other, And i, j and k each independently represent an integer of 0 to 6, provided that (i + j + k) is an integer of 3 to 10, and A is a hydrocarbon group having 1 to 20 carbon atoms Or at least one selected from the group consisting of oxygen atom, nitrogen atom, silicon atom, sulfur atom and phosphorus atom Also has a kind of atoms, it is preferably formed by reacting a coupling agent represented by an organic group having no active hydrogen. In this case, the dry handling property of the tire can be further improved by applying to a tire.
The modified conjugated diene-based polymer obtained by reacting the coupling agent represented by the general formula (VI) with the conjugated diene-based polymer is represented by, for example, the general formula (I).
 上記一般式(VI)において、Aは、好ましくは上記一般式(II)~(V)のいずれかで表される。Aが一般式(II)~(V)のいずれかで表されるものであることにより、より優れた性能を有する変性共役ジエン系重合体(A2)を得ることができる。 In the above general formula (VI), A is preferably represented by any of the above general formulas (II) to (V). When A is one represented by any of the general formulas (II) to (V), a modified conjugated diene polymer (A2) having more excellent performance can be obtained.
 上記一般式(VI)で表されるカップリング剤としては、例えば、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリスメトキシシリルプロピル)-メチル-1,3-プロパンジアミン等が挙げられ、これらの中でも、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサンが特に好ましい。 As the coupling agent represented by the above general formula (VI), for example, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] Amine, tris (3-trimethoxysilylpropyl) amine, tris (3-triethoxysilylpropyl) amine, tris (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-) Silacyclopentane) propyl] -1,3-propanediamine, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis (3-triamine) Methoxysilylpropyl) -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-bisamino Ethylcyclohexane, Tris (3-trimethoxysilylpropyl) -methyl-1,3-propanediamine, bis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-tris Methoxysilylpropyl) -methyl-1,3-propanediamine and the like can be mentioned, and among these tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3- Propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane are particularly preferred.
 上記カップリング剤としての一般式(VI)で表される化合物の添加量は、共役ジエン系重合体のモル数対カップリング剤のモル数が、所望の化学量論的比率で反応させるよう調整することができ、そのことにより所望の分岐度が達成される傾向にある。具体的な重合開始剤のモル数は、カップリング剤のモル数に対して、好ましくは5.0倍モル以上、より好ましくは6.0倍モル以上であることが好ましい。この場合、一般式(VI)において、カップリング剤の官能基数((m-1)×i+p×j+k)は、5~10の整数であることが好ましく、6~10の整数であることがより好ましい。 The addition amount of the compound represented by the general formula (VI) as the coupling agent is adjusted so that the number of moles of the conjugated diene polymer to the number of moles of the coupling agent can be reacted at a desired stoichiometric ratio. Can tend to achieve the desired degree of branching. The specific number of moles of the polymerization initiator is preferably 5.0 or more moles, more preferably 6.0 or more moles, with respect to the number of moles of the coupling agent. In this case, in the general formula (VI), the number of functional groups of the coupling agent ((m-1) × i + p × j + k) is preferably an integer of 5 to 10, more preferably 6 to 10 preferable.
 上記共役ジエン系重合体は、少なくとも共役ジエン化合物を重合して得られ、必要に応じて共役ジエン化合物とビニル置換芳香族化合物との両方を共重合して得られる。
 上記共役ジエン化合物としては、炭素数4~12の共役ジエン化合物が好ましく、より好ましくは炭素数4~8の共役ジエン化合物である。このような共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましい。これら共役ジエン化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 また、上記ビニル置換芳香族化合物としては、モノビニル芳香族化合物が好ましい。該モノビニル芳香族化合物としては、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、及びジフェニルエチレンが挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。これらビニル置換芳香族化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
The conjugated diene polymer is obtained by polymerizing at least a conjugated diene compound, and is obtained by copolymerizing both a conjugated diene compound and a vinyl-substituted aromatic compound, if necessary.
The conjugated diene compound is preferably a conjugated diene compound having 4 to 12 carbon atoms, and more preferably a conjugated diene compound having 4 to 8 carbon atoms. As such conjugated diene compounds, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3 Hexadiene and 1,3-heptadiene. Among these, 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These conjugated diene compounds may be used alone or in combination of two or more.
Moreover, as said vinyl substituted aromatic compound, a monovinyl aromatic compound is preferable. Examples of the monovinyl aromatic compound include styrene, p-methylstyrene, α-methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene and diphenylethylene. Among these, styrene is preferable from the viewpoint of industrial availability. These vinyl-substituted aromatic compounds may be used alone or in combination of two or more.
 上記有機モノリチウム化合物は、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、共役ジエン系重合体が得られる。アルキルリチウム化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウムが挙げられる。また、アルキルリチウム化合物以外の有機モノリチウム化合物としては、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。なお、アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、及びsec-ブチルリチウムが好ましい。これらの有機モノリチウム化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。 The organic monolithium compound is preferably an alkyllithium compound from the viewpoint of industrial availability and easiness of control of polymerization reaction. In this case, a conjugated diene polymer having an alkyl group at the polymerization initiation end is obtained. Examples of the alkyllithium compound include n-butyllithium, sec-butyllithium, tert-butyllithium and n-hexyllithium. In addition, as an organic monolithium compound other than the alkyllithium compound, benzyllithium, phenyllithium, and stilbene lithium can be mentioned. As the alkyllithium compound, n-butyllithium and sec-butyllithium are preferable from the viewpoint of industrial availability and easiness of control of the polymerization reaction. These organic monolithium compounds may be used alone or in combination of two or more.
 上記共役ジエン系重合体又は変性共役ジエン系重合体(A2)中の結合共役ジエン量は、特に限定されないが、40質量%以上100質量%以下であることが好ましく、55質量%以上80質量%以下であることがより好ましい。
 また、上記共役ジエン系重合体又は変性共役ジエン系重合体(A2)中の結合芳香族ビニル量は、特に限定されないが、0質量%以上60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
 上記結合共役ジエン量及び結合芳香族ビニル量が上記範囲であると、ゴム組成物をタイヤに適用した際に、低ロス性と、耐摩耗性と、ドライハンドリング性とを、更に高度にバランスすることが可能となる。
 なお、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。
The amount of conjugated conjugated diene in the conjugated diene polymer or the modified conjugated diene polymer (A2) is not particularly limited, but is preferably 40% by mass to 100% by mass, and is 55% by mass to 80% by mass. It is more preferable that
The amount of bound aromatic vinyl in the conjugated diene polymer or the modified conjugated diene polymer (A2) is not particularly limited, but is preferably 0% by mass or more and 60% by mass or less, and is 20% by mass or more It is more preferable that it is 45 mass% or less.
When the rubber composition is applied to a tire, when the amount of conjugated conjugated diene and the amount of conjugated aromatic vinyl is in the above range, the low loss property, the abrasion resistance, and the dry handling property are further highly balanced. It becomes possible.
The amount of bound aromatic vinyl can be measured by the ultraviolet absorption of a phenyl group, and the amount of bound conjugated diene can also be determined from this.
 上記共役ジエン系重合体又は変性共役ジエン系重合体(A2)において、共役ジエン結合単位中のビニル結合量は、特に限定されないが、10モル%以上75モル%以下であることが好ましく、20モル%以上65モル%以下であることがより好ましい。ビニル結合量が上記範囲であると、ゴム組成物をタイヤに適用した際に、低ロス性と、耐摩耗性と、ドライハンドリング性とを、更に高度にバランスすることが可能となる。
 なお、変性共役ジエン系重合体(A2)がブタジエンとスチレンとの共重合体である場合には、ハンプトンの方法[R.R.Hampton,Analytical Chemistry,21,923(1949)]により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。
In the above conjugated diene polymer or modified conjugated diene polymer (A2), the amount of vinyl bond in the conjugated diene bond unit is not particularly limited, but it is preferably 10 mol% or more and 75 mol% or less, and 20 mol % Or more and 65 mol% or less is more preferable. When the rubber composition is applied to the tire as the amount of vinyl bond is in the above range, it is possible to further balance low loss, wear resistance, and dry handling with a high degree.
When the modified conjugated diene polymer (A2) is a copolymer of butadiene and styrene, the method of Hampton [R. R. Hampton, Analytical Chemistry, 21, 923 (1949)] can be used to determine the amount of vinyl bonds (1, 2-bonds) in butadiene bonding units.
 上記特定の高分子成分を有する変性共役ジエン系重合体(A2)を得るためには、共役ジエン系重合体の分子量分布(Mw/Mn)を、好ましくは1.5以上2.5以下、より好ましくは1.8以上2.2以下とするとよい。また、得られる変性共役ジエン系重合体(A2)は、GPCによる分子量曲線が一山のピークが検出されるものであることが好ましい。また、変性共役ジエン系重合体(A2)のGPCによるピーク分子量(Mp1)は、30×104以上150×104以下が好ましく、共役ジエン系重合体のピーク分子量(Mp2)は、20×104以上80×104以下が好ましい。また、以下の式が成り立つことが好ましい。
 (Mp1/Mp2)<1.8×10-12×(Mp2-120×1042+2
 Mp2は、20×104以上80×104以下、Mp1は30×104以上150×104以下がより好ましい。
In order to obtain the modified conjugated diene polymer (A2) having the specific polymer component, the molecular weight distribution (Mw / Mn) of the conjugated diene polymer is preferably 1.5 or more and 2.5 or less, or more. Preferably, it is set to 1.8 or more and 2.2 or less. Moreover, it is preferable that the modified conjugated diene polymer (A2) to be obtained is a polymer whose molecular weight curve by GPC has a peak detected. The peak molecular weight (Mp 1 ) of the modified conjugated diene polymer (A2) by GPC is preferably 30 × 10 4 or more and 150 × 10 4 or less, and the peak molecular weight (Mp 2 ) of the conjugated diene polymer is 20 × 10 4 or more and 80 × 10 4 or less is preferable. Moreover, it is preferable that the following formula is established.
(Mp 1 / Mp 2) < 1.8 × 10-12 × (Mp 2 -120 × 10 4) 2 +2
Mp 2 is more preferably 20 × 10 4 or more and 80 × 10 4 or less, and Mp 1 is more preferably 30 × 10 4 or more and 150 × 10 4 or less.
 変性共役ジエン系重合体(A2)の変性率は、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上である。変性率が30質量%以上であることで、ゴム組成物をタイヤに適用した際に、タイヤの耐摩耗性を向上させつつ、転がり抵抗を更に低減することができる。なお、変性率は、変性共役ジエン系重合体を試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、測定することができる。具体的には、試料及び低分子量内部標準ポリスチレンを含む試料溶液をポリスチレン系カラムで測定したクロマトグラムと、上記試料溶液をシリカ系カラムで測定したクロマトグラムとの差分から、シリカ系カラムへの吸着量を測定し、変性率を求めることができる。 The modification ratio of the modified conjugated diene polymer (A2) is preferably 30% by mass or more, more preferably 50% by mass or more, and still more preferably 70% by mass or more. When a modification rate is 30 mass% or more, when a rubber composition is applied to a tire, rolling resistance can be further reduced, improving the abrasion resistance of a tire. The modification ratio can be measured by applying the characteristic that the modified basic polymer component is adsorbed to a GPC column using a modified conjugated diene polymer as a sample and a silica gel as a filler. . Specifically, adsorption to a silica-based column from the difference between a chromatogram obtained by measuring a sample solution containing a sample and a low molecular weight internal standard polystyrene with a polystyrene-based column and a chromatogram obtained by measuring the sample solution with a silica-based column The amount can be measured to determine the rate of denaturation.
(スチレン・アルキレンブロック共重合体(B))
 本発明のゴム組成物は、スチレン単位の総含有量が30質量%以上であるスチレン・アルキレンブロック共重合体(B)を含む。該スチレン・アルキレンブロック共重合体(B)は、スチレン系モノマー由来のブロックと、アルキレンブロックとを有する共重合体であり、本発明においては、上述のゴム成分(A)と区別する。ここで、スチレン・アルキレンブロック共重合体(B)のスチレン単位の総含有量とは、当該スチレン・アルキレンブロック共重合体(B)の総質量に対する、スチレン系モノマー由来のブロックの合計含有量である。スチレン・アルキレンブロック共重合体(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 なお、スチレン・アルキレンブロック共重合体(B)における、スチレン単位の総含有量が30質量%未満では、ゴム組成物をタイヤに適用した際に、タイヤの弾性率が十分に向上せず、少なくともタイヤのドライハンドリング性を十分に向上させることができない。
(Styrene · Alkylene Block Copolymer (B))
The rubber composition of the present invention comprises a styrene-alkylene block copolymer (B) having a total content of styrene units of 30% by mass or more. The styrene-alkylene block copolymer (B) is a copolymer having a block derived from a styrenic monomer and an alkylene block, and in the present invention, it is distinguished from the rubber component (A) described above. Here, the total content of styrene units in the styrene-alkylene block copolymer (B) is the total content of blocks derived from styrenic monomers relative to the total mass of the styrene-alkylene block copolymer (B). is there. A styrene alkylene block copolymer (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
When the total content of styrene units in the styrene-alkylene block copolymer (B) is less than 30% by mass, the modulus of elasticity of the tire does not sufficiently improve when the rubber composition is applied to the tire, and at least The dry handling properties of the tire can not be sufficiently improved.
 本発明のゴム組成物において、上記スチレン・アルキレンブロック共重合体(B)は、スチレン単位の総含有量が50質量%以上であることが好ましい。スチレン・アルキレンブロック共重合体(B)における、スチレン単位の総含有量が50質量%以上の場合、タイヤのドライハンドリング性を更に向上させることができる。
 また、上記スチレン・アルキレンブロック共重合体(B)は、特に限定されるものではないが、スチレン単位の総含有量が60質量%以下であることが好ましい。
 なお、本発明において、スチレン・アルキレンブロック共重合体(B)のスチレン単位の(総)含有量と、後述するアルキレン単位の(総)含有量は、1H-NMRの積分比により求める。
In the rubber composition of the present invention, the styrene / alkylene block copolymer (B) preferably has a total content of styrene units of 50% by mass or more. When the total content of styrene units in the styrene-alkylene block copolymer (B) is 50% by mass or more, the dry handling properties of the tire can be further improved.
The styrene-alkylene block copolymer (B) is not particularly limited, but the total content of styrene units is preferably 60% by mass or less.
In the present invention, the (total) content of the styrene unit of the styrene-alkylene block copolymer (B) and the (total) content of the alkylene unit described later are determined by an integral ratio of 1 H-NMR.
 本発明のゴム組成物において、上記スチレン・アルキレンブロック共重合体(B)は、ガラス転移温度(Tg)が-30℃以下であることが好ましい。スチレン・アルキレンブロック共重合体(B)のガラス転移温度(Tg)が-30℃以下の場合、タイヤの低ロス性を更に向上させることができる。 In the rubber composition of the present invention, the styrene / alkylene block copolymer (B) preferably has a glass transition temperature (Tg) of −30 ° C. or less. When the glass transition temperature (Tg) of the styrene / alkylene block copolymer (B) is −30 ° C. or less, the low loss property of the tire can be further improved.
 上記スチレン・アルキレンブロック共重合体(B)のスチレンブロックは、スチレン系モノマーに由来する(スチレン系モノマーを重合した)単位を有する。このようなスチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン等が挙げられる。これらの中でも、スチレン系モノマーとしては、スチレンが好ましい。 The styrene block of the styrene-alkylene block copolymer (B) has a unit derived from a styrenic monomer (polymerized styrenic monomer). Examples of such styrenic monomers include styrene, α-methylstyrene, p-methylstyrene, vinyl toluene and the like. Among these, styrene is preferable as the styrene-based monomer.
 上記スチレン・アルキレンブロック共重合体(B)のアルキレンブロックは、アルキレン(二価の飽和炭化水素基)単位を有する。このようなアルキレン単位としては、例えば、炭素数1~20のアルキレン基が挙げられる。アルキレン単位は、直鎖構造でもよいし、分岐構造でもよいし、これらの組み合わせでもよい。直鎖構造のアルキレン単位としては、例えば、-(CH2-CH2)-単位(エチレン単位)、-(CH2-CH2-CH2-CH2)-単位(直鎖ブチレン単位)などが挙げられる。分岐構造のアルキレン単位としては、例えば、-[CH2-CH(C25)]-単位(ブチレン単位)、-[CH2-CH(CH3)]-単位(プロピレン単位)などが挙げられる。これらのうち、アルキレン単位としては、-[CH2-CH(C25)]-単位を有することが好ましい。 The alkylene block of the said styrene-alkylene block copolymer (B) has an alkylene (divalent saturated hydrocarbon group) unit. As such an alkylene unit, for example, an alkylene group having 1 to 20 carbon atoms can be mentioned. The alkylene unit may be a linear structure, a branched structure, or a combination thereof. As the alkylene unit having a linear structure, for example,-(CH 2 -CH 2 ) -unit (ethylene unit),-(CH 2 -CH 2 -CH 2 -CH 2 ) -unit (linear butylene unit), etc. It can be mentioned. Examples of the alkylene unit having a branched structure include, for example,-[CH 2 -CH (C 2 H 5 )]-unit (butylene unit),-[CH 2 -CH (CH 3 )]-unit (propylene unit), etc. Be Among these, it is preferable to have an — [CH 2 —CH (C 2 H 5 )] — unit as the alkylene unit.
 上記スチレン・アルキレンブロック共重合体(B)におけるアルキレン単位の含有量は、適宜調節すればよいが、例えば、スチレン・アルキレンブロック共重合体(B)の総質量に対して、40~70質量%であることが好ましい。また、本発明のゴム組成物においては、上記スチレン・アルキレンブロック共重合体(B)のアルキレンブロックが-[CH2-CH(C25)]-単位(ブチレン単位)と、-(CH2-CH2)-単位(エチレン単位)とを有し、前記ブチレン単位の含有量が、前記ブチレン単位及び前記エチレン単位の総質量に対して50質量%以上であることが好ましく、65質量%以上であることがより好ましい。また、上記合計量は、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。上記含有量が50質量%以上の場合、タイヤのドライハンドリング性をより高めつつ、低ロス性及び耐摩耗性を更に向上させることができる。 The content of the alkylene unit in the above-mentioned styrene / alkylene block copolymer (B) may be suitably adjusted, but for example, it is 40 to 70% by mass with respect to the total mass of the styrene / alkylene block copolymer (B) Is preferred. Further, in the rubber composition of the present invention, the alkylene block of the styrene-alkylene block copolymer (B) is-[CH 2 -CH (C 2 H 5 )]-unit (butylene unit),-(CH 2) 2 -CH 2) - and a unit (ethylene units), the content of the butylene units, preferably has a total weight less than 50 wt% with respect to the oxybutylene units and the ethylene units, 65 wt% It is more preferable that it is more than. The total amount is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less. When the content is 50% by mass or more, the low loss property and the wear resistance can be further improved while further improving the dry handling property of the tire.
 上記スチレン・アルキレンブロック共重合体(B)としては、スチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレンプロピレン・スチレンブロック共重合体(SEPS)、スチレン・エチレンエチレンプロピレン・スチレン共重合体(SEEPS)等が挙げられ、これらの中でも、スチレン・エチレンブチレン・スチレンブロック共重合体が好ましい。スチレン・アルキレンブロック共重合体(B)がスチレン・エチレンブチレン・スチレンブロック共重合体の場合、タイヤのドライハンドリング性を更に向上させることができる。
 なお、上記スチレン・エチレンブチレン・スチレンブロック共重合体のエチレンブチレンブロックは、上述したエチレン単位とブチレン単位を有するブロックである。
Examples of the styrene / alkylene block copolymer (B) include styrene / ethylene butylene / styrene block copolymer (SEBS), styrene / ethylene propylene / styrene block copolymer (SEPS), styrene / ethylene / ethylene / styrene copolymer A polymer (SEEPS) etc. are mentioned, Among these, a styrene ethylene butylene styrene block copolymer is preferable. When the styrene / alkylene block copolymer (B) is a styrene / ethylene butylene / styrene block copolymer, the dry handling properties of the tire can be further improved.
In addition, the ethylene butylene block of the said styrene ethylene butylene styrene block copolymer is a block which has the ethylene unit and the butylene unit which were mentioned above.
 また、上記スチレン・アルキレンブロック共重合体(B)は、上記スチレンブロックとアルキレンブロック以外のその他の構成単位を含んでいてもよい。このようなその他の構成単位としては、例えば、-[CH2-CH(CH=CH2)]-単位などの不飽和結合を有する構成単位などが挙げられる。 Moreover, the said styrene alkylene block copolymer (B) may contain the other structural units other than the said styrene block and an alkylene block. As such other structural units, for example, structural units having unsaturated bonds such as — [CH 2 —CH (CH (CH 2 )] — units and the like can be mentioned.
 上記スチレン・アルキレンブロック共重合体(B)の合成方法は、特に限定されず、公知の方法を用いることができる。例えば、スチレン等のスチレン系モノマーと、1,3-ブタジエン等の共役ジエン化合物又はブテン等のオレフィンと、を共重合させ、前駆共重合体を得て、この前駆共重合体を水素添加することによって、スチレン・アルキレンブロック共重合体(B)を得ることができる。より具体的には、スチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)は、スチレン・ブタジエン・スチレンブロック共重合体(SBS)の水素添加によって得られ、スチレン・エチレンプロピレン・スチレンブロック共重合体(SEPS)は、スチレン・イソプレン・スチレンブロック共重合体(SBS)の水素添加によって得られる。
 また、上記スチレン・アルキレンブロック共重合体(B)としては、市販品を用いてもよい。このような市販品としては、例えば、JSR社のJSR DYNARON(登録商標)8903P、9901P等が挙げられる。
The synthesis method of the styrene / alkylene block copolymer (B) is not particularly limited, and known methods can be used. For example, a precursor copolymer is obtained by copolymerizing a styrene-based monomer such as styrene and a conjugated diene compound such as 1,3-butadiene or an olefin such as butene, and hydrogenating this precursor copolymer Thus, a styrene-alkylene block copolymer (B) can be obtained. More specifically, styrene / ethylene butylene / styrene block copolymer (SEBS) is obtained by hydrogenation of styrene / butadiene / styrene block copolymer (SBS), and styrene / ethylene propylene / styrene block copolymer (SEPS) is obtained by hydrogenation of styrene isoprene styrene block copolymer (SBS).
Moreover, you may use a commercial item as said styrene alkylene block copolymer (B). Examples of such commercial products include JSR DYNARON (registered trademark) 8903P, 9901P, etc. manufactured by JSR Corporation.
 本発明のゴム組成物におけるスチレン・アルキレンブロック共重合体(B)の配合量は、特に限定されず、適宜調節すればよい。例えば、スチレン・アルキレンブロック共重合体(B)の配合量は、上記ゴム成分(A)100質量部に対して、5~30質量部の範囲が好ましい。スチレン・アルキレンブロック共重合体(B)の配合量が、ゴム成分(A)100質量部に対して、5質量部以上であれば、ゴム組成物を適用したタイヤの弾性率を更に向上させ、タイヤのドライハンドリング性を更に向上させることができ、また、30質量部以下であれば、タイヤの低ロス性を更に向上させることができる。同様の観点から、スチレン・アルキレンブロック共重合体(B)の配合量は、上記ゴム成分(A)100質量部に対して、10質量部以上がより好ましく、また、20質量部以下がより好ましい。 The blending amount of the styrene-alkylene block copolymer (B) in the rubber composition of the present invention is not particularly limited, and may be appropriately adjusted. For example, the blending amount of the styrene-alkylene block copolymer (B) is preferably in the range of 5 to 30 parts by mass with respect to 100 parts by mass of the rubber component (A). If the blending amount of the styrene-alkylene block copolymer (B) is 5 parts by mass or more with respect to 100 parts by mass of the rubber component (A), the elastic modulus of the tire to which the rubber composition is applied is further improved, The dry handling property of the tire can be further improved, and if it is 30 parts by mass or less, the low loss property of the tire can be further improved. From the same viewpoint, the blending amount of the styrene-alkylene block copolymer (B) is more preferably 10 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component (A). .
(シリカ(C))
 本発明のゴム組成物は、シリカ(C)を含む。ゴム組成物がシリカ(C)を含むことにより、ゴム組成物の低ロス性を向上させることができる。
(Silica (C))
The rubber composition of the present invention contains silica (C). When the rubber composition contains silica (C), the low loss property of the rubber composition can be improved.
 上記シリカ(C)は、BET比表面積が40~350m2/gであることが好ましい。この場合、タイヤの低ロス性を更に向上させることができる。同様の観点から、上記シリカ(C)のBET比表面積は、80m2/g以上であることがより好ましく、220m2/g以上であることが更に好ましく、また、300m2/g以下であることがより好ましく、270m2/g以下であることが更に好ましい。
 なお、本発明において、BET比表面積は、JIS K6430に準拠して測定する。
The silica (C) preferably has a BET specific surface area of 40 to 350 m 2 / g. In this case, the low loss property of the tire can be further improved. From the same viewpoint, the BET specific surface area of the silica (C) is more preferably 80 m 2 / g or more, still more preferably 220 m 2 / g or more, and 300 m 2 / g or less. it is more preferable, and more preferably not more than 270m 2 / g.
In the present invention, the BET specific surface area is measured in accordance with JIS K6430.
 上記シリカ(C)は、セチルトリメチルアンモニウムブロミド(CTAB)吸着比表面積が150~260m2/gであることが好ましい。この場合、タイヤの低ロス性を更に向上させることができる。同様の観点から、上記シリカ(C)のCTAB吸着比表面積は、176~206m2/gであることがより好ましい。
 なお、本発明において、セチルトリメチルアンモニウムブロミド(CTAB)吸着比表面積は、実施例に記載の方法により測定する。
The silica (C) preferably has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area of 150 to 260 m 2 / g. In this case, the low loss property of the tire can be further improved. From the same viewpoint, the CTAB adsorption specific surface area of the silica (C) is more preferably 176 to 206 m 2 / g.
In the present invention, cetyltrimethylammonium bromide (CTAB) adsorption specific surface area is measured by the method described in the examples.
 シリカとしては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。これらシリカは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate and the like, and among these, wet silica is preferable. These silicas may be used alone or in combination of two or more.
 上記シリカの配合量は、上記ゴム成分(A)100質量部に対して40質量部以上が好ましく、45質量部以上がより好ましく、また、120質量部以下が好ましく、70質量部以下がより好ましい。シリカの配合量がゴム成分(A)100質量部に対して40質量部以上であれば、ゴム組成物の60℃付近におけるtanδが低下して、該ゴム組成物を適用したタイヤの転がり抵抗を更に低減でき、また、120質量部以下であれば、ゴム組成物の柔軟性が高く、該ゴム組成物をタイヤのトレッドゴムに適用することで、トレッドゴムの変形体積が大きくなって、タイヤのウェット性能を向上させることができる。 40 mass parts or more are preferable with respect to 100 mass parts of said rubber components (A), as for the compounding quantity of the said silica, 45 mass parts or more are more preferable, and 120 mass parts or less are preferable, and 70 mass parts or less are more preferable . When the compounding amount of silica is 40 parts by mass or more with respect to 100 parts by mass of the rubber component (A), tan δ at around 60 ° C. of the rubber composition decreases, and the rolling resistance of the tire to which the rubber composition is applied Furthermore, if it is 120 parts by mass or less, the flexibility of the rubber composition is high, and by applying the rubber composition to the tread rubber of the tire, the deformation volume of the tread rubber becomes large, and the tire Wet performance can be improved.
(シリカ(C)以外の充填剤)
 本発明のゴム組成物は、シリカ(C)以外の充填剤(以下、単に「充填剤」という。)を含んでもよい。かかる充填剤としては、例えば、カーボンブラック、酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられる。これら充填剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Filler other than silica (C))
The rubber composition of the present invention may contain a filler other than silica (C) (hereinafter simply referred to as "filler"). Such fillers include, for example, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide, magnesium oxide, titanium oxide, titanium Acid potassium, barium sulfate and the like. These fillers may be used alone or in combination of two or more.
 上記カーボンブラックとしては、特に限定されず、例えば高、中、又は低ストラクチャーのSAF、ISAF、ISAF-HS、IISAF、N339、HAF、FEF、GPF、SRFグレードなどのカーボンブラックが挙げられる。 The carbon black is not particularly limited, and examples thereof include carbon blacks such as high, middle or low structure SAF, ISAF, ISAF-HS, IISAF, N339, HAF, FEF, GPF, SRF grade and the like.
 上記充填剤の配合量としては、特に限定されず、適宜調節すればよいが、例えば、ゴム成分(A)100質量部に対して2~20質量部である。充填剤の配合量は、低ロス性と耐摩耗性の観点から、ゴム成分(A)100質量部に対して2~10質量部であることが好ましい。 The compounding amount of the above-mentioned filler is not particularly limited and may be appropriately adjusted, and is, for example, 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component (A). The compounding amount of the filler is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the rubber component (A) from the viewpoint of low loss and abrasion resistance.
(シランカップリング剤(D))
 また、本発明のゴム組成物は、上記シリカ(C)の配合効果を向上させるために、シリカ(C)と共に、メルカプト基を有するシランカップリング剤(D)を含む。シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド(例えば、エボニック社製の商品名「Si69」等)、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド(例えば、エボニック社製の商品名「Si75」等)、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシラン、3-オクタノイルチオ-プロピルトリエトキシシラン(例えば、モメンティブ・パフォーマンス・マテリアルズ社製の商品名「NXT」等)、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール(例えば、エボニック・デグッサ社製の商品名「Si363」等)等が挙げられ、これらの中から、メルカプト基を有するものと適宜選択して用いることができる。これらシランカップリング剤(D)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらの中でも、上記シランカップリング剤(D)は、3-メルカプトプロピルトリメトキシシラン、及び3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオールから選択される少なくとも一種であることが好ましい。この場合、タイヤの低ロス性をより向上させることができる。
(Silane coupling agent (D))
Further, the rubber composition of the present invention contains a silane coupling agent (D) having a mercapto group together with the silica (C) in order to improve the blending effect of the silica (C). As a silane coupling agent, for example, bis (3-triethoxysilylpropyl) tetrasulfide (for example, trade name “Si69” manufactured by Evonik Co., Ltd., etc.), bis (3-triethoxysilylpropyl) trisulfide, bis (3 -Triethoxysilylpropyl) disulfide (for example, trade name "Si75" manufactured by Evonik Co., Ltd.), bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2- Trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N -The Tylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl Tetrasulfide, 3-triethoxysilylpropylbenzothiazolyl tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3 -Mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, dimethoxymethylsilylpropiyl Benzothiazolyl tetrasulfide, 3-octanoylthiopropyltriethoxysilane, 3-octanoylthio-propyltriethoxysilane (eg, trade name “NXT” manufactured by Momentive Performance Materials, Inc.), 3- [ethoxybis ( 3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silyl] -1-propanethiol (eg, trade name "Si 363" manufactured by Evonik Degussa, etc.) and the like. Therefore, those having a mercapto group can be appropriately selected and used. These silane coupling agents (D) may be used alone or in combination of two or more.
Among these, the above-mentioned silane coupling agent (D) is 3-mercaptopropyltrimethoxysilane, and 3- [ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silyl]- It is preferably at least one selected from 1-propanethiol. In this case, the low loss property of the tire can be further improved.
 また、上記シランカップリング剤(D)の配合量は、シリカの分散性を向上させる観点から、上記シリカ(C)100質量部に対して1質量部以上が好ましく、4質量部以上がより好ましく、また、20質量部以下が好ましく、12質量部以下がより好ましい。 The amount of the silane coupling agent (D) is preferably 1 part by mass or more, more preferably 4 parts by mass or more, based on 100 parts by mass of the silica (C), from the viewpoint of improving the dispersibility of the silica. Moreover, 20 mass parts or less are preferable, and 12 mass parts or less are more preferable.
(樹脂(E))
 本発明のゴム組成物は、更に、C5系樹脂、C5-C9系樹脂、C9系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂及びアルキルフェノール系樹脂からなる群から選択される少なくとも一種の樹脂(E)を含むことが好ましい。ゴム組成物が樹脂(E)を含む場合、タイヤのウェット性能を向上させることができる。
(Resin (E))
The rubber composition of the present invention, further, C 5 resins, C 5 -C 9 resins, C 9 resins, terpene resins, terpene - aromatics-based resin, rosin resin, dicyclopentadiene resin and alkylphenols It is preferable to include at least one resin (E) selected from the group consisting of a system resin. When the rubber composition contains a resin (E), the wet performance of the tire can be improved.
 上記樹脂(E)の配合量は、上記ゴム成分(A)100質量部に対して、5質量部以上、40質量部以下の範囲が好ましい。樹脂(E)の配合量がこの範囲の場合、タイヤのウェット性能を効果的に向上させることができる。同様の観点から、上記樹脂(E)の配合量は、上記ゴム成分(A)100質量部に対して、10質量部以上がより好ましく、また、20質量部以下がより好ましい。 The compounding quantity of the said resin (E) has the preferable range of 5 mass parts or more and 40 mass parts or less with respect to 100 mass parts of said rubber components (A). When the compounding quantity of resin (E) is this range, the wet performance of a tire can be improved effectively. From the same viewpoint, the compounding amount of the resin (E) is more preferably 10 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component (A).
 上記C5系樹脂は、C5系合成石油樹脂を指し、C5留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。具体的には、イソプレン、シクロペンタジエン、1,3-ペンタジエン及び1-ペンテンなどを主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主体とする重合体などが挙げられる。 The C 5 resin refers to C 5 type synthetic petroleum resins and C 5 fraction, it means a resin obtained by polymerization using a Friedel-Crafts catalyst such as AlCl 3 or BF 3. Specifically, copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene and 1-pentene as main components, copolymers of 2-pentene and dicyclopentadiene, and 1,3-pentadiene as main components. Polymers and the like.
 上記C5-C9系樹脂は、C5-C9系合成石油樹脂を指し、C5~C11留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体などが挙げられる。これらの中でも、C9以上の成分の少ないC5-C9系樹脂は、ゴム成分との相溶性が優れるため好ましい。具体的には、C5-C9系樹脂におけるC9以上の成分の割合が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。 The C 5 -C 9 resin refers to a C 5 -C 9 synthetic petroleum resin and is obtained by polymerizing a C 5 -C 11 fraction using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 Mean a resin that For example, copolymers having styrene, vinyl toluene, α-methylstyrene, indene or the like as a main component can be mentioned. Among these, a C 5 -C 9 based resin containing few components of C 9 or more is preferable because of its excellent compatibility with the rubber component. Specifically, a resin in which the proportion of the C 9 or more component in the C 5 -C 9 resin is less than 50% by mass is preferable, and the resin in which the proportion is 40% by mass or less is more preferable.
 上記C9系樹脂は、C9系合成石油樹脂を指し、C9留分をAlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、インデン、メチルインデン、α-メチルスチレン、ビニルトルエンなどを主成分とする共重合体などが挙げられる。 The C 9 -based resin refers to a C 9 -based synthetic petroleum resin, and means a resin obtained by polymerizing a C 9 fraction using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 . For example, copolymers having as main components indene, methyl indene, α-methyl styrene, vinyl toluene and the like can be mentioned.
 上記テルペン系樹脂は、松属の木からロジンを得る際に同時に得られるテレビン油又はこれから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得ることができる。例えば、β-ピネン樹脂、α-ピネン樹脂などが挙げられる。 The terpene resin can be obtained by blending turpentine oil obtained at the same time as obtaining rosin from pine tree trees or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts-type catalyst. For example, β-pinene resin, α-pinene resin and the like can be mentioned.
 上記テルペン-芳香族化合物系樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、或いは更にホルムアルデヒドで縮合することで得ることができる。例えば、テルペン-フェノール樹脂などが挙げられる。上記テルペン-フェノール樹脂のなかでも、テルペン-フェノール樹脂中のフェノール成分が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。
 原料のテルペン類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、α-ピネン、リモネンなどのモノテルペン炭化水素などが挙げられる。これらの中でも、α-ピネンを含むものが好ましく、α-ピネンがより好ましい。
The terpene-aromatic resin can be obtained by reacting terpenes with various phenols using a Friedel-Crafts type catalyst, or by further condensing with formaldehyde. For example, terpene-phenol resin and the like can be mentioned. Among the terpene-phenol resins, resins in which the phenol component in the terpene-phenol resin is less than 50% by mass are preferable, and resins having 40% by mass or less are more preferable.
The terpene as a raw material is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include monoterpene hydrocarbons such as α-pinene and limonene. Among these, those containing α-pinene are preferable, and α-pinene is more preferable.
 上記ロジン系樹脂としては、特に限定されず、目的に応じて適宜選択することができ、例えば、生松ヤニやトール油に含まれるガムロジン、トール油レジン、ウッドロジンなどの天然樹脂ロジン;変性ロジン;変性ロジン誘導体などが挙げられる。上記変性ロジン誘導体は、具体的には、重合ロジン、その部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや完全水添ロジンなどが挙げられる。 The rosin-based resin is not particularly limited and may be appropriately selected according to the purpose. For example, natural resin rosins such as gum rosin, tall oil resin, wood rosin and the like contained in raw pine jani and tall oil; modified rosin; And modified rosin derivatives. Specifically, the modified rosin derivative is, for example, polymerized rosin, partially hydrogenated rosin thereof, glycerin ester rosin, partially hydrogenated rosin or fully hydrogenated rosin thereof, pentaerythritol ester rosin, partially hydrogenated rosin or partially hydrogenated rosin Etc.
 上記ジシクロペンタジエン樹脂は、ジシクロペンタジエンを、AlCl3やBF3などのフリーデルクラフツ型触媒などを用いて重合して得ることができる。ジシクロペンタジエン樹脂の市販品の具体例としては、クイントン1920(日本ゼオン社製)、クイントン1105(日本ゼオン社製)、マルカレッツM-890A(丸善石油化学社製)などが挙げられる。 The dicyclopentadiene resin can be obtained by polymerizing dicyclopentadiene using a Friedel-Crafts-type catalyst such as AlCl 3 or BF 3 . Specific examples of commercially available products of dicyclopentadiene resin include Quinton 1920 (manufactured by Nippon Zeon Co., Ltd.), Quinton 1105 (manufactured by Nippon Zeon Co., Ltd.), and Marcarets M-890A (manufactured by Maruzen Petrochemical Co., Ltd.).
 上記アルキルフェノール系樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、p-tert-ブチルフェノール-アセチレン樹脂などのアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂などが挙げられる。 There is no restriction | limiting in particular as said alkyl phenol-type resin, According to the objective, it can select suitably, For example, alkyl phenol acetylene resin, such as p-tert- butylphenol- acetylene resin, the alkyl phenol formaldehyde resin of low polymerization degree, etc. It can be mentioned.
 上記樹脂(E)は、分子内の不飽和結合が部分的に又は完全に水素添加されていてもよい。樹脂(E)の分子内の不飽和結合が部分的に又は完全に水素添加されている場合、タイヤのウェット性能を効果的に向上させることができる。また、上記樹脂(E)としては、部分的に又は完全に水素添加されたC5系樹脂、部分的に又は完全に水素添加されたC5-C9系樹脂、部分的に又は完全に水素添加されたC9系樹脂が好ましい。この場合、タイヤのウェット性能を効果的に向上させることができる。 In the resin (E), unsaturated bonds in the molecule may be partially or completely hydrogenated. When the unsaturated bonds in the molecule of the resin (E) are partially or completely hydrogenated, the wet performance of the tire can be effectively improved. In addition, as the resin (E), a partially or completely hydrogenated C 5 resin, a partially or completely hydrogenated C 5 -C 9 resin, a partially or completely hydrogen Preferred is a C 9 -based resin added. In this case, the wet performance of the tire can be effectively improved.
 上記部分的に又は完全に水素添加された樹脂としては、市販品を好適に使用することができ、具体的には、出光興産株式会社製の商品名「アイマーブP100」、「アイマーブP125」、「アイマーブP140」、「アイマーブS100」、「アイマーブS110」、荒川化学工業株式会社製の商品名「アルコンP-90」、「アルコンP-100」、「アルコンP-115」、「アルコンP-125」、「アルコン-P140」、「アルコンM-90」、「アルコンM-100」、「アルコンM-115」、「アルコンM-135」、東燃ゼネラル石油株式会社製の商品名「T-REZ OP501」、「T-REZ PR801」、「T-REZ HA125」、「T-REZ HB125」等が挙げられる。 As the partially or completely hydrogenated resin, commercially available products can be suitably used. Specifically, Idemarco Co., Ltd. trade name "I-Merb P100", "I-Merb P125", " Aimab P140, Aimab S100, Aimab S110, trade name "Arcone P-90" manufactured by Arakawa Chemical Industries, Ltd., Arkone P-100, Arkone P-115, Arkone P-125 , "Alcon-P140", "Arcon M-90", "Arcon M-100", "Alcon M-115", "Alcon M-135", trade name "T-REZ OP501" manufactured by Tonen General Petroleum Co., Ltd. , "T-REZ PR801", "T-REZ HA125", "T-REZ HB125" and the like.
 また、上記水素添加は、例えば、分子内に不飽和結合を有する樹脂を、有機カルボン酸ニッケル、有機カルボン酸コバルト、1~3族の有機金属化合物からなる水素化触媒;カーボン、シリカ、珪藻土等に担持したニッケル、白金、パラジウム、ルテニウム、ロジウム金属触媒;コバルト、ニッケル、ロジウム、ルテニウム錯体等から選択される一種を触媒として、1~100気圧の加圧水素下で水素化することで実施できる。 The hydrogenation may be carried out, for example, by using a resin having unsaturated bond in the molecule, a hydrogenation catalyst comprising nickel of organic carboxylic acid, cobalt of organic carboxylic acid, organic metal compound of groups 1 to 3; carbon, silica, diatomaceous earth, etc. The hydrogenation can be carried out under a hydrogen pressure of 1 to 100 atm using a catalyst selected from nickel, platinum, palladium, ruthenium, rhodium metal catalyst, cobalt, nickel, rhodium, ruthenium complex and the like supported thereon.
(その他の成分)
 本発明のゴム組成物は、上述した成分以外に、加硫剤を含むことが好ましい。該加硫剤としては、硫黄等が挙げられる。該加硫剤の配合量は、上記ゴム成分(A)100質量部に対し、硫黄分として0.1~10質量部の範囲が好ましく、1~4質量部の範囲がより好ましい。加硫剤の配合量が硫黄分として0.1質量部以上であれば、加硫ゴムの破壊強度、耐摩耗性等を確保でき、また、10質量部以下であれば、ゴム弾性を十分に確保できる。特に、加硫剤の配合量を硫黄分として4質量部以下とすることで、タイヤのウェット性能を向上させることができる。
(Other ingredients)
The rubber composition of the present invention preferably contains a vulcanizing agent in addition to the components described above. Sulfur etc. are mentioned as this vulcanizing agent. The amount of the vulcanizing agent is preferably in the range of 0.1 to 10 parts by mass as sulfur, and more preferably in the range of 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component (A). If the compounding amount of the vulcanizing agent is 0.1 parts by mass or more as sulfur content, the fracture strength, abrasion resistance and the like of the vulcanized rubber can be secured, and if it is 10 parts by mass or less, sufficient rubber elasticity can be obtained. Can be secured. In particular, the wet performance of the tire can be improved by setting the blending amount of the vulcanizing agent to 4 parts by mass or less as sulfur content.
 本発明のゴム組成物は、上述した成分以外に、加硫促進剤を含むことが好ましい。加硫促進剤は、例えば、グアニジン類、スルフェンアミド類、チアゾール類、チオウレア及びジエチルチオウレアの中から選ばれる少なくとも1種である。これらは、それぞれ、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The rubber composition of the present invention preferably contains a vulcanization accelerator in addition to the components described above. The vulcanization accelerator is, for example, at least one selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea. Each of these may be used alone or in combination of two or more.
 グアニジン類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。これらの中でも、反応性が高い点で、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドが好ましく、1,3-ジフェニルグアニジンがより好ましい。 The guanidines are not particularly limited and can be appropriately selected according to the purpose. For example, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol Di-o-tolyl guanidine salt of borate, 1,3-di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl 2-propionyl guanidine and the like Be Among these, 1,3-diphenylguanidine, 1,3-di-o-tolyl guanidine and 1-o-tolylbiguanide are preferable in view of high reactivity, and 1,3-diphenyl guanidine is more preferable.
 スルフェンアミド類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド、N-エチル-2-ベンゾチアゾリルスルフェンアミド、N-プロピル-2-ベンゾチアゾリルスルフェンアミド、N-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-ヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-オクチル-2-ベンゾチアゾリルスルフェンアミド、N-2-エチルヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N-ドデシル-2-ベンゾチアゾリルスルフェンアミド、N-ステアリル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジメチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジエチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジブチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジオクチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジ-2-エチルヘキシルベンゾチアゾリルスルフェンアミド、N,N-ジドデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジステアリル-2-ベンゾチアゾリルスルフェンアミドなどが挙げられる。これらの中でも、反応性が高い点で、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミドおよびN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドが好ましい。 The sulfenamides are not particularly limited and may be appropriately selected depending on the purpose. For example, N-cyclohexyl-2-benzothiazolesulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfene Amide, N-tert-butyl-2-benzothiazolylsulfenamide, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2- Benzothiazolylsulfenamide, N-propyl-2-benzothiazolylsulfenamide, N-butyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl- 2-benzothiazolylsulfenamide, N-octyl-2-benzothia Lylsulfenamide, N-2-ethylhexyl-2-benzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N-dodecyl-2-benzothiazolylsulfenamide, N-stearyl- 2-benzothiazolylsulfenamide, N, N-dimethyl-2-benzothiazolylsulfenamide, N, N-diethyl-2-benzothiazolylsulfenamide, N, N-dipropyl-2-benzothiazole Rusulfenamide, N, N-dibutyl-2-benzothiazolylsulfenamide, N, N-dipentyl-2-benzothiazolylsulfenamide, N, N-dihexyl-2-benzothiazolylsulfenamide, N , N-dioctyl-2-benzothiazolylsulfenamide, N, N-di-2-ethyl Sill benzothiazolyl sulfenamide, N, N- didodecyl-2-benzothiazolyl sulfenamide, N, etc. N- distearyl-2-benzothiazolyl sulfenamide and the like. Among these, N-cyclohexyl-2-benzothiazolylsulfenamide and N-tert-butyl-2-benzothiazolylsulfenamide are preferable in terms of high reactivity.
 チアゾール類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾールの亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(N,N-ジエチルチオカルバモイルチオ)ベンゾチアゾール、2-(4'-モルホリノジチオ)ベンゾチアゾール、4-メチル-2-メルカプトベンゾチアゾール、ジ-(4-メチル-2-ベンゾチアゾリル)ジスルフィド、5-クロロ-2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールナトリウム、2-メルカプト-6-ニトロベンゾチアゾール、2-メルカプト-ナフト[1,2-d]チアゾール、2-メルカプト-5-メトキシベンゾチアゾール、6-アミノ-2-メルカプトベンゾチアゾールなどが挙げられる。これらの中でも、反応性が高い点で、2-メルカプトベンゾチアゾールおよびジ-2-ベンゾチアゾリルジスルフィドが好ましい。 The thiazoles are not particularly limited and may be appropriately selected depending on the purpose. For example, 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, 2- Cyclohexylamine salt of mercaptobenzothiazole, 2- (N, N-diethylthiocarbamoylthio) benzothiazole, 2- ( 4' -morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-) Methyl-2-benzothiazolyl) disulfide, 5-chloro-2-mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2 -Mercapto-5-methoxyben Thiazole, such as 6-amino-2-mercaptobenzothiazole and the like. Among these, 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide are preferable in terms of high reactivity.
 チオウレアは、NH2CSNH2で表される化合物である。 Thiourea is a compound represented by NH 2 CSNH 2 .
 ジエチルチオウレアは、C25NHCSNHC25で表される化合物である。 Diethyl thiourea is a compound represented by C 2 H 5 NHCSNHC 2 H 5 .
 加硫促進剤の配合量としては、特に限定されず、目的に応じて適宜調節することができ、例えば、ゴム成分100質量部に対して0.1~20質量部である。0.1質量部以上であると、加硫の効果が得られやすく、20質量部以下であると、加硫の過度の進行を抑制することができる。 The compounding amount of the vulcanization accelerator is not particularly limited and may be appropriately adjusted according to the purpose. For example, it is 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component. The effect of the vulcanization is easily obtained when the amount is 0.1 parts by mass or more, and the excessive progress of the vulcanization can be suppressed when the amount is 20 parts by mass or less.
 なお、グアニジン類、スルフェンアミド類、チアゾール類、チオウレア及びジエチルチオウレアは、加硫促進剤としての機能に加えて、シリカ及びシランカップリング剤と混練する際に、シリカに対するシランカップリング剤のカップリング機能を高める活性化剤としての機能を発揮することができる点で、好ましい。同様の観点から、本発明のゴム組成物は、グアニジン類、チアゾール類及びチオウレアの中から選ばれる少なくとも1種を含むことがより好ましい。 In addition to guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea, in addition to their functions as vulcanization accelerators, when they are mixed with silica and a silane coupling agent, a cup of the silane coupling agent relative to silica is used. It is preferable at the point which can exhibit the function as an activator which improves a ring function. From the same point of view, the rubber composition of the present invention more preferably contains at least one selected from guanidines, thiazoles and thioureas.
 本発明のゴム組成物には、その他、ゴム工業界で通常使用される配合剤、例えば、軟化剤、ステアリン酸、老化防止剤、酸化亜鉛(亜鉛華)等を、本発明の目的を害しない範囲内で適宜選択して配合してもよい。これら配合剤としては、市販品を好適に使用することができる。 In the rubber composition of the present invention, other additives commonly used in the rubber industry, such as softeners, stearic acid, anti-aging agents, zinc oxide (zinc white), etc. do not impair the object of the present invention You may select suitably and mix within the range. A commercial item can be used suitably as these compounding agents.
(ゴム組成物の調製)
 本発明のゴム組成物の調製方法は、特に限定されず、公知の混練方法を用いて、ゴム成分、スチレン・アルキレンブロック共重合体や、充填剤などの成分を混練すればよい。但し、本発明のゴム組成物は、ゴム成分(A)、スチレン・アルキレンブロック共重合体(B)、シリカ(C)、シランカップリング剤(D)、加硫促進剤、及び加硫剤を少なくとも用い、ゴム成分(A)、スチレン・アルキレンブロック共重合体(B)、シリカ(C)、シランカップリング剤(D)、及び加硫促進剤の一部又は全部を混練する混練段階Aと、当該混練段階Aの後に、当該混練段階Aにおける混練によって得られた混練物と、加硫剤とを混練する混練段階Bを含む方法により調製することが好ましい。これにより、シランカップリング剤のカップリング機能の活性低減を好適に抑制し、カップリング機能の活性を更に高めて、低ロス性に一層優れるゴム組成物を得ることができる。
(Preparation of rubber composition)
The method for preparing the rubber composition of the present invention is not particularly limited, and components such as a rubber component, a styrene / alkylene block copolymer, and a filler may be kneaded using a known kneading method. However, the rubber composition of the present invention comprises a rubber component (A), a styrene-alkylene block copolymer (B), silica (C), a silane coupling agent (D), a vulcanization accelerator, and a vulcanizing agent. Kneading step A in which at least part or all of rubber component (A), styrene / alkylene block copolymer (B), silica (C), silane coupling agent (D) and vulcanization accelerator are kneaded After the kneading step A, it is preferable to prepare by a method including the kneading step B in which the kneaded material obtained by the kneading in the kneading step A and the vulcanizing agent are kneaded. Thereby, the activity reduction of the coupling function of the silane coupling agent can be suitably suppressed, the activity of the coupling function can be further enhanced, and a rubber composition further excellent in low loss property can be obtained.
 混練段階Aでは、上述の通り、ゴム成分(A)、スチレン・アルキレンブロック共重合体(B)、シリカ(C)、シランカップリング剤(D)、加硫促進剤の一部又は全部、並びに、任意に、シリカ(C)以外の充填剤、樹脂(E)を混練する。この混練により、混練物(予備組成物)を得る。なお、混練段階Aで調製される混練物(予備組成物)は、加硫剤を含まない。 In the kneading step A, as described above, the rubber component (A), the styrene / alkylene block copolymer (B), the silica (C), the silane coupling agent (D), a part or all of the vulcanization accelerator, and Optionally, fillers other than silica (C), resin (E) are kneaded. A kneaded material (preliminary composition) is obtained by this kneading. The kneaded material (preliminary composition) prepared in the kneading step A does not contain a vulcanizing agent.
 混練段階Aでの混練は、シランカップリング剤(D)のカップリング機能の活性をより好適に高める観点から、混合物の最高温度を120~190℃とするのが好ましく、130~175℃とするのがより好ましく、140~170℃とするのが更に好ましい。 In the kneading step A, the maximum temperature of the mixture is preferably 120 to 190 ° C., preferably 130 to 175 ° C., from the viewpoint of enhancing the activity of the coupling function of the silane coupling agent (D) more suitably. Is more preferable, and the temperature is preferably 140 to 170.degree.
 また、混練段階Aでは、初めに、ゴム成分(A)、スチレン・アルキレンブロック共重合体(B)、シリカ(C)、シランカップリング剤(D)、並びに、任意に、シリカ(C)以外の充填剤、樹脂(E)を配合し混練し、これに加硫促進剤を加えて更に混練することが好ましい。 In addition, in the kneading step A, first, the rubber component (A), the styrene-alkylene block copolymer (B), the silica (C), the silane coupling agent (D), and optionally, other than the silica (C) It is preferable to mix | blend and knead | fill the filler of this, resin (E), add a vulcanization accelerator to this, and knead | mix further.
 混練段階Bは、混練段階A又は後述する混練段階Cの後に、得られた混練物(予備組成物)と加硫剤とを混練する段階である。この混練により、ゴム組成物を調製することができる。混練段階Bでは、加硫促進剤を更に加えてもよい。 The kneading step B is a step of kneading the obtained kneaded product (preliminary composition) and the vulcanizing agent after the kneading step A or the kneading step C described later. The rubber composition can be prepared by this kneading. In the kneading step B, a vulcanization accelerator may be further added.
 混練段階Bでの混練は、混合物の最高温度を60~140℃とするのが好ましく、80~120℃とするのがより好ましく、100~120℃とするのが更に好ましい。 In the kneading step B, the maximum temperature of the mixture is preferably 60 to 140 ° C., more preferably 80 to 120 ° C., and still more preferably 100 to 120 ° C.
 上記の方法は、混練段階Aと混練段階Bとの間に、必要に応じて、混練段階Aで調製された混練物(予備組成物)を更に混練する段階(混練段階C)を更に含んでもよい。混練段階Cは、複数回行ってもよい。但し、混練段階Cでは、加硫剤を添加しない。 The above method may further include a step (kneading step C) of further kneading between the kneading step A and the kneading step B, if necessary, the kneaded material (preliminary composition) prepared in the kneading step A. Good. The kneading step C may be performed multiple times. However, in the kneading step C, no vulcanizing agent is added.
 混練段階Cでの混練は、シランカップリング剤のカップリング機能の活性をより好適に高める観点から、混合物の最高温度を120~190℃とするのが好ましく、130~175℃とするのがより好ましく、140~170℃とするのが特に好ましい。 In the kneading step C, the maximum temperature of the mixture is preferably 120 to 190 ° C., more preferably 130 to 175 ° C., from the viewpoint of more suitably enhancing the activity of the coupling function of the silane coupling agent. Preferably, the temperature is 140 to 170 ° C.
 なお、混練段階Aから混練段階Bに移行する際、又は、任意に行う混練段階Cから混練段階Bに移行する際には、単に混練機の中蓋(いわゆる「ラム」)を開けることで加硫圧を解除して薬品を追加投入するという操作でもよいが、混練物(予備組成物)を取り出して、混練物(予備組成物)の温度を、混練段階A又は混練段階Cにおける混練が終了した直後の温度から10℃以上低下させた後に(例えば一度ゴム組成物を混練機から排出する、などの操作)、混練段階Bに移行することがより好ましい。 In addition, when moving from the kneading step A to the kneading step B, or when moving from the optional kneading step C to the kneading step B, simply by opening the inner lid (so-called "lam") of the kneader The operation of releasing the vulcanization pressure and adding a chemical may be performed, but the kneaded material (preliminary composition) is taken out, and the temperature of the kneaded material (preliminary composition) is completed at the kneading stage A or the kneading stage C. It is more preferable to shift to the kneading step B after lowering the temperature immediately after the addition by 10 ° C. or more (for example, the operation of once discharging the rubber composition from the kneader).
 混練に用いられる混練装置としては、特に限定されず、目的に応じて適宜選択することができ、例えば、単軸混練押出機;多軸混練押出機(連続式混練装置);バンバリーミキサー、インターミックス、ニーダー等の噛合い式または非噛合い式回転ローターを有する混練機;ロール(バッチ式混練装置)などが挙げられる。混練における、ローターの回転速度、ラム圧、混練温度、混練装置の種類等の諸条件は、適宜選択することができる。 The kneading apparatus used for the kneading is not particularly limited and may be appropriately selected according to the purpose. For example, a single-screw kneading extruder; a multi-screw kneading extruder (continuous kneader); Banbury mixer, intermix Kneaders having a meshing or non-meshing type rotary rotor such as a kneader; rolls (batch-type kneading apparatus) and the like. Various conditions such as the rotational speed of the rotor, the ram pressure, the kneading temperature, the type of the kneading apparatus, and the like in the kneading can be appropriately selected.
 本発明のゴム組成物は、タイヤを始めとする種々のゴム製品に利用できる。特には、本発明のゴム組成物は、タイヤのトレッドゴムとして好適である。 The rubber composition of the present invention can be used for various rubber products including tires. In particular, the rubber composition of the present invention is suitable as a tread rubber of a tire.
<タイヤ>
 本発明のタイヤは、上記のゴム組成物をトレッドゴムに用いたことを特徴とする。本発明のタイヤは、上記ゴム組成物がトレッドゴムに用いられているため、低ロス性と耐摩耗性とを両立しつつ、ドライハンドリング性に優れる。また、本発明のタイヤは、各種車輌向けのタイヤとして利用できるが、乗用車用タイヤとして好ましい。
<Tire>
The tire according to the present invention is characterized in that the above rubber composition is used for tread rubber. In the tire according to the present invention, since the above rubber composition is used for the tread rubber, the dry handling property is excellent while achieving both the low loss property and the wear resistance. Moreover, although the tire of this invention can be utilized as a tire for various vehicles, it is preferable as a tire for passenger cars.
 本発明のタイヤは、適用するタイヤの種類に応じ、未加硫のゴム組成物を用いて成形後に加硫して得てもよく、又は予備加硫工程等を経た半加硫ゴムを用いて成形後、更に本加硫して得てもよい。なお、本発明のタイヤは、好ましくは空気入りタイヤであり、空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。 The tire of the present invention may be obtained by molding and curing after molding using an unvulcanized rubber composition according to the type of tire to be applied, or by using a semi-vulcanized rubber which has undergone a pre-vulcanization process and the like. After molding, it may be obtained by further vulcanization. The tire according to the present invention is preferably a pneumatic tire, and as a gas to be filled in the pneumatic tire, in addition to normal air having a controlled partial pressure of oxygen, an inert gas such as nitrogen, argon, or helium can be used. It can be used.
 以下、実施例を挙げて本発明を更に詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples. However, these examples are intended to illustrate the present invention and do not limit the present invention at all.
<変性共役ジエン系重合体1の調製>
 乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5g及びスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行う。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤としてN,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミンを0.72mmol添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥して、(A)成分としての変性共役ジエン系重合体1を得る。
<Preparation of Modified Conjugated Diene-Based Polymer 1>
Add a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene to a dry, nitrogen-replaced 800 mL pressure-resistant glass container so that 67.5 g of 1,3-butadiene and 7.5 g of styrene are obtained. 0.6 mmol of ditetrahydrofurylpropane is added, and 0.8 mmol of n-butyllithium is added, followed by polymerization at 50 ° C. for 1.5 hours. Then, 0.72 mmol of N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine as a modifier is added to the polymerization reaction system in which the polymerization conversion ratio at this time is almost 100%. The denaturation reaction was carried out at 30 ° C for 30 minutes. Then, 2 mL of a 5% by mass solution of 2,6-di-t-butyl-p-cresol (BHT) in isopropanol is added to stop the reaction, and the reaction is dried according to a conventional method to obtain a modified conjugated diene system as component (A). Polymer 1 is obtained.
<変性共役ジエン系重合体2の調製>
 乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン70.2g及びスチレン39.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤としてN-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミンを0.72mmol添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥して、(A)成分としての変性共役ジエン系重合体2を得た。
<Preparation of Modified Conjugated Diene-Based Polymer 2>
Add a cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene to 70.2 g of 1,3-butadiene and 39.5 g of styrene in an 800 mL pressure-resistant glass container which has been dried and replaced with nitrogen. 0.6 mmol of ditetrahydrofurylpropane was added, and 0.8 mmol of n-butyllithium was added, followed by polymerization at 50 ° C. for 1.5 hours. 0.72 mmol of N- (1,3-dimethylbutylidene) -3-triethoxysilyl-1-propanamine as a modifier is added to the polymerization reaction system in which the polymerization conversion ratio at this time is almost 100%. The denaturation reaction was carried out at 50 ° C. for 30 minutes. Then, 2 mL of a 5% by mass solution of 2,6-di-t-butyl-p-cresol (BHT) in isopropanol is added to stop the reaction, and the reaction is dried according to a conventional method to obtain a modified conjugated diene system as component (A). Polymer 2 was obtained.
<変性共役ジエン系重合体3の調製>
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器とした。予め水分除去した、1,3-ブタジエンを17.2g/分、スチレンを10.5g/分、n-ヘキサンを145.3g/分の条件で混合した。この混合溶液を反応器の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウムを0.117mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパンを0.019g/分の速度で、重合開始剤としてn-ブチルリチウムを0.242mmol/分の速度で、攪拌機で激しく混合する重合反応器の底部へ供給し、連続的に重合反応を継続させた。反応器頂部出口における重合溶液の温度が75℃となるように温度を制御した。重合が十分に安定したところで、反応器頂部出口より、カップリング剤添加前の重合体溶液を少量抜出し、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように添加した後に溶媒を除去し、各種の分子量を測定した。
 次に、反応器の出口より流出した重合体溶液に、カップリング剤として2.74mmol/Lに希釈したテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミンを0.0302mmol/分(水分5.2ppm含有n-ヘキサン溶液)の速度で連続的に添加し、カップリング剤を添加された重合体溶液はスタティックミキサーを通ることで混合されカップリング反応した。このとき、反応器の出口より流出した重合溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は7℃であった。カップリング反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加し、カップリング反応を終了した。酸化防止剤と同時に、重合体100gに対してオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が10.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、(A)成分としての変性スチレン-ブタジエン共重合体(変性共役ジエン系重合体3)を得た。
 カップリング剤添加前の重合体溶液から得たスチレン-ブタジエン共重合体(共役ジエン系重合体)を分析したところ、重量平均分子量(Mw)が85.2×104g/molであり、分子量200×104以上500×104以下の割合が4.6%であることが分かった。
 なお、上記変性スチレン-ブタジエン共重合体は、カップリング剤の官能基数と添加量から想定される分岐数に相当する「分岐度」は8であり(収縮因子の値からも確認できる)、カップリング剤1分子が有するSiORの総数から反応により減じたSiOR数を引いた値に相当する「SiOR残基数」は4である。
<Preparation of Modified Conjugated Diene-Based Polymer 3>
The internal volume is 10 L, the ratio (L / D) of the internal height (L) to the diameter (D) is 4.0, the inlet is at the bottom, the outlet is at the top, and the tank reactor with stirrer is A tank-type pressure vessel having a stirrer and a jacket for temperature control was used as a polymerization reactor. 17.2 g / min of 1,3-butadiene, 10.5 g / min of styrene, and 145.3 g / min of n-hexane were mixed under the condition of water previously removed. At the bottom of the reactor, after adding and mixing n-butyllithium for residual impurity inactivation treatment at 0.117 mmol / min with a static mixer provided in the middle of the piping that supplies this mixed solution to the inlet of the reactor. It supplied continuously. Furthermore, the polymerization is carried out with a stirrer vigorously mixing 2,2-bis (2-oxolanyl) propane as a polar substance at a rate of 0.019 g / min and n-butyllithium as a polymerization initiator at a rate of 0.242 mmol / min. It was fed to the bottom of the reactor to continue the polymerization reaction continuously. The temperature was controlled so that the temperature of the polymerization solution at the top of the reactor was 75 ° C. When polymerization is sufficiently stabilized, a small amount of the polymer solution before addition of the coupling agent is withdrawn from the top outlet of the reactor, and after adding the antioxidant (BHT) to 0.2 g per 100 g of the polymer, the solvent is added It removed and measured various molecular weights.
Next, 0.0302 mmol / min of tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine diluted to 2.74 mmol / L as a coupling agent was added to the polymer solution flowing out from the outlet of the reactor. The polymer solution to which the coupling agent was added was continuously added by passing through a static mixer at a rate of n-hexane solution (water containing 5.2 ppm), and the coupling reaction was carried out. At this time, the time until the coupling agent is added to the polymerization solution flowing out from the outlet of the reactor is 4.8 minutes and the temperature is 68 ° C., and the temperature in the polymerization step and the addition of the coupling agent are The difference from the temperature was 7 ° C. Antioxidant (BHT) is continuously added at 0.055 g / min (n-hexane solution) to a concentration of 0.2 g per 100 g of the polymer to the polymer solution subjected to the coupling reaction to complete the coupling reaction. did. At the same time as the antioxidant, 10.0 g of oil (JX Nippon Oil & Energy JOMO Process NC 140) was continuously added to 100 g of the polymer, and mixed with a static mixer. The solvent was removed by steam stripping to obtain a modified styrene-butadiene copolymer (modified conjugated diene polymer 3) as the component (A).
The styrene-butadiene copolymer (conjugated diene polymer) obtained from the polymer solution before addition of the coupling agent was analyzed and found to have a weight average molecular weight (Mw) of 85.2 × 10 4 g / mol, and the molecular weight It was found that the ratio of 200 × 10 4 or more and 500 × 10 4 or less was 4.6%.
In the above modified styrene-butadiene copolymer, the “degree of branching” corresponding to the number of branches assumed from the number of functional groups of the coupling agent and the addition amount is 8 (can also be confirmed from the value of shrinkage factor) The “number of SiOR residues” corresponding to a value obtained by subtracting the number of SiORs reduced by the reaction from the total number of SiORs contained in one ring agent molecule is 4.
 得られた変性共役ジエン系重合体を試料として、結合スチレン量、ブタジエン部分のミクロ構造、ガラス転移温度(Tg)を、以下の方法で分析した。結果を表1に示す。 Using the resulting modified conjugated diene polymer as a sample, the amount of bound styrene, the microstructure of the butadiene portion, and the glass transition temperature (Tg) were analyzed by the following method. The results are shown in Table 1.
(1)結合スチレン量
 試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料100質量%に対しての結合スチレン量(質量%)を測定した(島津製作所社製の分光光度計「UV-2450」)。
(1) Amount of bound styrene 100 mg of a sample was measured to 100 mL with chloroform and dissolved to obtain a measurement sample. The amount of bound styrene (% by mass) relative to 100% by mass of the sample was measured by the amount of absorption of the ultraviolet absorption wavelength (around 254 nm) by the phenyl group of styrene (Spectrophotometer "UV-2450" manufactured by Shimadzu Corporation) .
(2)ブタジエン部分のミクロ構造(1,2-ビニル結合量)
 試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとした。溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2-ビニル結合量(mol%)を求めた(日本分光社製のフーリエ変換赤外分光光度計「FT-IR230」)。
(2) Microstructure of butadiene moiety (1,2-vinyl bond content)
50 mg of a sample was dissolved in 10 mL of carbon disulfide to obtain a measurement sample. Using the solution cell, the infrared spectrum is measured in the range of 600 to 1000 cm -1 , and the method of Hampton according to the absorbance at a predetermined wave number (the method described in R. R. Hampton, Analytical Chemistry 21, 923 (1949)) The microstructure of the butadiene portion, that is, the amount of 1,2-vinyl bond (mol%) was determined according to the calculation formula of (Fourier Transform Infrared Spectrophotometer “FT-IR230” manufactured by JASCO Corporation).
(3)ガラス転移温度(Tg)
 ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
(3) Glass transition temperature (Tg)
According to ISO 22768: 2006, using a differential scanning calorimeter “DSC3200S” manufactured by Mac Science, under the flow of helium 50 mL / min, record the DSC curve while raising the temperature from −100 ° C. to 20 ° C./min. The peak point (Inflection point) of the DSC differential curve was taken as the glass transition temperature.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<シリカ1の合成>
 撹拌機を備えた180リットルのジャケット付きステンレス反応槽に、水89リットルとケイ酸ナトリウム水溶液(SiO2160g/リットル、SiO2/Na2Oモル比3.3)1.70リットルを入れ、75℃に加熱した。生成した溶液中のNa2O濃度は0.015mol/リットルであった。
 この溶液の温度を75℃に維持しながら、上記と同様のケイ酸ナトリウム水溶液を流量520ミリリットル/分で、硫酸(18mol/リットル)を流量23ミリリットル/分で、同時に滴下した。流量を調整しつつ、反応溶液中のNa2O濃度を0.005~0.035mol/リットルの範囲に維持しながら中和反応を行った。反応途中から反応溶液は白濁をはじめ、45分目に粘度が上昇してゲル状溶液となった。更に、添加を続けて100分で反応を停止した。生じた溶液中のシリカ濃度は60g/リットルであった。引き続いて、上記と同様の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。得られたケイ酸スラリーをフィルタープレスで濾過、水洗を行って湿潤ケーキを得た。次いで湿潤ケーキを乳化装置を用いてスラリーとして、噴霧式乾燥機で乾燥し、シリカ1を得た。
 得られたシリカ1のBET比表面積及びCTAB吸着比表面積を、下記の方法で測定した。
<Synthesis of Silica 1>
180 liter jacketed stainless reactor equipped with a stirrer, water 89 liters and an aqueous sodium silicate solution (SiO 2 160 g / l, SiO 2 / Na 2 O molar ratio 3.3) was placed 1.70 liters, 75 Heated to ° C. The Na 2 O concentration in the resulting solution was 0.015 mol / liter.
While maintaining the temperature of this solution at 75 ° C., the same sodium silicate aqueous solution as above was added dropwise at a flow rate of 520 ml / min and sulfuric acid (18 mol / l) at a flow rate of 23 ml / min. While adjusting the flow rate, the neutralization reaction was carried out while maintaining the Na 2 O concentration in the reaction solution in the range of 0.005 to 0.035 mol / liter. During the reaction, the reaction solution became cloudy, and the viscosity increased at 45 minutes to form a gel-like solution. Furthermore, the addition was continued and the reaction was stopped in 100 minutes. The concentration of silica in the resulting solution was 60 g / liter. Subsequently, the same sulfuric acid as above was added until the pH of the solution reached 3, to obtain a siliceous slurry. The obtained silica slurry was filtered by a filter press and washed with water to obtain a wet cake. The wet cake was then dried as a slurry using an emulsifying apparatus with a spray dryer to obtain silica 1.
The BET specific surface area and the CTAB adsorption specific surface area of the obtained silica 1 were measured by the following method.
(4)BET比表面積の測定
 JIS K6430に準拠して測定を実施した。その結果、シリカ1のBET比表面積は、245m2/gであった。
(4) Measurement of BET Specific Surface Area Measurement was performed in accordance with JIS K6430. As a result, the BET specific surface area of silica 1 was 245 m 2 / g.
(5)CTAB吸着比表面積の測定
 ASTM D3765-92に記載の方法に準拠して測定を実施した。この際、カーボンブラックの標準品であるIRB#3(83.0m2/g)を使用せず、別途セチルトリメチルアンモニウムブロミド(以下、CE-TRABと略記する)標準液を調製し、これによってシリカOT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)溶液の標定を行い、シリカ表面に対するCE-TRAB1分子当たりの吸着断面積を0.35nm2として、CE-TRABの吸着量から比表面積(m2/g)を算出した。
 その結果、シリカ1のCTAB吸着比表面積は、180m2/gであった。
(5) Measurement of CTAB adsorption specific surface area Measurement was performed according to the method described in ASTM D3765-92. At this time, a standard solution of cetyltrimethylammonium bromide (hereinafter abbreviated as CE-TRAB) was prepared separately without using IRB # 3 (83.0 m 2 / g), which is a standard product of carbon black, and silica was thereby obtained. The OT (sodium di-2-ethylhexylsulfosuccinate) solution is standardized, and the adsorption cross section per molecule of CE-TRAB on the silica surface is 0.35 nm 2 and the adsorption amount of CE-TRAB is based on the specific surface area (m 2 / g ) Was calculated.
As a result, the CTAB adsorption specific surface area of silica 1 was 180 m 2 / g.
<ゴム組成物の調製及び評価>
 次いで、表2に示す配合処方に従い、比較例10及び実施例2については、通常のバンバリーミキサーを用いてゴム組成物を製造した。比較例1~9及び実施例1については、ゴム組成物を製造する。得られたゴム組成物に対して、下記の方法で、グリーン強度、粘度、並びに加硫ゴムの損失正接(tanδ)及び貯蔵弾性率(E’)を測定した。比較例1~9及び実施例1については、グリーン強度、粘度、並びに加硫ゴムの損失正接(tanδ)及び貯蔵弾性率(E’)を測定する。結果を表2に示す。
<Preparation and Evaluation of Rubber Composition>
Subsequently, according to the compounding prescription shown in Table 2, the rubber composition was manufactured about Comparative Example 10 and Example 2 using the normal Banbury mixer. For Comparative Examples 1-9 and Example 1, a rubber composition is produced. The green strength, the viscosity, and the loss tangent (tan δ) and the storage elastic modulus (E ′) of the vulcanized rubber were measured for the obtained rubber composition by the following method. For Comparative Examples 1 to 9 and Example 1, the green strength, viscosity, and loss tangent (tan δ) and storage elastic modulus (E ′) of the vulcanized rubber are measured. The results are shown in Table 2.
(6)グリーン強度
 未加硫ゴム組成物について、JIS K 6251:2010に準拠して引張試験を実施した。具体的には、厚さ4.00±0.40mmのゴム組成物のシートをリング状(JIS-5号型)に打ち抜いてサンプルを作製し、温度40℃にて100±5mm/分の速度で引張り、破断時までの応力測定を行い、未加硫ゴム組成物の引張強さを測定した。比較例1の引張強さを100として、グリーン強度を指数表示した。指数値が大きい程、加工性に優れることを示す。
(6) Green Strength A tensile test was conducted on the unvulcanized rubber composition in accordance with JIS K 6251: 2010. Specifically, a sheet of a rubber composition having a thickness of 4.00 ± 0.40 mm is punched into a ring shape (JIS-5 type) to prepare a sample, and a speed of 100 ± 5 mm / min at a temperature of 40 ° C. The tensile strength of the unvulcanized rubber composition was measured, and the stress was measured until the time of breakage. Assuming that the tensile strength of Comparative Example 1 is 100, the green strength is indicated as an index. The larger the index value, the better the processability.
(7)未加硫ゴム組成物の粘度
 JIS K 6300-1:2001に準拠し、L型ローターを用い、130℃にてムーニー粘度を測定した。比較例1の未加硫ゴム組成物の粘度を100として指数表示した。指数値が大きい程、加工性に優れることを示す。
(7) Viscosity of Unvulcanized Rubber Composition Mooney viscosity was measured at 130 ° C. using an L-shaped rotor in accordance with JIS K 6300-1: 2001. The viscosity of the unvulcanized rubber composition of Comparative Example 1 was indexed as 100. The larger the index value, the better the processability.
(8)加硫ゴムの貯蔵弾性率(E’)及び損失正接(tanδ)
 ゴム組成物を145℃で33分間加硫して得られた加硫ゴムに対して株式会社上島製作所製スペクトロメーターを用いて、初期歪2%、動歪1%、周波数52Hzの条件下で、30℃における貯蔵弾性率(E’)、並びに、0℃、30℃及び50℃におけるtanδ(損失正接)を測定した。
(8) Storage elastic modulus (E ') and loss tangent (tan δ) of vulcanized rubber
A vulcanized rubber obtained by vulcanizing the rubber composition at 145 ° C. for 33 minutes, using a spectrometer manufactured by Uejima Mfg. Co., Ltd., under conditions of initial strain 2%, dynamic strain 1%, frequency 52 Hz, The storage elastic modulus (E ′) at 30 ° C. and tan δ (loss tangent) at 0 ° C., 30 ° C. and 50 ° C. were measured.
<タイヤの作製及び評価>
 上記のようして得られたゴム組成物をトレッドゴムに用いて、常法に従ってサイズ:195/65R15の乗用車用ラジアルタイヤを作製する。得られたゴム組成物又は得られた供試タイヤを用いて、下記の方法で、ドライハンドリング性、耐摩耗性、転がり抵抗を評価する。結果を表2に示す。
<Production and evaluation of tires>
Using the rubber composition obtained as described above for tread rubber, a radial tire for passenger car of size: 195 / 65R15 is produced according to a conventional method. Dry handling property, abrasion resistance, and rolling resistance are evaluated by the following method using the obtained rubber composition or the obtained test tire. The results are shown in Table 2.
(9)転がり抵抗
 供試タイヤを、回転ドラムにより80km/hrの速度で回転させ、荷重を4.82kNとして、転がり抵抗を測定し、比較例1のタイヤの転がり抵抗の逆数を100として指数表示する。指数値が大きい程、転がり抵抗が低く、低ロス性に優れることを示す。
(9) Rolling resistance The test tire is rotated at a speed of 80 km / hr by a rotating drum, the load is 4.82 kN, the rolling resistance is measured, and the reciprocal of the rolling resistance of the comparative example 1 is indexed as 100. Do. The larger the index value, the lower the rolling resistance and the better the low loss property.
(10)ドライハンドリング性
 各供試タイヤにつき、乾燥路面での実車試験にて、テストドライバーによるフィーリングに基づき、ドライハンドリング性を評価し、比較例1のドライハンドリング性を100として指数表示する。指数値が大きい程、タイヤのドライハンドリング性に優れることを示す。
(10) Dry Handling Property The dry handling property of each test tire is evaluated based on the feeling by the test driver in an actual vehicle test on a dry road surface, and the dry handling property of Comparative Example 1 is displayed as an index of 100. The larger the index value, the better the dry handling properties of the tire.
(11)耐摩耗性
 得られたゴム組成物を145℃で33分加硫後、JIS K 6264-2:2005に準拠し、ランボーン摩耗試験機を使用して23℃で摩耗量を測定し、比較例1の摩耗量の逆数を100として、それぞれ指数表示する。指数値が大きい程、摩耗量が少なく、耐摩耗性に優れることを示す。
(11) Wear resistance After vulcanizing the obtained rubber composition at 145 ° C. for 33 minutes, the amount of wear is measured at 23 ° C. according to JIS K 6264-2: 2005, using a Lambourn abrasion tester, The inverse number of the amount of wear of Comparative Example 1 is set to 100, and is displayed as an index. The larger the index value, the smaller the amount of wear and the better the wear resistance.
(12)総合評価
 上記のようにして算出したドライハンドリング性の指数と、耐摩耗性の指数と、転がり抵抗の指数と、の合計を算出して、総合的に評価を行った。総合評価の指数が大きい程、低ロス性と、耐摩耗性と、ドライハンドリング性とのバランスに優れることを示す。
(12) Comprehensive Evaluation The evaluation was performed comprehensively by calculating the sum of the dry handling index, the wear resistance index, and the rolling resistance index calculated as described above. The larger the index of the comprehensive evaluation, the better the balance between low loss, wear resistance, and dry handling.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
*1 天然ゴム:RSS#3
*2 カーボンブラック:SAFグレード
*3 シランカップリング剤1:3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール、エボニック・デグッサ社製、商品名「Si363」
*4 シランカップリング剤2:エボニック・デグッサ社製、商品名「Si2.5」、メルカプト基を有しない
*5 SEBS1:スチレン・エチレンブチレン・スチレンブロック共重合体、JSR社製、商品名「DYNARON(登録商標)8903P」、スチレン単位の総含有量=35質量%、ブチレン単位及びエチレン単位の総質量に対するブチレン単位の含有量=70質量%
*6 SBS1:JSR社製、商品名「TR2250」、スチレン単位の総含有量=52質量%
*7 ワックス:マイクロクリスタリンワックス、日本精蝋社製、商品名「オゾエース0701」
*8 老化防止剤6PPD:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック6C」
*9 老化防止剤TMQ:2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、精工化学株式会社社製、商品名「ノンフレックスRD-S」
*10 加硫促進剤DPG:1,3-ジフェニルグアニジン、大内新興化学工業社製、商品名「ノクセラーD」
*11 加硫促進剤MBTS:ジ-2-ベンゾチアゾリルジスルフィド、大内新興化学工業社製、商品名「ノクセラーDM」
*12 加硫促進剤CBS:N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、三新化学工業社製、商品名「サンセラーCM-G」
*13 樹脂:C5-C9系樹脂、エクソンモービルケミカル社製、商品名「ECR213」
* 1 Natural rubber: RSS # 3
* 2 Carbon black: SAF grade * 3 Silane coupling agent 1: 3- [Ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silyl] -1-propanethiol, Evonik Degussa Company name, "Si 363"
* 4 Silane coupling agent 2: manufactured by Evonik Degussa, trade name "Si 2.5", not having mercapto group * 5 SEBS 1: styrene, ethylene butylene, styrene block copolymer, manufactured by JSR, trade name "DYNARON" (Registered trademark) 8903P ", total content of styrene units = 35% by mass, content of butylene units to total mass of butylene units and ethylene units = 70% by mass
* 6 SBS1: JSR Corporation, trade name "TR2250", total content of styrene unit = 52% by mass
* 7 Wax: Micro crystal wax, manufactured by Nippon Seiwa Co., Ltd., trade name "Ozo Ace 0701"
* 8 Anti-aging agent 6PPD: N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylenediamine, manufactured by Ouchi Emerging Chemical Industry Co., Ltd., trade name "NOCLAK 6C"
* 9 Anti-aging agent TMQ: 2,2,4-trimethyl-1,2-dihydroquinoline polymer, manufactured by SEIKO CHEMICAL CO., LTD., Trade name "Nonflex RD-S"
* 10 Vulcanization accelerator DPG: 1,3-diphenyl guanidine, manufactured by Ouchi Shinko Chemical Co., Ltd., trade name "Noxceler D"
* 11 Vulcanization accelerator MBTS: di-2-benzothiazolyl disulfide, manufactured by Ouchi Emerging Chemical Industry Co., Ltd., trade name "Noxceler DM"
* 12 Vulcanization accelerator CBS: N-Cyclohexyl-2-benzothiazolesulfenamide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name "Sunseller CM-G"
* 13 Resin: C 5 -C 9 resin manufactured by ExxonMobil Chemical Company, trade name "ECR 213"
 表2から、本発明に従う実施例のタイヤは、低ロス性と、耐摩耗性と、ドライハンドリング性とが高度にバランスされていることが分かる。 From Table 2, it can be seen that the tire of the example according to the present invention is highly balanced between low loss, abrasion resistance and dry handling.
 本発明によれば、タイヤの低ロス性と、耐摩耗性と、ドライハンドリング性とを高度にバランスさせることが可能なゴム組成物を提供することができる。
 また、本発明によれば、低ロス性と、耐摩耗性と、ドライハンドリング性とが高度にバランスしたタイヤを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the rubber composition which can make the low loss property of a tire, abrasion resistance, and dry handling property be highly balanced can be provided.
Further, according to the present invention, it is possible to provide a tire in which low loss property, wear resistance and dry handling property are highly balanced.

Claims (9)

  1.  ゴム成分(A)と、スチレン・アルキレンブロック共重合体(B)と、シリカ(C)と、シランカップリング剤(D)とを含み、
     前記スチレン・アルキレンブロック共重合体(B)は、スチレン単位の総含有量が30質量%以上であり、
     前記シランカップリング剤(D)は、メルカプト基を有する、ことを特徴とする、ゴム組成物。
    A rubber component (A), a styrene-alkylene block copolymer (B), silica (C), and a silane coupling agent (D),
    The styrene / alkylene block copolymer (B) has a total content of styrene units of 30% by mass or more,
    The rubber composition characterized in that the silane coupling agent (D) has a mercapto group.
  2.  前記スチレン・アルキレンブロック共重合体(B)のアルキレンブロックが、-[CH2-CH(C25)]-単位(ブチレン単位)と、-(CH2-CH2)-単位(エチレン単位)とを有し、前記ブチレン単位の含有量が、前記ブチレン単位及び前記エチレン単位の総質量に対して50質量%以上である、請求項1に記載のゴム組成物。 The alkylene block of the styrene-alkylene block copolymer (B) comprises-[CH 2 -CH (C 2 H 5 )]-units (butylene units) and-(CH 2 -CH 2 )-units (ethylene units) The rubber composition according to claim 1, wherein the content of the butylene unit is 50% by mass or more based on the total mass of the butylene unit and the ethylene unit.
  3.  前記シリカ(C)は、BET比表面積が40~350m2/gである、請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the silica (C) has a BET specific surface area of 40 to 350 m 2 / g.
  4.  前記シリカ(C)は、セチルトリメチルアンモニウムブロミド(CTAB)吸着比表面積が150~260m2/gである、請求項1~3のいずれか一項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the silica (C) has a cetyltrimethylammonium bromide (CTAB) adsorption specific surface area of 150 to 260 m 2 / g.
  5.  更に、C5系樹脂、C5-C9系樹脂、C9系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂及びアルキルフェノール系樹脂からなる群から選択される少なくとも一種の樹脂(E)を含む、請求項1~4のいずれかに記載のゴム組成物。 Furthermore, C 5 resins, C 5 -C 9 resins, C 9 resins, terpene resins, terpene - selected aromatic compound resin, rosin resin, from the group consisting of dicyclopentadiene resin and alkylphenol resin The rubber composition according to any one of claims 1 to 4, which comprises at least one resin (E).
  6.  前記スチレン・アルキレンブロック共重合体(B)は、スチレン単位の総含有量が50質量%以上である、請求項1~5のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, wherein the styrene / alkylene block copolymer (B) has a total content of styrene units of 50% by mass or more.
  7.  前記スチレン・アルキレンブロック共重合体(B)が、スチレン・エチレンブチレン・スチレンブロック共重合体である、請求項1~6のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the styrene / alkylene block copolymer (B) is a styrene / ethylene butylene / styrene block copolymer.
  8.  前記シランカップリング剤(D)が、3-メルカプトプロピルトリメトキシシラン、及び3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオールから選択される少なくとも一種である、請求項1~7のいずれかに記載のゴム組成物。 The silane coupling agent (D) is 3-mercaptopropyltrimethoxysilane, and 3- [ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silyl] -1-propanethiol. The rubber composition according to any one of claims 1 to 7, which is at least one selected from
  9.  請求項1~8のいずれかに記載のゴム組成物をトレッドゴムに用いたことを特徴とする、タイヤ。 A tire comprising the rubber composition according to any one of claims 1 to 8 as a tread rubber.
PCT/JP2018/045983 2017-12-14 2018-12-13 Rubber composition and tire WO2019117266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559211A JPWO2019117266A1 (en) 2017-12-14 2018-12-13 Rubber composition and tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-240083 2017-12-14
JP2017240083 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019117266A1 true WO2019117266A1 (en) 2019-06-20

Family

ID=66820394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045983 WO2019117266A1 (en) 2017-12-14 2018-12-13 Rubber composition and tire

Country Status (2)

Country Link
JP (1) JPWO2019117266A1 (en)
WO (1) WO2019117266A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125299A1 (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン Rubber composition and tire
WO2021125300A1 (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン Rubber composition and tire
JP2021130800A (en) * 2020-02-21 2021-09-09 住友ゴム工業株式会社 Rubber composition and tire
JP2023510529A (en) * 2020-08-05 2023-03-14 エルジー・ケム・リミテッド Modified conjugated diene polymer and rubber composition containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531486A (en) * 2009-06-29 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with treads containing saturated thermoplastic elastomers
JP2015086388A (en) * 2013-10-31 2015-05-07 ハンコック タイヤ カンパニー リミテッド Rubber composition for tire and tire manufactured by using the same
JP2015206038A (en) * 2014-04-22 2015-11-19 ハンコック タイヤ カンパニー リミテッド Sidewall insert rubber composition for run-flat tire and tire produced using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531486A (en) * 2009-06-29 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with treads containing saturated thermoplastic elastomers
JP2015086388A (en) * 2013-10-31 2015-05-07 ハンコック タイヤ カンパニー リミテッド Rubber composition for tire and tire manufactured by using the same
JP2015206038A (en) * 2014-04-22 2015-11-19 ハンコック タイヤ カンパニー リミテッド Sidewall insert rubber composition for run-flat tire and tire produced using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125299A1 (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン Rubber composition and tire
WO2021125300A1 (en) * 2019-12-19 2021-06-24 株式会社ブリヂストン Rubber composition and tire
CN114867778A (en) * 2019-12-19 2022-08-05 株式会社普利司通 Rubber composition and tire
JP7483755B2 (en) 2019-12-19 2024-05-15 株式会社ブリヂストン Rubber composition and tire
JP2021130800A (en) * 2020-02-21 2021-09-09 住友ゴム工業株式会社 Rubber composition and tire
EP3868823A3 (en) * 2020-02-21 2021-09-29 Sumitomo Rubber Industries, Ltd. Rubber composition and tire
JP7237034B2 (en) 2020-02-21 2023-03-10 住友ゴム工業株式会社 Rubber composition and tire
JP2023510529A (en) * 2020-08-05 2023-03-14 エルジー・ケム・リミテッド Modified conjugated diene polymer and rubber composition containing the same
JP7345958B2 (en) 2020-08-05 2023-09-19 エルジー・ケム・リミテッド Modified conjugated diene polymer and rubber composition containing the same

Also Published As

Publication number Publication date
JPWO2019117266A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP7288861B2 (en) Rubber composition and tire
JP6627293B2 (en) Pneumatic tire
WO2016039008A1 (en) Pneumatic tire
CN112352014B (en) Propylene-ethylene-diene terpolymer polyolefin additives for improved tire tread performance
WO2019117266A1 (en) Rubber composition and tire
JP7422487B2 (en) Rubber composition and tire
JP7381725B2 (en) Hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer composition, rubber composition, and method for producing hydrogenated conjugated diene polymer
CN112055729B (en) Rubber composition and pneumatic tire
JP7119329B2 (en) Rubber composition for tire
WO2019117214A1 (en) Rubber composition and tire
WO2019117093A1 (en) Rubber composition and tire
JP7159799B2 (en) pneumatic tire
CN111491998B (en) Sulfur-crosslinkable rubber mixture, vulcanized rubber of rubber mixture and vehicle tire
US20220119626A1 (en) Rubber composition and pneumatic tire
EP3882307A1 (en) Rubber composition and pneumatic tire
JP2020094112A (en) Rubber composition and tire
WO2019117263A1 (en) Rubber composition and tire
JP7397658B2 (en) tire
JP6544496B1 (en) Tread rubber composition for studless tire
EP3950814A1 (en) Conjugated diene polymer composition
JP6305796B2 (en) Process for producing alkoxy-modified diene rubber and rubber composition using the same
EP3882306A1 (en) Rubber composition and pneumatic tire
JP7444166B2 (en) pneumatic tires
WO2024111650A1 (en) Tire
EP4349612A1 (en) Rubber composition for tire, tread rubber, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888262

Country of ref document: EP

Kind code of ref document: A1